linux/drivers/net/ethernet/intel/fm10k/fm10k_main.c
<<
>>
Prefs
   1/* Intel Ethernet Switch Host Interface Driver
   2 * Copyright(c) 2013 - 2014 Intel Corporation.
   3 *
   4 * This program is free software; you can redistribute it and/or modify it
   5 * under the terms and conditions of the GNU General Public License,
   6 * version 2, as published by the Free Software Foundation.
   7 *
   8 * This program is distributed in the hope it will be useful, but WITHOUT
   9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  10 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  11 * more details.
  12 *
  13 * The full GNU General Public License is included in this distribution in
  14 * the file called "COPYING".
  15 *
  16 * Contact Information:
  17 * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
  18 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
  19 */
  20
  21#include <linux/types.h>
  22#include <linux/module.h>
  23#include <net/ipv6.h>
  24#include <net/ip.h>
  25#include <net/tcp.h>
  26#include <linux/if_macvlan.h>
  27#include <linux/prefetch.h>
  28
  29#include "fm10k.h"
  30
  31#define DRV_VERSION     "0.12.2-k"
  32const char fm10k_driver_version[] = DRV_VERSION;
  33char fm10k_driver_name[] = "fm10k";
  34static const char fm10k_driver_string[] =
  35        "Intel(R) Ethernet Switch Host Interface Driver";
  36static const char fm10k_copyright[] =
  37        "Copyright (c) 2013 Intel Corporation.";
  38
  39MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
  40MODULE_DESCRIPTION("Intel(R) Ethernet Switch Host Interface Driver");
  41MODULE_LICENSE("GPL");
  42MODULE_VERSION(DRV_VERSION);
  43
  44/**
  45 * fm10k_init_module - Driver Registration Routine
  46 *
  47 * fm10k_init_module is the first routine called when the driver is
  48 * loaded.  All it does is register with the PCI subsystem.
  49 **/
  50static int __init fm10k_init_module(void)
  51{
  52        pr_info("%s - version %s\n", fm10k_driver_string, fm10k_driver_version);
  53        pr_info("%s\n", fm10k_copyright);
  54
  55        fm10k_dbg_init();
  56
  57        return fm10k_register_pci_driver();
  58}
  59module_init(fm10k_init_module);
  60
  61/**
  62 * fm10k_exit_module - Driver Exit Cleanup Routine
  63 *
  64 * fm10k_exit_module is called just before the driver is removed
  65 * from memory.
  66 **/
  67static void __exit fm10k_exit_module(void)
  68{
  69        fm10k_unregister_pci_driver();
  70
  71        fm10k_dbg_exit();
  72}
  73module_exit(fm10k_exit_module);
  74
  75static bool fm10k_alloc_mapped_page(struct fm10k_ring *rx_ring,
  76                                    struct fm10k_rx_buffer *bi)
  77{
  78        struct page *page = bi->page;
  79        dma_addr_t dma;
  80
  81        /* Only page will be NULL if buffer was consumed */
  82        if (likely(page))
  83                return true;
  84
  85        /* alloc new page for storage */
  86        page = alloc_page(GFP_ATOMIC | __GFP_COLD);
  87        if (unlikely(!page)) {
  88                rx_ring->rx_stats.alloc_failed++;
  89                return false;
  90        }
  91
  92        /* map page for use */
  93        dma = dma_map_page(rx_ring->dev, page, 0, PAGE_SIZE, DMA_FROM_DEVICE);
  94
  95        /* if mapping failed free memory back to system since
  96         * there isn't much point in holding memory we can't use
  97         */
  98        if (dma_mapping_error(rx_ring->dev, dma)) {
  99                __free_page(page);
 100                bi->page = NULL;
 101
 102                rx_ring->rx_stats.alloc_failed++;
 103                return false;
 104        }
 105
 106        bi->dma = dma;
 107        bi->page = page;
 108        bi->page_offset = 0;
 109
 110        return true;
 111}
 112
 113/**
 114 * fm10k_alloc_rx_buffers - Replace used receive buffers
 115 * @rx_ring: ring to place buffers on
 116 * @cleaned_count: number of buffers to replace
 117 **/
 118void fm10k_alloc_rx_buffers(struct fm10k_ring *rx_ring, u16 cleaned_count)
 119{
 120        union fm10k_rx_desc *rx_desc;
 121        struct fm10k_rx_buffer *bi;
 122        u16 i = rx_ring->next_to_use;
 123
 124        /* nothing to do */
 125        if (!cleaned_count)
 126                return;
 127
 128        rx_desc = FM10K_RX_DESC(rx_ring, i);
 129        bi = &rx_ring->rx_buffer[i];
 130        i -= rx_ring->count;
 131
 132        do {
 133                if (!fm10k_alloc_mapped_page(rx_ring, bi))
 134                        break;
 135
 136                /* Refresh the desc even if buffer_addrs didn't change
 137                 * because each write-back erases this info.
 138                 */
 139                rx_desc->q.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
 140
 141                rx_desc++;
 142                bi++;
 143                i++;
 144                if (unlikely(!i)) {
 145                        rx_desc = FM10K_RX_DESC(rx_ring, 0);
 146                        bi = rx_ring->rx_buffer;
 147                        i -= rx_ring->count;
 148                }
 149
 150                /* clear the hdr_addr for the next_to_use descriptor */
 151                rx_desc->q.hdr_addr = 0;
 152
 153                cleaned_count--;
 154        } while (cleaned_count);
 155
 156        i += rx_ring->count;
 157
 158        if (rx_ring->next_to_use != i) {
 159                /* record the next descriptor to use */
 160                rx_ring->next_to_use = i;
 161
 162                /* update next to alloc since we have filled the ring */
 163                rx_ring->next_to_alloc = i;
 164
 165                /* Force memory writes to complete before letting h/w
 166                 * know there are new descriptors to fetch.  (Only
 167                 * applicable for weak-ordered memory model archs,
 168                 * such as IA-64).
 169                 */
 170                wmb();
 171
 172                /* notify hardware of new descriptors */
 173                writel(i, rx_ring->tail);
 174        }
 175}
 176
 177/**
 178 * fm10k_reuse_rx_page - page flip buffer and store it back on the ring
 179 * @rx_ring: rx descriptor ring to store buffers on
 180 * @old_buff: donor buffer to have page reused
 181 *
 182 * Synchronizes page for reuse by the interface
 183 **/
 184static void fm10k_reuse_rx_page(struct fm10k_ring *rx_ring,
 185                                struct fm10k_rx_buffer *old_buff)
 186{
 187        struct fm10k_rx_buffer *new_buff;
 188        u16 nta = rx_ring->next_to_alloc;
 189
 190        new_buff = &rx_ring->rx_buffer[nta];
 191
 192        /* update, and store next to alloc */
 193        nta++;
 194        rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
 195
 196        /* transfer page from old buffer to new buffer */
 197        memcpy(new_buff, old_buff, sizeof(struct fm10k_rx_buffer));
 198
 199        /* sync the buffer for use by the device */
 200        dma_sync_single_range_for_device(rx_ring->dev, old_buff->dma,
 201                                         old_buff->page_offset,
 202                                         FM10K_RX_BUFSZ,
 203                                         DMA_FROM_DEVICE);
 204}
 205
 206static bool fm10k_can_reuse_rx_page(struct fm10k_rx_buffer *rx_buffer,
 207                                    struct page *page,
 208                                    unsigned int truesize)
 209{
 210        /* avoid re-using remote pages */
 211        if (unlikely(page_to_nid(page) != numa_mem_id()))
 212                return false;
 213
 214#if (PAGE_SIZE < 8192)
 215        /* if we are only owner of page we can reuse it */
 216        if (unlikely(page_count(page) != 1))
 217                return false;
 218
 219        /* flip page offset to other buffer */
 220        rx_buffer->page_offset ^= FM10K_RX_BUFSZ;
 221
 222        /* Even if we own the page, we are not allowed to use atomic_set()
 223         * This would break get_page_unless_zero() users.
 224         */
 225        atomic_inc(&page->_count);
 226#else
 227        /* move offset up to the next cache line */
 228        rx_buffer->page_offset += truesize;
 229
 230        if (rx_buffer->page_offset > (PAGE_SIZE - FM10K_RX_BUFSZ))
 231                return false;
 232
 233        /* bump ref count on page before it is given to the stack */
 234        get_page(page);
 235#endif
 236
 237        return true;
 238}
 239
 240/**
 241 * fm10k_add_rx_frag - Add contents of Rx buffer to sk_buff
 242 * @rx_ring: rx descriptor ring to transact packets on
 243 * @rx_buffer: buffer containing page to add
 244 * @rx_desc: descriptor containing length of buffer written by hardware
 245 * @skb: sk_buff to place the data into
 246 *
 247 * This function will add the data contained in rx_buffer->page to the skb.
 248 * This is done either through a direct copy if the data in the buffer is
 249 * less than the skb header size, otherwise it will just attach the page as
 250 * a frag to the skb.
 251 *
 252 * The function will then update the page offset if necessary and return
 253 * true if the buffer can be reused by the interface.
 254 **/
 255static bool fm10k_add_rx_frag(struct fm10k_ring *rx_ring,
 256                              struct fm10k_rx_buffer *rx_buffer,
 257                              union fm10k_rx_desc *rx_desc,
 258                              struct sk_buff *skb)
 259{
 260        struct page *page = rx_buffer->page;
 261        unsigned int size = le16_to_cpu(rx_desc->w.length);
 262#if (PAGE_SIZE < 8192)
 263        unsigned int truesize = FM10K_RX_BUFSZ;
 264#else
 265        unsigned int truesize = ALIGN(size, L1_CACHE_BYTES);
 266#endif
 267
 268        if ((size <= FM10K_RX_HDR_LEN) && !skb_is_nonlinear(skb)) {
 269                unsigned char *va = page_address(page) + rx_buffer->page_offset;
 270
 271                memcpy(__skb_put(skb, size), va, ALIGN(size, sizeof(long)));
 272
 273                /* we can reuse buffer as-is, just make sure it is local */
 274                if (likely(page_to_nid(page) == numa_mem_id()))
 275                        return true;
 276
 277                /* this page cannot be reused so discard it */
 278                put_page(page);
 279                return false;
 280        }
 281
 282        skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page,
 283                        rx_buffer->page_offset, size, truesize);
 284
 285        return fm10k_can_reuse_rx_page(rx_buffer, page, truesize);
 286}
 287
 288static struct sk_buff *fm10k_fetch_rx_buffer(struct fm10k_ring *rx_ring,
 289                                             union fm10k_rx_desc *rx_desc,
 290                                             struct sk_buff *skb)
 291{
 292        struct fm10k_rx_buffer *rx_buffer;
 293        struct page *page;
 294
 295        rx_buffer = &rx_ring->rx_buffer[rx_ring->next_to_clean];
 296
 297        page = rx_buffer->page;
 298        prefetchw(page);
 299
 300        if (likely(!skb)) {
 301                void *page_addr = page_address(page) +
 302                                  rx_buffer->page_offset;
 303
 304                /* prefetch first cache line of first page */
 305                prefetch(page_addr);
 306#if L1_CACHE_BYTES < 128
 307                prefetch(page_addr + L1_CACHE_BYTES);
 308#endif
 309
 310                /* allocate a skb to store the frags */
 311                skb = netdev_alloc_skb_ip_align(rx_ring->netdev,
 312                                                FM10K_RX_HDR_LEN);
 313                if (unlikely(!skb)) {
 314                        rx_ring->rx_stats.alloc_failed++;
 315                        return NULL;
 316                }
 317
 318                /* we will be copying header into skb->data in
 319                 * pskb_may_pull so it is in our interest to prefetch
 320                 * it now to avoid a possible cache miss
 321                 */
 322                prefetchw(skb->data);
 323        }
 324
 325        /* we are reusing so sync this buffer for CPU use */
 326        dma_sync_single_range_for_cpu(rx_ring->dev,
 327                                      rx_buffer->dma,
 328                                      rx_buffer->page_offset,
 329                                      FM10K_RX_BUFSZ,
 330                                      DMA_FROM_DEVICE);
 331
 332        /* pull page into skb */
 333        if (fm10k_add_rx_frag(rx_ring, rx_buffer, rx_desc, skb)) {
 334                /* hand second half of page back to the ring */
 335                fm10k_reuse_rx_page(rx_ring, rx_buffer);
 336        } else {
 337                /* we are not reusing the buffer so unmap it */
 338                dma_unmap_page(rx_ring->dev, rx_buffer->dma,
 339                               PAGE_SIZE, DMA_FROM_DEVICE);
 340        }
 341
 342        /* clear contents of rx_buffer */
 343        rx_buffer->page = NULL;
 344
 345        return skb;
 346}
 347
 348static inline void fm10k_rx_checksum(struct fm10k_ring *ring,
 349                                     union fm10k_rx_desc *rx_desc,
 350                                     struct sk_buff *skb)
 351{
 352        skb_checksum_none_assert(skb);
 353
 354        /* Rx checksum disabled via ethtool */
 355        if (!(ring->netdev->features & NETIF_F_RXCSUM))
 356                return;
 357
 358        /* TCP/UDP checksum error bit is set */
 359        if (fm10k_test_staterr(rx_desc,
 360                               FM10K_RXD_STATUS_L4E |
 361                               FM10K_RXD_STATUS_L4E2 |
 362                               FM10K_RXD_STATUS_IPE |
 363                               FM10K_RXD_STATUS_IPE2)) {
 364                ring->rx_stats.csum_err++;
 365                return;
 366        }
 367
 368        /* It must be a TCP or UDP packet with a valid checksum */
 369        if (fm10k_test_staterr(rx_desc, FM10K_RXD_STATUS_L4CS2))
 370                skb->encapsulation = true;
 371        else if (!fm10k_test_staterr(rx_desc, FM10K_RXD_STATUS_L4CS))
 372                return;
 373
 374        skb->ip_summed = CHECKSUM_UNNECESSARY;
 375}
 376
 377#define FM10K_RSS_L4_TYPES_MASK \
 378        ((1ul << FM10K_RSSTYPE_IPV4_TCP) | \
 379         (1ul << FM10K_RSSTYPE_IPV4_UDP) | \
 380         (1ul << FM10K_RSSTYPE_IPV6_TCP) | \
 381         (1ul << FM10K_RSSTYPE_IPV6_UDP))
 382
 383static inline void fm10k_rx_hash(struct fm10k_ring *ring,
 384                                 union fm10k_rx_desc *rx_desc,
 385                                 struct sk_buff *skb)
 386{
 387        u16 rss_type;
 388
 389        if (!(ring->netdev->features & NETIF_F_RXHASH))
 390                return;
 391
 392        rss_type = le16_to_cpu(rx_desc->w.pkt_info) & FM10K_RXD_RSSTYPE_MASK;
 393        if (!rss_type)
 394                return;
 395
 396        skb_set_hash(skb, le32_to_cpu(rx_desc->d.rss),
 397                     (FM10K_RSS_L4_TYPES_MASK & (1ul << rss_type)) ?
 398                     PKT_HASH_TYPE_L4 : PKT_HASH_TYPE_L3);
 399}
 400
 401static void fm10k_rx_hwtstamp(struct fm10k_ring *rx_ring,
 402                              union fm10k_rx_desc *rx_desc,
 403                              struct sk_buff *skb)
 404{
 405        struct fm10k_intfc *interface = rx_ring->q_vector->interface;
 406
 407        FM10K_CB(skb)->tstamp = rx_desc->q.timestamp;
 408
 409        if (unlikely(interface->flags & FM10K_FLAG_RX_TS_ENABLED))
 410                fm10k_systime_to_hwtstamp(interface, skb_hwtstamps(skb),
 411                                          le64_to_cpu(rx_desc->q.timestamp));
 412}
 413
 414static void fm10k_type_trans(struct fm10k_ring *rx_ring,
 415                             union fm10k_rx_desc *rx_desc,
 416                             struct sk_buff *skb)
 417{
 418        struct net_device *dev = rx_ring->netdev;
 419        struct fm10k_l2_accel *l2_accel = rcu_dereference_bh(rx_ring->l2_accel);
 420
 421        /* check to see if DGLORT belongs to a MACVLAN */
 422        if (l2_accel) {
 423                u16 idx = le16_to_cpu(FM10K_CB(skb)->fi.w.dglort) - 1;
 424
 425                idx -= l2_accel->dglort;
 426                if (idx < l2_accel->size && l2_accel->macvlan[idx])
 427                        dev = l2_accel->macvlan[idx];
 428                else
 429                        l2_accel = NULL;
 430        }
 431
 432        skb->protocol = eth_type_trans(skb, dev);
 433
 434        if (!l2_accel)
 435                return;
 436
 437        /* update MACVLAN statistics */
 438        macvlan_count_rx(netdev_priv(dev), skb->len + ETH_HLEN, 1,
 439                         !!(rx_desc->w.hdr_info &
 440                            cpu_to_le16(FM10K_RXD_HDR_INFO_XC_MASK)));
 441}
 442
 443/**
 444 * fm10k_process_skb_fields - Populate skb header fields from Rx descriptor
 445 * @rx_ring: rx descriptor ring packet is being transacted on
 446 * @rx_desc: pointer to the EOP Rx descriptor
 447 * @skb: pointer to current skb being populated
 448 *
 449 * This function checks the ring, descriptor, and packet information in
 450 * order to populate the hash, checksum, VLAN, timestamp, protocol, and
 451 * other fields within the skb.
 452 **/
 453static unsigned int fm10k_process_skb_fields(struct fm10k_ring *rx_ring,
 454                                             union fm10k_rx_desc *rx_desc,
 455                                             struct sk_buff *skb)
 456{
 457        unsigned int len = skb->len;
 458
 459        fm10k_rx_hash(rx_ring, rx_desc, skb);
 460
 461        fm10k_rx_checksum(rx_ring, rx_desc, skb);
 462
 463        fm10k_rx_hwtstamp(rx_ring, rx_desc, skb);
 464
 465        FM10K_CB(skb)->fi.w.vlan = rx_desc->w.vlan;
 466
 467        skb_record_rx_queue(skb, rx_ring->queue_index);
 468
 469        FM10K_CB(skb)->fi.d.glort = rx_desc->d.glort;
 470
 471        if (rx_desc->w.vlan) {
 472                u16 vid = le16_to_cpu(rx_desc->w.vlan);
 473
 474                if (vid != rx_ring->vid)
 475                        __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
 476        }
 477
 478        fm10k_type_trans(rx_ring, rx_desc, skb);
 479
 480        return len;
 481}
 482
 483/**
 484 * fm10k_is_non_eop - process handling of non-EOP buffers
 485 * @rx_ring: Rx ring being processed
 486 * @rx_desc: Rx descriptor for current buffer
 487 *
 488 * This function updates next to clean.  If the buffer is an EOP buffer
 489 * this function exits returning false, otherwise it will place the
 490 * sk_buff in the next buffer to be chained and return true indicating
 491 * that this is in fact a non-EOP buffer.
 492 **/
 493static bool fm10k_is_non_eop(struct fm10k_ring *rx_ring,
 494                             union fm10k_rx_desc *rx_desc)
 495{
 496        u32 ntc = rx_ring->next_to_clean + 1;
 497
 498        /* fetch, update, and store next to clean */
 499        ntc = (ntc < rx_ring->count) ? ntc : 0;
 500        rx_ring->next_to_clean = ntc;
 501
 502        prefetch(FM10K_RX_DESC(rx_ring, ntc));
 503
 504        if (likely(fm10k_test_staterr(rx_desc, FM10K_RXD_STATUS_EOP)))
 505                return false;
 506
 507        return true;
 508}
 509
 510/**
 511 * fm10k_pull_tail - fm10k specific version of skb_pull_tail
 512 * @rx_ring: rx descriptor ring packet is being transacted on
 513 * @rx_desc: pointer to the EOP Rx descriptor
 514 * @skb: pointer to current skb being adjusted
 515 *
 516 * This function is an fm10k specific version of __pskb_pull_tail.  The
 517 * main difference between this version and the original function is that
 518 * this function can make several assumptions about the state of things
 519 * that allow for significant optimizations versus the standard function.
 520 * As a result we can do things like drop a frag and maintain an accurate
 521 * truesize for the skb.
 522 */
 523static void fm10k_pull_tail(struct fm10k_ring *rx_ring,
 524                            union fm10k_rx_desc *rx_desc,
 525                            struct sk_buff *skb)
 526{
 527        struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[0];
 528        unsigned char *va;
 529        unsigned int pull_len;
 530
 531        /* it is valid to use page_address instead of kmap since we are
 532         * working with pages allocated out of the lomem pool per
 533         * alloc_page(GFP_ATOMIC)
 534         */
 535        va = skb_frag_address(frag);
 536
 537        /* we need the header to contain the greater of either ETH_HLEN or
 538         * 60 bytes if the skb->len is less than 60 for skb_pad.
 539         */
 540        pull_len = eth_get_headlen(va, FM10K_RX_HDR_LEN);
 541
 542        /* align pull length to size of long to optimize memcpy performance */
 543        skb_copy_to_linear_data(skb, va, ALIGN(pull_len, sizeof(long)));
 544
 545        /* update all of the pointers */
 546        skb_frag_size_sub(frag, pull_len);
 547        frag->page_offset += pull_len;
 548        skb->data_len -= pull_len;
 549        skb->tail += pull_len;
 550}
 551
 552/**
 553 * fm10k_cleanup_headers - Correct corrupted or empty headers
 554 * @rx_ring: rx descriptor ring packet is being transacted on
 555 * @rx_desc: pointer to the EOP Rx descriptor
 556 * @skb: pointer to current skb being fixed
 557 *
 558 * Address the case where we are pulling data in on pages only
 559 * and as such no data is present in the skb header.
 560 *
 561 * In addition if skb is not at least 60 bytes we need to pad it so that
 562 * it is large enough to qualify as a valid Ethernet frame.
 563 *
 564 * Returns true if an error was encountered and skb was freed.
 565 **/
 566static bool fm10k_cleanup_headers(struct fm10k_ring *rx_ring,
 567                                  union fm10k_rx_desc *rx_desc,
 568                                  struct sk_buff *skb)
 569{
 570        if (unlikely((fm10k_test_staterr(rx_desc,
 571                                         FM10K_RXD_STATUS_RXE)))) {
 572                dev_kfree_skb_any(skb);
 573                rx_ring->rx_stats.errors++;
 574                return true;
 575        }
 576
 577        /* place header in linear portion of buffer */
 578        if (skb_is_nonlinear(skb))
 579                fm10k_pull_tail(rx_ring, rx_desc, skb);
 580
 581        /* if skb_pad returns an error the skb was freed */
 582        if (unlikely(skb->len < 60)) {
 583                int pad_len = 60 - skb->len;
 584
 585                if (skb_pad(skb, pad_len))
 586                        return true;
 587                __skb_put(skb, pad_len);
 588        }
 589
 590        return false;
 591}
 592
 593/**
 594 * fm10k_receive_skb - helper function to handle rx indications
 595 * @q_vector: structure containing interrupt and ring information
 596 * @skb: packet to send up
 597 **/
 598static void fm10k_receive_skb(struct fm10k_q_vector *q_vector,
 599                              struct sk_buff *skb)
 600{
 601        napi_gro_receive(&q_vector->napi, skb);
 602}
 603
 604static bool fm10k_clean_rx_irq(struct fm10k_q_vector *q_vector,
 605                               struct fm10k_ring *rx_ring,
 606                               int budget)
 607{
 608        struct sk_buff *skb = rx_ring->skb;
 609        unsigned int total_bytes = 0, total_packets = 0;
 610        u16 cleaned_count = fm10k_desc_unused(rx_ring);
 611
 612        do {
 613                union fm10k_rx_desc *rx_desc;
 614
 615                /* return some buffers to hardware, one at a time is too slow */
 616                if (cleaned_count >= FM10K_RX_BUFFER_WRITE) {
 617                        fm10k_alloc_rx_buffers(rx_ring, cleaned_count);
 618                        cleaned_count = 0;
 619                }
 620
 621                rx_desc = FM10K_RX_DESC(rx_ring, rx_ring->next_to_clean);
 622
 623                if (!fm10k_test_staterr(rx_desc, FM10K_RXD_STATUS_DD))
 624                        break;
 625
 626                /* This memory barrier is needed to keep us from reading
 627                 * any other fields out of the rx_desc until we know the
 628                 * RXD_STATUS_DD bit is set
 629                 */
 630                rmb();
 631
 632                /* retrieve a buffer from the ring */
 633                skb = fm10k_fetch_rx_buffer(rx_ring, rx_desc, skb);
 634
 635                /* exit if we failed to retrieve a buffer */
 636                if (!skb)
 637                        break;
 638
 639                cleaned_count++;
 640
 641                /* fetch next buffer in frame if non-eop */
 642                if (fm10k_is_non_eop(rx_ring, rx_desc))
 643                        continue;
 644
 645                /* verify the packet layout is correct */
 646                if (fm10k_cleanup_headers(rx_ring, rx_desc, skb)) {
 647                        skb = NULL;
 648                        continue;
 649                }
 650
 651                /* populate checksum, timestamp, VLAN, and protocol */
 652                total_bytes += fm10k_process_skb_fields(rx_ring, rx_desc, skb);
 653
 654                fm10k_receive_skb(q_vector, skb);
 655
 656                /* reset skb pointer */
 657                skb = NULL;
 658
 659                /* update budget accounting */
 660                total_packets++;
 661        } while (likely(total_packets < budget));
 662
 663        /* place incomplete frames back on ring for completion */
 664        rx_ring->skb = skb;
 665
 666        u64_stats_update_begin(&rx_ring->syncp);
 667        rx_ring->stats.packets += total_packets;
 668        rx_ring->stats.bytes += total_bytes;
 669        u64_stats_update_end(&rx_ring->syncp);
 670        q_vector->rx.total_packets += total_packets;
 671        q_vector->rx.total_bytes += total_bytes;
 672
 673        return total_packets < budget;
 674}
 675
 676#define VXLAN_HLEN (sizeof(struct udphdr) + 8)
 677static struct ethhdr *fm10k_port_is_vxlan(struct sk_buff *skb)
 678{
 679        struct fm10k_intfc *interface = netdev_priv(skb->dev);
 680        struct fm10k_vxlan_port *vxlan_port;
 681
 682        /* we can only offload a vxlan if we recognize it as such */
 683        vxlan_port = list_first_entry_or_null(&interface->vxlan_port,
 684                                              struct fm10k_vxlan_port, list);
 685
 686        if (!vxlan_port)
 687                return NULL;
 688        if (vxlan_port->port != udp_hdr(skb)->dest)
 689                return NULL;
 690
 691        /* return offset of udp_hdr plus 8 bytes for VXLAN header */
 692        return (struct ethhdr *)(skb_transport_header(skb) + VXLAN_HLEN);
 693}
 694
 695#define FM10K_NVGRE_RESERVED0_FLAGS htons(0x9FFF)
 696#define NVGRE_TNI htons(0x2000)
 697struct fm10k_nvgre_hdr {
 698        __be16 flags;
 699        __be16 proto;
 700        __be32 tni;
 701};
 702
 703static struct ethhdr *fm10k_gre_is_nvgre(struct sk_buff *skb)
 704{
 705        struct fm10k_nvgre_hdr *nvgre_hdr;
 706        int hlen = ip_hdrlen(skb);
 707
 708        /* currently only IPv4 is supported due to hlen above */
 709        if (vlan_get_protocol(skb) != htons(ETH_P_IP))
 710                return NULL;
 711
 712        /* our transport header should be NVGRE */
 713        nvgre_hdr = (struct fm10k_nvgre_hdr *)(skb_network_header(skb) + hlen);
 714
 715        /* verify all reserved flags are 0 */
 716        if (nvgre_hdr->flags & FM10K_NVGRE_RESERVED0_FLAGS)
 717                return NULL;
 718
 719        /* verify protocol is transparent Ethernet bridging */
 720        if (nvgre_hdr->proto != htons(ETH_P_TEB))
 721                return NULL;
 722
 723        /* report start of ethernet header */
 724        if (nvgre_hdr->flags & NVGRE_TNI)
 725                return (struct ethhdr *)(nvgre_hdr + 1);
 726
 727        return (struct ethhdr *)(&nvgre_hdr->tni);
 728}
 729
 730static __be16 fm10k_tx_encap_offload(struct sk_buff *skb)
 731{
 732        struct ethhdr *eth_hdr;
 733        u8 l4_hdr = 0;
 734
 735        switch (vlan_get_protocol(skb)) {
 736        case htons(ETH_P_IP):
 737                l4_hdr = ip_hdr(skb)->protocol;
 738                break;
 739        case htons(ETH_P_IPV6):
 740                l4_hdr = ipv6_hdr(skb)->nexthdr;
 741                break;
 742        default:
 743                return 0;
 744        }
 745
 746        switch (l4_hdr) {
 747        case IPPROTO_UDP:
 748                eth_hdr = fm10k_port_is_vxlan(skb);
 749                break;
 750        case IPPROTO_GRE:
 751                eth_hdr = fm10k_gre_is_nvgre(skb);
 752                break;
 753        default:
 754                return 0;
 755        }
 756
 757        if (!eth_hdr)
 758                return 0;
 759
 760        switch (eth_hdr->h_proto) {
 761        case htons(ETH_P_IP):
 762        case htons(ETH_P_IPV6):
 763                break;
 764        default:
 765                return 0;
 766        }
 767
 768        return eth_hdr->h_proto;
 769}
 770
 771static int fm10k_tso(struct fm10k_ring *tx_ring,
 772                     struct fm10k_tx_buffer *first)
 773{
 774        struct sk_buff *skb = first->skb;
 775        struct fm10k_tx_desc *tx_desc;
 776        unsigned char *th;
 777        u8 hdrlen;
 778
 779        if (skb->ip_summed != CHECKSUM_PARTIAL)
 780                return 0;
 781
 782        if (!skb_is_gso(skb))
 783                return 0;
 784
 785        /* compute header lengths */
 786        if (skb->encapsulation) {
 787                if (!fm10k_tx_encap_offload(skb))
 788                        goto err_vxlan;
 789                th = skb_inner_transport_header(skb);
 790        } else {
 791                th = skb_transport_header(skb);
 792        }
 793
 794        /* compute offset from SOF to transport header and add header len */
 795        hdrlen = (th - skb->data) + (((struct tcphdr *)th)->doff << 2);
 796
 797        first->tx_flags |= FM10K_TX_FLAGS_CSUM;
 798
 799        /* update gso size and bytecount with header size */
 800        first->gso_segs = skb_shinfo(skb)->gso_segs;
 801        first->bytecount += (first->gso_segs - 1) * hdrlen;
 802
 803        /* populate Tx descriptor header size and mss */
 804        tx_desc = FM10K_TX_DESC(tx_ring, tx_ring->next_to_use);
 805        tx_desc->hdrlen = hdrlen;
 806        tx_desc->mss = cpu_to_le16(skb_shinfo(skb)->gso_size);
 807
 808        return 1;
 809err_vxlan:
 810        tx_ring->netdev->features &= ~NETIF_F_GSO_UDP_TUNNEL;
 811        if (!net_ratelimit())
 812                netdev_err(tx_ring->netdev,
 813                           "TSO requested for unsupported tunnel, disabling offload\n");
 814        return -1;
 815}
 816
 817static void fm10k_tx_csum(struct fm10k_ring *tx_ring,
 818                          struct fm10k_tx_buffer *first)
 819{
 820        struct sk_buff *skb = first->skb;
 821        struct fm10k_tx_desc *tx_desc;
 822        union {
 823                struct iphdr *ipv4;
 824                struct ipv6hdr *ipv6;
 825                u8 *raw;
 826        } network_hdr;
 827        __be16 protocol;
 828        u8 l4_hdr = 0;
 829
 830        if (skb->ip_summed != CHECKSUM_PARTIAL)
 831                goto no_csum;
 832
 833        if (skb->encapsulation) {
 834                protocol = fm10k_tx_encap_offload(skb);
 835                if (!protocol) {
 836                        if (skb_checksum_help(skb)) {
 837                                dev_warn(tx_ring->dev,
 838                                         "failed to offload encap csum!\n");
 839                                tx_ring->tx_stats.csum_err++;
 840                        }
 841                        goto no_csum;
 842                }
 843                network_hdr.raw = skb_inner_network_header(skb);
 844        } else {
 845                protocol = vlan_get_protocol(skb);
 846                network_hdr.raw = skb_network_header(skb);
 847        }
 848
 849        switch (protocol) {
 850        case htons(ETH_P_IP):
 851                l4_hdr = network_hdr.ipv4->protocol;
 852                break;
 853        case htons(ETH_P_IPV6):
 854                l4_hdr = network_hdr.ipv6->nexthdr;
 855                break;
 856        default:
 857                if (unlikely(net_ratelimit())) {
 858                        dev_warn(tx_ring->dev,
 859                                 "partial checksum but ip version=%x!\n",
 860                                 protocol);
 861                }
 862                tx_ring->tx_stats.csum_err++;
 863                goto no_csum;
 864        }
 865
 866        switch (l4_hdr) {
 867        case IPPROTO_TCP:
 868        case IPPROTO_UDP:
 869                break;
 870        case IPPROTO_GRE:
 871                if (skb->encapsulation)
 872                        break;
 873        default:
 874                if (unlikely(net_ratelimit())) {
 875                        dev_warn(tx_ring->dev,
 876                                 "partial checksum but l4 proto=%x!\n",
 877                                 l4_hdr);
 878                }
 879                tx_ring->tx_stats.csum_err++;
 880                goto no_csum;
 881        }
 882
 883        /* update TX checksum flag */
 884        first->tx_flags |= FM10K_TX_FLAGS_CSUM;
 885
 886no_csum:
 887        /* populate Tx descriptor header size and mss */
 888        tx_desc = FM10K_TX_DESC(tx_ring, tx_ring->next_to_use);
 889        tx_desc->hdrlen = 0;
 890        tx_desc->mss = 0;
 891}
 892
 893#define FM10K_SET_FLAG(_input, _flag, _result) \
 894        ((_flag <= _result) ? \
 895         ((u32)(_input & _flag) * (_result / _flag)) : \
 896         ((u32)(_input & _flag) / (_flag / _result)))
 897
 898static u8 fm10k_tx_desc_flags(struct sk_buff *skb, u32 tx_flags)
 899{
 900        /* set type for advanced descriptor with frame checksum insertion */
 901        u32 desc_flags = 0;
 902
 903        /* set timestamping bits */
 904        if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
 905            likely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS))
 906                        desc_flags |= FM10K_TXD_FLAG_TIME;
 907
 908        /* set checksum offload bits */
 909        desc_flags |= FM10K_SET_FLAG(tx_flags, FM10K_TX_FLAGS_CSUM,
 910                                     FM10K_TXD_FLAG_CSUM);
 911
 912        return desc_flags;
 913}
 914
 915static bool fm10k_tx_desc_push(struct fm10k_ring *tx_ring,
 916                               struct fm10k_tx_desc *tx_desc, u16 i,
 917                               dma_addr_t dma, unsigned int size, u8 desc_flags)
 918{
 919        /* set RS and INT for last frame in a cache line */
 920        if ((++i & (FM10K_TXD_WB_FIFO_SIZE - 1)) == 0)
 921                desc_flags |= FM10K_TXD_FLAG_RS | FM10K_TXD_FLAG_INT;
 922
 923        /* record values to descriptor */
 924        tx_desc->buffer_addr = cpu_to_le64(dma);
 925        tx_desc->flags = desc_flags;
 926        tx_desc->buflen = cpu_to_le16(size);
 927
 928        /* return true if we just wrapped the ring */
 929        return i == tx_ring->count;
 930}
 931
 932static int __fm10k_maybe_stop_tx(struct fm10k_ring *tx_ring, u16 size)
 933{
 934        netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index);
 935
 936        smp_mb();
 937
 938        /* We need to check again in a case another CPU has just
 939         * made room available. */
 940        if (likely(fm10k_desc_unused(tx_ring) < size))
 941                return -EBUSY;
 942
 943        /* A reprieve! - use start_queue because it doesn't call schedule */
 944        netif_start_subqueue(tx_ring->netdev, tx_ring->queue_index);
 945        ++tx_ring->tx_stats.restart_queue;
 946        return 0;
 947}
 948
 949static inline int fm10k_maybe_stop_tx(struct fm10k_ring *tx_ring, u16 size)
 950{
 951        if (likely(fm10k_desc_unused(tx_ring) >= size))
 952                return 0;
 953        return __fm10k_maybe_stop_tx(tx_ring, size);
 954}
 955
 956static void fm10k_tx_map(struct fm10k_ring *tx_ring,
 957                         struct fm10k_tx_buffer *first)
 958{
 959        struct sk_buff *skb = first->skb;
 960        struct fm10k_tx_buffer *tx_buffer;
 961        struct fm10k_tx_desc *tx_desc;
 962        struct skb_frag_struct *frag;
 963        unsigned char *data;
 964        dma_addr_t dma;
 965        unsigned int data_len, size;
 966        u32 tx_flags = first->tx_flags;
 967        u16 i = tx_ring->next_to_use;
 968        u8 flags = fm10k_tx_desc_flags(skb, tx_flags);
 969
 970        tx_desc = FM10K_TX_DESC(tx_ring, i);
 971
 972        /* add HW VLAN tag */
 973        if (vlan_tx_tag_present(skb))
 974                tx_desc->vlan = cpu_to_le16(vlan_tx_tag_get(skb));
 975        else
 976                tx_desc->vlan = 0;
 977
 978        size = skb_headlen(skb);
 979        data = skb->data;
 980
 981        dma = dma_map_single(tx_ring->dev, data, size, DMA_TO_DEVICE);
 982
 983        data_len = skb->data_len;
 984        tx_buffer = first;
 985
 986        for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
 987                if (dma_mapping_error(tx_ring->dev, dma))
 988                        goto dma_error;
 989
 990                /* record length, and DMA address */
 991                dma_unmap_len_set(tx_buffer, len, size);
 992                dma_unmap_addr_set(tx_buffer, dma, dma);
 993
 994                while (unlikely(size > FM10K_MAX_DATA_PER_TXD)) {
 995                        if (fm10k_tx_desc_push(tx_ring, tx_desc++, i++, dma,
 996                                               FM10K_MAX_DATA_PER_TXD, flags)) {
 997                                tx_desc = FM10K_TX_DESC(tx_ring, 0);
 998                                i = 0;
 999                        }
1000
1001                        dma += FM10K_MAX_DATA_PER_TXD;
1002                        size -= FM10K_MAX_DATA_PER_TXD;
1003                }
1004
1005                if (likely(!data_len))
1006                        break;
1007
1008                if (fm10k_tx_desc_push(tx_ring, tx_desc++, i++,
1009                                       dma, size, flags)) {
1010                        tx_desc = FM10K_TX_DESC(tx_ring, 0);
1011                        i = 0;
1012                }
1013
1014                size = skb_frag_size(frag);
1015                data_len -= size;
1016
1017                dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size,
1018                                       DMA_TO_DEVICE);
1019
1020                tx_buffer = &tx_ring->tx_buffer[i];
1021        }
1022
1023        /* write last descriptor with LAST bit set */
1024        flags |= FM10K_TXD_FLAG_LAST;
1025
1026        if (fm10k_tx_desc_push(tx_ring, tx_desc, i++, dma, size, flags))
1027                i = 0;
1028
1029        /* record bytecount for BQL */
1030        netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
1031
1032        /* record SW timestamp if HW timestamp is not available */
1033        skb_tx_timestamp(first->skb);
1034
1035        /* Force memory writes to complete before letting h/w know there
1036         * are new descriptors to fetch.  (Only applicable for weak-ordered
1037         * memory model archs, such as IA-64).
1038         *
1039         * We also need this memory barrier to make certain all of the
1040         * status bits have been updated before next_to_watch is written.
1041         */
1042        wmb();
1043
1044        /* set next_to_watch value indicating a packet is present */
1045        first->next_to_watch = tx_desc;
1046
1047        tx_ring->next_to_use = i;
1048
1049        /* Make sure there is space in the ring for the next send. */
1050        fm10k_maybe_stop_tx(tx_ring, DESC_NEEDED);
1051
1052        /* notify HW of packet */
1053        if (netif_xmit_stopped(txring_txq(tx_ring)) || !skb->xmit_more) {
1054                writel(i, tx_ring->tail);
1055
1056                /* we need this if more than one processor can write to our tail
1057                 * at a time, it synchronizes IO on IA64/Altix systems
1058                 */
1059                mmiowb();
1060        }
1061
1062        return;
1063dma_error:
1064        dev_err(tx_ring->dev, "TX DMA map failed\n");
1065
1066        /* clear dma mappings for failed tx_buffer map */
1067        for (;;) {
1068                tx_buffer = &tx_ring->tx_buffer[i];
1069                fm10k_unmap_and_free_tx_resource(tx_ring, tx_buffer);
1070                if (tx_buffer == first)
1071                        break;
1072                if (i == 0)
1073                        i = tx_ring->count;
1074                i--;
1075        }
1076
1077        tx_ring->next_to_use = i;
1078}
1079
1080netdev_tx_t fm10k_xmit_frame_ring(struct sk_buff *skb,
1081                                  struct fm10k_ring *tx_ring)
1082{
1083        struct fm10k_tx_buffer *first;
1084        int tso;
1085        u32 tx_flags = 0;
1086#if PAGE_SIZE > FM10K_MAX_DATA_PER_TXD
1087        unsigned short f;
1088#endif
1089        u16 count = TXD_USE_COUNT(skb_headlen(skb));
1090
1091        /* need: 1 descriptor per page * PAGE_SIZE/FM10K_MAX_DATA_PER_TXD,
1092         *       + 1 desc for skb_headlen/FM10K_MAX_DATA_PER_TXD,
1093         *       + 2 desc gap to keep tail from touching head
1094         * otherwise try next time
1095         */
1096#if PAGE_SIZE > FM10K_MAX_DATA_PER_TXD
1097        for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
1098                count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size);
1099#else
1100        count += skb_shinfo(skb)->nr_frags;
1101#endif
1102        if (fm10k_maybe_stop_tx(tx_ring, count + 3)) {
1103                tx_ring->tx_stats.tx_busy++;
1104                return NETDEV_TX_BUSY;
1105        }
1106
1107        /* record the location of the first descriptor for this packet */
1108        first = &tx_ring->tx_buffer[tx_ring->next_to_use];
1109        first->skb = skb;
1110        first->bytecount = max_t(unsigned int, skb->len, ETH_ZLEN);
1111        first->gso_segs = 1;
1112
1113        /* record initial flags and protocol */
1114        first->tx_flags = tx_flags;
1115
1116        tso = fm10k_tso(tx_ring, first);
1117        if (tso < 0)
1118                goto out_drop;
1119        else if (!tso)
1120                fm10k_tx_csum(tx_ring, first);
1121
1122        fm10k_tx_map(tx_ring, first);
1123
1124        return NETDEV_TX_OK;
1125
1126out_drop:
1127        dev_kfree_skb_any(first->skb);
1128        first->skb = NULL;
1129
1130        return NETDEV_TX_OK;
1131}
1132
1133static u64 fm10k_get_tx_completed(struct fm10k_ring *ring)
1134{
1135        return ring->stats.packets;
1136}
1137
1138static u64 fm10k_get_tx_pending(struct fm10k_ring *ring)
1139{
1140        /* use SW head and tail until we have real hardware */
1141        u32 head = ring->next_to_clean;
1142        u32 tail = ring->next_to_use;
1143
1144        return ((head <= tail) ? tail : tail + ring->count) - head;
1145}
1146
1147bool fm10k_check_tx_hang(struct fm10k_ring *tx_ring)
1148{
1149        u32 tx_done = fm10k_get_tx_completed(tx_ring);
1150        u32 tx_done_old = tx_ring->tx_stats.tx_done_old;
1151        u32 tx_pending = fm10k_get_tx_pending(tx_ring);
1152
1153        clear_check_for_tx_hang(tx_ring);
1154
1155        /* Check for a hung queue, but be thorough. This verifies
1156         * that a transmit has been completed since the previous
1157         * check AND there is at least one packet pending. By
1158         * requiring this to fail twice we avoid races with
1159         * clearing the ARMED bit and conditions where we
1160         * run the check_tx_hang logic with a transmit completion
1161         * pending but without time to complete it yet.
1162         */
1163        if (!tx_pending || (tx_done_old != tx_done)) {
1164                /* update completed stats and continue */
1165                tx_ring->tx_stats.tx_done_old = tx_done;
1166                /* reset the countdown */
1167                clear_bit(__FM10K_HANG_CHECK_ARMED, &tx_ring->state);
1168
1169                return false;
1170        }
1171
1172        /* make sure it is true for two checks in a row */
1173        return test_and_set_bit(__FM10K_HANG_CHECK_ARMED, &tx_ring->state);
1174}
1175
1176/**
1177 * fm10k_tx_timeout_reset - initiate reset due to Tx timeout
1178 * @interface: driver private struct
1179 **/
1180void fm10k_tx_timeout_reset(struct fm10k_intfc *interface)
1181{
1182        /* Do the reset outside of interrupt context */
1183        if (!test_bit(__FM10K_DOWN, &interface->state)) {
1184                netdev_err(interface->netdev, "Reset interface\n");
1185                interface->tx_timeout_count++;
1186                interface->flags |= FM10K_FLAG_RESET_REQUESTED;
1187                fm10k_service_event_schedule(interface);
1188        }
1189}
1190
1191/**
1192 * fm10k_clean_tx_irq - Reclaim resources after transmit completes
1193 * @q_vector: structure containing interrupt and ring information
1194 * @tx_ring: tx ring to clean
1195 **/
1196static bool fm10k_clean_tx_irq(struct fm10k_q_vector *q_vector,
1197                               struct fm10k_ring *tx_ring)
1198{
1199        struct fm10k_intfc *interface = q_vector->interface;
1200        struct fm10k_tx_buffer *tx_buffer;
1201        struct fm10k_tx_desc *tx_desc;
1202        unsigned int total_bytes = 0, total_packets = 0;
1203        unsigned int budget = q_vector->tx.work_limit;
1204        unsigned int i = tx_ring->next_to_clean;
1205
1206        if (test_bit(__FM10K_DOWN, &interface->state))
1207                return true;
1208
1209        tx_buffer = &tx_ring->tx_buffer[i];
1210        tx_desc = FM10K_TX_DESC(tx_ring, i);
1211        i -= tx_ring->count;
1212
1213        do {
1214                struct fm10k_tx_desc *eop_desc = tx_buffer->next_to_watch;
1215
1216                /* if next_to_watch is not set then there is no work pending */
1217                if (!eop_desc)
1218                        break;
1219
1220                /* prevent any other reads prior to eop_desc */
1221                read_barrier_depends();
1222
1223                /* if DD is not set pending work has not been completed */
1224                if (!(eop_desc->flags & FM10K_TXD_FLAG_DONE))
1225                        break;
1226
1227                /* clear next_to_watch to prevent false hangs */
1228                tx_buffer->next_to_watch = NULL;
1229
1230                /* update the statistics for this packet */
1231                total_bytes += tx_buffer->bytecount;
1232                total_packets += tx_buffer->gso_segs;
1233
1234                /* free the skb */
1235                dev_consume_skb_any(tx_buffer->skb);
1236
1237                /* unmap skb header data */
1238                dma_unmap_single(tx_ring->dev,
1239                                 dma_unmap_addr(tx_buffer, dma),
1240                                 dma_unmap_len(tx_buffer, len),
1241                                 DMA_TO_DEVICE);
1242
1243                /* clear tx_buffer data */
1244                tx_buffer->skb = NULL;
1245                dma_unmap_len_set(tx_buffer, len, 0);
1246
1247                /* unmap remaining buffers */
1248                while (tx_desc != eop_desc) {
1249                        tx_buffer++;
1250                        tx_desc++;
1251                        i++;
1252                        if (unlikely(!i)) {
1253                                i -= tx_ring->count;
1254                                tx_buffer = tx_ring->tx_buffer;
1255                                tx_desc = FM10K_TX_DESC(tx_ring, 0);
1256                        }
1257
1258                        /* unmap any remaining paged data */
1259                        if (dma_unmap_len(tx_buffer, len)) {
1260                                dma_unmap_page(tx_ring->dev,
1261                                               dma_unmap_addr(tx_buffer, dma),
1262                                               dma_unmap_len(tx_buffer, len),
1263                                               DMA_TO_DEVICE);
1264                                dma_unmap_len_set(tx_buffer, len, 0);
1265                        }
1266                }
1267
1268                /* move us one more past the eop_desc for start of next pkt */
1269                tx_buffer++;
1270                tx_desc++;
1271                i++;
1272                if (unlikely(!i)) {
1273                        i -= tx_ring->count;
1274                        tx_buffer = tx_ring->tx_buffer;
1275                        tx_desc = FM10K_TX_DESC(tx_ring, 0);
1276                }
1277
1278                /* issue prefetch for next Tx descriptor */
1279                prefetch(tx_desc);
1280
1281                /* update budget accounting */
1282                budget--;
1283        } while (likely(budget));
1284
1285        i += tx_ring->count;
1286        tx_ring->next_to_clean = i;
1287        u64_stats_update_begin(&tx_ring->syncp);
1288        tx_ring->stats.bytes += total_bytes;
1289        tx_ring->stats.packets += total_packets;
1290        u64_stats_update_end(&tx_ring->syncp);
1291        q_vector->tx.total_bytes += total_bytes;
1292        q_vector->tx.total_packets += total_packets;
1293
1294        if (check_for_tx_hang(tx_ring) && fm10k_check_tx_hang(tx_ring)) {
1295                /* schedule immediate reset if we believe we hung */
1296                struct fm10k_hw *hw = &interface->hw;
1297
1298                netif_err(interface, drv, tx_ring->netdev,
1299                          "Detected Tx Unit Hang\n"
1300                          "  Tx Queue             <%d>\n"
1301                          "  TDH, TDT             <%x>, <%x>\n"
1302                          "  next_to_use          <%x>\n"
1303                          "  next_to_clean        <%x>\n",
1304                          tx_ring->queue_index,
1305                          fm10k_read_reg(hw, FM10K_TDH(tx_ring->reg_idx)),
1306                          fm10k_read_reg(hw, FM10K_TDT(tx_ring->reg_idx)),
1307                          tx_ring->next_to_use, i);
1308
1309                netif_stop_subqueue(tx_ring->netdev,
1310                                    tx_ring->queue_index);
1311
1312                netif_info(interface, probe, tx_ring->netdev,
1313                           "tx hang %d detected on queue %d, resetting interface\n",
1314                           interface->tx_timeout_count + 1,
1315                           tx_ring->queue_index);
1316
1317                fm10k_tx_timeout_reset(interface);
1318
1319                /* the netdev is about to reset, no point in enabling stuff */
1320                return true;
1321        }
1322
1323        /* notify netdev of completed buffers */
1324        netdev_tx_completed_queue(txring_txq(tx_ring),
1325                                  total_packets, total_bytes);
1326
1327#define TX_WAKE_THRESHOLD min_t(u16, FM10K_MIN_TXD - 1, DESC_NEEDED * 2)
1328        if (unlikely(total_packets && netif_carrier_ok(tx_ring->netdev) &&
1329                     (fm10k_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD))) {
1330                /* Make sure that anybody stopping the queue after this
1331                 * sees the new next_to_clean.
1332                 */
1333                smp_mb();
1334                if (__netif_subqueue_stopped(tx_ring->netdev,
1335                                             tx_ring->queue_index) &&
1336                    !test_bit(__FM10K_DOWN, &interface->state)) {
1337                        netif_wake_subqueue(tx_ring->netdev,
1338                                            tx_ring->queue_index);
1339                        ++tx_ring->tx_stats.restart_queue;
1340                }
1341        }
1342
1343        return !!budget;
1344}
1345
1346/**
1347 * fm10k_update_itr - update the dynamic ITR value based on packet size
1348 *
1349 *      Stores a new ITR value based on strictly on packet size.  The
1350 *      divisors and thresholds used by this function were determined based
1351 *      on theoretical maximum wire speed and testing data, in order to
1352 *      minimize response time while increasing bulk throughput.
1353 *
1354 * @ring_container: Container for rings to have ITR updated
1355 **/
1356static void fm10k_update_itr(struct fm10k_ring_container *ring_container)
1357{
1358        unsigned int avg_wire_size, packets;
1359
1360        /* Only update ITR if we are using adaptive setting */
1361        if (!(ring_container->itr & FM10K_ITR_ADAPTIVE))
1362                goto clear_counts;
1363
1364        packets = ring_container->total_packets;
1365        if (!packets)
1366                goto clear_counts;
1367
1368        avg_wire_size = ring_container->total_bytes / packets;
1369
1370        /* Add 24 bytes to size to account for CRC, preamble, and gap */
1371        avg_wire_size += 24;
1372
1373        /* Don't starve jumbo frames */
1374        if (avg_wire_size > 3000)
1375                avg_wire_size = 3000;
1376
1377        /* Give a little boost to mid-size frames */
1378        if ((avg_wire_size > 300) && (avg_wire_size < 1200))
1379                avg_wire_size /= 3;
1380        else
1381                avg_wire_size /= 2;
1382
1383        /* write back value and retain adaptive flag */
1384        ring_container->itr = avg_wire_size | FM10K_ITR_ADAPTIVE;
1385
1386clear_counts:
1387        ring_container->total_bytes = 0;
1388        ring_container->total_packets = 0;
1389}
1390
1391static void fm10k_qv_enable(struct fm10k_q_vector *q_vector)
1392{
1393        /* Enable auto-mask and clear the current mask */
1394        u32 itr = FM10K_ITR_ENABLE;
1395
1396        /* Update Tx ITR */
1397        fm10k_update_itr(&q_vector->tx);
1398
1399        /* Update Rx ITR */
1400        fm10k_update_itr(&q_vector->rx);
1401
1402        /* Store Tx itr in timer slot 0 */
1403        itr |= (q_vector->tx.itr & FM10K_ITR_MAX);
1404
1405        /* Shift Rx itr to timer slot 1 */
1406        itr |= (q_vector->rx.itr & FM10K_ITR_MAX) << FM10K_ITR_INTERVAL1_SHIFT;
1407
1408        /* Write the final value to the ITR register */
1409        writel(itr, q_vector->itr);
1410}
1411
1412static int fm10k_poll(struct napi_struct *napi, int budget)
1413{
1414        struct fm10k_q_vector *q_vector =
1415                               container_of(napi, struct fm10k_q_vector, napi);
1416        struct fm10k_ring *ring;
1417        int per_ring_budget;
1418        bool clean_complete = true;
1419
1420        fm10k_for_each_ring(ring, q_vector->tx)
1421                clean_complete &= fm10k_clean_tx_irq(q_vector, ring);
1422
1423        /* attempt to distribute budget to each queue fairly, but don't
1424         * allow the budget to go below 1 because we'll exit polling
1425         */
1426        if (q_vector->rx.count > 1)
1427                per_ring_budget = max(budget/q_vector->rx.count, 1);
1428        else
1429                per_ring_budget = budget;
1430
1431        fm10k_for_each_ring(ring, q_vector->rx)
1432                clean_complete &= fm10k_clean_rx_irq(q_vector, ring,
1433                                                     per_ring_budget);
1434
1435        /* If all work not completed, return budget and keep polling */
1436        if (!clean_complete)
1437                return budget;
1438
1439        /* all work done, exit the polling mode */
1440        napi_complete(napi);
1441
1442        /* re-enable the q_vector */
1443        fm10k_qv_enable(q_vector);
1444
1445        return 0;
1446}
1447
1448/**
1449 * fm10k_set_qos_queues: Allocate queues for a QOS-enabled device
1450 * @interface: board private structure to initialize
1451 *
1452 * When QoS (Quality of Service) is enabled, allocate queues for
1453 * each traffic class.  If multiqueue isn't available,then abort QoS
1454 * initialization.
1455 *
1456 * This function handles all combinations of Qos and RSS.
1457 *
1458 **/
1459static bool fm10k_set_qos_queues(struct fm10k_intfc *interface)
1460{
1461        struct net_device *dev = interface->netdev;
1462        struct fm10k_ring_feature *f;
1463        int rss_i, i;
1464        int pcs;
1465
1466        /* Map queue offset and counts onto allocated tx queues */
1467        pcs = netdev_get_num_tc(dev);
1468
1469        if (pcs <= 1)
1470                return false;
1471
1472        /* set QoS mask and indices */
1473        f = &interface->ring_feature[RING_F_QOS];
1474        f->indices = pcs;
1475        f->mask = (1 << fls(pcs - 1)) - 1;
1476
1477        /* determine the upper limit for our current DCB mode */
1478        rss_i = interface->hw.mac.max_queues / pcs;
1479        rss_i = 1 << (fls(rss_i) - 1);
1480
1481        /* set RSS mask and indices */
1482        f = &interface->ring_feature[RING_F_RSS];
1483        rss_i = min_t(u16, rss_i, f->limit);
1484        f->indices = rss_i;
1485        f->mask = (1 << fls(rss_i - 1)) - 1;
1486
1487        /* configure pause class to queue mapping */
1488        for (i = 0; i < pcs; i++)
1489                netdev_set_tc_queue(dev, i, rss_i, rss_i * i);
1490
1491        interface->num_rx_queues = rss_i * pcs;
1492        interface->num_tx_queues = rss_i * pcs;
1493
1494        return true;
1495}
1496
1497/**
1498 * fm10k_set_rss_queues: Allocate queues for RSS
1499 * @interface: board private structure to initialize
1500 *
1501 * This is our "base" multiqueue mode.  RSS (Receive Side Scaling) will try
1502 * to allocate one Rx queue per CPU, and if available, one Tx queue per CPU.
1503 *
1504 **/
1505static bool fm10k_set_rss_queues(struct fm10k_intfc *interface)
1506{
1507        struct fm10k_ring_feature *f;
1508        u16 rss_i;
1509
1510        f = &interface->ring_feature[RING_F_RSS];
1511        rss_i = min_t(u16, interface->hw.mac.max_queues, f->limit);
1512
1513        /* record indices and power of 2 mask for RSS */
1514        f->indices = rss_i;
1515        f->mask = (1 << fls(rss_i - 1)) - 1;
1516
1517        interface->num_rx_queues = rss_i;
1518        interface->num_tx_queues = rss_i;
1519
1520        return true;
1521}
1522
1523/**
1524 * fm10k_set_num_queues: Allocate queues for device, feature dependent
1525 * @interface: board private structure to initialize
1526 *
1527 * This is the top level queue allocation routine.  The order here is very
1528 * important, starting with the "most" number of features turned on at once,
1529 * and ending with the smallest set of features.  This way large combinations
1530 * can be allocated if they're turned on, and smaller combinations are the
1531 * fallthrough conditions.
1532 *
1533 **/
1534static void fm10k_set_num_queues(struct fm10k_intfc *interface)
1535{
1536        /* Start with base case */
1537        interface->num_rx_queues = 1;
1538        interface->num_tx_queues = 1;
1539
1540        if (fm10k_set_qos_queues(interface))
1541                return;
1542
1543        fm10k_set_rss_queues(interface);
1544}
1545
1546/**
1547 * fm10k_alloc_q_vector - Allocate memory for a single interrupt vector
1548 * @interface: board private structure to initialize
1549 * @v_count: q_vectors allocated on interface, used for ring interleaving
1550 * @v_idx: index of vector in interface struct
1551 * @txr_count: total number of Tx rings to allocate
1552 * @txr_idx: index of first Tx ring to allocate
1553 * @rxr_count: total number of Rx rings to allocate
1554 * @rxr_idx: index of first Rx ring to allocate
1555 *
1556 * We allocate one q_vector.  If allocation fails we return -ENOMEM.
1557 **/
1558static int fm10k_alloc_q_vector(struct fm10k_intfc *interface,
1559                                unsigned int v_count, unsigned int v_idx,
1560                                unsigned int txr_count, unsigned int txr_idx,
1561                                unsigned int rxr_count, unsigned int rxr_idx)
1562{
1563        struct fm10k_q_vector *q_vector;
1564        struct fm10k_ring *ring;
1565        int ring_count, size;
1566
1567        ring_count = txr_count + rxr_count;
1568        size = sizeof(struct fm10k_q_vector) +
1569               (sizeof(struct fm10k_ring) * ring_count);
1570
1571        /* allocate q_vector and rings */
1572        q_vector = kzalloc(size, GFP_KERNEL);
1573        if (!q_vector)
1574                return -ENOMEM;
1575
1576        /* initialize NAPI */
1577        netif_napi_add(interface->netdev, &q_vector->napi,
1578                       fm10k_poll, NAPI_POLL_WEIGHT);
1579
1580        /* tie q_vector and interface together */
1581        interface->q_vector[v_idx] = q_vector;
1582        q_vector->interface = interface;
1583        q_vector->v_idx = v_idx;
1584
1585        /* initialize pointer to rings */
1586        ring = q_vector->ring;
1587
1588        /* save Tx ring container info */
1589        q_vector->tx.ring = ring;
1590        q_vector->tx.work_limit = FM10K_DEFAULT_TX_WORK;
1591        q_vector->tx.itr = interface->tx_itr;
1592        q_vector->tx.count = txr_count;
1593
1594        while (txr_count) {
1595                /* assign generic ring traits */
1596                ring->dev = &interface->pdev->dev;
1597                ring->netdev = interface->netdev;
1598
1599                /* configure backlink on ring */
1600                ring->q_vector = q_vector;
1601
1602                /* apply Tx specific ring traits */
1603                ring->count = interface->tx_ring_count;
1604                ring->queue_index = txr_idx;
1605
1606                /* assign ring to interface */
1607                interface->tx_ring[txr_idx] = ring;
1608
1609                /* update count and index */
1610                txr_count--;
1611                txr_idx += v_count;
1612
1613                /* push pointer to next ring */
1614                ring++;
1615        }
1616
1617        /* save Rx ring container info */
1618        q_vector->rx.ring = ring;
1619        q_vector->rx.itr = interface->rx_itr;
1620        q_vector->rx.count = rxr_count;
1621
1622        while (rxr_count) {
1623                /* assign generic ring traits */
1624                ring->dev = &interface->pdev->dev;
1625                ring->netdev = interface->netdev;
1626                rcu_assign_pointer(ring->l2_accel, interface->l2_accel);
1627
1628                /* configure backlink on ring */
1629                ring->q_vector = q_vector;
1630
1631                /* apply Rx specific ring traits */
1632                ring->count = interface->rx_ring_count;
1633                ring->queue_index = rxr_idx;
1634
1635                /* assign ring to interface */
1636                interface->rx_ring[rxr_idx] = ring;
1637
1638                /* update count and index */
1639                rxr_count--;
1640                rxr_idx += v_count;
1641
1642                /* push pointer to next ring */
1643                ring++;
1644        }
1645
1646        fm10k_dbg_q_vector_init(q_vector);
1647
1648        return 0;
1649}
1650
1651/**
1652 * fm10k_free_q_vector - Free memory allocated for specific interrupt vector
1653 * @interface: board private structure to initialize
1654 * @v_idx: Index of vector to be freed
1655 *
1656 * This function frees the memory allocated to the q_vector.  In addition if
1657 * NAPI is enabled it will delete any references to the NAPI struct prior
1658 * to freeing the q_vector.
1659 **/
1660static void fm10k_free_q_vector(struct fm10k_intfc *interface, int v_idx)
1661{
1662        struct fm10k_q_vector *q_vector = interface->q_vector[v_idx];
1663        struct fm10k_ring *ring;
1664
1665        fm10k_dbg_q_vector_exit(q_vector);
1666
1667        fm10k_for_each_ring(ring, q_vector->tx)
1668                interface->tx_ring[ring->queue_index] = NULL;
1669
1670        fm10k_for_each_ring(ring, q_vector->rx)
1671                interface->rx_ring[ring->queue_index] = NULL;
1672
1673        interface->q_vector[v_idx] = NULL;
1674        netif_napi_del(&q_vector->napi);
1675        kfree_rcu(q_vector, rcu);
1676}
1677
1678/**
1679 * fm10k_alloc_q_vectors - Allocate memory for interrupt vectors
1680 * @interface: board private structure to initialize
1681 *
1682 * We allocate one q_vector per queue interrupt.  If allocation fails we
1683 * return -ENOMEM.
1684 **/
1685static int fm10k_alloc_q_vectors(struct fm10k_intfc *interface)
1686{
1687        unsigned int q_vectors = interface->num_q_vectors;
1688        unsigned int rxr_remaining = interface->num_rx_queues;
1689        unsigned int txr_remaining = interface->num_tx_queues;
1690        unsigned int rxr_idx = 0, txr_idx = 0, v_idx = 0;
1691        int err;
1692
1693        if (q_vectors >= (rxr_remaining + txr_remaining)) {
1694                for (; rxr_remaining; v_idx++) {
1695                        err = fm10k_alloc_q_vector(interface, q_vectors, v_idx,
1696                                                   0, 0, 1, rxr_idx);
1697                        if (err)
1698                                goto err_out;
1699
1700                        /* update counts and index */
1701                        rxr_remaining--;
1702                        rxr_idx++;
1703                }
1704        }
1705
1706        for (; v_idx < q_vectors; v_idx++) {
1707                int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx);
1708                int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx);
1709
1710                err = fm10k_alloc_q_vector(interface, q_vectors, v_idx,
1711                                           tqpv, txr_idx,
1712                                           rqpv, rxr_idx);
1713
1714                if (err)
1715                        goto err_out;
1716
1717                /* update counts and index */
1718                rxr_remaining -= rqpv;
1719                txr_remaining -= tqpv;
1720                rxr_idx++;
1721                txr_idx++;
1722        }
1723
1724        return 0;
1725
1726err_out:
1727        interface->num_tx_queues = 0;
1728        interface->num_rx_queues = 0;
1729        interface->num_q_vectors = 0;
1730
1731        while (v_idx--)
1732                fm10k_free_q_vector(interface, v_idx);
1733
1734        return -ENOMEM;
1735}
1736
1737/**
1738 * fm10k_free_q_vectors - Free memory allocated for interrupt vectors
1739 * @interface: board private structure to initialize
1740 *
1741 * This function frees the memory allocated to the q_vectors.  In addition if
1742 * NAPI is enabled it will delete any references to the NAPI struct prior
1743 * to freeing the q_vector.
1744 **/
1745static void fm10k_free_q_vectors(struct fm10k_intfc *interface)
1746{
1747        int v_idx = interface->num_q_vectors;
1748
1749        interface->num_tx_queues = 0;
1750        interface->num_rx_queues = 0;
1751        interface->num_q_vectors = 0;
1752
1753        while (v_idx--)
1754                fm10k_free_q_vector(interface, v_idx);
1755}
1756
1757/**
1758 * f10k_reset_msix_capability - reset MSI-X capability
1759 * @interface: board private structure to initialize
1760 *
1761 * Reset the MSI-X capability back to its starting state
1762 **/
1763static void fm10k_reset_msix_capability(struct fm10k_intfc *interface)
1764{
1765        pci_disable_msix(interface->pdev);
1766        kfree(interface->msix_entries);
1767        interface->msix_entries = NULL;
1768}
1769
1770/**
1771 * f10k_init_msix_capability - configure MSI-X capability
1772 * @interface: board private structure to initialize
1773 *
1774 * Attempt to configure the interrupts using the best available
1775 * capabilities of the hardware and the kernel.
1776 **/
1777static int fm10k_init_msix_capability(struct fm10k_intfc *interface)
1778{
1779        struct fm10k_hw *hw = &interface->hw;
1780        int v_budget, vector;
1781
1782        /* It's easy to be greedy for MSI-X vectors, but it really
1783         * doesn't do us much good if we have a lot more vectors
1784         * than CPU's.  So let's be conservative and only ask for
1785         * (roughly) the same number of vectors as there are CPU's.
1786         * the default is to use pairs of vectors
1787         */
1788        v_budget = max(interface->num_rx_queues, interface->num_tx_queues);
1789        v_budget = min_t(u16, v_budget, num_online_cpus());
1790
1791        /* account for vectors not related to queues */
1792        v_budget += NON_Q_VECTORS(hw);
1793
1794        /* At the same time, hardware can only support a maximum of
1795         * hw.mac->max_msix_vectors vectors.  With features
1796         * such as RSS and VMDq, we can easily surpass the number of Rx and Tx
1797         * descriptor queues supported by our device.  Thus, we cap it off in
1798         * those rare cases where the cpu count also exceeds our vector limit.
1799         */
1800        v_budget = min_t(int, v_budget, hw->mac.max_msix_vectors);
1801
1802        /* A failure in MSI-X entry allocation is fatal. */
1803        interface->msix_entries = kcalloc(v_budget, sizeof(struct msix_entry),
1804                                          GFP_KERNEL);
1805        if (!interface->msix_entries)
1806                return -ENOMEM;
1807
1808        /* populate entry values */
1809        for (vector = 0; vector < v_budget; vector++)
1810                interface->msix_entries[vector].entry = vector;
1811
1812        /* Attempt to enable MSI-X with requested value */
1813        v_budget = pci_enable_msix_range(interface->pdev,
1814                                         interface->msix_entries,
1815                                         MIN_MSIX_COUNT(hw),
1816                                         v_budget);
1817        if (v_budget < 0) {
1818                kfree(interface->msix_entries);
1819                interface->msix_entries = NULL;
1820                return -ENOMEM;
1821        }
1822
1823        /* record the number of queues available for q_vectors */
1824        interface->num_q_vectors = v_budget - NON_Q_VECTORS(hw);
1825
1826        return 0;
1827}
1828
1829/**
1830 * fm10k_cache_ring_qos - Descriptor ring to register mapping for QoS
1831 * @interface: Interface structure continaining rings and devices
1832 *
1833 * Cache the descriptor ring offsets for Qos
1834 **/
1835static bool fm10k_cache_ring_qos(struct fm10k_intfc *interface)
1836{
1837        struct net_device *dev = interface->netdev;
1838        int pc, offset, rss_i, i, q_idx;
1839        u16 pc_stride = interface->ring_feature[RING_F_QOS].mask + 1;
1840        u8 num_pcs = netdev_get_num_tc(dev);
1841
1842        if (num_pcs <= 1)
1843                return false;
1844
1845        rss_i = interface->ring_feature[RING_F_RSS].indices;
1846
1847        for (pc = 0, offset = 0; pc < num_pcs; pc++, offset += rss_i) {
1848                q_idx = pc;
1849                for (i = 0; i < rss_i; i++) {
1850                        interface->tx_ring[offset + i]->reg_idx = q_idx;
1851                        interface->tx_ring[offset + i]->qos_pc = pc;
1852                        interface->rx_ring[offset + i]->reg_idx = q_idx;
1853                        interface->rx_ring[offset + i]->qos_pc = pc;
1854                        q_idx += pc_stride;
1855                }
1856        }
1857
1858        return true;
1859}
1860
1861/**
1862 * fm10k_cache_ring_rss - Descriptor ring to register mapping for RSS
1863 * @interface: Interface structure continaining rings and devices
1864 *
1865 * Cache the descriptor ring offsets for RSS
1866 **/
1867static void fm10k_cache_ring_rss(struct fm10k_intfc *interface)
1868{
1869        int i;
1870
1871        for (i = 0; i < interface->num_rx_queues; i++)
1872                interface->rx_ring[i]->reg_idx = i;
1873
1874        for (i = 0; i < interface->num_tx_queues; i++)
1875                interface->tx_ring[i]->reg_idx = i;
1876}
1877
1878/**
1879 * fm10k_assign_rings - Map rings to network devices
1880 * @interface: Interface structure containing rings and devices
1881 *
1882 * This function is meant to go though and configure both the network
1883 * devices so that they contain rings, and configure the rings so that
1884 * they function with their network devices.
1885 **/
1886static void fm10k_assign_rings(struct fm10k_intfc *interface)
1887{
1888        if (fm10k_cache_ring_qos(interface))
1889                return;
1890
1891        fm10k_cache_ring_rss(interface);
1892}
1893
1894static void fm10k_init_reta(struct fm10k_intfc *interface)
1895{
1896        u16 i, rss_i = interface->ring_feature[RING_F_RSS].indices;
1897        u32 reta, base;
1898
1899        /* If the netdev is initialized we have to maintain table if possible */
1900        if (interface->netdev->reg_state) {
1901                for (i = FM10K_RETA_SIZE; i--;) {
1902                        reta = interface->reta[i];
1903                        if ((((reta << 24) >> 24) < rss_i) &&
1904                            (((reta << 16) >> 24) < rss_i) &&
1905                            (((reta <<  8) >> 24) < rss_i) &&
1906                            (((reta)       >> 24) < rss_i))
1907                                continue;
1908                        goto repopulate_reta;
1909                }
1910
1911                /* do nothing if all of the elements are in bounds */
1912                return;
1913        }
1914
1915repopulate_reta:
1916        /* Populate the redirection table 4 entries at a time.  To do this
1917         * we are generating the results for n and n+2 and then interleaving
1918         * those with the results with n+1 and n+3.
1919         */
1920        for (i = FM10K_RETA_SIZE; i--;) {
1921                /* first pass generates n and n+2 */
1922                base = ((i * 0x00040004) + 0x00020000) * rss_i;
1923                reta = (base & 0x3F803F80) >> 7;
1924
1925                /* second pass generates n+1 and n+3 */
1926                base += 0x00010001 * rss_i;
1927                reta |= (base & 0x3F803F80) << 1;
1928
1929                interface->reta[i] = reta;
1930        }
1931}
1932
1933/**
1934 * fm10k_init_queueing_scheme - Determine proper queueing scheme
1935 * @interface: board private structure to initialize
1936 *
1937 * We determine which queueing scheme to use based on...
1938 * - Hardware queue count (num_*_queues)
1939 *   - defined by miscellaneous hardware support/features (RSS, etc.)
1940 **/
1941int fm10k_init_queueing_scheme(struct fm10k_intfc *interface)
1942{
1943        int err;
1944
1945        /* Number of supported queues */
1946        fm10k_set_num_queues(interface);
1947
1948        /* Configure MSI-X capability */
1949        err = fm10k_init_msix_capability(interface);
1950        if (err) {
1951                dev_err(&interface->pdev->dev,
1952                        "Unable to initialize MSI-X capability\n");
1953                return err;
1954        }
1955
1956        /* Allocate memory for queues */
1957        err = fm10k_alloc_q_vectors(interface);
1958        if (err)
1959                return err;
1960
1961        /* Map rings to devices, and map devices to physical queues */
1962        fm10k_assign_rings(interface);
1963
1964        /* Initialize RSS redirection table */
1965        fm10k_init_reta(interface);
1966
1967        return 0;
1968}
1969
1970/**
1971 * fm10k_clear_queueing_scheme - Clear the current queueing scheme settings
1972 * @interface: board private structure to clear queueing scheme on
1973 *
1974 * We go through and clear queueing specific resources and reset the structure
1975 * to pre-load conditions
1976 **/
1977void fm10k_clear_queueing_scheme(struct fm10k_intfc *interface)
1978{
1979        fm10k_free_q_vectors(interface);
1980        fm10k_reset_msix_capability(interface);
1981}
1982