linux/drivers/net/ethernet/intel/igb/e1000_82575.c
<<
>>
Prefs
   1/* Intel(R) Gigabit Ethernet Linux driver
   2 * Copyright(c) 2007-2014 Intel Corporation.
   3 *
   4 * This program is free software; you can redistribute it and/or modify it
   5 * under the terms and conditions of the GNU General Public License,
   6 * version 2, as published by the Free Software Foundation.
   7 *
   8 * This program is distributed in the hope it will be useful, but WITHOUT
   9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  10 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  11 * more details.
  12 *
  13 * You should have received a copy of the GNU General Public License along with
  14 * this program; if not, see <http://www.gnu.org/licenses/>.
  15 *
  16 * The full GNU General Public License is included in this distribution in
  17 * the file called "COPYING".
  18 *
  19 * Contact Information:
  20 * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
  21 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
  22 */
  23
  24/* e1000_82575
  25 * e1000_82576
  26 */
  27
  28#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  29
  30#include <linux/types.h>
  31#include <linux/if_ether.h>
  32#include <linux/i2c.h>
  33
  34#include "e1000_mac.h"
  35#include "e1000_82575.h"
  36#include "e1000_i210.h"
  37
  38static s32  igb_get_invariants_82575(struct e1000_hw *);
  39static s32  igb_acquire_phy_82575(struct e1000_hw *);
  40static void igb_release_phy_82575(struct e1000_hw *);
  41static s32  igb_acquire_nvm_82575(struct e1000_hw *);
  42static void igb_release_nvm_82575(struct e1000_hw *);
  43static s32  igb_check_for_link_82575(struct e1000_hw *);
  44static s32  igb_get_cfg_done_82575(struct e1000_hw *);
  45static s32  igb_init_hw_82575(struct e1000_hw *);
  46static s32  igb_phy_hw_reset_sgmii_82575(struct e1000_hw *);
  47static s32  igb_read_phy_reg_sgmii_82575(struct e1000_hw *, u32, u16 *);
  48static s32  igb_read_phy_reg_82580(struct e1000_hw *, u32, u16 *);
  49static s32  igb_write_phy_reg_82580(struct e1000_hw *, u32, u16);
  50static s32  igb_reset_hw_82575(struct e1000_hw *);
  51static s32  igb_reset_hw_82580(struct e1000_hw *);
  52static s32  igb_set_d0_lplu_state_82575(struct e1000_hw *, bool);
  53static s32  igb_set_d0_lplu_state_82580(struct e1000_hw *, bool);
  54static s32  igb_set_d3_lplu_state_82580(struct e1000_hw *, bool);
  55static s32  igb_setup_copper_link_82575(struct e1000_hw *);
  56static s32  igb_setup_serdes_link_82575(struct e1000_hw *);
  57static s32  igb_write_phy_reg_sgmii_82575(struct e1000_hw *, u32, u16);
  58static void igb_clear_hw_cntrs_82575(struct e1000_hw *);
  59static s32  igb_acquire_swfw_sync_82575(struct e1000_hw *, u16);
  60static s32  igb_get_pcs_speed_and_duplex_82575(struct e1000_hw *, u16 *,
  61                                                 u16 *);
  62static s32  igb_get_phy_id_82575(struct e1000_hw *);
  63static void igb_release_swfw_sync_82575(struct e1000_hw *, u16);
  64static bool igb_sgmii_active_82575(struct e1000_hw *);
  65static s32  igb_reset_init_script_82575(struct e1000_hw *);
  66static s32  igb_read_mac_addr_82575(struct e1000_hw *);
  67static s32  igb_set_pcie_completion_timeout(struct e1000_hw *hw);
  68static s32  igb_reset_mdicnfg_82580(struct e1000_hw *hw);
  69static s32  igb_validate_nvm_checksum_82580(struct e1000_hw *hw);
  70static s32  igb_update_nvm_checksum_82580(struct e1000_hw *hw);
  71static s32 igb_validate_nvm_checksum_i350(struct e1000_hw *hw);
  72static s32 igb_update_nvm_checksum_i350(struct e1000_hw *hw);
  73static const u16 e1000_82580_rxpbs_table[] = {
  74        36, 72, 144, 1, 2, 4, 8, 16, 35, 70, 140 };
  75
  76/**
  77 *  igb_sgmii_uses_mdio_82575 - Determine if I2C pins are for external MDIO
  78 *  @hw: pointer to the HW structure
  79 *
  80 *  Called to determine if the I2C pins are being used for I2C or as an
  81 *  external MDIO interface since the two options are mutually exclusive.
  82 **/
  83static bool igb_sgmii_uses_mdio_82575(struct e1000_hw *hw)
  84{
  85        u32 reg = 0;
  86        bool ext_mdio = false;
  87
  88        switch (hw->mac.type) {
  89        case e1000_82575:
  90        case e1000_82576:
  91                reg = rd32(E1000_MDIC);
  92                ext_mdio = !!(reg & E1000_MDIC_DEST);
  93                break;
  94        case e1000_82580:
  95        case e1000_i350:
  96        case e1000_i354:
  97        case e1000_i210:
  98        case e1000_i211:
  99                reg = rd32(E1000_MDICNFG);
 100                ext_mdio = !!(reg & E1000_MDICNFG_EXT_MDIO);
 101                break;
 102        default:
 103                break;
 104        }
 105        return ext_mdio;
 106}
 107
 108/**
 109 *  igb_check_for_link_media_swap - Check which M88E1112 interface linked
 110 *  @hw: pointer to the HW structure
 111 *
 112 *  Poll the M88E1112 interfaces to see which interface achieved link.
 113 */
 114static s32 igb_check_for_link_media_swap(struct e1000_hw *hw)
 115{
 116        struct e1000_phy_info *phy = &hw->phy;
 117        s32 ret_val;
 118        u16 data;
 119        u8 port = 0;
 120
 121        /* Check the copper medium. */
 122        ret_val = phy->ops.write_reg(hw, E1000_M88E1112_PAGE_ADDR, 0);
 123        if (ret_val)
 124                return ret_val;
 125
 126        ret_val = phy->ops.read_reg(hw, E1000_M88E1112_STATUS, &data);
 127        if (ret_val)
 128                return ret_val;
 129
 130        if (data & E1000_M88E1112_STATUS_LINK)
 131                port = E1000_MEDIA_PORT_COPPER;
 132
 133        /* Check the other medium. */
 134        ret_val = phy->ops.write_reg(hw, E1000_M88E1112_PAGE_ADDR, 1);
 135        if (ret_val)
 136                return ret_val;
 137
 138        ret_val = phy->ops.read_reg(hw, E1000_M88E1112_STATUS, &data);
 139        if (ret_val)
 140                return ret_val;
 141
 142        /* reset page to 0 */
 143        ret_val = phy->ops.write_reg(hw, E1000_M88E1112_PAGE_ADDR, 0);
 144        if (ret_val)
 145                return ret_val;
 146
 147        if (data & E1000_M88E1112_STATUS_LINK)
 148                port = E1000_MEDIA_PORT_OTHER;
 149
 150        /* Determine if a swap needs to happen. */
 151        if (port && (hw->dev_spec._82575.media_port != port)) {
 152                hw->dev_spec._82575.media_port = port;
 153                hw->dev_spec._82575.media_changed = true;
 154        } else {
 155                ret_val = igb_check_for_link_82575(hw);
 156        }
 157
 158        return 0;
 159}
 160
 161/**
 162 *  igb_init_phy_params_82575 - Init PHY func ptrs.
 163 *  @hw: pointer to the HW structure
 164 **/
 165static s32 igb_init_phy_params_82575(struct e1000_hw *hw)
 166{
 167        struct e1000_phy_info *phy = &hw->phy;
 168        s32 ret_val = 0;
 169        u32 ctrl_ext;
 170
 171        if (hw->phy.media_type != e1000_media_type_copper) {
 172                phy->type = e1000_phy_none;
 173                goto out;
 174        }
 175
 176        phy->autoneg_mask       = AUTONEG_ADVERTISE_SPEED_DEFAULT;
 177        phy->reset_delay_us     = 100;
 178
 179        ctrl_ext = rd32(E1000_CTRL_EXT);
 180
 181        if (igb_sgmii_active_82575(hw)) {
 182                phy->ops.reset = igb_phy_hw_reset_sgmii_82575;
 183                ctrl_ext |= E1000_CTRL_I2C_ENA;
 184        } else {
 185                phy->ops.reset = igb_phy_hw_reset;
 186                ctrl_ext &= ~E1000_CTRL_I2C_ENA;
 187        }
 188
 189        wr32(E1000_CTRL_EXT, ctrl_ext);
 190        igb_reset_mdicnfg_82580(hw);
 191
 192        if (igb_sgmii_active_82575(hw) && !igb_sgmii_uses_mdio_82575(hw)) {
 193                phy->ops.read_reg = igb_read_phy_reg_sgmii_82575;
 194                phy->ops.write_reg = igb_write_phy_reg_sgmii_82575;
 195        } else {
 196                switch (hw->mac.type) {
 197                case e1000_82580:
 198                case e1000_i350:
 199                case e1000_i354:
 200                        phy->ops.read_reg = igb_read_phy_reg_82580;
 201                        phy->ops.write_reg = igb_write_phy_reg_82580;
 202                        break;
 203                case e1000_i210:
 204                case e1000_i211:
 205                        phy->ops.read_reg = igb_read_phy_reg_gs40g;
 206                        phy->ops.write_reg = igb_write_phy_reg_gs40g;
 207                        break;
 208                default:
 209                        phy->ops.read_reg = igb_read_phy_reg_igp;
 210                        phy->ops.write_reg = igb_write_phy_reg_igp;
 211                }
 212        }
 213
 214        /* set lan id */
 215        hw->bus.func = (rd32(E1000_STATUS) & E1000_STATUS_FUNC_MASK) >>
 216                        E1000_STATUS_FUNC_SHIFT;
 217
 218        /* Set phy->phy_addr and phy->id. */
 219        ret_val = igb_get_phy_id_82575(hw);
 220        if (ret_val)
 221                return ret_val;
 222
 223        /* Verify phy id and set remaining function pointers */
 224        switch (phy->id) {
 225        case M88E1543_E_PHY_ID:
 226        case I347AT4_E_PHY_ID:
 227        case M88E1112_E_PHY_ID:
 228        case M88E1111_I_PHY_ID:
 229                phy->type               = e1000_phy_m88;
 230                phy->ops.check_polarity = igb_check_polarity_m88;
 231                phy->ops.get_phy_info   = igb_get_phy_info_m88;
 232                if (phy->id != M88E1111_I_PHY_ID)
 233                        phy->ops.get_cable_length =
 234                                         igb_get_cable_length_m88_gen2;
 235                else
 236                        phy->ops.get_cable_length = igb_get_cable_length_m88;
 237                phy->ops.force_speed_duplex = igb_phy_force_speed_duplex_m88;
 238                /* Check if this PHY is confgured for media swap. */
 239                if (phy->id == M88E1112_E_PHY_ID) {
 240                        u16 data;
 241
 242                        ret_val = phy->ops.write_reg(hw,
 243                                                     E1000_M88E1112_PAGE_ADDR,
 244                                                     2);
 245                        if (ret_val)
 246                                goto out;
 247
 248                        ret_val = phy->ops.read_reg(hw,
 249                                                    E1000_M88E1112_MAC_CTRL_1,
 250                                                    &data);
 251                        if (ret_val)
 252                                goto out;
 253
 254                        data = (data & E1000_M88E1112_MAC_CTRL_1_MODE_MASK) >>
 255                               E1000_M88E1112_MAC_CTRL_1_MODE_SHIFT;
 256                        if (data == E1000_M88E1112_AUTO_COPPER_SGMII ||
 257                            data == E1000_M88E1112_AUTO_COPPER_BASEX)
 258                                hw->mac.ops.check_for_link =
 259                                                igb_check_for_link_media_swap;
 260                }
 261                break;
 262        case IGP03E1000_E_PHY_ID:
 263                phy->type = e1000_phy_igp_3;
 264                phy->ops.get_phy_info = igb_get_phy_info_igp;
 265                phy->ops.get_cable_length = igb_get_cable_length_igp_2;
 266                phy->ops.force_speed_duplex = igb_phy_force_speed_duplex_igp;
 267                phy->ops.set_d0_lplu_state = igb_set_d0_lplu_state_82575;
 268                phy->ops.set_d3_lplu_state = igb_set_d3_lplu_state;
 269                break;
 270        case I82580_I_PHY_ID:
 271        case I350_I_PHY_ID:
 272                phy->type = e1000_phy_82580;
 273                phy->ops.force_speed_duplex =
 274                                         igb_phy_force_speed_duplex_82580;
 275                phy->ops.get_cable_length = igb_get_cable_length_82580;
 276                phy->ops.get_phy_info = igb_get_phy_info_82580;
 277                phy->ops.set_d0_lplu_state = igb_set_d0_lplu_state_82580;
 278                phy->ops.set_d3_lplu_state = igb_set_d3_lplu_state_82580;
 279                break;
 280        case I210_I_PHY_ID:
 281                phy->type               = e1000_phy_i210;
 282                phy->ops.check_polarity = igb_check_polarity_m88;
 283                phy->ops.get_phy_info   = igb_get_phy_info_m88;
 284                phy->ops.get_cable_length = igb_get_cable_length_m88_gen2;
 285                phy->ops.set_d0_lplu_state = igb_set_d0_lplu_state_82580;
 286                phy->ops.set_d3_lplu_state = igb_set_d3_lplu_state_82580;
 287                phy->ops.force_speed_duplex = igb_phy_force_speed_duplex_m88;
 288                break;
 289        default:
 290                ret_val = -E1000_ERR_PHY;
 291                goto out;
 292        }
 293
 294out:
 295        return ret_val;
 296}
 297
 298/**
 299 *  igb_init_nvm_params_82575 - Init NVM func ptrs.
 300 *  @hw: pointer to the HW structure
 301 **/
 302static s32 igb_init_nvm_params_82575(struct e1000_hw *hw)
 303{
 304        struct e1000_nvm_info *nvm = &hw->nvm;
 305        u32 eecd = rd32(E1000_EECD);
 306        u16 size;
 307
 308        size = (u16)((eecd & E1000_EECD_SIZE_EX_MASK) >>
 309                     E1000_EECD_SIZE_EX_SHIFT);
 310
 311        /* Added to a constant, "size" becomes the left-shift value
 312         * for setting word_size.
 313         */
 314        size += NVM_WORD_SIZE_BASE_SHIFT;
 315
 316        /* Just in case size is out of range, cap it to the largest
 317         * EEPROM size supported
 318         */
 319        if (size > 15)
 320                size = 15;
 321
 322        nvm->word_size = 1 << size;
 323        nvm->opcode_bits = 8;
 324        nvm->delay_usec = 1;
 325
 326        switch (nvm->override) {
 327        case e1000_nvm_override_spi_large:
 328                nvm->page_size = 32;
 329                nvm->address_bits = 16;
 330                break;
 331        case e1000_nvm_override_spi_small:
 332                nvm->page_size = 8;
 333                nvm->address_bits = 8;
 334                break;
 335        default:
 336                nvm->page_size = eecd & E1000_EECD_ADDR_BITS ? 32 : 8;
 337                nvm->address_bits = eecd & E1000_EECD_ADDR_BITS ?
 338                                    16 : 8;
 339                break;
 340        }
 341        if (nvm->word_size == (1 << 15))
 342                nvm->page_size = 128;
 343
 344        nvm->type = e1000_nvm_eeprom_spi;
 345
 346        /* NVM Function Pointers */
 347        nvm->ops.acquire = igb_acquire_nvm_82575;
 348        nvm->ops.release = igb_release_nvm_82575;
 349        nvm->ops.write = igb_write_nvm_spi;
 350        nvm->ops.validate = igb_validate_nvm_checksum;
 351        nvm->ops.update = igb_update_nvm_checksum;
 352        if (nvm->word_size < (1 << 15))
 353                nvm->ops.read = igb_read_nvm_eerd;
 354        else
 355                nvm->ops.read = igb_read_nvm_spi;
 356
 357        /* override generic family function pointers for specific descendants */
 358        switch (hw->mac.type) {
 359        case e1000_82580:
 360                nvm->ops.validate = igb_validate_nvm_checksum_82580;
 361                nvm->ops.update = igb_update_nvm_checksum_82580;
 362                break;
 363        case e1000_i354:
 364        case e1000_i350:
 365                nvm->ops.validate = igb_validate_nvm_checksum_i350;
 366                nvm->ops.update = igb_update_nvm_checksum_i350;
 367                break;
 368        default:
 369                break;
 370        }
 371
 372        return 0;
 373}
 374
 375/**
 376 *  igb_init_mac_params_82575 - Init MAC func ptrs.
 377 *  @hw: pointer to the HW structure
 378 **/
 379static s32 igb_init_mac_params_82575(struct e1000_hw *hw)
 380{
 381        struct e1000_mac_info *mac = &hw->mac;
 382        struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575;
 383
 384        /* Set mta register count */
 385        mac->mta_reg_count = 128;
 386        /* Set rar entry count */
 387        switch (mac->type) {
 388        case e1000_82576:
 389                mac->rar_entry_count = E1000_RAR_ENTRIES_82576;
 390                break;
 391        case e1000_82580:
 392                mac->rar_entry_count = E1000_RAR_ENTRIES_82580;
 393                break;
 394        case e1000_i350:
 395        case e1000_i354:
 396                mac->rar_entry_count = E1000_RAR_ENTRIES_I350;
 397                break;
 398        default:
 399                mac->rar_entry_count = E1000_RAR_ENTRIES_82575;
 400                break;
 401        }
 402        /* reset */
 403        if (mac->type >= e1000_82580)
 404                mac->ops.reset_hw = igb_reset_hw_82580;
 405        else
 406                mac->ops.reset_hw = igb_reset_hw_82575;
 407
 408        if (mac->type >= e1000_i210) {
 409                mac->ops.acquire_swfw_sync = igb_acquire_swfw_sync_i210;
 410                mac->ops.release_swfw_sync = igb_release_swfw_sync_i210;
 411
 412        } else {
 413                mac->ops.acquire_swfw_sync = igb_acquire_swfw_sync_82575;
 414                mac->ops.release_swfw_sync = igb_release_swfw_sync_82575;
 415        }
 416
 417        /* Set if part includes ASF firmware */
 418        mac->asf_firmware_present = true;
 419        /* Set if manageability features are enabled. */
 420        mac->arc_subsystem_valid =
 421                (rd32(E1000_FWSM) & E1000_FWSM_MODE_MASK)
 422                        ? true : false;
 423        /* enable EEE on i350 parts and later parts */
 424        if (mac->type >= e1000_i350)
 425                dev_spec->eee_disable = false;
 426        else
 427                dev_spec->eee_disable = true;
 428        /* Allow a single clear of the SW semaphore on I210 and newer */
 429        if (mac->type >= e1000_i210)
 430                dev_spec->clear_semaphore_once = true;
 431        /* physical interface link setup */
 432        mac->ops.setup_physical_interface =
 433                (hw->phy.media_type == e1000_media_type_copper)
 434                        ? igb_setup_copper_link_82575
 435                        : igb_setup_serdes_link_82575;
 436
 437        if (mac->type == e1000_82580) {
 438                switch (hw->device_id) {
 439                /* feature not supported on these id's */
 440                case E1000_DEV_ID_DH89XXCC_SGMII:
 441                case E1000_DEV_ID_DH89XXCC_SERDES:
 442                case E1000_DEV_ID_DH89XXCC_BACKPLANE:
 443                case E1000_DEV_ID_DH89XXCC_SFP:
 444                        break;
 445                default:
 446                        hw->dev_spec._82575.mas_capable = true;
 447                        break;
 448                }
 449        }
 450        return 0;
 451}
 452
 453/**
 454 *  igb_set_sfp_media_type_82575 - derives SFP module media type.
 455 *  @hw: pointer to the HW structure
 456 *
 457 *  The media type is chosen based on SFP module.
 458 *  compatibility flags retrieved from SFP ID EEPROM.
 459 **/
 460static s32 igb_set_sfp_media_type_82575(struct e1000_hw *hw)
 461{
 462        s32 ret_val = E1000_ERR_CONFIG;
 463        u32 ctrl_ext = 0;
 464        struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575;
 465        struct e1000_sfp_flags *eth_flags = &dev_spec->eth_flags;
 466        u8 tranceiver_type = 0;
 467        s32 timeout = 3;
 468
 469        /* Turn I2C interface ON and power on sfp cage */
 470        ctrl_ext = rd32(E1000_CTRL_EXT);
 471        ctrl_ext &= ~E1000_CTRL_EXT_SDP3_DATA;
 472        wr32(E1000_CTRL_EXT, ctrl_ext | E1000_CTRL_I2C_ENA);
 473
 474        wrfl();
 475
 476        /* Read SFP module data */
 477        while (timeout) {
 478                ret_val = igb_read_sfp_data_byte(hw,
 479                        E1000_I2CCMD_SFP_DATA_ADDR(E1000_SFF_IDENTIFIER_OFFSET),
 480                        &tranceiver_type);
 481                if (ret_val == 0)
 482                        break;
 483                msleep(100);
 484                timeout--;
 485        }
 486        if (ret_val != 0)
 487                goto out;
 488
 489        ret_val = igb_read_sfp_data_byte(hw,
 490                        E1000_I2CCMD_SFP_DATA_ADDR(E1000_SFF_ETH_FLAGS_OFFSET),
 491                        (u8 *)eth_flags);
 492        if (ret_val != 0)
 493                goto out;
 494
 495        /* Check if there is some SFP module plugged and powered */
 496        if ((tranceiver_type == E1000_SFF_IDENTIFIER_SFP) ||
 497            (tranceiver_type == E1000_SFF_IDENTIFIER_SFF)) {
 498                dev_spec->module_plugged = true;
 499                if (eth_flags->e1000_base_lx || eth_flags->e1000_base_sx) {
 500                        hw->phy.media_type = e1000_media_type_internal_serdes;
 501                } else if (eth_flags->e100_base_fx) {
 502                        dev_spec->sgmii_active = true;
 503                        hw->phy.media_type = e1000_media_type_internal_serdes;
 504                } else if (eth_flags->e1000_base_t) {
 505                        dev_spec->sgmii_active = true;
 506                        hw->phy.media_type = e1000_media_type_copper;
 507                } else {
 508                        hw->phy.media_type = e1000_media_type_unknown;
 509                        hw_dbg("PHY module has not been recognized\n");
 510                        goto out;
 511                }
 512        } else {
 513                hw->phy.media_type = e1000_media_type_unknown;
 514        }
 515        ret_val = 0;
 516out:
 517        /* Restore I2C interface setting */
 518        wr32(E1000_CTRL_EXT, ctrl_ext);
 519        return ret_val;
 520}
 521
 522static s32 igb_get_invariants_82575(struct e1000_hw *hw)
 523{
 524        struct e1000_mac_info *mac = &hw->mac;
 525        struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575;
 526        s32 ret_val;
 527        u32 ctrl_ext = 0;
 528        u32 link_mode = 0;
 529
 530        switch (hw->device_id) {
 531        case E1000_DEV_ID_82575EB_COPPER:
 532        case E1000_DEV_ID_82575EB_FIBER_SERDES:
 533        case E1000_DEV_ID_82575GB_QUAD_COPPER:
 534                mac->type = e1000_82575;
 535                break;
 536        case E1000_DEV_ID_82576:
 537        case E1000_DEV_ID_82576_NS:
 538        case E1000_DEV_ID_82576_NS_SERDES:
 539        case E1000_DEV_ID_82576_FIBER:
 540        case E1000_DEV_ID_82576_SERDES:
 541        case E1000_DEV_ID_82576_QUAD_COPPER:
 542        case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
 543        case E1000_DEV_ID_82576_SERDES_QUAD:
 544                mac->type = e1000_82576;
 545                break;
 546        case E1000_DEV_ID_82580_COPPER:
 547        case E1000_DEV_ID_82580_FIBER:
 548        case E1000_DEV_ID_82580_QUAD_FIBER:
 549        case E1000_DEV_ID_82580_SERDES:
 550        case E1000_DEV_ID_82580_SGMII:
 551        case E1000_DEV_ID_82580_COPPER_DUAL:
 552        case E1000_DEV_ID_DH89XXCC_SGMII:
 553        case E1000_DEV_ID_DH89XXCC_SERDES:
 554        case E1000_DEV_ID_DH89XXCC_BACKPLANE:
 555        case E1000_DEV_ID_DH89XXCC_SFP:
 556                mac->type = e1000_82580;
 557                break;
 558        case E1000_DEV_ID_I350_COPPER:
 559        case E1000_DEV_ID_I350_FIBER:
 560        case E1000_DEV_ID_I350_SERDES:
 561        case E1000_DEV_ID_I350_SGMII:
 562                mac->type = e1000_i350;
 563                break;
 564        case E1000_DEV_ID_I210_COPPER:
 565        case E1000_DEV_ID_I210_FIBER:
 566        case E1000_DEV_ID_I210_SERDES:
 567        case E1000_DEV_ID_I210_SGMII:
 568        case E1000_DEV_ID_I210_COPPER_FLASHLESS:
 569        case E1000_DEV_ID_I210_SERDES_FLASHLESS:
 570                mac->type = e1000_i210;
 571                break;
 572        case E1000_DEV_ID_I211_COPPER:
 573                mac->type = e1000_i211;
 574                break;
 575        case E1000_DEV_ID_I354_BACKPLANE_1GBPS:
 576        case E1000_DEV_ID_I354_SGMII:
 577        case E1000_DEV_ID_I354_BACKPLANE_2_5GBPS:
 578                mac->type = e1000_i354;
 579                break;
 580        default:
 581                return -E1000_ERR_MAC_INIT;
 582        }
 583
 584        /* Set media type */
 585        /* The 82575 uses bits 22:23 for link mode. The mode can be changed
 586         * based on the EEPROM. We cannot rely upon device ID. There
 587         * is no distinguishable difference between fiber and internal
 588         * SerDes mode on the 82575. There can be an external PHY attached
 589         * on the SGMII interface. For this, we'll set sgmii_active to true.
 590         */
 591        hw->phy.media_type = e1000_media_type_copper;
 592        dev_spec->sgmii_active = false;
 593        dev_spec->module_plugged = false;
 594
 595        ctrl_ext = rd32(E1000_CTRL_EXT);
 596
 597        link_mode = ctrl_ext & E1000_CTRL_EXT_LINK_MODE_MASK;
 598        switch (link_mode) {
 599        case E1000_CTRL_EXT_LINK_MODE_1000BASE_KX:
 600                hw->phy.media_type = e1000_media_type_internal_serdes;
 601                break;
 602        case E1000_CTRL_EXT_LINK_MODE_SGMII:
 603                /* Get phy control interface type set (MDIO vs. I2C)*/
 604                if (igb_sgmii_uses_mdio_82575(hw)) {
 605                        hw->phy.media_type = e1000_media_type_copper;
 606                        dev_spec->sgmii_active = true;
 607                        break;
 608                }
 609                /* fall through for I2C based SGMII */
 610        case E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES:
 611                /* read media type from SFP EEPROM */
 612                ret_val = igb_set_sfp_media_type_82575(hw);
 613                if ((ret_val != 0) ||
 614                    (hw->phy.media_type == e1000_media_type_unknown)) {
 615                        /* If media type was not identified then return media
 616                         * type defined by the CTRL_EXT settings.
 617                         */
 618                        hw->phy.media_type = e1000_media_type_internal_serdes;
 619
 620                        if (link_mode == E1000_CTRL_EXT_LINK_MODE_SGMII) {
 621                                hw->phy.media_type = e1000_media_type_copper;
 622                                dev_spec->sgmii_active = true;
 623                        }
 624
 625                        break;
 626                }
 627
 628                /* do not change link mode for 100BaseFX */
 629                if (dev_spec->eth_flags.e100_base_fx)
 630                        break;
 631
 632                /* change current link mode setting */
 633                ctrl_ext &= ~E1000_CTRL_EXT_LINK_MODE_MASK;
 634
 635                if (hw->phy.media_type == e1000_media_type_copper)
 636                        ctrl_ext |= E1000_CTRL_EXT_LINK_MODE_SGMII;
 637                else
 638                        ctrl_ext |= E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
 639
 640                wr32(E1000_CTRL_EXT, ctrl_ext);
 641
 642                break;
 643        default:
 644                break;
 645        }
 646
 647        /* mac initialization and operations */
 648        ret_val = igb_init_mac_params_82575(hw);
 649        if (ret_val)
 650                goto out;
 651
 652        /* NVM initialization */
 653        ret_val = igb_init_nvm_params_82575(hw);
 654        switch (hw->mac.type) {
 655        case e1000_i210:
 656        case e1000_i211:
 657                ret_val = igb_init_nvm_params_i210(hw);
 658                break;
 659        default:
 660                break;
 661        }
 662
 663        if (ret_val)
 664                goto out;
 665
 666        /* if part supports SR-IOV then initialize mailbox parameters */
 667        switch (mac->type) {
 668        case e1000_82576:
 669        case e1000_i350:
 670                igb_init_mbx_params_pf(hw);
 671                break;
 672        default:
 673                break;
 674        }
 675
 676        /* setup PHY parameters */
 677        ret_val = igb_init_phy_params_82575(hw);
 678
 679out:
 680        return ret_val;
 681}
 682
 683/**
 684 *  igb_acquire_phy_82575 - Acquire rights to access PHY
 685 *  @hw: pointer to the HW structure
 686 *
 687 *  Acquire access rights to the correct PHY.  This is a
 688 *  function pointer entry point called by the api module.
 689 **/
 690static s32 igb_acquire_phy_82575(struct e1000_hw *hw)
 691{
 692        u16 mask = E1000_SWFW_PHY0_SM;
 693
 694        if (hw->bus.func == E1000_FUNC_1)
 695                mask = E1000_SWFW_PHY1_SM;
 696        else if (hw->bus.func == E1000_FUNC_2)
 697                mask = E1000_SWFW_PHY2_SM;
 698        else if (hw->bus.func == E1000_FUNC_3)
 699                mask = E1000_SWFW_PHY3_SM;
 700
 701        return hw->mac.ops.acquire_swfw_sync(hw, mask);
 702}
 703
 704/**
 705 *  igb_release_phy_82575 - Release rights to access PHY
 706 *  @hw: pointer to the HW structure
 707 *
 708 *  A wrapper to release access rights to the correct PHY.  This is a
 709 *  function pointer entry point called by the api module.
 710 **/
 711static void igb_release_phy_82575(struct e1000_hw *hw)
 712{
 713        u16 mask = E1000_SWFW_PHY0_SM;
 714
 715        if (hw->bus.func == E1000_FUNC_1)
 716                mask = E1000_SWFW_PHY1_SM;
 717        else if (hw->bus.func == E1000_FUNC_2)
 718                mask = E1000_SWFW_PHY2_SM;
 719        else if (hw->bus.func == E1000_FUNC_3)
 720                mask = E1000_SWFW_PHY3_SM;
 721
 722        hw->mac.ops.release_swfw_sync(hw, mask);
 723}
 724
 725/**
 726 *  igb_read_phy_reg_sgmii_82575 - Read PHY register using sgmii
 727 *  @hw: pointer to the HW structure
 728 *  @offset: register offset to be read
 729 *  @data: pointer to the read data
 730 *
 731 *  Reads the PHY register at offset using the serial gigabit media independent
 732 *  interface and stores the retrieved information in data.
 733 **/
 734static s32 igb_read_phy_reg_sgmii_82575(struct e1000_hw *hw, u32 offset,
 735                                          u16 *data)
 736{
 737        s32 ret_val = -E1000_ERR_PARAM;
 738
 739        if (offset > E1000_MAX_SGMII_PHY_REG_ADDR) {
 740                hw_dbg("PHY Address %u is out of range\n", offset);
 741                goto out;
 742        }
 743
 744        ret_val = hw->phy.ops.acquire(hw);
 745        if (ret_val)
 746                goto out;
 747
 748        ret_val = igb_read_phy_reg_i2c(hw, offset, data);
 749
 750        hw->phy.ops.release(hw);
 751
 752out:
 753        return ret_val;
 754}
 755
 756/**
 757 *  igb_write_phy_reg_sgmii_82575 - Write PHY register using sgmii
 758 *  @hw: pointer to the HW structure
 759 *  @offset: register offset to write to
 760 *  @data: data to write at register offset
 761 *
 762 *  Writes the data to PHY register at the offset using the serial gigabit
 763 *  media independent interface.
 764 **/
 765static s32 igb_write_phy_reg_sgmii_82575(struct e1000_hw *hw, u32 offset,
 766                                           u16 data)
 767{
 768        s32 ret_val = -E1000_ERR_PARAM;
 769
 770
 771        if (offset > E1000_MAX_SGMII_PHY_REG_ADDR) {
 772                hw_dbg("PHY Address %d is out of range\n", offset);
 773                goto out;
 774        }
 775
 776        ret_val = hw->phy.ops.acquire(hw);
 777        if (ret_val)
 778                goto out;
 779
 780        ret_val = igb_write_phy_reg_i2c(hw, offset, data);
 781
 782        hw->phy.ops.release(hw);
 783
 784out:
 785        return ret_val;
 786}
 787
 788/**
 789 *  igb_get_phy_id_82575 - Retrieve PHY addr and id
 790 *  @hw: pointer to the HW structure
 791 *
 792 *  Retrieves the PHY address and ID for both PHY's which do and do not use
 793 *  sgmi interface.
 794 **/
 795static s32 igb_get_phy_id_82575(struct e1000_hw *hw)
 796{
 797        struct e1000_phy_info *phy = &hw->phy;
 798        s32  ret_val = 0;
 799        u16 phy_id;
 800        u32 ctrl_ext;
 801        u32 mdic;
 802
 803        /* Extra read required for some PHY's on i354 */
 804        if (hw->mac.type == e1000_i354)
 805                igb_get_phy_id(hw);
 806
 807        /* For SGMII PHYs, we try the list of possible addresses until
 808         * we find one that works.  For non-SGMII PHYs
 809         * (e.g. integrated copper PHYs), an address of 1 should
 810         * work.  The result of this function should mean phy->phy_addr
 811         * and phy->id are set correctly.
 812         */
 813        if (!(igb_sgmii_active_82575(hw))) {
 814                phy->addr = 1;
 815                ret_val = igb_get_phy_id(hw);
 816                goto out;
 817        }
 818
 819        if (igb_sgmii_uses_mdio_82575(hw)) {
 820                switch (hw->mac.type) {
 821                case e1000_82575:
 822                case e1000_82576:
 823                        mdic = rd32(E1000_MDIC);
 824                        mdic &= E1000_MDIC_PHY_MASK;
 825                        phy->addr = mdic >> E1000_MDIC_PHY_SHIFT;
 826                        break;
 827                case e1000_82580:
 828                case e1000_i350:
 829                case e1000_i354:
 830                case e1000_i210:
 831                case e1000_i211:
 832                        mdic = rd32(E1000_MDICNFG);
 833                        mdic &= E1000_MDICNFG_PHY_MASK;
 834                        phy->addr = mdic >> E1000_MDICNFG_PHY_SHIFT;
 835                        break;
 836                default:
 837                        ret_val = -E1000_ERR_PHY;
 838                        goto out;
 839                }
 840                ret_val = igb_get_phy_id(hw);
 841                goto out;
 842        }
 843
 844        /* Power on sgmii phy if it is disabled */
 845        ctrl_ext = rd32(E1000_CTRL_EXT);
 846        wr32(E1000_CTRL_EXT, ctrl_ext & ~E1000_CTRL_EXT_SDP3_DATA);
 847        wrfl();
 848        msleep(300);
 849
 850        /* The address field in the I2CCMD register is 3 bits and 0 is invalid.
 851         * Therefore, we need to test 1-7
 852         */
 853        for (phy->addr = 1; phy->addr < 8; phy->addr++) {
 854                ret_val = igb_read_phy_reg_sgmii_82575(hw, PHY_ID1, &phy_id);
 855                if (ret_val == 0) {
 856                        hw_dbg("Vendor ID 0x%08X read at address %u\n",
 857                               phy_id, phy->addr);
 858                        /* At the time of this writing, The M88 part is
 859                         * the only supported SGMII PHY product.
 860                         */
 861                        if (phy_id == M88_VENDOR)
 862                                break;
 863                } else {
 864                        hw_dbg("PHY address %u was unreadable\n", phy->addr);
 865                }
 866        }
 867
 868        /* A valid PHY type couldn't be found. */
 869        if (phy->addr == 8) {
 870                phy->addr = 0;
 871                ret_val = -E1000_ERR_PHY;
 872                goto out;
 873        } else {
 874                ret_val = igb_get_phy_id(hw);
 875        }
 876
 877        /* restore previous sfp cage power state */
 878        wr32(E1000_CTRL_EXT, ctrl_ext);
 879
 880out:
 881        return ret_val;
 882}
 883
 884/**
 885 *  igb_phy_hw_reset_sgmii_82575 - Performs a PHY reset
 886 *  @hw: pointer to the HW structure
 887 *
 888 *  Resets the PHY using the serial gigabit media independent interface.
 889 **/
 890static s32 igb_phy_hw_reset_sgmii_82575(struct e1000_hw *hw)
 891{
 892        s32 ret_val;
 893
 894        /* This isn't a true "hard" reset, but is the only reset
 895         * available to us at this time.
 896         */
 897
 898        hw_dbg("Soft resetting SGMII attached PHY...\n");
 899
 900        /* SFP documentation requires the following to configure the SPF module
 901         * to work on SGMII.  No further documentation is given.
 902         */
 903        ret_val = hw->phy.ops.write_reg(hw, 0x1B, 0x8084);
 904        if (ret_val)
 905                goto out;
 906
 907        ret_val = igb_phy_sw_reset(hw);
 908
 909out:
 910        return ret_val;
 911}
 912
 913/**
 914 *  igb_set_d0_lplu_state_82575 - Set Low Power Linkup D0 state
 915 *  @hw: pointer to the HW structure
 916 *  @active: true to enable LPLU, false to disable
 917 *
 918 *  Sets the LPLU D0 state according to the active flag.  When
 919 *  activating LPLU this function also disables smart speed
 920 *  and vice versa.  LPLU will not be activated unless the
 921 *  device autonegotiation advertisement meets standards of
 922 *  either 10 or 10/100 or 10/100/1000 at all duplexes.
 923 *  This is a function pointer entry point only called by
 924 *  PHY setup routines.
 925 **/
 926static s32 igb_set_d0_lplu_state_82575(struct e1000_hw *hw, bool active)
 927{
 928        struct e1000_phy_info *phy = &hw->phy;
 929        s32 ret_val;
 930        u16 data;
 931
 932        ret_val = phy->ops.read_reg(hw, IGP02E1000_PHY_POWER_MGMT, &data);
 933        if (ret_val)
 934                goto out;
 935
 936        if (active) {
 937                data |= IGP02E1000_PM_D0_LPLU;
 938                ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT,
 939                                                 data);
 940                if (ret_val)
 941                        goto out;
 942
 943                /* When LPLU is enabled, we should disable SmartSpeed */
 944                ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
 945                                                &data);
 946                data &= ~IGP01E1000_PSCFR_SMART_SPEED;
 947                ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
 948                                                 data);
 949                if (ret_val)
 950                        goto out;
 951        } else {
 952                data &= ~IGP02E1000_PM_D0_LPLU;
 953                ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT,
 954                                                 data);
 955                /* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
 956                 * during Dx states where the power conservation is most
 957                 * important.  During driver activity we should enable
 958                 * SmartSpeed, so performance is maintained.
 959                 */
 960                if (phy->smart_speed == e1000_smart_speed_on) {
 961                        ret_val = phy->ops.read_reg(hw,
 962                                        IGP01E1000_PHY_PORT_CONFIG, &data);
 963                        if (ret_val)
 964                                goto out;
 965
 966                        data |= IGP01E1000_PSCFR_SMART_SPEED;
 967                        ret_val = phy->ops.write_reg(hw,
 968                                        IGP01E1000_PHY_PORT_CONFIG, data);
 969                        if (ret_val)
 970                                goto out;
 971                } else if (phy->smart_speed == e1000_smart_speed_off) {
 972                        ret_val = phy->ops.read_reg(hw,
 973                                        IGP01E1000_PHY_PORT_CONFIG, &data);
 974                        if (ret_val)
 975                                goto out;
 976
 977                        data &= ~IGP01E1000_PSCFR_SMART_SPEED;
 978                        ret_val = phy->ops.write_reg(hw,
 979                                        IGP01E1000_PHY_PORT_CONFIG, data);
 980                        if (ret_val)
 981                                goto out;
 982                }
 983        }
 984
 985out:
 986        return ret_val;
 987}
 988
 989/**
 990 *  igb_set_d0_lplu_state_82580 - Set Low Power Linkup D0 state
 991 *  @hw: pointer to the HW structure
 992 *  @active: true to enable LPLU, false to disable
 993 *
 994 *  Sets the LPLU D0 state according to the active flag.  When
 995 *  activating LPLU this function also disables smart speed
 996 *  and vice versa.  LPLU will not be activated unless the
 997 *  device autonegotiation advertisement meets standards of
 998 *  either 10 or 10/100 or 10/100/1000 at all duplexes.
 999 *  This is a function pointer entry point only called by
1000 *  PHY setup routines.
1001 **/
1002static s32 igb_set_d0_lplu_state_82580(struct e1000_hw *hw, bool active)
1003{
1004        struct e1000_phy_info *phy = &hw->phy;
1005        u16 data;
1006
1007        data = rd32(E1000_82580_PHY_POWER_MGMT);
1008
1009        if (active) {
1010                data |= E1000_82580_PM_D0_LPLU;
1011
1012                /* When LPLU is enabled, we should disable SmartSpeed */
1013                data &= ~E1000_82580_PM_SPD;
1014        } else {
1015                data &= ~E1000_82580_PM_D0_LPLU;
1016
1017                /* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
1018                 * during Dx states where the power conservation is most
1019                 * important.  During driver activity we should enable
1020                 * SmartSpeed, so performance is maintained.
1021                 */
1022                if (phy->smart_speed == e1000_smart_speed_on)
1023                        data |= E1000_82580_PM_SPD;
1024                else if (phy->smart_speed == e1000_smart_speed_off)
1025                        data &= ~E1000_82580_PM_SPD; }
1026
1027        wr32(E1000_82580_PHY_POWER_MGMT, data);
1028        return 0;
1029}
1030
1031/**
1032 *  igb_set_d3_lplu_state_82580 - Sets low power link up state for D3
1033 *  @hw: pointer to the HW structure
1034 *  @active: boolean used to enable/disable lplu
1035 *
1036 *  Success returns 0, Failure returns 1
1037 *
1038 *  The low power link up (lplu) state is set to the power management level D3
1039 *  and SmartSpeed is disabled when active is true, else clear lplu for D3
1040 *  and enable Smartspeed.  LPLU and Smartspeed are mutually exclusive.  LPLU
1041 *  is used during Dx states where the power conservation is most important.
1042 *  During driver activity, SmartSpeed should be enabled so performance is
1043 *  maintained.
1044 **/
1045static s32 igb_set_d3_lplu_state_82580(struct e1000_hw *hw, bool active)
1046{
1047        struct e1000_phy_info *phy = &hw->phy;
1048        u16 data;
1049
1050        data = rd32(E1000_82580_PHY_POWER_MGMT);
1051
1052        if (!active) {
1053                data &= ~E1000_82580_PM_D3_LPLU;
1054                /* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
1055                 * during Dx states where the power conservation is most
1056                 * important.  During driver activity we should enable
1057                 * SmartSpeed, so performance is maintained.
1058                 */
1059                if (phy->smart_speed == e1000_smart_speed_on)
1060                        data |= E1000_82580_PM_SPD;
1061                else if (phy->smart_speed == e1000_smart_speed_off)
1062                        data &= ~E1000_82580_PM_SPD;
1063        } else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
1064                   (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
1065                   (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
1066                data |= E1000_82580_PM_D3_LPLU;
1067                /* When LPLU is enabled, we should disable SmartSpeed */
1068                data &= ~E1000_82580_PM_SPD;
1069        }
1070
1071        wr32(E1000_82580_PHY_POWER_MGMT, data);
1072        return 0;
1073}
1074
1075/**
1076 *  igb_acquire_nvm_82575 - Request for access to EEPROM
1077 *  @hw: pointer to the HW structure
1078 *
1079 *  Acquire the necessary semaphores for exclusive access to the EEPROM.
1080 *  Set the EEPROM access request bit and wait for EEPROM access grant bit.
1081 *  Return successful if access grant bit set, else clear the request for
1082 *  EEPROM access and return -E1000_ERR_NVM (-1).
1083 **/
1084static s32 igb_acquire_nvm_82575(struct e1000_hw *hw)
1085{
1086        s32 ret_val;
1087
1088        ret_val = hw->mac.ops.acquire_swfw_sync(hw, E1000_SWFW_EEP_SM);
1089        if (ret_val)
1090                goto out;
1091
1092        ret_val = igb_acquire_nvm(hw);
1093
1094        if (ret_val)
1095                hw->mac.ops.release_swfw_sync(hw, E1000_SWFW_EEP_SM);
1096
1097out:
1098        return ret_val;
1099}
1100
1101/**
1102 *  igb_release_nvm_82575 - Release exclusive access to EEPROM
1103 *  @hw: pointer to the HW structure
1104 *
1105 *  Stop any current commands to the EEPROM and clear the EEPROM request bit,
1106 *  then release the semaphores acquired.
1107 **/
1108static void igb_release_nvm_82575(struct e1000_hw *hw)
1109{
1110        igb_release_nvm(hw);
1111        hw->mac.ops.release_swfw_sync(hw, E1000_SWFW_EEP_SM);
1112}
1113
1114/**
1115 *  igb_acquire_swfw_sync_82575 - Acquire SW/FW semaphore
1116 *  @hw: pointer to the HW structure
1117 *  @mask: specifies which semaphore to acquire
1118 *
1119 *  Acquire the SW/FW semaphore to access the PHY or NVM.  The mask
1120 *  will also specify which port we're acquiring the lock for.
1121 **/
1122static s32 igb_acquire_swfw_sync_82575(struct e1000_hw *hw, u16 mask)
1123{
1124        u32 swfw_sync;
1125        u32 swmask = mask;
1126        u32 fwmask = mask << 16;
1127        s32 ret_val = 0;
1128        s32 i = 0, timeout = 200; /* FIXME: find real value to use here */
1129
1130        while (i < timeout) {
1131                if (igb_get_hw_semaphore(hw)) {
1132                        ret_val = -E1000_ERR_SWFW_SYNC;
1133                        goto out;
1134                }
1135
1136                swfw_sync = rd32(E1000_SW_FW_SYNC);
1137                if (!(swfw_sync & (fwmask | swmask)))
1138                        break;
1139
1140                /* Firmware currently using resource (fwmask)
1141                 * or other software thread using resource (swmask)
1142                 */
1143                igb_put_hw_semaphore(hw);
1144                mdelay(5);
1145                i++;
1146        }
1147
1148        if (i == timeout) {
1149                hw_dbg("Driver can't access resource, SW_FW_SYNC timeout.\n");
1150                ret_val = -E1000_ERR_SWFW_SYNC;
1151                goto out;
1152        }
1153
1154        swfw_sync |= swmask;
1155        wr32(E1000_SW_FW_SYNC, swfw_sync);
1156
1157        igb_put_hw_semaphore(hw);
1158
1159out:
1160        return ret_val;
1161}
1162
1163/**
1164 *  igb_release_swfw_sync_82575 - Release SW/FW semaphore
1165 *  @hw: pointer to the HW structure
1166 *  @mask: specifies which semaphore to acquire
1167 *
1168 *  Release the SW/FW semaphore used to access the PHY or NVM.  The mask
1169 *  will also specify which port we're releasing the lock for.
1170 **/
1171static void igb_release_swfw_sync_82575(struct e1000_hw *hw, u16 mask)
1172{
1173        u32 swfw_sync;
1174
1175        while (igb_get_hw_semaphore(hw) != 0)
1176                ; /* Empty */
1177
1178        swfw_sync = rd32(E1000_SW_FW_SYNC);
1179        swfw_sync &= ~mask;
1180        wr32(E1000_SW_FW_SYNC, swfw_sync);
1181
1182        igb_put_hw_semaphore(hw);
1183}
1184
1185/**
1186 *  igb_get_cfg_done_82575 - Read config done bit
1187 *  @hw: pointer to the HW structure
1188 *
1189 *  Read the management control register for the config done bit for
1190 *  completion status.  NOTE: silicon which is EEPROM-less will fail trying
1191 *  to read the config done bit, so an error is *ONLY* logged and returns
1192 *  0.  If we were to return with error, EEPROM-less silicon
1193 *  would not be able to be reset or change link.
1194 **/
1195static s32 igb_get_cfg_done_82575(struct e1000_hw *hw)
1196{
1197        s32 timeout = PHY_CFG_TIMEOUT;
1198        u32 mask = E1000_NVM_CFG_DONE_PORT_0;
1199
1200        if (hw->bus.func == 1)
1201                mask = E1000_NVM_CFG_DONE_PORT_1;
1202        else if (hw->bus.func == E1000_FUNC_2)
1203                mask = E1000_NVM_CFG_DONE_PORT_2;
1204        else if (hw->bus.func == E1000_FUNC_3)
1205                mask = E1000_NVM_CFG_DONE_PORT_3;
1206
1207        while (timeout) {
1208                if (rd32(E1000_EEMNGCTL) & mask)
1209                        break;
1210                usleep_range(1000, 2000);
1211                timeout--;
1212        }
1213        if (!timeout)
1214                hw_dbg("MNG configuration cycle has not completed.\n");
1215
1216        /* If EEPROM is not marked present, init the PHY manually */
1217        if (((rd32(E1000_EECD) & E1000_EECD_PRES) == 0) &&
1218            (hw->phy.type == e1000_phy_igp_3))
1219                igb_phy_init_script_igp3(hw);
1220
1221        return 0;
1222}
1223
1224/**
1225 *  igb_get_link_up_info_82575 - Get link speed/duplex info
1226 *  @hw: pointer to the HW structure
1227 *  @speed: stores the current speed
1228 *  @duplex: stores the current duplex
1229 *
1230 *  This is a wrapper function, if using the serial gigabit media independent
1231 *  interface, use PCS to retrieve the link speed and duplex information.
1232 *  Otherwise, use the generic function to get the link speed and duplex info.
1233 **/
1234static s32 igb_get_link_up_info_82575(struct e1000_hw *hw, u16 *speed,
1235                                        u16 *duplex)
1236{
1237        s32 ret_val;
1238
1239        if (hw->phy.media_type != e1000_media_type_copper)
1240                ret_val = igb_get_pcs_speed_and_duplex_82575(hw, speed,
1241                                                               duplex);
1242        else
1243                ret_val = igb_get_speed_and_duplex_copper(hw, speed,
1244                                                                    duplex);
1245
1246        return ret_val;
1247}
1248
1249/**
1250 *  igb_check_for_link_82575 - Check for link
1251 *  @hw: pointer to the HW structure
1252 *
1253 *  If sgmii is enabled, then use the pcs register to determine link, otherwise
1254 *  use the generic interface for determining link.
1255 **/
1256static s32 igb_check_for_link_82575(struct e1000_hw *hw)
1257{
1258        s32 ret_val;
1259        u16 speed, duplex;
1260
1261        if (hw->phy.media_type != e1000_media_type_copper) {
1262                ret_val = igb_get_pcs_speed_and_duplex_82575(hw, &speed,
1263                                                             &duplex);
1264                /* Use this flag to determine if link needs to be checked or
1265                 * not.  If  we have link clear the flag so that we do not
1266                 * continue to check for link.
1267                 */
1268                hw->mac.get_link_status = !hw->mac.serdes_has_link;
1269
1270                /* Configure Flow Control now that Auto-Neg has completed.
1271                 * First, we need to restore the desired flow control
1272                 * settings because we may have had to re-autoneg with a
1273                 * different link partner.
1274                 */
1275                ret_val = igb_config_fc_after_link_up(hw);
1276                if (ret_val)
1277                        hw_dbg("Error configuring flow control\n");
1278        } else {
1279                ret_val = igb_check_for_copper_link(hw);
1280        }
1281
1282        return ret_val;
1283}
1284
1285/**
1286 *  igb_power_up_serdes_link_82575 - Power up the serdes link after shutdown
1287 *  @hw: pointer to the HW structure
1288 **/
1289void igb_power_up_serdes_link_82575(struct e1000_hw *hw)
1290{
1291        u32 reg;
1292
1293
1294        if ((hw->phy.media_type != e1000_media_type_internal_serdes) &&
1295            !igb_sgmii_active_82575(hw))
1296                return;
1297
1298        /* Enable PCS to turn on link */
1299        reg = rd32(E1000_PCS_CFG0);
1300        reg |= E1000_PCS_CFG_PCS_EN;
1301        wr32(E1000_PCS_CFG0, reg);
1302
1303        /* Power up the laser */
1304        reg = rd32(E1000_CTRL_EXT);
1305        reg &= ~E1000_CTRL_EXT_SDP3_DATA;
1306        wr32(E1000_CTRL_EXT, reg);
1307
1308        /* flush the write to verify completion */
1309        wrfl();
1310        usleep_range(1000, 2000);
1311}
1312
1313/**
1314 *  igb_get_pcs_speed_and_duplex_82575 - Retrieve current speed/duplex
1315 *  @hw: pointer to the HW structure
1316 *  @speed: stores the current speed
1317 *  @duplex: stores the current duplex
1318 *
1319 *  Using the physical coding sub-layer (PCS), retrieve the current speed and
1320 *  duplex, then store the values in the pointers provided.
1321 **/
1322static s32 igb_get_pcs_speed_and_duplex_82575(struct e1000_hw *hw, u16 *speed,
1323                                                u16 *duplex)
1324{
1325        struct e1000_mac_info *mac = &hw->mac;
1326        u32 pcs, status;
1327
1328        /* Set up defaults for the return values of this function */
1329        mac->serdes_has_link = false;
1330        *speed = 0;
1331        *duplex = 0;
1332
1333        /* Read the PCS Status register for link state. For non-copper mode,
1334         * the status register is not accurate. The PCS status register is
1335         * used instead.
1336         */
1337        pcs = rd32(E1000_PCS_LSTAT);
1338
1339        /* The link up bit determines when link is up on autoneg. The sync ok
1340         * gets set once both sides sync up and agree upon link. Stable link
1341         * can be determined by checking for both link up and link sync ok
1342         */
1343        if ((pcs & E1000_PCS_LSTS_LINK_OK) && (pcs & E1000_PCS_LSTS_SYNK_OK)) {
1344                mac->serdes_has_link = true;
1345
1346                /* Detect and store PCS speed */
1347                if (pcs & E1000_PCS_LSTS_SPEED_1000)
1348                        *speed = SPEED_1000;
1349                else if (pcs & E1000_PCS_LSTS_SPEED_100)
1350                        *speed = SPEED_100;
1351                else
1352                        *speed = SPEED_10;
1353
1354                /* Detect and store PCS duplex */
1355                if (pcs & E1000_PCS_LSTS_DUPLEX_FULL)
1356                        *duplex = FULL_DUPLEX;
1357                else
1358                        *duplex = HALF_DUPLEX;
1359
1360        /* Check if it is an I354 2.5Gb backplane connection. */
1361                if (mac->type == e1000_i354) {
1362                        status = rd32(E1000_STATUS);
1363                        if ((status & E1000_STATUS_2P5_SKU) &&
1364                            !(status & E1000_STATUS_2P5_SKU_OVER)) {
1365                                *speed = SPEED_2500;
1366                                *duplex = FULL_DUPLEX;
1367                                hw_dbg("2500 Mbs, ");
1368                                hw_dbg("Full Duplex\n");
1369                        }
1370                }
1371
1372        }
1373
1374        return 0;
1375}
1376
1377/**
1378 *  igb_shutdown_serdes_link_82575 - Remove link during power down
1379 *  @hw: pointer to the HW structure
1380 *
1381 *  In the case of fiber serdes, shut down optics and PCS on driver unload
1382 *  when management pass thru is not enabled.
1383 **/
1384void igb_shutdown_serdes_link_82575(struct e1000_hw *hw)
1385{
1386        u32 reg;
1387
1388        if (hw->phy.media_type != e1000_media_type_internal_serdes &&
1389            igb_sgmii_active_82575(hw))
1390                return;
1391
1392        if (!igb_enable_mng_pass_thru(hw)) {
1393                /* Disable PCS to turn off link */
1394                reg = rd32(E1000_PCS_CFG0);
1395                reg &= ~E1000_PCS_CFG_PCS_EN;
1396                wr32(E1000_PCS_CFG0, reg);
1397
1398                /* shutdown the laser */
1399                reg = rd32(E1000_CTRL_EXT);
1400                reg |= E1000_CTRL_EXT_SDP3_DATA;
1401                wr32(E1000_CTRL_EXT, reg);
1402
1403                /* flush the write to verify completion */
1404                wrfl();
1405                usleep_range(1000, 2000);
1406        }
1407}
1408
1409/**
1410 *  igb_reset_hw_82575 - Reset hardware
1411 *  @hw: pointer to the HW structure
1412 *
1413 *  This resets the hardware into a known state.  This is a
1414 *  function pointer entry point called by the api module.
1415 **/
1416static s32 igb_reset_hw_82575(struct e1000_hw *hw)
1417{
1418        u32 ctrl;
1419        s32 ret_val;
1420
1421        /* Prevent the PCI-E bus from sticking if there is no TLP connection
1422         * on the last TLP read/write transaction when MAC is reset.
1423         */
1424        ret_val = igb_disable_pcie_master(hw);
1425        if (ret_val)
1426                hw_dbg("PCI-E Master disable polling has failed.\n");
1427
1428        /* set the completion timeout for interface */
1429        ret_val = igb_set_pcie_completion_timeout(hw);
1430        if (ret_val)
1431                hw_dbg("PCI-E Set completion timeout has failed.\n");
1432
1433        hw_dbg("Masking off all interrupts\n");
1434        wr32(E1000_IMC, 0xffffffff);
1435
1436        wr32(E1000_RCTL, 0);
1437        wr32(E1000_TCTL, E1000_TCTL_PSP);
1438        wrfl();
1439
1440        usleep_range(10000, 20000);
1441
1442        ctrl = rd32(E1000_CTRL);
1443
1444        hw_dbg("Issuing a global reset to MAC\n");
1445        wr32(E1000_CTRL, ctrl | E1000_CTRL_RST);
1446
1447        ret_val = igb_get_auto_rd_done(hw);
1448        if (ret_val) {
1449                /* When auto config read does not complete, do not
1450                 * return with an error. This can happen in situations
1451                 * where there is no eeprom and prevents getting link.
1452                 */
1453                hw_dbg("Auto Read Done did not complete\n");
1454        }
1455
1456        /* If EEPROM is not present, run manual init scripts */
1457        if ((rd32(E1000_EECD) & E1000_EECD_PRES) == 0)
1458                igb_reset_init_script_82575(hw);
1459
1460        /* Clear any pending interrupt events. */
1461        wr32(E1000_IMC, 0xffffffff);
1462        rd32(E1000_ICR);
1463
1464        /* Install any alternate MAC address into RAR0 */
1465        ret_val = igb_check_alt_mac_addr(hw);
1466
1467        return ret_val;
1468}
1469
1470/**
1471 *  igb_init_hw_82575 - Initialize hardware
1472 *  @hw: pointer to the HW structure
1473 *
1474 *  This inits the hardware readying it for operation.
1475 **/
1476static s32 igb_init_hw_82575(struct e1000_hw *hw)
1477{
1478        struct e1000_mac_info *mac = &hw->mac;
1479        s32 ret_val;
1480        u16 i, rar_count = mac->rar_entry_count;
1481
1482        if ((hw->mac.type >= e1000_i210) &&
1483            !(igb_get_flash_presence_i210(hw))) {
1484                ret_val = igb_pll_workaround_i210(hw);
1485                if (ret_val)
1486                        return ret_val;
1487        }
1488
1489        /* Initialize identification LED */
1490        ret_val = igb_id_led_init(hw);
1491        if (ret_val) {
1492                hw_dbg("Error initializing identification LED\n");
1493                /* This is not fatal and we should not stop init due to this */
1494        }
1495
1496        /* Disabling VLAN filtering */
1497        hw_dbg("Initializing the IEEE VLAN\n");
1498        if ((hw->mac.type == e1000_i350) || (hw->mac.type == e1000_i354))
1499                igb_clear_vfta_i350(hw);
1500        else
1501                igb_clear_vfta(hw);
1502
1503        /* Setup the receive address */
1504        igb_init_rx_addrs(hw, rar_count);
1505
1506        /* Zero out the Multicast HASH table */
1507        hw_dbg("Zeroing the MTA\n");
1508        for (i = 0; i < mac->mta_reg_count; i++)
1509                array_wr32(E1000_MTA, i, 0);
1510
1511        /* Zero out the Unicast HASH table */
1512        hw_dbg("Zeroing the UTA\n");
1513        for (i = 0; i < mac->uta_reg_count; i++)
1514                array_wr32(E1000_UTA, i, 0);
1515
1516        /* Setup link and flow control */
1517        ret_val = igb_setup_link(hw);
1518
1519        /* Clear all of the statistics registers (clear on read).  It is
1520         * important that we do this after we have tried to establish link
1521         * because the symbol error count will increment wildly if there
1522         * is no link.
1523         */
1524        igb_clear_hw_cntrs_82575(hw);
1525        return ret_val;
1526}
1527
1528/**
1529 *  igb_setup_copper_link_82575 - Configure copper link settings
1530 *  @hw: pointer to the HW structure
1531 *
1532 *  Configures the link for auto-neg or forced speed and duplex.  Then we check
1533 *  for link, once link is established calls to configure collision distance
1534 *  and flow control are called.
1535 **/
1536static s32 igb_setup_copper_link_82575(struct e1000_hw *hw)
1537{
1538        u32 ctrl;
1539        s32  ret_val;
1540        u32 phpm_reg;
1541
1542        ctrl = rd32(E1000_CTRL);
1543        ctrl |= E1000_CTRL_SLU;
1544        ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1545        wr32(E1000_CTRL, ctrl);
1546
1547        /* Clear Go Link Disconnect bit on supported devices */
1548        switch (hw->mac.type) {
1549        case e1000_82580:
1550        case e1000_i350:
1551        case e1000_i210:
1552        case e1000_i211:
1553                phpm_reg = rd32(E1000_82580_PHY_POWER_MGMT);
1554                phpm_reg &= ~E1000_82580_PM_GO_LINKD;
1555                wr32(E1000_82580_PHY_POWER_MGMT, phpm_reg);
1556                break;
1557        default:
1558                break;
1559        }
1560
1561        ret_val = igb_setup_serdes_link_82575(hw);
1562        if (ret_val)
1563                goto out;
1564
1565        if (igb_sgmii_active_82575(hw) && !hw->phy.reset_disable) {
1566                /* allow time for SFP cage time to power up phy */
1567                msleep(300);
1568
1569                ret_val = hw->phy.ops.reset(hw);
1570                if (ret_val) {
1571                        hw_dbg("Error resetting the PHY.\n");
1572                        goto out;
1573                }
1574        }
1575        switch (hw->phy.type) {
1576        case e1000_phy_i210:
1577        case e1000_phy_m88:
1578                switch (hw->phy.id) {
1579                case I347AT4_E_PHY_ID:
1580                case M88E1112_E_PHY_ID:
1581                case M88E1543_E_PHY_ID:
1582                case I210_I_PHY_ID:
1583                        ret_val = igb_copper_link_setup_m88_gen2(hw);
1584                        break;
1585                default:
1586                        ret_val = igb_copper_link_setup_m88(hw);
1587                        break;
1588                }
1589                break;
1590        case e1000_phy_igp_3:
1591                ret_val = igb_copper_link_setup_igp(hw);
1592                break;
1593        case e1000_phy_82580:
1594                ret_val = igb_copper_link_setup_82580(hw);
1595                break;
1596        default:
1597                ret_val = -E1000_ERR_PHY;
1598                break;
1599        }
1600
1601        if (ret_val)
1602                goto out;
1603
1604        ret_val = igb_setup_copper_link(hw);
1605out:
1606        return ret_val;
1607}
1608
1609/**
1610 *  igb_setup_serdes_link_82575 - Setup link for serdes
1611 *  @hw: pointer to the HW structure
1612 *
1613 *  Configure the physical coding sub-layer (PCS) link.  The PCS link is
1614 *  used on copper connections where the serialized gigabit media independent
1615 *  interface (sgmii), or serdes fiber is being used.  Configures the link
1616 *  for auto-negotiation or forces speed/duplex.
1617 **/
1618static s32 igb_setup_serdes_link_82575(struct e1000_hw *hw)
1619{
1620        u32 ctrl_ext, ctrl_reg, reg, anadv_reg;
1621        bool pcs_autoneg;
1622        s32 ret_val = 0;
1623        u16 data;
1624
1625        if ((hw->phy.media_type != e1000_media_type_internal_serdes) &&
1626            !igb_sgmii_active_82575(hw))
1627                return ret_val;
1628
1629
1630        /* On the 82575, SerDes loopback mode persists until it is
1631         * explicitly turned off or a power cycle is performed.  A read to
1632         * the register does not indicate its status.  Therefore, we ensure
1633         * loopback mode is disabled during initialization.
1634         */
1635        wr32(E1000_SCTL, E1000_SCTL_DISABLE_SERDES_LOOPBACK);
1636
1637        /* power on the sfp cage if present and turn on I2C */
1638        ctrl_ext = rd32(E1000_CTRL_EXT);
1639        ctrl_ext &= ~E1000_CTRL_EXT_SDP3_DATA;
1640        ctrl_ext |= E1000_CTRL_I2C_ENA;
1641        wr32(E1000_CTRL_EXT, ctrl_ext);
1642
1643        ctrl_reg = rd32(E1000_CTRL);
1644        ctrl_reg |= E1000_CTRL_SLU;
1645
1646        if (hw->mac.type == e1000_82575 || hw->mac.type == e1000_82576) {
1647                /* set both sw defined pins */
1648                ctrl_reg |= E1000_CTRL_SWDPIN0 | E1000_CTRL_SWDPIN1;
1649
1650                /* Set switch control to serdes energy detect */
1651                reg = rd32(E1000_CONNSW);
1652                reg |= E1000_CONNSW_ENRGSRC;
1653                wr32(E1000_CONNSW, reg);
1654        }
1655
1656        reg = rd32(E1000_PCS_LCTL);
1657
1658        /* default pcs_autoneg to the same setting as mac autoneg */
1659        pcs_autoneg = hw->mac.autoneg;
1660
1661        switch (ctrl_ext & E1000_CTRL_EXT_LINK_MODE_MASK) {
1662        case E1000_CTRL_EXT_LINK_MODE_SGMII:
1663                /* sgmii mode lets the phy handle forcing speed/duplex */
1664                pcs_autoneg = true;
1665                /* autoneg time out should be disabled for SGMII mode */
1666                reg &= ~(E1000_PCS_LCTL_AN_TIMEOUT);
1667                break;
1668        case E1000_CTRL_EXT_LINK_MODE_1000BASE_KX:
1669                /* disable PCS autoneg and support parallel detect only */
1670                pcs_autoneg = false;
1671        default:
1672                if (hw->mac.type == e1000_82575 ||
1673                    hw->mac.type == e1000_82576) {
1674                        ret_val = hw->nvm.ops.read(hw, NVM_COMPAT, 1, &data);
1675                        if (ret_val) {
1676                                hw_dbg(KERN_DEBUG "NVM Read Error\n\n");
1677                                return ret_val;
1678                        }
1679
1680                        if (data & E1000_EEPROM_PCS_AUTONEG_DISABLE_BIT)
1681                                pcs_autoneg = false;
1682                }
1683
1684                /* non-SGMII modes only supports a speed of 1000/Full for the
1685                 * link so it is best to just force the MAC and let the pcs
1686                 * link either autoneg or be forced to 1000/Full
1687                 */
1688                ctrl_reg |= E1000_CTRL_SPD_1000 | E1000_CTRL_FRCSPD |
1689                                E1000_CTRL_FD | E1000_CTRL_FRCDPX;
1690
1691                /* set speed of 1000/Full if speed/duplex is forced */
1692                reg |= E1000_PCS_LCTL_FSV_1000 | E1000_PCS_LCTL_FDV_FULL;
1693                break;
1694        }
1695
1696        wr32(E1000_CTRL, ctrl_reg);
1697
1698        /* New SerDes mode allows for forcing speed or autonegotiating speed
1699         * at 1gb. Autoneg should be default set by most drivers. This is the
1700         * mode that will be compatible with older link partners and switches.
1701         * However, both are supported by the hardware and some drivers/tools.
1702         */
1703        reg &= ~(E1000_PCS_LCTL_AN_ENABLE | E1000_PCS_LCTL_FLV_LINK_UP |
1704                E1000_PCS_LCTL_FSD | E1000_PCS_LCTL_FORCE_LINK);
1705
1706        if (pcs_autoneg) {
1707                /* Set PCS register for autoneg */
1708                reg |= E1000_PCS_LCTL_AN_ENABLE | /* Enable Autoneg */
1709                       E1000_PCS_LCTL_AN_RESTART; /* Restart autoneg */
1710
1711                /* Disable force flow control for autoneg */
1712                reg &= ~E1000_PCS_LCTL_FORCE_FCTRL;
1713
1714                /* Configure flow control advertisement for autoneg */
1715                anadv_reg = rd32(E1000_PCS_ANADV);
1716                anadv_reg &= ~(E1000_TXCW_ASM_DIR | E1000_TXCW_PAUSE);
1717                switch (hw->fc.requested_mode) {
1718                case e1000_fc_full:
1719                case e1000_fc_rx_pause:
1720                        anadv_reg |= E1000_TXCW_ASM_DIR;
1721                        anadv_reg |= E1000_TXCW_PAUSE;
1722                        break;
1723                case e1000_fc_tx_pause:
1724                        anadv_reg |= E1000_TXCW_ASM_DIR;
1725                        break;
1726                default:
1727                        break;
1728                }
1729                wr32(E1000_PCS_ANADV, anadv_reg);
1730
1731                hw_dbg("Configuring Autoneg:PCS_LCTL=0x%08X\n", reg);
1732        } else {
1733                /* Set PCS register for forced link */
1734                reg |= E1000_PCS_LCTL_FSD;        /* Force Speed */
1735
1736                /* Force flow control for forced link */
1737                reg |= E1000_PCS_LCTL_FORCE_FCTRL;
1738
1739                hw_dbg("Configuring Forced Link:PCS_LCTL=0x%08X\n", reg);
1740        }
1741
1742        wr32(E1000_PCS_LCTL, reg);
1743
1744        if (!pcs_autoneg && !igb_sgmii_active_82575(hw))
1745                igb_force_mac_fc(hw);
1746
1747        return ret_val;
1748}
1749
1750/**
1751 *  igb_sgmii_active_82575 - Return sgmii state
1752 *  @hw: pointer to the HW structure
1753 *
1754 *  82575 silicon has a serialized gigabit media independent interface (sgmii)
1755 *  which can be enabled for use in the embedded applications.  Simply
1756 *  return the current state of the sgmii interface.
1757 **/
1758static bool igb_sgmii_active_82575(struct e1000_hw *hw)
1759{
1760        struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575;
1761        return dev_spec->sgmii_active;
1762}
1763
1764/**
1765 *  igb_reset_init_script_82575 - Inits HW defaults after reset
1766 *  @hw: pointer to the HW structure
1767 *
1768 *  Inits recommended HW defaults after a reset when there is no EEPROM
1769 *  detected. This is only for the 82575.
1770 **/
1771static s32 igb_reset_init_script_82575(struct e1000_hw *hw)
1772{
1773        if (hw->mac.type == e1000_82575) {
1774                hw_dbg("Running reset init script for 82575\n");
1775                /* SerDes configuration via SERDESCTRL */
1776                igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x00, 0x0C);
1777                igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x01, 0x78);
1778                igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x1B, 0x23);
1779                igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x23, 0x15);
1780
1781                /* CCM configuration via CCMCTL register */
1782                igb_write_8bit_ctrl_reg(hw, E1000_CCMCTL, 0x14, 0x00);
1783                igb_write_8bit_ctrl_reg(hw, E1000_CCMCTL, 0x10, 0x00);
1784
1785                /* PCIe lanes configuration */
1786                igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x00, 0xEC);
1787                igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x61, 0xDF);
1788                igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x34, 0x05);
1789                igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x2F, 0x81);
1790
1791                /* PCIe PLL Configuration */
1792                igb_write_8bit_ctrl_reg(hw, E1000_SCCTL, 0x02, 0x47);
1793                igb_write_8bit_ctrl_reg(hw, E1000_SCCTL, 0x14, 0x00);
1794                igb_write_8bit_ctrl_reg(hw, E1000_SCCTL, 0x10, 0x00);
1795        }
1796
1797        return 0;
1798}
1799
1800/**
1801 *  igb_read_mac_addr_82575 - Read device MAC address
1802 *  @hw: pointer to the HW structure
1803 **/
1804static s32 igb_read_mac_addr_82575(struct e1000_hw *hw)
1805{
1806        s32 ret_val = 0;
1807
1808        /* If there's an alternate MAC address place it in RAR0
1809         * so that it will override the Si installed default perm
1810         * address.
1811         */
1812        ret_val = igb_check_alt_mac_addr(hw);
1813        if (ret_val)
1814                goto out;
1815
1816        ret_val = igb_read_mac_addr(hw);
1817
1818out:
1819        return ret_val;
1820}
1821
1822/**
1823 * igb_power_down_phy_copper_82575 - Remove link during PHY power down
1824 * @hw: pointer to the HW structure
1825 *
1826 * In the case of a PHY power down to save power, or to turn off link during a
1827 * driver unload, or wake on lan is not enabled, remove the link.
1828 **/
1829void igb_power_down_phy_copper_82575(struct e1000_hw *hw)
1830{
1831        /* If the management interface is not enabled, then power down */
1832        if (!(igb_enable_mng_pass_thru(hw) || igb_check_reset_block(hw)))
1833                igb_power_down_phy_copper(hw);
1834}
1835
1836/**
1837 *  igb_clear_hw_cntrs_82575 - Clear device specific hardware counters
1838 *  @hw: pointer to the HW structure
1839 *
1840 *  Clears the hardware counters by reading the counter registers.
1841 **/
1842static void igb_clear_hw_cntrs_82575(struct e1000_hw *hw)
1843{
1844        igb_clear_hw_cntrs_base(hw);
1845
1846        rd32(E1000_PRC64);
1847        rd32(E1000_PRC127);
1848        rd32(E1000_PRC255);
1849        rd32(E1000_PRC511);
1850        rd32(E1000_PRC1023);
1851        rd32(E1000_PRC1522);
1852        rd32(E1000_PTC64);
1853        rd32(E1000_PTC127);
1854        rd32(E1000_PTC255);
1855        rd32(E1000_PTC511);
1856        rd32(E1000_PTC1023);
1857        rd32(E1000_PTC1522);
1858
1859        rd32(E1000_ALGNERRC);
1860        rd32(E1000_RXERRC);
1861        rd32(E1000_TNCRS);
1862        rd32(E1000_CEXTERR);
1863        rd32(E1000_TSCTC);
1864        rd32(E1000_TSCTFC);
1865
1866        rd32(E1000_MGTPRC);
1867        rd32(E1000_MGTPDC);
1868        rd32(E1000_MGTPTC);
1869
1870        rd32(E1000_IAC);
1871        rd32(E1000_ICRXOC);
1872
1873        rd32(E1000_ICRXPTC);
1874        rd32(E1000_ICRXATC);
1875        rd32(E1000_ICTXPTC);
1876        rd32(E1000_ICTXATC);
1877        rd32(E1000_ICTXQEC);
1878        rd32(E1000_ICTXQMTC);
1879        rd32(E1000_ICRXDMTC);
1880
1881        rd32(E1000_CBTMPC);
1882        rd32(E1000_HTDPMC);
1883        rd32(E1000_CBRMPC);
1884        rd32(E1000_RPTHC);
1885        rd32(E1000_HGPTC);
1886        rd32(E1000_HTCBDPC);
1887        rd32(E1000_HGORCL);
1888        rd32(E1000_HGORCH);
1889        rd32(E1000_HGOTCL);
1890        rd32(E1000_HGOTCH);
1891        rd32(E1000_LENERRS);
1892
1893        /* This register should not be read in copper configurations */
1894        if (hw->phy.media_type == e1000_media_type_internal_serdes ||
1895            igb_sgmii_active_82575(hw))
1896                rd32(E1000_SCVPC);
1897}
1898
1899/**
1900 *  igb_rx_fifo_flush_82575 - Clean rx fifo after RX enable
1901 *  @hw: pointer to the HW structure
1902 *
1903 *  After rx enable if managability is enabled then there is likely some
1904 *  bad data at the start of the fifo and possibly in the DMA fifo.  This
1905 *  function clears the fifos and flushes any packets that came in as rx was
1906 *  being enabled.
1907 **/
1908void igb_rx_fifo_flush_82575(struct e1000_hw *hw)
1909{
1910        u32 rctl, rlpml, rxdctl[4], rfctl, temp_rctl, rx_enabled;
1911        int i, ms_wait;
1912
1913        if (hw->mac.type != e1000_82575 ||
1914            !(rd32(E1000_MANC) & E1000_MANC_RCV_TCO_EN))
1915                return;
1916
1917        /* Disable all RX queues */
1918        for (i = 0; i < 4; i++) {
1919                rxdctl[i] = rd32(E1000_RXDCTL(i));
1920                wr32(E1000_RXDCTL(i),
1921                     rxdctl[i] & ~E1000_RXDCTL_QUEUE_ENABLE);
1922        }
1923        /* Poll all queues to verify they have shut down */
1924        for (ms_wait = 0; ms_wait < 10; ms_wait++) {
1925                usleep_range(1000, 2000);
1926                rx_enabled = 0;
1927                for (i = 0; i < 4; i++)
1928                        rx_enabled |= rd32(E1000_RXDCTL(i));
1929                if (!(rx_enabled & E1000_RXDCTL_QUEUE_ENABLE))
1930                        break;
1931        }
1932
1933        if (ms_wait == 10)
1934                hw_dbg("Queue disable timed out after 10ms\n");
1935
1936        /* Clear RLPML, RCTL.SBP, RFCTL.LEF, and set RCTL.LPE so that all
1937         * incoming packets are rejected.  Set enable and wait 2ms so that
1938         * any packet that was coming in as RCTL.EN was set is flushed
1939         */
1940        rfctl = rd32(E1000_RFCTL);
1941        wr32(E1000_RFCTL, rfctl & ~E1000_RFCTL_LEF);
1942
1943        rlpml = rd32(E1000_RLPML);
1944        wr32(E1000_RLPML, 0);
1945
1946        rctl = rd32(E1000_RCTL);
1947        temp_rctl = rctl & ~(E1000_RCTL_EN | E1000_RCTL_SBP);
1948        temp_rctl |= E1000_RCTL_LPE;
1949
1950        wr32(E1000_RCTL, temp_rctl);
1951        wr32(E1000_RCTL, temp_rctl | E1000_RCTL_EN);
1952        wrfl();
1953        usleep_range(2000, 3000);
1954
1955        /* Enable RX queues that were previously enabled and restore our
1956         * previous state
1957         */
1958        for (i = 0; i < 4; i++)
1959                wr32(E1000_RXDCTL(i), rxdctl[i]);
1960        wr32(E1000_RCTL, rctl);
1961        wrfl();
1962
1963        wr32(E1000_RLPML, rlpml);
1964        wr32(E1000_RFCTL, rfctl);
1965
1966        /* Flush receive errors generated by workaround */
1967        rd32(E1000_ROC);
1968        rd32(E1000_RNBC);
1969        rd32(E1000_MPC);
1970}
1971
1972/**
1973 *  igb_set_pcie_completion_timeout - set pci-e completion timeout
1974 *  @hw: pointer to the HW structure
1975 *
1976 *  The defaults for 82575 and 82576 should be in the range of 50us to 50ms,
1977 *  however the hardware default for these parts is 500us to 1ms which is less
1978 *  than the 10ms recommended by the pci-e spec.  To address this we need to
1979 *  increase the value to either 10ms to 200ms for capability version 1 config,
1980 *  or 16ms to 55ms for version 2.
1981 **/
1982static s32 igb_set_pcie_completion_timeout(struct e1000_hw *hw)
1983{
1984        u32 gcr = rd32(E1000_GCR);
1985        s32 ret_val = 0;
1986        u16 pcie_devctl2;
1987
1988        /* only take action if timeout value is defaulted to 0 */
1989        if (gcr & E1000_GCR_CMPL_TMOUT_MASK)
1990                goto out;
1991
1992        /* if capabilities version is type 1 we can write the
1993         * timeout of 10ms to 200ms through the GCR register
1994         */
1995        if (!(gcr & E1000_GCR_CAP_VER2)) {
1996                gcr |= E1000_GCR_CMPL_TMOUT_10ms;
1997                goto out;
1998        }
1999
2000        /* for version 2 capabilities we need to write the config space
2001         * directly in order to set the completion timeout value for
2002         * 16ms to 55ms
2003         */
2004        ret_val = igb_read_pcie_cap_reg(hw, PCIE_DEVICE_CONTROL2,
2005                                        &pcie_devctl2);
2006        if (ret_val)
2007                goto out;
2008
2009        pcie_devctl2 |= PCIE_DEVICE_CONTROL2_16ms;
2010
2011        ret_val = igb_write_pcie_cap_reg(hw, PCIE_DEVICE_CONTROL2,
2012                                         &pcie_devctl2);
2013out:
2014        /* disable completion timeout resend */
2015        gcr &= ~E1000_GCR_CMPL_TMOUT_RESEND;
2016
2017        wr32(E1000_GCR, gcr);
2018        return ret_val;
2019}
2020
2021/**
2022 *  igb_vmdq_set_anti_spoofing_pf - enable or disable anti-spoofing
2023 *  @hw: pointer to the hardware struct
2024 *  @enable: state to enter, either enabled or disabled
2025 *  @pf: Physical Function pool - do not set anti-spoofing for the PF
2026 *
2027 *  enables/disables L2 switch anti-spoofing functionality.
2028 **/
2029void igb_vmdq_set_anti_spoofing_pf(struct e1000_hw *hw, bool enable, int pf)
2030{
2031        u32 reg_val, reg_offset;
2032
2033        switch (hw->mac.type) {
2034        case e1000_82576:
2035                reg_offset = E1000_DTXSWC;
2036                break;
2037        case e1000_i350:
2038        case e1000_i354:
2039                reg_offset = E1000_TXSWC;
2040                break;
2041        default:
2042                return;
2043        }
2044
2045        reg_val = rd32(reg_offset);
2046        if (enable) {
2047                reg_val |= (E1000_DTXSWC_MAC_SPOOF_MASK |
2048                             E1000_DTXSWC_VLAN_SPOOF_MASK);
2049                /* The PF can spoof - it has to in order to
2050                 * support emulation mode NICs
2051                 */
2052                reg_val ^= (1 << pf | 1 << (pf + MAX_NUM_VFS));
2053        } else {
2054                reg_val &= ~(E1000_DTXSWC_MAC_SPOOF_MASK |
2055                             E1000_DTXSWC_VLAN_SPOOF_MASK);
2056        }
2057        wr32(reg_offset, reg_val);
2058}
2059
2060/**
2061 *  igb_vmdq_set_loopback_pf - enable or disable vmdq loopback
2062 *  @hw: pointer to the hardware struct
2063 *  @enable: state to enter, either enabled or disabled
2064 *
2065 *  enables/disables L2 switch loopback functionality.
2066 **/
2067void igb_vmdq_set_loopback_pf(struct e1000_hw *hw, bool enable)
2068{
2069        u32 dtxswc;
2070
2071        switch (hw->mac.type) {
2072        case e1000_82576:
2073                dtxswc = rd32(E1000_DTXSWC);
2074                if (enable)
2075                        dtxswc |= E1000_DTXSWC_VMDQ_LOOPBACK_EN;
2076                else
2077                        dtxswc &= ~E1000_DTXSWC_VMDQ_LOOPBACK_EN;
2078                wr32(E1000_DTXSWC, dtxswc);
2079                break;
2080        case e1000_i354:
2081        case e1000_i350:
2082                dtxswc = rd32(E1000_TXSWC);
2083                if (enable)
2084                        dtxswc |= E1000_DTXSWC_VMDQ_LOOPBACK_EN;
2085                else
2086                        dtxswc &= ~E1000_DTXSWC_VMDQ_LOOPBACK_EN;
2087                wr32(E1000_TXSWC, dtxswc);
2088                break;
2089        default:
2090                /* Currently no other hardware supports loopback */
2091                break;
2092        }
2093
2094}
2095
2096/**
2097 *  igb_vmdq_set_replication_pf - enable or disable vmdq replication
2098 *  @hw: pointer to the hardware struct
2099 *  @enable: state to enter, either enabled or disabled
2100 *
2101 *  enables/disables replication of packets across multiple pools.
2102 **/
2103void igb_vmdq_set_replication_pf(struct e1000_hw *hw, bool enable)
2104{
2105        u32 vt_ctl = rd32(E1000_VT_CTL);
2106
2107        if (enable)
2108                vt_ctl |= E1000_VT_CTL_VM_REPL_EN;
2109        else
2110                vt_ctl &= ~E1000_VT_CTL_VM_REPL_EN;
2111
2112        wr32(E1000_VT_CTL, vt_ctl);
2113}
2114
2115/**
2116 *  igb_read_phy_reg_82580 - Read 82580 MDI control register
2117 *  @hw: pointer to the HW structure
2118 *  @offset: register offset to be read
2119 *  @data: pointer to the read data
2120 *
2121 *  Reads the MDI control register in the PHY at offset and stores the
2122 *  information read to data.
2123 **/
2124static s32 igb_read_phy_reg_82580(struct e1000_hw *hw, u32 offset, u16 *data)
2125{
2126        s32 ret_val;
2127
2128        ret_val = hw->phy.ops.acquire(hw);
2129        if (ret_val)
2130                goto out;
2131
2132        ret_val = igb_read_phy_reg_mdic(hw, offset, data);
2133
2134        hw->phy.ops.release(hw);
2135
2136out:
2137        return ret_val;
2138}
2139
2140/**
2141 *  igb_write_phy_reg_82580 - Write 82580 MDI control register
2142 *  @hw: pointer to the HW structure
2143 *  @offset: register offset to write to
2144 *  @data: data to write to register at offset
2145 *
2146 *  Writes data to MDI control register in the PHY at offset.
2147 **/
2148static s32 igb_write_phy_reg_82580(struct e1000_hw *hw, u32 offset, u16 data)
2149{
2150        s32 ret_val;
2151
2152
2153        ret_val = hw->phy.ops.acquire(hw);
2154        if (ret_val)
2155                goto out;
2156
2157        ret_val = igb_write_phy_reg_mdic(hw, offset, data);
2158
2159        hw->phy.ops.release(hw);
2160
2161out:
2162        return ret_val;
2163}
2164
2165/**
2166 *  igb_reset_mdicnfg_82580 - Reset MDICNFG destination and com_mdio bits
2167 *  @hw: pointer to the HW structure
2168 *
2169 *  This resets the the MDICNFG.Destination and MDICNFG.Com_MDIO bits based on
2170 *  the values found in the EEPROM.  This addresses an issue in which these
2171 *  bits are not restored from EEPROM after reset.
2172 **/
2173static s32 igb_reset_mdicnfg_82580(struct e1000_hw *hw)
2174{
2175        s32 ret_val = 0;
2176        u32 mdicnfg;
2177        u16 nvm_data = 0;
2178
2179        if (hw->mac.type != e1000_82580)
2180                goto out;
2181        if (!igb_sgmii_active_82575(hw))
2182                goto out;
2183
2184        ret_val = hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A +
2185                                   NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1,
2186                                   &nvm_data);
2187        if (ret_val) {
2188                hw_dbg("NVM Read Error\n");
2189                goto out;
2190        }
2191
2192        mdicnfg = rd32(E1000_MDICNFG);
2193        if (nvm_data & NVM_WORD24_EXT_MDIO)
2194                mdicnfg |= E1000_MDICNFG_EXT_MDIO;
2195        if (nvm_data & NVM_WORD24_COM_MDIO)
2196                mdicnfg |= E1000_MDICNFG_COM_MDIO;
2197        wr32(E1000_MDICNFG, mdicnfg);
2198out:
2199        return ret_val;
2200}
2201
2202/**
2203 *  igb_reset_hw_82580 - Reset hardware
2204 *  @hw: pointer to the HW structure
2205 *
2206 *  This resets function or entire device (all ports, etc.)
2207 *  to a known state.
2208 **/
2209static s32 igb_reset_hw_82580(struct e1000_hw *hw)
2210{
2211        s32 ret_val = 0;
2212        /* BH SW mailbox bit in SW_FW_SYNC */
2213        u16 swmbsw_mask = E1000_SW_SYNCH_MB;
2214        u32 ctrl;
2215        bool global_device_reset = hw->dev_spec._82575.global_device_reset;
2216
2217        hw->dev_spec._82575.global_device_reset = false;
2218
2219        /* due to hw errata, global device reset doesn't always
2220         * work on 82580
2221         */
2222        if (hw->mac.type == e1000_82580)
2223                global_device_reset = false;
2224
2225        /* Get current control state. */
2226        ctrl = rd32(E1000_CTRL);
2227
2228        /* Prevent the PCI-E bus from sticking if there is no TLP connection
2229         * on the last TLP read/write transaction when MAC is reset.
2230         */
2231        ret_val = igb_disable_pcie_master(hw);
2232        if (ret_val)
2233                hw_dbg("PCI-E Master disable polling has failed.\n");
2234
2235        hw_dbg("Masking off all interrupts\n");
2236        wr32(E1000_IMC, 0xffffffff);
2237        wr32(E1000_RCTL, 0);
2238        wr32(E1000_TCTL, E1000_TCTL_PSP);
2239        wrfl();
2240
2241        usleep_range(10000, 11000);
2242
2243        /* Determine whether or not a global dev reset is requested */
2244        if (global_device_reset &&
2245                hw->mac.ops.acquire_swfw_sync(hw, swmbsw_mask))
2246                        global_device_reset = false;
2247
2248        if (global_device_reset &&
2249                !(rd32(E1000_STATUS) & E1000_STAT_DEV_RST_SET))
2250                ctrl |= E1000_CTRL_DEV_RST;
2251        else
2252                ctrl |= E1000_CTRL_RST;
2253
2254        wr32(E1000_CTRL, ctrl);
2255        wrfl();
2256
2257        /* Add delay to insure DEV_RST has time to complete */
2258        if (global_device_reset)
2259                usleep_range(5000, 6000);
2260
2261        ret_val = igb_get_auto_rd_done(hw);
2262        if (ret_val) {
2263                /* When auto config read does not complete, do not
2264                 * return with an error. This can happen in situations
2265                 * where there is no eeprom and prevents getting link.
2266                 */
2267                hw_dbg("Auto Read Done did not complete\n");
2268        }
2269
2270        /* clear global device reset status bit */
2271        wr32(E1000_STATUS, E1000_STAT_DEV_RST_SET);
2272
2273        /* Clear any pending interrupt events. */
2274        wr32(E1000_IMC, 0xffffffff);
2275        rd32(E1000_ICR);
2276
2277        ret_val = igb_reset_mdicnfg_82580(hw);
2278        if (ret_val)
2279                hw_dbg("Could not reset MDICNFG based on EEPROM\n");
2280
2281        /* Install any alternate MAC address into RAR0 */
2282        ret_val = igb_check_alt_mac_addr(hw);
2283
2284        /* Release semaphore */
2285        if (global_device_reset)
2286                hw->mac.ops.release_swfw_sync(hw, swmbsw_mask);
2287
2288        return ret_val;
2289}
2290
2291/**
2292 *  igb_rxpbs_adjust_82580 - adjust RXPBS value to reflect actual RX PBA size
2293 *  @data: data received by reading RXPBS register
2294 *
2295 *  The 82580 uses a table based approach for packet buffer allocation sizes.
2296 *  This function converts the retrieved value into the correct table value
2297 *     0x0 0x1 0x2 0x3 0x4 0x5 0x6 0x7
2298 *  0x0 36  72 144   1   2   4   8  16
2299 *  0x8 35  70 140 rsv rsv rsv rsv rsv
2300 */
2301u16 igb_rxpbs_adjust_82580(u32 data)
2302{
2303        u16 ret_val = 0;
2304
2305        if (data < ARRAY_SIZE(e1000_82580_rxpbs_table))
2306                ret_val = e1000_82580_rxpbs_table[data];
2307
2308        return ret_val;
2309}
2310
2311/**
2312 *  igb_validate_nvm_checksum_with_offset - Validate EEPROM
2313 *  checksum
2314 *  @hw: pointer to the HW structure
2315 *  @offset: offset in words of the checksum protected region
2316 *
2317 *  Calculates the EEPROM checksum by reading/adding each word of the EEPROM
2318 *  and then verifies that the sum of the EEPROM is equal to 0xBABA.
2319 **/
2320static s32 igb_validate_nvm_checksum_with_offset(struct e1000_hw *hw,
2321                                                 u16 offset)
2322{
2323        s32 ret_val = 0;
2324        u16 checksum = 0;
2325        u16 i, nvm_data;
2326
2327        for (i = offset; i < ((NVM_CHECKSUM_REG + offset) + 1); i++) {
2328                ret_val = hw->nvm.ops.read(hw, i, 1, &nvm_data);
2329                if (ret_val) {
2330                        hw_dbg("NVM Read Error\n");
2331                        goto out;
2332                }
2333                checksum += nvm_data;
2334        }
2335
2336        if (checksum != (u16) NVM_SUM) {
2337                hw_dbg("NVM Checksum Invalid\n");
2338                ret_val = -E1000_ERR_NVM;
2339                goto out;
2340        }
2341
2342out:
2343        return ret_val;
2344}
2345
2346/**
2347 *  igb_update_nvm_checksum_with_offset - Update EEPROM
2348 *  checksum
2349 *  @hw: pointer to the HW structure
2350 *  @offset: offset in words of the checksum protected region
2351 *
2352 *  Updates the EEPROM checksum by reading/adding each word of the EEPROM
2353 *  up to the checksum.  Then calculates the EEPROM checksum and writes the
2354 *  value to the EEPROM.
2355 **/
2356static s32 igb_update_nvm_checksum_with_offset(struct e1000_hw *hw, u16 offset)
2357{
2358        s32 ret_val;
2359        u16 checksum = 0;
2360        u16 i, nvm_data;
2361
2362        for (i = offset; i < (NVM_CHECKSUM_REG + offset); i++) {
2363                ret_val = hw->nvm.ops.read(hw, i, 1, &nvm_data);
2364                if (ret_val) {
2365                        hw_dbg("NVM Read Error while updating checksum.\n");
2366                        goto out;
2367                }
2368                checksum += nvm_data;
2369        }
2370        checksum = (u16) NVM_SUM - checksum;
2371        ret_val = hw->nvm.ops.write(hw, (NVM_CHECKSUM_REG + offset), 1,
2372                                &checksum);
2373        if (ret_val)
2374                hw_dbg("NVM Write Error while updating checksum.\n");
2375
2376out:
2377        return ret_val;
2378}
2379
2380/**
2381 *  igb_validate_nvm_checksum_82580 - Validate EEPROM checksum
2382 *  @hw: pointer to the HW structure
2383 *
2384 *  Calculates the EEPROM section checksum by reading/adding each word of
2385 *  the EEPROM and then verifies that the sum of the EEPROM is
2386 *  equal to 0xBABA.
2387 **/
2388static s32 igb_validate_nvm_checksum_82580(struct e1000_hw *hw)
2389{
2390        s32 ret_val = 0;
2391        u16 eeprom_regions_count = 1;
2392        u16 j, nvm_data;
2393        u16 nvm_offset;
2394
2395        ret_val = hw->nvm.ops.read(hw, NVM_COMPATIBILITY_REG_3, 1, &nvm_data);
2396        if (ret_val) {
2397                hw_dbg("NVM Read Error\n");
2398                goto out;
2399        }
2400
2401        if (nvm_data & NVM_COMPATIBILITY_BIT_MASK) {
2402                /* if checksums compatibility bit is set validate checksums
2403                 * for all 4 ports.
2404                 */
2405                eeprom_regions_count = 4;
2406        }
2407
2408        for (j = 0; j < eeprom_regions_count; j++) {
2409                nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j);
2410                ret_val = igb_validate_nvm_checksum_with_offset(hw,
2411                                                                nvm_offset);
2412                if (ret_val != 0)
2413                        goto out;
2414        }
2415
2416out:
2417        return ret_val;
2418}
2419
2420/**
2421 *  igb_update_nvm_checksum_82580 - Update EEPROM checksum
2422 *  @hw: pointer to the HW structure
2423 *
2424 *  Updates the EEPROM section checksums for all 4 ports by reading/adding
2425 *  each word of the EEPROM up to the checksum.  Then calculates the EEPROM
2426 *  checksum and writes the value to the EEPROM.
2427 **/
2428static s32 igb_update_nvm_checksum_82580(struct e1000_hw *hw)
2429{
2430        s32 ret_val;
2431        u16 j, nvm_data;
2432        u16 nvm_offset;
2433
2434        ret_val = hw->nvm.ops.read(hw, NVM_COMPATIBILITY_REG_3, 1, &nvm_data);
2435        if (ret_val) {
2436                hw_dbg("NVM Read Error while updating checksum compatibility bit.\n");
2437                goto out;
2438        }
2439
2440        if ((nvm_data & NVM_COMPATIBILITY_BIT_MASK) == 0) {
2441                /* set compatibility bit to validate checksums appropriately */
2442                nvm_data = nvm_data | NVM_COMPATIBILITY_BIT_MASK;
2443                ret_val = hw->nvm.ops.write(hw, NVM_COMPATIBILITY_REG_3, 1,
2444                                        &nvm_data);
2445                if (ret_val) {
2446                        hw_dbg("NVM Write Error while updating checksum compatibility bit.\n");
2447                        goto out;
2448                }
2449        }
2450
2451        for (j = 0; j < 4; j++) {
2452                nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j);
2453                ret_val = igb_update_nvm_checksum_with_offset(hw, nvm_offset);
2454                if (ret_val)
2455                        goto out;
2456        }
2457
2458out:
2459        return ret_val;
2460}
2461
2462/**
2463 *  igb_validate_nvm_checksum_i350 - Validate EEPROM checksum
2464 *  @hw: pointer to the HW structure
2465 *
2466 *  Calculates the EEPROM section checksum by reading/adding each word of
2467 *  the EEPROM and then verifies that the sum of the EEPROM is
2468 *  equal to 0xBABA.
2469 **/
2470static s32 igb_validate_nvm_checksum_i350(struct e1000_hw *hw)
2471{
2472        s32 ret_val = 0;
2473        u16 j;
2474        u16 nvm_offset;
2475
2476        for (j = 0; j < 4; j++) {
2477                nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j);
2478                ret_val = igb_validate_nvm_checksum_with_offset(hw,
2479                                                                nvm_offset);
2480                if (ret_val != 0)
2481                        goto out;
2482        }
2483
2484out:
2485        return ret_val;
2486}
2487
2488/**
2489 *  igb_update_nvm_checksum_i350 - Update EEPROM checksum
2490 *  @hw: pointer to the HW structure
2491 *
2492 *  Updates the EEPROM section checksums for all 4 ports by reading/adding
2493 *  each word of the EEPROM up to the checksum.  Then calculates the EEPROM
2494 *  checksum and writes the value to the EEPROM.
2495 **/
2496static s32 igb_update_nvm_checksum_i350(struct e1000_hw *hw)
2497{
2498        s32 ret_val = 0;
2499        u16 j;
2500        u16 nvm_offset;
2501
2502        for (j = 0; j < 4; j++) {
2503                nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j);
2504                ret_val = igb_update_nvm_checksum_with_offset(hw, nvm_offset);
2505                if (ret_val != 0)
2506                        goto out;
2507        }
2508
2509out:
2510        return ret_val;
2511}
2512
2513/**
2514 *  __igb_access_emi_reg - Read/write EMI register
2515 *  @hw: pointer to the HW structure
2516 *  @addr: EMI address to program
2517 *  @data: pointer to value to read/write from/to the EMI address
2518 *  @read: boolean flag to indicate read or write
2519 **/
2520static s32 __igb_access_emi_reg(struct e1000_hw *hw, u16 address,
2521                                  u16 *data, bool read)
2522{
2523        s32 ret_val = 0;
2524
2525        ret_val = hw->phy.ops.write_reg(hw, E1000_EMIADD, address);
2526        if (ret_val)
2527                return ret_val;
2528
2529        if (read)
2530                ret_val = hw->phy.ops.read_reg(hw, E1000_EMIDATA, data);
2531        else
2532                ret_val = hw->phy.ops.write_reg(hw, E1000_EMIDATA, *data);
2533
2534        return ret_val;
2535}
2536
2537/**
2538 *  igb_read_emi_reg - Read Extended Management Interface register
2539 *  @hw: pointer to the HW structure
2540 *  @addr: EMI address to program
2541 *  @data: value to be read from the EMI address
2542 **/
2543s32 igb_read_emi_reg(struct e1000_hw *hw, u16 addr, u16 *data)
2544{
2545        return __igb_access_emi_reg(hw, addr, data, true);
2546}
2547
2548/**
2549 *  igb_set_eee_i350 - Enable/disable EEE support
2550 *  @hw: pointer to the HW structure
2551 *  @adv1G: boolean flag enabling 1G EEE advertisement
2552 *  @adv100m: boolean flag enabling 100M EEE advertisement
2553 *
2554 *  Enable/disable EEE based on setting in dev_spec structure.
2555 *
2556 **/
2557s32 igb_set_eee_i350(struct e1000_hw *hw, bool adv1G, bool adv100M)
2558{
2559        u32 ipcnfg, eeer;
2560
2561        if ((hw->mac.type < e1000_i350) ||
2562            (hw->phy.media_type != e1000_media_type_copper))
2563                goto out;
2564        ipcnfg = rd32(E1000_IPCNFG);
2565        eeer = rd32(E1000_EEER);
2566
2567        /* enable or disable per user setting */
2568        if (!(hw->dev_spec._82575.eee_disable)) {
2569                u32 eee_su = rd32(E1000_EEE_SU);
2570
2571                if (adv100M)
2572                        ipcnfg |= E1000_IPCNFG_EEE_100M_AN;
2573                else
2574                        ipcnfg &= ~E1000_IPCNFG_EEE_100M_AN;
2575
2576                if (adv1G)
2577                        ipcnfg |= E1000_IPCNFG_EEE_1G_AN;
2578                else
2579                        ipcnfg &= ~E1000_IPCNFG_EEE_1G_AN;
2580
2581                eeer |= (E1000_EEER_TX_LPI_EN | E1000_EEER_RX_LPI_EN |
2582                        E1000_EEER_LPI_FC);
2583
2584                /* This bit should not be set in normal operation. */
2585                if (eee_su & E1000_EEE_SU_LPI_CLK_STP)
2586                        hw_dbg("LPI Clock Stop Bit should not be set!\n");
2587
2588        } else {
2589                ipcnfg &= ~(E1000_IPCNFG_EEE_1G_AN |
2590                        E1000_IPCNFG_EEE_100M_AN);
2591                eeer &= ~(E1000_EEER_TX_LPI_EN |
2592                        E1000_EEER_RX_LPI_EN |
2593                        E1000_EEER_LPI_FC);
2594        }
2595        wr32(E1000_IPCNFG, ipcnfg);
2596        wr32(E1000_EEER, eeer);
2597        rd32(E1000_IPCNFG);
2598        rd32(E1000_EEER);
2599out:
2600
2601        return 0;
2602}
2603
2604/**
2605 *  igb_set_eee_i354 - Enable/disable EEE support
2606 *  @hw: pointer to the HW structure
2607 *  @adv1G: boolean flag enabling 1G EEE advertisement
2608 *  @adv100m: boolean flag enabling 100M EEE advertisement
2609 *
2610 *  Enable/disable EEE legacy mode based on setting in dev_spec structure.
2611 *
2612 **/
2613s32 igb_set_eee_i354(struct e1000_hw *hw, bool adv1G, bool adv100M)
2614{
2615        struct e1000_phy_info *phy = &hw->phy;
2616        s32 ret_val = 0;
2617        u16 phy_data;
2618
2619        if ((hw->phy.media_type != e1000_media_type_copper) ||
2620            (phy->id != M88E1543_E_PHY_ID))
2621                goto out;
2622
2623        if (!hw->dev_spec._82575.eee_disable) {
2624                /* Switch to PHY page 18. */
2625                ret_val = phy->ops.write_reg(hw, E1000_M88E1543_PAGE_ADDR, 18);
2626                if (ret_val)
2627                        goto out;
2628
2629                ret_val = phy->ops.read_reg(hw, E1000_M88E1543_EEE_CTRL_1,
2630                                            &phy_data);
2631                if (ret_val)
2632                        goto out;
2633
2634                phy_data |= E1000_M88E1543_EEE_CTRL_1_MS;
2635                ret_val = phy->ops.write_reg(hw, E1000_M88E1543_EEE_CTRL_1,
2636                                             phy_data);
2637                if (ret_val)
2638                        goto out;
2639
2640                /* Return the PHY to page 0. */
2641                ret_val = phy->ops.write_reg(hw, E1000_M88E1543_PAGE_ADDR, 0);
2642                if (ret_val)
2643                        goto out;
2644
2645                /* Turn on EEE advertisement. */
2646                ret_val = igb_read_xmdio_reg(hw, E1000_EEE_ADV_ADDR_I354,
2647                                             E1000_EEE_ADV_DEV_I354,
2648                                             &phy_data);
2649                if (ret_val)
2650                        goto out;
2651
2652                if (adv100M)
2653                        phy_data |= E1000_EEE_ADV_100_SUPPORTED;
2654                else
2655                        phy_data &= ~E1000_EEE_ADV_100_SUPPORTED;
2656
2657                if (adv1G)
2658                        phy_data |= E1000_EEE_ADV_1000_SUPPORTED;
2659                else
2660                        phy_data &= ~E1000_EEE_ADV_1000_SUPPORTED;
2661
2662                ret_val = igb_write_xmdio_reg(hw, E1000_EEE_ADV_ADDR_I354,
2663                                                E1000_EEE_ADV_DEV_I354,
2664                                                phy_data);
2665        } else {
2666                /* Turn off EEE advertisement. */
2667                ret_val = igb_read_xmdio_reg(hw, E1000_EEE_ADV_ADDR_I354,
2668                                             E1000_EEE_ADV_DEV_I354,
2669                                             &phy_data);
2670                if (ret_val)
2671                        goto out;
2672
2673                phy_data &= ~(E1000_EEE_ADV_100_SUPPORTED |
2674                              E1000_EEE_ADV_1000_SUPPORTED);
2675                ret_val = igb_write_xmdio_reg(hw, E1000_EEE_ADV_ADDR_I354,
2676                                              E1000_EEE_ADV_DEV_I354,
2677                                              phy_data);
2678        }
2679
2680out:
2681        return ret_val;
2682}
2683
2684/**
2685 *  igb_get_eee_status_i354 - Get EEE status
2686 *  @hw: pointer to the HW structure
2687 *  @status: EEE status
2688 *
2689 *  Get EEE status by guessing based on whether Tx or Rx LPI indications have
2690 *  been received.
2691 **/
2692s32 igb_get_eee_status_i354(struct e1000_hw *hw, bool *status)
2693{
2694        struct e1000_phy_info *phy = &hw->phy;
2695        s32 ret_val = 0;
2696        u16 phy_data;
2697
2698        /* Check if EEE is supported on this device. */
2699        if ((hw->phy.media_type != e1000_media_type_copper) ||
2700            (phy->id != M88E1543_E_PHY_ID))
2701                goto out;
2702
2703        ret_val = igb_read_xmdio_reg(hw, E1000_PCS_STATUS_ADDR_I354,
2704                                     E1000_PCS_STATUS_DEV_I354,
2705                                     &phy_data);
2706        if (ret_val)
2707                goto out;
2708
2709        *status = phy_data & (E1000_PCS_STATUS_TX_LPI_RCVD |
2710                              E1000_PCS_STATUS_RX_LPI_RCVD) ? true : false;
2711
2712out:
2713        return ret_val;
2714}
2715
2716static const u8 e1000_emc_temp_data[4] = {
2717        E1000_EMC_INTERNAL_DATA,
2718        E1000_EMC_DIODE1_DATA,
2719        E1000_EMC_DIODE2_DATA,
2720        E1000_EMC_DIODE3_DATA
2721};
2722static const u8 e1000_emc_therm_limit[4] = {
2723        E1000_EMC_INTERNAL_THERM_LIMIT,
2724        E1000_EMC_DIODE1_THERM_LIMIT,
2725        E1000_EMC_DIODE2_THERM_LIMIT,
2726        E1000_EMC_DIODE3_THERM_LIMIT
2727};
2728
2729#ifdef CONFIG_IGB_HWMON
2730/**
2731 *  igb_get_thermal_sensor_data_generic - Gathers thermal sensor data
2732 *  @hw: pointer to hardware structure
2733 *
2734 *  Updates the temperatures in mac.thermal_sensor_data
2735 **/
2736static s32 igb_get_thermal_sensor_data_generic(struct e1000_hw *hw)
2737{
2738        u16 ets_offset;
2739        u16 ets_cfg;
2740        u16 ets_sensor;
2741        u8  num_sensors;
2742        u8  sensor_index;
2743        u8  sensor_location;
2744        u8  i;
2745        struct e1000_thermal_sensor_data *data = &hw->mac.thermal_sensor_data;
2746
2747        if ((hw->mac.type != e1000_i350) || (hw->bus.func != 0))
2748                return E1000_NOT_IMPLEMENTED;
2749
2750        data->sensor[0].temp = (rd32(E1000_THMJT) & 0xFF);
2751
2752        /* Return the internal sensor only if ETS is unsupported */
2753        hw->nvm.ops.read(hw, NVM_ETS_CFG, 1, &ets_offset);
2754        if ((ets_offset == 0x0000) || (ets_offset == 0xFFFF))
2755                return 0;
2756
2757        hw->nvm.ops.read(hw, ets_offset, 1, &ets_cfg);
2758        if (((ets_cfg & NVM_ETS_TYPE_MASK) >> NVM_ETS_TYPE_SHIFT)
2759            != NVM_ETS_TYPE_EMC)
2760                return E1000_NOT_IMPLEMENTED;
2761
2762        num_sensors = (ets_cfg & NVM_ETS_NUM_SENSORS_MASK);
2763        if (num_sensors > E1000_MAX_SENSORS)
2764                num_sensors = E1000_MAX_SENSORS;
2765
2766        for (i = 1; i < num_sensors; i++) {
2767                hw->nvm.ops.read(hw, (ets_offset + i), 1, &ets_sensor);
2768                sensor_index = ((ets_sensor & NVM_ETS_DATA_INDEX_MASK) >>
2769                                NVM_ETS_DATA_INDEX_SHIFT);
2770                sensor_location = ((ets_sensor & NVM_ETS_DATA_LOC_MASK) >>
2771                                   NVM_ETS_DATA_LOC_SHIFT);
2772
2773                if (sensor_location != 0)
2774                        hw->phy.ops.read_i2c_byte(hw,
2775                                        e1000_emc_temp_data[sensor_index],
2776                                        E1000_I2C_THERMAL_SENSOR_ADDR,
2777                                        &data->sensor[i].temp);
2778        }
2779        return 0;
2780}
2781
2782/**
2783 *  igb_init_thermal_sensor_thresh_generic - Sets thermal sensor thresholds
2784 *  @hw: pointer to hardware structure
2785 *
2786 *  Sets the thermal sensor thresholds according to the NVM map
2787 *  and save off the threshold and location values into mac.thermal_sensor_data
2788 **/
2789static s32 igb_init_thermal_sensor_thresh_generic(struct e1000_hw *hw)
2790{
2791        u16 ets_offset;
2792        u16 ets_cfg;
2793        u16 ets_sensor;
2794        u8  low_thresh_delta;
2795        u8  num_sensors;
2796        u8  sensor_index;
2797        u8  sensor_location;
2798        u8  therm_limit;
2799        u8  i;
2800        struct e1000_thermal_sensor_data *data = &hw->mac.thermal_sensor_data;
2801
2802        if ((hw->mac.type != e1000_i350) || (hw->bus.func != 0))
2803                return E1000_NOT_IMPLEMENTED;
2804
2805        memset(data, 0, sizeof(struct e1000_thermal_sensor_data));
2806
2807        data->sensor[0].location = 0x1;
2808        data->sensor[0].caution_thresh =
2809                (rd32(E1000_THHIGHTC) & 0xFF);
2810        data->sensor[0].max_op_thresh =
2811                (rd32(E1000_THLOWTC) & 0xFF);
2812
2813        /* Return the internal sensor only if ETS is unsupported */
2814        hw->nvm.ops.read(hw, NVM_ETS_CFG, 1, &ets_offset);
2815        if ((ets_offset == 0x0000) || (ets_offset == 0xFFFF))
2816                return 0;
2817
2818        hw->nvm.ops.read(hw, ets_offset, 1, &ets_cfg);
2819        if (((ets_cfg & NVM_ETS_TYPE_MASK) >> NVM_ETS_TYPE_SHIFT)
2820            != NVM_ETS_TYPE_EMC)
2821                return E1000_NOT_IMPLEMENTED;
2822
2823        low_thresh_delta = ((ets_cfg & NVM_ETS_LTHRES_DELTA_MASK) >>
2824                            NVM_ETS_LTHRES_DELTA_SHIFT);
2825        num_sensors = (ets_cfg & NVM_ETS_NUM_SENSORS_MASK);
2826
2827        for (i = 1; i <= num_sensors; i++) {
2828                hw->nvm.ops.read(hw, (ets_offset + i), 1, &ets_sensor);
2829                sensor_index = ((ets_sensor & NVM_ETS_DATA_INDEX_MASK) >>
2830                                NVM_ETS_DATA_INDEX_SHIFT);
2831                sensor_location = ((ets_sensor & NVM_ETS_DATA_LOC_MASK) >>
2832                                   NVM_ETS_DATA_LOC_SHIFT);
2833                therm_limit = ets_sensor & NVM_ETS_DATA_HTHRESH_MASK;
2834
2835                hw->phy.ops.write_i2c_byte(hw,
2836                        e1000_emc_therm_limit[sensor_index],
2837                        E1000_I2C_THERMAL_SENSOR_ADDR,
2838                        therm_limit);
2839
2840                if ((i < E1000_MAX_SENSORS) && (sensor_location != 0)) {
2841                        data->sensor[i].location = sensor_location;
2842                        data->sensor[i].caution_thresh = therm_limit;
2843                        data->sensor[i].max_op_thresh = therm_limit -
2844                                                        low_thresh_delta;
2845                }
2846        }
2847        return 0;
2848}
2849
2850#endif
2851static struct e1000_mac_operations e1000_mac_ops_82575 = {
2852        .init_hw              = igb_init_hw_82575,
2853        .check_for_link       = igb_check_for_link_82575,
2854        .rar_set              = igb_rar_set,
2855        .read_mac_addr        = igb_read_mac_addr_82575,
2856        .get_speed_and_duplex = igb_get_link_up_info_82575,
2857#ifdef CONFIG_IGB_HWMON
2858        .get_thermal_sensor_data = igb_get_thermal_sensor_data_generic,
2859        .init_thermal_sensor_thresh = igb_init_thermal_sensor_thresh_generic,
2860#endif
2861};
2862
2863static struct e1000_phy_operations e1000_phy_ops_82575 = {
2864        .acquire              = igb_acquire_phy_82575,
2865        .get_cfg_done         = igb_get_cfg_done_82575,
2866        .release              = igb_release_phy_82575,
2867        .write_i2c_byte       = igb_write_i2c_byte,
2868        .read_i2c_byte        = igb_read_i2c_byte,
2869};
2870
2871static struct e1000_nvm_operations e1000_nvm_ops_82575 = {
2872        .acquire              = igb_acquire_nvm_82575,
2873        .read                 = igb_read_nvm_eerd,
2874        .release              = igb_release_nvm_82575,
2875        .write                = igb_write_nvm_spi,
2876};
2877
2878const struct e1000_info e1000_82575_info = {
2879        .get_invariants = igb_get_invariants_82575,
2880        .mac_ops = &e1000_mac_ops_82575,
2881        .phy_ops = &e1000_phy_ops_82575,
2882        .nvm_ops = &e1000_nvm_ops_82575,
2883};
2884
2885