linux/drivers/mtd/spi-nor/spi-nor.c
<<
>>
Prefs
   1/*
   2 * Based on m25p80.c, by Mike Lavender (mike@steroidmicros.com), with
   3 * influence from lart.c (Abraham Van Der Merwe) and mtd_dataflash.c
   4 *
   5 * Copyright (C) 2005, Intec Automation Inc.
   6 * Copyright (C) 2014, Freescale Semiconductor, Inc.
   7 *
   8 * This code is free software; you can redistribute it and/or modify
   9 * it under the terms of the GNU General Public License version 2 as
  10 * published by the Free Software Foundation.
  11 */
  12
  13#include <linux/err.h>
  14#include <linux/errno.h>
  15#include <linux/module.h>
  16#include <linux/device.h>
  17#include <linux/mutex.h>
  18#include <linux/math64.h>
  19
  20#include <linux/mtd/cfi.h>
  21#include <linux/mtd/mtd.h>
  22#include <linux/of_platform.h>
  23#include <linux/spi/flash.h>
  24#include <linux/mtd/spi-nor.h>
  25
  26/* Define max times to check status register before we give up. */
  27#define MAX_READY_WAIT_JIFFIES  (40 * HZ) /* M25P16 specs 40s max chip erase */
  28
  29#define JEDEC_MFR(_jedec_id)    ((_jedec_id) >> 16)
  30
  31static const struct spi_device_id *spi_nor_match_id(const char *name);
  32
  33/*
  34 * Read the status register, returning its value in the location
  35 * Return the status register value.
  36 * Returns negative if error occurred.
  37 */
  38static int read_sr(struct spi_nor *nor)
  39{
  40        int ret;
  41        u8 val;
  42
  43        ret = nor->read_reg(nor, SPINOR_OP_RDSR, &val, 1);
  44        if (ret < 0) {
  45                pr_err("error %d reading SR\n", (int) ret);
  46                return ret;
  47        }
  48
  49        return val;
  50}
  51
  52/*
  53 * Read the flag status register, returning its value in the location
  54 * Return the status register value.
  55 * Returns negative if error occurred.
  56 */
  57static int read_fsr(struct spi_nor *nor)
  58{
  59        int ret;
  60        u8 val;
  61
  62        ret = nor->read_reg(nor, SPINOR_OP_RDFSR, &val, 1);
  63        if (ret < 0) {
  64                pr_err("error %d reading FSR\n", ret);
  65                return ret;
  66        }
  67
  68        return val;
  69}
  70
  71/*
  72 * Read configuration register, returning its value in the
  73 * location. Return the configuration register value.
  74 * Returns negative if error occured.
  75 */
  76static int read_cr(struct spi_nor *nor)
  77{
  78        int ret;
  79        u8 val;
  80
  81        ret = nor->read_reg(nor, SPINOR_OP_RDCR, &val, 1);
  82        if (ret < 0) {
  83                dev_err(nor->dev, "error %d reading CR\n", ret);
  84                return ret;
  85        }
  86
  87        return val;
  88}
  89
  90/*
  91 * Dummy Cycle calculation for different type of read.
  92 * It can be used to support more commands with
  93 * different dummy cycle requirements.
  94 */
  95static inline int spi_nor_read_dummy_cycles(struct spi_nor *nor)
  96{
  97        switch (nor->flash_read) {
  98        case SPI_NOR_FAST:
  99        case SPI_NOR_DUAL:
 100        case SPI_NOR_QUAD:
 101                return 1;
 102        case SPI_NOR_NORMAL:
 103                return 0;
 104        }
 105        return 0;
 106}
 107
 108/*
 109 * Write status register 1 byte
 110 * Returns negative if error occurred.
 111 */
 112static inline int write_sr(struct spi_nor *nor, u8 val)
 113{
 114        nor->cmd_buf[0] = val;
 115        return nor->write_reg(nor, SPINOR_OP_WRSR, nor->cmd_buf, 1, 0);
 116}
 117
 118/*
 119 * Set write enable latch with Write Enable command.
 120 * Returns negative if error occurred.
 121 */
 122static inline int write_enable(struct spi_nor *nor)
 123{
 124        return nor->write_reg(nor, SPINOR_OP_WREN, NULL, 0, 0);
 125}
 126
 127/*
 128 * Send write disble instruction to the chip.
 129 */
 130static inline int write_disable(struct spi_nor *nor)
 131{
 132        return nor->write_reg(nor, SPINOR_OP_WRDI, NULL, 0, 0);
 133}
 134
 135static inline struct spi_nor *mtd_to_spi_nor(struct mtd_info *mtd)
 136{
 137        return mtd->priv;
 138}
 139
 140/* Enable/disable 4-byte addressing mode. */
 141static inline int set_4byte(struct spi_nor *nor, u32 jedec_id, int enable)
 142{
 143        int status;
 144        bool need_wren = false;
 145        u8 cmd;
 146
 147        switch (JEDEC_MFR(jedec_id)) {
 148        case CFI_MFR_ST: /* Micron, actually */
 149                /* Some Micron need WREN command; all will accept it */
 150                need_wren = true;
 151        case CFI_MFR_MACRONIX:
 152        case 0xEF /* winbond */:
 153                if (need_wren)
 154                        write_enable(nor);
 155
 156                cmd = enable ? SPINOR_OP_EN4B : SPINOR_OP_EX4B;
 157                status = nor->write_reg(nor, cmd, NULL, 0, 0);
 158                if (need_wren)
 159                        write_disable(nor);
 160
 161                return status;
 162        default:
 163                /* Spansion style */
 164                nor->cmd_buf[0] = enable << 7;
 165                return nor->write_reg(nor, SPINOR_OP_BRWR, nor->cmd_buf, 1, 0);
 166        }
 167}
 168
 169static int spi_nor_wait_till_ready(struct spi_nor *nor)
 170{
 171        unsigned long deadline;
 172        int sr;
 173
 174        deadline = jiffies + MAX_READY_WAIT_JIFFIES;
 175
 176        do {
 177                cond_resched();
 178
 179                sr = read_sr(nor);
 180                if (sr < 0)
 181                        break;
 182                else if (!(sr & SR_WIP))
 183                        return 0;
 184        } while (!time_after_eq(jiffies, deadline));
 185
 186        return -ETIMEDOUT;
 187}
 188
 189static int spi_nor_wait_till_fsr_ready(struct spi_nor *nor)
 190{
 191        unsigned long deadline;
 192        int sr;
 193        int fsr;
 194
 195        deadline = jiffies + MAX_READY_WAIT_JIFFIES;
 196
 197        do {
 198                cond_resched();
 199
 200                sr = read_sr(nor);
 201                if (sr < 0) {
 202                        break;
 203                } else if (!(sr & SR_WIP)) {
 204                        fsr = read_fsr(nor);
 205                        if (fsr < 0)
 206                                break;
 207                        if (fsr & FSR_READY)
 208                                return 0;
 209                }
 210        } while (!time_after_eq(jiffies, deadline));
 211
 212        return -ETIMEDOUT;
 213}
 214
 215/*
 216 * Service routine to read status register until ready, or timeout occurs.
 217 * Returns non-zero if error.
 218 */
 219static int wait_till_ready(struct spi_nor *nor)
 220{
 221        return nor->wait_till_ready(nor);
 222}
 223
 224/*
 225 * Erase the whole flash memory
 226 *
 227 * Returns 0 if successful, non-zero otherwise.
 228 */
 229static int erase_chip(struct spi_nor *nor)
 230{
 231        int ret;
 232
 233        dev_dbg(nor->dev, " %lldKiB\n", (long long)(nor->mtd->size >> 10));
 234
 235        /* Wait until finished previous write command. */
 236        ret = wait_till_ready(nor);
 237        if (ret)
 238                return ret;
 239
 240        /* Send write enable, then erase commands. */
 241        write_enable(nor);
 242
 243        return nor->write_reg(nor, SPINOR_OP_CHIP_ERASE, NULL, 0, 0);
 244}
 245
 246static int spi_nor_lock_and_prep(struct spi_nor *nor, enum spi_nor_ops ops)
 247{
 248        int ret = 0;
 249
 250        mutex_lock(&nor->lock);
 251
 252        if (nor->prepare) {
 253                ret = nor->prepare(nor, ops);
 254                if (ret) {
 255                        dev_err(nor->dev, "failed in the preparation.\n");
 256                        mutex_unlock(&nor->lock);
 257                        return ret;
 258                }
 259        }
 260        return ret;
 261}
 262
 263static void spi_nor_unlock_and_unprep(struct spi_nor *nor, enum spi_nor_ops ops)
 264{
 265        if (nor->unprepare)
 266                nor->unprepare(nor, ops);
 267        mutex_unlock(&nor->lock);
 268}
 269
 270/*
 271 * Erase an address range on the nor chip.  The address range may extend
 272 * one or more erase sectors.  Return an error is there is a problem erasing.
 273 */
 274static int spi_nor_erase(struct mtd_info *mtd, struct erase_info *instr)
 275{
 276        struct spi_nor *nor = mtd_to_spi_nor(mtd);
 277        u32 addr, len;
 278        uint32_t rem;
 279        int ret;
 280
 281        dev_dbg(nor->dev, "at 0x%llx, len %lld\n", (long long)instr->addr,
 282                        (long long)instr->len);
 283
 284        div_u64_rem(instr->len, mtd->erasesize, &rem);
 285        if (rem)
 286                return -EINVAL;
 287
 288        addr = instr->addr;
 289        len = instr->len;
 290
 291        ret = spi_nor_lock_and_prep(nor, SPI_NOR_OPS_ERASE);
 292        if (ret)
 293                return ret;
 294
 295        /* whole-chip erase? */
 296        if (len == mtd->size) {
 297                if (erase_chip(nor)) {
 298                        ret = -EIO;
 299                        goto erase_err;
 300                }
 301
 302        /* REVISIT in some cases we could speed up erasing large regions
 303         * by using SPINOR_OP_SE instead of SPINOR_OP_BE_4K.  We may have set up
 304         * to use "small sector erase", but that's not always optimal.
 305         */
 306
 307        /* "sector"-at-a-time erase */
 308        } else {
 309                while (len) {
 310                        if (nor->erase(nor, addr)) {
 311                                ret = -EIO;
 312                                goto erase_err;
 313                        }
 314
 315                        addr += mtd->erasesize;
 316                        len -= mtd->erasesize;
 317                }
 318        }
 319
 320        spi_nor_unlock_and_unprep(nor, SPI_NOR_OPS_ERASE);
 321
 322        instr->state = MTD_ERASE_DONE;
 323        mtd_erase_callback(instr);
 324
 325        return ret;
 326
 327erase_err:
 328        spi_nor_unlock_and_unprep(nor, SPI_NOR_OPS_ERASE);
 329        instr->state = MTD_ERASE_FAILED;
 330        return ret;
 331}
 332
 333static int spi_nor_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
 334{
 335        struct spi_nor *nor = mtd_to_spi_nor(mtd);
 336        uint32_t offset = ofs;
 337        uint8_t status_old, status_new;
 338        int ret = 0;
 339
 340        ret = spi_nor_lock_and_prep(nor, SPI_NOR_OPS_LOCK);
 341        if (ret)
 342                return ret;
 343
 344        /* Wait until finished previous command */
 345        ret = wait_till_ready(nor);
 346        if (ret)
 347                goto err;
 348
 349        status_old = read_sr(nor);
 350
 351        if (offset < mtd->size - (mtd->size / 2))
 352                status_new = status_old | SR_BP2 | SR_BP1 | SR_BP0;
 353        else if (offset < mtd->size - (mtd->size / 4))
 354                status_new = (status_old & ~SR_BP0) | SR_BP2 | SR_BP1;
 355        else if (offset < mtd->size - (mtd->size / 8))
 356                status_new = (status_old & ~SR_BP1) | SR_BP2 | SR_BP0;
 357        else if (offset < mtd->size - (mtd->size / 16))
 358                status_new = (status_old & ~(SR_BP0 | SR_BP1)) | SR_BP2;
 359        else if (offset < mtd->size - (mtd->size / 32))
 360                status_new = (status_old & ~SR_BP2) | SR_BP1 | SR_BP0;
 361        else if (offset < mtd->size - (mtd->size / 64))
 362                status_new = (status_old & ~(SR_BP2 | SR_BP0)) | SR_BP1;
 363        else
 364                status_new = (status_old & ~(SR_BP2 | SR_BP1)) | SR_BP0;
 365
 366        /* Only modify protection if it will not unlock other areas */
 367        if ((status_new & (SR_BP2 | SR_BP1 | SR_BP0)) >
 368                                (status_old & (SR_BP2 | SR_BP1 | SR_BP0))) {
 369                write_enable(nor);
 370                ret = write_sr(nor, status_new);
 371                if (ret)
 372                        goto err;
 373        }
 374
 375err:
 376        spi_nor_unlock_and_unprep(nor, SPI_NOR_OPS_LOCK);
 377        return ret;
 378}
 379
 380static int spi_nor_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
 381{
 382        struct spi_nor *nor = mtd_to_spi_nor(mtd);
 383        uint32_t offset = ofs;
 384        uint8_t status_old, status_new;
 385        int ret = 0;
 386
 387        ret = spi_nor_lock_and_prep(nor, SPI_NOR_OPS_UNLOCK);
 388        if (ret)
 389                return ret;
 390
 391        /* Wait until finished previous command */
 392        ret = wait_till_ready(nor);
 393        if (ret)
 394                goto err;
 395
 396        status_old = read_sr(nor);
 397
 398        if (offset+len > mtd->size - (mtd->size / 64))
 399                status_new = status_old & ~(SR_BP2 | SR_BP1 | SR_BP0);
 400        else if (offset+len > mtd->size - (mtd->size / 32))
 401                status_new = (status_old & ~(SR_BP2 | SR_BP1)) | SR_BP0;
 402        else if (offset+len > mtd->size - (mtd->size / 16))
 403                status_new = (status_old & ~(SR_BP2 | SR_BP0)) | SR_BP1;
 404        else if (offset+len > mtd->size - (mtd->size / 8))
 405                status_new = (status_old & ~SR_BP2) | SR_BP1 | SR_BP0;
 406        else if (offset+len > mtd->size - (mtd->size / 4))
 407                status_new = (status_old & ~(SR_BP0 | SR_BP1)) | SR_BP2;
 408        else if (offset+len > mtd->size - (mtd->size / 2))
 409                status_new = (status_old & ~SR_BP1) | SR_BP2 | SR_BP0;
 410        else
 411                status_new = (status_old & ~SR_BP0) | SR_BP2 | SR_BP1;
 412
 413        /* Only modify protection if it will not lock other areas */
 414        if ((status_new & (SR_BP2 | SR_BP1 | SR_BP0)) <
 415                                (status_old & (SR_BP2 | SR_BP1 | SR_BP0))) {
 416                write_enable(nor);
 417                ret = write_sr(nor, status_new);
 418                if (ret)
 419                        goto err;
 420        }
 421
 422err:
 423        spi_nor_unlock_and_unprep(nor, SPI_NOR_OPS_UNLOCK);
 424        return ret;
 425}
 426
 427struct flash_info {
 428        /* JEDEC id zero means "no ID" (most older chips); otherwise it has
 429         * a high byte of zero plus three data bytes: the manufacturer id,
 430         * then a two byte device id.
 431         */
 432        u32             jedec_id;
 433        u16             ext_id;
 434
 435        /* The size listed here is what works with SPINOR_OP_SE, which isn't
 436         * necessarily called a "sector" by the vendor.
 437         */
 438        unsigned        sector_size;
 439        u16             n_sectors;
 440
 441        u16             page_size;
 442        u16             addr_width;
 443
 444        u16             flags;
 445#define SECT_4K                 0x01    /* SPINOR_OP_BE_4K works uniformly */
 446#define SPI_NOR_NO_ERASE        0x02    /* No erase command needed */
 447#define SST_WRITE               0x04    /* use SST byte programming */
 448#define SPI_NOR_NO_FR           0x08    /* Can't do fastread */
 449#define SECT_4K_PMC             0x10    /* SPINOR_OP_BE_4K_PMC works uniformly */
 450#define SPI_NOR_DUAL_READ       0x20    /* Flash supports Dual Read */
 451#define SPI_NOR_QUAD_READ       0x40    /* Flash supports Quad Read */
 452#define USE_FSR                 0x80    /* use flag status register */
 453};
 454
 455#define INFO(_jedec_id, _ext_id, _sector_size, _n_sectors, _flags)      \
 456        ((kernel_ulong_t)&(struct flash_info) {                         \
 457                .jedec_id = (_jedec_id),                                \
 458                .ext_id = (_ext_id),                                    \
 459                .sector_size = (_sector_size),                          \
 460                .n_sectors = (_n_sectors),                              \
 461                .page_size = 256,                                       \
 462                .flags = (_flags),                                      \
 463        })
 464
 465#define CAT25_INFO(_sector_size, _n_sectors, _page_size, _addr_width, _flags)   \
 466        ((kernel_ulong_t)&(struct flash_info) {                         \
 467                .sector_size = (_sector_size),                          \
 468                .n_sectors = (_n_sectors),                              \
 469                .page_size = (_page_size),                              \
 470                .addr_width = (_addr_width),                            \
 471                .flags = (_flags),                                      \
 472        })
 473
 474/* NOTE: double check command sets and memory organization when you add
 475 * more nor chips.  This current list focusses on newer chips, which
 476 * have been converging on command sets which including JEDEC ID.
 477 */
 478static const struct spi_device_id spi_nor_ids[] = {
 479        /* Atmel -- some are (confusingly) marketed as "DataFlash" */
 480        { "at25fs010",  INFO(0x1f6601, 0, 32 * 1024,   4, SECT_4K) },
 481        { "at25fs040",  INFO(0x1f6604, 0, 64 * 1024,   8, SECT_4K) },
 482
 483        { "at25df041a", INFO(0x1f4401, 0, 64 * 1024,   8, SECT_4K) },
 484        { "at25df321a", INFO(0x1f4701, 0, 64 * 1024,  64, SECT_4K) },
 485        { "at25df641",  INFO(0x1f4800, 0, 64 * 1024, 128, SECT_4K) },
 486
 487        { "at26f004",   INFO(0x1f0400, 0, 64 * 1024,  8, SECT_4K) },
 488        { "at26df081a", INFO(0x1f4501, 0, 64 * 1024, 16, SECT_4K) },
 489        { "at26df161a", INFO(0x1f4601, 0, 64 * 1024, 32, SECT_4K) },
 490        { "at26df321",  INFO(0x1f4700, 0, 64 * 1024, 64, SECT_4K) },
 491
 492        { "at45db081d", INFO(0x1f2500, 0, 64 * 1024, 16, SECT_4K) },
 493
 494        /* EON -- en25xxx */
 495        { "en25f32",    INFO(0x1c3116, 0, 64 * 1024,   64, SECT_4K) },
 496        { "en25p32",    INFO(0x1c2016, 0, 64 * 1024,   64, 0) },
 497        { "en25q32b",   INFO(0x1c3016, 0, 64 * 1024,   64, 0) },
 498        { "en25p64",    INFO(0x1c2017, 0, 64 * 1024,  128, 0) },
 499        { "en25q64",    INFO(0x1c3017, 0, 64 * 1024,  128, SECT_4K) },
 500        { "en25qh128",  INFO(0x1c7018, 0, 64 * 1024,  256, 0) },
 501        { "en25qh256",  INFO(0x1c7019, 0, 64 * 1024,  512, 0) },
 502
 503        /* ESMT */
 504        { "f25l32pa", INFO(0x8c2016, 0, 64 * 1024, 64, SECT_4K) },
 505
 506        /* Everspin */
 507        { "mr25h256", CAT25_INFO( 32 * 1024, 1, 256, 2, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) },
 508        { "mr25h10",  CAT25_INFO(128 * 1024, 1, 256, 3, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) },
 509
 510        /* GigaDevice */
 511        { "gd25q32", INFO(0xc84016, 0, 64 * 1024,  64, SECT_4K) },
 512        { "gd25q64", INFO(0xc84017, 0, 64 * 1024, 128, SECT_4K) },
 513
 514        /* Intel/Numonyx -- xxxs33b */
 515        { "160s33b",  INFO(0x898911, 0, 64 * 1024,  32, 0) },
 516        { "320s33b",  INFO(0x898912, 0, 64 * 1024,  64, 0) },
 517        { "640s33b",  INFO(0x898913, 0, 64 * 1024, 128, 0) },
 518
 519        /* Macronix */
 520        { "mx25l2005a",  INFO(0xc22012, 0, 64 * 1024,   4, SECT_4K) },
 521        { "mx25l4005a",  INFO(0xc22013, 0, 64 * 1024,   8, SECT_4K) },
 522        { "mx25l8005",   INFO(0xc22014, 0, 64 * 1024,  16, 0) },
 523        { "mx25l1606e",  INFO(0xc22015, 0, 64 * 1024,  32, SECT_4K) },
 524        { "mx25l3205d",  INFO(0xc22016, 0, 64 * 1024,  64, 0) },
 525        { "mx25l3255e",  INFO(0xc29e16, 0, 64 * 1024,  64, SECT_4K) },
 526        { "mx25l6405d",  INFO(0xc22017, 0, 64 * 1024, 128, 0) },
 527        { "mx25l12805d", INFO(0xc22018, 0, 64 * 1024, 256, 0) },
 528        { "mx25l12855e", INFO(0xc22618, 0, 64 * 1024, 256, 0) },
 529        { "mx25l25635e", INFO(0xc22019, 0, 64 * 1024, 512, 0) },
 530        { "mx25l25655e", INFO(0xc22619, 0, 64 * 1024, 512, 0) },
 531        { "mx66l51235l", INFO(0xc2201a, 0, 64 * 1024, 1024, SPI_NOR_QUAD_READ) },
 532        { "mx66l1g55g",  INFO(0xc2261b, 0, 64 * 1024, 2048, SPI_NOR_QUAD_READ) },
 533
 534        /* Micron */
 535        { "n25q064",     INFO(0x20ba17, 0, 64 * 1024,  128, 0) },
 536        { "n25q128a11",  INFO(0x20bb18, 0, 64 * 1024,  256, 0) },
 537        { "n25q128a13",  INFO(0x20ba18, 0, 64 * 1024,  256, 0) },
 538        { "n25q256a",    INFO(0x20ba19, 0, 64 * 1024,  512, SECT_4K) },
 539        { "n25q512a",    INFO(0x20bb20, 0, 64 * 1024, 1024, SECT_4K) },
 540        { "n25q512ax3",  INFO(0x20ba20, 0, 64 * 1024, 1024, USE_FSR) },
 541        { "n25q00",      INFO(0x20ba21, 0, 64 * 1024, 2048, USE_FSR) },
 542
 543        /* PMC */
 544        { "pm25lv512",   INFO(0,        0, 32 * 1024,    2, SECT_4K_PMC) },
 545        { "pm25lv010",   INFO(0,        0, 32 * 1024,    4, SECT_4K_PMC) },
 546        { "pm25lq032",   INFO(0x7f9d46, 0, 64 * 1024,   64, SECT_4K) },
 547
 548        /* Spansion -- single (large) sector size only, at least
 549         * for the chips listed here (without boot sectors).
 550         */
 551        { "s25sl032p",  INFO(0x010215, 0x4d00,  64 * 1024,  64, SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
 552        { "s25sl064p",  INFO(0x010216, 0x4d00,  64 * 1024, 128, 0) },
 553        { "s25fl256s0", INFO(0x010219, 0x4d00, 256 * 1024, 128, 0) },
 554        { "s25fl256s1", INFO(0x010219, 0x4d01,  64 * 1024, 512, SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
 555        { "s25fl512s",  INFO(0x010220, 0x4d00, 256 * 1024, 256, SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
 556        { "s70fl01gs",  INFO(0x010221, 0x4d00, 256 * 1024, 256, 0) },
 557        { "s25sl12800", INFO(0x012018, 0x0300, 256 * 1024,  64, 0) },
 558        { "s25sl12801", INFO(0x012018, 0x0301,  64 * 1024, 256, 0) },
 559        { "s25fl129p0", INFO(0x012018, 0x4d00, 256 * 1024,  64, 0) },
 560        { "s25fl129p1", INFO(0x012018, 0x4d01,  64 * 1024, 256, 0) },
 561        { "s25sl004a",  INFO(0x010212,      0,  64 * 1024,   8, 0) },
 562        { "s25sl008a",  INFO(0x010213,      0,  64 * 1024,  16, 0) },
 563        { "s25sl016a",  INFO(0x010214,      0,  64 * 1024,  32, 0) },
 564        { "s25sl032a",  INFO(0x010215,      0,  64 * 1024,  64, 0) },
 565        { "s25sl064a",  INFO(0x010216,      0,  64 * 1024, 128, 0) },
 566        { "s25fl008k",  INFO(0xef4014,      0,  64 * 1024,  16, SECT_4K) },
 567        { "s25fl016k",  INFO(0xef4015,      0,  64 * 1024,  32, SECT_4K) },
 568        { "s25fl064k",  INFO(0xef4017,      0,  64 * 1024, 128, SECT_4K) },
 569
 570        /* SST -- large erase sizes are "overlays", "sectors" are 4K */
 571        { "sst25vf040b", INFO(0xbf258d, 0, 64 * 1024,  8, SECT_4K | SST_WRITE) },
 572        { "sst25vf080b", INFO(0xbf258e, 0, 64 * 1024, 16, SECT_4K | SST_WRITE) },
 573        { "sst25vf016b", INFO(0xbf2541, 0, 64 * 1024, 32, SECT_4K | SST_WRITE) },
 574        { "sst25vf032b", INFO(0xbf254a, 0, 64 * 1024, 64, SECT_4K | SST_WRITE) },
 575        { "sst25vf064c", INFO(0xbf254b, 0, 64 * 1024, 128, SECT_4K) },
 576        { "sst25wf512",  INFO(0xbf2501, 0, 64 * 1024,  1, SECT_4K | SST_WRITE) },
 577        { "sst25wf010",  INFO(0xbf2502, 0, 64 * 1024,  2, SECT_4K | SST_WRITE) },
 578        { "sst25wf020",  INFO(0xbf2503, 0, 64 * 1024,  4, SECT_4K | SST_WRITE) },
 579        { "sst25wf040",  INFO(0xbf2504, 0, 64 * 1024,  8, SECT_4K | SST_WRITE) },
 580
 581        /* ST Microelectronics -- newer production may have feature updates */
 582        { "m25p05",  INFO(0x202010,  0,  32 * 1024,   2, 0) },
 583        { "m25p10",  INFO(0x202011,  0,  32 * 1024,   4, 0) },
 584        { "m25p20",  INFO(0x202012,  0,  64 * 1024,   4, 0) },
 585        { "m25p40",  INFO(0x202013,  0,  64 * 1024,   8, 0) },
 586        { "m25p80",  INFO(0x202014,  0,  64 * 1024,  16, 0) },
 587        { "m25p16",  INFO(0x202015,  0,  64 * 1024,  32, 0) },
 588        { "m25p32",  INFO(0x202016,  0,  64 * 1024,  64, 0) },
 589        { "m25p64",  INFO(0x202017,  0,  64 * 1024, 128, 0) },
 590        { "m25p128", INFO(0x202018,  0, 256 * 1024,  64, 0) },
 591        { "n25q032", INFO(0x20ba16,  0,  64 * 1024,  64, 0) },
 592
 593        { "m25p05-nonjedec",  INFO(0, 0,  32 * 1024,   2, 0) },
 594        { "m25p10-nonjedec",  INFO(0, 0,  32 * 1024,   4, 0) },
 595        { "m25p20-nonjedec",  INFO(0, 0,  64 * 1024,   4, 0) },
 596        { "m25p40-nonjedec",  INFO(0, 0,  64 * 1024,   8, 0) },
 597        { "m25p80-nonjedec",  INFO(0, 0,  64 * 1024,  16, 0) },
 598        { "m25p16-nonjedec",  INFO(0, 0,  64 * 1024,  32, 0) },
 599        { "m25p32-nonjedec",  INFO(0, 0,  64 * 1024,  64, 0) },
 600        { "m25p64-nonjedec",  INFO(0, 0,  64 * 1024, 128, 0) },
 601        { "m25p128-nonjedec", INFO(0, 0, 256 * 1024,  64, 0) },
 602
 603        { "m45pe10", INFO(0x204011,  0, 64 * 1024,    2, 0) },
 604        { "m45pe80", INFO(0x204014,  0, 64 * 1024,   16, 0) },
 605        { "m45pe16", INFO(0x204015,  0, 64 * 1024,   32, 0) },
 606
 607        { "m25pe20", INFO(0x208012,  0, 64 * 1024,  4,       0) },
 608        { "m25pe80", INFO(0x208014,  0, 64 * 1024, 16,       0) },
 609        { "m25pe16", INFO(0x208015,  0, 64 * 1024, 32, SECT_4K) },
 610
 611        { "m25px16",    INFO(0x207115,  0, 64 * 1024, 32, SECT_4K) },
 612        { "m25px32",    INFO(0x207116,  0, 64 * 1024, 64, SECT_4K) },
 613        { "m25px32-s0", INFO(0x207316,  0, 64 * 1024, 64, SECT_4K) },
 614        { "m25px32-s1", INFO(0x206316,  0, 64 * 1024, 64, SECT_4K) },
 615        { "m25px64",    INFO(0x207117,  0, 64 * 1024, 128, 0) },
 616        { "m25px80",    INFO(0x207114,  0, 64 * 1024, 16, 0) },
 617
 618        /* Winbond -- w25x "blocks" are 64K, "sectors" are 4KiB */
 619        { "w25x10", INFO(0xef3011, 0, 64 * 1024,  2,  SECT_4K) },
 620        { "w25x20", INFO(0xef3012, 0, 64 * 1024,  4,  SECT_4K) },
 621        { "w25x40", INFO(0xef3013, 0, 64 * 1024,  8,  SECT_4K) },
 622        { "w25x80", INFO(0xef3014, 0, 64 * 1024,  16, SECT_4K) },
 623        { "w25x16", INFO(0xef3015, 0, 64 * 1024,  32, SECT_4K) },
 624        { "w25x32", INFO(0xef3016, 0, 64 * 1024,  64, SECT_4K) },
 625        { "w25q32", INFO(0xef4016, 0, 64 * 1024,  64, SECT_4K) },
 626        { "w25q32dw", INFO(0xef6016, 0, 64 * 1024,  64, SECT_4K) },
 627        { "w25x64", INFO(0xef3017, 0, 64 * 1024, 128, SECT_4K) },
 628        { "w25q64", INFO(0xef4017, 0, 64 * 1024, 128, SECT_4K) },
 629        { "w25q80", INFO(0xef5014, 0, 64 * 1024,  16, SECT_4K) },
 630        { "w25q80bl", INFO(0xef4014, 0, 64 * 1024,  16, SECT_4K) },
 631        { "w25q128", INFO(0xef4018, 0, 64 * 1024, 256, SECT_4K) },
 632        { "w25q256", INFO(0xef4019, 0, 64 * 1024, 512, SECT_4K) },
 633
 634        /* Catalyst / On Semiconductor -- non-JEDEC */
 635        { "cat25c11", CAT25_INFO(  16, 8, 16, 1, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) },
 636        { "cat25c03", CAT25_INFO(  32, 8, 16, 2, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) },
 637        { "cat25c09", CAT25_INFO( 128, 8, 32, 2, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) },
 638        { "cat25c17", CAT25_INFO( 256, 8, 32, 2, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) },
 639        { "cat25128", CAT25_INFO(2048, 8, 64, 2, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) },
 640        { },
 641};
 642
 643static const struct spi_device_id *spi_nor_read_id(struct spi_nor *nor)
 644{
 645        int                     tmp;
 646        u8                      id[5];
 647        u32                     jedec;
 648        u16                     ext_jedec;
 649        struct flash_info       *info;
 650
 651        tmp = nor->read_reg(nor, SPINOR_OP_RDID, id, 5);
 652        if (tmp < 0) {
 653                dev_dbg(nor->dev, " error %d reading JEDEC ID\n", tmp);
 654                return ERR_PTR(tmp);
 655        }
 656        jedec = id[0];
 657        jedec = jedec << 8;
 658        jedec |= id[1];
 659        jedec = jedec << 8;
 660        jedec |= id[2];
 661
 662        ext_jedec = id[3] << 8 | id[4];
 663
 664        for (tmp = 0; tmp < ARRAY_SIZE(spi_nor_ids) - 1; tmp++) {
 665                info = (void *)spi_nor_ids[tmp].driver_data;
 666                if (info->jedec_id == jedec) {
 667                        if (info->ext_id == 0 || info->ext_id == ext_jedec)
 668                                return &spi_nor_ids[tmp];
 669                }
 670        }
 671        dev_err(nor->dev, "unrecognized JEDEC id %06x\n", jedec);
 672        return ERR_PTR(-ENODEV);
 673}
 674
 675static int spi_nor_read(struct mtd_info *mtd, loff_t from, size_t len,
 676                        size_t *retlen, u_char *buf)
 677{
 678        struct spi_nor *nor = mtd_to_spi_nor(mtd);
 679        int ret;
 680
 681        dev_dbg(nor->dev, "from 0x%08x, len %zd\n", (u32)from, len);
 682
 683        ret = spi_nor_lock_and_prep(nor, SPI_NOR_OPS_READ);
 684        if (ret)
 685                return ret;
 686
 687        ret = nor->read(nor, from, len, retlen, buf);
 688
 689        spi_nor_unlock_and_unprep(nor, SPI_NOR_OPS_READ);
 690        return ret;
 691}
 692
 693static int sst_write(struct mtd_info *mtd, loff_t to, size_t len,
 694                size_t *retlen, const u_char *buf)
 695{
 696        struct spi_nor *nor = mtd_to_spi_nor(mtd);
 697        size_t actual;
 698        int ret;
 699
 700        dev_dbg(nor->dev, "to 0x%08x, len %zd\n", (u32)to, len);
 701
 702        ret = spi_nor_lock_and_prep(nor, SPI_NOR_OPS_WRITE);
 703        if (ret)
 704                return ret;
 705
 706        /* Wait until finished previous write command. */
 707        ret = wait_till_ready(nor);
 708        if (ret)
 709                goto time_out;
 710
 711        write_enable(nor);
 712
 713        nor->sst_write_second = false;
 714
 715        actual = to % 2;
 716        /* Start write from odd address. */
 717        if (actual) {
 718                nor->program_opcode = SPINOR_OP_BP;
 719
 720                /* write one byte. */
 721                nor->write(nor, to, 1, retlen, buf);
 722                ret = wait_till_ready(nor);
 723                if (ret)
 724                        goto time_out;
 725        }
 726        to += actual;
 727
 728        /* Write out most of the data here. */
 729        for (; actual < len - 1; actual += 2) {
 730                nor->program_opcode = SPINOR_OP_AAI_WP;
 731
 732                /* write two bytes. */
 733                nor->write(nor, to, 2, retlen, buf + actual);
 734                ret = wait_till_ready(nor);
 735                if (ret)
 736                        goto time_out;
 737                to += 2;
 738                nor->sst_write_second = true;
 739        }
 740        nor->sst_write_second = false;
 741
 742        write_disable(nor);
 743        ret = wait_till_ready(nor);
 744        if (ret)
 745                goto time_out;
 746
 747        /* Write out trailing byte if it exists. */
 748        if (actual != len) {
 749                write_enable(nor);
 750
 751                nor->program_opcode = SPINOR_OP_BP;
 752                nor->write(nor, to, 1, retlen, buf + actual);
 753
 754                ret = wait_till_ready(nor);
 755                if (ret)
 756                        goto time_out;
 757                write_disable(nor);
 758        }
 759time_out:
 760        spi_nor_unlock_and_unprep(nor, SPI_NOR_OPS_WRITE);
 761        return ret;
 762}
 763
 764/*
 765 * Write an address range to the nor chip.  Data must be written in
 766 * FLASH_PAGESIZE chunks.  The address range may be any size provided
 767 * it is within the physical boundaries.
 768 */
 769static int spi_nor_write(struct mtd_info *mtd, loff_t to, size_t len,
 770        size_t *retlen, const u_char *buf)
 771{
 772        struct spi_nor *nor = mtd_to_spi_nor(mtd);
 773        u32 page_offset, page_size, i;
 774        int ret;
 775
 776        dev_dbg(nor->dev, "to 0x%08x, len %zd\n", (u32)to, len);
 777
 778        ret = spi_nor_lock_and_prep(nor, SPI_NOR_OPS_WRITE);
 779        if (ret)
 780                return ret;
 781
 782        /* Wait until finished previous write command. */
 783        ret = wait_till_ready(nor);
 784        if (ret)
 785                goto write_err;
 786
 787        write_enable(nor);
 788
 789        page_offset = to & (nor->page_size - 1);
 790
 791        /* do all the bytes fit onto one page? */
 792        if (page_offset + len <= nor->page_size) {
 793                nor->write(nor, to, len, retlen, buf);
 794        } else {
 795                /* the size of data remaining on the first page */
 796                page_size = nor->page_size - page_offset;
 797                nor->write(nor, to, page_size, retlen, buf);
 798
 799                /* write everything in nor->page_size chunks */
 800                for (i = page_size; i < len; i += page_size) {
 801                        page_size = len - i;
 802                        if (page_size > nor->page_size)
 803                                page_size = nor->page_size;
 804
 805                        wait_till_ready(nor);
 806                        write_enable(nor);
 807
 808                        nor->write(nor, to + i, page_size, retlen, buf + i);
 809                }
 810        }
 811
 812write_err:
 813        spi_nor_unlock_and_unprep(nor, SPI_NOR_OPS_WRITE);
 814        return 0;
 815}
 816
 817static int macronix_quad_enable(struct spi_nor *nor)
 818{
 819        int ret, val;
 820
 821        val = read_sr(nor);
 822        write_enable(nor);
 823
 824        nor->cmd_buf[0] = val | SR_QUAD_EN_MX;
 825        nor->write_reg(nor, SPINOR_OP_WRSR, nor->cmd_buf, 1, 0);
 826
 827        if (wait_till_ready(nor))
 828                return 1;
 829
 830        ret = read_sr(nor);
 831        if (!(ret > 0 && (ret & SR_QUAD_EN_MX))) {
 832                dev_err(nor->dev, "Macronix Quad bit not set\n");
 833                return -EINVAL;
 834        }
 835
 836        return 0;
 837}
 838
 839/*
 840 * Write status Register and configuration register with 2 bytes
 841 * The first byte will be written to the status register, while the
 842 * second byte will be written to the configuration register.
 843 * Return negative if error occured.
 844 */
 845static int write_sr_cr(struct spi_nor *nor, u16 val)
 846{
 847        nor->cmd_buf[0] = val & 0xff;
 848        nor->cmd_buf[1] = (val >> 8);
 849
 850        return nor->write_reg(nor, SPINOR_OP_WRSR, nor->cmd_buf, 2, 0);
 851}
 852
 853static int spansion_quad_enable(struct spi_nor *nor)
 854{
 855        int ret;
 856        int quad_en = CR_QUAD_EN_SPAN << 8;
 857
 858        write_enable(nor);
 859
 860        ret = write_sr_cr(nor, quad_en);
 861        if (ret < 0) {
 862                dev_err(nor->dev,
 863                        "error while writing configuration register\n");
 864                return -EINVAL;
 865        }
 866
 867        /* read back and check it */
 868        ret = read_cr(nor);
 869        if (!(ret > 0 && (ret & CR_QUAD_EN_SPAN))) {
 870                dev_err(nor->dev, "Spansion Quad bit not set\n");
 871                return -EINVAL;
 872        }
 873
 874        return 0;
 875}
 876
 877static int set_quad_mode(struct spi_nor *nor, u32 jedec_id)
 878{
 879        int status;
 880
 881        switch (JEDEC_MFR(jedec_id)) {
 882        case CFI_MFR_MACRONIX:
 883                status = macronix_quad_enable(nor);
 884                if (status) {
 885                        dev_err(nor->dev, "Macronix quad-read not enabled\n");
 886                        return -EINVAL;
 887                }
 888                return status;
 889        default:
 890                status = spansion_quad_enable(nor);
 891                if (status) {
 892                        dev_err(nor->dev, "Spansion quad-read not enabled\n");
 893                        return -EINVAL;
 894                }
 895                return status;
 896        }
 897}
 898
 899static int spi_nor_check(struct spi_nor *nor)
 900{
 901        if (!nor->dev || !nor->read || !nor->write ||
 902                !nor->read_reg || !nor->write_reg || !nor->erase) {
 903                pr_err("spi-nor: please fill all the necessary fields!\n");
 904                return -EINVAL;
 905        }
 906
 907        if (!nor->read_id)
 908                nor->read_id = spi_nor_read_id;
 909        if (!nor->wait_till_ready)
 910                nor->wait_till_ready = spi_nor_wait_till_ready;
 911
 912        return 0;
 913}
 914
 915int spi_nor_scan(struct spi_nor *nor, const char *name, enum read_mode mode)
 916{
 917        const struct spi_device_id      *id = NULL;
 918        struct flash_info               *info;
 919        struct device *dev = nor->dev;
 920        struct mtd_info *mtd = nor->mtd;
 921        struct device_node *np = dev->of_node;
 922        int ret;
 923        int i;
 924
 925        ret = spi_nor_check(nor);
 926        if (ret)
 927                return ret;
 928
 929        id = spi_nor_match_id(name);
 930        if (!id)
 931                return -ENOENT;
 932
 933        info = (void *)id->driver_data;
 934
 935        if (info->jedec_id) {
 936                const struct spi_device_id *jid;
 937
 938                jid = nor->read_id(nor);
 939                if (IS_ERR(jid)) {
 940                        return PTR_ERR(jid);
 941                } else if (jid != id) {
 942                        /*
 943                         * JEDEC knows better, so overwrite platform ID. We
 944                         * can't trust partitions any longer, but we'll let
 945                         * mtd apply them anyway, since some partitions may be
 946                         * marked read-only, and we don't want to lose that
 947                         * information, even if it's not 100% accurate.
 948                         */
 949                        dev_warn(dev, "found %s, expected %s\n",
 950                                 jid->name, id->name);
 951                        id = jid;
 952                        info = (void *)jid->driver_data;
 953                }
 954        }
 955
 956        mutex_init(&nor->lock);
 957
 958        /*
 959         * Atmel, SST and Intel/Numonyx serial nor tend to power
 960         * up with the software protection bits set
 961         */
 962
 963        if (JEDEC_MFR(info->jedec_id) == CFI_MFR_ATMEL ||
 964            JEDEC_MFR(info->jedec_id) == CFI_MFR_INTEL ||
 965            JEDEC_MFR(info->jedec_id) == CFI_MFR_SST) {
 966                write_enable(nor);
 967                write_sr(nor, 0);
 968        }
 969
 970        if (!mtd->name)
 971                mtd->name = dev_name(dev);
 972        mtd->type = MTD_NORFLASH;
 973        mtd->writesize = 1;
 974        mtd->flags = MTD_CAP_NORFLASH;
 975        mtd->size = info->sector_size * info->n_sectors;
 976        mtd->_erase = spi_nor_erase;
 977        mtd->_read = spi_nor_read;
 978
 979        /* nor protection support for STmicro chips */
 980        if (JEDEC_MFR(info->jedec_id) == CFI_MFR_ST) {
 981                mtd->_lock = spi_nor_lock;
 982                mtd->_unlock = spi_nor_unlock;
 983        }
 984
 985        /* sst nor chips use AAI word program */
 986        if (info->flags & SST_WRITE)
 987                mtd->_write = sst_write;
 988        else
 989                mtd->_write = spi_nor_write;
 990
 991        if ((info->flags & USE_FSR) &&
 992            nor->wait_till_ready == spi_nor_wait_till_ready)
 993                nor->wait_till_ready = spi_nor_wait_till_fsr_ready;
 994
 995#ifdef CONFIG_MTD_SPI_NOR_USE_4K_SECTORS
 996        /* prefer "small sector" erase if possible */
 997        if (info->flags & SECT_4K) {
 998                nor->erase_opcode = SPINOR_OP_BE_4K;
 999                mtd->erasesize = 4096;
1000        } else if (info->flags & SECT_4K_PMC) {
1001                nor->erase_opcode = SPINOR_OP_BE_4K_PMC;
1002                mtd->erasesize = 4096;
1003        } else
1004#endif
1005        {
1006                nor->erase_opcode = SPINOR_OP_SE;
1007                mtd->erasesize = info->sector_size;
1008        }
1009
1010        if (info->flags & SPI_NOR_NO_ERASE)
1011                mtd->flags |= MTD_NO_ERASE;
1012
1013        mtd->dev.parent = dev;
1014        nor->page_size = info->page_size;
1015        mtd->writebufsize = nor->page_size;
1016
1017        if (np) {
1018                /* If we were instantiated by DT, use it */
1019                if (of_property_read_bool(np, "m25p,fast-read"))
1020                        nor->flash_read = SPI_NOR_FAST;
1021                else
1022                        nor->flash_read = SPI_NOR_NORMAL;
1023        } else {
1024                /* If we weren't instantiated by DT, default to fast-read */
1025                nor->flash_read = SPI_NOR_FAST;
1026        }
1027
1028        /* Some devices cannot do fast-read, no matter what DT tells us */
1029        if (info->flags & SPI_NOR_NO_FR)
1030                nor->flash_read = SPI_NOR_NORMAL;
1031
1032        /* Quad/Dual-read mode takes precedence over fast/normal */
1033        if (mode == SPI_NOR_QUAD && info->flags & SPI_NOR_QUAD_READ) {
1034                ret = set_quad_mode(nor, info->jedec_id);
1035                if (ret) {
1036                        dev_err(dev, "quad mode not supported\n");
1037                        return ret;
1038                }
1039                nor->flash_read = SPI_NOR_QUAD;
1040        } else if (mode == SPI_NOR_DUAL && info->flags & SPI_NOR_DUAL_READ) {
1041                nor->flash_read = SPI_NOR_DUAL;
1042        }
1043
1044        /* Default commands */
1045        switch (nor->flash_read) {
1046        case SPI_NOR_QUAD:
1047                nor->read_opcode = SPINOR_OP_READ_1_1_4;
1048                break;
1049        case SPI_NOR_DUAL:
1050                nor->read_opcode = SPINOR_OP_READ_1_1_2;
1051                break;
1052        case SPI_NOR_FAST:
1053                nor->read_opcode = SPINOR_OP_READ_FAST;
1054                break;
1055        case SPI_NOR_NORMAL:
1056                nor->read_opcode = SPINOR_OP_READ;
1057                break;
1058        default:
1059                dev_err(dev, "No Read opcode defined\n");
1060                return -EINVAL;
1061        }
1062
1063        nor->program_opcode = SPINOR_OP_PP;
1064
1065        if (info->addr_width)
1066                nor->addr_width = info->addr_width;
1067        else if (mtd->size > 0x1000000) {
1068                /* enable 4-byte addressing if the device exceeds 16MiB */
1069                nor->addr_width = 4;
1070                if (JEDEC_MFR(info->jedec_id) == CFI_MFR_AMD) {
1071                        /* Dedicated 4-byte command set */
1072                        switch (nor->flash_read) {
1073                        case SPI_NOR_QUAD:
1074                                nor->read_opcode = SPINOR_OP_READ4_1_1_4;
1075                                break;
1076                        case SPI_NOR_DUAL:
1077                                nor->read_opcode = SPINOR_OP_READ4_1_1_2;
1078                                break;
1079                        case SPI_NOR_FAST:
1080                                nor->read_opcode = SPINOR_OP_READ4_FAST;
1081                                break;
1082                        case SPI_NOR_NORMAL:
1083                                nor->read_opcode = SPINOR_OP_READ4;
1084                                break;
1085                        }
1086                        nor->program_opcode = SPINOR_OP_PP_4B;
1087                        /* No small sector erase for 4-byte command set */
1088                        nor->erase_opcode = SPINOR_OP_SE_4B;
1089                        mtd->erasesize = info->sector_size;
1090                } else
1091                        set_4byte(nor, info->jedec_id, 1);
1092        } else {
1093                nor->addr_width = 3;
1094        }
1095
1096        nor->read_dummy = spi_nor_read_dummy_cycles(nor);
1097
1098        dev_info(dev, "%s (%lld Kbytes)\n", id->name,
1099                        (long long)mtd->size >> 10);
1100
1101        dev_dbg(dev,
1102                "mtd .name = %s, .size = 0x%llx (%lldMiB), "
1103                ".erasesize = 0x%.8x (%uKiB) .numeraseregions = %d\n",
1104                mtd->name, (long long)mtd->size, (long long)(mtd->size >> 20),
1105                mtd->erasesize, mtd->erasesize / 1024, mtd->numeraseregions);
1106
1107        if (mtd->numeraseregions)
1108                for (i = 0; i < mtd->numeraseregions; i++)
1109                        dev_dbg(dev,
1110                                "mtd.eraseregions[%d] = { .offset = 0x%llx, "
1111                                ".erasesize = 0x%.8x (%uKiB), "
1112                                ".numblocks = %d }\n",
1113                                i, (long long)mtd->eraseregions[i].offset,
1114                                mtd->eraseregions[i].erasesize,
1115                                mtd->eraseregions[i].erasesize / 1024,
1116                                mtd->eraseregions[i].numblocks);
1117        return 0;
1118}
1119EXPORT_SYMBOL_GPL(spi_nor_scan);
1120
1121static const struct spi_device_id *spi_nor_match_id(const char *name)
1122{
1123        const struct spi_device_id *id = spi_nor_ids;
1124
1125        while (id->name[0]) {
1126                if (!strcmp(name, id->name))
1127                        return id;
1128                id++;
1129        }
1130        return NULL;
1131}
1132
1133MODULE_LICENSE("GPL");
1134MODULE_AUTHOR("Huang Shijie <shijie8@gmail.com>");
1135MODULE_AUTHOR("Mike Lavender");
1136MODULE_DESCRIPTION("framework for SPI NOR");
1137