linux/drivers/mtd/nand/gpmi-nand/gpmi-nand.c
<<
>>
Prefs
   1/*
   2 * Freescale GPMI NAND Flash Driver
   3 *
   4 * Copyright (C) 2010-2011 Freescale Semiconductor, Inc.
   5 * Copyright (C) 2008 Embedded Alley Solutions, Inc.
   6 *
   7 * This program is free software; you can redistribute it and/or modify
   8 * it under the terms of the GNU General Public License as published by
   9 * the Free Software Foundation; either version 2 of the License, or
  10 * (at your option) any later version.
  11 *
  12 * This program is distributed in the hope that it will be useful,
  13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  15 * GNU General Public License for more details.
  16 *
  17 * You should have received a copy of the GNU General Public License along
  18 * with this program; if not, write to the Free Software Foundation, Inc.,
  19 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
  20 */
  21#include <linux/clk.h>
  22#include <linux/slab.h>
  23#include <linux/interrupt.h>
  24#include <linux/module.h>
  25#include <linux/mtd/partitions.h>
  26#include <linux/of.h>
  27#include <linux/of_device.h>
  28#include <linux/of_mtd.h>
  29#include "gpmi-nand.h"
  30#include "bch-regs.h"
  31
  32/* Resource names for the GPMI NAND driver. */
  33#define GPMI_NAND_GPMI_REGS_ADDR_RES_NAME  "gpmi-nand"
  34#define GPMI_NAND_BCH_REGS_ADDR_RES_NAME   "bch"
  35#define GPMI_NAND_BCH_INTERRUPT_RES_NAME   "bch"
  36
  37/* add our owner bbt descriptor */
  38static uint8_t scan_ff_pattern[] = { 0xff };
  39static struct nand_bbt_descr gpmi_bbt_descr = {
  40        .options        = 0,
  41        .offs           = 0,
  42        .len            = 1,
  43        .pattern        = scan_ff_pattern
  44};
  45
  46/*
  47 * We may change the layout if we can get the ECC info from the datasheet,
  48 * else we will use all the (page + OOB).
  49 */
  50static struct nand_ecclayout gpmi_hw_ecclayout = {
  51        .eccbytes = 0,
  52        .eccpos = { 0, },
  53        .oobfree = { {.offset = 0, .length = 0} }
  54};
  55
  56static const struct gpmi_devdata gpmi_devdata_imx23 = {
  57        .type = IS_MX23,
  58        .bch_max_ecc_strength = 20,
  59        .max_chain_delay = 16,
  60};
  61
  62static const struct gpmi_devdata gpmi_devdata_imx28 = {
  63        .type = IS_MX28,
  64        .bch_max_ecc_strength = 20,
  65        .max_chain_delay = 16,
  66};
  67
  68static const struct gpmi_devdata gpmi_devdata_imx6q = {
  69        .type = IS_MX6Q,
  70        .bch_max_ecc_strength = 40,
  71        .max_chain_delay = 12,
  72};
  73
  74static const struct gpmi_devdata gpmi_devdata_imx6sx = {
  75        .type = IS_MX6SX,
  76        .bch_max_ecc_strength = 62,
  77        .max_chain_delay = 12,
  78};
  79
  80static irqreturn_t bch_irq(int irq, void *cookie)
  81{
  82        struct gpmi_nand_data *this = cookie;
  83
  84        gpmi_clear_bch(this);
  85        complete(&this->bch_done);
  86        return IRQ_HANDLED;
  87}
  88
  89/*
  90 *  Calculate the ECC strength by hand:
  91 *      E : The ECC strength.
  92 *      G : the length of Galois Field.
  93 *      N : The chunk count of per page.
  94 *      O : the oobsize of the NAND chip.
  95 *      M : the metasize of per page.
  96 *
  97 *      The formula is :
  98 *              E * G * N
  99 *            ------------ <= (O - M)
 100 *                  8
 101 *
 102 *      So, we get E by:
 103 *                    (O - M) * 8
 104 *              E <= -------------
 105 *                       G * N
 106 */
 107static inline int get_ecc_strength(struct gpmi_nand_data *this)
 108{
 109        struct bch_geometry *geo = &this->bch_geometry;
 110        struct mtd_info *mtd = &this->mtd;
 111        int ecc_strength;
 112
 113        ecc_strength = ((mtd->oobsize - geo->metadata_size) * 8)
 114                        / (geo->gf_len * geo->ecc_chunk_count);
 115
 116        /* We need the minor even number. */
 117        return round_down(ecc_strength, 2);
 118}
 119
 120static inline bool gpmi_check_ecc(struct gpmi_nand_data *this)
 121{
 122        struct bch_geometry *geo = &this->bch_geometry;
 123
 124        /* Do the sanity check. */
 125        if (GPMI_IS_MX23(this) || GPMI_IS_MX28(this)) {
 126                /* The mx23/mx28 only support the GF13. */
 127                if (geo->gf_len == 14)
 128                        return false;
 129        }
 130        return geo->ecc_strength <= this->devdata->bch_max_ecc_strength;
 131}
 132
 133/*
 134 * If we can get the ECC information from the nand chip, we do not
 135 * need to calculate them ourselves.
 136 *
 137 * We may have available oob space in this case.
 138 */
 139static bool set_geometry_by_ecc_info(struct gpmi_nand_data *this)
 140{
 141        struct bch_geometry *geo = &this->bch_geometry;
 142        struct mtd_info *mtd = &this->mtd;
 143        struct nand_chip *chip = mtd->priv;
 144        struct nand_oobfree *of = gpmi_hw_ecclayout.oobfree;
 145        unsigned int block_mark_bit_offset;
 146
 147        if (!(chip->ecc_strength_ds > 0 && chip->ecc_step_ds > 0))
 148                return false;
 149
 150        switch (chip->ecc_step_ds) {
 151        case SZ_512:
 152                geo->gf_len = 13;
 153                break;
 154        case SZ_1K:
 155                geo->gf_len = 14;
 156                break;
 157        default:
 158                dev_err(this->dev,
 159                        "unsupported nand chip. ecc bits : %d, ecc size : %d\n",
 160                        chip->ecc_strength_ds, chip->ecc_step_ds);
 161                return false;
 162        }
 163        geo->ecc_chunk_size = chip->ecc_step_ds;
 164        geo->ecc_strength = round_up(chip->ecc_strength_ds, 2);
 165        if (!gpmi_check_ecc(this))
 166                return false;
 167
 168        /* Keep the C >= O */
 169        if (geo->ecc_chunk_size < mtd->oobsize) {
 170                dev_err(this->dev,
 171                        "unsupported nand chip. ecc size: %d, oob size : %d\n",
 172                        chip->ecc_step_ds, mtd->oobsize);
 173                return false;
 174        }
 175
 176        /* The default value, see comment in the legacy_set_geometry(). */
 177        geo->metadata_size = 10;
 178
 179        geo->ecc_chunk_count = mtd->writesize / geo->ecc_chunk_size;
 180
 181        /*
 182         * Now, the NAND chip with 2K page(data chunk is 512byte) shows below:
 183         *
 184         *    |                          P                            |
 185         *    |<----------------------------------------------------->|
 186         *    |                                                       |
 187         *    |                                        (Block Mark)   |
 188         *    |                      P'                      |      | |     |
 189         *    |<-------------------------------------------->|  D   | |  O' |
 190         *    |                                              |<---->| |<--->|
 191         *    V                                              V      V V     V
 192         *    +---+----------+-+----------+-+----------+-+----------+-+-----+
 193         *    | M |   data   |E|   data   |E|   data   |E|   data   |E|     |
 194         *    +---+----------+-+----------+-+----------+-+----------+-+-----+
 195         *                                                   ^              ^
 196         *                                                   |      O       |
 197         *                                                   |<------------>|
 198         *                                                   |              |
 199         *
 200         *      P : the page size for BCH module.
 201         *      E : The ECC strength.
 202         *      G : the length of Galois Field.
 203         *      N : The chunk count of per page.
 204         *      M : the metasize of per page.
 205         *      C : the ecc chunk size, aka the "data" above.
 206         *      P': the nand chip's page size.
 207         *      O : the nand chip's oob size.
 208         *      O': the free oob.
 209         *
 210         *      The formula for P is :
 211         *
 212         *                  E * G * N
 213         *             P = ------------ + P' + M
 214         *                      8
 215         *
 216         * The position of block mark moves forward in the ECC-based view
 217         * of page, and the delta is:
 218         *
 219         *                   E * G * (N - 1)
 220         *             D = (---------------- + M)
 221         *                          8
 222         *
 223         * Please see the comment in legacy_set_geometry().
 224         * With the condition C >= O , we still can get same result.
 225         * So the bit position of the physical block mark within the ECC-based
 226         * view of the page is :
 227         *             (P' - D) * 8
 228         */
 229        geo->page_size = mtd->writesize + geo->metadata_size +
 230                (geo->gf_len * geo->ecc_strength * geo->ecc_chunk_count) / 8;
 231
 232        /* The available oob size we have. */
 233        if (geo->page_size < mtd->writesize + mtd->oobsize) {
 234                of->offset = geo->page_size - mtd->writesize;
 235                of->length = mtd->oobsize - of->offset;
 236        }
 237
 238        geo->payload_size = mtd->writesize;
 239
 240        geo->auxiliary_status_offset = ALIGN(geo->metadata_size, 4);
 241        geo->auxiliary_size = ALIGN(geo->metadata_size, 4)
 242                                + ALIGN(geo->ecc_chunk_count, 4);
 243
 244        if (!this->swap_block_mark)
 245                return true;
 246
 247        /* For bit swap. */
 248        block_mark_bit_offset = mtd->writesize * 8 -
 249                (geo->ecc_strength * geo->gf_len * (geo->ecc_chunk_count - 1)
 250                                + geo->metadata_size * 8);
 251
 252        geo->block_mark_byte_offset = block_mark_bit_offset / 8;
 253        geo->block_mark_bit_offset  = block_mark_bit_offset % 8;
 254        return true;
 255}
 256
 257static int legacy_set_geometry(struct gpmi_nand_data *this)
 258{
 259        struct bch_geometry *geo = &this->bch_geometry;
 260        struct mtd_info *mtd = &this->mtd;
 261        unsigned int metadata_size;
 262        unsigned int status_size;
 263        unsigned int block_mark_bit_offset;
 264
 265        /*
 266         * The size of the metadata can be changed, though we set it to 10
 267         * bytes now. But it can't be too large, because we have to save
 268         * enough space for BCH.
 269         */
 270        geo->metadata_size = 10;
 271
 272        /* The default for the length of Galois Field. */
 273        geo->gf_len = 13;
 274
 275        /* The default for chunk size. */
 276        geo->ecc_chunk_size = 512;
 277        while (geo->ecc_chunk_size < mtd->oobsize) {
 278                geo->ecc_chunk_size *= 2; /* keep C >= O */
 279                geo->gf_len = 14;
 280        }
 281
 282        geo->ecc_chunk_count = mtd->writesize / geo->ecc_chunk_size;
 283
 284        /* We use the same ECC strength for all chunks. */
 285        geo->ecc_strength = get_ecc_strength(this);
 286        if (!gpmi_check_ecc(this)) {
 287                dev_err(this->dev,
 288                        "required ecc strength of the NAND chip: %d is not supported by the GPMI controller (%d)\n",
 289                        geo->ecc_strength,
 290                        this->devdata->bch_max_ecc_strength);
 291                return -EINVAL;
 292        }
 293
 294        geo->page_size = mtd->writesize + mtd->oobsize;
 295        geo->payload_size = mtd->writesize;
 296
 297        /*
 298         * The auxiliary buffer contains the metadata and the ECC status. The
 299         * metadata is padded to the nearest 32-bit boundary. The ECC status
 300         * contains one byte for every ECC chunk, and is also padded to the
 301         * nearest 32-bit boundary.
 302         */
 303        metadata_size = ALIGN(geo->metadata_size, 4);
 304        status_size   = ALIGN(geo->ecc_chunk_count, 4);
 305
 306        geo->auxiliary_size = metadata_size + status_size;
 307        geo->auxiliary_status_offset = metadata_size;
 308
 309        if (!this->swap_block_mark)
 310                return 0;
 311
 312        /*
 313         * We need to compute the byte and bit offsets of
 314         * the physical block mark within the ECC-based view of the page.
 315         *
 316         * NAND chip with 2K page shows below:
 317         *                                             (Block Mark)
 318         *                                                   |      |
 319         *                                                   |  D   |
 320         *                                                   |<---->|
 321         *                                                   V      V
 322         *    +---+----------+-+----------+-+----------+-+----------+-+
 323         *    | M |   data   |E|   data   |E|   data   |E|   data   |E|
 324         *    +---+----------+-+----------+-+----------+-+----------+-+
 325         *
 326         * The position of block mark moves forward in the ECC-based view
 327         * of page, and the delta is:
 328         *
 329         *                   E * G * (N - 1)
 330         *             D = (---------------- + M)
 331         *                          8
 332         *
 333         * With the formula to compute the ECC strength, and the condition
 334         *       : C >= O         (C is the ecc chunk size)
 335         *
 336         * It's easy to deduce to the following result:
 337         *
 338         *         E * G       (O - M)      C - M         C - M
 339         *      ----------- <= ------- <=  --------  <  ---------
 340         *           8            N           N          (N - 1)
 341         *
 342         *  So, we get:
 343         *
 344         *                   E * G * (N - 1)
 345         *             D = (---------------- + M) < C
 346         *                          8
 347         *
 348         *  The above inequality means the position of block mark
 349         *  within the ECC-based view of the page is still in the data chunk,
 350         *  and it's NOT in the ECC bits of the chunk.
 351         *
 352         *  Use the following to compute the bit position of the
 353         *  physical block mark within the ECC-based view of the page:
 354         *          (page_size - D) * 8
 355         *
 356         *  --Huang Shijie
 357         */
 358        block_mark_bit_offset = mtd->writesize * 8 -
 359                (geo->ecc_strength * geo->gf_len * (geo->ecc_chunk_count - 1)
 360                                + geo->metadata_size * 8);
 361
 362        geo->block_mark_byte_offset = block_mark_bit_offset / 8;
 363        geo->block_mark_bit_offset  = block_mark_bit_offset % 8;
 364        return 0;
 365}
 366
 367int common_nfc_set_geometry(struct gpmi_nand_data *this)
 368{
 369        if (of_property_read_bool(this->dev->of_node, "fsl,use-minimum-ecc")
 370                && set_geometry_by_ecc_info(this))
 371                return 0;
 372        return legacy_set_geometry(this);
 373}
 374
 375struct dma_chan *get_dma_chan(struct gpmi_nand_data *this)
 376{
 377        /* We use the DMA channel 0 to access all the nand chips. */
 378        return this->dma_chans[0];
 379}
 380
 381/* Can we use the upper's buffer directly for DMA? */
 382void prepare_data_dma(struct gpmi_nand_data *this, enum dma_data_direction dr)
 383{
 384        struct scatterlist *sgl = &this->data_sgl;
 385        int ret;
 386
 387        /* first try to map the upper buffer directly */
 388        if (virt_addr_valid(this->upper_buf) &&
 389                !object_is_on_stack(this->upper_buf)) {
 390                sg_init_one(sgl, this->upper_buf, this->upper_len);
 391                ret = dma_map_sg(this->dev, sgl, 1, dr);
 392                if (ret == 0)
 393                        goto map_fail;
 394
 395                this->direct_dma_map_ok = true;
 396                return;
 397        }
 398
 399map_fail:
 400        /* We have to use our own DMA buffer. */
 401        sg_init_one(sgl, this->data_buffer_dma, this->upper_len);
 402
 403        if (dr == DMA_TO_DEVICE)
 404                memcpy(this->data_buffer_dma, this->upper_buf, this->upper_len);
 405
 406        dma_map_sg(this->dev, sgl, 1, dr);
 407
 408        this->direct_dma_map_ok = false;
 409}
 410
 411/* This will be called after the DMA operation is finished. */
 412static void dma_irq_callback(void *param)
 413{
 414        struct gpmi_nand_data *this = param;
 415        struct completion *dma_c = &this->dma_done;
 416
 417        switch (this->dma_type) {
 418        case DMA_FOR_COMMAND:
 419                dma_unmap_sg(this->dev, &this->cmd_sgl, 1, DMA_TO_DEVICE);
 420                break;
 421
 422        case DMA_FOR_READ_DATA:
 423                dma_unmap_sg(this->dev, &this->data_sgl, 1, DMA_FROM_DEVICE);
 424                if (this->direct_dma_map_ok == false)
 425                        memcpy(this->upper_buf, this->data_buffer_dma,
 426                                this->upper_len);
 427                break;
 428
 429        case DMA_FOR_WRITE_DATA:
 430                dma_unmap_sg(this->dev, &this->data_sgl, 1, DMA_TO_DEVICE);
 431                break;
 432
 433        case DMA_FOR_READ_ECC_PAGE:
 434        case DMA_FOR_WRITE_ECC_PAGE:
 435                /* We have to wait the BCH interrupt to finish. */
 436                break;
 437
 438        default:
 439                dev_err(this->dev, "in wrong DMA operation.\n");
 440        }
 441
 442        complete(dma_c);
 443}
 444
 445int start_dma_without_bch_irq(struct gpmi_nand_data *this,
 446                                struct dma_async_tx_descriptor *desc)
 447{
 448        struct completion *dma_c = &this->dma_done;
 449        int err;
 450
 451        init_completion(dma_c);
 452
 453        desc->callback          = dma_irq_callback;
 454        desc->callback_param    = this;
 455        dmaengine_submit(desc);
 456        dma_async_issue_pending(get_dma_chan(this));
 457
 458        /* Wait for the interrupt from the DMA block. */
 459        err = wait_for_completion_timeout(dma_c, msecs_to_jiffies(1000));
 460        if (!err) {
 461                dev_err(this->dev, "DMA timeout, last DMA :%d\n",
 462                        this->last_dma_type);
 463                gpmi_dump_info(this);
 464                return -ETIMEDOUT;
 465        }
 466        return 0;
 467}
 468
 469/*
 470 * This function is used in BCH reading or BCH writing pages.
 471 * It will wait for the BCH interrupt as long as ONE second.
 472 * Actually, we must wait for two interrupts :
 473 *      [1] firstly the DMA interrupt and
 474 *      [2] secondly the BCH interrupt.
 475 */
 476int start_dma_with_bch_irq(struct gpmi_nand_data *this,
 477                        struct dma_async_tx_descriptor *desc)
 478{
 479        struct completion *bch_c = &this->bch_done;
 480        int err;
 481
 482        /* Prepare to receive an interrupt from the BCH block. */
 483        init_completion(bch_c);
 484
 485        /* start the DMA */
 486        start_dma_without_bch_irq(this, desc);
 487
 488        /* Wait for the interrupt from the BCH block. */
 489        err = wait_for_completion_timeout(bch_c, msecs_to_jiffies(1000));
 490        if (!err) {
 491                dev_err(this->dev, "BCH timeout, last DMA :%d\n",
 492                        this->last_dma_type);
 493                gpmi_dump_info(this);
 494                return -ETIMEDOUT;
 495        }
 496        return 0;
 497}
 498
 499static int acquire_register_block(struct gpmi_nand_data *this,
 500                                  const char *res_name)
 501{
 502        struct platform_device *pdev = this->pdev;
 503        struct resources *res = &this->resources;
 504        struct resource *r;
 505        void __iomem *p;
 506
 507        r = platform_get_resource_byname(pdev, IORESOURCE_MEM, res_name);
 508        p = devm_ioremap_resource(&pdev->dev, r);
 509        if (IS_ERR(p))
 510                return PTR_ERR(p);
 511
 512        if (!strcmp(res_name, GPMI_NAND_GPMI_REGS_ADDR_RES_NAME))
 513                res->gpmi_regs = p;
 514        else if (!strcmp(res_name, GPMI_NAND_BCH_REGS_ADDR_RES_NAME))
 515                res->bch_regs = p;
 516        else
 517                dev_err(this->dev, "unknown resource name : %s\n", res_name);
 518
 519        return 0;
 520}
 521
 522static int acquire_bch_irq(struct gpmi_nand_data *this, irq_handler_t irq_h)
 523{
 524        struct platform_device *pdev = this->pdev;
 525        const char *res_name = GPMI_NAND_BCH_INTERRUPT_RES_NAME;
 526        struct resource *r;
 527        int err;
 528
 529        r = platform_get_resource_byname(pdev, IORESOURCE_IRQ, res_name);
 530        if (!r) {
 531                dev_err(this->dev, "Can't get resource for %s\n", res_name);
 532                return -ENODEV;
 533        }
 534
 535        err = devm_request_irq(this->dev, r->start, irq_h, 0, res_name, this);
 536        if (err)
 537                dev_err(this->dev, "error requesting BCH IRQ\n");
 538
 539        return err;
 540}
 541
 542static void release_dma_channels(struct gpmi_nand_data *this)
 543{
 544        unsigned int i;
 545        for (i = 0; i < DMA_CHANS; i++)
 546                if (this->dma_chans[i]) {
 547                        dma_release_channel(this->dma_chans[i]);
 548                        this->dma_chans[i] = NULL;
 549                }
 550}
 551
 552static int acquire_dma_channels(struct gpmi_nand_data *this)
 553{
 554        struct platform_device *pdev = this->pdev;
 555        struct dma_chan *dma_chan;
 556
 557        /* request dma channel */
 558        dma_chan = dma_request_slave_channel(&pdev->dev, "rx-tx");
 559        if (!dma_chan) {
 560                dev_err(this->dev, "Failed to request DMA channel.\n");
 561                goto acquire_err;
 562        }
 563
 564        this->dma_chans[0] = dma_chan;
 565        return 0;
 566
 567acquire_err:
 568        release_dma_channels(this);
 569        return -EINVAL;
 570}
 571
 572static char *extra_clks_for_mx6q[GPMI_CLK_MAX] = {
 573        "gpmi_apb", "gpmi_bch", "gpmi_bch_apb", "per1_bch",
 574};
 575
 576static int gpmi_get_clks(struct gpmi_nand_data *this)
 577{
 578        struct resources *r = &this->resources;
 579        char **extra_clks = NULL;
 580        struct clk *clk;
 581        int err, i;
 582
 583        /* The main clock is stored in the first. */
 584        r->clock[0] = devm_clk_get(this->dev, "gpmi_io");
 585        if (IS_ERR(r->clock[0])) {
 586                err = PTR_ERR(r->clock[0]);
 587                goto err_clock;
 588        }
 589
 590        /* Get extra clocks */
 591        if (GPMI_IS_MX6(this))
 592                extra_clks = extra_clks_for_mx6q;
 593        if (!extra_clks)
 594                return 0;
 595
 596        for (i = 1; i < GPMI_CLK_MAX; i++) {
 597                if (extra_clks[i - 1] == NULL)
 598                        break;
 599
 600                clk = devm_clk_get(this->dev, extra_clks[i - 1]);
 601                if (IS_ERR(clk)) {
 602                        err = PTR_ERR(clk);
 603                        goto err_clock;
 604                }
 605
 606                r->clock[i] = clk;
 607        }
 608
 609        if (GPMI_IS_MX6(this))
 610                /*
 611                 * Set the default value for the gpmi clock.
 612                 *
 613                 * If you want to use the ONFI nand which is in the
 614                 * Synchronous Mode, you should change the clock as you need.
 615                 */
 616                clk_set_rate(r->clock[0], 22000000);
 617
 618        return 0;
 619
 620err_clock:
 621        dev_dbg(this->dev, "failed in finding the clocks.\n");
 622        return err;
 623}
 624
 625static int acquire_resources(struct gpmi_nand_data *this)
 626{
 627        int ret;
 628
 629        ret = acquire_register_block(this, GPMI_NAND_GPMI_REGS_ADDR_RES_NAME);
 630        if (ret)
 631                goto exit_regs;
 632
 633        ret = acquire_register_block(this, GPMI_NAND_BCH_REGS_ADDR_RES_NAME);
 634        if (ret)
 635                goto exit_regs;
 636
 637        ret = acquire_bch_irq(this, bch_irq);
 638        if (ret)
 639                goto exit_regs;
 640
 641        ret = acquire_dma_channels(this);
 642        if (ret)
 643                goto exit_regs;
 644
 645        ret = gpmi_get_clks(this);
 646        if (ret)
 647                goto exit_clock;
 648        return 0;
 649
 650exit_clock:
 651        release_dma_channels(this);
 652exit_regs:
 653        return ret;
 654}
 655
 656static void release_resources(struct gpmi_nand_data *this)
 657{
 658        release_dma_channels(this);
 659}
 660
 661static int init_hardware(struct gpmi_nand_data *this)
 662{
 663        int ret;
 664
 665        /*
 666         * This structure contains the "safe" GPMI timing that should succeed
 667         * with any NAND Flash device
 668         * (although, with less-than-optimal performance).
 669         */
 670        struct nand_timing  safe_timing = {
 671                .data_setup_in_ns        = 80,
 672                .data_hold_in_ns         = 60,
 673                .address_setup_in_ns     = 25,
 674                .gpmi_sample_delay_in_ns =  6,
 675                .tREA_in_ns              = -1,
 676                .tRLOH_in_ns             = -1,
 677                .tRHOH_in_ns             = -1,
 678        };
 679
 680        /* Initialize the hardwares. */
 681        ret = gpmi_init(this);
 682        if (ret)
 683                return ret;
 684
 685        this->timing = safe_timing;
 686        return 0;
 687}
 688
 689static int read_page_prepare(struct gpmi_nand_data *this,
 690                        void *destination, unsigned length,
 691                        void *alt_virt, dma_addr_t alt_phys, unsigned alt_size,
 692                        void **use_virt, dma_addr_t *use_phys)
 693{
 694        struct device *dev = this->dev;
 695
 696        if (virt_addr_valid(destination)) {
 697                dma_addr_t dest_phys;
 698
 699                dest_phys = dma_map_single(dev, destination,
 700                                                length, DMA_FROM_DEVICE);
 701                if (dma_mapping_error(dev, dest_phys)) {
 702                        if (alt_size < length) {
 703                                dev_err(dev, "Alternate buffer is too small\n");
 704                                return -ENOMEM;
 705                        }
 706                        goto map_failed;
 707                }
 708                *use_virt = destination;
 709                *use_phys = dest_phys;
 710                this->direct_dma_map_ok = true;
 711                return 0;
 712        }
 713
 714map_failed:
 715        *use_virt = alt_virt;
 716        *use_phys = alt_phys;
 717        this->direct_dma_map_ok = false;
 718        return 0;
 719}
 720
 721static inline void read_page_end(struct gpmi_nand_data *this,
 722                        void *destination, unsigned length,
 723                        void *alt_virt, dma_addr_t alt_phys, unsigned alt_size,
 724                        void *used_virt, dma_addr_t used_phys)
 725{
 726        if (this->direct_dma_map_ok)
 727                dma_unmap_single(this->dev, used_phys, length, DMA_FROM_DEVICE);
 728}
 729
 730static inline void read_page_swap_end(struct gpmi_nand_data *this,
 731                        void *destination, unsigned length,
 732                        void *alt_virt, dma_addr_t alt_phys, unsigned alt_size,
 733                        void *used_virt, dma_addr_t used_phys)
 734{
 735        if (!this->direct_dma_map_ok)
 736                memcpy(destination, alt_virt, length);
 737}
 738
 739static int send_page_prepare(struct gpmi_nand_data *this,
 740                        const void *source, unsigned length,
 741                        void *alt_virt, dma_addr_t alt_phys, unsigned alt_size,
 742                        const void **use_virt, dma_addr_t *use_phys)
 743{
 744        struct device *dev = this->dev;
 745
 746        if (virt_addr_valid(source)) {
 747                dma_addr_t source_phys;
 748
 749                source_phys = dma_map_single(dev, (void *)source, length,
 750                                                DMA_TO_DEVICE);
 751                if (dma_mapping_error(dev, source_phys)) {
 752                        if (alt_size < length) {
 753                                dev_err(dev, "Alternate buffer is too small\n");
 754                                return -ENOMEM;
 755                        }
 756                        goto map_failed;
 757                }
 758                *use_virt = source;
 759                *use_phys = source_phys;
 760                return 0;
 761        }
 762map_failed:
 763        /*
 764         * Copy the content of the source buffer into the alternate
 765         * buffer and set up the return values accordingly.
 766         */
 767        memcpy(alt_virt, source, length);
 768
 769        *use_virt = alt_virt;
 770        *use_phys = alt_phys;
 771        return 0;
 772}
 773
 774static void send_page_end(struct gpmi_nand_data *this,
 775                        const void *source, unsigned length,
 776                        void *alt_virt, dma_addr_t alt_phys, unsigned alt_size,
 777                        const void *used_virt, dma_addr_t used_phys)
 778{
 779        struct device *dev = this->dev;
 780        if (used_virt == source)
 781                dma_unmap_single(dev, used_phys, length, DMA_TO_DEVICE);
 782}
 783
 784static void gpmi_free_dma_buffer(struct gpmi_nand_data *this)
 785{
 786        struct device *dev = this->dev;
 787
 788        if (this->page_buffer_virt && virt_addr_valid(this->page_buffer_virt))
 789                dma_free_coherent(dev, this->page_buffer_size,
 790                                        this->page_buffer_virt,
 791                                        this->page_buffer_phys);
 792        kfree(this->cmd_buffer);
 793        kfree(this->data_buffer_dma);
 794
 795        this->cmd_buffer        = NULL;
 796        this->data_buffer_dma   = NULL;
 797        this->page_buffer_virt  = NULL;
 798        this->page_buffer_size  =  0;
 799}
 800
 801/* Allocate the DMA buffers */
 802static int gpmi_alloc_dma_buffer(struct gpmi_nand_data *this)
 803{
 804        struct bch_geometry *geo = &this->bch_geometry;
 805        struct device *dev = this->dev;
 806        struct mtd_info *mtd = &this->mtd;
 807
 808        /* [1] Allocate a command buffer. PAGE_SIZE is enough. */
 809        this->cmd_buffer = kzalloc(PAGE_SIZE, GFP_DMA | GFP_KERNEL);
 810        if (this->cmd_buffer == NULL)
 811                goto error_alloc;
 812
 813        /*
 814         * [2] Allocate a read/write data buffer.
 815         *     The gpmi_alloc_dma_buffer can be called twice.
 816         *     We allocate a PAGE_SIZE length buffer if gpmi_alloc_dma_buffer
 817         *     is called before the nand_scan_ident; and we allocate a buffer
 818         *     of the real NAND page size when the gpmi_alloc_dma_buffer is
 819         *     called after the nand_scan_ident.
 820         */
 821        this->data_buffer_dma = kzalloc(mtd->writesize ?: PAGE_SIZE,
 822                                        GFP_DMA | GFP_KERNEL);
 823        if (this->data_buffer_dma == NULL)
 824                goto error_alloc;
 825
 826        /*
 827         * [3] Allocate the page buffer.
 828         *
 829         * Both the payload buffer and the auxiliary buffer must appear on
 830         * 32-bit boundaries. We presume the size of the payload buffer is a
 831         * power of two and is much larger than four, which guarantees the
 832         * auxiliary buffer will appear on a 32-bit boundary.
 833         */
 834        this->page_buffer_size = geo->payload_size + geo->auxiliary_size;
 835        this->page_buffer_virt = dma_alloc_coherent(dev, this->page_buffer_size,
 836                                        &this->page_buffer_phys, GFP_DMA);
 837        if (!this->page_buffer_virt)
 838                goto error_alloc;
 839
 840
 841        /* Slice up the page buffer. */
 842        this->payload_virt = this->page_buffer_virt;
 843        this->payload_phys = this->page_buffer_phys;
 844        this->auxiliary_virt = this->payload_virt + geo->payload_size;
 845        this->auxiliary_phys = this->payload_phys + geo->payload_size;
 846        return 0;
 847
 848error_alloc:
 849        gpmi_free_dma_buffer(this);
 850        return -ENOMEM;
 851}
 852
 853static void gpmi_cmd_ctrl(struct mtd_info *mtd, int data, unsigned int ctrl)
 854{
 855        struct nand_chip *chip = mtd->priv;
 856        struct gpmi_nand_data *this = chip->priv;
 857        int ret;
 858
 859        /*
 860         * Every operation begins with a command byte and a series of zero or
 861         * more address bytes. These are distinguished by either the Address
 862         * Latch Enable (ALE) or Command Latch Enable (CLE) signals being
 863         * asserted. When MTD is ready to execute the command, it will deassert
 864         * both latch enables.
 865         *
 866         * Rather than run a separate DMA operation for every single byte, we
 867         * queue them up and run a single DMA operation for the entire series
 868         * of command and data bytes. NAND_CMD_NONE means the END of the queue.
 869         */
 870        if ((ctrl & (NAND_ALE | NAND_CLE))) {
 871                if (data != NAND_CMD_NONE)
 872                        this->cmd_buffer[this->command_length++] = data;
 873                return;
 874        }
 875
 876        if (!this->command_length)
 877                return;
 878
 879        ret = gpmi_send_command(this);
 880        if (ret)
 881                dev_err(this->dev, "Chip: %u, Error %d\n",
 882                        this->current_chip, ret);
 883
 884        this->command_length = 0;
 885}
 886
 887static int gpmi_dev_ready(struct mtd_info *mtd)
 888{
 889        struct nand_chip *chip = mtd->priv;
 890        struct gpmi_nand_data *this = chip->priv;
 891
 892        return gpmi_is_ready(this, this->current_chip);
 893}
 894
 895static void gpmi_select_chip(struct mtd_info *mtd, int chipnr)
 896{
 897        struct nand_chip *chip = mtd->priv;
 898        struct gpmi_nand_data *this = chip->priv;
 899
 900        if ((this->current_chip < 0) && (chipnr >= 0))
 901                gpmi_begin(this);
 902        else if ((this->current_chip >= 0) && (chipnr < 0))
 903                gpmi_end(this);
 904
 905        this->current_chip = chipnr;
 906}
 907
 908static void gpmi_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
 909{
 910        struct nand_chip *chip = mtd->priv;
 911        struct gpmi_nand_data *this = chip->priv;
 912
 913        dev_dbg(this->dev, "len is %d\n", len);
 914        this->upper_buf = buf;
 915        this->upper_len = len;
 916
 917        gpmi_read_data(this);
 918}
 919
 920static void gpmi_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
 921{
 922        struct nand_chip *chip = mtd->priv;
 923        struct gpmi_nand_data *this = chip->priv;
 924
 925        dev_dbg(this->dev, "len is %d\n", len);
 926        this->upper_buf = (uint8_t *)buf;
 927        this->upper_len = len;
 928
 929        gpmi_send_data(this);
 930}
 931
 932static uint8_t gpmi_read_byte(struct mtd_info *mtd)
 933{
 934        struct nand_chip *chip = mtd->priv;
 935        struct gpmi_nand_data *this = chip->priv;
 936        uint8_t *buf = this->data_buffer_dma;
 937
 938        gpmi_read_buf(mtd, buf, 1);
 939        return buf[0];
 940}
 941
 942/*
 943 * Handles block mark swapping.
 944 * It can be called in swapping the block mark, or swapping it back,
 945 * because the the operations are the same.
 946 */
 947static void block_mark_swapping(struct gpmi_nand_data *this,
 948                                void *payload, void *auxiliary)
 949{
 950        struct bch_geometry *nfc_geo = &this->bch_geometry;
 951        unsigned char *p;
 952        unsigned char *a;
 953        unsigned int  bit;
 954        unsigned char mask;
 955        unsigned char from_data;
 956        unsigned char from_oob;
 957
 958        if (!this->swap_block_mark)
 959                return;
 960
 961        /*
 962         * If control arrives here, we're swapping. Make some convenience
 963         * variables.
 964         */
 965        bit = nfc_geo->block_mark_bit_offset;
 966        p   = payload + nfc_geo->block_mark_byte_offset;
 967        a   = auxiliary;
 968
 969        /*
 970         * Get the byte from the data area that overlays the block mark. Since
 971         * the ECC engine applies its own view to the bits in the page, the
 972         * physical block mark won't (in general) appear on a byte boundary in
 973         * the data.
 974         */
 975        from_data = (p[0] >> bit) | (p[1] << (8 - bit));
 976
 977        /* Get the byte from the OOB. */
 978        from_oob = a[0];
 979
 980        /* Swap them. */
 981        a[0] = from_data;
 982
 983        mask = (0x1 << bit) - 1;
 984        p[0] = (p[0] & mask) | (from_oob << bit);
 985
 986        mask = ~0 << bit;
 987        p[1] = (p[1] & mask) | (from_oob >> (8 - bit));
 988}
 989
 990static int gpmi_ecc_read_page(struct mtd_info *mtd, struct nand_chip *chip,
 991                                uint8_t *buf, int oob_required, int page)
 992{
 993        struct gpmi_nand_data *this = chip->priv;
 994        struct bch_geometry *nfc_geo = &this->bch_geometry;
 995        void          *payload_virt;
 996        dma_addr_t    payload_phys;
 997        void          *auxiliary_virt;
 998        dma_addr_t    auxiliary_phys;
 999        unsigned int  i;
1000        unsigned char *status;
1001        unsigned int  max_bitflips = 0;
1002        int           ret;
1003
1004        dev_dbg(this->dev, "page number is : %d\n", page);
1005        ret = read_page_prepare(this, buf, nfc_geo->payload_size,
1006                                        this->payload_virt, this->payload_phys,
1007                                        nfc_geo->payload_size,
1008                                        &payload_virt, &payload_phys);
1009        if (ret) {
1010                dev_err(this->dev, "Inadequate DMA buffer\n");
1011                ret = -ENOMEM;
1012                return ret;
1013        }
1014        auxiliary_virt = this->auxiliary_virt;
1015        auxiliary_phys = this->auxiliary_phys;
1016
1017        /* go! */
1018        ret = gpmi_read_page(this, payload_phys, auxiliary_phys);
1019        read_page_end(this, buf, nfc_geo->payload_size,
1020                        this->payload_virt, this->payload_phys,
1021                        nfc_geo->payload_size,
1022                        payload_virt, payload_phys);
1023        if (ret) {
1024                dev_err(this->dev, "Error in ECC-based read: %d\n", ret);
1025                return ret;
1026        }
1027
1028        /* handle the block mark swapping */
1029        block_mark_swapping(this, payload_virt, auxiliary_virt);
1030
1031        /* Loop over status bytes, accumulating ECC status. */
1032        status = auxiliary_virt + nfc_geo->auxiliary_status_offset;
1033
1034        for (i = 0; i < nfc_geo->ecc_chunk_count; i++, status++) {
1035                if ((*status == STATUS_GOOD) || (*status == STATUS_ERASED))
1036                        continue;
1037
1038                if (*status == STATUS_UNCORRECTABLE) {
1039                        mtd->ecc_stats.failed++;
1040                        continue;
1041                }
1042                mtd->ecc_stats.corrected += *status;
1043                max_bitflips = max_t(unsigned int, max_bitflips, *status);
1044        }
1045
1046        if (oob_required) {
1047                /*
1048                 * It's time to deliver the OOB bytes. See gpmi_ecc_read_oob()
1049                 * for details about our policy for delivering the OOB.
1050                 *
1051                 * We fill the caller's buffer with set bits, and then copy the
1052                 * block mark to th caller's buffer. Note that, if block mark
1053                 * swapping was necessary, it has already been done, so we can
1054                 * rely on the first byte of the auxiliary buffer to contain
1055                 * the block mark.
1056                 */
1057                memset(chip->oob_poi, ~0, mtd->oobsize);
1058                chip->oob_poi[0] = ((uint8_t *) auxiliary_virt)[0];
1059        }
1060
1061        read_page_swap_end(this, buf, nfc_geo->payload_size,
1062                        this->payload_virt, this->payload_phys,
1063                        nfc_geo->payload_size,
1064                        payload_virt, payload_phys);
1065
1066        return max_bitflips;
1067}
1068
1069/* Fake a virtual small page for the subpage read */
1070static int gpmi_ecc_read_subpage(struct mtd_info *mtd, struct nand_chip *chip,
1071                        uint32_t offs, uint32_t len, uint8_t *buf, int page)
1072{
1073        struct gpmi_nand_data *this = chip->priv;
1074        void __iomem *bch_regs = this->resources.bch_regs;
1075        struct bch_geometry old_geo = this->bch_geometry;
1076        struct bch_geometry *geo = &this->bch_geometry;
1077        int size = chip->ecc.size; /* ECC chunk size */
1078        int meta, n, page_size;
1079        u32 r1_old, r2_old, r1_new, r2_new;
1080        unsigned int max_bitflips;
1081        int first, last, marker_pos;
1082        int ecc_parity_size;
1083        int col = 0;
1084        int old_swap_block_mark = this->swap_block_mark;
1085
1086        /* The size of ECC parity */
1087        ecc_parity_size = geo->gf_len * geo->ecc_strength / 8;
1088
1089        /* Align it with the chunk size */
1090        first = offs / size;
1091        last = (offs + len - 1) / size;
1092
1093        if (this->swap_block_mark) {
1094                /*
1095                 * Find the chunk which contains the Block Marker.
1096                 * If this chunk is in the range of [first, last],
1097                 * we have to read out the whole page.
1098                 * Why? since we had swapped the data at the position of Block
1099                 * Marker to the metadata which is bound with the chunk 0.
1100                 */
1101                marker_pos = geo->block_mark_byte_offset / size;
1102                if (last >= marker_pos && first <= marker_pos) {
1103                        dev_dbg(this->dev,
1104                                "page:%d, first:%d, last:%d, marker at:%d\n",
1105                                page, first, last, marker_pos);
1106                        return gpmi_ecc_read_page(mtd, chip, buf, 0, page);
1107                }
1108        }
1109
1110        meta = geo->metadata_size;
1111        if (first) {
1112                col = meta + (size + ecc_parity_size) * first;
1113                chip->cmdfunc(mtd, NAND_CMD_RNDOUT, col, -1);
1114
1115                meta = 0;
1116                buf = buf + first * size;
1117        }
1118
1119        /* Save the old environment */
1120        r1_old = r1_new = readl(bch_regs + HW_BCH_FLASH0LAYOUT0);
1121        r2_old = r2_new = readl(bch_regs + HW_BCH_FLASH0LAYOUT1);
1122
1123        /* change the BCH registers and bch_geometry{} */
1124        n = last - first + 1;
1125        page_size = meta + (size + ecc_parity_size) * n;
1126
1127        r1_new &= ~(BM_BCH_FLASH0LAYOUT0_NBLOCKS |
1128                        BM_BCH_FLASH0LAYOUT0_META_SIZE);
1129        r1_new |= BF_BCH_FLASH0LAYOUT0_NBLOCKS(n - 1)
1130                        | BF_BCH_FLASH0LAYOUT0_META_SIZE(meta);
1131        writel(r1_new, bch_regs + HW_BCH_FLASH0LAYOUT0);
1132
1133        r2_new &= ~BM_BCH_FLASH0LAYOUT1_PAGE_SIZE;
1134        r2_new |= BF_BCH_FLASH0LAYOUT1_PAGE_SIZE(page_size);
1135        writel(r2_new, bch_regs + HW_BCH_FLASH0LAYOUT1);
1136
1137        geo->ecc_chunk_count = n;
1138        geo->payload_size = n * size;
1139        geo->page_size = page_size;
1140        geo->auxiliary_status_offset = ALIGN(meta, 4);
1141
1142        dev_dbg(this->dev, "page:%d(%d:%d)%d, chunk:(%d:%d), BCH PG size:%d\n",
1143                page, offs, len, col, first, n, page_size);
1144
1145        /* Read the subpage now */
1146        this->swap_block_mark = false;
1147        max_bitflips = gpmi_ecc_read_page(mtd, chip, buf, 0, page);
1148
1149        /* Restore */
1150        writel(r1_old, bch_regs + HW_BCH_FLASH0LAYOUT0);
1151        writel(r2_old, bch_regs + HW_BCH_FLASH0LAYOUT1);
1152        this->bch_geometry = old_geo;
1153        this->swap_block_mark = old_swap_block_mark;
1154
1155        return max_bitflips;
1156}
1157
1158static int gpmi_ecc_write_page(struct mtd_info *mtd, struct nand_chip *chip,
1159                                const uint8_t *buf, int oob_required)
1160{
1161        struct gpmi_nand_data *this = chip->priv;
1162        struct bch_geometry *nfc_geo = &this->bch_geometry;
1163        const void *payload_virt;
1164        dma_addr_t payload_phys;
1165        const void *auxiliary_virt;
1166        dma_addr_t auxiliary_phys;
1167        int        ret;
1168
1169        dev_dbg(this->dev, "ecc write page.\n");
1170        if (this->swap_block_mark) {
1171                /*
1172                 * If control arrives here, we're doing block mark swapping.
1173                 * Since we can't modify the caller's buffers, we must copy them
1174                 * into our own.
1175                 */
1176                memcpy(this->payload_virt, buf, mtd->writesize);
1177                payload_virt = this->payload_virt;
1178                payload_phys = this->payload_phys;
1179
1180                memcpy(this->auxiliary_virt, chip->oob_poi,
1181                                nfc_geo->auxiliary_size);
1182                auxiliary_virt = this->auxiliary_virt;
1183                auxiliary_phys = this->auxiliary_phys;
1184
1185                /* Handle block mark swapping. */
1186                block_mark_swapping(this,
1187                                (void *)payload_virt, (void *)auxiliary_virt);
1188        } else {
1189                /*
1190                 * If control arrives here, we're not doing block mark swapping,
1191                 * so we can to try and use the caller's buffers.
1192                 */
1193                ret = send_page_prepare(this,
1194                                buf, mtd->writesize,
1195                                this->payload_virt, this->payload_phys,
1196                                nfc_geo->payload_size,
1197                                &payload_virt, &payload_phys);
1198                if (ret) {
1199                        dev_err(this->dev, "Inadequate payload DMA buffer\n");
1200                        return 0;
1201                }
1202
1203                ret = send_page_prepare(this,
1204                                chip->oob_poi, mtd->oobsize,
1205                                this->auxiliary_virt, this->auxiliary_phys,
1206                                nfc_geo->auxiliary_size,
1207                                &auxiliary_virt, &auxiliary_phys);
1208                if (ret) {
1209                        dev_err(this->dev, "Inadequate auxiliary DMA buffer\n");
1210                        goto exit_auxiliary;
1211                }
1212        }
1213
1214        /* Ask the NFC. */
1215        ret = gpmi_send_page(this, payload_phys, auxiliary_phys);
1216        if (ret)
1217                dev_err(this->dev, "Error in ECC-based write: %d\n", ret);
1218
1219        if (!this->swap_block_mark) {
1220                send_page_end(this, chip->oob_poi, mtd->oobsize,
1221                                this->auxiliary_virt, this->auxiliary_phys,
1222                                nfc_geo->auxiliary_size,
1223                                auxiliary_virt, auxiliary_phys);
1224exit_auxiliary:
1225                send_page_end(this, buf, mtd->writesize,
1226                                this->payload_virt, this->payload_phys,
1227                                nfc_geo->payload_size,
1228                                payload_virt, payload_phys);
1229        }
1230
1231        return 0;
1232}
1233
1234/*
1235 * There are several places in this driver where we have to handle the OOB and
1236 * block marks. This is the function where things are the most complicated, so
1237 * this is where we try to explain it all. All the other places refer back to
1238 * here.
1239 *
1240 * These are the rules, in order of decreasing importance:
1241 *
1242 * 1) Nothing the caller does can be allowed to imperil the block mark.
1243 *
1244 * 2) In read operations, the first byte of the OOB we return must reflect the
1245 *    true state of the block mark, no matter where that block mark appears in
1246 *    the physical page.
1247 *
1248 * 3) ECC-based read operations return an OOB full of set bits (since we never
1249 *    allow ECC-based writes to the OOB, it doesn't matter what ECC-based reads
1250 *    return).
1251 *
1252 * 4) "Raw" read operations return a direct view of the physical bytes in the
1253 *    page, using the conventional definition of which bytes are data and which
1254 *    are OOB. This gives the caller a way to see the actual, physical bytes
1255 *    in the page, without the distortions applied by our ECC engine.
1256 *
1257 *
1258 * What we do for this specific read operation depends on two questions:
1259 *
1260 * 1) Are we doing a "raw" read, or an ECC-based read?
1261 *
1262 * 2) Are we using block mark swapping or transcription?
1263 *
1264 * There are four cases, illustrated by the following Karnaugh map:
1265 *
1266 *                    |           Raw           |         ECC-based       |
1267 *       -------------+-------------------------+-------------------------+
1268 *                    | Read the conventional   |                         |
1269 *                    | OOB at the end of the   |                         |
1270 *       Swapping     | page and return it. It  |                         |
1271 *                    | contains exactly what   |                         |
1272 *                    | we want.                | Read the block mark and |
1273 *       -------------+-------------------------+ return it in a buffer   |
1274 *                    | Read the conventional   | full of set bits.       |
1275 *                    | OOB at the end of the   |                         |
1276 *                    | page and also the block |                         |
1277 *       Transcribing | mark in the metadata.   |                         |
1278 *                    | Copy the block mark     |                         |
1279 *                    | into the first byte of  |                         |
1280 *                    | the OOB.                |                         |
1281 *       -------------+-------------------------+-------------------------+
1282 *
1283 * Note that we break rule #4 in the Transcribing/Raw case because we're not
1284 * giving an accurate view of the actual, physical bytes in the page (we're
1285 * overwriting the block mark). That's OK because it's more important to follow
1286 * rule #2.
1287 *
1288 * It turns out that knowing whether we want an "ECC-based" or "raw" read is not
1289 * easy. When reading a page, for example, the NAND Flash MTD code calls our
1290 * ecc.read_page or ecc.read_page_raw function. Thus, the fact that MTD wants an
1291 * ECC-based or raw view of the page is implicit in which function it calls
1292 * (there is a similar pair of ECC-based/raw functions for writing).
1293 *
1294 * FIXME: The following paragraph is incorrect, now that there exist
1295 * ecc.read_oob_raw and ecc.write_oob_raw functions.
1296 *
1297 * Since MTD assumes the OOB is not covered by ECC, there is no pair of
1298 * ECC-based/raw functions for reading or or writing the OOB. The fact that the
1299 * caller wants an ECC-based or raw view of the page is not propagated down to
1300 * this driver.
1301 */
1302static int gpmi_ecc_read_oob(struct mtd_info *mtd, struct nand_chip *chip,
1303                                int page)
1304{
1305        struct gpmi_nand_data *this = chip->priv;
1306
1307        dev_dbg(this->dev, "page number is %d\n", page);
1308        /* clear the OOB buffer */
1309        memset(chip->oob_poi, ~0, mtd->oobsize);
1310
1311        /* Read out the conventional OOB. */
1312        chip->cmdfunc(mtd, NAND_CMD_READ0, mtd->writesize, page);
1313        chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1314
1315        /*
1316         * Now, we want to make sure the block mark is correct. In the
1317         * non-transcribing case (!GPMI_IS_MX23()), we already have it.
1318         * Otherwise, we need to explicitly read it.
1319         */
1320        if (GPMI_IS_MX23(this)) {
1321                /* Read the block mark into the first byte of the OOB buffer. */
1322                chip->cmdfunc(mtd, NAND_CMD_READ0, 0, page);
1323                chip->oob_poi[0] = chip->read_byte(mtd);
1324        }
1325
1326        return 0;
1327}
1328
1329static int
1330gpmi_ecc_write_oob(struct mtd_info *mtd, struct nand_chip *chip, int page)
1331{
1332        struct nand_oobfree *of = mtd->ecclayout->oobfree;
1333        int status = 0;
1334
1335        /* Do we have available oob area? */
1336        if (!of->length)
1337                return -EPERM;
1338
1339        if (!nand_is_slc(chip))
1340                return -EPERM;
1341
1342        chip->cmdfunc(mtd, NAND_CMD_SEQIN, mtd->writesize + of->offset, page);
1343        chip->write_buf(mtd, chip->oob_poi + of->offset, of->length);
1344        chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
1345
1346        status = chip->waitfunc(mtd, chip);
1347        return status & NAND_STATUS_FAIL ? -EIO : 0;
1348}
1349
1350static int gpmi_block_markbad(struct mtd_info *mtd, loff_t ofs)
1351{
1352        struct nand_chip *chip = mtd->priv;
1353        struct gpmi_nand_data *this = chip->priv;
1354        int ret = 0;
1355        uint8_t *block_mark;
1356        int column, page, status, chipnr;
1357
1358        chipnr = (int)(ofs >> chip->chip_shift);
1359        chip->select_chip(mtd, chipnr);
1360
1361        column = !GPMI_IS_MX23(this) ? mtd->writesize : 0;
1362
1363        /* Write the block mark. */
1364        block_mark = this->data_buffer_dma;
1365        block_mark[0] = 0; /* bad block marker */
1366
1367        /* Shift to get page */
1368        page = (int)(ofs >> chip->page_shift);
1369
1370        chip->cmdfunc(mtd, NAND_CMD_SEQIN, column, page);
1371        chip->write_buf(mtd, block_mark, 1);
1372        chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
1373
1374        status = chip->waitfunc(mtd, chip);
1375        if (status & NAND_STATUS_FAIL)
1376                ret = -EIO;
1377
1378        chip->select_chip(mtd, -1);
1379
1380        return ret;
1381}
1382
1383static int nand_boot_set_geometry(struct gpmi_nand_data *this)
1384{
1385        struct boot_rom_geometry *geometry = &this->rom_geometry;
1386
1387        /*
1388         * Set the boot block stride size.
1389         *
1390         * In principle, we should be reading this from the OTP bits, since
1391         * that's where the ROM is going to get it. In fact, we don't have any
1392         * way to read the OTP bits, so we go with the default and hope for the
1393         * best.
1394         */
1395        geometry->stride_size_in_pages = 64;
1396
1397        /*
1398         * Set the search area stride exponent.
1399         *
1400         * In principle, we should be reading this from the OTP bits, since
1401         * that's where the ROM is going to get it. In fact, we don't have any
1402         * way to read the OTP bits, so we go with the default and hope for the
1403         * best.
1404         */
1405        geometry->search_area_stride_exponent = 2;
1406        return 0;
1407}
1408
1409static const char  *fingerprint = "STMP";
1410static int mx23_check_transcription_stamp(struct gpmi_nand_data *this)
1411{
1412        struct boot_rom_geometry *rom_geo = &this->rom_geometry;
1413        struct device *dev = this->dev;
1414        struct mtd_info *mtd = &this->mtd;
1415        struct nand_chip *chip = &this->nand;
1416        unsigned int search_area_size_in_strides;
1417        unsigned int stride;
1418        unsigned int page;
1419        uint8_t *buffer = chip->buffers->databuf;
1420        int saved_chip_number;
1421        int found_an_ncb_fingerprint = false;
1422
1423        /* Compute the number of strides in a search area. */
1424        search_area_size_in_strides = 1 << rom_geo->search_area_stride_exponent;
1425
1426        saved_chip_number = this->current_chip;
1427        chip->select_chip(mtd, 0);
1428
1429        /*
1430         * Loop through the first search area, looking for the NCB fingerprint.
1431         */
1432        dev_dbg(dev, "Scanning for an NCB fingerprint...\n");
1433
1434        for (stride = 0; stride < search_area_size_in_strides; stride++) {
1435                /* Compute the page addresses. */
1436                page = stride * rom_geo->stride_size_in_pages;
1437
1438                dev_dbg(dev, "Looking for a fingerprint in page 0x%x\n", page);
1439
1440                /*
1441                 * Read the NCB fingerprint. The fingerprint is four bytes long
1442                 * and starts in the 12th byte of the page.
1443                 */
1444                chip->cmdfunc(mtd, NAND_CMD_READ0, 12, page);
1445                chip->read_buf(mtd, buffer, strlen(fingerprint));
1446
1447                /* Look for the fingerprint. */
1448                if (!memcmp(buffer, fingerprint, strlen(fingerprint))) {
1449                        found_an_ncb_fingerprint = true;
1450                        break;
1451                }
1452
1453        }
1454
1455        chip->select_chip(mtd, saved_chip_number);
1456
1457        if (found_an_ncb_fingerprint)
1458                dev_dbg(dev, "\tFound a fingerprint\n");
1459        else
1460                dev_dbg(dev, "\tNo fingerprint found\n");
1461        return found_an_ncb_fingerprint;
1462}
1463
1464/* Writes a transcription stamp. */
1465static int mx23_write_transcription_stamp(struct gpmi_nand_data *this)
1466{
1467        struct device *dev = this->dev;
1468        struct boot_rom_geometry *rom_geo = &this->rom_geometry;
1469        struct mtd_info *mtd = &this->mtd;
1470        struct nand_chip *chip = &this->nand;
1471        unsigned int block_size_in_pages;
1472        unsigned int search_area_size_in_strides;
1473        unsigned int search_area_size_in_pages;
1474        unsigned int search_area_size_in_blocks;
1475        unsigned int block;
1476        unsigned int stride;
1477        unsigned int page;
1478        uint8_t      *buffer = chip->buffers->databuf;
1479        int saved_chip_number;
1480        int status;
1481
1482        /* Compute the search area geometry. */
1483        block_size_in_pages = mtd->erasesize / mtd->writesize;
1484        search_area_size_in_strides = 1 << rom_geo->search_area_stride_exponent;
1485        search_area_size_in_pages = search_area_size_in_strides *
1486                                        rom_geo->stride_size_in_pages;
1487        search_area_size_in_blocks =
1488                  (search_area_size_in_pages + (block_size_in_pages - 1)) /
1489                                    block_size_in_pages;
1490
1491        dev_dbg(dev, "Search Area Geometry :\n");
1492        dev_dbg(dev, "\tin Blocks : %u\n", search_area_size_in_blocks);
1493        dev_dbg(dev, "\tin Strides: %u\n", search_area_size_in_strides);
1494        dev_dbg(dev, "\tin Pages  : %u\n", search_area_size_in_pages);
1495
1496        /* Select chip 0. */
1497        saved_chip_number = this->current_chip;
1498        chip->select_chip(mtd, 0);
1499
1500        /* Loop over blocks in the first search area, erasing them. */
1501        dev_dbg(dev, "Erasing the search area...\n");
1502
1503        for (block = 0; block < search_area_size_in_blocks; block++) {
1504                /* Compute the page address. */
1505                page = block * block_size_in_pages;
1506
1507                /* Erase this block. */
1508                dev_dbg(dev, "\tErasing block 0x%x\n", block);
1509                chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page);
1510                chip->cmdfunc(mtd, NAND_CMD_ERASE2, -1, -1);
1511
1512                /* Wait for the erase to finish. */
1513                status = chip->waitfunc(mtd, chip);
1514                if (status & NAND_STATUS_FAIL)
1515                        dev_err(dev, "[%s] Erase failed.\n", __func__);
1516        }
1517
1518        /* Write the NCB fingerprint into the page buffer. */
1519        memset(buffer, ~0, mtd->writesize);
1520        memcpy(buffer + 12, fingerprint, strlen(fingerprint));
1521
1522        /* Loop through the first search area, writing NCB fingerprints. */
1523        dev_dbg(dev, "Writing NCB fingerprints...\n");
1524        for (stride = 0; stride < search_area_size_in_strides; stride++) {
1525                /* Compute the page addresses. */
1526                page = stride * rom_geo->stride_size_in_pages;
1527
1528                /* Write the first page of the current stride. */
1529                dev_dbg(dev, "Writing an NCB fingerprint in page 0x%x\n", page);
1530                chip->cmdfunc(mtd, NAND_CMD_SEQIN, 0x00, page);
1531                chip->ecc.write_page_raw(mtd, chip, buffer, 0);
1532                chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
1533
1534                /* Wait for the write to finish. */
1535                status = chip->waitfunc(mtd, chip);
1536                if (status & NAND_STATUS_FAIL)
1537                        dev_err(dev, "[%s] Write failed.\n", __func__);
1538        }
1539
1540        /* Deselect chip 0. */
1541        chip->select_chip(mtd, saved_chip_number);
1542        return 0;
1543}
1544
1545static int mx23_boot_init(struct gpmi_nand_data  *this)
1546{
1547        struct device *dev = this->dev;
1548        struct nand_chip *chip = &this->nand;
1549        struct mtd_info *mtd = &this->mtd;
1550        unsigned int block_count;
1551        unsigned int block;
1552        int     chipnr;
1553        int     page;
1554        loff_t  byte;
1555        uint8_t block_mark;
1556        int     ret = 0;
1557
1558        /*
1559         * If control arrives here, we can't use block mark swapping, which
1560         * means we're forced to use transcription. First, scan for the
1561         * transcription stamp. If we find it, then we don't have to do
1562         * anything -- the block marks are already transcribed.
1563         */
1564        if (mx23_check_transcription_stamp(this))
1565                return 0;
1566
1567        /*
1568         * If control arrives here, we couldn't find a transcription stamp, so
1569         * so we presume the block marks are in the conventional location.
1570         */
1571        dev_dbg(dev, "Transcribing bad block marks...\n");
1572
1573        /* Compute the number of blocks in the entire medium. */
1574        block_count = chip->chipsize >> chip->phys_erase_shift;
1575
1576        /*
1577         * Loop over all the blocks in the medium, transcribing block marks as
1578         * we go.
1579         */
1580        for (block = 0; block < block_count; block++) {
1581                /*
1582                 * Compute the chip, page and byte addresses for this block's
1583                 * conventional mark.
1584                 */
1585                chipnr = block >> (chip->chip_shift - chip->phys_erase_shift);
1586                page = block << (chip->phys_erase_shift - chip->page_shift);
1587                byte = block <<  chip->phys_erase_shift;
1588
1589                /* Send the command to read the conventional block mark. */
1590                chip->select_chip(mtd, chipnr);
1591                chip->cmdfunc(mtd, NAND_CMD_READ0, mtd->writesize, page);
1592                block_mark = chip->read_byte(mtd);
1593                chip->select_chip(mtd, -1);
1594
1595                /*
1596                 * Check if the block is marked bad. If so, we need to mark it
1597                 * again, but this time the result will be a mark in the
1598                 * location where we transcribe block marks.
1599                 */
1600                if (block_mark != 0xff) {
1601                        dev_dbg(dev, "Transcribing mark in block %u\n", block);
1602                        ret = chip->block_markbad(mtd, byte);
1603                        if (ret)
1604                                dev_err(dev,
1605                                        "Failed to mark block bad with ret %d\n",
1606                                        ret);
1607                }
1608        }
1609
1610        /* Write the stamp that indicates we've transcribed the block marks. */
1611        mx23_write_transcription_stamp(this);
1612        return 0;
1613}
1614
1615static int nand_boot_init(struct gpmi_nand_data  *this)
1616{
1617        nand_boot_set_geometry(this);
1618
1619        /* This is ROM arch-specific initilization before the BBT scanning. */
1620        if (GPMI_IS_MX23(this))
1621                return mx23_boot_init(this);
1622        return 0;
1623}
1624
1625static int gpmi_set_geometry(struct gpmi_nand_data *this)
1626{
1627        int ret;
1628
1629        /* Free the temporary DMA memory for reading ID. */
1630        gpmi_free_dma_buffer(this);
1631
1632        /* Set up the NFC geometry which is used by BCH. */
1633        ret = bch_set_geometry(this);
1634        if (ret) {
1635                dev_err(this->dev, "Error setting BCH geometry : %d\n", ret);
1636                return ret;
1637        }
1638
1639        /* Alloc the new DMA buffers according to the pagesize and oobsize */
1640        return gpmi_alloc_dma_buffer(this);
1641}
1642
1643static void gpmi_nand_exit(struct gpmi_nand_data *this)
1644{
1645        nand_release(&this->mtd);
1646        gpmi_free_dma_buffer(this);
1647}
1648
1649static int gpmi_init_last(struct gpmi_nand_data *this)
1650{
1651        struct mtd_info *mtd = &this->mtd;
1652        struct nand_chip *chip = mtd->priv;
1653        struct nand_ecc_ctrl *ecc = &chip->ecc;
1654        struct bch_geometry *bch_geo = &this->bch_geometry;
1655        int ret;
1656
1657        /* Set up the medium geometry */
1658        ret = gpmi_set_geometry(this);
1659        if (ret)
1660                return ret;
1661
1662        /* Init the nand_ecc_ctrl{} */
1663        ecc->read_page  = gpmi_ecc_read_page;
1664        ecc->write_page = gpmi_ecc_write_page;
1665        ecc->read_oob   = gpmi_ecc_read_oob;
1666        ecc->write_oob  = gpmi_ecc_write_oob;
1667        ecc->mode       = NAND_ECC_HW;
1668        ecc->size       = bch_geo->ecc_chunk_size;
1669        ecc->strength   = bch_geo->ecc_strength;
1670        ecc->layout     = &gpmi_hw_ecclayout;
1671
1672        /*
1673         * We only enable the subpage read when:
1674         *  (1) the chip is imx6, and
1675         *  (2) the size of the ECC parity is byte aligned.
1676         */
1677        if (GPMI_IS_MX6(this) &&
1678                ((bch_geo->gf_len * bch_geo->ecc_strength) % 8) == 0) {
1679                ecc->read_subpage = gpmi_ecc_read_subpage;
1680                chip->options |= NAND_SUBPAGE_READ;
1681        }
1682
1683        /*
1684         * Can we enable the extra features? such as EDO or Sync mode.
1685         *
1686         * We do not check the return value now. That's means if we fail in
1687         * enable the extra features, we still can run in the normal way.
1688         */
1689        gpmi_extra_init(this);
1690
1691        return 0;
1692}
1693
1694static int gpmi_nand_init(struct gpmi_nand_data *this)
1695{
1696        struct mtd_info  *mtd = &this->mtd;
1697        struct nand_chip *chip = &this->nand;
1698        struct mtd_part_parser_data ppdata = {};
1699        int ret;
1700
1701        /* init current chip */
1702        this->current_chip      = -1;
1703
1704        /* init the MTD data structures */
1705        mtd->priv               = chip;
1706        mtd->name               = "gpmi-nand";
1707        mtd->owner              = THIS_MODULE;
1708
1709        /* init the nand_chip{}, we don't support a 16-bit NAND Flash bus. */
1710        chip->priv              = this;
1711        chip->select_chip       = gpmi_select_chip;
1712        chip->cmd_ctrl          = gpmi_cmd_ctrl;
1713        chip->dev_ready         = gpmi_dev_ready;
1714        chip->read_byte         = gpmi_read_byte;
1715        chip->read_buf          = gpmi_read_buf;
1716        chip->write_buf         = gpmi_write_buf;
1717        chip->badblock_pattern  = &gpmi_bbt_descr;
1718        chip->block_markbad     = gpmi_block_markbad;
1719        chip->options           |= NAND_NO_SUBPAGE_WRITE;
1720
1721        /* Set up swap_block_mark, must be set before the gpmi_set_geometry() */
1722        this->swap_block_mark = !GPMI_IS_MX23(this);
1723
1724        if (of_get_nand_on_flash_bbt(this->dev->of_node)) {
1725                chip->bbt_options |= NAND_BBT_USE_FLASH | NAND_BBT_NO_OOB;
1726
1727                if (of_property_read_bool(this->dev->of_node,
1728                                                "fsl,no-blockmark-swap"))
1729                        this->swap_block_mark = false;
1730        }
1731        dev_dbg(this->dev, "Blockmark swapping %sabled\n",
1732                this->swap_block_mark ? "en" : "dis");
1733
1734        /*
1735         * Allocate a temporary DMA buffer for reading ID in the
1736         * nand_scan_ident().
1737         */
1738        this->bch_geometry.payload_size = 1024;
1739        this->bch_geometry.auxiliary_size = 128;
1740        ret = gpmi_alloc_dma_buffer(this);
1741        if (ret)
1742                goto err_out;
1743
1744        ret = nand_scan_ident(mtd, GPMI_IS_MX6(this) ? 2 : 1, NULL);
1745        if (ret)
1746                goto err_out;
1747
1748        ret = gpmi_init_last(this);
1749        if (ret)
1750                goto err_out;
1751
1752        chip->options |= NAND_SKIP_BBTSCAN;
1753        ret = nand_scan_tail(mtd);
1754        if (ret)
1755                goto err_out;
1756
1757        ret = nand_boot_init(this);
1758        if (ret)
1759                goto err_out;
1760        chip->scan_bbt(mtd);
1761
1762        ppdata.of_node = this->pdev->dev.of_node;
1763        ret = mtd_device_parse_register(mtd, NULL, &ppdata, NULL, 0);
1764        if (ret)
1765                goto err_out;
1766        return 0;
1767
1768err_out:
1769        gpmi_nand_exit(this);
1770        return ret;
1771}
1772
1773static const struct of_device_id gpmi_nand_id_table[] = {
1774        {
1775                .compatible = "fsl,imx23-gpmi-nand",
1776                .data = &gpmi_devdata_imx23,
1777        }, {
1778                .compatible = "fsl,imx28-gpmi-nand",
1779                .data = &gpmi_devdata_imx28,
1780        }, {
1781                .compatible = "fsl,imx6q-gpmi-nand",
1782                .data = &gpmi_devdata_imx6q,
1783        }, {
1784                .compatible = "fsl,imx6sx-gpmi-nand",
1785                .data = &gpmi_devdata_imx6sx,
1786        }, {}
1787};
1788MODULE_DEVICE_TABLE(of, gpmi_nand_id_table);
1789
1790static int gpmi_nand_probe(struct platform_device *pdev)
1791{
1792        struct gpmi_nand_data *this;
1793        const struct of_device_id *of_id;
1794        int ret;
1795
1796        this = devm_kzalloc(&pdev->dev, sizeof(*this), GFP_KERNEL);
1797        if (!this)
1798                return -ENOMEM;
1799
1800        of_id = of_match_device(gpmi_nand_id_table, &pdev->dev);
1801        if (of_id) {
1802                this->devdata = of_id->data;
1803        } else {
1804                dev_err(&pdev->dev, "Failed to find the right device id.\n");
1805                return -ENODEV;
1806        }
1807
1808        platform_set_drvdata(pdev, this);
1809        this->pdev  = pdev;
1810        this->dev   = &pdev->dev;
1811
1812        ret = acquire_resources(this);
1813        if (ret)
1814                goto exit_acquire_resources;
1815
1816        ret = init_hardware(this);
1817        if (ret)
1818                goto exit_nfc_init;
1819
1820        ret = gpmi_nand_init(this);
1821        if (ret)
1822                goto exit_nfc_init;
1823
1824        dev_info(this->dev, "driver registered.\n");
1825
1826        return 0;
1827
1828exit_nfc_init:
1829        release_resources(this);
1830exit_acquire_resources:
1831        dev_err(this->dev, "driver registration failed: %d\n", ret);
1832
1833        return ret;
1834}
1835
1836static int gpmi_nand_remove(struct platform_device *pdev)
1837{
1838        struct gpmi_nand_data *this = platform_get_drvdata(pdev);
1839
1840        gpmi_nand_exit(this);
1841        release_resources(this);
1842        return 0;
1843}
1844
1845static struct platform_driver gpmi_nand_driver = {
1846        .driver = {
1847                .name = "gpmi-nand",
1848                .of_match_table = gpmi_nand_id_table,
1849        },
1850        .probe   = gpmi_nand_probe,
1851        .remove  = gpmi_nand_remove,
1852};
1853module_platform_driver(gpmi_nand_driver);
1854
1855MODULE_AUTHOR("Freescale Semiconductor, Inc.");
1856MODULE_DESCRIPTION("i.MX GPMI NAND Flash Controller Driver");
1857MODULE_LICENSE("GPL");
1858