linux/drivers/net/wireless/ipw2x00/ipw2200.c
<<
>>
Prefs
   1/******************************************************************************
   2
   3  Copyright(c) 2003 - 2006 Intel Corporation. All rights reserved.
   4
   5  802.11 status code portion of this file from ethereal-0.10.6:
   6    Copyright 2000, Axis Communications AB
   7    Ethereal - Network traffic analyzer
   8    By Gerald Combs <gerald@ethereal.com>
   9    Copyright 1998 Gerald Combs
  10
  11  This program is free software; you can redistribute it and/or modify it
  12  under the terms of version 2 of the GNU General Public License as
  13  published by the Free Software Foundation.
  14
  15  This program is distributed in the hope that it will be useful, but WITHOUT
  16  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  17  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  18  more details.
  19
  20  You should have received a copy of the GNU General Public License along with
  21  this program; if not, write to the Free Software Foundation, Inc., 59
  22  Temple Place - Suite 330, Boston, MA  02111-1307, USA.
  23
  24  The full GNU General Public License is included in this distribution in the
  25  file called LICENSE.
  26
  27  Contact Information:
  28  Intel Linux Wireless <ilw@linux.intel.com>
  29  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
  30
  31******************************************************************************/
  32
  33#include <linux/sched.h>
  34#include <linux/slab.h>
  35#include <net/cfg80211-wext.h>
  36#include "ipw2200.h"
  37#include "ipw.h"
  38
  39
  40#ifndef KBUILD_EXTMOD
  41#define VK "k"
  42#else
  43#define VK
  44#endif
  45
  46#ifdef CONFIG_IPW2200_DEBUG
  47#define VD "d"
  48#else
  49#define VD
  50#endif
  51
  52#ifdef CONFIG_IPW2200_MONITOR
  53#define VM "m"
  54#else
  55#define VM
  56#endif
  57
  58#ifdef CONFIG_IPW2200_PROMISCUOUS
  59#define VP "p"
  60#else
  61#define VP
  62#endif
  63
  64#ifdef CONFIG_IPW2200_RADIOTAP
  65#define VR "r"
  66#else
  67#define VR
  68#endif
  69
  70#ifdef CONFIG_IPW2200_QOS
  71#define VQ "q"
  72#else
  73#define VQ
  74#endif
  75
  76#define IPW2200_VERSION "1.2.2" VK VD VM VP VR VQ
  77#define DRV_DESCRIPTION "Intel(R) PRO/Wireless 2200/2915 Network Driver"
  78#define DRV_COPYRIGHT   "Copyright(c) 2003-2006 Intel Corporation"
  79#define DRV_VERSION     IPW2200_VERSION
  80
  81#define ETH_P_80211_STATS (ETH_P_80211_RAW + 1)
  82
  83MODULE_DESCRIPTION(DRV_DESCRIPTION);
  84MODULE_VERSION(DRV_VERSION);
  85MODULE_AUTHOR(DRV_COPYRIGHT);
  86MODULE_LICENSE("GPL");
  87MODULE_FIRMWARE("ipw2200-ibss.fw");
  88#ifdef CONFIG_IPW2200_MONITOR
  89MODULE_FIRMWARE("ipw2200-sniffer.fw");
  90#endif
  91MODULE_FIRMWARE("ipw2200-bss.fw");
  92
  93static int cmdlog = 0;
  94static int debug = 0;
  95static int default_channel = 0;
  96static int network_mode = 0;
  97
  98static u32 ipw_debug_level;
  99static int associate;
 100static int auto_create = 1;
 101static int led_support = 1;
 102static int disable = 0;
 103static int bt_coexist = 0;
 104static int hwcrypto = 0;
 105static int roaming = 1;
 106static const char ipw_modes[] = {
 107        'a', 'b', 'g', '?'
 108};
 109static int antenna = CFG_SYS_ANTENNA_BOTH;
 110
 111#ifdef CONFIG_IPW2200_PROMISCUOUS
 112static int rtap_iface = 0;     /* def: 0 -- do not create rtap interface */
 113#endif
 114
 115static struct ieee80211_rate ipw2200_rates[] = {
 116        { .bitrate = 10 },
 117        { .bitrate = 20, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
 118        { .bitrate = 55, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
 119        { .bitrate = 110, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
 120        { .bitrate = 60 },
 121        { .bitrate = 90 },
 122        { .bitrate = 120 },
 123        { .bitrate = 180 },
 124        { .bitrate = 240 },
 125        { .bitrate = 360 },
 126        { .bitrate = 480 },
 127        { .bitrate = 540 }
 128};
 129
 130#define ipw2200_a_rates         (ipw2200_rates + 4)
 131#define ipw2200_num_a_rates     8
 132#define ipw2200_bg_rates        (ipw2200_rates + 0)
 133#define ipw2200_num_bg_rates    12
 134
 135/* Ugly macro to convert literal channel numbers into their mhz equivalents
 136 * There are certianly some conditions that will break this (like feeding it '30')
 137 * but they shouldn't arise since nothing talks on channel 30. */
 138#define ieee80211chan2mhz(x) \
 139        (((x) <= 14) ? \
 140        (((x) == 14) ? 2484 : ((x) * 5) + 2407) : \
 141        ((x) + 1000) * 5)
 142
 143#ifdef CONFIG_IPW2200_QOS
 144static int qos_enable = 0;
 145static int qos_burst_enable = 0;
 146static int qos_no_ack_mask = 0;
 147static int burst_duration_CCK = 0;
 148static int burst_duration_OFDM = 0;
 149
 150static struct libipw_qos_parameters def_qos_parameters_OFDM = {
 151        {QOS_TX0_CW_MIN_OFDM, QOS_TX1_CW_MIN_OFDM, QOS_TX2_CW_MIN_OFDM,
 152         QOS_TX3_CW_MIN_OFDM},
 153        {QOS_TX0_CW_MAX_OFDM, QOS_TX1_CW_MAX_OFDM, QOS_TX2_CW_MAX_OFDM,
 154         QOS_TX3_CW_MAX_OFDM},
 155        {QOS_TX0_AIFS, QOS_TX1_AIFS, QOS_TX2_AIFS, QOS_TX3_AIFS},
 156        {QOS_TX0_ACM, QOS_TX1_ACM, QOS_TX2_ACM, QOS_TX3_ACM},
 157        {QOS_TX0_TXOP_LIMIT_OFDM, QOS_TX1_TXOP_LIMIT_OFDM,
 158         QOS_TX2_TXOP_LIMIT_OFDM, QOS_TX3_TXOP_LIMIT_OFDM}
 159};
 160
 161static struct libipw_qos_parameters def_qos_parameters_CCK = {
 162        {QOS_TX0_CW_MIN_CCK, QOS_TX1_CW_MIN_CCK, QOS_TX2_CW_MIN_CCK,
 163         QOS_TX3_CW_MIN_CCK},
 164        {QOS_TX0_CW_MAX_CCK, QOS_TX1_CW_MAX_CCK, QOS_TX2_CW_MAX_CCK,
 165         QOS_TX3_CW_MAX_CCK},
 166        {QOS_TX0_AIFS, QOS_TX1_AIFS, QOS_TX2_AIFS, QOS_TX3_AIFS},
 167        {QOS_TX0_ACM, QOS_TX1_ACM, QOS_TX2_ACM, QOS_TX3_ACM},
 168        {QOS_TX0_TXOP_LIMIT_CCK, QOS_TX1_TXOP_LIMIT_CCK, QOS_TX2_TXOP_LIMIT_CCK,
 169         QOS_TX3_TXOP_LIMIT_CCK}
 170};
 171
 172static struct libipw_qos_parameters def_parameters_OFDM = {
 173        {DEF_TX0_CW_MIN_OFDM, DEF_TX1_CW_MIN_OFDM, DEF_TX2_CW_MIN_OFDM,
 174         DEF_TX3_CW_MIN_OFDM},
 175        {DEF_TX0_CW_MAX_OFDM, DEF_TX1_CW_MAX_OFDM, DEF_TX2_CW_MAX_OFDM,
 176         DEF_TX3_CW_MAX_OFDM},
 177        {DEF_TX0_AIFS, DEF_TX1_AIFS, DEF_TX2_AIFS, DEF_TX3_AIFS},
 178        {DEF_TX0_ACM, DEF_TX1_ACM, DEF_TX2_ACM, DEF_TX3_ACM},
 179        {DEF_TX0_TXOP_LIMIT_OFDM, DEF_TX1_TXOP_LIMIT_OFDM,
 180         DEF_TX2_TXOP_LIMIT_OFDM, DEF_TX3_TXOP_LIMIT_OFDM}
 181};
 182
 183static struct libipw_qos_parameters def_parameters_CCK = {
 184        {DEF_TX0_CW_MIN_CCK, DEF_TX1_CW_MIN_CCK, DEF_TX2_CW_MIN_CCK,
 185         DEF_TX3_CW_MIN_CCK},
 186        {DEF_TX0_CW_MAX_CCK, DEF_TX1_CW_MAX_CCK, DEF_TX2_CW_MAX_CCK,
 187         DEF_TX3_CW_MAX_CCK},
 188        {DEF_TX0_AIFS, DEF_TX1_AIFS, DEF_TX2_AIFS, DEF_TX3_AIFS},
 189        {DEF_TX0_ACM, DEF_TX1_ACM, DEF_TX2_ACM, DEF_TX3_ACM},
 190        {DEF_TX0_TXOP_LIMIT_CCK, DEF_TX1_TXOP_LIMIT_CCK, DEF_TX2_TXOP_LIMIT_CCK,
 191         DEF_TX3_TXOP_LIMIT_CCK}
 192};
 193
 194static u8 qos_oui[QOS_OUI_LEN] = { 0x00, 0x50, 0xF2 };
 195
 196static int from_priority_to_tx_queue[] = {
 197        IPW_TX_QUEUE_1, IPW_TX_QUEUE_2, IPW_TX_QUEUE_2, IPW_TX_QUEUE_1,
 198        IPW_TX_QUEUE_3, IPW_TX_QUEUE_3, IPW_TX_QUEUE_4, IPW_TX_QUEUE_4
 199};
 200
 201static u32 ipw_qos_get_burst_duration(struct ipw_priv *priv);
 202
 203static int ipw_send_qos_params_command(struct ipw_priv *priv, struct libipw_qos_parameters
 204                                       *qos_param);
 205static int ipw_send_qos_info_command(struct ipw_priv *priv, struct libipw_qos_information_element
 206                                     *qos_param);
 207#endif                          /* CONFIG_IPW2200_QOS */
 208
 209static struct iw_statistics *ipw_get_wireless_stats(struct net_device *dev);
 210static void ipw_remove_current_network(struct ipw_priv *priv);
 211static void ipw_rx(struct ipw_priv *priv);
 212static int ipw_queue_tx_reclaim(struct ipw_priv *priv,
 213                                struct clx2_tx_queue *txq, int qindex);
 214static int ipw_queue_reset(struct ipw_priv *priv);
 215
 216static int ipw_queue_tx_hcmd(struct ipw_priv *priv, int hcmd, void *buf,
 217                             int len, int sync);
 218
 219static void ipw_tx_queue_free(struct ipw_priv *);
 220
 221static struct ipw_rx_queue *ipw_rx_queue_alloc(struct ipw_priv *);
 222static void ipw_rx_queue_free(struct ipw_priv *, struct ipw_rx_queue *);
 223static void ipw_rx_queue_replenish(void *);
 224static int ipw_up(struct ipw_priv *);
 225static void ipw_bg_up(struct work_struct *work);
 226static void ipw_down(struct ipw_priv *);
 227static void ipw_bg_down(struct work_struct *work);
 228static int ipw_config(struct ipw_priv *);
 229static int init_supported_rates(struct ipw_priv *priv,
 230                                struct ipw_supported_rates *prates);
 231static void ipw_set_hwcrypto_keys(struct ipw_priv *);
 232static void ipw_send_wep_keys(struct ipw_priv *, int);
 233
 234static int snprint_line(char *buf, size_t count,
 235                        const u8 * data, u32 len, u32 ofs)
 236{
 237        int out, i, j, l;
 238        char c;
 239
 240        out = snprintf(buf, count, "%08X", ofs);
 241
 242        for (l = 0, i = 0; i < 2; i++) {
 243                out += snprintf(buf + out, count - out, " ");
 244                for (j = 0; j < 8 && l < len; j++, l++)
 245                        out += snprintf(buf + out, count - out, "%02X ",
 246                                        data[(i * 8 + j)]);
 247                for (; j < 8; j++)
 248                        out += snprintf(buf + out, count - out, "   ");
 249        }
 250
 251        out += snprintf(buf + out, count - out, " ");
 252        for (l = 0, i = 0; i < 2; i++) {
 253                out += snprintf(buf + out, count - out, " ");
 254                for (j = 0; j < 8 && l < len; j++, l++) {
 255                        c = data[(i * 8 + j)];
 256                        if (!isascii(c) || !isprint(c))
 257                                c = '.';
 258
 259                        out += snprintf(buf + out, count - out, "%c", c);
 260                }
 261
 262                for (; j < 8; j++)
 263                        out += snprintf(buf + out, count - out, " ");
 264        }
 265
 266        return out;
 267}
 268
 269static void printk_buf(int level, const u8 * data, u32 len)
 270{
 271        char line[81];
 272        u32 ofs = 0;
 273        if (!(ipw_debug_level & level))
 274                return;
 275
 276        while (len) {
 277                snprint_line(line, sizeof(line), &data[ofs],
 278                             min(len, 16U), ofs);
 279                printk(KERN_DEBUG "%s\n", line);
 280                ofs += 16;
 281                len -= min(len, 16U);
 282        }
 283}
 284
 285static int snprintk_buf(u8 * output, size_t size, const u8 * data, size_t len)
 286{
 287        size_t out = size;
 288        u32 ofs = 0;
 289        int total = 0;
 290
 291        while (size && len) {
 292                out = snprint_line(output, size, &data[ofs],
 293                                   min_t(size_t, len, 16U), ofs);
 294
 295                ofs += 16;
 296                output += out;
 297                size -= out;
 298                len -= min_t(size_t, len, 16U);
 299                total += out;
 300        }
 301        return total;
 302}
 303
 304/* alias for 32-bit indirect read (for SRAM/reg above 4K), with debug wrapper */
 305static u32 _ipw_read_reg32(struct ipw_priv *priv, u32 reg);
 306#define ipw_read_reg32(a, b) _ipw_read_reg32(a, b)
 307
 308/* alias for 8-bit indirect read (for SRAM/reg above 4K), with debug wrapper */
 309static u8 _ipw_read_reg8(struct ipw_priv *ipw, u32 reg);
 310#define ipw_read_reg8(a, b) _ipw_read_reg8(a, b)
 311
 312/* 8-bit indirect write (for SRAM/reg above 4K), with debug wrapper */
 313static void _ipw_write_reg8(struct ipw_priv *priv, u32 reg, u8 value);
 314static inline void ipw_write_reg8(struct ipw_priv *a, u32 b, u8 c)
 315{
 316        IPW_DEBUG_IO("%s %d: write_indirect8(0x%08X, 0x%08X)\n", __FILE__,
 317                     __LINE__, (u32) (b), (u32) (c));
 318        _ipw_write_reg8(a, b, c);
 319}
 320
 321/* 16-bit indirect write (for SRAM/reg above 4K), with debug wrapper */
 322static void _ipw_write_reg16(struct ipw_priv *priv, u32 reg, u16 value);
 323static inline void ipw_write_reg16(struct ipw_priv *a, u32 b, u16 c)
 324{
 325        IPW_DEBUG_IO("%s %d: write_indirect16(0x%08X, 0x%08X)\n", __FILE__,
 326                     __LINE__, (u32) (b), (u32) (c));
 327        _ipw_write_reg16(a, b, c);
 328}
 329
 330/* 32-bit indirect write (for SRAM/reg above 4K), with debug wrapper */
 331static void _ipw_write_reg32(struct ipw_priv *priv, u32 reg, u32 value);
 332static inline void ipw_write_reg32(struct ipw_priv *a, u32 b, u32 c)
 333{
 334        IPW_DEBUG_IO("%s %d: write_indirect32(0x%08X, 0x%08X)\n", __FILE__,
 335                     __LINE__, (u32) (b), (u32) (c));
 336        _ipw_write_reg32(a, b, c);
 337}
 338
 339/* 8-bit direct write (low 4K) */
 340static inline void _ipw_write8(struct ipw_priv *ipw, unsigned long ofs,
 341                u8 val)
 342{
 343        writeb(val, ipw->hw_base + ofs);
 344}
 345
 346/* 8-bit direct write (for low 4K of SRAM/regs), with debug wrapper */
 347#define ipw_write8(ipw, ofs, val) do { \
 348        IPW_DEBUG_IO("%s %d: write_direct8(0x%08X, 0x%08X)\n", __FILE__, \
 349                        __LINE__, (u32)(ofs), (u32)(val)); \
 350        _ipw_write8(ipw, ofs, val); \
 351} while (0)
 352
 353/* 16-bit direct write (low 4K) */
 354static inline void _ipw_write16(struct ipw_priv *ipw, unsigned long ofs,
 355                u16 val)
 356{
 357        writew(val, ipw->hw_base + ofs);
 358}
 359
 360/* 16-bit direct write (for low 4K of SRAM/regs), with debug wrapper */
 361#define ipw_write16(ipw, ofs, val) do { \
 362        IPW_DEBUG_IO("%s %d: write_direct16(0x%08X, 0x%08X)\n", __FILE__, \
 363                        __LINE__, (u32)(ofs), (u32)(val)); \
 364        _ipw_write16(ipw, ofs, val); \
 365} while (0)
 366
 367/* 32-bit direct write (low 4K) */
 368static inline void _ipw_write32(struct ipw_priv *ipw, unsigned long ofs,
 369                u32 val)
 370{
 371        writel(val, ipw->hw_base + ofs);
 372}
 373
 374/* 32-bit direct write (for low 4K of SRAM/regs), with debug wrapper */
 375#define ipw_write32(ipw, ofs, val) do { \
 376        IPW_DEBUG_IO("%s %d: write_direct32(0x%08X, 0x%08X)\n", __FILE__, \
 377                        __LINE__, (u32)(ofs), (u32)(val)); \
 378        _ipw_write32(ipw, ofs, val); \
 379} while (0)
 380
 381/* 8-bit direct read (low 4K) */
 382static inline u8 _ipw_read8(struct ipw_priv *ipw, unsigned long ofs)
 383{
 384        return readb(ipw->hw_base + ofs);
 385}
 386
 387/* alias to 8-bit direct read (low 4K of SRAM/regs), with debug wrapper */
 388#define ipw_read8(ipw, ofs) ({ \
 389        IPW_DEBUG_IO("%s %d: read_direct8(0x%08X)\n", __FILE__, __LINE__, \
 390                        (u32)(ofs)); \
 391        _ipw_read8(ipw, ofs); \
 392})
 393
 394/* 16-bit direct read (low 4K) */
 395static inline u16 _ipw_read16(struct ipw_priv *ipw, unsigned long ofs)
 396{
 397        return readw(ipw->hw_base + ofs);
 398}
 399
 400/* alias to 16-bit direct read (low 4K of SRAM/regs), with debug wrapper */
 401#define ipw_read16(ipw, ofs) ({ \
 402        IPW_DEBUG_IO("%s %d: read_direct16(0x%08X)\n", __FILE__, __LINE__, \
 403                        (u32)(ofs)); \
 404        _ipw_read16(ipw, ofs); \
 405})
 406
 407/* 32-bit direct read (low 4K) */
 408static inline u32 _ipw_read32(struct ipw_priv *ipw, unsigned long ofs)
 409{
 410        return readl(ipw->hw_base + ofs);
 411}
 412
 413/* alias to 32-bit direct read (low 4K of SRAM/regs), with debug wrapper */
 414#define ipw_read32(ipw, ofs) ({ \
 415        IPW_DEBUG_IO("%s %d: read_direct32(0x%08X)\n", __FILE__, __LINE__, \
 416                        (u32)(ofs)); \
 417        _ipw_read32(ipw, ofs); \
 418})
 419
 420static void _ipw_read_indirect(struct ipw_priv *, u32, u8 *, int);
 421/* alias to multi-byte read (SRAM/regs above 4K), with debug wrapper */
 422#define ipw_read_indirect(a, b, c, d) ({ \
 423        IPW_DEBUG_IO("%s %d: read_indirect(0x%08X) %u bytes\n", __FILE__, \
 424                        __LINE__, (u32)(b), (u32)(d)); \
 425        _ipw_read_indirect(a, b, c, d); \
 426})
 427
 428/* alias to multi-byte read (SRAM/regs above 4K), with debug wrapper */
 429static void _ipw_write_indirect(struct ipw_priv *priv, u32 addr, u8 * data,
 430                                int num);
 431#define ipw_write_indirect(a, b, c, d) do { \
 432        IPW_DEBUG_IO("%s %d: write_indirect(0x%08X) %u bytes\n", __FILE__, \
 433                        __LINE__, (u32)(b), (u32)(d)); \
 434        _ipw_write_indirect(a, b, c, d); \
 435} while (0)
 436
 437/* 32-bit indirect write (above 4K) */
 438static void _ipw_write_reg32(struct ipw_priv *priv, u32 reg, u32 value)
 439{
 440        IPW_DEBUG_IO(" %p : reg = 0x%8X : value = 0x%8X\n", priv, reg, value);
 441        _ipw_write32(priv, IPW_INDIRECT_ADDR, reg);
 442        _ipw_write32(priv, IPW_INDIRECT_DATA, value);
 443}
 444
 445/* 8-bit indirect write (above 4K) */
 446static void _ipw_write_reg8(struct ipw_priv *priv, u32 reg, u8 value)
 447{
 448        u32 aligned_addr = reg & IPW_INDIRECT_ADDR_MASK;        /* dword align */
 449        u32 dif_len = reg - aligned_addr;
 450
 451        IPW_DEBUG_IO(" reg = 0x%8X : value = 0x%8X\n", reg, value);
 452        _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
 453        _ipw_write8(priv, IPW_INDIRECT_DATA + dif_len, value);
 454}
 455
 456/* 16-bit indirect write (above 4K) */
 457static void _ipw_write_reg16(struct ipw_priv *priv, u32 reg, u16 value)
 458{
 459        u32 aligned_addr = reg & IPW_INDIRECT_ADDR_MASK;        /* dword align */
 460        u32 dif_len = (reg - aligned_addr) & (~0x1ul);
 461
 462        IPW_DEBUG_IO(" reg = 0x%8X : value = 0x%8X\n", reg, value);
 463        _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
 464        _ipw_write16(priv, IPW_INDIRECT_DATA + dif_len, value);
 465}
 466
 467/* 8-bit indirect read (above 4K) */
 468static u8 _ipw_read_reg8(struct ipw_priv *priv, u32 reg)
 469{
 470        u32 word;
 471        _ipw_write32(priv, IPW_INDIRECT_ADDR, reg & IPW_INDIRECT_ADDR_MASK);
 472        IPW_DEBUG_IO(" reg = 0x%8X :\n", reg);
 473        word = _ipw_read32(priv, IPW_INDIRECT_DATA);
 474        return (word >> ((reg & 0x3) * 8)) & 0xff;
 475}
 476
 477/* 32-bit indirect read (above 4K) */
 478static u32 _ipw_read_reg32(struct ipw_priv *priv, u32 reg)
 479{
 480        u32 value;
 481
 482        IPW_DEBUG_IO("%p : reg = 0x%08x\n", priv, reg);
 483
 484        _ipw_write32(priv, IPW_INDIRECT_ADDR, reg);
 485        value = _ipw_read32(priv, IPW_INDIRECT_DATA);
 486        IPW_DEBUG_IO(" reg = 0x%4X : value = 0x%4x\n", reg, value);
 487        return value;
 488}
 489
 490/* General purpose, no alignment requirement, iterative (multi-byte) read, */
 491/*    for area above 1st 4K of SRAM/reg space */
 492static void _ipw_read_indirect(struct ipw_priv *priv, u32 addr, u8 * buf,
 493                               int num)
 494{
 495        u32 aligned_addr = addr & IPW_INDIRECT_ADDR_MASK;       /* dword align */
 496        u32 dif_len = addr - aligned_addr;
 497        u32 i;
 498
 499        IPW_DEBUG_IO("addr = %i, buf = %p, num = %i\n", addr, buf, num);
 500
 501        if (num <= 0) {
 502                return;
 503        }
 504
 505        /* Read the first dword (or portion) byte by byte */
 506        if (unlikely(dif_len)) {
 507                _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
 508                /* Start reading at aligned_addr + dif_len */
 509                for (i = dif_len; ((i < 4) && (num > 0)); i++, num--)
 510                        *buf++ = _ipw_read8(priv, IPW_INDIRECT_DATA + i);
 511                aligned_addr += 4;
 512        }
 513
 514        /* Read all of the middle dwords as dwords, with auto-increment */
 515        _ipw_write32(priv, IPW_AUTOINC_ADDR, aligned_addr);
 516        for (; num >= 4; buf += 4, aligned_addr += 4, num -= 4)
 517                *(u32 *) buf = _ipw_read32(priv, IPW_AUTOINC_DATA);
 518
 519        /* Read the last dword (or portion) byte by byte */
 520        if (unlikely(num)) {
 521                _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
 522                for (i = 0; num > 0; i++, num--)
 523                        *buf++ = ipw_read8(priv, IPW_INDIRECT_DATA + i);
 524        }
 525}
 526
 527/* General purpose, no alignment requirement, iterative (multi-byte) write, */
 528/*    for area above 1st 4K of SRAM/reg space */
 529static void _ipw_write_indirect(struct ipw_priv *priv, u32 addr, u8 * buf,
 530                                int num)
 531{
 532        u32 aligned_addr = addr & IPW_INDIRECT_ADDR_MASK;       /* dword align */
 533        u32 dif_len = addr - aligned_addr;
 534        u32 i;
 535
 536        IPW_DEBUG_IO("addr = %i, buf = %p, num = %i\n", addr, buf, num);
 537
 538        if (num <= 0) {
 539                return;
 540        }
 541
 542        /* Write the first dword (or portion) byte by byte */
 543        if (unlikely(dif_len)) {
 544                _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
 545                /* Start writing at aligned_addr + dif_len */
 546                for (i = dif_len; ((i < 4) && (num > 0)); i++, num--, buf++)
 547                        _ipw_write8(priv, IPW_INDIRECT_DATA + i, *buf);
 548                aligned_addr += 4;
 549        }
 550
 551        /* Write all of the middle dwords as dwords, with auto-increment */
 552        _ipw_write32(priv, IPW_AUTOINC_ADDR, aligned_addr);
 553        for (; num >= 4; buf += 4, aligned_addr += 4, num -= 4)
 554                _ipw_write32(priv, IPW_AUTOINC_DATA, *(u32 *) buf);
 555
 556        /* Write the last dword (or portion) byte by byte */
 557        if (unlikely(num)) {
 558                _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
 559                for (i = 0; num > 0; i++, num--, buf++)
 560                        _ipw_write8(priv, IPW_INDIRECT_DATA + i, *buf);
 561        }
 562}
 563
 564/* General purpose, no alignment requirement, iterative (multi-byte) write, */
 565/*    for 1st 4K of SRAM/regs space */
 566static void ipw_write_direct(struct ipw_priv *priv, u32 addr, void *buf,
 567                             int num)
 568{
 569        memcpy_toio((priv->hw_base + addr), buf, num);
 570}
 571
 572/* Set bit(s) in low 4K of SRAM/regs */
 573static inline void ipw_set_bit(struct ipw_priv *priv, u32 reg, u32 mask)
 574{
 575        ipw_write32(priv, reg, ipw_read32(priv, reg) | mask);
 576}
 577
 578/* Clear bit(s) in low 4K of SRAM/regs */
 579static inline void ipw_clear_bit(struct ipw_priv *priv, u32 reg, u32 mask)
 580{
 581        ipw_write32(priv, reg, ipw_read32(priv, reg) & ~mask);
 582}
 583
 584static inline void __ipw_enable_interrupts(struct ipw_priv *priv)
 585{
 586        if (priv->status & STATUS_INT_ENABLED)
 587                return;
 588        priv->status |= STATUS_INT_ENABLED;
 589        ipw_write32(priv, IPW_INTA_MASK_R, IPW_INTA_MASK_ALL);
 590}
 591
 592static inline void __ipw_disable_interrupts(struct ipw_priv *priv)
 593{
 594        if (!(priv->status & STATUS_INT_ENABLED))
 595                return;
 596        priv->status &= ~STATUS_INT_ENABLED;
 597        ipw_write32(priv, IPW_INTA_MASK_R, ~IPW_INTA_MASK_ALL);
 598}
 599
 600static inline void ipw_enable_interrupts(struct ipw_priv *priv)
 601{
 602        unsigned long flags;
 603
 604        spin_lock_irqsave(&priv->irq_lock, flags);
 605        __ipw_enable_interrupts(priv);
 606        spin_unlock_irqrestore(&priv->irq_lock, flags);
 607}
 608
 609static inline void ipw_disable_interrupts(struct ipw_priv *priv)
 610{
 611        unsigned long flags;
 612
 613        spin_lock_irqsave(&priv->irq_lock, flags);
 614        __ipw_disable_interrupts(priv);
 615        spin_unlock_irqrestore(&priv->irq_lock, flags);
 616}
 617
 618static char *ipw_error_desc(u32 val)
 619{
 620        switch (val) {
 621        case IPW_FW_ERROR_OK:
 622                return "ERROR_OK";
 623        case IPW_FW_ERROR_FAIL:
 624                return "ERROR_FAIL";
 625        case IPW_FW_ERROR_MEMORY_UNDERFLOW:
 626                return "MEMORY_UNDERFLOW";
 627        case IPW_FW_ERROR_MEMORY_OVERFLOW:
 628                return "MEMORY_OVERFLOW";
 629        case IPW_FW_ERROR_BAD_PARAM:
 630                return "BAD_PARAM";
 631        case IPW_FW_ERROR_BAD_CHECKSUM:
 632                return "BAD_CHECKSUM";
 633        case IPW_FW_ERROR_NMI_INTERRUPT:
 634                return "NMI_INTERRUPT";
 635        case IPW_FW_ERROR_BAD_DATABASE:
 636                return "BAD_DATABASE";
 637        case IPW_FW_ERROR_ALLOC_FAIL:
 638                return "ALLOC_FAIL";
 639        case IPW_FW_ERROR_DMA_UNDERRUN:
 640                return "DMA_UNDERRUN";
 641        case IPW_FW_ERROR_DMA_STATUS:
 642                return "DMA_STATUS";
 643        case IPW_FW_ERROR_DINO_ERROR:
 644                return "DINO_ERROR";
 645        case IPW_FW_ERROR_EEPROM_ERROR:
 646                return "EEPROM_ERROR";
 647        case IPW_FW_ERROR_SYSASSERT:
 648                return "SYSASSERT";
 649        case IPW_FW_ERROR_FATAL_ERROR:
 650                return "FATAL_ERROR";
 651        default:
 652                return "UNKNOWN_ERROR";
 653        }
 654}
 655
 656static void ipw_dump_error_log(struct ipw_priv *priv,
 657                               struct ipw_fw_error *error)
 658{
 659        u32 i;
 660
 661        if (!error) {
 662                IPW_ERROR("Error allocating and capturing error log.  "
 663                          "Nothing to dump.\n");
 664                return;
 665        }
 666
 667        IPW_ERROR("Start IPW Error Log Dump:\n");
 668        IPW_ERROR("Status: 0x%08X, Config: %08X\n",
 669                  error->status, error->config);
 670
 671        for (i = 0; i < error->elem_len; i++)
 672                IPW_ERROR("%s %i 0x%08x  0x%08x  0x%08x  0x%08x  0x%08x\n",
 673                          ipw_error_desc(error->elem[i].desc),
 674                          error->elem[i].time,
 675                          error->elem[i].blink1,
 676                          error->elem[i].blink2,
 677                          error->elem[i].link1,
 678                          error->elem[i].link2, error->elem[i].data);
 679        for (i = 0; i < error->log_len; i++)
 680                IPW_ERROR("%i\t0x%08x\t%i\n",
 681                          error->log[i].time,
 682                          error->log[i].data, error->log[i].event);
 683}
 684
 685static inline int ipw_is_init(struct ipw_priv *priv)
 686{
 687        return (priv->status & STATUS_INIT) ? 1 : 0;
 688}
 689
 690static int ipw_get_ordinal(struct ipw_priv *priv, u32 ord, void *val, u32 * len)
 691{
 692        u32 addr, field_info, field_len, field_count, total_len;
 693
 694        IPW_DEBUG_ORD("ordinal = %i\n", ord);
 695
 696        if (!priv || !val || !len) {
 697                IPW_DEBUG_ORD("Invalid argument\n");
 698                return -EINVAL;
 699        }
 700
 701        /* verify device ordinal tables have been initialized */
 702        if (!priv->table0_addr || !priv->table1_addr || !priv->table2_addr) {
 703                IPW_DEBUG_ORD("Access ordinals before initialization\n");
 704                return -EINVAL;
 705        }
 706
 707        switch (IPW_ORD_TABLE_ID_MASK & ord) {
 708        case IPW_ORD_TABLE_0_MASK:
 709                /*
 710                 * TABLE 0: Direct access to a table of 32 bit values
 711                 *
 712                 * This is a very simple table with the data directly
 713                 * read from the table
 714                 */
 715
 716                /* remove the table id from the ordinal */
 717                ord &= IPW_ORD_TABLE_VALUE_MASK;
 718
 719                /* boundary check */
 720                if (ord > priv->table0_len) {
 721                        IPW_DEBUG_ORD("ordinal value (%i) longer then "
 722                                      "max (%i)\n", ord, priv->table0_len);
 723                        return -EINVAL;
 724                }
 725
 726                /* verify we have enough room to store the value */
 727                if (*len < sizeof(u32)) {
 728                        IPW_DEBUG_ORD("ordinal buffer length too small, "
 729                                      "need %zd\n", sizeof(u32));
 730                        return -EINVAL;
 731                }
 732
 733                IPW_DEBUG_ORD("Reading TABLE0[%i] from offset 0x%08x\n",
 734                              ord, priv->table0_addr + (ord << 2));
 735
 736                *len = sizeof(u32);
 737                ord <<= 2;
 738                *((u32 *) val) = ipw_read32(priv, priv->table0_addr + ord);
 739                break;
 740
 741        case IPW_ORD_TABLE_1_MASK:
 742                /*
 743                 * TABLE 1: Indirect access to a table of 32 bit values
 744                 *
 745                 * This is a fairly large table of u32 values each
 746                 * representing starting addr for the data (which is
 747                 * also a u32)
 748                 */
 749
 750                /* remove the table id from the ordinal */
 751                ord &= IPW_ORD_TABLE_VALUE_MASK;
 752
 753                /* boundary check */
 754                if (ord > priv->table1_len) {
 755                        IPW_DEBUG_ORD("ordinal value too long\n");
 756                        return -EINVAL;
 757                }
 758
 759                /* verify we have enough room to store the value */
 760                if (*len < sizeof(u32)) {
 761                        IPW_DEBUG_ORD("ordinal buffer length too small, "
 762                                      "need %zd\n", sizeof(u32));
 763                        return -EINVAL;
 764                }
 765
 766                *((u32 *) val) =
 767                    ipw_read_reg32(priv, (priv->table1_addr + (ord << 2)));
 768                *len = sizeof(u32);
 769                break;
 770
 771        case IPW_ORD_TABLE_2_MASK:
 772                /*
 773                 * TABLE 2: Indirect access to a table of variable sized values
 774                 *
 775                 * This table consist of six values, each containing
 776                 *     - dword containing the starting offset of the data
 777                 *     - dword containing the lengh in the first 16bits
 778                 *       and the count in the second 16bits
 779                 */
 780
 781                /* remove the table id from the ordinal */
 782                ord &= IPW_ORD_TABLE_VALUE_MASK;
 783
 784                /* boundary check */
 785                if (ord > priv->table2_len) {
 786                        IPW_DEBUG_ORD("ordinal value too long\n");
 787                        return -EINVAL;
 788                }
 789
 790                /* get the address of statistic */
 791                addr = ipw_read_reg32(priv, priv->table2_addr + (ord << 3));
 792
 793                /* get the second DW of statistics ;
 794                 * two 16-bit words - first is length, second is count */
 795                field_info =
 796                    ipw_read_reg32(priv,
 797                                   priv->table2_addr + (ord << 3) +
 798                                   sizeof(u32));
 799
 800                /* get each entry length */
 801                field_len = *((u16 *) & field_info);
 802
 803                /* get number of entries */
 804                field_count = *(((u16 *) & field_info) + 1);
 805
 806                /* abort if not enough memory */
 807                total_len = field_len * field_count;
 808                if (total_len > *len) {
 809                        *len = total_len;
 810                        return -EINVAL;
 811                }
 812
 813                *len = total_len;
 814                if (!total_len)
 815                        return 0;
 816
 817                IPW_DEBUG_ORD("addr = 0x%08x, total_len = %i, "
 818                              "field_info = 0x%08x\n",
 819                              addr, total_len, field_info);
 820                ipw_read_indirect(priv, addr, val, total_len);
 821                break;
 822
 823        default:
 824                IPW_DEBUG_ORD("Invalid ordinal!\n");
 825                return -EINVAL;
 826
 827        }
 828
 829        return 0;
 830}
 831
 832static void ipw_init_ordinals(struct ipw_priv *priv)
 833{
 834        priv->table0_addr = IPW_ORDINALS_TABLE_LOWER;
 835        priv->table0_len = ipw_read32(priv, priv->table0_addr);
 836
 837        IPW_DEBUG_ORD("table 0 offset at 0x%08x, len = %i\n",
 838                      priv->table0_addr, priv->table0_len);
 839
 840        priv->table1_addr = ipw_read32(priv, IPW_ORDINALS_TABLE_1);
 841        priv->table1_len = ipw_read_reg32(priv, priv->table1_addr);
 842
 843        IPW_DEBUG_ORD("table 1 offset at 0x%08x, len = %i\n",
 844                      priv->table1_addr, priv->table1_len);
 845
 846        priv->table2_addr = ipw_read32(priv, IPW_ORDINALS_TABLE_2);
 847        priv->table2_len = ipw_read_reg32(priv, priv->table2_addr);
 848        priv->table2_len &= 0x0000ffff; /* use first two bytes */
 849
 850        IPW_DEBUG_ORD("table 2 offset at 0x%08x, len = %i\n",
 851                      priv->table2_addr, priv->table2_len);
 852
 853}
 854
 855static u32 ipw_register_toggle(u32 reg)
 856{
 857        reg &= ~IPW_START_STANDBY;
 858        if (reg & IPW_GATE_ODMA)
 859                reg &= ~IPW_GATE_ODMA;
 860        if (reg & IPW_GATE_IDMA)
 861                reg &= ~IPW_GATE_IDMA;
 862        if (reg & IPW_GATE_ADMA)
 863                reg &= ~IPW_GATE_ADMA;
 864        return reg;
 865}
 866
 867/*
 868 * LED behavior:
 869 * - On radio ON, turn on any LEDs that require to be on during start
 870 * - On initialization, start unassociated blink
 871 * - On association, disable unassociated blink
 872 * - On disassociation, start unassociated blink
 873 * - On radio OFF, turn off any LEDs started during radio on
 874 *
 875 */
 876#define LD_TIME_LINK_ON msecs_to_jiffies(300)
 877#define LD_TIME_LINK_OFF msecs_to_jiffies(2700)
 878#define LD_TIME_ACT_ON msecs_to_jiffies(250)
 879
 880static void ipw_led_link_on(struct ipw_priv *priv)
 881{
 882        unsigned long flags;
 883        u32 led;
 884
 885        /* If configured to not use LEDs, or nic_type is 1,
 886         * then we don't toggle a LINK led */
 887        if (priv->config & CFG_NO_LED || priv->nic_type == EEPROM_NIC_TYPE_1)
 888                return;
 889
 890        spin_lock_irqsave(&priv->lock, flags);
 891
 892        if (!(priv->status & STATUS_RF_KILL_MASK) &&
 893            !(priv->status & STATUS_LED_LINK_ON)) {
 894                IPW_DEBUG_LED("Link LED On\n");
 895                led = ipw_read_reg32(priv, IPW_EVENT_REG);
 896                led |= priv->led_association_on;
 897
 898                led = ipw_register_toggle(led);
 899
 900                IPW_DEBUG_LED("Reg: 0x%08X\n", led);
 901                ipw_write_reg32(priv, IPW_EVENT_REG, led);
 902
 903                priv->status |= STATUS_LED_LINK_ON;
 904
 905                /* If we aren't associated, schedule turning the LED off */
 906                if (!(priv->status & STATUS_ASSOCIATED))
 907                        schedule_delayed_work(&priv->led_link_off,
 908                                              LD_TIME_LINK_ON);
 909        }
 910
 911        spin_unlock_irqrestore(&priv->lock, flags);
 912}
 913
 914static void ipw_bg_led_link_on(struct work_struct *work)
 915{
 916        struct ipw_priv *priv =
 917                container_of(work, struct ipw_priv, led_link_on.work);
 918        mutex_lock(&priv->mutex);
 919        ipw_led_link_on(priv);
 920        mutex_unlock(&priv->mutex);
 921}
 922
 923static void ipw_led_link_off(struct ipw_priv *priv)
 924{
 925        unsigned long flags;
 926        u32 led;
 927
 928        /* If configured not to use LEDs, or nic type is 1,
 929         * then we don't goggle the LINK led. */
 930        if (priv->config & CFG_NO_LED || priv->nic_type == EEPROM_NIC_TYPE_1)
 931                return;
 932
 933        spin_lock_irqsave(&priv->lock, flags);
 934
 935        if (priv->status & STATUS_LED_LINK_ON) {
 936                led = ipw_read_reg32(priv, IPW_EVENT_REG);
 937                led &= priv->led_association_off;
 938                led = ipw_register_toggle(led);
 939
 940                IPW_DEBUG_LED("Reg: 0x%08X\n", led);
 941                ipw_write_reg32(priv, IPW_EVENT_REG, led);
 942
 943                IPW_DEBUG_LED("Link LED Off\n");
 944
 945                priv->status &= ~STATUS_LED_LINK_ON;
 946
 947                /* If we aren't associated and the radio is on, schedule
 948                 * turning the LED on (blink while unassociated) */
 949                if (!(priv->status & STATUS_RF_KILL_MASK) &&
 950                    !(priv->status & STATUS_ASSOCIATED))
 951                        schedule_delayed_work(&priv->led_link_on,
 952                                              LD_TIME_LINK_OFF);
 953
 954        }
 955
 956        spin_unlock_irqrestore(&priv->lock, flags);
 957}
 958
 959static void ipw_bg_led_link_off(struct work_struct *work)
 960{
 961        struct ipw_priv *priv =
 962                container_of(work, struct ipw_priv, led_link_off.work);
 963        mutex_lock(&priv->mutex);
 964        ipw_led_link_off(priv);
 965        mutex_unlock(&priv->mutex);
 966}
 967
 968static void __ipw_led_activity_on(struct ipw_priv *priv)
 969{
 970        u32 led;
 971
 972        if (priv->config & CFG_NO_LED)
 973                return;
 974
 975        if (priv->status & STATUS_RF_KILL_MASK)
 976                return;
 977
 978        if (!(priv->status & STATUS_LED_ACT_ON)) {
 979                led = ipw_read_reg32(priv, IPW_EVENT_REG);
 980                led |= priv->led_activity_on;
 981
 982                led = ipw_register_toggle(led);
 983
 984                IPW_DEBUG_LED("Reg: 0x%08X\n", led);
 985                ipw_write_reg32(priv, IPW_EVENT_REG, led);
 986
 987                IPW_DEBUG_LED("Activity LED On\n");
 988
 989                priv->status |= STATUS_LED_ACT_ON;
 990
 991                cancel_delayed_work(&priv->led_act_off);
 992                schedule_delayed_work(&priv->led_act_off, LD_TIME_ACT_ON);
 993        } else {
 994                /* Reschedule LED off for full time period */
 995                cancel_delayed_work(&priv->led_act_off);
 996                schedule_delayed_work(&priv->led_act_off, LD_TIME_ACT_ON);
 997        }
 998}
 999
1000#if 0
1001void ipw_led_activity_on(struct ipw_priv *priv)
1002{
1003        unsigned long flags;
1004        spin_lock_irqsave(&priv->lock, flags);
1005        __ipw_led_activity_on(priv);
1006        spin_unlock_irqrestore(&priv->lock, flags);
1007}
1008#endif  /*  0  */
1009
1010static void ipw_led_activity_off(struct ipw_priv *priv)
1011{
1012        unsigned long flags;
1013        u32 led;
1014
1015        if (priv->config & CFG_NO_LED)
1016                return;
1017
1018        spin_lock_irqsave(&priv->lock, flags);
1019
1020        if (priv->status & STATUS_LED_ACT_ON) {
1021                led = ipw_read_reg32(priv, IPW_EVENT_REG);
1022                led &= priv->led_activity_off;
1023
1024                led = ipw_register_toggle(led);
1025
1026                IPW_DEBUG_LED("Reg: 0x%08X\n", led);
1027                ipw_write_reg32(priv, IPW_EVENT_REG, led);
1028
1029                IPW_DEBUG_LED("Activity LED Off\n");
1030
1031                priv->status &= ~STATUS_LED_ACT_ON;
1032        }
1033
1034        spin_unlock_irqrestore(&priv->lock, flags);
1035}
1036
1037static void ipw_bg_led_activity_off(struct work_struct *work)
1038{
1039        struct ipw_priv *priv =
1040                container_of(work, struct ipw_priv, led_act_off.work);
1041        mutex_lock(&priv->mutex);
1042        ipw_led_activity_off(priv);
1043        mutex_unlock(&priv->mutex);
1044}
1045
1046static void ipw_led_band_on(struct ipw_priv *priv)
1047{
1048        unsigned long flags;
1049        u32 led;
1050
1051        /* Only nic type 1 supports mode LEDs */
1052        if (priv->config & CFG_NO_LED ||
1053            priv->nic_type != EEPROM_NIC_TYPE_1 || !priv->assoc_network)
1054                return;
1055
1056        spin_lock_irqsave(&priv->lock, flags);
1057
1058        led = ipw_read_reg32(priv, IPW_EVENT_REG);
1059        if (priv->assoc_network->mode == IEEE_A) {
1060                led |= priv->led_ofdm_on;
1061                led &= priv->led_association_off;
1062                IPW_DEBUG_LED("Mode LED On: 802.11a\n");
1063        } else if (priv->assoc_network->mode == IEEE_G) {
1064                led |= priv->led_ofdm_on;
1065                led |= priv->led_association_on;
1066                IPW_DEBUG_LED("Mode LED On: 802.11g\n");
1067        } else {
1068                led &= priv->led_ofdm_off;
1069                led |= priv->led_association_on;
1070                IPW_DEBUG_LED("Mode LED On: 802.11b\n");
1071        }
1072
1073        led = ipw_register_toggle(led);
1074
1075        IPW_DEBUG_LED("Reg: 0x%08X\n", led);
1076        ipw_write_reg32(priv, IPW_EVENT_REG, led);
1077
1078        spin_unlock_irqrestore(&priv->lock, flags);
1079}
1080
1081static void ipw_led_band_off(struct ipw_priv *priv)
1082{
1083        unsigned long flags;
1084        u32 led;
1085
1086        /* Only nic type 1 supports mode LEDs */
1087        if (priv->config & CFG_NO_LED || priv->nic_type != EEPROM_NIC_TYPE_1)
1088                return;
1089
1090        spin_lock_irqsave(&priv->lock, flags);
1091
1092        led = ipw_read_reg32(priv, IPW_EVENT_REG);
1093        led &= priv->led_ofdm_off;
1094        led &= priv->led_association_off;
1095
1096        led = ipw_register_toggle(led);
1097
1098        IPW_DEBUG_LED("Reg: 0x%08X\n", led);
1099        ipw_write_reg32(priv, IPW_EVENT_REG, led);
1100
1101        spin_unlock_irqrestore(&priv->lock, flags);
1102}
1103
1104static void ipw_led_radio_on(struct ipw_priv *priv)
1105{
1106        ipw_led_link_on(priv);
1107}
1108
1109static void ipw_led_radio_off(struct ipw_priv *priv)
1110{
1111        ipw_led_activity_off(priv);
1112        ipw_led_link_off(priv);
1113}
1114
1115static void ipw_led_link_up(struct ipw_priv *priv)
1116{
1117        /* Set the Link Led on for all nic types */
1118        ipw_led_link_on(priv);
1119}
1120
1121static void ipw_led_link_down(struct ipw_priv *priv)
1122{
1123        ipw_led_activity_off(priv);
1124        ipw_led_link_off(priv);
1125
1126        if (priv->status & STATUS_RF_KILL_MASK)
1127                ipw_led_radio_off(priv);
1128}
1129
1130static void ipw_led_init(struct ipw_priv *priv)
1131{
1132        priv->nic_type = priv->eeprom[EEPROM_NIC_TYPE];
1133
1134        /* Set the default PINs for the link and activity leds */
1135        priv->led_activity_on = IPW_ACTIVITY_LED;
1136        priv->led_activity_off = ~(IPW_ACTIVITY_LED);
1137
1138        priv->led_association_on = IPW_ASSOCIATED_LED;
1139        priv->led_association_off = ~(IPW_ASSOCIATED_LED);
1140
1141        /* Set the default PINs for the OFDM leds */
1142        priv->led_ofdm_on = IPW_OFDM_LED;
1143        priv->led_ofdm_off = ~(IPW_OFDM_LED);
1144
1145        switch (priv->nic_type) {
1146        case EEPROM_NIC_TYPE_1:
1147                /* In this NIC type, the LEDs are reversed.... */
1148                priv->led_activity_on = IPW_ASSOCIATED_LED;
1149                priv->led_activity_off = ~(IPW_ASSOCIATED_LED);
1150                priv->led_association_on = IPW_ACTIVITY_LED;
1151                priv->led_association_off = ~(IPW_ACTIVITY_LED);
1152
1153                if (!(priv->config & CFG_NO_LED))
1154                        ipw_led_band_on(priv);
1155
1156                /* And we don't blink link LEDs for this nic, so
1157                 * just return here */
1158                return;
1159
1160        case EEPROM_NIC_TYPE_3:
1161        case EEPROM_NIC_TYPE_2:
1162        case EEPROM_NIC_TYPE_4:
1163        case EEPROM_NIC_TYPE_0:
1164                break;
1165
1166        default:
1167                IPW_DEBUG_INFO("Unknown NIC type from EEPROM: %d\n",
1168                               priv->nic_type);
1169                priv->nic_type = EEPROM_NIC_TYPE_0;
1170                break;
1171        }
1172
1173        if (!(priv->config & CFG_NO_LED)) {
1174                if (priv->status & STATUS_ASSOCIATED)
1175                        ipw_led_link_on(priv);
1176                else
1177                        ipw_led_link_off(priv);
1178        }
1179}
1180
1181static void ipw_led_shutdown(struct ipw_priv *priv)
1182{
1183        ipw_led_activity_off(priv);
1184        ipw_led_link_off(priv);
1185        ipw_led_band_off(priv);
1186        cancel_delayed_work(&priv->led_link_on);
1187        cancel_delayed_work(&priv->led_link_off);
1188        cancel_delayed_work(&priv->led_act_off);
1189}
1190
1191/*
1192 * The following adds a new attribute to the sysfs representation
1193 * of this device driver (i.e. a new file in /sys/bus/pci/drivers/ipw/)
1194 * used for controlling the debug level.
1195 *
1196 * See the level definitions in ipw for details.
1197 */
1198static ssize_t show_debug_level(struct device_driver *d, char *buf)
1199{
1200        return sprintf(buf, "0x%08X\n", ipw_debug_level);
1201}
1202
1203static ssize_t store_debug_level(struct device_driver *d, const char *buf,
1204                                 size_t count)
1205{
1206        char *p = (char *)buf;
1207        u32 val;
1208
1209        if (p[1] == 'x' || p[1] == 'X' || p[0] == 'x' || p[0] == 'X') {
1210                p++;
1211                if (p[0] == 'x' || p[0] == 'X')
1212                        p++;
1213                val = simple_strtoul(p, &p, 16);
1214        } else
1215                val = simple_strtoul(p, &p, 10);
1216        if (p == buf)
1217                printk(KERN_INFO DRV_NAME
1218                       ": %s is not in hex or decimal form.\n", buf);
1219        else
1220                ipw_debug_level = val;
1221
1222        return strnlen(buf, count);
1223}
1224
1225static DRIVER_ATTR(debug_level, S_IWUSR | S_IRUGO,
1226                   show_debug_level, store_debug_level);
1227
1228static inline u32 ipw_get_event_log_len(struct ipw_priv *priv)
1229{
1230        /* length = 1st dword in log */
1231        return ipw_read_reg32(priv, ipw_read32(priv, IPW_EVENT_LOG));
1232}
1233
1234static void ipw_capture_event_log(struct ipw_priv *priv,
1235                                  u32 log_len, struct ipw_event *log)
1236{
1237        u32 base;
1238
1239        if (log_len) {
1240                base = ipw_read32(priv, IPW_EVENT_LOG);
1241                ipw_read_indirect(priv, base + sizeof(base) + sizeof(u32),
1242                                  (u8 *) log, sizeof(*log) * log_len);
1243        }
1244}
1245
1246static struct ipw_fw_error *ipw_alloc_error_log(struct ipw_priv *priv)
1247{
1248        struct ipw_fw_error *error;
1249        u32 log_len = ipw_get_event_log_len(priv);
1250        u32 base = ipw_read32(priv, IPW_ERROR_LOG);
1251        u32 elem_len = ipw_read_reg32(priv, base);
1252
1253        error = kmalloc(sizeof(*error) +
1254                        sizeof(*error->elem) * elem_len +
1255                        sizeof(*error->log) * log_len, GFP_ATOMIC);
1256        if (!error) {
1257                IPW_ERROR("Memory allocation for firmware error log "
1258                          "failed.\n");
1259                return NULL;
1260        }
1261        error->jiffies = jiffies;
1262        error->status = priv->status;
1263        error->config = priv->config;
1264        error->elem_len = elem_len;
1265        error->log_len = log_len;
1266        error->elem = (struct ipw_error_elem *)error->payload;
1267        error->log = (struct ipw_event *)(error->elem + elem_len);
1268
1269        ipw_capture_event_log(priv, log_len, error->log);
1270
1271        if (elem_len)
1272                ipw_read_indirect(priv, base + sizeof(base), (u8 *) error->elem,
1273                                  sizeof(*error->elem) * elem_len);
1274
1275        return error;
1276}
1277
1278static ssize_t show_event_log(struct device *d,
1279                              struct device_attribute *attr, char *buf)
1280{
1281        struct ipw_priv *priv = dev_get_drvdata(d);
1282        u32 log_len = ipw_get_event_log_len(priv);
1283        u32 log_size;
1284        struct ipw_event *log;
1285        u32 len = 0, i;
1286
1287        /* not using min() because of its strict type checking */
1288        log_size = PAGE_SIZE / sizeof(*log) > log_len ?
1289                        sizeof(*log) * log_len : PAGE_SIZE;
1290        log = kzalloc(log_size, GFP_KERNEL);
1291        if (!log) {
1292                IPW_ERROR("Unable to allocate memory for log\n");
1293                return 0;
1294        }
1295        log_len = log_size / sizeof(*log);
1296        ipw_capture_event_log(priv, log_len, log);
1297
1298        len += snprintf(buf + len, PAGE_SIZE - len, "%08X", log_len);
1299        for (i = 0; i < log_len; i++)
1300                len += snprintf(buf + len, PAGE_SIZE - len,
1301                                "\n%08X%08X%08X",
1302                                log[i].time, log[i].event, log[i].data);
1303        len += snprintf(buf + len, PAGE_SIZE - len, "\n");
1304        kfree(log);
1305        return len;
1306}
1307
1308static DEVICE_ATTR(event_log, S_IRUGO, show_event_log, NULL);
1309
1310static ssize_t show_error(struct device *d,
1311                          struct device_attribute *attr, char *buf)
1312{
1313        struct ipw_priv *priv = dev_get_drvdata(d);
1314        u32 len = 0, i;
1315        if (!priv->error)
1316                return 0;
1317        len += snprintf(buf + len, PAGE_SIZE - len,
1318                        "%08lX%08X%08X%08X",
1319                        priv->error->jiffies,
1320                        priv->error->status,
1321                        priv->error->config, priv->error->elem_len);
1322        for (i = 0; i < priv->error->elem_len; i++)
1323                len += snprintf(buf + len, PAGE_SIZE - len,
1324                                "\n%08X%08X%08X%08X%08X%08X%08X",
1325                                priv->error->elem[i].time,
1326                                priv->error->elem[i].desc,
1327                                priv->error->elem[i].blink1,
1328                                priv->error->elem[i].blink2,
1329                                priv->error->elem[i].link1,
1330                                priv->error->elem[i].link2,
1331                                priv->error->elem[i].data);
1332
1333        len += snprintf(buf + len, PAGE_SIZE - len,
1334                        "\n%08X", priv->error->log_len);
1335        for (i = 0; i < priv->error->log_len; i++)
1336                len += snprintf(buf + len, PAGE_SIZE - len,
1337                                "\n%08X%08X%08X",
1338                                priv->error->log[i].time,
1339                                priv->error->log[i].event,
1340                                priv->error->log[i].data);
1341        len += snprintf(buf + len, PAGE_SIZE - len, "\n");
1342        return len;
1343}
1344
1345static ssize_t clear_error(struct device *d,
1346                           struct device_attribute *attr,
1347                           const char *buf, size_t count)
1348{
1349        struct ipw_priv *priv = dev_get_drvdata(d);
1350
1351        kfree(priv->error);
1352        priv->error = NULL;
1353        return count;
1354}
1355
1356static DEVICE_ATTR(error, S_IRUGO | S_IWUSR, show_error, clear_error);
1357
1358static ssize_t show_cmd_log(struct device *d,
1359                            struct device_attribute *attr, char *buf)
1360{
1361        struct ipw_priv *priv = dev_get_drvdata(d);
1362        u32 len = 0, i;
1363        if (!priv->cmdlog)
1364                return 0;
1365        for (i = (priv->cmdlog_pos + 1) % priv->cmdlog_len;
1366             (i != priv->cmdlog_pos) && (PAGE_SIZE - len);
1367             i = (i + 1) % priv->cmdlog_len) {
1368                len +=
1369                    snprintf(buf + len, PAGE_SIZE - len,
1370                             "\n%08lX%08X%08X%08X\n", priv->cmdlog[i].jiffies,
1371                             priv->cmdlog[i].retcode, priv->cmdlog[i].cmd.cmd,
1372                             priv->cmdlog[i].cmd.len);
1373                len +=
1374                    snprintk_buf(buf + len, PAGE_SIZE - len,
1375                                 (u8 *) priv->cmdlog[i].cmd.param,
1376                                 priv->cmdlog[i].cmd.len);
1377                len += snprintf(buf + len, PAGE_SIZE - len, "\n");
1378        }
1379        len += snprintf(buf + len, PAGE_SIZE - len, "\n");
1380        return len;
1381}
1382
1383static DEVICE_ATTR(cmd_log, S_IRUGO, show_cmd_log, NULL);
1384
1385#ifdef CONFIG_IPW2200_PROMISCUOUS
1386static void ipw_prom_free(struct ipw_priv *priv);
1387static int ipw_prom_alloc(struct ipw_priv *priv);
1388static ssize_t store_rtap_iface(struct device *d,
1389                         struct device_attribute *attr,
1390                         const char *buf, size_t count)
1391{
1392        struct ipw_priv *priv = dev_get_drvdata(d);
1393        int rc = 0;
1394
1395        if (count < 1)
1396                return -EINVAL;
1397
1398        switch (buf[0]) {
1399        case '0':
1400                if (!rtap_iface)
1401                        return count;
1402
1403                if (netif_running(priv->prom_net_dev)) {
1404                        IPW_WARNING("Interface is up.  Cannot unregister.\n");
1405                        return count;
1406                }
1407
1408                ipw_prom_free(priv);
1409                rtap_iface = 0;
1410                break;
1411
1412        case '1':
1413                if (rtap_iface)
1414                        return count;
1415
1416                rc = ipw_prom_alloc(priv);
1417                if (!rc)
1418                        rtap_iface = 1;
1419                break;
1420
1421        default:
1422                return -EINVAL;
1423        }
1424
1425        if (rc) {
1426                IPW_ERROR("Failed to register promiscuous network "
1427                          "device (error %d).\n", rc);
1428        }
1429
1430        return count;
1431}
1432
1433static ssize_t show_rtap_iface(struct device *d,
1434                        struct device_attribute *attr,
1435                        char *buf)
1436{
1437        struct ipw_priv *priv = dev_get_drvdata(d);
1438        if (rtap_iface)
1439                return sprintf(buf, "%s", priv->prom_net_dev->name);
1440        else {
1441                buf[0] = '-';
1442                buf[1] = '1';
1443                buf[2] = '\0';
1444                return 3;
1445        }
1446}
1447
1448static DEVICE_ATTR(rtap_iface, S_IWUSR | S_IRUSR, show_rtap_iface,
1449                   store_rtap_iface);
1450
1451static ssize_t store_rtap_filter(struct device *d,
1452                         struct device_attribute *attr,
1453                         const char *buf, size_t count)
1454{
1455        struct ipw_priv *priv = dev_get_drvdata(d);
1456
1457        if (!priv->prom_priv) {
1458                IPW_ERROR("Attempting to set filter without "
1459                          "rtap_iface enabled.\n");
1460                return -EPERM;
1461        }
1462
1463        priv->prom_priv->filter = simple_strtol(buf, NULL, 0);
1464
1465        IPW_DEBUG_INFO("Setting rtap filter to " BIT_FMT16 "\n",
1466                       BIT_ARG16(priv->prom_priv->filter));
1467
1468        return count;
1469}
1470
1471static ssize_t show_rtap_filter(struct device *d,
1472                        struct device_attribute *attr,
1473                        char *buf)
1474{
1475        struct ipw_priv *priv = dev_get_drvdata(d);
1476        return sprintf(buf, "0x%04X",
1477                       priv->prom_priv ? priv->prom_priv->filter : 0);
1478}
1479
1480static DEVICE_ATTR(rtap_filter, S_IWUSR | S_IRUSR, show_rtap_filter,
1481                   store_rtap_filter);
1482#endif
1483
1484static ssize_t show_scan_age(struct device *d, struct device_attribute *attr,
1485                             char *buf)
1486{
1487        struct ipw_priv *priv = dev_get_drvdata(d);
1488        return sprintf(buf, "%d\n", priv->ieee->scan_age);
1489}
1490
1491static ssize_t store_scan_age(struct device *d, struct device_attribute *attr,
1492                              const char *buf, size_t count)
1493{
1494        struct ipw_priv *priv = dev_get_drvdata(d);
1495        struct net_device *dev = priv->net_dev;
1496        char buffer[] = "00000000";
1497        unsigned long len =
1498            (sizeof(buffer) - 1) > count ? count : sizeof(buffer) - 1;
1499        unsigned long val;
1500        char *p = buffer;
1501
1502        IPW_DEBUG_INFO("enter\n");
1503
1504        strncpy(buffer, buf, len);
1505        buffer[len] = 0;
1506
1507        if (p[1] == 'x' || p[1] == 'X' || p[0] == 'x' || p[0] == 'X') {
1508                p++;
1509                if (p[0] == 'x' || p[0] == 'X')
1510                        p++;
1511                val = simple_strtoul(p, &p, 16);
1512        } else
1513                val = simple_strtoul(p, &p, 10);
1514        if (p == buffer) {
1515                IPW_DEBUG_INFO("%s: user supplied invalid value.\n", dev->name);
1516        } else {
1517                priv->ieee->scan_age = val;
1518                IPW_DEBUG_INFO("set scan_age = %u\n", priv->ieee->scan_age);
1519        }
1520
1521        IPW_DEBUG_INFO("exit\n");
1522        return len;
1523}
1524
1525static DEVICE_ATTR(scan_age, S_IWUSR | S_IRUGO, show_scan_age, store_scan_age);
1526
1527static ssize_t show_led(struct device *d, struct device_attribute *attr,
1528                        char *buf)
1529{
1530        struct ipw_priv *priv = dev_get_drvdata(d);
1531        return sprintf(buf, "%d\n", (priv->config & CFG_NO_LED) ? 0 : 1);
1532}
1533
1534static ssize_t store_led(struct device *d, struct device_attribute *attr,
1535                         const char *buf, size_t count)
1536{
1537        struct ipw_priv *priv = dev_get_drvdata(d);
1538
1539        IPW_DEBUG_INFO("enter\n");
1540
1541        if (count == 0)
1542                return 0;
1543
1544        if (*buf == 0) {
1545                IPW_DEBUG_LED("Disabling LED control.\n");
1546                priv->config |= CFG_NO_LED;
1547                ipw_led_shutdown(priv);
1548        } else {
1549                IPW_DEBUG_LED("Enabling LED control.\n");
1550                priv->config &= ~CFG_NO_LED;
1551                ipw_led_init(priv);
1552        }
1553
1554        IPW_DEBUG_INFO("exit\n");
1555        return count;
1556}
1557
1558static DEVICE_ATTR(led, S_IWUSR | S_IRUGO, show_led, store_led);
1559
1560static ssize_t show_status(struct device *d,
1561                           struct device_attribute *attr, char *buf)
1562{
1563        struct ipw_priv *p = dev_get_drvdata(d);
1564        return sprintf(buf, "0x%08x\n", (int)p->status);
1565}
1566
1567static DEVICE_ATTR(status, S_IRUGO, show_status, NULL);
1568
1569static ssize_t show_cfg(struct device *d, struct device_attribute *attr,
1570                        char *buf)
1571{
1572        struct ipw_priv *p = dev_get_drvdata(d);
1573        return sprintf(buf, "0x%08x\n", (int)p->config);
1574}
1575
1576static DEVICE_ATTR(cfg, S_IRUGO, show_cfg, NULL);
1577
1578static ssize_t show_nic_type(struct device *d,
1579                             struct device_attribute *attr, char *buf)
1580{
1581        struct ipw_priv *priv = dev_get_drvdata(d);
1582        return sprintf(buf, "TYPE: %d\n", priv->nic_type);
1583}
1584
1585static DEVICE_ATTR(nic_type, S_IRUGO, show_nic_type, NULL);
1586
1587static ssize_t show_ucode_version(struct device *d,
1588                                  struct device_attribute *attr, char *buf)
1589{
1590        u32 len = sizeof(u32), tmp = 0;
1591        struct ipw_priv *p = dev_get_drvdata(d);
1592
1593        if (ipw_get_ordinal(p, IPW_ORD_STAT_UCODE_VERSION, &tmp, &len))
1594                return 0;
1595
1596        return sprintf(buf, "0x%08x\n", tmp);
1597}
1598
1599static DEVICE_ATTR(ucode_version, S_IWUSR | S_IRUGO, show_ucode_version, NULL);
1600
1601static ssize_t show_rtc(struct device *d, struct device_attribute *attr,
1602                        char *buf)
1603{
1604        u32 len = sizeof(u32), tmp = 0;
1605        struct ipw_priv *p = dev_get_drvdata(d);
1606
1607        if (ipw_get_ordinal(p, IPW_ORD_STAT_RTC, &tmp, &len))
1608                return 0;
1609
1610        return sprintf(buf, "0x%08x\n", tmp);
1611}
1612
1613static DEVICE_ATTR(rtc, S_IWUSR | S_IRUGO, show_rtc, NULL);
1614
1615/*
1616 * Add a device attribute to view/control the delay between eeprom
1617 * operations.
1618 */
1619static ssize_t show_eeprom_delay(struct device *d,
1620                                 struct device_attribute *attr, char *buf)
1621{
1622        struct ipw_priv *p = dev_get_drvdata(d);
1623        int n = p->eeprom_delay;
1624        return sprintf(buf, "%i\n", n);
1625}
1626static ssize_t store_eeprom_delay(struct device *d,
1627                                  struct device_attribute *attr,
1628                                  const char *buf, size_t count)
1629{
1630        struct ipw_priv *p = dev_get_drvdata(d);
1631        sscanf(buf, "%i", &p->eeprom_delay);
1632        return strnlen(buf, count);
1633}
1634
1635static DEVICE_ATTR(eeprom_delay, S_IWUSR | S_IRUGO,
1636                   show_eeprom_delay, store_eeprom_delay);
1637
1638static ssize_t show_command_event_reg(struct device *d,
1639                                      struct device_attribute *attr, char *buf)
1640{
1641        u32 reg = 0;
1642        struct ipw_priv *p = dev_get_drvdata(d);
1643
1644        reg = ipw_read_reg32(p, IPW_INTERNAL_CMD_EVENT);
1645        return sprintf(buf, "0x%08x\n", reg);
1646}
1647static ssize_t store_command_event_reg(struct device *d,
1648                                       struct device_attribute *attr,
1649                                       const char *buf, size_t count)
1650{
1651        u32 reg;
1652        struct ipw_priv *p = dev_get_drvdata(d);
1653
1654        sscanf(buf, "%x", &reg);
1655        ipw_write_reg32(p, IPW_INTERNAL_CMD_EVENT, reg);
1656        return strnlen(buf, count);
1657}
1658
1659static DEVICE_ATTR(command_event_reg, S_IWUSR | S_IRUGO,
1660                   show_command_event_reg, store_command_event_reg);
1661
1662static ssize_t show_mem_gpio_reg(struct device *d,
1663                                 struct device_attribute *attr, char *buf)
1664{
1665        u32 reg = 0;
1666        struct ipw_priv *p = dev_get_drvdata(d);
1667
1668        reg = ipw_read_reg32(p, 0x301100);
1669        return sprintf(buf, "0x%08x\n", reg);
1670}
1671static ssize_t store_mem_gpio_reg(struct device *d,
1672                                  struct device_attribute *attr,
1673                                  const char *buf, size_t count)
1674{
1675        u32 reg;
1676        struct ipw_priv *p = dev_get_drvdata(d);
1677
1678        sscanf(buf, "%x", &reg);
1679        ipw_write_reg32(p, 0x301100, reg);
1680        return strnlen(buf, count);
1681}
1682
1683static DEVICE_ATTR(mem_gpio_reg, S_IWUSR | S_IRUGO,
1684                   show_mem_gpio_reg, store_mem_gpio_reg);
1685
1686static ssize_t show_indirect_dword(struct device *d,
1687                                   struct device_attribute *attr, char *buf)
1688{
1689        u32 reg = 0;
1690        struct ipw_priv *priv = dev_get_drvdata(d);
1691
1692        if (priv->status & STATUS_INDIRECT_DWORD)
1693                reg = ipw_read_reg32(priv, priv->indirect_dword);
1694        else
1695                reg = 0;
1696
1697        return sprintf(buf, "0x%08x\n", reg);
1698}
1699static ssize_t store_indirect_dword(struct device *d,
1700                                    struct device_attribute *attr,
1701                                    const char *buf, size_t count)
1702{
1703        struct ipw_priv *priv = dev_get_drvdata(d);
1704
1705        sscanf(buf, "%x", &priv->indirect_dword);
1706        priv->status |= STATUS_INDIRECT_DWORD;
1707        return strnlen(buf, count);
1708}
1709
1710static DEVICE_ATTR(indirect_dword, S_IWUSR | S_IRUGO,
1711                   show_indirect_dword, store_indirect_dword);
1712
1713static ssize_t show_indirect_byte(struct device *d,
1714                                  struct device_attribute *attr, char *buf)
1715{
1716        u8 reg = 0;
1717        struct ipw_priv *priv = dev_get_drvdata(d);
1718
1719        if (priv->status & STATUS_INDIRECT_BYTE)
1720                reg = ipw_read_reg8(priv, priv->indirect_byte);
1721        else
1722                reg = 0;
1723
1724        return sprintf(buf, "0x%02x\n", reg);
1725}
1726static ssize_t store_indirect_byte(struct device *d,
1727                                   struct device_attribute *attr,
1728                                   const char *buf, size_t count)
1729{
1730        struct ipw_priv *priv = dev_get_drvdata(d);
1731
1732        sscanf(buf, "%x", &priv->indirect_byte);
1733        priv->status |= STATUS_INDIRECT_BYTE;
1734        return strnlen(buf, count);
1735}
1736
1737static DEVICE_ATTR(indirect_byte, S_IWUSR | S_IRUGO,
1738                   show_indirect_byte, store_indirect_byte);
1739
1740static ssize_t show_direct_dword(struct device *d,
1741                                 struct device_attribute *attr, char *buf)
1742{
1743        u32 reg = 0;
1744        struct ipw_priv *priv = dev_get_drvdata(d);
1745
1746        if (priv->status & STATUS_DIRECT_DWORD)
1747                reg = ipw_read32(priv, priv->direct_dword);
1748        else
1749                reg = 0;
1750
1751        return sprintf(buf, "0x%08x\n", reg);
1752}
1753static ssize_t store_direct_dword(struct device *d,
1754                                  struct device_attribute *attr,
1755                                  const char *buf, size_t count)
1756{
1757        struct ipw_priv *priv = dev_get_drvdata(d);
1758
1759        sscanf(buf, "%x", &priv->direct_dword);
1760        priv->status |= STATUS_DIRECT_DWORD;
1761        return strnlen(buf, count);
1762}
1763
1764static DEVICE_ATTR(direct_dword, S_IWUSR | S_IRUGO,
1765                   show_direct_dword, store_direct_dword);
1766
1767static int rf_kill_active(struct ipw_priv *priv)
1768{
1769        if (0 == (ipw_read32(priv, 0x30) & 0x10000)) {
1770                priv->status |= STATUS_RF_KILL_HW;
1771                wiphy_rfkill_set_hw_state(priv->ieee->wdev.wiphy, true);
1772        } else {
1773                priv->status &= ~STATUS_RF_KILL_HW;
1774                wiphy_rfkill_set_hw_state(priv->ieee->wdev.wiphy, false);
1775        }
1776
1777        return (priv->status & STATUS_RF_KILL_HW) ? 1 : 0;
1778}
1779
1780static ssize_t show_rf_kill(struct device *d, struct device_attribute *attr,
1781                            char *buf)
1782{
1783        /* 0 - RF kill not enabled
1784           1 - SW based RF kill active (sysfs)
1785           2 - HW based RF kill active
1786           3 - Both HW and SW baed RF kill active */
1787        struct ipw_priv *priv = dev_get_drvdata(d);
1788        int val = ((priv->status & STATUS_RF_KILL_SW) ? 0x1 : 0x0) |
1789            (rf_kill_active(priv) ? 0x2 : 0x0);
1790        return sprintf(buf, "%i\n", val);
1791}
1792
1793static int ipw_radio_kill_sw(struct ipw_priv *priv, int disable_radio)
1794{
1795        if ((disable_radio ? 1 : 0) ==
1796            ((priv->status & STATUS_RF_KILL_SW) ? 1 : 0))
1797                return 0;
1798
1799        IPW_DEBUG_RF_KILL("Manual SW RF Kill set to: RADIO  %s\n",
1800                          disable_radio ? "OFF" : "ON");
1801
1802        if (disable_radio) {
1803                priv->status |= STATUS_RF_KILL_SW;
1804
1805                cancel_delayed_work(&priv->request_scan);
1806                cancel_delayed_work(&priv->request_direct_scan);
1807                cancel_delayed_work(&priv->request_passive_scan);
1808                cancel_delayed_work(&priv->scan_event);
1809                schedule_work(&priv->down);
1810        } else {
1811                priv->status &= ~STATUS_RF_KILL_SW;
1812                if (rf_kill_active(priv)) {
1813                        IPW_DEBUG_RF_KILL("Can not turn radio back on - "
1814                                          "disabled by HW switch\n");
1815                        /* Make sure the RF_KILL check timer is running */
1816                        cancel_delayed_work(&priv->rf_kill);
1817                        schedule_delayed_work(&priv->rf_kill,
1818                                              round_jiffies_relative(2 * HZ));
1819                } else
1820                        schedule_work(&priv->up);
1821        }
1822
1823        return 1;
1824}
1825
1826static ssize_t store_rf_kill(struct device *d, struct device_attribute *attr,
1827                             const char *buf, size_t count)
1828{
1829        struct ipw_priv *priv = dev_get_drvdata(d);
1830
1831        ipw_radio_kill_sw(priv, buf[0] == '1');
1832
1833        return count;
1834}
1835
1836static DEVICE_ATTR(rf_kill, S_IWUSR | S_IRUGO, show_rf_kill, store_rf_kill);
1837
1838static ssize_t show_speed_scan(struct device *d, struct device_attribute *attr,
1839                               char *buf)
1840{
1841        struct ipw_priv *priv = dev_get_drvdata(d);
1842        int pos = 0, len = 0;
1843        if (priv->config & CFG_SPEED_SCAN) {
1844                while (priv->speed_scan[pos] != 0)
1845                        len += sprintf(&buf[len], "%d ",
1846                                       priv->speed_scan[pos++]);
1847                return len + sprintf(&buf[len], "\n");
1848        }
1849
1850        return sprintf(buf, "0\n");
1851}
1852
1853static ssize_t store_speed_scan(struct device *d, struct device_attribute *attr,
1854                                const char *buf, size_t count)
1855{
1856        struct ipw_priv *priv = dev_get_drvdata(d);
1857        int channel, pos = 0;
1858        const char *p = buf;
1859
1860        /* list of space separated channels to scan, optionally ending with 0 */
1861        while ((channel = simple_strtol(p, NULL, 0))) {
1862                if (pos == MAX_SPEED_SCAN - 1) {
1863                        priv->speed_scan[pos] = 0;
1864                        break;
1865                }
1866
1867                if (libipw_is_valid_channel(priv->ieee, channel))
1868                        priv->speed_scan[pos++] = channel;
1869                else
1870                        IPW_WARNING("Skipping invalid channel request: %d\n",
1871                                    channel);
1872                p = strchr(p, ' ');
1873                if (!p)
1874                        break;
1875                while (*p == ' ' || *p == '\t')
1876                        p++;
1877        }
1878
1879        if (pos == 0)
1880                priv->config &= ~CFG_SPEED_SCAN;
1881        else {
1882                priv->speed_scan_pos = 0;
1883                priv->config |= CFG_SPEED_SCAN;
1884        }
1885
1886        return count;
1887}
1888
1889static DEVICE_ATTR(speed_scan, S_IWUSR | S_IRUGO, show_speed_scan,
1890                   store_speed_scan);
1891
1892static ssize_t show_net_stats(struct device *d, struct device_attribute *attr,
1893                              char *buf)
1894{
1895        struct ipw_priv *priv = dev_get_drvdata(d);
1896        return sprintf(buf, "%c\n", (priv->config & CFG_NET_STATS) ? '1' : '0');
1897}
1898
1899static ssize_t store_net_stats(struct device *d, struct device_attribute *attr,
1900                               const char *buf, size_t count)
1901{
1902        struct ipw_priv *priv = dev_get_drvdata(d);
1903        if (buf[0] == '1')
1904                priv->config |= CFG_NET_STATS;
1905        else
1906                priv->config &= ~CFG_NET_STATS;
1907
1908        return count;
1909}
1910
1911static DEVICE_ATTR(net_stats, S_IWUSR | S_IRUGO,
1912                   show_net_stats, store_net_stats);
1913
1914static ssize_t show_channels(struct device *d,
1915                             struct device_attribute *attr,
1916                             char *buf)
1917{
1918        struct ipw_priv *priv = dev_get_drvdata(d);
1919        const struct libipw_geo *geo = libipw_get_geo(priv->ieee);
1920        int len = 0, i;
1921
1922        len = sprintf(&buf[len],
1923                      "Displaying %d channels in 2.4Ghz band "
1924                      "(802.11bg):\n", geo->bg_channels);
1925
1926        for (i = 0; i < geo->bg_channels; i++) {
1927                len += sprintf(&buf[len], "%d: BSS%s%s, %s, Band %s.\n",
1928                               geo->bg[i].channel,
1929                               geo->bg[i].flags & LIBIPW_CH_RADAR_DETECT ?
1930                               " (radar spectrum)" : "",
1931                               ((geo->bg[i].flags & LIBIPW_CH_NO_IBSS) ||
1932                                (geo->bg[i].flags & LIBIPW_CH_RADAR_DETECT))
1933                               ? "" : ", IBSS",
1934                               geo->bg[i].flags & LIBIPW_CH_PASSIVE_ONLY ?
1935                               "passive only" : "active/passive",
1936                               geo->bg[i].flags & LIBIPW_CH_B_ONLY ?
1937                               "B" : "B/G");
1938        }
1939
1940        len += sprintf(&buf[len],
1941                       "Displaying %d channels in 5.2Ghz band "
1942                       "(802.11a):\n", geo->a_channels);
1943        for (i = 0; i < geo->a_channels; i++) {
1944                len += sprintf(&buf[len], "%d: BSS%s%s, %s.\n",
1945                               geo->a[i].channel,
1946                               geo->a[i].flags & LIBIPW_CH_RADAR_DETECT ?
1947                               " (radar spectrum)" : "",
1948                               ((geo->a[i].flags & LIBIPW_CH_NO_IBSS) ||
1949                                (geo->a[i].flags & LIBIPW_CH_RADAR_DETECT))
1950                               ? "" : ", IBSS",
1951                               geo->a[i].flags & LIBIPW_CH_PASSIVE_ONLY ?
1952                               "passive only" : "active/passive");
1953        }
1954
1955        return len;
1956}
1957
1958static DEVICE_ATTR(channels, S_IRUSR, show_channels, NULL);
1959
1960static void notify_wx_assoc_event(struct ipw_priv *priv)
1961{
1962        union iwreq_data wrqu;
1963        wrqu.ap_addr.sa_family = ARPHRD_ETHER;
1964        if (priv->status & STATUS_ASSOCIATED)
1965                memcpy(wrqu.ap_addr.sa_data, priv->bssid, ETH_ALEN);
1966        else
1967                memset(wrqu.ap_addr.sa_data, 0, ETH_ALEN);
1968        wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
1969}
1970
1971static void ipw_irq_tasklet(struct ipw_priv *priv)
1972{
1973        u32 inta, inta_mask, handled = 0;
1974        unsigned long flags;
1975        int rc = 0;
1976
1977        spin_lock_irqsave(&priv->irq_lock, flags);
1978
1979        inta = ipw_read32(priv, IPW_INTA_RW);
1980        inta_mask = ipw_read32(priv, IPW_INTA_MASK_R);
1981
1982        if (inta == 0xFFFFFFFF) {
1983                /* Hardware disappeared */
1984                IPW_WARNING("TASKLET INTA == 0xFFFFFFFF\n");
1985                /* Only handle the cached INTA values */
1986                inta = 0;
1987        }
1988        inta &= (IPW_INTA_MASK_ALL & inta_mask);
1989
1990        /* Add any cached INTA values that need to be handled */
1991        inta |= priv->isr_inta;
1992
1993        spin_unlock_irqrestore(&priv->irq_lock, flags);
1994
1995        spin_lock_irqsave(&priv->lock, flags);
1996
1997        /* handle all the justifications for the interrupt */
1998        if (inta & IPW_INTA_BIT_RX_TRANSFER) {
1999                ipw_rx(priv);
2000                handled |= IPW_INTA_BIT_RX_TRANSFER;
2001        }
2002
2003        if (inta & IPW_INTA_BIT_TX_CMD_QUEUE) {
2004                IPW_DEBUG_HC("Command completed.\n");
2005                rc = ipw_queue_tx_reclaim(priv, &priv->txq_cmd, -1);
2006                priv->status &= ~STATUS_HCMD_ACTIVE;
2007                wake_up_interruptible(&priv->wait_command_queue);
2008                handled |= IPW_INTA_BIT_TX_CMD_QUEUE;
2009        }
2010
2011        if (inta & IPW_INTA_BIT_TX_QUEUE_1) {
2012                IPW_DEBUG_TX("TX_QUEUE_1\n");
2013                rc = ipw_queue_tx_reclaim(priv, &priv->txq[0], 0);
2014                handled |= IPW_INTA_BIT_TX_QUEUE_1;
2015        }
2016
2017        if (inta & IPW_INTA_BIT_TX_QUEUE_2) {
2018                IPW_DEBUG_TX("TX_QUEUE_2\n");
2019                rc = ipw_queue_tx_reclaim(priv, &priv->txq[1], 1);
2020                handled |= IPW_INTA_BIT_TX_QUEUE_2;
2021        }
2022
2023        if (inta & IPW_INTA_BIT_TX_QUEUE_3) {
2024                IPW_DEBUG_TX("TX_QUEUE_3\n");
2025                rc = ipw_queue_tx_reclaim(priv, &priv->txq[2], 2);
2026                handled |= IPW_INTA_BIT_TX_QUEUE_3;
2027        }
2028
2029        if (inta & IPW_INTA_BIT_TX_QUEUE_4) {
2030                IPW_DEBUG_TX("TX_QUEUE_4\n");
2031                rc = ipw_queue_tx_reclaim(priv, &priv->txq[3], 3);
2032                handled |= IPW_INTA_BIT_TX_QUEUE_4;
2033        }
2034
2035        if (inta & IPW_INTA_BIT_STATUS_CHANGE) {
2036                IPW_WARNING("STATUS_CHANGE\n");
2037                handled |= IPW_INTA_BIT_STATUS_CHANGE;
2038        }
2039
2040        if (inta & IPW_INTA_BIT_BEACON_PERIOD_EXPIRED) {
2041                IPW_WARNING("TX_PERIOD_EXPIRED\n");
2042                handled |= IPW_INTA_BIT_BEACON_PERIOD_EXPIRED;
2043        }
2044
2045        if (inta & IPW_INTA_BIT_SLAVE_MODE_HOST_CMD_DONE) {
2046                IPW_WARNING("HOST_CMD_DONE\n");
2047                handled |= IPW_INTA_BIT_SLAVE_MODE_HOST_CMD_DONE;
2048        }
2049
2050        if (inta & IPW_INTA_BIT_FW_INITIALIZATION_DONE) {
2051                IPW_WARNING("FW_INITIALIZATION_DONE\n");
2052                handled |= IPW_INTA_BIT_FW_INITIALIZATION_DONE;
2053        }
2054
2055        if (inta & IPW_INTA_BIT_FW_CARD_DISABLE_PHY_OFF_DONE) {
2056                IPW_WARNING("PHY_OFF_DONE\n");
2057                handled |= IPW_INTA_BIT_FW_CARD_DISABLE_PHY_OFF_DONE;
2058        }
2059
2060        if (inta & IPW_INTA_BIT_RF_KILL_DONE) {
2061                IPW_DEBUG_RF_KILL("RF_KILL_DONE\n");
2062                priv->status |= STATUS_RF_KILL_HW;
2063                wiphy_rfkill_set_hw_state(priv->ieee->wdev.wiphy, true);
2064                wake_up_interruptible(&priv->wait_command_queue);
2065                priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
2066                cancel_delayed_work(&priv->request_scan);
2067                cancel_delayed_work(&priv->request_direct_scan);
2068                cancel_delayed_work(&priv->request_passive_scan);
2069                cancel_delayed_work(&priv->scan_event);
2070                schedule_work(&priv->link_down);
2071                schedule_delayed_work(&priv->rf_kill, 2 * HZ);
2072                handled |= IPW_INTA_BIT_RF_KILL_DONE;
2073        }
2074
2075        if (inta & IPW_INTA_BIT_FATAL_ERROR) {
2076                IPW_WARNING("Firmware error detected.  Restarting.\n");
2077                if (priv->error) {
2078                        IPW_DEBUG_FW("Sysfs 'error' log already exists.\n");
2079                        if (ipw_debug_level & IPW_DL_FW_ERRORS) {
2080                                struct ipw_fw_error *error =
2081                                    ipw_alloc_error_log(priv);
2082                                ipw_dump_error_log(priv, error);
2083                                kfree(error);
2084                        }
2085                } else {
2086                        priv->error = ipw_alloc_error_log(priv);
2087                        if (priv->error)
2088                                IPW_DEBUG_FW("Sysfs 'error' log captured.\n");
2089                        else
2090                                IPW_DEBUG_FW("Error allocating sysfs 'error' "
2091                                             "log.\n");
2092                        if (ipw_debug_level & IPW_DL_FW_ERRORS)
2093                                ipw_dump_error_log(priv, priv->error);
2094                }
2095
2096                /* XXX: If hardware encryption is for WPA/WPA2,
2097                 * we have to notify the supplicant. */
2098                if (priv->ieee->sec.encrypt) {
2099                        priv->status &= ~STATUS_ASSOCIATED;
2100                        notify_wx_assoc_event(priv);
2101                }
2102
2103                /* Keep the restart process from trying to send host
2104                 * commands by clearing the INIT status bit */
2105                priv->status &= ~STATUS_INIT;
2106
2107                /* Cancel currently queued command. */
2108                priv->status &= ~STATUS_HCMD_ACTIVE;
2109                wake_up_interruptible(&priv->wait_command_queue);
2110
2111                schedule_work(&priv->adapter_restart);
2112                handled |= IPW_INTA_BIT_FATAL_ERROR;
2113        }
2114
2115        if (inta & IPW_INTA_BIT_PARITY_ERROR) {
2116                IPW_ERROR("Parity error\n");
2117                handled |= IPW_INTA_BIT_PARITY_ERROR;
2118        }
2119
2120        if (handled != inta) {
2121                IPW_ERROR("Unhandled INTA bits 0x%08x\n", inta & ~handled);
2122        }
2123
2124        spin_unlock_irqrestore(&priv->lock, flags);
2125
2126        /* enable all interrupts */
2127        ipw_enable_interrupts(priv);
2128}
2129
2130#define IPW_CMD(x) case IPW_CMD_ ## x : return #x
2131static char *get_cmd_string(u8 cmd)
2132{
2133        switch (cmd) {
2134                IPW_CMD(HOST_COMPLETE);
2135                IPW_CMD(POWER_DOWN);
2136                IPW_CMD(SYSTEM_CONFIG);
2137                IPW_CMD(MULTICAST_ADDRESS);
2138                IPW_CMD(SSID);
2139                IPW_CMD(ADAPTER_ADDRESS);
2140                IPW_CMD(PORT_TYPE);
2141                IPW_CMD(RTS_THRESHOLD);
2142                IPW_CMD(FRAG_THRESHOLD);
2143                IPW_CMD(POWER_MODE);
2144                IPW_CMD(WEP_KEY);
2145                IPW_CMD(TGI_TX_KEY);
2146                IPW_CMD(SCAN_REQUEST);
2147                IPW_CMD(SCAN_REQUEST_EXT);
2148                IPW_CMD(ASSOCIATE);
2149                IPW_CMD(SUPPORTED_RATES);
2150                IPW_CMD(SCAN_ABORT);
2151                IPW_CMD(TX_FLUSH);
2152                IPW_CMD(QOS_PARAMETERS);
2153                IPW_CMD(DINO_CONFIG);
2154                IPW_CMD(RSN_CAPABILITIES);
2155                IPW_CMD(RX_KEY);
2156                IPW_CMD(CARD_DISABLE);
2157                IPW_CMD(SEED_NUMBER);
2158                IPW_CMD(TX_POWER);
2159                IPW_CMD(COUNTRY_INFO);
2160                IPW_CMD(AIRONET_INFO);
2161                IPW_CMD(AP_TX_POWER);
2162                IPW_CMD(CCKM_INFO);
2163                IPW_CMD(CCX_VER_INFO);
2164                IPW_CMD(SET_CALIBRATION);
2165                IPW_CMD(SENSITIVITY_CALIB);
2166                IPW_CMD(RETRY_LIMIT);
2167                IPW_CMD(IPW_PRE_POWER_DOWN);
2168                IPW_CMD(VAP_BEACON_TEMPLATE);
2169                IPW_CMD(VAP_DTIM_PERIOD);
2170                IPW_CMD(EXT_SUPPORTED_RATES);
2171                IPW_CMD(VAP_LOCAL_TX_PWR_CONSTRAINT);
2172                IPW_CMD(VAP_QUIET_INTERVALS);
2173                IPW_CMD(VAP_CHANNEL_SWITCH);
2174                IPW_CMD(VAP_MANDATORY_CHANNELS);
2175                IPW_CMD(VAP_CELL_PWR_LIMIT);
2176                IPW_CMD(VAP_CF_PARAM_SET);
2177                IPW_CMD(VAP_SET_BEACONING_STATE);
2178                IPW_CMD(MEASUREMENT);
2179                IPW_CMD(POWER_CAPABILITY);
2180                IPW_CMD(SUPPORTED_CHANNELS);
2181                IPW_CMD(TPC_REPORT);
2182                IPW_CMD(WME_INFO);
2183                IPW_CMD(PRODUCTION_COMMAND);
2184        default:
2185                return "UNKNOWN";
2186        }
2187}
2188
2189#define HOST_COMPLETE_TIMEOUT HZ
2190
2191static int __ipw_send_cmd(struct ipw_priv *priv, struct host_cmd *cmd)
2192{
2193        int rc = 0;
2194        unsigned long flags;
2195        unsigned long now, end;
2196
2197        spin_lock_irqsave(&priv->lock, flags);
2198        if (priv->status & STATUS_HCMD_ACTIVE) {
2199                IPW_ERROR("Failed to send %s: Already sending a command.\n",
2200                          get_cmd_string(cmd->cmd));
2201                spin_unlock_irqrestore(&priv->lock, flags);
2202                return -EAGAIN;
2203        }
2204
2205        priv->status |= STATUS_HCMD_ACTIVE;
2206
2207        if (priv->cmdlog) {
2208                priv->cmdlog[priv->cmdlog_pos].jiffies = jiffies;
2209                priv->cmdlog[priv->cmdlog_pos].cmd.cmd = cmd->cmd;
2210                priv->cmdlog[priv->cmdlog_pos].cmd.len = cmd->len;
2211                memcpy(priv->cmdlog[priv->cmdlog_pos].cmd.param, cmd->param,
2212                       cmd->len);
2213                priv->cmdlog[priv->cmdlog_pos].retcode = -1;
2214        }
2215
2216        IPW_DEBUG_HC("%s command (#%d) %d bytes: 0x%08X\n",
2217                     get_cmd_string(cmd->cmd), cmd->cmd, cmd->len,
2218                     priv->status);
2219
2220#ifndef DEBUG_CMD_WEP_KEY
2221        if (cmd->cmd == IPW_CMD_WEP_KEY)
2222                IPW_DEBUG_HC("WEP_KEY command masked out for secure.\n");
2223        else
2224#endif
2225                printk_buf(IPW_DL_HOST_COMMAND, (u8 *) cmd->param, cmd->len);
2226
2227        rc = ipw_queue_tx_hcmd(priv, cmd->cmd, cmd->param, cmd->len, 0);
2228        if (rc) {
2229                priv->status &= ~STATUS_HCMD_ACTIVE;
2230                IPW_ERROR("Failed to send %s: Reason %d\n",
2231                          get_cmd_string(cmd->cmd), rc);
2232                spin_unlock_irqrestore(&priv->lock, flags);
2233                goto exit;
2234        }
2235        spin_unlock_irqrestore(&priv->lock, flags);
2236
2237        now = jiffies;
2238        end = now + HOST_COMPLETE_TIMEOUT;
2239again:
2240        rc = wait_event_interruptible_timeout(priv->wait_command_queue,
2241                                              !(priv->
2242                                                status & STATUS_HCMD_ACTIVE),
2243                                              end - now);
2244        if (rc < 0) {
2245                now = jiffies;
2246                if (time_before(now, end))
2247                        goto again;
2248                rc = 0;
2249        }
2250
2251        if (rc == 0) {
2252                spin_lock_irqsave(&priv->lock, flags);
2253                if (priv->status & STATUS_HCMD_ACTIVE) {
2254                        IPW_ERROR("Failed to send %s: Command timed out.\n",
2255                                  get_cmd_string(cmd->cmd));
2256                        priv->status &= ~STATUS_HCMD_ACTIVE;
2257                        spin_unlock_irqrestore(&priv->lock, flags);
2258                        rc = -EIO;
2259                        goto exit;
2260                }
2261                spin_unlock_irqrestore(&priv->lock, flags);
2262        } else
2263                rc = 0;
2264
2265        if (priv->status & STATUS_RF_KILL_HW) {
2266                IPW_ERROR("Failed to send %s: Aborted due to RF kill switch.\n",
2267                          get_cmd_string(cmd->cmd));
2268                rc = -EIO;
2269                goto exit;
2270        }
2271
2272      exit:
2273        if (priv->cmdlog) {
2274                priv->cmdlog[priv->cmdlog_pos++].retcode = rc;
2275                priv->cmdlog_pos %= priv->cmdlog_len;
2276        }
2277        return rc;
2278}
2279
2280static int ipw_send_cmd_simple(struct ipw_priv *priv, u8 command)
2281{
2282        struct host_cmd cmd = {
2283                .cmd = command,
2284        };
2285
2286        return __ipw_send_cmd(priv, &cmd);
2287}
2288
2289static int ipw_send_cmd_pdu(struct ipw_priv *priv, u8 command, u8 len,
2290                            void *data)
2291{
2292        struct host_cmd cmd = {
2293                .cmd = command,
2294                .len = len,
2295                .param = data,
2296        };
2297
2298        return __ipw_send_cmd(priv, &cmd);
2299}
2300
2301static int ipw_send_host_complete(struct ipw_priv *priv)
2302{
2303        if (!priv) {
2304                IPW_ERROR("Invalid args\n");
2305                return -1;
2306        }
2307
2308        return ipw_send_cmd_simple(priv, IPW_CMD_HOST_COMPLETE);
2309}
2310
2311static int ipw_send_system_config(struct ipw_priv *priv)
2312{
2313        return ipw_send_cmd_pdu(priv, IPW_CMD_SYSTEM_CONFIG,
2314                                sizeof(priv->sys_config),
2315                                &priv->sys_config);
2316}
2317
2318static int ipw_send_ssid(struct ipw_priv *priv, u8 * ssid, int len)
2319{
2320        if (!priv || !ssid) {
2321                IPW_ERROR("Invalid args\n");
2322                return -1;
2323        }
2324
2325        return ipw_send_cmd_pdu(priv, IPW_CMD_SSID, min(len, IW_ESSID_MAX_SIZE),
2326                                ssid);
2327}
2328
2329static int ipw_send_adapter_address(struct ipw_priv *priv, u8 * mac)
2330{
2331        if (!priv || !mac) {
2332                IPW_ERROR("Invalid args\n");
2333                return -1;
2334        }
2335
2336        IPW_DEBUG_INFO("%s: Setting MAC to %pM\n",
2337                       priv->net_dev->name, mac);
2338
2339        return ipw_send_cmd_pdu(priv, IPW_CMD_ADAPTER_ADDRESS, ETH_ALEN, mac);
2340}
2341
2342static void ipw_adapter_restart(void *adapter)
2343{
2344        struct ipw_priv *priv = adapter;
2345
2346        if (priv->status & STATUS_RF_KILL_MASK)
2347                return;
2348
2349        ipw_down(priv);
2350
2351        if (priv->assoc_network &&
2352            (priv->assoc_network->capability & WLAN_CAPABILITY_IBSS))
2353                ipw_remove_current_network(priv);
2354
2355        if (ipw_up(priv)) {
2356                IPW_ERROR("Failed to up device\n");
2357                return;
2358        }
2359}
2360
2361static void ipw_bg_adapter_restart(struct work_struct *work)
2362{
2363        struct ipw_priv *priv =
2364                container_of(work, struct ipw_priv, adapter_restart);
2365        mutex_lock(&priv->mutex);
2366        ipw_adapter_restart(priv);
2367        mutex_unlock(&priv->mutex);
2368}
2369
2370static void ipw_abort_scan(struct ipw_priv *priv);
2371
2372#define IPW_SCAN_CHECK_WATCHDOG (5 * HZ)
2373
2374static void ipw_scan_check(void *data)
2375{
2376        struct ipw_priv *priv = data;
2377
2378        if (priv->status & STATUS_SCAN_ABORTING) {
2379                IPW_DEBUG_SCAN("Scan completion watchdog resetting "
2380                               "adapter after (%dms).\n",
2381                               jiffies_to_msecs(IPW_SCAN_CHECK_WATCHDOG));
2382                schedule_work(&priv->adapter_restart);
2383        } else if (priv->status & STATUS_SCANNING) {
2384                IPW_DEBUG_SCAN("Scan completion watchdog aborting scan "
2385                               "after (%dms).\n",
2386                               jiffies_to_msecs(IPW_SCAN_CHECK_WATCHDOG));
2387                ipw_abort_scan(priv);
2388                schedule_delayed_work(&priv->scan_check, HZ);
2389        }
2390}
2391
2392static void ipw_bg_scan_check(struct work_struct *work)
2393{
2394        struct ipw_priv *priv =
2395                container_of(work, struct ipw_priv, scan_check.work);
2396        mutex_lock(&priv->mutex);
2397        ipw_scan_check(priv);
2398        mutex_unlock(&priv->mutex);
2399}
2400
2401static int ipw_send_scan_request_ext(struct ipw_priv *priv,
2402                                     struct ipw_scan_request_ext *request)
2403{
2404        return ipw_send_cmd_pdu(priv, IPW_CMD_SCAN_REQUEST_EXT,
2405                                sizeof(*request), request);
2406}
2407
2408static int ipw_send_scan_abort(struct ipw_priv *priv)
2409{
2410        if (!priv) {
2411                IPW_ERROR("Invalid args\n");
2412                return -1;
2413        }
2414
2415        return ipw_send_cmd_simple(priv, IPW_CMD_SCAN_ABORT);
2416}
2417
2418static int ipw_set_sensitivity(struct ipw_priv *priv, u16 sens)
2419{
2420        struct ipw_sensitivity_calib calib = {
2421                .beacon_rssi_raw = cpu_to_le16(sens),
2422        };
2423
2424        return ipw_send_cmd_pdu(priv, IPW_CMD_SENSITIVITY_CALIB, sizeof(calib),
2425                                &calib);
2426}
2427
2428static int ipw_send_associate(struct ipw_priv *priv,
2429                              struct ipw_associate *associate)
2430{
2431        if (!priv || !associate) {
2432                IPW_ERROR("Invalid args\n");
2433                return -1;
2434        }
2435
2436        return ipw_send_cmd_pdu(priv, IPW_CMD_ASSOCIATE, sizeof(*associate),
2437                                associate);
2438}
2439
2440static int ipw_send_supported_rates(struct ipw_priv *priv,
2441                                    struct ipw_supported_rates *rates)
2442{
2443        if (!priv || !rates) {
2444                IPW_ERROR("Invalid args\n");
2445                return -1;
2446        }
2447
2448        return ipw_send_cmd_pdu(priv, IPW_CMD_SUPPORTED_RATES, sizeof(*rates),
2449                                rates);
2450}
2451
2452static int ipw_set_random_seed(struct ipw_priv *priv)
2453{
2454        u32 val;
2455
2456        if (!priv) {
2457                IPW_ERROR("Invalid args\n");
2458                return -1;
2459        }
2460
2461        get_random_bytes(&val, sizeof(val));
2462
2463        return ipw_send_cmd_pdu(priv, IPW_CMD_SEED_NUMBER, sizeof(val), &val);
2464}
2465
2466static int ipw_send_card_disable(struct ipw_priv *priv, u32 phy_off)
2467{
2468        __le32 v = cpu_to_le32(phy_off);
2469        if (!priv) {
2470                IPW_ERROR("Invalid args\n");
2471                return -1;
2472        }
2473
2474        return ipw_send_cmd_pdu(priv, IPW_CMD_CARD_DISABLE, sizeof(v), &v);
2475}
2476
2477static int ipw_send_tx_power(struct ipw_priv *priv, struct ipw_tx_power *power)
2478{
2479        if (!priv || !power) {
2480                IPW_ERROR("Invalid args\n");
2481                return -1;
2482        }
2483
2484        return ipw_send_cmd_pdu(priv, IPW_CMD_TX_POWER, sizeof(*power), power);
2485}
2486
2487static int ipw_set_tx_power(struct ipw_priv *priv)
2488{
2489        const struct libipw_geo *geo = libipw_get_geo(priv->ieee);
2490        struct ipw_tx_power tx_power;
2491        s8 max_power;
2492        int i;
2493
2494        memset(&tx_power, 0, sizeof(tx_power));
2495
2496        /* configure device for 'G' band */
2497        tx_power.ieee_mode = IPW_G_MODE;
2498        tx_power.num_channels = geo->bg_channels;
2499        for (i = 0; i < geo->bg_channels; i++) {
2500                max_power = geo->bg[i].max_power;
2501                tx_power.channels_tx_power[i].channel_number =
2502                    geo->bg[i].channel;
2503                tx_power.channels_tx_power[i].tx_power = max_power ?
2504                    min(max_power, priv->tx_power) : priv->tx_power;
2505        }
2506        if (ipw_send_tx_power(priv, &tx_power))
2507                return -EIO;
2508
2509        /* configure device to also handle 'B' band */
2510        tx_power.ieee_mode = IPW_B_MODE;
2511        if (ipw_send_tx_power(priv, &tx_power))
2512                return -EIO;
2513
2514        /* configure device to also handle 'A' band */
2515        if (priv->ieee->abg_true) {
2516                tx_power.ieee_mode = IPW_A_MODE;
2517                tx_power.num_channels = geo->a_channels;
2518                for (i = 0; i < tx_power.num_channels; i++) {
2519                        max_power = geo->a[i].max_power;
2520                        tx_power.channels_tx_power[i].channel_number =
2521                            geo->a[i].channel;
2522                        tx_power.channels_tx_power[i].tx_power = max_power ?
2523                            min(max_power, priv->tx_power) : priv->tx_power;
2524                }
2525                if (ipw_send_tx_power(priv, &tx_power))
2526                        return -EIO;
2527        }
2528        return 0;
2529}
2530
2531static int ipw_send_rts_threshold(struct ipw_priv *priv, u16 rts)
2532{
2533        struct ipw_rts_threshold rts_threshold = {
2534                .rts_threshold = cpu_to_le16(rts),
2535        };
2536
2537        if (!priv) {
2538                IPW_ERROR("Invalid args\n");
2539                return -1;
2540        }
2541
2542        return ipw_send_cmd_pdu(priv, IPW_CMD_RTS_THRESHOLD,
2543                                sizeof(rts_threshold), &rts_threshold);
2544}
2545
2546static int ipw_send_frag_threshold(struct ipw_priv *priv, u16 frag)
2547{
2548        struct ipw_frag_threshold frag_threshold = {
2549                .frag_threshold = cpu_to_le16(frag),
2550        };
2551
2552        if (!priv) {
2553                IPW_ERROR("Invalid args\n");
2554                return -1;
2555        }
2556
2557        return ipw_send_cmd_pdu(priv, IPW_CMD_FRAG_THRESHOLD,
2558                                sizeof(frag_threshold), &frag_threshold);
2559}
2560
2561static int ipw_send_power_mode(struct ipw_priv *priv, u32 mode)
2562{
2563        __le32 param;
2564
2565        if (!priv) {
2566                IPW_ERROR("Invalid args\n");
2567                return -1;
2568        }
2569
2570        /* If on battery, set to 3, if AC set to CAM, else user
2571         * level */
2572        switch (mode) {
2573        case IPW_POWER_BATTERY:
2574                param = cpu_to_le32(IPW_POWER_INDEX_3);
2575                break;
2576        case IPW_POWER_AC:
2577                param = cpu_to_le32(IPW_POWER_MODE_CAM);
2578                break;
2579        default:
2580                param = cpu_to_le32(mode);
2581                break;
2582        }
2583
2584        return ipw_send_cmd_pdu(priv, IPW_CMD_POWER_MODE, sizeof(param),
2585                                &param);
2586}
2587
2588static int ipw_send_retry_limit(struct ipw_priv *priv, u8 slimit, u8 llimit)
2589{
2590        struct ipw_retry_limit retry_limit = {
2591                .short_retry_limit = slimit,
2592                .long_retry_limit = llimit
2593        };
2594
2595        if (!priv) {
2596                IPW_ERROR("Invalid args\n");
2597                return -1;
2598        }
2599
2600        return ipw_send_cmd_pdu(priv, IPW_CMD_RETRY_LIMIT, sizeof(retry_limit),
2601                                &retry_limit);
2602}
2603
2604/*
2605 * The IPW device contains a Microwire compatible EEPROM that stores
2606 * various data like the MAC address.  Usually the firmware has exclusive
2607 * access to the eeprom, but during device initialization (before the
2608 * device driver has sent the HostComplete command to the firmware) the
2609 * device driver has read access to the EEPROM by way of indirect addressing
2610 * through a couple of memory mapped registers.
2611 *
2612 * The following is a simplified implementation for pulling data out of the
2613 * the eeprom, along with some helper functions to find information in
2614 * the per device private data's copy of the eeprom.
2615 *
2616 * NOTE: To better understand how these functions work (i.e what is a chip
2617 *       select and why do have to keep driving the eeprom clock?), read
2618 *       just about any data sheet for a Microwire compatible EEPROM.
2619 */
2620
2621/* write a 32 bit value into the indirect accessor register */
2622static inline void eeprom_write_reg(struct ipw_priv *p, u32 data)
2623{
2624        ipw_write_reg32(p, FW_MEM_REG_EEPROM_ACCESS, data);
2625
2626        /* the eeprom requires some time to complete the operation */
2627        udelay(p->eeprom_delay);
2628}
2629
2630/* perform a chip select operation */
2631static void eeprom_cs(struct ipw_priv *priv)
2632{
2633        eeprom_write_reg(priv, 0);
2634        eeprom_write_reg(priv, EEPROM_BIT_CS);
2635        eeprom_write_reg(priv, EEPROM_BIT_CS | EEPROM_BIT_SK);
2636        eeprom_write_reg(priv, EEPROM_BIT_CS);
2637}
2638
2639/* perform a chip select operation */
2640static void eeprom_disable_cs(struct ipw_priv *priv)
2641{
2642        eeprom_write_reg(priv, EEPROM_BIT_CS);
2643        eeprom_write_reg(priv, 0);
2644        eeprom_write_reg(priv, EEPROM_BIT_SK);
2645}
2646
2647/* push a single bit down to the eeprom */
2648static inline void eeprom_write_bit(struct ipw_priv *p, u8 bit)
2649{
2650        int d = (bit ? EEPROM_BIT_DI : 0);
2651        eeprom_write_reg(p, EEPROM_BIT_CS | d);
2652        eeprom_write_reg(p, EEPROM_BIT_CS | d | EEPROM_BIT_SK);
2653}
2654
2655/* push an opcode followed by an address down to the eeprom */
2656static void eeprom_op(struct ipw_priv *priv, u8 op, u8 addr)
2657{
2658        int i;
2659
2660        eeprom_cs(priv);
2661        eeprom_write_bit(priv, 1);
2662        eeprom_write_bit(priv, op & 2);
2663        eeprom_write_bit(priv, op & 1);
2664        for (i = 7; i >= 0; i--) {
2665                eeprom_write_bit(priv, addr & (1 << i));
2666        }
2667}
2668
2669/* pull 16 bits off the eeprom, one bit at a time */
2670static u16 eeprom_read_u16(struct ipw_priv *priv, u8 addr)
2671{
2672        int i;
2673        u16 r = 0;
2674
2675        /* Send READ Opcode */
2676        eeprom_op(priv, EEPROM_CMD_READ, addr);
2677
2678        /* Send dummy bit */
2679        eeprom_write_reg(priv, EEPROM_BIT_CS);
2680
2681        /* Read the byte off the eeprom one bit at a time */
2682        for (i = 0; i < 16; i++) {
2683                u32 data = 0;
2684                eeprom_write_reg(priv, EEPROM_BIT_CS | EEPROM_BIT_SK);
2685                eeprom_write_reg(priv, EEPROM_BIT_CS);
2686                data = ipw_read_reg32(priv, FW_MEM_REG_EEPROM_ACCESS);
2687                r = (r << 1) | ((data & EEPROM_BIT_DO) ? 1 : 0);
2688        }
2689
2690        /* Send another dummy bit */
2691        eeprom_write_reg(priv, 0);
2692        eeprom_disable_cs(priv);
2693
2694        return r;
2695}
2696
2697/* helper function for pulling the mac address out of the private */
2698/* data's copy of the eeprom data                                 */
2699static void eeprom_parse_mac(struct ipw_priv *priv, u8 * mac)
2700{
2701        memcpy(mac, &priv->eeprom[EEPROM_MAC_ADDRESS], ETH_ALEN);
2702}
2703
2704static void ipw_read_eeprom(struct ipw_priv *priv)
2705{
2706        int i;
2707        __le16 *eeprom = (__le16 *) priv->eeprom;
2708
2709        IPW_DEBUG_TRACE(">>\n");
2710
2711        /* read entire contents of eeprom into private buffer */
2712        for (i = 0; i < 128; i++)
2713                eeprom[i] = cpu_to_le16(eeprom_read_u16(priv, (u8) i));
2714
2715        IPW_DEBUG_TRACE("<<\n");
2716}
2717
2718/*
2719 * Either the device driver (i.e. the host) or the firmware can
2720 * load eeprom data into the designated region in SRAM.  If neither
2721 * happens then the FW will shutdown with a fatal error.
2722 *
2723 * In order to signal the FW to load the EEPROM, the EEPROM_LOAD_DISABLE
2724 * bit needs region of shared SRAM needs to be non-zero.
2725 */
2726static void ipw_eeprom_init_sram(struct ipw_priv *priv)
2727{
2728        int i;
2729
2730        IPW_DEBUG_TRACE(">>\n");
2731
2732        /*
2733           If the data looks correct, then copy it to our private
2734           copy.  Otherwise let the firmware know to perform the operation
2735           on its own.
2736         */
2737        if (priv->eeprom[EEPROM_VERSION] != 0) {
2738                IPW_DEBUG_INFO("Writing EEPROM data into SRAM\n");
2739
2740                /* write the eeprom data to sram */
2741                for (i = 0; i < IPW_EEPROM_IMAGE_SIZE; i++)
2742                        ipw_write8(priv, IPW_EEPROM_DATA + i, priv->eeprom[i]);
2743
2744                /* Do not load eeprom data on fatal error or suspend */
2745                ipw_write32(priv, IPW_EEPROM_LOAD_DISABLE, 0);
2746        } else {
2747                IPW_DEBUG_INFO("Enabling FW initializationg of SRAM\n");
2748
2749                /* Load eeprom data on fatal error or suspend */
2750                ipw_write32(priv, IPW_EEPROM_LOAD_DISABLE, 1);
2751        }
2752
2753        IPW_DEBUG_TRACE("<<\n");
2754}
2755
2756static void ipw_zero_memory(struct ipw_priv *priv, u32 start, u32 count)
2757{
2758        count >>= 2;
2759        if (!count)
2760                return;
2761        _ipw_write32(priv, IPW_AUTOINC_ADDR, start);
2762        while (count--)
2763                _ipw_write32(priv, IPW_AUTOINC_DATA, 0);
2764}
2765
2766static inline void ipw_fw_dma_reset_command_blocks(struct ipw_priv *priv)
2767{
2768        ipw_zero_memory(priv, IPW_SHARED_SRAM_DMA_CONTROL,
2769                        CB_NUMBER_OF_ELEMENTS_SMALL *
2770                        sizeof(struct command_block));
2771}
2772
2773static int ipw_fw_dma_enable(struct ipw_priv *priv)
2774{                               /* start dma engine but no transfers yet */
2775
2776        IPW_DEBUG_FW(">> :\n");
2777
2778        /* Start the dma */
2779        ipw_fw_dma_reset_command_blocks(priv);
2780
2781        /* Write CB base address */
2782        ipw_write_reg32(priv, IPW_DMA_I_CB_BASE, IPW_SHARED_SRAM_DMA_CONTROL);
2783
2784        IPW_DEBUG_FW("<< :\n");
2785        return 0;
2786}
2787
2788static void ipw_fw_dma_abort(struct ipw_priv *priv)
2789{
2790        u32 control = 0;
2791
2792        IPW_DEBUG_FW(">> :\n");
2793
2794        /* set the Stop and Abort bit */
2795        control = DMA_CONTROL_SMALL_CB_CONST_VALUE | DMA_CB_STOP_AND_ABORT;
2796        ipw_write_reg32(priv, IPW_DMA_I_DMA_CONTROL, control);
2797        priv->sram_desc.last_cb_index = 0;
2798
2799        IPW_DEBUG_FW("<<\n");
2800}
2801
2802static int ipw_fw_dma_write_command_block(struct ipw_priv *priv, int index,
2803                                          struct command_block *cb)
2804{
2805        u32 address =
2806            IPW_SHARED_SRAM_DMA_CONTROL +
2807            (sizeof(struct command_block) * index);
2808        IPW_DEBUG_FW(">> :\n");
2809
2810        ipw_write_indirect(priv, address, (u8 *) cb,
2811                           (int)sizeof(struct command_block));
2812
2813        IPW_DEBUG_FW("<< :\n");
2814        return 0;
2815
2816}
2817
2818static int ipw_fw_dma_kick(struct ipw_priv *priv)
2819{
2820        u32 control = 0;
2821        u32 index = 0;
2822
2823        IPW_DEBUG_FW(">> :\n");
2824
2825        for (index = 0; index < priv->sram_desc.last_cb_index; index++)
2826                ipw_fw_dma_write_command_block(priv, index,
2827                                               &priv->sram_desc.cb_list[index]);
2828
2829        /* Enable the DMA in the CSR register */
2830        ipw_clear_bit(priv, IPW_RESET_REG,
2831                      IPW_RESET_REG_MASTER_DISABLED |
2832                      IPW_RESET_REG_STOP_MASTER);
2833
2834        /* Set the Start bit. */
2835        control = DMA_CONTROL_SMALL_CB_CONST_VALUE | DMA_CB_START;
2836        ipw_write_reg32(priv, IPW_DMA_I_DMA_CONTROL, control);
2837
2838        IPW_DEBUG_FW("<< :\n");
2839        return 0;
2840}
2841
2842static void ipw_fw_dma_dump_command_block(struct ipw_priv *priv)
2843{
2844        u32 address;
2845        u32 register_value = 0;
2846        u32 cb_fields_address = 0;
2847
2848        IPW_DEBUG_FW(">> :\n");
2849        address = ipw_read_reg32(priv, IPW_DMA_I_CURRENT_CB);
2850        IPW_DEBUG_FW_INFO("Current CB is 0x%x\n", address);
2851
2852        /* Read the DMA Controlor register */
2853        register_value = ipw_read_reg32(priv, IPW_DMA_I_DMA_CONTROL);
2854        IPW_DEBUG_FW_INFO("IPW_DMA_I_DMA_CONTROL is 0x%x\n", register_value);
2855
2856        /* Print the CB values */
2857        cb_fields_address = address;
2858        register_value = ipw_read_reg32(priv, cb_fields_address);
2859        IPW_DEBUG_FW_INFO("Current CB Control Field is 0x%x\n", register_value);
2860
2861        cb_fields_address += sizeof(u32);
2862        register_value = ipw_read_reg32(priv, cb_fields_address);
2863        IPW_DEBUG_FW_INFO("Current CB Source Field is 0x%x\n", register_value);
2864
2865        cb_fields_address += sizeof(u32);
2866        register_value = ipw_read_reg32(priv, cb_fields_address);
2867        IPW_DEBUG_FW_INFO("Current CB Destination Field is 0x%x\n",
2868                          register_value);
2869
2870        cb_fields_address += sizeof(u32);
2871        register_value = ipw_read_reg32(priv, cb_fields_address);
2872        IPW_DEBUG_FW_INFO("Current CB Status Field is 0x%x\n", register_value);
2873
2874        IPW_DEBUG_FW(">> :\n");
2875}
2876
2877static int ipw_fw_dma_command_block_index(struct ipw_priv *priv)
2878{
2879        u32 current_cb_address = 0;
2880        u32 current_cb_index = 0;
2881
2882        IPW_DEBUG_FW("<< :\n");
2883        current_cb_address = ipw_read_reg32(priv, IPW_DMA_I_CURRENT_CB);
2884
2885        current_cb_index = (current_cb_address - IPW_SHARED_SRAM_DMA_CONTROL) /
2886            sizeof(struct command_block);
2887
2888        IPW_DEBUG_FW_INFO("Current CB index 0x%x address = 0x%X\n",
2889                          current_cb_index, current_cb_address);
2890
2891        IPW_DEBUG_FW(">> :\n");
2892        return current_cb_index;
2893
2894}
2895
2896static int ipw_fw_dma_add_command_block(struct ipw_priv *priv,
2897                                        u32 src_address,
2898                                        u32 dest_address,
2899                                        u32 length,
2900                                        int interrupt_enabled, int is_last)
2901{
2902
2903        u32 control = CB_VALID | CB_SRC_LE | CB_DEST_LE | CB_SRC_AUTOINC |
2904            CB_SRC_IO_GATED | CB_DEST_AUTOINC | CB_SRC_SIZE_LONG |
2905            CB_DEST_SIZE_LONG;
2906        struct command_block *cb;
2907        u32 last_cb_element = 0;
2908
2909        IPW_DEBUG_FW_INFO("src_address=0x%x dest_address=0x%x length=0x%x\n",
2910                          src_address, dest_address, length);
2911
2912        if (priv->sram_desc.last_cb_index >= CB_NUMBER_OF_ELEMENTS_SMALL)
2913                return -1;
2914
2915        last_cb_element = priv->sram_desc.last_cb_index;
2916        cb = &priv->sram_desc.cb_list[last_cb_element];
2917        priv->sram_desc.last_cb_index++;
2918
2919        /* Calculate the new CB control word */
2920        if (interrupt_enabled)
2921                control |= CB_INT_ENABLED;
2922
2923        if (is_last)
2924                control |= CB_LAST_VALID;
2925
2926        control |= length;
2927
2928        /* Calculate the CB Element's checksum value */
2929        cb->status = control ^ src_address ^ dest_address;
2930
2931        /* Copy the Source and Destination addresses */
2932        cb->dest_addr = dest_address;
2933        cb->source_addr = src_address;
2934
2935        /* Copy the Control Word last */
2936        cb->control = control;
2937
2938        return 0;
2939}
2940
2941static int ipw_fw_dma_add_buffer(struct ipw_priv *priv, dma_addr_t *src_address,
2942                                 int nr, u32 dest_address, u32 len)
2943{
2944        int ret, i;
2945        u32 size;
2946
2947        IPW_DEBUG_FW(">>\n");
2948        IPW_DEBUG_FW_INFO("nr=%d dest_address=0x%x len=0x%x\n",
2949                          nr, dest_address, len);
2950
2951        for (i = 0; i < nr; i++) {
2952                size = min_t(u32, len - i * CB_MAX_LENGTH, CB_MAX_LENGTH);
2953                ret = ipw_fw_dma_add_command_block(priv, src_address[i],
2954                                                   dest_address +
2955                                                   i * CB_MAX_LENGTH, size,
2956                                                   0, 0);
2957                if (ret) {
2958                        IPW_DEBUG_FW_INFO(": Failed\n");
2959                        return -1;
2960                } else
2961                        IPW_DEBUG_FW_INFO(": Added new cb\n");
2962        }
2963
2964        IPW_DEBUG_FW("<<\n");
2965        return 0;
2966}
2967
2968static int ipw_fw_dma_wait(struct ipw_priv *priv)
2969{
2970        u32 current_index = 0, previous_index;
2971        u32 watchdog = 0;
2972
2973        IPW_DEBUG_FW(">> :\n");
2974
2975        current_index = ipw_fw_dma_command_block_index(priv);
2976        IPW_DEBUG_FW_INFO("sram_desc.last_cb_index:0x%08X\n",
2977                          (int)priv->sram_desc.last_cb_index);
2978
2979        while (current_index < priv->sram_desc.last_cb_index) {
2980                udelay(50);
2981                previous_index = current_index;
2982                current_index = ipw_fw_dma_command_block_index(priv);
2983
2984                if (previous_index < current_index) {
2985                        watchdog = 0;
2986                        continue;
2987                }
2988                if (++watchdog > 400) {
2989                        IPW_DEBUG_FW_INFO("Timeout\n");
2990                        ipw_fw_dma_dump_command_block(priv);
2991                        ipw_fw_dma_abort(priv);
2992                        return -1;
2993                }
2994        }
2995
2996        ipw_fw_dma_abort(priv);
2997
2998        /*Disable the DMA in the CSR register */
2999        ipw_set_bit(priv, IPW_RESET_REG,
3000                    IPW_RESET_REG_MASTER_DISABLED | IPW_RESET_REG_STOP_MASTER);
3001
3002        IPW_DEBUG_FW("<< dmaWaitSync\n");
3003        return 0;
3004}
3005
3006static void ipw_remove_current_network(struct ipw_priv *priv)
3007{
3008        struct list_head *element, *safe;
3009        struct libipw_network *network = NULL;
3010        unsigned long flags;
3011
3012        spin_lock_irqsave(&priv->ieee->lock, flags);
3013        list_for_each_safe(element, safe, &priv->ieee->network_list) {
3014                network = list_entry(element, struct libipw_network, list);
3015                if (ether_addr_equal(network->bssid, priv->bssid)) {
3016                        list_del(element);
3017                        list_add_tail(&network->list,
3018                                      &priv->ieee->network_free_list);
3019                }
3020        }
3021        spin_unlock_irqrestore(&priv->ieee->lock, flags);
3022}
3023
3024/**
3025 * Check that card is still alive.
3026 * Reads debug register from domain0.
3027 * If card is present, pre-defined value should
3028 * be found there.
3029 *
3030 * @param priv
3031 * @return 1 if card is present, 0 otherwise
3032 */
3033static inline int ipw_alive(struct ipw_priv *priv)
3034{
3035        return ipw_read32(priv, 0x90) == 0xd55555d5;
3036}
3037
3038/* timeout in msec, attempted in 10-msec quanta */
3039static int ipw_poll_bit(struct ipw_priv *priv, u32 addr, u32 mask,
3040                               int timeout)
3041{
3042        int i = 0;
3043
3044        do {
3045                if ((ipw_read32(priv, addr) & mask) == mask)
3046                        return i;
3047                mdelay(10);
3048                i += 10;
3049        } while (i < timeout);
3050
3051        return -ETIME;
3052}
3053
3054/* These functions load the firmware and micro code for the operation of
3055 * the ipw hardware.  It assumes the buffer has all the bits for the
3056 * image and the caller is handling the memory allocation and clean up.
3057 */
3058
3059static int ipw_stop_master(struct ipw_priv *priv)
3060{
3061        int rc;
3062
3063        IPW_DEBUG_TRACE(">>\n");
3064        /* stop master. typical delay - 0 */
3065        ipw_set_bit(priv, IPW_RESET_REG, IPW_RESET_REG_STOP_MASTER);
3066
3067        /* timeout is in msec, polled in 10-msec quanta */
3068        rc = ipw_poll_bit(priv, IPW_RESET_REG,
3069                          IPW_RESET_REG_MASTER_DISABLED, 100);
3070        if (rc < 0) {
3071                IPW_ERROR("wait for stop master failed after 100ms\n");
3072                return -1;
3073        }
3074
3075        IPW_DEBUG_INFO("stop master %dms\n", rc);
3076
3077        return rc;
3078}
3079
3080static void ipw_arc_release(struct ipw_priv *priv)
3081{
3082        IPW_DEBUG_TRACE(">>\n");
3083        mdelay(5);
3084
3085        ipw_clear_bit(priv, IPW_RESET_REG, CBD_RESET_REG_PRINCETON_RESET);
3086
3087        /* no one knows timing, for safety add some delay */
3088        mdelay(5);
3089}
3090
3091struct fw_chunk {
3092        __le32 address;
3093        __le32 length;
3094};
3095
3096static int ipw_load_ucode(struct ipw_priv *priv, u8 * data, size_t len)
3097{
3098        int rc = 0, i, addr;
3099        u8 cr = 0;
3100        __le16 *image;
3101
3102        image = (__le16 *) data;
3103
3104        IPW_DEBUG_TRACE(">>\n");
3105
3106        rc = ipw_stop_master(priv);
3107
3108        if (rc < 0)
3109                return rc;
3110
3111        for (addr = IPW_SHARED_LOWER_BOUND;
3112             addr < IPW_REGISTER_DOMAIN1_END; addr += 4) {
3113                ipw_write32(priv, addr, 0);
3114        }
3115
3116        /* no ucode (yet) */
3117        memset(&priv->dino_alive, 0, sizeof(priv->dino_alive));
3118        /* destroy DMA queues */
3119        /* reset sequence */
3120
3121        ipw_write_reg32(priv, IPW_MEM_HALT_AND_RESET, IPW_BIT_HALT_RESET_ON);
3122        ipw_arc_release(priv);
3123        ipw_write_reg32(priv, IPW_MEM_HALT_AND_RESET, IPW_BIT_HALT_RESET_OFF);
3124        mdelay(1);
3125
3126        /* reset PHY */
3127        ipw_write_reg32(priv, IPW_INTERNAL_CMD_EVENT, IPW_BASEBAND_POWER_DOWN);
3128        mdelay(1);
3129
3130        ipw_write_reg32(priv, IPW_INTERNAL_CMD_EVENT, 0);
3131        mdelay(1);
3132
3133        /* enable ucode store */
3134        ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, 0x0);
3135        ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, DINO_ENABLE_CS);
3136        mdelay(1);
3137
3138        /* write ucode */
3139        /**
3140         * @bug
3141         * Do NOT set indirect address register once and then
3142         * store data to indirect data register in the loop.
3143         * It seems very reasonable, but in this case DINO do not
3144         * accept ucode. It is essential to set address each time.
3145         */
3146        /* load new ipw uCode */
3147        for (i = 0; i < len / 2; i++)
3148                ipw_write_reg16(priv, IPW_BASEBAND_CONTROL_STORE,
3149                                le16_to_cpu(image[i]));
3150
3151        /* enable DINO */
3152        ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, 0);
3153        ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, DINO_ENABLE_SYSTEM);
3154
3155        /* this is where the igx / win driver deveates from the VAP driver. */
3156
3157        /* wait for alive response */
3158        for (i = 0; i < 100; i++) {
3159                /* poll for incoming data */
3160                cr = ipw_read_reg8(priv, IPW_BASEBAND_CONTROL_STATUS);
3161                if (cr & DINO_RXFIFO_DATA)
3162                        break;
3163                mdelay(1);
3164        }
3165
3166        if (cr & DINO_RXFIFO_DATA) {
3167                /* alive_command_responce size is NOT multiple of 4 */
3168                __le32 response_buffer[(sizeof(priv->dino_alive) + 3) / 4];
3169
3170                for (i = 0; i < ARRAY_SIZE(response_buffer); i++)
3171                        response_buffer[i] =
3172                            cpu_to_le32(ipw_read_reg32(priv,
3173                                                       IPW_BASEBAND_RX_FIFO_READ));
3174                memcpy(&priv->dino_alive, response_buffer,
3175                       sizeof(priv->dino_alive));
3176                if (priv->dino_alive.alive_command == 1
3177                    && priv->dino_alive.ucode_valid == 1) {
3178                        rc = 0;
3179                        IPW_DEBUG_INFO
3180                            ("Microcode OK, rev. %d (0x%x) dev. %d (0x%x) "
3181                             "of %02d/%02d/%02d %02d:%02d\n",
3182                             priv->dino_alive.software_revision,
3183                             priv->dino_alive.software_revision,
3184                             priv->dino_alive.device_identifier,
3185                             priv->dino_alive.device_identifier,
3186                             priv->dino_alive.time_stamp[0],
3187                             priv->dino_alive.time_stamp[1],
3188                             priv->dino_alive.time_stamp[2],
3189                             priv->dino_alive.time_stamp[3],
3190                             priv->dino_alive.time_stamp[4]);
3191                } else {
3192                        IPW_DEBUG_INFO("Microcode is not alive\n");
3193                        rc = -EINVAL;
3194                }
3195        } else {
3196                IPW_DEBUG_INFO("No alive response from DINO\n");
3197                rc = -ETIME;
3198        }
3199
3200        /* disable DINO, otherwise for some reason
3201           firmware have problem getting alive resp. */
3202        ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, 0);
3203
3204        return rc;
3205}
3206
3207static int ipw_load_firmware(struct ipw_priv *priv, u8 * data, size_t len)
3208{
3209        int ret = -1;
3210        int offset = 0;
3211        struct fw_chunk *chunk;
3212        int total_nr = 0;
3213        int i;
3214        struct pci_pool *pool;
3215        void **virts;
3216        dma_addr_t *phys;
3217
3218        IPW_DEBUG_TRACE("<< :\n");
3219
3220        virts = kmalloc(sizeof(void *) * CB_NUMBER_OF_ELEMENTS_SMALL,
3221                        GFP_KERNEL);
3222        if (!virts)
3223                return -ENOMEM;
3224
3225        phys = kmalloc(sizeof(dma_addr_t) * CB_NUMBER_OF_ELEMENTS_SMALL,
3226                        GFP_KERNEL);
3227        if (!phys) {
3228                kfree(virts);
3229                return -ENOMEM;
3230        }
3231        pool = pci_pool_create("ipw2200", priv->pci_dev, CB_MAX_LENGTH, 0, 0);
3232        if (!pool) {
3233                IPW_ERROR("pci_pool_create failed\n");
3234                kfree(phys);
3235                kfree(virts);
3236                return -ENOMEM;
3237        }
3238
3239        /* Start the Dma */
3240        ret = ipw_fw_dma_enable(priv);
3241
3242        /* the DMA is already ready this would be a bug. */
3243        BUG_ON(priv->sram_desc.last_cb_index > 0);
3244
3245        do {
3246                u32 chunk_len;
3247                u8 *start;
3248                int size;
3249                int nr = 0;
3250
3251                chunk = (struct fw_chunk *)(data + offset);
3252                offset += sizeof(struct fw_chunk);
3253                chunk_len = le32_to_cpu(chunk->length);
3254                start = data + offset;
3255
3256                nr = (chunk_len + CB_MAX_LENGTH - 1) / CB_MAX_LENGTH;
3257                for (i = 0; i < nr; i++) {
3258                        virts[total_nr] = pci_pool_alloc(pool, GFP_KERNEL,
3259                                                         &phys[total_nr]);
3260                        if (!virts[total_nr]) {
3261                                ret = -ENOMEM;
3262                                goto out;
3263                        }
3264                        size = min_t(u32, chunk_len - i * CB_MAX_LENGTH,
3265                                     CB_MAX_LENGTH);
3266                        memcpy(virts[total_nr], start, size);
3267                        start += size;
3268                        total_nr++;
3269                        /* We don't support fw chunk larger than 64*8K */
3270                        BUG_ON(total_nr > CB_NUMBER_OF_ELEMENTS_SMALL);
3271                }
3272
3273                /* build DMA packet and queue up for sending */
3274                /* dma to chunk->address, the chunk->length bytes from data +
3275                 * offeset*/
3276                /* Dma loading */
3277                ret = ipw_fw_dma_add_buffer(priv, &phys[total_nr - nr],
3278                                            nr, le32_to_cpu(chunk->address),
3279                                            chunk_len);
3280                if (ret) {
3281                        IPW_DEBUG_INFO("dmaAddBuffer Failed\n");
3282                        goto out;
3283                }
3284
3285                offset += chunk_len;
3286        } while (offset < len);
3287
3288        /* Run the DMA and wait for the answer */
3289        ret = ipw_fw_dma_kick(priv);
3290        if (ret) {
3291                IPW_ERROR("dmaKick Failed\n");
3292                goto out;
3293        }
3294
3295        ret = ipw_fw_dma_wait(priv);
3296        if (ret) {
3297                IPW_ERROR("dmaWaitSync Failed\n");
3298                goto out;
3299        }
3300 out:
3301        for (i = 0; i < total_nr; i++)
3302                pci_pool_free(pool, virts[i], phys[i]);
3303
3304        pci_pool_destroy(pool);
3305        kfree(phys);
3306        kfree(virts);
3307
3308        return ret;
3309}
3310
3311/* stop nic */
3312static int ipw_stop_nic(struct ipw_priv *priv)
3313{
3314        int rc = 0;
3315
3316        /* stop */
3317        ipw_write32(priv, IPW_RESET_REG, IPW_RESET_REG_STOP_MASTER);
3318
3319        rc = ipw_poll_bit(priv, IPW_RESET_REG,
3320                          IPW_RESET_REG_MASTER_DISABLED, 500);
3321        if (rc < 0) {
3322                IPW_ERROR("wait for reg master disabled failed after 500ms\n");
3323                return rc;
3324        }
3325
3326        ipw_set_bit(priv, IPW_RESET_REG, CBD_RESET_REG_PRINCETON_RESET);
3327
3328        return rc;
3329}
3330
3331static void ipw_start_nic(struct ipw_priv *priv)
3332{
3333        IPW_DEBUG_TRACE(">>\n");
3334
3335        /* prvHwStartNic  release ARC */
3336        ipw_clear_bit(priv, IPW_RESET_REG,
3337                      IPW_RESET_REG_MASTER_DISABLED |
3338                      IPW_RESET_REG_STOP_MASTER |
3339                      CBD_RESET_REG_PRINCETON_RESET);
3340
3341        /* enable power management */
3342        ipw_set_bit(priv, IPW_GP_CNTRL_RW,
3343                    IPW_GP_CNTRL_BIT_HOST_ALLOWS_STANDBY);
3344
3345        IPW_DEBUG_TRACE("<<\n");
3346}
3347
3348static int ipw_init_nic(struct ipw_priv *priv)
3349{
3350        int rc;
3351
3352        IPW_DEBUG_TRACE(">>\n");
3353        /* reset */
3354        /*prvHwInitNic */
3355        /* set "initialization complete" bit to move adapter to D0 state */
3356        ipw_set_bit(priv, IPW_GP_CNTRL_RW, IPW_GP_CNTRL_BIT_INIT_DONE);
3357
3358        /* low-level PLL activation */
3359        ipw_write32(priv, IPW_READ_INT_REGISTER,
3360                    IPW_BIT_INT_HOST_SRAM_READ_INT_REGISTER);
3361
3362        /* wait for clock stabilization */
3363        rc = ipw_poll_bit(priv, IPW_GP_CNTRL_RW,
3364                          IPW_GP_CNTRL_BIT_CLOCK_READY, 250);
3365        if (rc < 0)
3366                IPW_DEBUG_INFO("FAILED wait for clock stablization\n");
3367
3368        /* assert SW reset */
3369        ipw_set_bit(priv, IPW_RESET_REG, IPW_RESET_REG_SW_RESET);
3370
3371        udelay(10);
3372
3373        /* set "initialization complete" bit to move adapter to D0 state */
3374        ipw_set_bit(priv, IPW_GP_CNTRL_RW, IPW_GP_CNTRL_BIT_INIT_DONE);
3375
3376        IPW_DEBUG_TRACE(">>\n");
3377        return 0;
3378}
3379
3380/* Call this function from process context, it will sleep in request_firmware.
3381 * Probe is an ok place to call this from.
3382 */
3383static int ipw_reset_nic(struct ipw_priv *priv)
3384{
3385        int rc = 0;
3386        unsigned long flags;
3387
3388        IPW_DEBUG_TRACE(">>\n");
3389
3390        rc = ipw_init_nic(priv);
3391
3392        spin_lock_irqsave(&priv->lock, flags);
3393        /* Clear the 'host command active' bit... */
3394        priv->status &= ~STATUS_HCMD_ACTIVE;
3395        wake_up_interruptible(&priv->wait_command_queue);
3396        priv->status &= ~(STATUS_SCANNING | STATUS_SCAN_ABORTING);
3397        wake_up_interruptible(&priv->wait_state);
3398        spin_unlock_irqrestore(&priv->lock, flags);
3399
3400        IPW_DEBUG_TRACE("<<\n");
3401        return rc;
3402}
3403
3404
3405struct ipw_fw {
3406        __le32 ver;
3407        __le32 boot_size;
3408        __le32 ucode_size;
3409        __le32 fw_size;
3410        u8 data[0];
3411};
3412
3413static int ipw_get_fw(struct ipw_priv *priv,
3414                      const struct firmware **raw, const char *name)
3415{
3416        struct ipw_fw *fw;
3417        int rc;
3418
3419        /* ask firmware_class module to get the boot firmware off disk */
3420        rc = request_firmware(raw, name, &priv->pci_dev->dev);
3421        if (rc < 0) {
3422                IPW_ERROR("%s request_firmware failed: Reason %d\n", name, rc);
3423                return rc;
3424        }
3425
3426        if ((*raw)->size < sizeof(*fw)) {
3427                IPW_ERROR("%s is too small (%zd)\n", name, (*raw)->size);
3428                return -EINVAL;
3429        }
3430
3431        fw = (void *)(*raw)->data;
3432
3433        if ((*raw)->size < sizeof(*fw) + le32_to_cpu(fw->boot_size) +
3434            le32_to_cpu(fw->ucode_size) + le32_to_cpu(fw->fw_size)) {
3435                IPW_ERROR("%s is too small or corrupt (%zd)\n",
3436                          name, (*raw)->size);
3437                return -EINVAL;
3438        }
3439
3440        IPW_DEBUG_INFO("Read firmware '%s' image v%d.%d (%zd bytes)\n",
3441                       name,
3442                       le32_to_cpu(fw->ver) >> 16,
3443                       le32_to_cpu(fw->ver) & 0xff,
3444                       (*raw)->size - sizeof(*fw));
3445        return 0;
3446}
3447
3448#define IPW_RX_BUF_SIZE (3000)
3449
3450static void ipw_rx_queue_reset(struct ipw_priv *priv,
3451                                      struct ipw_rx_queue *rxq)
3452{
3453        unsigned long flags;
3454        int i;
3455
3456        spin_lock_irqsave(&rxq->lock, flags);
3457
3458        INIT_LIST_HEAD(&rxq->rx_free);
3459        INIT_LIST_HEAD(&rxq->rx_used);
3460
3461        /* Fill the rx_used queue with _all_ of the Rx buffers */
3462        for (i = 0; i < RX_FREE_BUFFERS + RX_QUEUE_SIZE; i++) {
3463                /* In the reset function, these buffers may have been allocated
3464                 * to an SKB, so we need to unmap and free potential storage */
3465                if (rxq->pool[i].skb != NULL) {
3466                        pci_unmap_single(priv->pci_dev, rxq->pool[i].dma_addr,
3467                                         IPW_RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
3468                        dev_kfree_skb(rxq->pool[i].skb);
3469                        rxq->pool[i].skb = NULL;
3470                }
3471                list_add_tail(&rxq->pool[i].list, &rxq->rx_used);
3472        }
3473
3474        /* Set us so that we have processed and used all buffers, but have
3475         * not restocked the Rx queue with fresh buffers */
3476        rxq->read = rxq->write = 0;
3477        rxq->free_count = 0;
3478        spin_unlock_irqrestore(&rxq->lock, flags);
3479}
3480
3481#ifdef CONFIG_PM
3482static int fw_loaded = 0;
3483static const struct firmware *raw = NULL;
3484
3485static void free_firmware(void)
3486{
3487        if (fw_loaded) {
3488                release_firmware(raw);
3489                raw = NULL;
3490                fw_loaded = 0;
3491        }
3492}
3493#else
3494#define free_firmware() do {} while (0)
3495#endif
3496
3497static int ipw_load(struct ipw_priv *priv)
3498{
3499#ifndef CONFIG_PM
3500        const struct firmware *raw = NULL;
3501#endif
3502        struct ipw_fw *fw;
3503        u8 *boot_img, *ucode_img, *fw_img;
3504        u8 *name = NULL;
3505        int rc = 0, retries = 3;
3506
3507        switch (priv->ieee->iw_mode) {
3508        case IW_MODE_ADHOC:
3509                name = "ipw2200-ibss.fw";
3510                break;
3511#ifdef CONFIG_IPW2200_MONITOR
3512        case IW_MODE_MONITOR:
3513                name = "ipw2200-sniffer.fw";
3514                break;
3515#endif
3516        case IW_MODE_INFRA:
3517                name = "ipw2200-bss.fw";
3518                break;
3519        }
3520
3521        if (!name) {
3522                rc = -EINVAL;
3523                goto error;
3524        }
3525
3526#ifdef CONFIG_PM
3527        if (!fw_loaded) {
3528#endif
3529                rc = ipw_get_fw(priv, &raw, name);
3530                if (rc < 0)
3531                        goto error;
3532#ifdef CONFIG_PM
3533        }
3534#endif
3535
3536        fw = (void *)raw->data;
3537        boot_img = &fw->data[0];
3538        ucode_img = &fw->data[le32_to_cpu(fw->boot_size)];
3539        fw_img = &fw->data[le32_to_cpu(fw->boot_size) +
3540                           le32_to_cpu(fw->ucode_size)];
3541
3542        if (rc < 0)
3543                goto error;
3544
3545        if (!priv->rxq)
3546                priv->rxq = ipw_rx_queue_alloc(priv);
3547        else
3548                ipw_rx_queue_reset(priv, priv->rxq);
3549        if (!priv->rxq) {
3550                IPW_ERROR("Unable to initialize Rx queue\n");
3551                rc = -ENOMEM;
3552                goto error;
3553        }
3554
3555      retry:
3556        /* Ensure interrupts are disabled */
3557        ipw_write32(priv, IPW_INTA_MASK_R, ~IPW_INTA_MASK_ALL);
3558        priv->status &= ~STATUS_INT_ENABLED;
3559
3560        /* ack pending interrupts */
3561        ipw_write32(priv, IPW_INTA_RW, IPW_INTA_MASK_ALL);
3562
3563        ipw_stop_nic(priv);
3564
3565        rc = ipw_reset_nic(priv);
3566        if (rc < 0) {
3567                IPW_ERROR("Unable to reset NIC\n");
3568                goto error;
3569        }
3570
3571        ipw_zero_memory(priv, IPW_NIC_SRAM_LOWER_BOUND,
3572                        IPW_NIC_SRAM_UPPER_BOUND - IPW_NIC_SRAM_LOWER_BOUND);
3573
3574        /* DMA the initial boot firmware into the device */
3575        rc = ipw_load_firmware(priv, boot_img, le32_to_cpu(fw->boot_size));
3576        if (rc < 0) {
3577                IPW_ERROR("Unable to load boot firmware: %d\n", rc);
3578                goto error;
3579        }
3580
3581        /* kick start the device */
3582        ipw_start_nic(priv);
3583
3584        /* wait for the device to finish its initial startup sequence */
3585        rc = ipw_poll_bit(priv, IPW_INTA_RW,
3586                          IPW_INTA_BIT_FW_INITIALIZATION_DONE, 500);
3587        if (rc < 0) {
3588                IPW_ERROR("device failed to boot initial fw image\n");
3589                goto error;
3590        }
3591        IPW_DEBUG_INFO("initial device response after %dms\n", rc);
3592
3593        /* ack fw init done interrupt */
3594        ipw_write32(priv, IPW_INTA_RW, IPW_INTA_BIT_FW_INITIALIZATION_DONE);
3595
3596        /* DMA the ucode into the device */
3597        rc = ipw_load_ucode(priv, ucode_img, le32_to_cpu(fw->ucode_size));
3598        if (rc < 0) {
3599                IPW_ERROR("Unable to load ucode: %d\n", rc);
3600                goto error;
3601        }
3602
3603        /* stop nic */
3604        ipw_stop_nic(priv);
3605
3606        /* DMA bss firmware into the device */
3607        rc = ipw_load_firmware(priv, fw_img, le32_to_cpu(fw->fw_size));
3608        if (rc < 0) {
3609                IPW_ERROR("Unable to load firmware: %d\n", rc);
3610                goto error;
3611        }
3612#ifdef CONFIG_PM
3613        fw_loaded = 1;
3614#endif
3615
3616        ipw_write32(priv, IPW_EEPROM_LOAD_DISABLE, 0);
3617
3618        rc = ipw_queue_reset(priv);
3619        if (rc < 0) {
3620                IPW_ERROR("Unable to initialize queues\n");
3621                goto error;
3622        }
3623
3624        /* Ensure interrupts are disabled */
3625        ipw_write32(priv, IPW_INTA_MASK_R, ~IPW_INTA_MASK_ALL);
3626        /* ack pending interrupts */
3627        ipw_write32(priv, IPW_INTA_RW, IPW_INTA_MASK_ALL);
3628
3629        /* kick start the device */
3630        ipw_start_nic(priv);
3631
3632        if (ipw_read32(priv, IPW_INTA_RW) & IPW_INTA_BIT_PARITY_ERROR) {
3633                if (retries > 0) {
3634                        IPW_WARNING("Parity error.  Retrying init.\n");
3635                        retries--;
3636                        goto retry;
3637                }
3638
3639                IPW_ERROR("TODO: Handle parity error -- schedule restart?\n");
3640                rc = -EIO;
3641                goto error;
3642        }
3643
3644        /* wait for the device */
3645        rc = ipw_poll_bit(priv, IPW_INTA_RW,
3646                          IPW_INTA_BIT_FW_INITIALIZATION_DONE, 500);
3647        if (rc < 0) {
3648                IPW_ERROR("device failed to start within 500ms\n");
3649                goto error;
3650        }
3651        IPW_DEBUG_INFO("device response after %dms\n", rc);
3652
3653        /* ack fw init done interrupt */
3654        ipw_write32(priv, IPW_INTA_RW, IPW_INTA_BIT_FW_INITIALIZATION_DONE);
3655
3656        /* read eeprom data */
3657        priv->eeprom_delay = 1;
3658        ipw_read_eeprom(priv);
3659        /* initialize the eeprom region of sram */
3660        ipw_eeprom_init_sram(priv);
3661
3662        /* enable interrupts */
3663        ipw_enable_interrupts(priv);
3664
3665        /* Ensure our queue has valid packets */
3666        ipw_rx_queue_replenish(priv);
3667
3668        ipw_write32(priv, IPW_RX_READ_INDEX, priv->rxq->read);
3669
3670        /* ack pending interrupts */
3671        ipw_write32(priv, IPW_INTA_RW, IPW_INTA_MASK_ALL);
3672
3673#ifndef CONFIG_PM
3674        release_firmware(raw);
3675#endif
3676        return 0;
3677
3678      error:
3679        if (priv->rxq) {
3680                ipw_rx_queue_free(priv, priv->rxq);
3681                priv->rxq = NULL;
3682        }
3683        ipw_tx_queue_free(priv);
3684        release_firmware(raw);
3685#ifdef CONFIG_PM
3686        fw_loaded = 0;
3687        raw = NULL;
3688#endif
3689
3690        return rc;
3691}
3692
3693/**
3694 * DMA services
3695 *
3696 * Theory of operation
3697 *
3698 * A queue is a circular buffers with 'Read' and 'Write' pointers.
3699 * 2 empty entries always kept in the buffer to protect from overflow.
3700 *
3701 * For Tx queue, there are low mark and high mark limits. If, after queuing
3702 * the packet for Tx, free space become < low mark, Tx queue stopped. When
3703 * reclaiming packets (on 'tx done IRQ), if free space become > high mark,
3704 * Tx queue resumed.
3705 *
3706 * The IPW operates with six queues, one receive queue in the device's
3707 * sram, one transmit queue for sending commands to the device firmware,
3708 * and four transmit queues for data.
3709 *
3710 * The four transmit queues allow for performing quality of service (qos)
3711 * transmissions as per the 802.11 protocol.  Currently Linux does not
3712 * provide a mechanism to the user for utilizing prioritized queues, so
3713 * we only utilize the first data transmit queue (queue1).
3714 */
3715
3716/**
3717 * Driver allocates buffers of this size for Rx
3718 */
3719
3720/**
3721 * ipw_rx_queue_space - Return number of free slots available in queue.
3722 */
3723static int ipw_rx_queue_space(const struct ipw_rx_queue *q)
3724{
3725        int s = q->read - q->write;
3726        if (s <= 0)
3727                s += RX_QUEUE_SIZE;
3728        /* keep some buffer to not confuse full and empty queue */
3729        s -= 2;
3730        if (s < 0)
3731                s = 0;
3732        return s;
3733}
3734
3735static inline int ipw_tx_queue_space(const struct clx2_queue *q)
3736{
3737        int s = q->last_used - q->first_empty;
3738        if (s <= 0)
3739                s += q->n_bd;
3740        s -= 2;                 /* keep some reserve to not confuse empty and full situations */
3741        if (s < 0)
3742                s = 0;
3743        return s;
3744}
3745
3746static inline int ipw_queue_inc_wrap(int index, int n_bd)
3747{
3748        return (++index == n_bd) ? 0 : index;
3749}
3750
3751/**
3752 * Initialize common DMA queue structure
3753 *
3754 * @param q                queue to init
3755 * @param count            Number of BD's to allocate. Should be power of 2
3756 * @param read_register    Address for 'read' register
3757 *                         (not offset within BAR, full address)
3758 * @param write_register   Address for 'write' register
3759 *                         (not offset within BAR, full address)
3760 * @param base_register    Address for 'base' register
3761 *                         (not offset within BAR, full address)
3762 * @param size             Address for 'size' register
3763 *                         (not offset within BAR, full address)
3764 */
3765static void ipw_queue_init(struct ipw_priv *priv, struct clx2_queue *q,
3766                           int count, u32 read, u32 write, u32 base, u32 size)
3767{
3768        q->n_bd = count;
3769
3770        q->low_mark = q->n_bd / 4;
3771        if (q->low_mark < 4)
3772                q->low_mark = 4;
3773
3774        q->high_mark = q->n_bd / 8;
3775        if (q->high_mark < 2)
3776                q->high_mark = 2;
3777
3778        q->first_empty = q->last_used = 0;
3779        q->reg_r = read;
3780        q->reg_w = write;
3781
3782        ipw_write32(priv, base, q->dma_addr);
3783        ipw_write32(priv, size, count);
3784        ipw_write32(priv, read, 0);
3785        ipw_write32(priv, write, 0);
3786
3787        _ipw_read32(priv, 0x90);
3788}
3789
3790static int ipw_queue_tx_init(struct ipw_priv *priv,
3791                             struct clx2_tx_queue *q,
3792                             int count, u32 read, u32 write, u32 base, u32 size)
3793{
3794        struct pci_dev *dev = priv->pci_dev;
3795
3796        q->txb = kmalloc(sizeof(q->txb[0]) * count, GFP_KERNEL);
3797        if (!q->txb) {
3798                IPW_ERROR("vmalloc for auxiliary BD structures failed\n");
3799                return -ENOMEM;
3800        }
3801
3802        q->bd =
3803            pci_alloc_consistent(dev, sizeof(q->bd[0]) * count, &q->q.dma_addr);
3804        if (!q->bd) {
3805                IPW_ERROR("pci_alloc_consistent(%zd) failed\n",
3806                          sizeof(q->bd[0]) * count);
3807                kfree(q->txb);
3808                q->txb = NULL;
3809                return -ENOMEM;
3810        }
3811
3812        ipw_queue_init(priv, &q->q, count, read, write, base, size);
3813        return 0;
3814}
3815
3816/**
3817 * Free one TFD, those at index [txq->q.last_used].
3818 * Do NOT advance any indexes
3819 *
3820 * @param dev
3821 * @param txq
3822 */
3823static void ipw_queue_tx_free_tfd(struct ipw_priv *priv,
3824                                  struct clx2_tx_queue *txq)
3825{
3826        struct tfd_frame *bd = &txq->bd[txq->q.last_used];
3827        struct pci_dev *dev = priv->pci_dev;
3828        int i;
3829
3830        /* classify bd */
3831        if (bd->control_flags.message_type == TX_HOST_COMMAND_TYPE)
3832                /* nothing to cleanup after for host commands */
3833                return;
3834
3835        /* sanity check */
3836        if (le32_to_cpu(bd->u.data.num_chunks) > NUM_TFD_CHUNKS) {
3837                IPW_ERROR("Too many chunks: %i\n",
3838                          le32_to_cpu(bd->u.data.num_chunks));
3839                /** @todo issue fatal error, it is quite serious situation */
3840                return;
3841        }
3842
3843        /* unmap chunks if any */
3844        for (i = 0; i < le32_to_cpu(bd->u.data.num_chunks); i++) {
3845                pci_unmap_single(dev, le32_to_cpu(bd->u.data.chunk_ptr[i]),
3846                                 le16_to_cpu(bd->u.data.chunk_len[i]),
3847                                 PCI_DMA_TODEVICE);
3848                if (txq->txb[txq->q.last_used]) {
3849                        libipw_txb_free(txq->txb[txq->q.last_used]);
3850                        txq->txb[txq->q.last_used] = NULL;
3851                }
3852        }
3853}
3854
3855/**
3856 * Deallocate DMA queue.
3857 *
3858 * Empty queue by removing and destroying all BD's.
3859 * Free all buffers.
3860 *
3861 * @param dev
3862 * @param q
3863 */
3864static void ipw_queue_tx_free(struct ipw_priv *priv, struct clx2_tx_queue *txq)
3865{
3866        struct clx2_queue *q = &txq->q;
3867        struct pci_dev *dev = priv->pci_dev;
3868
3869        if (q->n_bd == 0)
3870                return;
3871
3872        /* first, empty all BD's */
3873        for (; q->first_empty != q->last_used;
3874             q->last_used = ipw_queue_inc_wrap(q->last_used, q->n_bd)) {
3875                ipw_queue_tx_free_tfd(priv, txq);
3876        }
3877
3878        /* free buffers belonging to queue itself */
3879        pci_free_consistent(dev, sizeof(txq->bd[0]) * q->n_bd, txq->bd,
3880                            q->dma_addr);
3881        kfree(txq->txb);
3882
3883        /* 0 fill whole structure */
3884        memset(txq, 0, sizeof(*txq));
3885}
3886
3887/**
3888 * Destroy all DMA queues and structures
3889 *
3890 * @param priv
3891 */
3892static void ipw_tx_queue_free(struct ipw_priv *priv)
3893{
3894        /* Tx CMD queue */
3895        ipw_queue_tx_free(priv, &priv->txq_cmd);
3896
3897        /* Tx queues */
3898        ipw_queue_tx_free(priv, &priv->txq[0]);
3899        ipw_queue_tx_free(priv, &priv->txq[1]);
3900        ipw_queue_tx_free(priv, &priv->txq[2]);
3901        ipw_queue_tx_free(priv, &priv->txq[3]);
3902}
3903
3904static void ipw_create_bssid(struct ipw_priv *priv, u8 * bssid)
3905{
3906        /* First 3 bytes are manufacturer */
3907        bssid[0] = priv->mac_addr[0];
3908        bssid[1] = priv->mac_addr[1];
3909        bssid[2] = priv->mac_addr[2];
3910
3911        /* Last bytes are random */
3912        get_random_bytes(&bssid[3], ETH_ALEN - 3);
3913
3914        bssid[0] &= 0xfe;       /* clear multicast bit */
3915        bssid[0] |= 0x02;       /* set local assignment bit (IEEE802) */
3916}
3917
3918static u8 ipw_add_station(struct ipw_priv *priv, u8 * bssid)
3919{
3920        struct ipw_station_entry entry;
3921        int i;
3922
3923        for (i = 0; i < priv->num_stations; i++) {
3924                if (ether_addr_equal(priv->stations[i], bssid)) {
3925                        /* Another node is active in network */
3926                        priv->missed_adhoc_beacons = 0;
3927                        if (!(priv->config & CFG_STATIC_CHANNEL))
3928                                /* when other nodes drop out, we drop out */
3929                                priv->config &= ~CFG_ADHOC_PERSIST;
3930
3931                        return i;
3932                }
3933        }
3934
3935        if (i == MAX_STATIONS)
3936                return IPW_INVALID_STATION;
3937
3938        IPW_DEBUG_SCAN("Adding AdHoc station: %pM\n", bssid);
3939
3940        entry.reserved = 0;
3941        entry.support_mode = 0;
3942        memcpy(entry.mac_addr, bssid, ETH_ALEN);
3943        memcpy(priv->stations[i], bssid, ETH_ALEN);
3944        ipw_write_direct(priv, IPW_STATION_TABLE_LOWER + i * sizeof(entry),
3945                         &entry, sizeof(entry));
3946        priv->num_stations++;
3947
3948        return i;
3949}
3950
3951static u8 ipw_find_station(struct ipw_priv *priv, u8 * bssid)
3952{
3953        int i;
3954
3955        for (i = 0; i < priv->num_stations; i++)
3956                if (ether_addr_equal(priv->stations[i], bssid))
3957                        return i;
3958
3959        return IPW_INVALID_STATION;
3960}
3961
3962static void ipw_send_disassociate(struct ipw_priv *priv, int quiet)
3963{
3964        int err;
3965
3966        if (priv->status & STATUS_ASSOCIATING) {
3967                IPW_DEBUG_ASSOC("Disassociating while associating.\n");
3968                schedule_work(&priv->disassociate);
3969                return;
3970        }
3971
3972        if (!(priv->status & STATUS_ASSOCIATED)) {
3973                IPW_DEBUG_ASSOC("Disassociating while not associated.\n");
3974                return;
3975        }
3976
3977        IPW_DEBUG_ASSOC("Disassocation attempt from %pM "
3978                        "on channel %d.\n",
3979                        priv->assoc_request.bssid,
3980                        priv->assoc_request.channel);
3981
3982        priv->status &= ~(STATUS_ASSOCIATING | STATUS_ASSOCIATED);
3983        priv->status |= STATUS_DISASSOCIATING;
3984
3985        if (quiet)
3986                priv->assoc_request.assoc_type = HC_DISASSOC_QUIET;
3987        else
3988                priv->assoc_request.assoc_type = HC_DISASSOCIATE;
3989
3990        err = ipw_send_associate(priv, &priv->assoc_request);
3991        if (err) {
3992                IPW_DEBUG_HC("Attempt to send [dis]associate command "
3993                             "failed.\n");
3994                return;
3995        }
3996
3997}
3998
3999static int ipw_disassociate(void *data)
4000{
4001        struct ipw_priv *priv = data;
4002        if (!(priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)))
4003                return 0;
4004        ipw_send_disassociate(data, 0);
4005        netif_carrier_off(priv->net_dev);
4006        return 1;
4007}
4008
4009static void ipw_bg_disassociate(struct work_struct *work)
4010{
4011        struct ipw_priv *priv =
4012                container_of(work, struct ipw_priv, disassociate);
4013        mutex_lock(&priv->mutex);
4014        ipw_disassociate(priv);
4015        mutex_unlock(&priv->mutex);
4016}
4017
4018static void ipw_system_config(struct work_struct *work)
4019{
4020        struct ipw_priv *priv =
4021                container_of(work, struct ipw_priv, system_config);
4022
4023#ifdef CONFIG_IPW2200_PROMISCUOUS
4024        if (priv->prom_net_dev && netif_running(priv->prom_net_dev)) {
4025                priv->sys_config.accept_all_data_frames = 1;
4026                priv->sys_config.accept_non_directed_frames = 1;
4027                priv->sys_config.accept_all_mgmt_bcpr = 1;
4028                priv->sys_config.accept_all_mgmt_frames = 1;
4029        }
4030#endif
4031
4032        ipw_send_system_config(priv);
4033}
4034
4035struct ipw_status_code {
4036        u16 status;
4037        const char *reason;
4038};
4039
4040static const struct ipw_status_code ipw_status_codes[] = {
4041        {0x00, "Successful"},
4042        {0x01, "Unspecified failure"},
4043        {0x0A, "Cannot support all requested capabilities in the "
4044         "Capability information field"},
4045        {0x0B, "Reassociation denied due to inability to confirm that "
4046         "association exists"},
4047        {0x0C, "Association denied due to reason outside the scope of this "
4048         "standard"},
4049        {0x0D,
4050         "Responding station does not support the specified authentication "
4051         "algorithm"},
4052        {0x0E,
4053         "Received an Authentication frame with authentication sequence "
4054         "transaction sequence number out of expected sequence"},
4055        {0x0F, "Authentication rejected because of challenge failure"},
4056        {0x10, "Authentication rejected due to timeout waiting for next "
4057         "frame in sequence"},
4058        {0x11, "Association denied because AP is unable to handle additional "
4059         "associated stations"},
4060        {0x12,
4061         "Association denied due to requesting station not supporting all "
4062         "of the datarates in the BSSBasicServiceSet Parameter"},
4063        {0x13,
4064         "Association denied due to requesting station not supporting "
4065         "short preamble operation"},
4066        {0x14,
4067         "Association denied due to requesting station not supporting "
4068         "PBCC encoding"},
4069        {0x15,
4070         "Association denied due to requesting station not supporting "
4071         "channel agility"},
4072        {0x19,
4073         "Association denied due to requesting station not supporting "
4074         "short slot operation"},
4075        {0x1A,
4076         "Association denied due to requesting station not supporting "
4077         "DSSS-OFDM operation"},
4078        {0x28, "Invalid Information Element"},
4079        {0x29, "Group Cipher is not valid"},
4080        {0x2A, "Pairwise Cipher is not valid"},
4081        {0x2B, "AKMP is not valid"},
4082        {0x2C, "Unsupported RSN IE version"},
4083        {0x2D, "Invalid RSN IE Capabilities"},
4084        {0x2E, "Cipher suite is rejected per security policy"},
4085};
4086
4087static const char *ipw_get_status_code(u16 status)
4088{
4089        int i;
4090        for (i = 0; i < ARRAY_SIZE(ipw_status_codes); i++)
4091                if (ipw_status_codes[i].status == (status & 0xff))
4092                        return ipw_status_codes[i].reason;
4093        return "Unknown status value.";
4094}
4095
4096static void inline average_init(struct average *avg)
4097{
4098        memset(avg, 0, sizeof(*avg));
4099}
4100
4101#define DEPTH_RSSI 8
4102#define DEPTH_NOISE 16
4103static s16 exponential_average(s16 prev_avg, s16 val, u8 depth)
4104{
4105        return ((depth-1)*prev_avg +  val)/depth;
4106}
4107
4108static void average_add(struct average *avg, s16 val)
4109{
4110        avg->sum -= avg->entries[avg->pos];
4111        avg->sum += val;
4112        avg->entries[avg->pos++] = val;
4113        if (unlikely(avg->pos == AVG_ENTRIES)) {
4114                avg->init = 1;
4115                avg->pos = 0;
4116        }
4117}
4118
4119static s16 average_value(struct average *avg)
4120{
4121        if (!unlikely(avg->init)) {
4122                if (avg->pos)
4123                        return avg->sum / avg->pos;
4124                return 0;
4125        }
4126
4127        return avg->sum / AVG_ENTRIES;
4128}
4129
4130static void ipw_reset_stats(struct ipw_priv *priv)
4131{
4132        u32 len = sizeof(u32);
4133
4134        priv->quality = 0;
4135
4136        average_init(&priv->average_missed_beacons);
4137        priv->exp_avg_rssi = -60;
4138        priv->exp_avg_noise = -85 + 0x100;
4139
4140        priv->last_rate = 0;
4141        priv->last_missed_beacons = 0;
4142        priv->last_rx_packets = 0;
4143        priv->last_tx_packets = 0;
4144        priv->last_tx_failures = 0;
4145
4146        /* Firmware managed, reset only when NIC is restarted, so we have to
4147         * normalize on the current value */
4148        ipw_get_ordinal(priv, IPW_ORD_STAT_RX_ERR_CRC,
4149                        &priv->last_rx_err, &len);
4150        ipw_get_ordinal(priv, IPW_ORD_STAT_TX_FAILURE,
4151                        &priv->last_tx_failures, &len);
4152
4153        /* Driver managed, reset with each association */
4154        priv->missed_adhoc_beacons = 0;
4155        priv->missed_beacons = 0;
4156        priv->tx_packets = 0;
4157        priv->rx_packets = 0;
4158
4159}
4160
4161static u32 ipw_get_max_rate(struct ipw_priv *priv)
4162{
4163        u32 i = 0x80000000;
4164        u32 mask = priv->rates_mask;
4165        /* If currently associated in B mode, restrict the maximum
4166         * rate match to B rates */
4167        if (priv->assoc_request.ieee_mode == IPW_B_MODE)
4168                mask &= LIBIPW_CCK_RATES_MASK;
4169
4170        /* TODO: Verify that the rate is supported by the current rates
4171         * list. */
4172
4173        while (i && !(mask & i))
4174                i >>= 1;
4175        switch (i) {
4176        case LIBIPW_CCK_RATE_1MB_MASK:
4177                return 1000000;
4178        case LIBIPW_CCK_RATE_2MB_MASK:
4179                return 2000000;
4180        case LIBIPW_CCK_RATE_5MB_MASK:
4181                return 5500000;
4182        case LIBIPW_OFDM_RATE_6MB_MASK:
4183                return 6000000;
4184        case LIBIPW_OFDM_RATE_9MB_MASK:
4185                return 9000000;
4186        case LIBIPW_CCK_RATE_11MB_MASK:
4187                return 11000000;
4188        case LIBIPW_OFDM_RATE_12MB_MASK:
4189                return 12000000;
4190        case LIBIPW_OFDM_RATE_18MB_MASK:
4191                return 18000000;
4192        case LIBIPW_OFDM_RATE_24MB_MASK:
4193                return 24000000;
4194        case LIBIPW_OFDM_RATE_36MB_MASK:
4195                return 36000000;
4196        case LIBIPW_OFDM_RATE_48MB_MASK:
4197                return 48000000;
4198        case LIBIPW_OFDM_RATE_54MB_MASK:
4199                return 54000000;
4200        }
4201
4202        if (priv->ieee->mode == IEEE_B)
4203                return 11000000;
4204        else
4205                return 54000000;
4206}
4207
4208static u32 ipw_get_current_rate(struct ipw_priv *priv)
4209{
4210        u32 rate, len = sizeof(rate);
4211        int err;
4212
4213        if (!(priv->status & STATUS_ASSOCIATED))
4214                return 0;
4215
4216        if (priv->tx_packets > IPW_REAL_RATE_RX_PACKET_THRESHOLD) {
4217                err = ipw_get_ordinal(priv, IPW_ORD_STAT_TX_CURR_RATE, &rate,
4218                                      &len);
4219                if (err) {
4220                        IPW_DEBUG_INFO("failed querying ordinals.\n");
4221                        return 0;
4222                }
4223        } else
4224                return ipw_get_max_rate(priv);
4225
4226        switch (rate) {
4227        case IPW_TX_RATE_1MB:
4228                return 1000000;
4229        case IPW_TX_RATE_2MB:
4230                return 2000000;
4231        case IPW_TX_RATE_5MB:
4232                return 5500000;
4233        case IPW_TX_RATE_6MB:
4234                return 6000000;
4235        case IPW_TX_RATE_9MB:
4236                return 9000000;
4237        case IPW_TX_RATE_11MB:
4238                return 11000000;
4239        case IPW_TX_RATE_12MB:
4240                return 12000000;
4241        case IPW_TX_RATE_18MB:
4242                return 18000000;
4243        case IPW_TX_RATE_24MB:
4244                return 24000000;
4245        case IPW_TX_RATE_36MB:
4246                return 36000000;
4247        case IPW_TX_RATE_48MB:
4248                return 48000000;
4249        case IPW_TX_RATE_54MB:
4250                return 54000000;
4251        }
4252
4253        return 0;
4254}
4255
4256#define IPW_STATS_INTERVAL (2 * HZ)
4257static void ipw_gather_stats(struct ipw_priv *priv)
4258{
4259        u32 rx_err, rx_err_delta, rx_packets_delta;
4260        u32 tx_failures, tx_failures_delta, tx_packets_delta;
4261        u32 missed_beacons_percent, missed_beacons_delta;
4262        u32 quality = 0;
4263        u32 len = sizeof(u32);
4264        s16 rssi;
4265        u32 beacon_quality, signal_quality, tx_quality, rx_quality,
4266            rate_quality;
4267        u32 max_rate;
4268
4269        if (!(priv->status & STATUS_ASSOCIATED)) {
4270                priv->quality = 0;
4271                return;
4272        }
4273
4274        /* Update the statistics */
4275        ipw_get_ordinal(priv, IPW_ORD_STAT_MISSED_BEACONS,
4276                        &priv->missed_beacons, &len);
4277        missed_beacons_delta = priv->missed_beacons - priv->last_missed_beacons;
4278        priv->last_missed_beacons = priv->missed_beacons;
4279        if (priv->assoc_request.beacon_interval) {
4280                missed_beacons_percent = missed_beacons_delta *
4281                    (HZ * le16_to_cpu(priv->assoc_request.beacon_interval)) /
4282                    (IPW_STATS_INTERVAL * 10);
4283        } else {
4284                missed_beacons_percent = 0;
4285        }
4286        average_add(&priv->average_missed_beacons, missed_beacons_percent);
4287
4288        ipw_get_ordinal(priv, IPW_ORD_STAT_RX_ERR_CRC, &rx_err, &len);
4289        rx_err_delta = rx_err - priv->last_rx_err;
4290        priv->last_rx_err = rx_err;
4291
4292        ipw_get_ordinal(priv, IPW_ORD_STAT_TX_FAILURE, &tx_failures, &len);
4293        tx_failures_delta = tx_failures - priv->last_tx_failures;
4294        priv->last_tx_failures = tx_failures;
4295
4296        rx_packets_delta = priv->rx_packets - priv->last_rx_packets;
4297        priv->last_rx_packets = priv->rx_packets;
4298
4299        tx_packets_delta = priv->tx_packets - priv->last_tx_packets;
4300        priv->last_tx_packets = priv->tx_packets;
4301
4302        /* Calculate quality based on the following:
4303         *
4304         * Missed beacon: 100% = 0, 0% = 70% missed
4305         * Rate: 60% = 1Mbs, 100% = Max
4306         * Rx and Tx errors represent a straight % of total Rx/Tx
4307         * RSSI: 100% = > -50,  0% = < -80
4308         * Rx errors: 100% = 0, 0% = 50% missed
4309         *
4310         * The lowest computed quality is used.
4311         *
4312         */
4313#define BEACON_THRESHOLD 5
4314        beacon_quality = 100 - missed_beacons_percent;
4315        if (beacon_quality < BEACON_THRESHOLD)
4316                beacon_quality = 0;
4317        else
4318                beacon_quality = (beacon_quality - BEACON_THRESHOLD) * 100 /
4319                    (100 - BEACON_THRESHOLD);
4320        IPW_DEBUG_STATS("Missed beacon: %3d%% (%d%%)\n",
4321                        beacon_quality, missed_beacons_percent);
4322
4323        priv->last_rate = ipw_get_current_rate(priv);
4324        max_rate = ipw_get_max_rate(priv);
4325        rate_quality = priv->last_rate * 40 / max_rate + 60;
4326        IPW_DEBUG_STATS("Rate quality : %3d%% (%dMbs)\n",
4327                        rate_quality, priv->last_rate / 1000000);
4328
4329        if (rx_packets_delta > 100 && rx_packets_delta + rx_err_delta)
4330                rx_quality = 100 - (rx_err_delta * 100) /
4331                    (rx_packets_delta + rx_err_delta);
4332        else
4333                rx_quality = 100;
4334        IPW_DEBUG_STATS("Rx quality   : %3d%% (%u errors, %u packets)\n",
4335                        rx_quality, rx_err_delta, rx_packets_delta);
4336
4337        if (tx_packets_delta > 100 && tx_packets_delta + tx_failures_delta)
4338                tx_quality = 100 - (tx_failures_delta * 100) /
4339                    (tx_packets_delta + tx_failures_delta);
4340        else
4341                tx_quality = 100;
4342        IPW_DEBUG_STATS("Tx quality   : %3d%% (%u errors, %u packets)\n",
4343                        tx_quality, tx_failures_delta, tx_packets_delta);
4344
4345        rssi = priv->exp_avg_rssi;
4346        signal_quality =
4347            (100 *
4348             (priv->ieee->perfect_rssi - priv->ieee->worst_rssi) *
4349             (priv->ieee->perfect_rssi - priv->ieee->worst_rssi) -
4350             (priv->ieee->perfect_rssi - rssi) *
4351             (15 * (priv->ieee->perfect_rssi - priv->ieee->worst_rssi) +
4352              62 * (priv->ieee->perfect_rssi - rssi))) /
4353            ((priv->ieee->perfect_rssi - priv->ieee->worst_rssi) *
4354             (priv->ieee->perfect_rssi - priv->ieee->worst_rssi));
4355        if (signal_quality > 100)
4356                signal_quality = 100;
4357        else if (signal_quality < 1)
4358                signal_quality = 0;
4359
4360        IPW_DEBUG_STATS("Signal level : %3d%% (%d dBm)\n",
4361                        signal_quality, rssi);
4362
4363        quality = min(rx_quality, signal_quality);
4364        quality = min(tx_quality, quality);
4365        quality = min(rate_quality, quality);
4366        quality = min(beacon_quality, quality);
4367        if (quality == beacon_quality)
4368                IPW_DEBUG_STATS("Quality (%d%%): Clamped to missed beacons.\n",
4369                                quality);
4370        if (quality == rate_quality)
4371                IPW_DEBUG_STATS("Quality (%d%%): Clamped to rate quality.\n",
4372                                quality);
4373        if (quality == tx_quality)
4374                IPW_DEBUG_STATS("Quality (%d%%): Clamped to Tx quality.\n",
4375                                quality);
4376        if (quality == rx_quality)
4377                IPW_DEBUG_STATS("Quality (%d%%): Clamped to Rx quality.\n",
4378                                quality);
4379        if (quality == signal_quality)
4380                IPW_DEBUG_STATS("Quality (%d%%): Clamped to signal quality.\n",
4381                                quality);
4382
4383        priv->quality = quality;
4384
4385        schedule_delayed_work(&priv->gather_stats, IPW_STATS_INTERVAL);
4386}
4387
4388static void ipw_bg_gather_stats(struct work_struct *work)
4389{
4390        struct ipw_priv *priv =
4391                container_of(work, struct ipw_priv, gather_stats.work);
4392        mutex_lock(&priv->mutex);
4393        ipw_gather_stats(priv);
4394        mutex_unlock(&priv->mutex);
4395}
4396
4397/* Missed beacon behavior:
4398 * 1st missed -> roaming_threshold, just wait, don't do any scan/roam.
4399 * roaming_threshold -> disassociate_threshold, scan and roam for better signal.
4400 * Above disassociate threshold, give up and stop scanning.
4401 * Roaming is disabled if disassociate_threshold <= roaming_threshold  */
4402static void ipw_handle_missed_beacon(struct ipw_priv *priv,
4403                                            int missed_count)
4404{
4405        priv->notif_missed_beacons = missed_count;
4406
4407        if (missed_count > priv->disassociate_threshold &&
4408            priv->status & STATUS_ASSOCIATED) {
4409                /* If associated and we've hit the missed
4410                 * beacon threshold, disassociate, turn
4411                 * off roaming, and abort any active scans */
4412                IPW_DEBUG(IPW_DL_INFO | IPW_DL_NOTIF |
4413                          IPW_DL_STATE | IPW_DL_ASSOC,
4414                          "Missed beacon: %d - disassociate\n", missed_count);
4415                priv->status &= ~STATUS_ROAMING;
4416                if (priv->status & STATUS_SCANNING) {
4417                        IPW_DEBUG(IPW_DL_INFO | IPW_DL_NOTIF |
4418                                  IPW_DL_STATE,
4419                                  "Aborting scan with missed beacon.\n");
4420                        schedule_work(&priv->abort_scan);
4421                }
4422
4423                schedule_work(&priv->disassociate);
4424                return;
4425        }
4426
4427        if (priv->status & STATUS_ROAMING) {
4428                /* If we are currently roaming, then just
4429                 * print a debug statement... */
4430                IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE,
4431                          "Missed beacon: %d - roam in progress\n",
4432                          missed_count);
4433                return;
4434        }
4435
4436        if (roaming &&
4437            (missed_count > priv->roaming_threshold &&
4438             missed_count <= priv->disassociate_threshold)) {
4439                /* If we are not already roaming, set the ROAM
4440                 * bit in the status and kick off a scan.
4441                 * This can happen several times before we reach
4442                 * disassociate_threshold. */
4443                IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE,
4444                          "Missed beacon: %d - initiate "
4445                          "roaming\n", missed_count);
4446                if (!(priv->status & STATUS_ROAMING)) {
4447                        priv->status |= STATUS_ROAMING;
4448                        if (!(priv->status & STATUS_SCANNING))
4449                                schedule_delayed_work(&priv->request_scan, 0);
4450                }
4451                return;
4452        }
4453
4454        if (priv->status & STATUS_SCANNING &&
4455            missed_count > IPW_MB_SCAN_CANCEL_THRESHOLD) {
4456                /* Stop scan to keep fw from getting
4457                 * stuck (only if we aren't roaming --
4458                 * otherwise we'll never scan more than 2 or 3
4459                 * channels..) */
4460                IPW_DEBUG(IPW_DL_INFO | IPW_DL_NOTIF | IPW_DL_STATE,
4461                          "Aborting scan with missed beacon.\n");
4462                schedule_work(&priv->abort_scan);
4463        }
4464
4465        IPW_DEBUG_NOTIF("Missed beacon: %d\n", missed_count);
4466}
4467
4468static void ipw_scan_event(struct work_struct *work)
4469{
4470        union iwreq_data wrqu;
4471
4472        struct ipw_priv *priv =
4473                container_of(work, struct ipw_priv, scan_event.work);
4474
4475        wrqu.data.length = 0;
4476        wrqu.data.flags = 0;
4477        wireless_send_event(priv->net_dev, SIOCGIWSCAN, &wrqu, NULL);
4478}
4479
4480static void handle_scan_event(struct ipw_priv *priv)
4481{
4482        /* Only userspace-requested scan completion events go out immediately */
4483        if (!priv->user_requested_scan) {
4484                schedule_delayed_work(&priv->scan_event,
4485                                      round_jiffies_relative(msecs_to_jiffies(4000)));
4486        } else {
4487                priv->user_requested_scan = 0;
4488                mod_delayed_work(system_wq, &priv->scan_event, 0);
4489        }
4490}
4491
4492/**
4493 * Handle host notification packet.
4494 * Called from interrupt routine
4495 */
4496static void ipw_rx_notification(struct ipw_priv *priv,
4497                                       struct ipw_rx_notification *notif)
4498{
4499        u16 size = le16_to_cpu(notif->size);
4500
4501        IPW_DEBUG_NOTIF("type = %i (%d bytes)\n", notif->subtype, size);
4502
4503        switch (notif->subtype) {
4504        case HOST_NOTIFICATION_STATUS_ASSOCIATED:{
4505                        struct notif_association *assoc = &notif->u.assoc;
4506
4507                        switch (assoc->state) {
4508                        case CMAS_ASSOCIATED:{
4509                                        IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4510                                                  IPW_DL_ASSOC,
4511                                                  "associated: '%*pE' %pM\n",
4512                                                  priv->essid_len, priv->essid,
4513                                                  priv->bssid);
4514
4515                                        switch (priv->ieee->iw_mode) {
4516                                        case IW_MODE_INFRA:
4517                                                memcpy(priv->ieee->bssid,
4518                                                       priv->bssid, ETH_ALEN);
4519                                                break;
4520
4521                                        case IW_MODE_ADHOC:
4522                                                memcpy(priv->ieee->bssid,
4523                                                       priv->bssid, ETH_ALEN);
4524
4525                                                /* clear out the station table */
4526                                                priv->num_stations = 0;
4527
4528                                                IPW_DEBUG_ASSOC
4529                                                    ("queueing adhoc check\n");
4530                                                schedule_delayed_work(
4531                                                        &priv->adhoc_check,
4532                                                        le16_to_cpu(priv->
4533                                                        assoc_request.
4534                                                        beacon_interval));
4535                                                break;
4536                                        }
4537
4538                                        priv->status &= ~STATUS_ASSOCIATING;
4539                                        priv->status |= STATUS_ASSOCIATED;
4540                                        schedule_work(&priv->system_config);
4541
4542#ifdef CONFIG_IPW2200_QOS
4543#define IPW_GET_PACKET_STYPE(x) WLAN_FC_GET_STYPE( \
4544                         le16_to_cpu(((struct ieee80211_hdr *)(x))->frame_control))
4545                                        if ((priv->status & STATUS_AUTH) &&
4546                                            (IPW_GET_PACKET_STYPE(&notif->u.raw)
4547                                             == IEEE80211_STYPE_ASSOC_RESP)) {
4548                                                if ((sizeof
4549                                                     (struct
4550                                                      libipw_assoc_response)
4551                                                     <= size)
4552                                                    && (size <= 2314)) {
4553                                                        struct
4554                                                        libipw_rx_stats
4555                                                            stats = {
4556                                                                .len = size - 1,
4557                                                        };
4558
4559                                                        IPW_DEBUG_QOS
4560                                                            ("QoS Associate "
4561                                                             "size %d\n", size);
4562                                                        libipw_rx_mgt(priv->
4563                                                                         ieee,
4564                                                                         (struct
4565                                                                          libipw_hdr_4addr
4566                                                                          *)
4567                                                                         &notif->u.raw, &stats);
4568                                                }
4569                                        }
4570#endif
4571
4572                                        schedule_work(&priv->link_up);
4573
4574                                        break;
4575                                }
4576
4577                        case CMAS_AUTHENTICATED:{
4578                                        if (priv->
4579                                            status & (STATUS_ASSOCIATED |
4580                                                      STATUS_AUTH)) {
4581                                                struct notif_authenticate *auth
4582                                                    = &notif->u.auth;
4583                                                IPW_DEBUG(IPW_DL_NOTIF |
4584                                                          IPW_DL_STATE |
4585                                                          IPW_DL_ASSOC,
4586                                                          "deauthenticated: '%*pE' %pM: (0x%04X) - %s\n",
4587                                                          priv->essid_len,
4588                                                          priv->essid,
4589                                                          priv->bssid,
4590                                                          le16_to_cpu(auth->status),
4591                                                          ipw_get_status_code
4592                                                          (le16_to_cpu
4593                                                           (auth->status)));
4594
4595                                                priv->status &=
4596                                                    ~(STATUS_ASSOCIATING |
4597                                                      STATUS_AUTH |
4598                                                      STATUS_ASSOCIATED);
4599
4600                                                schedule_work(&priv->link_down);
4601                                                break;
4602                                        }
4603
4604                                        IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4605                                                  IPW_DL_ASSOC,
4606                                                  "authenticated: '%*pE' %pM\n",
4607                                                  priv->essid_len, priv->essid,
4608                                                  priv->bssid);
4609                                        break;
4610                                }
4611
4612                        case CMAS_INIT:{
4613                                        if (priv->status & STATUS_AUTH) {
4614                                                struct
4615                                                    libipw_assoc_response
4616                                                *resp;
4617                                                resp =
4618                                                    (struct
4619                                                     libipw_assoc_response
4620                                                     *)&notif->u.raw;
4621                                                IPW_DEBUG(IPW_DL_NOTIF |
4622                                                          IPW_DL_STATE |
4623                                                          IPW_DL_ASSOC,
4624                                                          "association failed (0x%04X): %s\n",
4625                                                          le16_to_cpu(resp->status),
4626                                                          ipw_get_status_code
4627                                                          (le16_to_cpu
4628                                                           (resp->status)));
4629                                        }
4630
4631                                        IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4632                                                  IPW_DL_ASSOC,
4633                                                  "disassociated: '%*pE' %pM\n",
4634                                                  priv->essid_len, priv->essid,
4635                                                  priv->bssid);
4636
4637                                        priv->status &=
4638                                            ~(STATUS_DISASSOCIATING |
4639                                              STATUS_ASSOCIATING |
4640                                              STATUS_ASSOCIATED | STATUS_AUTH);
4641                                        if (priv->assoc_network
4642                                            && (priv->assoc_network->
4643                                                capability &
4644                                                WLAN_CAPABILITY_IBSS))
4645                                                ipw_remove_current_network
4646                                                    (priv);
4647
4648                                        schedule_work(&priv->link_down);
4649
4650                                        break;
4651                                }
4652
4653                        case CMAS_RX_ASSOC_RESP:
4654                                break;
4655
4656                        default:
4657                                IPW_ERROR("assoc: unknown (%d)\n",
4658                                          assoc->state);
4659                                break;
4660                        }
4661
4662                        break;
4663                }
4664
4665        case HOST_NOTIFICATION_STATUS_AUTHENTICATE:{
4666                        struct notif_authenticate *auth = &notif->u.auth;
4667                        switch (auth->state) {
4668                        case CMAS_AUTHENTICATED:
4669                                IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE,
4670                                          "authenticated: '%*pE' %pM\n",
4671                                          priv->essid_len, priv->essid,
4672                                          priv->bssid);
4673                                priv->status |= STATUS_AUTH;
4674                                break;
4675
4676                        case CMAS_INIT:
4677                                if (priv->status & STATUS_AUTH) {
4678                                        IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4679                                                  IPW_DL_ASSOC,
4680                                                  "authentication failed (0x%04X): %s\n",
4681                                                  le16_to_cpu(auth->status),
4682                                                  ipw_get_status_code(le16_to_cpu
4683                                                                      (auth->
4684                                                                       status)));
4685                                }
4686                                IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4687                                          IPW_DL_ASSOC,
4688                                          "deauthenticated: '%*pE' %pM\n",
4689                                          priv->essid_len, priv->essid,
4690                                          priv->bssid);
4691
4692                                priv->status &= ~(STATUS_ASSOCIATING |
4693                                                  STATUS_AUTH |
4694                                                  STATUS_ASSOCIATED);
4695
4696                                schedule_work(&priv->link_down);
4697                                break;
4698
4699                        case CMAS_TX_AUTH_SEQ_1:
4700                                IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4701                                          IPW_DL_ASSOC, "AUTH_SEQ_1\n");
4702                                break;
4703                        case CMAS_RX_AUTH_SEQ_2:
4704                                IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4705                                          IPW_DL_ASSOC, "AUTH_SEQ_2\n");
4706                                break;
4707                        case CMAS_AUTH_SEQ_1_PASS:
4708                                IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4709                                          IPW_DL_ASSOC, "AUTH_SEQ_1_PASS\n");
4710                                break;
4711                        case CMAS_AUTH_SEQ_1_FAIL:
4712                                IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4713                                          IPW_DL_ASSOC, "AUTH_SEQ_1_FAIL\n");
4714                                break;
4715                        case CMAS_TX_AUTH_SEQ_3:
4716                                IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4717                                          IPW_DL_ASSOC, "AUTH_SEQ_3\n");
4718                                break;
4719                        case CMAS_RX_AUTH_SEQ_4:
4720                                IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4721                                          IPW_DL_ASSOC, "RX_AUTH_SEQ_4\n");
4722                                break;
4723                        case CMAS_AUTH_SEQ_2_PASS:
4724                                IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4725                                          IPW_DL_ASSOC, "AUTH_SEQ_2_PASS\n");
4726                                break;
4727                        case CMAS_AUTH_SEQ_2_FAIL:
4728                                IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4729                                          IPW_DL_ASSOC, "AUT_SEQ_2_FAIL\n");
4730                                break;
4731                        case CMAS_TX_ASSOC:
4732                                IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4733                                          IPW_DL_ASSOC, "TX_ASSOC\n");
4734                                break;
4735                        case CMAS_RX_ASSOC_RESP:
4736                                IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4737                                          IPW_DL_ASSOC, "RX_ASSOC_RESP\n");
4738
4739                                break;
4740                        case CMAS_ASSOCIATED:
4741                                IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4742                                          IPW_DL_ASSOC, "ASSOCIATED\n");
4743                                break;
4744                        default:
4745                                IPW_DEBUG_NOTIF("auth: failure - %d\n",
4746                                                auth->state);
4747                                break;
4748                        }
4749                        break;
4750                }
4751
4752        case HOST_NOTIFICATION_STATUS_SCAN_CHANNEL_RESULT:{
4753                        struct notif_channel_result *x =
4754                            &notif->u.channel_result;
4755
4756                        if (size == sizeof(*x)) {
4757                                IPW_DEBUG_SCAN("Scan result for channel %d\n",
4758                                               x->channel_num);
4759                        } else {
4760                                IPW_DEBUG_SCAN("Scan result of wrong size %d "
4761                                               "(should be %zd)\n",
4762                                               size, sizeof(*x));
4763                        }
4764                        break;
4765                }
4766
4767        case HOST_NOTIFICATION_STATUS_SCAN_COMPLETED:{
4768                        struct notif_scan_complete *x = &notif->u.scan_complete;
4769                        if (size == sizeof(*x)) {
4770                                IPW_DEBUG_SCAN
4771                                    ("Scan completed: type %d, %d channels, "
4772                                     "%d status\n", x->scan_type,
4773                                     x->num_channels, x->status);
4774                        } else {
4775                                IPW_ERROR("Scan completed of wrong size %d "
4776                                          "(should be %zd)\n",
4777                                          size, sizeof(*x));
4778                        }
4779
4780                        priv->status &=
4781                            ~(STATUS_SCANNING | STATUS_SCAN_ABORTING);
4782
4783                        wake_up_interruptible(&priv->wait_state);
4784                        cancel_delayed_work(&priv->scan_check);
4785
4786                        if (priv->status & STATUS_EXIT_PENDING)
4787                                break;
4788
4789                        priv->ieee->scans++;
4790
4791#ifdef CONFIG_IPW2200_MONITOR
4792                        if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
4793                                priv->status |= STATUS_SCAN_FORCED;
4794                                schedule_delayed_work(&priv->request_scan, 0);
4795                                break;
4796                        }
4797                        priv->status &= ~STATUS_SCAN_FORCED;
4798#endif                          /* CONFIG_IPW2200_MONITOR */
4799
4800                        /* Do queued direct scans first */
4801                        if (priv->status & STATUS_DIRECT_SCAN_PENDING)
4802                                schedule_delayed_work(&priv->request_direct_scan, 0);
4803
4804                        if (!(priv->status & (STATUS_ASSOCIATED |
4805                                              STATUS_ASSOCIATING |
4806                                              STATUS_ROAMING |
4807                                              STATUS_DISASSOCIATING)))
4808                                schedule_work(&priv->associate);
4809                        else if (priv->status & STATUS_ROAMING) {
4810                                if (x->status == SCAN_COMPLETED_STATUS_COMPLETE)
4811                                        /* If a scan completed and we are in roam mode, then
4812                                         * the scan that completed was the one requested as a
4813                                         * result of entering roam... so, schedule the
4814                                         * roam work */
4815                                        schedule_work(&priv->roam);
4816                                else
4817                                        /* Don't schedule if we aborted the scan */
4818                                        priv->status &= ~STATUS_ROAMING;
4819                        } else if (priv->status & STATUS_SCAN_PENDING)
4820                                schedule_delayed_work(&priv->request_scan, 0);
4821                        else if (priv->config & CFG_BACKGROUND_SCAN
4822                                 && priv->status & STATUS_ASSOCIATED)
4823                                schedule_delayed_work(&priv->request_scan,
4824                                                      round_jiffies_relative(HZ));
4825
4826                        /* Send an empty event to user space.
4827                         * We don't send the received data on the event because
4828                         * it would require us to do complex transcoding, and
4829                         * we want to minimise the work done in the irq handler
4830                         * Use a request to extract the data.
4831                         * Also, we generate this even for any scan, regardless
4832                         * on how the scan was initiated. User space can just
4833                         * sync on periodic scan to get fresh data...
4834                         * Jean II */
4835                        if (x->status == SCAN_COMPLETED_STATUS_COMPLETE)
4836                                handle_scan_event(priv);
4837                        break;
4838                }
4839
4840        case HOST_NOTIFICATION_STATUS_FRAG_LENGTH:{
4841                        struct notif_frag_length *x = &notif->u.frag_len;
4842
4843                        if (size == sizeof(*x))
4844                                IPW_ERROR("Frag length: %d\n",
4845                                          le16_to_cpu(x->frag_length));
4846                        else
4847                                IPW_ERROR("Frag length of wrong size %d "
4848                                          "(should be %zd)\n",
4849                                          size, sizeof(*x));
4850                        break;
4851                }
4852
4853        case HOST_NOTIFICATION_STATUS_LINK_DETERIORATION:{
4854                        struct notif_link_deterioration *x =
4855                            &notif->u.link_deterioration;
4856
4857                        if (size == sizeof(*x)) {
4858                                IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE,
4859                                        "link deterioration: type %d, cnt %d\n",
4860                                        x->silence_notification_type,
4861                                        x->silence_count);
4862                                memcpy(&priv->last_link_deterioration, x,
4863                                       sizeof(*x));
4864                        } else {
4865                                IPW_ERROR("Link Deterioration of wrong size %d "
4866                                          "(should be %zd)\n",
4867                                          size, sizeof(*x));
4868                        }
4869                        break;
4870                }
4871
4872        case HOST_NOTIFICATION_DINO_CONFIG_RESPONSE:{
4873                        IPW_ERROR("Dino config\n");
4874                        if (priv->hcmd
4875                            && priv->hcmd->cmd != HOST_CMD_DINO_CONFIG)
4876                                IPW_ERROR("Unexpected DINO_CONFIG_RESPONSE\n");
4877
4878                        break;
4879                }
4880
4881        case HOST_NOTIFICATION_STATUS_BEACON_STATE:{
4882                        struct notif_beacon_state *x = &notif->u.beacon_state;
4883                        if (size != sizeof(*x)) {
4884                                IPW_ERROR
4885                                    ("Beacon state of wrong size %d (should "
4886                                     "be %zd)\n", size, sizeof(*x));
4887                                break;
4888                        }
4889
4890                        if (le32_to_cpu(x->state) ==
4891                            HOST_NOTIFICATION_STATUS_BEACON_MISSING)
4892                                ipw_handle_missed_beacon(priv,
4893                                                         le32_to_cpu(x->
4894                                                                     number));
4895
4896                        break;
4897                }
4898
4899        case HOST_NOTIFICATION_STATUS_TGI_TX_KEY:{
4900                        struct notif_tgi_tx_key *x = &notif->u.tgi_tx_key;
4901                        if (size == sizeof(*x)) {
4902                                IPW_ERROR("TGi Tx Key: state 0x%02x sec type "
4903                                          "0x%02x station %d\n",
4904                                          x->key_state, x->security_type,
4905                                          x->station_index);
4906                                break;
4907                        }
4908
4909                        IPW_ERROR
4910                            ("TGi Tx Key of wrong size %d (should be %zd)\n",
4911                             size, sizeof(*x));
4912                        break;
4913                }
4914
4915        case HOST_NOTIFICATION_CALIB_KEEP_RESULTS:{
4916                        struct notif_calibration *x = &notif->u.calibration;
4917
4918                        if (size == sizeof(*x)) {
4919                                memcpy(&priv->calib, x, sizeof(*x));
4920                                IPW_DEBUG_INFO("TODO: Calibration\n");
4921                                break;
4922                        }
4923
4924                        IPW_ERROR
4925                            ("Calibration of wrong size %d (should be %zd)\n",
4926                             size, sizeof(*x));
4927                        break;
4928                }
4929
4930        case HOST_NOTIFICATION_NOISE_STATS:{
4931                        if (size == sizeof(u32)) {
4932                                priv->exp_avg_noise =
4933                                    exponential_average(priv->exp_avg_noise,
4934                                    (u8) (le32_to_cpu(notif->u.noise.value) & 0xff),
4935                                    DEPTH_NOISE);
4936                                break;
4937                        }
4938
4939                        IPW_ERROR
4940                            ("Noise stat is wrong size %d (should be %zd)\n",
4941                             size, sizeof(u32));
4942                        break;
4943                }
4944
4945        default:
4946                IPW_DEBUG_NOTIF("Unknown notification: "
4947                                "subtype=%d,flags=0x%2x,size=%d\n",
4948                                notif->subtype, notif->flags, size);
4949        }
4950}
4951
4952/**
4953 * Destroys all DMA structures and initialise them again
4954 *
4955 * @param priv
4956 * @return error code
4957 */
4958static int ipw_queue_reset(struct ipw_priv *priv)
4959{
4960        int rc = 0;
4961        /** @todo customize queue sizes */
4962        int nTx = 64, nTxCmd = 8;
4963        ipw_tx_queue_free(priv);
4964        /* Tx CMD queue */
4965        rc = ipw_queue_tx_init(priv, &priv->txq_cmd, nTxCmd,
4966                               IPW_TX_CMD_QUEUE_READ_INDEX,
4967                               IPW_TX_CMD_QUEUE_WRITE_INDEX,
4968                               IPW_TX_CMD_QUEUE_BD_BASE,
4969                               IPW_TX_CMD_QUEUE_BD_SIZE);
4970        if (rc) {
4971                IPW_ERROR("Tx Cmd queue init failed\n");
4972                goto error;
4973        }
4974        /* Tx queue(s) */
4975        rc = ipw_queue_tx_init(priv, &priv->txq[0], nTx,
4976                               IPW_TX_QUEUE_0_READ_INDEX,
4977                               IPW_TX_QUEUE_0_WRITE_INDEX,
4978                               IPW_TX_QUEUE_0_BD_BASE, IPW_TX_QUEUE_0_BD_SIZE);
4979        if (rc) {
4980                IPW_ERROR("Tx 0 queue init failed\n");
4981                goto error;
4982        }
4983        rc = ipw_queue_tx_init(priv, &priv->txq[1], nTx,
4984                               IPW_TX_QUEUE_1_READ_INDEX,
4985                               IPW_TX_QUEUE_1_WRITE_INDEX,
4986                               IPW_TX_QUEUE_1_BD_BASE, IPW_TX_QUEUE_1_BD_SIZE);
4987        if (rc) {
4988                IPW_ERROR("Tx 1 queue init failed\n");
4989                goto error;
4990        }
4991        rc = ipw_queue_tx_init(priv, &priv->txq[2], nTx,
4992                               IPW_TX_QUEUE_2_READ_INDEX,
4993                               IPW_TX_QUEUE_2_WRITE_INDEX,
4994                               IPW_TX_QUEUE_2_BD_BASE, IPW_TX_QUEUE_2_BD_SIZE);
4995        if (rc) {
4996                IPW_ERROR("Tx 2 queue init failed\n");
4997                goto error;
4998        }
4999        rc = ipw_queue_tx_init(priv, &priv->txq[3], nTx,
5000                               IPW_TX_QUEUE_3_READ_INDEX,
5001                               IPW_TX_QUEUE_3_WRITE_INDEX,
5002                               IPW_TX_QUEUE_3_BD_BASE, IPW_TX_QUEUE_3_BD_SIZE);
5003        if (rc) {
5004                IPW_ERROR("Tx 3 queue init failed\n");
5005                goto error;
5006        }
5007        /* statistics */
5008        priv->rx_bufs_min = 0;
5009        priv->rx_pend_max = 0;
5010        return rc;
5011
5012      error:
5013        ipw_tx_queue_free(priv);
5014        return rc;
5015}
5016
5017/**
5018 * Reclaim Tx queue entries no more used by NIC.
5019 *
5020 * When FW advances 'R' index, all entries between old and
5021 * new 'R' index need to be reclaimed. As result, some free space
5022 * forms. If there is enough free space (> low mark), wake Tx queue.
5023 *
5024 * @note Need to protect against garbage in 'R' index
5025 * @param priv
5026 * @param txq
5027 * @param qindex
5028 * @return Number of used entries remains in the queue
5029 */
5030static int ipw_queue_tx_reclaim(struct ipw_priv *priv,
5031                                struct clx2_tx_queue *txq, int qindex)
5032{
5033        u32 hw_tail;
5034        int used;
5035        struct clx2_queue *q = &txq->q;
5036
5037        hw_tail = ipw_read32(priv, q->reg_r);
5038        if (hw_tail >= q->n_bd) {
5039                IPW_ERROR
5040                    ("Read index for DMA queue (%d) is out of range [0-%d)\n",
5041                     hw_tail, q->n_bd);
5042                goto done;
5043        }
5044        for (; q->last_used != hw_tail;
5045             q->last_used = ipw_queue_inc_wrap(q->last_used, q->n_bd)) {
5046                ipw_queue_tx_free_tfd(priv, txq);
5047                priv->tx_packets++;
5048        }
5049      done:
5050        if ((ipw_tx_queue_space(q) > q->low_mark) &&
5051            (qindex >= 0))
5052                netif_wake_queue(priv->net_dev);
5053        used = q->first_empty - q->last_used;
5054        if (used < 0)
5055                used += q->n_bd;
5056
5057        return used;
5058}
5059
5060static int ipw_queue_tx_hcmd(struct ipw_priv *priv, int hcmd, void *buf,
5061                             int len, int sync)
5062{
5063        struct clx2_tx_queue *txq = &priv->txq_cmd;
5064        struct clx2_queue *q = &txq->q;
5065        struct tfd_frame *tfd;
5066
5067        if (ipw_tx_queue_space(q) < (sync ? 1 : 2)) {
5068                IPW_ERROR("No space for Tx\n");
5069                return -EBUSY;
5070        }
5071
5072        tfd = &txq->bd[q->first_empty];
5073        txq->txb[q->first_empty] = NULL;
5074
5075        memset(tfd, 0, sizeof(*tfd));
5076        tfd->control_flags.message_type = TX_HOST_COMMAND_TYPE;
5077        tfd->control_flags.control_bits = TFD_NEED_IRQ_MASK;
5078        priv->hcmd_seq++;
5079        tfd->u.cmd.index = hcmd;
5080        tfd->u.cmd.length = len;
5081        memcpy(tfd->u.cmd.payload, buf, len);
5082        q->first_empty = ipw_queue_inc_wrap(q->first_empty, q->n_bd);
5083        ipw_write32(priv, q->reg_w, q->first_empty);
5084        _ipw_read32(priv, 0x90);
5085
5086        return 0;
5087}
5088
5089/*
5090 * Rx theory of operation
5091 *
5092 * The host allocates 32 DMA target addresses and passes the host address
5093 * to the firmware at register IPW_RFDS_TABLE_LOWER + N * RFD_SIZE where N is
5094 * 0 to 31
5095 *
5096 * Rx Queue Indexes
5097 * The host/firmware share two index registers for managing the Rx buffers.
5098 *
5099 * The READ index maps to the first position that the firmware may be writing
5100 * to -- the driver can read up to (but not including) this position and get
5101 * good data.
5102 * The READ index is managed by the firmware once the card is enabled.
5103 *
5104 * The WRITE index maps to the last position the driver has read from -- the
5105 * position preceding WRITE is the last slot the firmware can place a packet.
5106 *
5107 * The queue is empty (no good data) if WRITE = READ - 1, and is full if
5108 * WRITE = READ.
5109 *
5110 * During initialization the host sets up the READ queue position to the first
5111 * INDEX position, and WRITE to the last (READ - 1 wrapped)
5112 *
5113 * When the firmware places a packet in a buffer it will advance the READ index
5114 * and fire the RX interrupt.  The driver can then query the READ index and
5115 * process as many packets as possible, moving the WRITE index forward as it
5116 * resets the Rx queue buffers with new memory.
5117 *
5118 * The management in the driver is as follows:
5119 * + A list of pre-allocated SKBs is stored in ipw->rxq->rx_free.  When
5120 *   ipw->rxq->free_count drops to or below RX_LOW_WATERMARK, work is scheduled
5121 *   to replensish the ipw->rxq->rx_free.
5122 * + In ipw_rx_queue_replenish (scheduled) if 'processed' != 'read' then the
5123 *   ipw->rxq is replenished and the READ INDEX is updated (updating the
5124 *   'processed' and 'read' driver indexes as well)
5125 * + A received packet is processed and handed to the kernel network stack,
5126 *   detached from the ipw->rxq.  The driver 'processed' index is updated.
5127 * + The Host/Firmware ipw->rxq is replenished at tasklet time from the rx_free
5128 *   list. If there are no allocated buffers in ipw->rxq->rx_free, the READ
5129 *   INDEX is not incremented and ipw->status(RX_STALLED) is set.  If there
5130 *   were enough free buffers and RX_STALLED is set it is cleared.
5131 *
5132 *
5133 * Driver sequence:
5134 *
5135 * ipw_rx_queue_alloc()       Allocates rx_free
5136 * ipw_rx_queue_replenish()   Replenishes rx_free list from rx_used, and calls
5137 *                            ipw_rx_queue_restock
5138 * ipw_rx_queue_restock()     Moves available buffers from rx_free into Rx
5139 *                            queue, updates firmware pointers, and updates
5140 *                            the WRITE index.  If insufficient rx_free buffers
5141 *                            are available, schedules ipw_rx_queue_replenish
5142 *
5143 * -- enable interrupts --
5144 * ISR - ipw_rx()             Detach ipw_rx_mem_buffers from pool up to the
5145 *                            READ INDEX, detaching the SKB from the pool.
5146 *                            Moves the packet buffer from queue to rx_used.
5147 *                            Calls ipw_rx_queue_restock to refill any empty
5148 *                            slots.
5149 * ...
5150 *
5151 */
5152
5153/*
5154 * If there are slots in the RX queue that  need to be restocked,
5155 * and we have free pre-allocated buffers, fill the ranks as much
5156 * as we can pulling from rx_free.
5157 *
5158 * This moves the 'write' index forward to catch up with 'processed', and
5159 * also updates the memory address in the firmware to reference the new
5160 * target buffer.
5161 */
5162static void ipw_rx_queue_restock(struct ipw_priv *priv)
5163{
5164        struct ipw_rx_queue *rxq = priv->rxq;
5165        struct list_head *element;
5166        struct ipw_rx_mem_buffer *rxb;
5167        unsigned long flags;
5168        int write;
5169
5170        spin_lock_irqsave(&rxq->lock, flags);
5171        write = rxq->write;
5172        while ((ipw_rx_queue_space(rxq) > 0) && (rxq->free_count)) {
5173                element = rxq->rx_free.next;
5174                rxb = list_entry(element, struct ipw_rx_mem_buffer, list);
5175                list_del(element);
5176
5177                ipw_write32(priv, IPW_RFDS_TABLE_LOWER + rxq->write * RFD_SIZE,
5178                            rxb->dma_addr);
5179                rxq->queue[rxq->write] = rxb;
5180                rxq->write = (rxq->write + 1) % RX_QUEUE_SIZE;
5181                rxq->free_count--;
5182        }
5183        spin_unlock_irqrestore(&rxq->lock, flags);
5184
5185        /* If the pre-allocated buffer pool is dropping low, schedule to
5186         * refill it */
5187        if (rxq->free_count <= RX_LOW_WATERMARK)
5188                schedule_work(&priv->rx_replenish);
5189
5190        /* If we've added more space for the firmware to place data, tell it */
5191        if (write != rxq->write)
5192                ipw_write32(priv, IPW_RX_WRITE_INDEX, rxq->write);
5193}
5194
5195/*
5196 * Move all used packet from rx_used to rx_free, allocating a new SKB for each.
5197 * Also restock the Rx queue via ipw_rx_queue_restock.
5198 *
5199 * This is called as a scheduled work item (except for during intialization)
5200 */
5201static void ipw_rx_queue_replenish(void *data)
5202{
5203        struct ipw_priv *priv = data;
5204        struct ipw_rx_queue *rxq = priv->rxq;
5205        struct list_head *element;
5206        struct ipw_rx_mem_buffer *rxb;
5207        unsigned long flags;
5208
5209        spin_lock_irqsave(&rxq->lock, flags);
5210        while (!list_empty(&rxq->rx_used)) {
5211                element = rxq->rx_used.next;
5212                rxb = list_entry(element, struct ipw_rx_mem_buffer, list);
5213                rxb->skb = alloc_skb(IPW_RX_BUF_SIZE, GFP_ATOMIC);
5214                if (!rxb->skb) {
5215                        printk(KERN_CRIT "%s: Can not allocate SKB buffers.\n",
5216                               priv->net_dev->name);
5217                        /* We don't reschedule replenish work here -- we will
5218                         * call the restock method and if it still needs
5219                         * more buffers it will schedule replenish */
5220                        break;
5221                }
5222                list_del(element);
5223
5224                rxb->dma_addr =
5225                    pci_map_single(priv->pci_dev, rxb->skb->data,
5226                                   IPW_RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
5227
5228                list_add_tail(&rxb->list, &rxq->rx_free);
5229                rxq->free_count++;
5230        }
5231        spin_unlock_irqrestore(&rxq->lock, flags);
5232
5233        ipw_rx_queue_restock(priv);
5234}
5235
5236static void ipw_bg_rx_queue_replenish(struct work_struct *work)
5237{
5238        struct ipw_priv *priv =
5239                container_of(work, struct ipw_priv, rx_replenish);
5240        mutex_lock(&priv->mutex);
5241        ipw_rx_queue_replenish(priv);
5242        mutex_unlock(&priv->mutex);
5243}
5244
5245/* Assumes that the skb field of the buffers in 'pool' is kept accurate.
5246 * If an SKB has been detached, the POOL needs to have its SKB set to NULL
5247 * This free routine walks the list of POOL entries and if SKB is set to
5248 * non NULL it is unmapped and freed
5249 */
5250static void ipw_rx_queue_free(struct ipw_priv *priv, struct ipw_rx_queue *rxq)
5251{
5252        int i;
5253
5254        if (!rxq)
5255                return;
5256
5257        for (i = 0; i < RX_QUEUE_SIZE + RX_FREE_BUFFERS; i++) {
5258                if (rxq->pool[i].skb != NULL) {
5259                        pci_unmap_single(priv->pci_dev, rxq->pool[i].dma_addr,
5260                                         IPW_RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
5261                        dev_kfree_skb(rxq->pool[i].skb);
5262                }
5263        }
5264
5265        kfree(rxq);
5266}
5267
5268static struct ipw_rx_queue *ipw_rx_queue_alloc(struct ipw_priv *priv)
5269{
5270        struct ipw_rx_queue *rxq;
5271        int i;
5272
5273        rxq = kzalloc(sizeof(*rxq), GFP_KERNEL);
5274        if (unlikely(!rxq)) {
5275                IPW_ERROR("memory allocation failed\n");
5276                return NULL;
5277        }
5278        spin_lock_init(&rxq->lock);
5279        INIT_LIST_HEAD(&rxq->rx_free);
5280        INIT_LIST_HEAD(&rxq->rx_used);
5281
5282        /* Fill the rx_used queue with _all_ of the Rx buffers */
5283        for (i = 0; i < RX_FREE_BUFFERS + RX_QUEUE_SIZE; i++)
5284                list_add_tail(&rxq->pool[i].list, &rxq->rx_used);
5285
5286        /* Set us so that we have processed and used all buffers, but have
5287         * not restocked the Rx queue with fresh buffers */
5288        rxq->read = rxq->write = 0;
5289        rxq->free_count = 0;
5290
5291        return rxq;
5292}
5293
5294static int ipw_is_rate_in_mask(struct ipw_priv *priv, int ieee_mode, u8 rate)
5295{
5296        rate &= ~LIBIPW_BASIC_RATE_MASK;
5297        if (ieee_mode == IEEE_A) {
5298                switch (rate) {
5299                case LIBIPW_OFDM_RATE_6MB:
5300                        return priv->rates_mask & LIBIPW_OFDM_RATE_6MB_MASK ?
5301                            1 : 0;
5302                case LIBIPW_OFDM_RATE_9MB:
5303                        return priv->rates_mask & LIBIPW_OFDM_RATE_9MB_MASK ?
5304                            1 : 0;
5305                case LIBIPW_OFDM_RATE_12MB:
5306                        return priv->
5307                            rates_mask & LIBIPW_OFDM_RATE_12MB_MASK ? 1 : 0;
5308                case LIBIPW_OFDM_RATE_18MB:
5309                        return priv->
5310                            rates_mask & LIBIPW_OFDM_RATE_18MB_MASK ? 1 : 0;
5311                case LIBIPW_OFDM_RATE_24MB:
5312                        return priv->
5313                            rates_mask & LIBIPW_OFDM_RATE_24MB_MASK ? 1 : 0;
5314                case LIBIPW_OFDM_RATE_36MB:
5315                        return priv->
5316                            rates_mask & LIBIPW_OFDM_RATE_36MB_MASK ? 1 : 0;
5317                case LIBIPW_OFDM_RATE_48MB:
5318                        return priv->
5319                            rates_mask & LIBIPW_OFDM_RATE_48MB_MASK ? 1 : 0;
5320                case LIBIPW_OFDM_RATE_54MB:
5321                        return priv->
5322                            rates_mask & LIBIPW_OFDM_RATE_54MB_MASK ? 1 : 0;
5323                default:
5324                        return 0;
5325                }
5326        }
5327
5328        /* B and G mixed */
5329        switch (rate) {
5330        case LIBIPW_CCK_RATE_1MB:
5331                return priv->rates_mask & LIBIPW_CCK_RATE_1MB_MASK ? 1 : 0;
5332        case LIBIPW_CCK_RATE_2MB:
5333                return priv->rates_mask & LIBIPW_CCK_RATE_2MB_MASK ? 1 : 0;
5334        case LIBIPW_CCK_RATE_5MB:
5335                return priv->rates_mask & LIBIPW_CCK_RATE_5MB_MASK ? 1 : 0;
5336        case LIBIPW_CCK_RATE_11MB:
5337                return priv->rates_mask & LIBIPW_CCK_RATE_11MB_MASK ? 1 : 0;
5338        }
5339
5340        /* If we are limited to B modulations, bail at this point */
5341        if (ieee_mode == IEEE_B)
5342                return 0;
5343
5344        /* G */
5345        switch (rate) {
5346        case LIBIPW_OFDM_RATE_6MB:
5347                return priv->rates_mask & LIBIPW_OFDM_RATE_6MB_MASK ? 1 : 0;
5348        case LIBIPW_OFDM_RATE_9MB:
5349                return priv->rates_mask & LIBIPW_OFDM_RATE_9MB_MASK ? 1 : 0;
5350        case LIBIPW_OFDM_RATE_12MB:
5351                return priv->rates_mask & LIBIPW_OFDM_RATE_12MB_MASK ? 1 : 0;
5352        case LIBIPW_OFDM_RATE_18MB:
5353                return priv->rates_mask & LIBIPW_OFDM_RATE_18MB_MASK ? 1 : 0;
5354        case LIBIPW_OFDM_RATE_24MB:
5355                return priv->rates_mask & LIBIPW_OFDM_RATE_24MB_MASK ? 1 : 0;
5356        case LIBIPW_OFDM_RATE_36MB:
5357                return priv->rates_mask & LIBIPW_OFDM_RATE_36MB_MASK ? 1 : 0;
5358        case LIBIPW_OFDM_RATE_48MB:
5359                return priv->rates_mask & LIBIPW_OFDM_RATE_48MB_MASK ? 1 : 0;
5360        case LIBIPW_OFDM_RATE_54MB:
5361                return priv->rates_mask & LIBIPW_OFDM_RATE_54MB_MASK ? 1 : 0;
5362        }
5363
5364        return 0;
5365}
5366
5367static int ipw_compatible_rates(struct ipw_priv *priv,
5368                                const struct libipw_network *network,
5369                                struct ipw_supported_rates *rates)
5370{
5371        int num_rates, i;
5372
5373        memset(rates, 0, sizeof(*rates));
5374        num_rates = min(network->rates_len, (u8) IPW_MAX_RATES);
5375        rates->num_rates = 0;
5376        for (i = 0; i < num_rates; i++) {
5377                if (!ipw_is_rate_in_mask(priv, network->mode,
5378                                         network->rates[i])) {
5379
5380                        if (network->rates[i] & LIBIPW_BASIC_RATE_MASK) {
5381                                IPW_DEBUG_SCAN("Adding masked mandatory "
5382                                               "rate %02X\n",
5383                                               network->rates[i]);
5384                                rates->supported_rates[rates->num_rates++] =
5385                                    network->rates[i];
5386                                continue;
5387                        }
5388
5389                        IPW_DEBUG_SCAN("Rate %02X masked : 0x%08X\n",
5390                                       network->rates[i], priv->rates_mask);
5391                        continue;
5392                }
5393
5394                rates->supported_rates[rates->num_rates++] = network->rates[i];
5395        }
5396
5397        num_rates = min(network->rates_ex_len,
5398                        (u8) (IPW_MAX_RATES - num_rates));
5399        for (i = 0; i < num_rates; i++) {
5400                if (!ipw_is_rate_in_mask(priv, network->mode,
5401                                         network->rates_ex[i])) {
5402                        if (network->rates_ex[i] & LIBIPW_BASIC_RATE_MASK) {
5403                                IPW_DEBUG_SCAN("Adding masked mandatory "
5404                                               "rate %02X\n",
5405                                               network->rates_ex[i]);
5406                                rates->supported_rates[rates->num_rates++] =
5407                                    network->rates[i];
5408                                continue;
5409                        }
5410
5411                        IPW_DEBUG_SCAN("Rate %02X masked : 0x%08X\n",
5412                                       network->rates_ex[i], priv->rates_mask);
5413                        continue;
5414                }
5415
5416                rates->supported_rates[rates->num_rates++] =
5417                    network->rates_ex[i];
5418        }
5419
5420        return 1;
5421}
5422
5423static void ipw_copy_rates(struct ipw_supported_rates *dest,
5424                                  const struct ipw_supported_rates *src)
5425{
5426        u8 i;
5427        for (i = 0; i < src->num_rates; i++)
5428                dest->supported_rates[i] = src->supported_rates[i];
5429        dest->num_rates = src->num_rates;
5430}
5431
5432/* TODO: Look at sniffed packets in the air to determine if the basic rate
5433 * mask should ever be used -- right now all callers to add the scan rates are
5434 * set with the modulation = CCK, so BASIC_RATE_MASK is never set... */
5435static void ipw_add_cck_scan_rates(struct ipw_supported_rates *rates,
5436                                   u8 modulation, u32 rate_mask)
5437{
5438        u8 basic_mask = (LIBIPW_OFDM_MODULATION == modulation) ?
5439            LIBIPW_BASIC_RATE_MASK : 0;
5440
5441        if (rate_mask & LIBIPW_CCK_RATE_1MB_MASK)
5442                rates->supported_rates[rates->num_rates++] =
5443                    LIBIPW_BASIC_RATE_MASK | LIBIPW_CCK_RATE_1MB;
5444
5445        if (rate_mask & LIBIPW_CCK_RATE_2MB_MASK)
5446                rates->supported_rates[rates->num_rates++] =
5447                    LIBIPW_BASIC_RATE_MASK | LIBIPW_CCK_RATE_2MB;
5448
5449        if (rate_mask & LIBIPW_CCK_RATE_5MB_MASK)
5450                rates->supported_rates[rates->num_rates++] = basic_mask |
5451                    LIBIPW_CCK_RATE_5MB;
5452
5453        if (rate_mask & LIBIPW_CCK_RATE_11MB_MASK)
5454                rates->supported_rates[rates->num_rates++] = basic_mask |
5455                    LIBIPW_CCK_RATE_11MB;
5456}
5457
5458static void ipw_add_ofdm_scan_rates(struct ipw_supported_rates *rates,
5459                                    u8 modulation, u32 rate_mask)
5460{
5461        u8 basic_mask = (LIBIPW_OFDM_MODULATION == modulation) ?
5462            LIBIPW_BASIC_RATE_MASK : 0;
5463
5464        if (rate_mask & LIBIPW_OFDM_RATE_6MB_MASK)
5465                rates->supported_rates[rates->num_rates++] = basic_mask |
5466                    LIBIPW_OFDM_RATE_6MB;
5467
5468        if (rate_mask & LIBIPW_OFDM_RATE_9MB_MASK)
5469                rates->supported_rates[rates->num_rates++] =
5470                    LIBIPW_OFDM_RATE_9MB;
5471
5472        if (rate_mask & LIBIPW_OFDM_RATE_12MB_MASK)
5473                rates->supported_rates[rates->num_rates++] = basic_mask |
5474                    LIBIPW_OFDM_RATE_12MB;
5475
5476        if (rate_mask & LIBIPW_OFDM_RATE_18MB_MASK)
5477                rates->supported_rates[rates->num_rates++] =
5478                    LIBIPW_OFDM_RATE_18MB;
5479
5480        if (rate_mask & LIBIPW_OFDM_RATE_24MB_MASK)
5481                rates->supported_rates[rates->num_rates++] = basic_mask |
5482                    LIBIPW_OFDM_RATE_24MB;
5483
5484        if (rate_mask & LIBIPW_OFDM_RATE_36MB_MASK)
5485                rates->supported_rates[rates->num_rates++] =
5486                    LIBIPW_OFDM_RATE_36MB;
5487
5488        if (rate_mask & LIBIPW_OFDM_RATE_48MB_MASK)
5489                rates->supported_rates[rates->num_rates++] =
5490                    LIBIPW_OFDM_RATE_48MB;
5491
5492        if (rate_mask & LIBIPW_OFDM_RATE_54MB_MASK)
5493                rates->supported_rates[rates->num_rates++] =
5494                    LIBIPW_OFDM_RATE_54MB;
5495}
5496
5497struct ipw_network_match {
5498        struct libipw_network *network;
5499        struct ipw_supported_rates rates;
5500};
5501
5502static int ipw_find_adhoc_network(struct ipw_priv *priv,
5503                                  struct ipw_network_match *match,
5504                                  struct libipw_network *network,
5505                                  int roaming)
5506{
5507        struct ipw_supported_rates rates;
5508
5509        /* Verify that this network's capability is compatible with the
5510         * current mode (AdHoc or Infrastructure) */
5511        if ((priv->ieee->iw_mode == IW_MODE_ADHOC &&
5512             !(network->capability & WLAN_CAPABILITY_IBSS))) {
5513                IPW_DEBUG_MERGE("Network '%*pE (%pM)' excluded due to capability mismatch.\n",
5514                                network->ssid_len, network->ssid,
5515                                network->bssid);
5516                return 0;
5517        }
5518
5519        if (unlikely(roaming)) {
5520                /* If we are roaming, then ensure check if this is a valid
5521                 * network to try and roam to */
5522                if ((network->ssid_len != match->network->ssid_len) ||
5523                    memcmp(network->ssid, match->network->ssid,
5524                           network->ssid_len)) {
5525                        IPW_DEBUG_MERGE("Network '%*pE (%pM)' excluded because of non-network ESSID.\n",
5526                                        network->ssid_len, network->ssid,
5527                                        network->bssid);
5528                        return 0;
5529                }
5530        } else {
5531                /* If an ESSID has been configured then compare the broadcast
5532                 * ESSID to ours */
5533                if ((priv->config & CFG_STATIC_ESSID) &&
5534                    ((network->ssid_len != priv->essid_len) ||
5535                     memcmp(network->ssid, priv->essid,
5536                            min(network->ssid_len, priv->essid_len)))) {
5537                        IPW_DEBUG_MERGE("Network '%*pE (%pM)' excluded because of ESSID mismatch: '%*pE'.\n",
5538                                        network->ssid_len, network->ssid,
5539                                        network->bssid, priv->essid_len,
5540                                        priv->essid);
5541                        return 0;
5542                }
5543        }
5544
5545        /* If the old network rate is better than this one, don't bother
5546         * testing everything else. */
5547
5548        if (network->time_stamp[0] < match->network->time_stamp[0]) {
5549                IPW_DEBUG_MERGE("Network '%*pE excluded because newer than current network.\n",
5550                                match->network->ssid_len, match->network->ssid);
5551                return 0;
5552        } else if (network->time_stamp[1] < match->network->time_stamp[1]) {
5553                IPW_DEBUG_MERGE("Network '%*pE excluded because newer than current network.\n",
5554                                match->network->ssid_len, match->network->ssid);
5555                return 0;
5556        }
5557
5558        /* Now go through and see if the requested network is valid... */
5559        if (priv->ieee->scan_age != 0 &&
5560            time_after(jiffies, network->last_scanned + priv->ieee->scan_age)) {
5561                IPW_DEBUG_MERGE("Network '%*pE (%pM)' excluded because of age: %ums.\n",
5562                                network->ssid_len, network->ssid,
5563                                network->bssid,
5564                                jiffies_to_msecs(jiffies -
5565                                                 network->last_scanned));
5566                return 0;
5567        }
5568
5569        if ((priv->config & CFG_STATIC_CHANNEL) &&
5570            (network->channel != priv->channel)) {
5571                IPW_DEBUG_MERGE("Network '%*pE (%pM)' excluded because of channel mismatch: %d != %d.\n",
5572                                network->ssid_len, network->ssid,
5573                                network->bssid,
5574                                network->channel, priv->channel);
5575                return 0;
5576        }
5577
5578        /* Verify privacy compatibility */
5579        if (((priv->capability & CAP_PRIVACY_ON) ? 1 : 0) !=
5580            ((network->capability & WLAN_CAPABILITY_PRIVACY) ? 1 : 0)) {
5581                IPW_DEBUG_MERGE("Network '%*pE (%pM)' excluded because of privacy mismatch: %s != %s.\n",
5582                                network->ssid_len, network->ssid,
5583                                network->bssid,
5584                                priv->
5585                                capability & CAP_PRIVACY_ON ? "on" : "off",
5586                                network->
5587                                capability & WLAN_CAPABILITY_PRIVACY ? "on" :
5588                                "off");
5589                return 0;
5590        }
5591
5592        if (ether_addr_equal(network->bssid, priv->bssid)) {
5593                IPW_DEBUG_MERGE("Network '%*pE (%pM)' excluded because of the same BSSID match: %pM.\n",
5594                                network->ssid_len, network->ssid,
5595                                network->bssid, priv->bssid);
5596                return 0;
5597        }
5598
5599        /* Filter out any incompatible freq / mode combinations */
5600        if (!libipw_is_valid_mode(priv->ieee, network->mode)) {
5601                IPW_DEBUG_MERGE("Network '%*pE (%pM)' excluded because of invalid frequency/mode combination.\n",
5602                                network->ssid_len, network->ssid,
5603                                network->bssid);
5604                return 0;
5605        }
5606
5607        /* Ensure that the rates supported by the driver are compatible with
5608         * this AP, including verification of basic rates (mandatory) */
5609        if (!ipw_compatible_rates(priv, network, &rates)) {
5610                IPW_DEBUG_MERGE("Network '%*pE (%pM)' excluded because configured rate mask excludes AP mandatory rate.\n",
5611                                network->ssid_len, network->ssid,
5612                                network->bssid);
5613                return 0;
5614        }
5615
5616        if (rates.num_rates == 0) {
5617                IPW_DEBUG_MERGE("Network '%*pE (%pM)' excluded because of no compatible rates.\n",
5618                                network->ssid_len, network->ssid,
5619                                network->bssid);
5620                return 0;
5621        }
5622
5623        /* TODO: Perform any further minimal comparititive tests.  We do not
5624         * want to put too much policy logic here; intelligent scan selection
5625         * should occur within a generic IEEE 802.11 user space tool.  */
5626
5627        /* Set up 'new' AP to this network */
5628        ipw_copy_rates(&match->rates, &rates);
5629        match->network = network;
5630        IPW_DEBUG_MERGE("Network '%*pE (%pM)' is a viable match.\n",
5631                        network->ssid_len, network->ssid, network->bssid);
5632
5633        return 1;
5634}
5635
5636static void ipw_merge_adhoc_network(struct work_struct *work)
5637{
5638        struct ipw_priv *priv =
5639                container_of(work, struct ipw_priv, merge_networks);
5640        struct libipw_network *network = NULL;
5641        struct ipw_network_match match = {
5642                .network = priv->assoc_network
5643        };
5644
5645        if ((priv->status & STATUS_ASSOCIATED) &&
5646            (priv->ieee->iw_mode == IW_MODE_ADHOC)) {
5647                /* First pass through ROAM process -- look for a better
5648                 * network */
5649                unsigned long flags;
5650
5651                spin_lock_irqsave(&priv->ieee->lock, flags);
5652                list_for_each_entry(network, &priv->ieee->network_list, list) {
5653                        if (network != priv->assoc_network)
5654                                ipw_find_adhoc_network(priv, &match, network,
5655                                                       1);
5656                }
5657                spin_unlock_irqrestore(&priv->ieee->lock, flags);
5658
5659                if (match.network == priv->assoc_network) {
5660                        IPW_DEBUG_MERGE("No better ADHOC in this network to "
5661                                        "merge to.\n");
5662                        return;
5663                }
5664
5665                mutex_lock(&priv->mutex);
5666                if ((priv->ieee->iw_mode == IW_MODE_ADHOC)) {
5667                        IPW_DEBUG_MERGE("remove network %*pE\n",
5668                                        priv->essid_len, priv->essid);
5669                        ipw_remove_current_network(priv);
5670                }
5671
5672                ipw_disassociate(priv);
5673                priv->assoc_network = match.network;
5674                mutex_unlock(&priv->mutex);
5675                return;
5676        }
5677}
5678
5679static int ipw_best_network(struct ipw_priv *priv,
5680                            struct ipw_network_match *match,
5681                            struct libipw_network *network, int roaming)
5682{
5683        struct ipw_supported_rates rates;
5684
5685        /* Verify that this network's capability is compatible with the
5686         * current mode (AdHoc or Infrastructure) */
5687        if ((priv->ieee->iw_mode == IW_MODE_INFRA &&
5688             !(network->capability & WLAN_CAPABILITY_ESS)) ||
5689            (priv->ieee->iw_mode == IW_MODE_ADHOC &&
5690             !(network->capability & WLAN_CAPABILITY_IBSS))) {
5691                IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded due to capability mismatch.\n",
5692                                network->ssid_len, network->ssid,
5693                                network->bssid);
5694                return 0;
5695        }
5696
5697        if (unlikely(roaming)) {
5698                /* If we are roaming, then ensure check if this is a valid
5699                 * network to try and roam to */
5700                if ((network->ssid_len != match->network->ssid_len) ||
5701                    memcmp(network->ssid, match->network->ssid,
5702                           network->ssid_len)) {
5703                        IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded because of non-network ESSID.\n",
5704                                        network->ssid_len, network->ssid,
5705                                        network->bssid);
5706                        return 0;
5707                }
5708        } else {
5709                /* If an ESSID has been configured then compare the broadcast
5710                 * ESSID to ours */
5711                if ((priv->config & CFG_STATIC_ESSID) &&
5712                    ((network->ssid_len != priv->essid_len) ||
5713                     memcmp(network->ssid, priv->essid,
5714                            min(network->ssid_len, priv->essid_len)))) {
5715                        IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded because of ESSID mismatch: '%*pE'.\n",
5716                                        network->ssid_len, network->ssid,
5717                                        network->bssid, priv->essid_len,
5718                                        priv->essid);
5719                        return 0;
5720                }
5721        }
5722
5723        /* If the old network rate is better than this one, don't bother
5724         * testing everything else. */
5725        if (match->network && match->network->stats.rssi > network->stats.rssi) {
5726                IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded because '%*pE (%pM)' has a stronger signal.\n",
5727                                network->ssid_len, network->ssid,
5728                                network->bssid, match->network->ssid_len,
5729                                match->network->ssid, match->network->bssid);
5730                return 0;
5731        }
5732
5733        /* If this network has already had an association attempt within the
5734         * last 3 seconds, do not try and associate again... */
5735        if (network->last_associate &&
5736            time_after(network->last_associate + (HZ * 3UL), jiffies)) {
5737                IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded because of storming (%ums since last assoc attempt).\n",
5738                                network->ssid_len, network->ssid,
5739                                network->bssid,
5740                                jiffies_to_msecs(jiffies -
5741                                                 network->last_associate));
5742                return 0;
5743        }
5744
5745        /* Now go through and see if the requested network is valid... */
5746        if (priv->ieee->scan_age != 0 &&
5747            time_after(jiffies, network->last_scanned + priv->ieee->scan_age)) {
5748                IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded because of age: %ums.\n",
5749                                network->ssid_len, network->ssid,
5750                                network->bssid,
5751                                jiffies_to_msecs(jiffies -
5752                                                 network->last_scanned));
5753                return 0;
5754        }
5755
5756        if ((priv->config & CFG_STATIC_CHANNEL) &&
5757            (network->channel != priv->channel)) {
5758                IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded because of channel mismatch: %d != %d.\n",
5759                                network->ssid_len, network->ssid,
5760                                network->bssid,
5761                                network->channel, priv->channel);
5762                return 0;
5763        }
5764
5765        /* Verify privacy compatibility */
5766        if (((priv->capability & CAP_PRIVACY_ON) ? 1 : 0) !=
5767            ((network->capability & WLAN_CAPABILITY_PRIVACY) ? 1 : 0)) {
5768                IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded because of privacy mismatch: %s != %s.\n",
5769                                network->ssid_len, network->ssid,
5770                                network->bssid,
5771                                priv->capability & CAP_PRIVACY_ON ? "on" :
5772                                "off",
5773                                network->capability &
5774                                WLAN_CAPABILITY_PRIVACY ? "on" : "off");
5775                return 0;
5776        }
5777
5778        if ((priv->config & CFG_STATIC_BSSID) &&
5779            !ether_addr_equal(network->bssid, priv->bssid)) {
5780                IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded because of BSSID mismatch: %pM.\n",
5781                                network->ssid_len, network->ssid,
5782                                network->bssid, priv->bssid);
5783                return 0;
5784        }
5785
5786        /* Filter out any incompatible freq / mode combinations */
5787        if (!libipw_is_valid_mode(priv->ieee, network->mode)) {
5788                IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded because of invalid frequency/mode combination.\n",
5789                                network->ssid_len, network->ssid,
5790                                network->bssid);
5791                return 0;
5792        }
5793
5794        /* Filter out invalid channel in current GEO */
5795        if (!libipw_is_valid_channel(priv->ieee, network->channel)) {
5796                IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded because of invalid channel in current GEO\n",
5797                                network->ssid_len, network->ssid,
5798                                network->bssid);
5799                return 0;
5800        }
5801
5802        /* Ensure that the rates supported by the driver are compatible with
5803         * this AP, including verification of basic rates (mandatory) */
5804        if (!ipw_compatible_rates(priv, network, &rates)) {
5805                IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded because configured rate mask excludes AP mandatory rate.\n",
5806                                network->ssid_len, network->ssid,
5807                                network->bssid);
5808                return 0;
5809        }
5810
5811        if (rates.num_rates == 0) {
5812                IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded because of no compatible rates.\n",
5813                                network->ssid_len, network->ssid,
5814                                network->bssid);
5815                return 0;
5816        }
5817
5818        /* TODO: Perform any further minimal comparititive tests.  We do not
5819         * want to put too much policy logic here; intelligent scan selection
5820         * should occur within a generic IEEE 802.11 user space tool.  */
5821
5822        /* Set up 'new' AP to this network */
5823        ipw_copy_rates(&match->rates, &rates);
5824        match->network = network;
5825
5826        IPW_DEBUG_ASSOC("Network '%*pE (%pM)' is a viable match.\n",
5827                        network->ssid_len, network->ssid, network->bssid);
5828
5829        return 1;
5830}
5831
5832static void ipw_adhoc_create(struct ipw_priv *priv,
5833                             struct libipw_network *network)
5834{
5835        const struct libipw_geo *geo = libipw_get_geo(priv->ieee);
5836        int i;
5837
5838        /*
5839         * For the purposes of scanning, we can set our wireless mode
5840         * to trigger scans across combinations of bands, but when it
5841         * comes to creating a new ad-hoc network, we have tell the FW
5842         * exactly which band to use.
5843         *
5844         * We also have the possibility of an invalid channel for the
5845         * chossen band.  Attempting to create a new ad-hoc network
5846         * with an invalid channel for wireless mode will trigger a
5847         * FW fatal error.
5848         *
5849         */
5850        switch (libipw_is_valid_channel(priv->ieee, priv->channel)) {
5851        case LIBIPW_52GHZ_BAND:
5852                network->mode = IEEE_A;
5853                i = libipw_channel_to_index(priv->ieee, priv->channel);
5854                BUG_ON(i == -1);
5855                if (geo->a[i].flags & LIBIPW_CH_PASSIVE_ONLY) {
5856                        IPW_WARNING("Overriding invalid channel\n");
5857                        priv->channel = geo->a[0].channel;
5858                }
5859                break;
5860
5861        case LIBIPW_24GHZ_BAND:
5862                if (priv->ieee->mode & IEEE_G)
5863                        network->mode = IEEE_G;
5864                else
5865                        network->mode = IEEE_B;
5866                i = libipw_channel_to_index(priv->ieee, priv->channel);
5867                BUG_ON(i == -1);
5868                if (geo->bg[i].flags & LIBIPW_CH_PASSIVE_ONLY) {
5869                        IPW_WARNING("Overriding invalid channel\n");
5870                        priv->channel = geo->bg[0].channel;
5871                }
5872                break;
5873
5874        default:
5875                IPW_WARNING("Overriding invalid channel\n");
5876                if (priv->ieee->mode & IEEE_A) {
5877                        network->mode = IEEE_A;
5878                        priv->channel = geo->a[0].channel;
5879                } else if (priv->ieee->mode & IEEE_G) {
5880                        network->mode = IEEE_G;
5881                        priv->channel = geo->bg[0].channel;
5882                } else {
5883                        network->mode = IEEE_B;
5884                        priv->channel = geo->bg[0].channel;
5885                }
5886                break;
5887        }
5888
5889        network->channel = priv->channel;
5890        priv->config |= CFG_ADHOC_PERSIST;
5891        ipw_create_bssid(priv, network->bssid);
5892        network->ssid_len = priv->essid_len;
5893        memcpy(network->ssid, priv->essid, priv->essid_len);
5894        memset(&network->stats, 0, sizeof(network->stats));
5895        network->capability = WLAN_CAPABILITY_IBSS;
5896        if (!(priv->config & CFG_PREAMBLE_LONG))
5897                network->capability |= WLAN_CAPABILITY_SHORT_PREAMBLE;
5898        if (priv->capability & CAP_PRIVACY_ON)
5899                network->capability |= WLAN_CAPABILITY_PRIVACY;
5900        network->rates_len = min(priv->rates.num_rates, MAX_RATES_LENGTH);
5901        memcpy(network->rates, priv->rates.supported_rates, network->rates_len);
5902        network->rates_ex_len = priv->rates.num_rates - network->rates_len;
5903        memcpy(network->rates_ex,
5904               &priv->rates.supported_rates[network->rates_len],
5905               network->rates_ex_len);
5906        network->last_scanned = 0;
5907        network->flags = 0;
5908        network->last_associate = 0;
5909        network->time_stamp[0] = 0;
5910        network->time_stamp[1] = 0;
5911        network->beacon_interval = 100; /* Default */
5912        network->listen_interval = 10;  /* Default */
5913        network->atim_window = 0;       /* Default */
5914        network->wpa_ie_len = 0;
5915        network->rsn_ie_len = 0;
5916}
5917
5918static void ipw_send_tgi_tx_key(struct ipw_priv *priv, int type, int index)
5919{
5920        struct ipw_tgi_tx_key key;
5921
5922        if (!(priv->ieee->sec.flags & (1 << index)))
5923                return;
5924
5925        key.key_id = index;
5926        memcpy(key.key, priv->ieee->sec.keys[index], SCM_TEMPORAL_KEY_LENGTH);
5927        key.security_type = type;
5928        key.station_index = 0;  /* always 0 for BSS */
5929        key.flags = 0;
5930        /* 0 for new key; previous value of counter (after fatal error) */
5931        key.tx_counter[0] = cpu_to_le32(0);
5932        key.tx_counter[1] = cpu_to_le32(0);
5933
5934        ipw_send_cmd_pdu(priv, IPW_CMD_TGI_TX_KEY, sizeof(key), &key);
5935}
5936
5937static void ipw_send_wep_keys(struct ipw_priv *priv, int type)
5938{
5939        struct ipw_wep_key key;
5940        int i;
5941
5942        key.cmd_id = DINO_CMD_WEP_KEY;
5943        key.seq_num = 0;
5944
5945        /* Note: AES keys cannot be set for multiple times.
5946         * Only set it at the first time. */
5947        for (i = 0; i < 4; i++) {
5948                key.key_index = i | type;
5949                if (!(priv->ieee->sec.flags & (1 << i))) {
5950                        key.key_size = 0;
5951                        continue;
5952                }
5953
5954                key.key_size = priv->ieee->sec.key_sizes[i];
5955                memcpy(key.key, priv->ieee->sec.keys[i], key.key_size);
5956
5957                ipw_send_cmd_pdu(priv, IPW_CMD_WEP_KEY, sizeof(key), &key);
5958        }
5959}
5960
5961static void ipw_set_hw_decrypt_unicast(struct ipw_priv *priv, int level)
5962{
5963        if (priv->ieee->host_encrypt)
5964                return;
5965
5966        switch (level) {
5967        case SEC_LEVEL_3:
5968                priv->sys_config.disable_unicast_decryption = 0;
5969                priv->ieee->host_decrypt = 0;
5970                break;
5971        case SEC_LEVEL_2:
5972                priv->sys_config.disable_unicast_decryption = 1;
5973                priv->ieee->host_decrypt = 1;
5974                break;
5975        case SEC_LEVEL_1:
5976                priv->sys_config.disable_unicast_decryption = 0;
5977                priv->ieee->host_decrypt = 0;
5978                break;
5979        case SEC_LEVEL_0:
5980                priv->sys_config.disable_unicast_decryption = 1;
5981                break;
5982        default:
5983                break;
5984        }
5985}
5986
5987static void ipw_set_hw_decrypt_multicast(struct ipw_priv *priv, int level)
5988{
5989        if (priv->ieee->host_encrypt)
5990                return;
5991
5992        switch (level) {
5993        case SEC_LEVEL_3:
5994                priv->sys_config.disable_multicast_decryption = 0;
5995                break;
5996        case SEC_LEVEL_2:
5997                priv->sys_config.disable_multicast_decryption = 1;
5998                break;
5999        case SEC_LEVEL_1:
6000                priv->sys_config.disable_multicast_decryption = 0;
6001                break;
6002        case SEC_LEVEL_0:
6003                priv->sys_config.disable_multicast_decryption = 1;
6004                break;
6005        default:
6006                break;
6007        }
6008}
6009
6010static void ipw_set_hwcrypto_keys(struct ipw_priv *priv)
6011{
6012        switch (priv->ieee->sec.level) {
6013        case SEC_LEVEL_3:
6014                if (priv->ieee->sec.flags & SEC_ACTIVE_KEY)
6015                        ipw_send_tgi_tx_key(priv,
6016                                            DCT_FLAG_EXT_SECURITY_CCM,
6017                                            priv->ieee->sec.active_key);
6018
6019                if (!priv->ieee->host_mc_decrypt)
6020                        ipw_send_wep_keys(priv, DCW_WEP_KEY_SEC_TYPE_CCM);
6021                break;
6022        case SEC_LEVEL_2:
6023                if (priv->ieee->sec.flags & SEC_ACTIVE_KEY)
6024                        ipw_send_tgi_tx_key(priv,
6025                                            DCT_FLAG_EXT_SECURITY_TKIP,
6026                                            priv->ieee->sec.active_key);
6027                break;
6028        case SEC_LEVEL_1:
6029                ipw_send_wep_keys(priv, DCW_WEP_KEY_SEC_TYPE_WEP);
6030                ipw_set_hw_decrypt_unicast(priv, priv->ieee->sec.level);
6031                ipw_set_hw_decrypt_multicast(priv, priv->ieee->sec.level);
6032                break;
6033        case SEC_LEVEL_0:
6034        default:
6035                break;
6036        }
6037}
6038
6039static void ipw_adhoc_check(void *data)
6040{
6041        struct ipw_priv *priv = data;
6042
6043        if (priv->missed_adhoc_beacons++ > priv->disassociate_threshold &&
6044            !(priv->config & CFG_ADHOC_PERSIST)) {
6045                IPW_DEBUG(IPW_DL_INFO | IPW_DL_NOTIF |
6046                          IPW_DL_STATE | IPW_DL_ASSOC,
6047                          "Missed beacon: %d - disassociate\n",
6048                          priv->missed_adhoc_beacons);
6049                ipw_remove_current_network(priv);
6050                ipw_disassociate(priv);
6051                return;
6052        }
6053
6054        schedule_delayed_work(&priv->adhoc_check,
6055                              le16_to_cpu(priv->assoc_request.beacon_interval));
6056}
6057
6058static void ipw_bg_adhoc_check(struct work_struct *work)
6059{
6060        struct ipw_priv *priv =
6061                container_of(work, struct ipw_priv, adhoc_check.work);
6062        mutex_lock(&priv->mutex);
6063        ipw_adhoc_check(priv);
6064        mutex_unlock(&priv->mutex);
6065}
6066
6067static void ipw_debug_config(struct ipw_priv *priv)
6068{
6069        IPW_DEBUG_INFO("Scan completed, no valid APs matched "
6070                       "[CFG 0x%08X]\n", priv->config);
6071        if (priv->config & CFG_STATIC_CHANNEL)
6072                IPW_DEBUG_INFO("Channel locked to %d\n", priv->channel);
6073        else
6074                IPW_DEBUG_INFO("Channel unlocked.\n");
6075        if (priv->config & CFG_STATIC_ESSID)
6076                IPW_DEBUG_INFO("ESSID locked to '%*pE'\n",
6077                               priv->essid_len, priv->essid);
6078        else
6079                IPW_DEBUG_INFO("ESSID unlocked.\n");
6080        if (priv->config & CFG_STATIC_BSSID)
6081                IPW_DEBUG_INFO("BSSID locked to %pM\n", priv->bssid);
6082        else
6083                IPW_DEBUG_INFO("BSSID unlocked.\n");
6084        if (priv->capability & CAP_PRIVACY_ON)
6085                IPW_DEBUG_INFO("PRIVACY on\n");
6086        else
6087                IPW_DEBUG_INFO("PRIVACY off\n");
6088        IPW_DEBUG_INFO("RATE MASK: 0x%08X\n", priv->rates_mask);
6089}
6090
6091static void ipw_set_fixed_rate(struct ipw_priv *priv, int mode)
6092{
6093        /* TODO: Verify that this works... */
6094        struct ipw_fixed_rate fr;
6095        u32 reg;
6096        u16 mask = 0;
6097        u16 new_tx_rates = priv->rates_mask;
6098
6099        /* Identify 'current FW band' and match it with the fixed
6100         * Tx rates */
6101
6102        switch (priv->ieee->freq_band) {
6103        case LIBIPW_52GHZ_BAND: /* A only */
6104                /* IEEE_A */
6105                if (priv->rates_mask & ~LIBIPW_OFDM_RATES_MASK) {
6106                        /* Invalid fixed rate mask */
6107                        IPW_DEBUG_WX
6108                            ("invalid fixed rate mask in ipw_set_fixed_rate\n");
6109                        new_tx_rates = 0;
6110                        break;
6111                }
6112
6113                new_tx_rates >>= LIBIPW_OFDM_SHIFT_MASK_A;
6114                break;
6115
6116        default:                /* 2.4Ghz or Mixed */
6117                /* IEEE_B */
6118                if (mode == IEEE_B) {
6119                        if (new_tx_rates & ~LIBIPW_CCK_RATES_MASK) {
6120                                /* Invalid fixed rate mask */
6121                                IPW_DEBUG_WX
6122                                    ("invalid fixed rate mask in ipw_set_fixed_rate\n");
6123                                new_tx_rates = 0;
6124                        }
6125                        break;
6126                }
6127
6128                /* IEEE_G */
6129                if (new_tx_rates & ~(LIBIPW_CCK_RATES_MASK |
6130                                    LIBIPW_OFDM_RATES_MASK)) {
6131                        /* Invalid fixed rate mask */
6132                        IPW_DEBUG_WX
6133                            ("invalid fixed rate mask in ipw_set_fixed_rate\n");
6134                        new_tx_rates = 0;
6135                        break;
6136                }
6137
6138                if (LIBIPW_OFDM_RATE_6MB_MASK & new_tx_rates) {
6139                        mask |= (LIBIPW_OFDM_RATE_6MB_MASK >> 1);
6140                        new_tx_rates &= ~LIBIPW_OFDM_RATE_6MB_MASK;
6141                }
6142
6143                if (LIBIPW_OFDM_RATE_9MB_MASK & new_tx_rates) {
6144                        mask |= (LIBIPW_OFDM_RATE_9MB_MASK >> 1);
6145                        new_tx_rates &= ~LIBIPW_OFDM_RATE_9MB_MASK;
6146                }
6147
6148                if (LIBIPW_OFDM_RATE_12MB_MASK & new_tx_rates) {
6149                        mask |= (LIBIPW_OFDM_RATE_12MB_MASK >> 1);
6150                        new_tx_rates &= ~LIBIPW_OFDM_RATE_12MB_MASK;
6151                }
6152
6153                new_tx_rates |= mask;
6154                break;
6155        }
6156
6157        fr.tx_rates = cpu_to_le16(new_tx_rates);
6158
6159        reg = ipw_read32(priv, IPW_MEM_FIXED_OVERRIDE);
6160        ipw_write_reg32(priv, reg, *(u32 *) & fr);
6161}
6162
6163static void ipw_abort_scan(struct ipw_priv *priv)
6164{
6165        int err;
6166
6167        if (priv->status & STATUS_SCAN_ABORTING) {
6168                IPW_DEBUG_HC("Ignoring concurrent scan abort request.\n");
6169                return;
6170        }
6171        priv->status |= STATUS_SCAN_ABORTING;
6172
6173        err = ipw_send_scan_abort(priv);
6174        if (err)
6175                IPW_DEBUG_HC("Request to abort scan failed.\n");
6176}
6177
6178static void ipw_add_scan_channels(struct ipw_priv *priv,
6179                                  struct ipw_scan_request_ext *scan,
6180                                  int scan_type)
6181{
6182        int channel_index = 0;
6183        const struct libipw_geo *geo;
6184        int i;
6185
6186        geo = libipw_get_geo(priv->ieee);
6187
6188        if (priv->ieee->freq_band & LIBIPW_52GHZ_BAND) {
6189                int start = channel_index;
6190                for (i = 0; i < geo->a_channels; i++) {
6191                        if ((priv->status & STATUS_ASSOCIATED) &&
6192                            geo->a[i].channel == priv->channel)
6193                                continue;
6194                        channel_index++;
6195                        scan->channels_list[channel_index] = geo->a[i].channel;
6196                        ipw_set_scan_type(scan, channel_index,
6197                                          geo->a[i].
6198                                          flags & LIBIPW_CH_PASSIVE_ONLY ?
6199                                          IPW_SCAN_PASSIVE_FULL_DWELL_SCAN :
6200                                          scan_type);
6201                }
6202
6203                if (start != channel_index) {
6204                        scan->channels_list[start] = (u8) (IPW_A_MODE << 6) |
6205                            (channel_index - start);
6206                        channel_index++;
6207                }
6208        }
6209
6210        if (priv->ieee->freq_band & LIBIPW_24GHZ_BAND) {
6211                int start = channel_index;
6212                if (priv->config & CFG_SPEED_SCAN) {
6213                        int index;
6214                        u8 channels[LIBIPW_24GHZ_CHANNELS] = {
6215                                /* nop out the list */
6216                                [0] = 0
6217                        };
6218
6219                        u8 channel;
6220                        while (channel_index < IPW_SCAN_CHANNELS - 1) {
6221                                channel =
6222                                    priv->speed_scan[priv->speed_scan_pos];
6223                                if (channel == 0) {
6224                                        priv->speed_scan_pos = 0;
6225                                        channel = priv->speed_scan[0];
6226                                }
6227                                if ((priv->status & STATUS_ASSOCIATED) &&
6228                                    channel == priv->channel) {
6229                                        priv->speed_scan_pos++;
6230                                        continue;
6231                                }
6232
6233                                /* If this channel has already been
6234                                 * added in scan, break from loop
6235                                 * and this will be the first channel
6236                                 * in the next scan.
6237                                 */
6238                                if (channels[channel - 1] != 0)
6239                                        break;
6240
6241                                channels[channel - 1] = 1;
6242                                priv->speed_scan_pos++;
6243                                channel_index++;
6244                                scan->channels_list[channel_index] = channel;
6245                                index =
6246                                    libipw_channel_to_index(priv->ieee, channel);
6247                                ipw_set_scan_type(scan, channel_index,
6248                                                  geo->bg[index].
6249                                                  flags &
6250                                                  LIBIPW_CH_PASSIVE_ONLY ?
6251                                                  IPW_SCAN_PASSIVE_FULL_DWELL_SCAN
6252                                                  : scan_type);
6253                        }
6254                } else {
6255                        for (i = 0; i < geo->bg_channels; i++) {
6256                                if ((priv->status & STATUS_ASSOCIATED) &&
6257                                    geo->bg[i].channel == priv->channel)
6258                                        continue;
6259                                channel_index++;
6260                                scan->channels_list[channel_index] =
6261                                    geo->bg[i].channel;
6262                                ipw_set_scan_type(scan, channel_index,
6263                                                  geo->bg[i].
6264                                                  flags &
6265                                                  LIBIPW_CH_PASSIVE_ONLY ?
6266                                                  IPW_SCAN_PASSIVE_FULL_DWELL_SCAN
6267                                                  : scan_type);
6268                        }
6269                }
6270
6271                if (start != channel_index) {
6272                        scan->channels_list[start] = (u8) (IPW_B_MODE << 6) |
6273                            (channel_index - start);
6274                }
6275        }
6276}
6277
6278static int ipw_passive_dwell_time(struct ipw_priv *priv)
6279{
6280        /* staying on passive channels longer than the DTIM interval during a
6281         * scan, while associated, causes the firmware to cancel the scan
6282         * without notification. Hence, don't stay on passive channels longer
6283         * than the beacon interval.
6284         */
6285        if (priv->status & STATUS_ASSOCIATED
6286            && priv->assoc_network->beacon_interval > 10)
6287                return priv->assoc_network->beacon_interval - 10;
6288        else
6289                return 120;
6290}
6291
6292static int ipw_request_scan_helper(struct ipw_priv *priv, int type, int direct)
6293{
6294        struct ipw_scan_request_ext scan;
6295        int err = 0, scan_type;
6296
6297        if (!(priv->status & STATUS_INIT) ||
6298            (priv->status & STATUS_EXIT_PENDING))
6299                return 0;
6300
6301        mutex_lock(&priv->mutex);
6302
6303        if (direct && (priv->direct_scan_ssid_len == 0)) {
6304                IPW_DEBUG_HC("Direct scan requested but no SSID to scan for\n");
6305                priv->status &= ~STATUS_DIRECT_SCAN_PENDING;
6306                goto done;
6307        }
6308
6309        if (priv->status & STATUS_SCANNING) {
6310                IPW_DEBUG_HC("Concurrent scan requested.  Queuing.\n");
6311                priv->status |= direct ? STATUS_DIRECT_SCAN_PENDING :
6312                                        STATUS_SCAN_PENDING;
6313                goto done;
6314        }
6315
6316        if (!(priv->status & STATUS_SCAN_FORCED) &&
6317            priv->status & STATUS_SCAN_ABORTING) {
6318                IPW_DEBUG_HC("Scan request while abort pending.  Queuing.\n");
6319                priv->status |= direct ? STATUS_DIRECT_SCAN_PENDING :
6320                                        STATUS_SCAN_PENDING;
6321                goto done;
6322        }
6323
6324        if (priv->status & STATUS_RF_KILL_MASK) {
6325                IPW_DEBUG_HC("Queuing scan due to RF Kill activation\n");
6326                priv->status |= direct ? STATUS_DIRECT_SCAN_PENDING :
6327                                        STATUS_SCAN_PENDING;
6328                goto done;
6329        }
6330
6331        memset(&scan, 0, sizeof(scan));
6332        scan.full_scan_index = cpu_to_le32(libipw_get_scans(priv->ieee));
6333
6334        if (type == IW_SCAN_TYPE_PASSIVE) {
6335                IPW_DEBUG_WX("use passive scanning\n");
6336                scan_type = IPW_SCAN_PASSIVE_FULL_DWELL_SCAN;
6337                scan.dwell_time[IPW_SCAN_PASSIVE_FULL_DWELL_SCAN] =
6338                        cpu_to_le16(ipw_passive_dwell_time(priv));
6339                ipw_add_scan_channels(priv, &scan, scan_type);
6340                goto send_request;
6341        }
6342
6343        /* Use active scan by default. */
6344        if (priv->config & CFG_SPEED_SCAN)
6345                scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_SCAN] =
6346                        cpu_to_le16(30);
6347        else
6348                scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_SCAN] =
6349                        cpu_to_le16(20);
6350
6351        scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_AND_DIRECT_SCAN] =
6352                cpu_to_le16(20);
6353
6354        scan.dwell_time[IPW_SCAN_PASSIVE_FULL_DWELL_SCAN] =
6355                cpu_to_le16(ipw_passive_dwell_time(priv));
6356        scan.dwell_time[IPW_SCAN_ACTIVE_DIRECT_SCAN] = cpu_to_le16(20);
6357
6358#ifdef CONFIG_IPW2200_MONITOR
6359        if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
6360                u8 channel;
6361                u8 band = 0;
6362
6363                switch (libipw_is_valid_channel(priv->ieee, priv->channel)) {
6364                case LIBIPW_52GHZ_BAND:
6365                        band = (u8) (IPW_A_MODE << 6) | 1;
6366                        channel = priv->channel;
6367                        break;
6368
6369                case LIBIPW_24GHZ_BAND:
6370                        band = (u8) (IPW_B_MODE << 6) | 1;
6371                        channel = priv->channel;
6372                        break;
6373
6374                default:
6375                        band = (u8) (IPW_B_MODE << 6) | 1;
6376                        channel = 9;
6377                        break;
6378                }
6379
6380                scan.channels_list[0] = band;
6381                scan.channels_list[1] = channel;
6382                ipw_set_scan_type(&scan, 1, IPW_SCAN_PASSIVE_FULL_DWELL_SCAN);
6383
6384                /* NOTE:  The card will sit on this channel for this time
6385                 * period.  Scan aborts are timing sensitive and frequently
6386                 * result in firmware restarts.  As such, it is best to
6387                 * set a small dwell_time here and just keep re-issuing
6388                 * scans.  Otherwise fast channel hopping will not actually
6389                 * hop channels.
6390                 *
6391                 * TODO: Move SPEED SCAN support to all modes and bands */
6392                scan.dwell_time[IPW_SCAN_PASSIVE_FULL_DWELL_SCAN] =
6393                        cpu_to_le16(2000);
6394        } else {
6395#endif                          /* CONFIG_IPW2200_MONITOR */
6396                /* Honor direct scans first, otherwise if we are roaming make
6397                 * this a direct scan for the current network.  Finally,
6398                 * ensure that every other scan is a fast channel hop scan */
6399                if (direct) {
6400                        err = ipw_send_ssid(priv, priv->direct_scan_ssid,
6401                                            priv->direct_scan_ssid_len);
6402                        if (err) {
6403                                IPW_DEBUG_HC("Attempt to send SSID command  "
6404                                             "failed\n");
6405                                goto done;
6406                        }
6407
6408                        scan_type = IPW_SCAN_ACTIVE_BROADCAST_AND_DIRECT_SCAN;
6409                } else if ((priv->status & STATUS_ROAMING)
6410                           || (!(priv->status & STATUS_ASSOCIATED)
6411                               && (priv->config & CFG_STATIC_ESSID)
6412                               && (le32_to_cpu(scan.full_scan_index) % 2))) {
6413                        err = ipw_send_ssid(priv, priv->essid, priv->essid_len);
6414                        if (err) {
6415                                IPW_DEBUG_HC("Attempt to send SSID command "
6416                                             "failed.\n");
6417                                goto done;
6418                        }
6419
6420                        scan_type = IPW_SCAN_ACTIVE_BROADCAST_AND_DIRECT_SCAN;
6421                } else
6422                        scan_type = IPW_SCAN_ACTIVE_BROADCAST_SCAN;
6423
6424                ipw_add_scan_channels(priv, &scan, scan_type);
6425#ifdef CONFIG_IPW2200_MONITOR
6426        }
6427#endif
6428
6429send_request:
6430        err = ipw_send_scan_request_ext(priv, &scan);
6431        if (err) {
6432                IPW_DEBUG_HC("Sending scan command failed: %08X\n", err);
6433                goto done;
6434        }
6435
6436        priv->status |= STATUS_SCANNING;
6437        if (direct) {
6438                priv->status &= ~STATUS_DIRECT_SCAN_PENDING;
6439                priv->direct_scan_ssid_len = 0;
6440        } else
6441                priv->status &= ~STATUS_SCAN_PENDING;
6442
6443        schedule_delayed_work(&priv->scan_check, IPW_SCAN_CHECK_WATCHDOG);
6444done:
6445        mutex_unlock(&priv->mutex);
6446        return err;
6447}
6448
6449static void ipw_request_passive_scan(struct work_struct *work)
6450{
6451        struct ipw_priv *priv =
6452                container_of(work, struct ipw_priv, request_passive_scan.work);
6453        ipw_request_scan_helper(priv, IW_SCAN_TYPE_PASSIVE, 0);
6454}
6455
6456static void ipw_request_scan(struct work_struct *work)
6457{
6458        struct ipw_priv *priv =
6459                container_of(work, struct ipw_priv, request_scan.work);
6460        ipw_request_scan_helper(priv, IW_SCAN_TYPE_ACTIVE, 0);
6461}
6462
6463static void ipw_request_direct_scan(struct work_struct *work)
6464{
6465        struct ipw_priv *priv =
6466                container_of(work, struct ipw_priv, request_direct_scan.work);
6467        ipw_request_scan_helper(priv, IW_SCAN_TYPE_ACTIVE, 1);
6468}
6469
6470static void ipw_bg_abort_scan(struct work_struct *work)
6471{
6472        struct ipw_priv *priv =
6473                container_of(work, struct ipw_priv, abort_scan);
6474        mutex_lock(&priv->mutex);
6475        ipw_abort_scan(priv);
6476        mutex_unlock(&priv->mutex);
6477}
6478
6479static int ipw_wpa_enable(struct ipw_priv *priv, int value)
6480{
6481        /* This is called when wpa_supplicant loads and closes the driver
6482         * interface. */
6483        priv->ieee->wpa_enabled = value;
6484        return 0;
6485}
6486
6487static int ipw_wpa_set_auth_algs(struct ipw_priv *priv, int value)
6488{
6489        struct libipw_device *ieee = priv->ieee;
6490        struct libipw_security sec = {
6491                .flags = SEC_AUTH_MODE,
6492        };
6493        int ret = 0;
6494
6495        if (value & IW_AUTH_ALG_SHARED_KEY) {
6496                sec.auth_mode = WLAN_AUTH_SHARED_KEY;
6497                ieee->open_wep = 0;
6498        } else if (value & IW_AUTH_ALG_OPEN_SYSTEM) {
6499                sec.auth_mode = WLAN_AUTH_OPEN;
6500                ieee->open_wep = 1;
6501        } else if (value & IW_AUTH_ALG_LEAP) {
6502                sec.auth_mode = WLAN_AUTH_LEAP;
6503                ieee->open_wep = 1;
6504        } else
6505                return -EINVAL;
6506
6507        if (ieee->set_security)
6508                ieee->set_security(ieee->dev, &sec);
6509        else
6510                ret = -EOPNOTSUPP;
6511
6512        return ret;
6513}
6514
6515static void ipw_wpa_assoc_frame(struct ipw_priv *priv, char *wpa_ie,
6516                                int wpa_ie_len)
6517{
6518        /* make sure WPA is enabled */
6519        ipw_wpa_enable(priv, 1);
6520}
6521
6522static int ipw_set_rsn_capa(struct ipw_priv *priv,
6523                            char *capabilities, int length)
6524{
6525        IPW_DEBUG_HC("HOST_CMD_RSN_CAPABILITIES\n");
6526
6527        return ipw_send_cmd_pdu(priv, IPW_CMD_RSN_CAPABILITIES, length,
6528                                capabilities);
6529}
6530
6531/*
6532 * WE-18 support
6533 */
6534
6535/* SIOCSIWGENIE */
6536static int ipw_wx_set_genie(struct net_device *dev,
6537                            struct iw_request_info *info,
6538                            union iwreq_data *wrqu, char *extra)
6539{
6540        struct ipw_priv *priv = libipw_priv(dev);
6541        struct libipw_device *ieee = priv->ieee;
6542        u8 *buf;
6543        int err = 0;
6544
6545        if (wrqu->data.length > MAX_WPA_IE_LEN ||
6546            (wrqu->data.length && extra == NULL))
6547                return -EINVAL;
6548
6549        if (wrqu->data.length) {
6550                buf = kmemdup(extra, wrqu->data.length, GFP_KERNEL);
6551                if (buf == NULL) {
6552                        err = -ENOMEM;
6553                        goto out;
6554                }
6555
6556                kfree(ieee->wpa_ie);
6557                ieee->wpa_ie = buf;
6558                ieee->wpa_ie_len = wrqu->data.length;
6559        } else {
6560                kfree(ieee->wpa_ie);
6561                ieee->wpa_ie = NULL;
6562                ieee->wpa_ie_len = 0;
6563        }
6564
6565        ipw_wpa_assoc_frame(priv, ieee->wpa_ie, ieee->wpa_ie_len);
6566      out:
6567        return err;
6568}
6569
6570/* SIOCGIWGENIE */
6571static int ipw_wx_get_genie(struct net_device *dev,
6572                            struct iw_request_info *info,
6573                            union iwreq_data *wrqu, char *extra)
6574{
6575        struct ipw_priv *priv = libipw_priv(dev);
6576        struct libipw_device *ieee = priv->ieee;
6577        int err = 0;
6578
6579        if (ieee->wpa_ie_len == 0 || ieee->wpa_ie == NULL) {
6580                wrqu->data.length = 0;
6581                goto out;
6582        }
6583
6584        if (wrqu->data.length < ieee->wpa_ie_len) {
6585                err = -E2BIG;
6586                goto out;
6587        }
6588
6589        wrqu->data.length = ieee->wpa_ie_len;
6590        memcpy(extra, ieee->wpa_ie, ieee->wpa_ie_len);
6591
6592      out:
6593        return err;
6594}
6595
6596static int wext_cipher2level(int cipher)
6597{
6598        switch (cipher) {
6599        case IW_AUTH_CIPHER_NONE:
6600                return SEC_LEVEL_0;
6601        case IW_AUTH_CIPHER_WEP40:
6602        case IW_AUTH_CIPHER_WEP104:
6603                return SEC_LEVEL_1;
6604        case IW_AUTH_CIPHER_TKIP:
6605                return SEC_LEVEL_2;
6606        case IW_AUTH_CIPHER_CCMP:
6607                return SEC_LEVEL_3;
6608        default:
6609                return -1;
6610        }
6611}
6612
6613/* SIOCSIWAUTH */
6614static int ipw_wx_set_auth(struct net_device *dev,
6615                           struct iw_request_info *info,
6616                           union iwreq_data *wrqu, char *extra)
6617{
6618        struct ipw_priv *priv = libipw_priv(dev);
6619        struct libipw_device *ieee = priv->ieee;
6620        struct iw_param *param = &wrqu->param;
6621        struct lib80211_crypt_data *crypt;
6622        unsigned long flags;
6623        int ret = 0;
6624
6625        switch (param->flags & IW_AUTH_INDEX) {
6626        case IW_AUTH_WPA_VERSION:
6627                break;
6628        case IW_AUTH_CIPHER_PAIRWISE:
6629                ipw_set_hw_decrypt_unicast(priv,
6630                                           wext_cipher2level(param->value));
6631                break;
6632        case IW_AUTH_CIPHER_GROUP:
6633                ipw_set_hw_decrypt_multicast(priv,
6634                                             wext_cipher2level(param->value));
6635                break;
6636        case IW_AUTH_KEY_MGMT:
6637                /*
6638                 * ipw2200 does not use these parameters
6639                 */
6640                break;
6641
6642        case IW_AUTH_TKIP_COUNTERMEASURES:
6643                crypt = priv->ieee->crypt_info.crypt[priv->ieee->crypt_info.tx_keyidx];
6644                if (!crypt || !crypt->ops->set_flags || !crypt->ops->get_flags)
6645                        break;
6646
6647                flags = crypt->ops->get_flags(crypt->priv);
6648
6649                if (param->value)
6650                        flags |= IEEE80211_CRYPTO_TKIP_COUNTERMEASURES;
6651                else
6652                        flags &= ~IEEE80211_CRYPTO_TKIP_COUNTERMEASURES;
6653
6654                crypt->ops->set_flags(flags, crypt->priv);
6655
6656                break;
6657
6658        case IW_AUTH_DROP_UNENCRYPTED:{
6659                        /* HACK:
6660                         *
6661                         * wpa_supplicant calls set_wpa_enabled when the driver
6662                         * is loaded and unloaded, regardless of if WPA is being
6663                         * used.  No other calls are made which can be used to
6664                         * determine if encryption will be used or not prior to
6665                         * association being expected.  If encryption is not being
6666                         * used, drop_unencrypted is set to false, else true -- we
6667                         * can use this to determine if the CAP_PRIVACY_ON bit should
6668                         * be set.
6669                         */
6670                        struct libipw_security sec = {
6671                                .flags = SEC_ENABLED,
6672                                .enabled = param->value,
6673                        };
6674                        priv->ieee->drop_unencrypted = param->value;
6675                        /* We only change SEC_LEVEL for open mode. Others
6676                         * are set by ipw_wpa_set_encryption.
6677                         */
6678                        if (!param->value) {
6679                                sec.flags |= SEC_LEVEL;
6680                                sec.level = SEC_LEVEL_0;
6681                        } else {
6682                                sec.flags |= SEC_LEVEL;
6683                                sec.level = SEC_LEVEL_1;
6684                        }
6685                        if (priv->ieee->set_security)
6686                                priv->ieee->set_security(priv->ieee->dev, &sec);
6687                        break;
6688                }
6689
6690        case IW_AUTH_80211_AUTH_ALG:
6691                ret = ipw_wpa_set_auth_algs(priv, param->value);
6692                break;
6693
6694        case IW_AUTH_WPA_ENABLED:
6695                ret = ipw_wpa_enable(priv, param->value);
6696                ipw_disassociate(priv);
6697                break;
6698
6699        case IW_AUTH_RX_UNENCRYPTED_EAPOL:
6700                ieee->ieee802_1x = param->value;
6701                break;
6702
6703        case IW_AUTH_PRIVACY_INVOKED:
6704                ieee->privacy_invoked = param->value;
6705                break;
6706
6707        default:
6708                return -EOPNOTSUPP;
6709        }
6710        return ret;
6711}
6712
6713/* SIOCGIWAUTH */
6714static int ipw_wx_get_auth(struct net_device *dev,
6715                           struct iw_request_info *info,
6716                           union iwreq_data *wrqu, char *extra)
6717{
6718        struct ipw_priv *priv = libipw_priv(dev);
6719        struct libipw_device *ieee = priv->ieee;
6720        struct lib80211_crypt_data *crypt;
6721        struct iw_param *param = &wrqu->param;
6722
6723        switch (param->flags & IW_AUTH_INDEX) {
6724        case IW_AUTH_WPA_VERSION:
6725        case IW_AUTH_CIPHER_PAIRWISE:
6726        case IW_AUTH_CIPHER_GROUP:
6727        case IW_AUTH_KEY_MGMT:
6728                /*
6729                 * wpa_supplicant will control these internally
6730                 */
6731                return -EOPNOTSUPP;
6732
6733        case IW_AUTH_TKIP_COUNTERMEASURES:
6734                crypt = priv->ieee->crypt_info.crypt[priv->ieee->crypt_info.tx_keyidx];
6735                if (!crypt || !crypt->ops->get_flags)
6736                        break;
6737
6738                param->value = (crypt->ops->get_flags(crypt->priv) &
6739                                IEEE80211_CRYPTO_TKIP_COUNTERMEASURES) ? 1 : 0;
6740
6741                break;
6742
6743        case IW_AUTH_DROP_UNENCRYPTED:
6744                param->value = ieee->drop_unencrypted;
6745                break;
6746
6747        case IW_AUTH_80211_AUTH_ALG:
6748                param->value = ieee->sec.auth_mode;
6749                break;
6750
6751        case IW_AUTH_WPA_ENABLED:
6752                param->value = ieee->wpa_enabled;
6753                break;
6754
6755        case IW_AUTH_RX_UNENCRYPTED_EAPOL:
6756                param->value = ieee->ieee802_1x;
6757                break;
6758
6759        case IW_AUTH_ROAMING_CONTROL:
6760        case IW_AUTH_PRIVACY_INVOKED:
6761                param->value = ieee->privacy_invoked;
6762                break;
6763
6764        default:
6765                return -EOPNOTSUPP;
6766        }
6767        return 0;
6768}
6769
6770/* SIOCSIWENCODEEXT */
6771static int ipw_wx_set_encodeext(struct net_device *dev,
6772                                struct iw_request_info *info,
6773                                union iwreq_data *wrqu, char *extra)
6774{
6775        struct ipw_priv *priv = libipw_priv(dev);
6776        struct iw_encode_ext *ext = (struct iw_encode_ext *)extra;
6777
6778        if (hwcrypto) {
6779                if (ext->alg == IW_ENCODE_ALG_TKIP) {
6780                        /* IPW HW can't build TKIP MIC,
6781                           host decryption still needed */
6782                        if (ext->ext_flags & IW_ENCODE_EXT_GROUP_KEY)
6783                                priv->ieee->host_mc_decrypt = 1;
6784                        else {
6785                                priv->ieee->host_encrypt = 0;
6786                                priv->ieee->host_encrypt_msdu = 1;
6787                                priv->ieee->host_decrypt = 1;
6788                        }
6789                } else {
6790                        priv->ieee->host_encrypt = 0;
6791                        priv->ieee->host_encrypt_msdu = 0;
6792                        priv->ieee->host_decrypt = 0;
6793                        priv->ieee->host_mc_decrypt = 0;
6794                }
6795        }
6796
6797        return libipw_wx_set_encodeext(priv->ieee, info, wrqu, extra);
6798}
6799
6800/* SIOCGIWENCODEEXT */
6801static int ipw_wx_get_encodeext(struct net_device *dev,
6802                                struct iw_request_info *info,
6803                                union iwreq_data *wrqu, char *extra)
6804{
6805        struct ipw_priv *priv = libipw_priv(dev);
6806        return libipw_wx_get_encodeext(priv->ieee, info, wrqu, extra);
6807}
6808
6809/* SIOCSIWMLME */
6810static int ipw_wx_set_mlme(struct net_device *dev,
6811                           struct iw_request_info *info,
6812                           union iwreq_data *wrqu, char *extra)
6813{
6814        struct ipw_priv *priv = libipw_priv(dev);
6815        struct iw_mlme *mlme = (struct iw_mlme *)extra;
6816        __le16 reason;
6817
6818        reason = cpu_to_le16(mlme->reason_code);
6819
6820        switch (mlme->cmd) {
6821        case IW_MLME_DEAUTH:
6822                /* silently ignore */
6823                break;
6824
6825        case IW_MLME_DISASSOC:
6826                ipw_disassociate(priv);
6827                break;
6828
6829        default:
6830                return -EOPNOTSUPP;
6831        }
6832        return 0;
6833}
6834
6835#ifdef CONFIG_IPW2200_QOS
6836
6837/* QoS */
6838/*
6839* get the modulation type of the current network or
6840* the card current mode
6841*/
6842static u8 ipw_qos_current_mode(struct ipw_priv * priv)
6843{
6844        u8 mode = 0;
6845
6846        if (priv->status & STATUS_ASSOCIATED) {
6847                unsigned long flags;
6848
6849                spin_lock_irqsave(&priv->ieee->lock, flags);
6850                mode = priv->assoc_network->mode;
6851                spin_unlock_irqrestore(&priv->ieee->lock, flags);
6852        } else {
6853                mode = priv->ieee->mode;
6854        }
6855        IPW_DEBUG_QOS("QoS network/card mode %d\n", mode);
6856        return mode;
6857}
6858
6859/*
6860* Handle management frame beacon and probe response
6861*/
6862static int ipw_qos_handle_probe_response(struct ipw_priv *priv,
6863                                         int active_network,
6864                                         struct libipw_network *network)
6865{
6866        u32 size = sizeof(struct libipw_qos_parameters);
6867
6868        if (network->capability & WLAN_CAPABILITY_IBSS)
6869                network->qos_data.active = network->qos_data.supported;
6870
6871        if (network->flags & NETWORK_HAS_QOS_MASK) {
6872                if (active_network &&
6873                    (network->flags & NETWORK_HAS_QOS_PARAMETERS))
6874                        network->qos_data.active = network->qos_data.supported;
6875
6876                if ((network->qos_data.active == 1) && (active_network == 1) &&
6877                    (network->flags & NETWORK_HAS_QOS_PARAMETERS) &&
6878                    (network->qos_data.old_param_count !=
6879                     network->qos_data.param_count)) {
6880                        network->qos_data.old_param_count =
6881                            network->qos_data.param_count;
6882                        schedule_work(&priv->qos_activate);
6883                        IPW_DEBUG_QOS("QoS parameters change call "
6884                                      "qos_activate\n");
6885                }
6886        } else {
6887                if ((priv->ieee->mode == IEEE_B) || (network->mode == IEEE_B))
6888                        memcpy(&network->qos_data.parameters,
6889                               &def_parameters_CCK, size);
6890                else
6891                        memcpy(&network->qos_data.parameters,
6892                               &def_parameters_OFDM, size);
6893
6894                if ((network->qos_data.active == 1) && (active_network == 1)) {
6895                        IPW_DEBUG_QOS("QoS was disabled call qos_activate\n");
6896                        schedule_work(&priv->qos_activate);
6897                }
6898
6899                network->qos_data.active = 0;
6900                network->qos_data.supported = 0;
6901        }
6902        if ((priv->status & STATUS_ASSOCIATED) &&
6903            (priv->ieee->iw_mode == IW_MODE_ADHOC) && (active_network == 0)) {
6904                if (!ether_addr_equal(network->bssid, priv->bssid))
6905                        if (network->capability & WLAN_CAPABILITY_IBSS)
6906                                if ((network->ssid_len ==
6907                                     priv->assoc_network->ssid_len) &&
6908                                    !memcmp(network->ssid,
6909                                            priv->assoc_network->ssid,
6910                                            network->ssid_len)) {
6911                                        schedule_work(&priv->merge_networks);
6912                                }
6913        }
6914
6915        return 0;
6916}
6917
6918/*
6919* This function set up the firmware to support QoS. It sends
6920* IPW_CMD_QOS_PARAMETERS and IPW_CMD_WME_INFO
6921*/
6922static int ipw_qos_activate(struct ipw_priv *priv,
6923                            struct libipw_qos_data *qos_network_data)
6924{
6925        int err;
6926        struct libipw_qos_parameters qos_parameters[QOS_QOS_SETS];
6927        struct libipw_qos_parameters *active_one = NULL;
6928        u32 size = sizeof(struct libipw_qos_parameters);
6929        u32 burst_duration;
6930        int i;
6931        u8 type;
6932
6933        type = ipw_qos_current_mode(priv);
6934
6935        active_one = &(qos_parameters[QOS_PARAM_SET_DEF_CCK]);
6936        memcpy(active_one, priv->qos_data.def_qos_parm_CCK, size);
6937        active_one = &(qos_parameters[QOS_PARAM_SET_DEF_OFDM]);
6938        memcpy(active_one, priv->qos_data.def_qos_parm_OFDM, size);
6939
6940        if (qos_network_data == NULL) {
6941                if (type == IEEE_B) {
6942                        IPW_DEBUG_QOS("QoS activate network mode %d\n", type);
6943                        active_one = &def_parameters_CCK;
6944                } else
6945                        active_one = &def_parameters_OFDM;
6946
6947                memcpy(&qos_parameters[QOS_PARAM_SET_ACTIVE], active_one, size);
6948                burst_duration = ipw_qos_get_burst_duration(priv);
6949                for (i = 0; i < QOS_QUEUE_NUM; i++)
6950                        qos_parameters[QOS_PARAM_SET_ACTIVE].tx_op_limit[i] =
6951                            cpu_to_le16(burst_duration);
6952        } else if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
6953                if (type == IEEE_B) {
6954                        IPW_DEBUG_QOS("QoS activate IBSS network mode %d\n",
6955                                      type);
6956                        if (priv->qos_data.qos_enable == 0)
6957                                active_one = &def_parameters_CCK;
6958                        else
6959                                active_one = priv->qos_data.def_qos_parm_CCK;
6960                } else {
6961                        if (priv->qos_data.qos_enable == 0)
6962                                active_one = &def_parameters_OFDM;
6963                        else
6964                                active_one = priv->qos_data.def_qos_parm_OFDM;
6965                }
6966                memcpy(&qos_parameters[QOS_PARAM_SET_ACTIVE], active_one, size);
6967        } else {
6968                unsigned long flags;
6969                int active;
6970
6971                spin_lock_irqsave(&priv->ieee->lock, flags);
6972                active_one = &(qos_network_data->parameters);
6973                qos_network_data->old_param_count =
6974                    qos_network_data->param_count;
6975                memcpy(&qos_parameters[QOS_PARAM_SET_ACTIVE], active_one, size);
6976                active = qos_network_data->supported;
6977                spin_unlock_irqrestore(&priv->ieee->lock, flags);
6978
6979                if (active == 0) {
6980                        burst_duration = ipw_qos_get_burst_duration(priv);
6981                        for (i = 0; i < QOS_QUEUE_NUM; i++)
6982                                qos_parameters[QOS_PARAM_SET_ACTIVE].
6983                                    tx_op_limit[i] = cpu_to_le16(burst_duration);
6984                }
6985        }
6986
6987        IPW_DEBUG_QOS("QoS sending IPW_CMD_QOS_PARAMETERS\n");
6988        err = ipw_send_qos_params_command(priv, &qos_parameters[0]);
6989        if (err)
6990                IPW_DEBUG_QOS("QoS IPW_CMD_QOS_PARAMETERS failed\n");
6991
6992        return err;
6993}
6994
6995/*
6996* send IPW_CMD_WME_INFO to the firmware
6997*/
6998static int ipw_qos_set_info_element(struct ipw_priv *priv)
6999{
7000        int ret = 0;
7001        struct libipw_qos_information_element qos_info;
7002
7003        if (priv == NULL)
7004                return -1;
7005
7006        qos_info.elementID = QOS_ELEMENT_ID;
7007        qos_info.length = sizeof(struct libipw_qos_information_element) - 2;
7008
7009        qos_info.version = QOS_VERSION_1;
7010        qos_info.ac_info = 0;
7011
7012        memcpy(qos_info.qui, qos_oui, QOS_OUI_LEN);
7013        qos_info.qui_type = QOS_OUI_TYPE;
7014        qos_info.qui_subtype = QOS_OUI_INFO_SUB_TYPE;
7015
7016        ret = ipw_send_qos_info_command(priv, &qos_info);
7017        if (ret != 0) {
7018                IPW_DEBUG_QOS("QoS error calling ipw_send_qos_info_command\n");
7019        }
7020        return ret;
7021}
7022
7023/*
7024* Set the QoS parameter with the association request structure
7025*/
7026static int ipw_qos_association(struct ipw_priv *priv,
7027                               struct libipw_network *network)
7028{
7029        int err = 0;
7030        struct libipw_qos_data *qos_data = NULL;
7031        struct libipw_qos_data ibss_data = {
7032                .supported = 1,
7033                .active = 1,
7034        };
7035
7036        switch (priv->ieee->iw_mode) {
7037        case IW_MODE_ADHOC:
7038                BUG_ON(!(network->capability & WLAN_CAPABILITY_IBSS));
7039
7040                qos_data = &ibss_data;
7041                break;
7042
7043        case IW_MODE_INFRA:
7044                qos_data = &network->qos_data;
7045                break;
7046
7047        default:
7048                BUG();
7049                break;
7050        }
7051
7052        err = ipw_qos_activate(priv, qos_data);
7053        if (err) {
7054                priv->assoc_request.policy_support &= ~HC_QOS_SUPPORT_ASSOC;
7055                return err;
7056        }
7057
7058        if (priv->qos_data.qos_enable && qos_data->supported) {
7059                IPW_DEBUG_QOS("QoS will be enabled for this association\n");
7060                priv->assoc_request.policy_support |= HC_QOS_SUPPORT_ASSOC;
7061                return ipw_qos_set_info_element(priv);
7062        }
7063
7064        return 0;
7065}
7066
7067/*
7068* handling the beaconing responses. if we get different QoS setting
7069* off the network from the associated setting, adjust the QoS
7070* setting
7071*/
7072static int ipw_qos_association_resp(struct ipw_priv *priv,
7073                                    struct libipw_network *network)
7074{
7075        int ret = 0;
7076        unsigned long flags;
7077        u32 size = sizeof(struct libipw_qos_parameters);
7078        int set_qos_param = 0;
7079
7080        if ((priv == NULL) || (network == NULL) ||
7081            (priv->assoc_network == NULL))
7082                return ret;
7083
7084        if (!(priv->status & STATUS_ASSOCIATED))
7085                return ret;
7086
7087        if ((priv->ieee->iw_mode != IW_MODE_INFRA))
7088                return ret;
7089
7090        spin_lock_irqsave(&priv->ieee->lock, flags);
7091        if (network->flags & NETWORK_HAS_QOS_PARAMETERS) {
7092                memcpy(&priv->assoc_network->qos_data, &network->qos_data,
7093                       sizeof(struct libipw_qos_data));
7094                priv->assoc_network->qos_data.active = 1;
7095                if ((network->qos_data.old_param_count !=
7096                     network->qos_data.param_count)) {
7097                        set_qos_param = 1;
7098                        network->qos_data.old_param_count =
7099                            network->qos_data.param_count;
7100                }
7101
7102        } else {
7103                if ((network->mode == IEEE_B) || (priv->ieee->mode == IEEE_B))
7104                        memcpy(&priv->assoc_network->qos_data.parameters,
7105                               &def_parameters_CCK, size);
7106                else
7107                        memcpy(&priv->assoc_network->qos_data.parameters,
7108                               &def_parameters_OFDM, size);
7109                priv->assoc_network->qos_data.active = 0;
7110                priv->assoc_network->qos_data.supported = 0;
7111                set_qos_param = 1;
7112        }
7113
7114        spin_unlock_irqrestore(&priv->ieee->lock, flags);
7115
7116        if (set_qos_param == 1)
7117                schedule_work(&priv->qos_activate);
7118
7119        return ret;
7120}
7121
7122static u32 ipw_qos_get_burst_duration(struct ipw_priv *priv)
7123{
7124        u32 ret = 0;
7125
7126        if ((priv == NULL))
7127                return 0;
7128
7129        if (!(priv->ieee->modulation & LIBIPW_OFDM_MODULATION))
7130                ret = priv->qos_data.burst_duration_CCK;
7131        else
7132                ret = priv->qos_data.burst_duration_OFDM;
7133
7134        return ret;
7135}
7136
7137/*
7138* Initialize the setting of QoS global
7139*/
7140static void ipw_qos_init(struct ipw_priv *priv, int enable,
7141                         int burst_enable, u32 burst_duration_CCK,
7142                         u32 burst_duration_OFDM)
7143{
7144        priv->qos_data.qos_enable = enable;
7145
7146        if (priv->qos_data.qos_enable) {
7147                priv->qos_data.def_qos_parm_CCK = &def_qos_parameters_CCK;
7148                priv->qos_data.def_qos_parm_OFDM = &def_qos_parameters_OFDM;
7149                IPW_DEBUG_QOS("QoS is enabled\n");
7150        } else {
7151                priv->qos_data.def_qos_parm_CCK = &def_parameters_CCK;
7152                priv->qos_data.def_qos_parm_OFDM = &def_parameters_OFDM;
7153                IPW_DEBUG_QOS("QoS is not enabled\n");
7154        }
7155
7156        priv->qos_data.burst_enable = burst_enable;
7157
7158        if (burst_enable) {
7159                priv->qos_data.burst_duration_CCK = burst_duration_CCK;
7160                priv->qos_data.burst_duration_OFDM = burst_duration_OFDM;
7161        } else {
7162                priv->qos_data.burst_duration_CCK = 0;
7163                priv->qos_data.burst_duration_OFDM = 0;
7164        }
7165}
7166
7167/*
7168* map the packet priority to the right TX Queue
7169*/
7170static int ipw_get_tx_queue_number(struct ipw_priv *priv, u16 priority)
7171{
7172        if (priority > 7 || !priv->qos_data.qos_enable)
7173                priority = 0;
7174
7175        return from_priority_to_tx_queue[priority] - 1;
7176}
7177
7178static int ipw_is_qos_active(struct net_device *dev,
7179                             struct sk_buff *skb)
7180{
7181        struct ipw_priv *priv = libipw_priv(dev);
7182        struct libipw_qos_data *qos_data = NULL;
7183        int active, supported;
7184        u8 *daddr = skb->data + ETH_ALEN;
7185        int unicast = !is_multicast_ether_addr(daddr);
7186
7187        if (!(priv->status & STATUS_ASSOCIATED))
7188                return 0;
7189
7190        qos_data = &priv->assoc_network->qos_data;
7191
7192        if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
7193                if (unicast == 0)
7194                        qos_data->active = 0;
7195                else
7196                        qos_data->active = qos_data->supported;
7197        }
7198        active = qos_data->active;
7199        supported = qos_data->supported;
7200        IPW_DEBUG_QOS("QoS  %d network is QoS active %d  supported %d  "
7201                      "unicast %d\n",
7202                      priv->qos_data.qos_enable, active, supported, unicast);
7203        if (active && priv->qos_data.qos_enable)
7204                return 1;
7205
7206        return 0;
7207
7208}
7209/*
7210* add QoS parameter to the TX command
7211*/
7212static int ipw_qos_set_tx_queue_command(struct ipw_priv *priv,
7213                                        u16 priority,
7214                                        struct tfd_data *tfd)
7215{
7216        int tx_queue_id = 0;
7217
7218
7219        tx_queue_id = from_priority_to_tx_queue[priority] - 1;
7220        tfd->tx_flags_ext |= DCT_FLAG_EXT_QOS_ENABLED;
7221
7222        if (priv->qos_data.qos_no_ack_mask & (1UL << tx_queue_id)) {
7223                tfd->tx_flags &= ~DCT_FLAG_ACK_REQD;
7224                tfd->tfd.tfd_26.mchdr.qos_ctrl |= cpu_to_le16(CTRL_QOS_NO_ACK);
7225        }
7226        return 0;
7227}
7228
7229/*
7230* background support to run QoS activate functionality
7231*/
7232static void ipw_bg_qos_activate(struct work_struct *work)
7233{
7234        struct ipw_priv *priv =
7235                container_of(work, struct ipw_priv, qos_activate);
7236
7237        mutex_lock(&priv->mutex);
7238
7239        if (priv->status & STATUS_ASSOCIATED)
7240                ipw_qos_activate(priv, &(priv->assoc_network->qos_data));
7241
7242        mutex_unlock(&priv->mutex);
7243}
7244
7245static int ipw_handle_probe_response(struct net_device *dev,
7246                                     struct libipw_probe_response *resp,
7247                                     struct libipw_network *network)
7248{
7249        struct ipw_priv *priv = libipw_priv(dev);
7250        int active_network = ((priv->status & STATUS_ASSOCIATED) &&
7251                              (network == priv->assoc_network));
7252
7253        ipw_qos_handle_probe_response(priv, active_network, network);
7254
7255        return 0;
7256}
7257
7258static int ipw_handle_beacon(struct net_device *dev,
7259                             struct libipw_beacon *resp,
7260                             struct libipw_network *network)
7261{
7262        struct ipw_priv *priv = libipw_priv(dev);
7263        int active_network = ((priv->status & STATUS_ASSOCIATED) &&
7264                              (network == priv->assoc_network));
7265
7266        ipw_qos_handle_probe_response(priv, active_network, network);
7267
7268        return 0;
7269}
7270
7271static int ipw_handle_assoc_response(struct net_device *dev,
7272                                     struct libipw_assoc_response *resp,
7273                                     struct libipw_network *network)
7274{
7275        struct ipw_priv *priv = libipw_priv(dev);
7276        ipw_qos_association_resp(priv, network);
7277        return 0;
7278}
7279
7280static int ipw_send_qos_params_command(struct ipw_priv *priv, struct libipw_qos_parameters
7281                                       *qos_param)
7282{
7283        return ipw_send_cmd_pdu(priv, IPW_CMD_QOS_PARAMETERS,
7284                                sizeof(*qos_param) * 3, qos_param);
7285}
7286
7287static int ipw_send_qos_info_command(struct ipw_priv *priv, struct libipw_qos_information_element
7288                                     *qos_param)
7289{
7290        return ipw_send_cmd_pdu(priv, IPW_CMD_WME_INFO, sizeof(*qos_param),
7291                                qos_param);
7292}
7293
7294#endif                          /* CONFIG_IPW2200_QOS */
7295
7296static int ipw_associate_network(struct ipw_priv *priv,
7297                                 struct libipw_network *network,
7298                                 struct ipw_supported_rates *rates, int roaming)
7299{
7300        int err;
7301
7302        if (priv->config & CFG_FIXED_RATE)
7303                ipw_set_fixed_rate(priv, network->mode);
7304
7305        if (!(priv->config & CFG_STATIC_ESSID)) {
7306                priv->essid_len = min(network->ssid_len,
7307                                      (u8) IW_ESSID_MAX_SIZE);
7308                memcpy(priv->essid, network->ssid, priv->essid_len);
7309        }
7310
7311        network->last_associate = jiffies;
7312
7313        memset(&priv->assoc_request, 0, sizeof(priv->assoc_request));
7314        priv->assoc_request.channel = network->channel;
7315        priv->assoc_request.auth_key = 0;
7316
7317        if ((priv->capability & CAP_PRIVACY_ON) &&
7318            (priv->ieee->sec.auth_mode == WLAN_AUTH_SHARED_KEY)) {
7319                priv->assoc_request.auth_type = AUTH_SHARED_KEY;
7320                priv->assoc_request.auth_key = priv->ieee->sec.active_key;
7321
7322                if (priv->ieee->sec.level == SEC_LEVEL_1)
7323                        ipw_send_wep_keys(priv, DCW_WEP_KEY_SEC_TYPE_WEP);
7324
7325        } else if ((priv->capability & CAP_PRIVACY_ON) &&
7326                   (priv->ieee->sec.auth_mode == WLAN_AUTH_LEAP))
7327                priv->assoc_request.auth_type = AUTH_LEAP;
7328        else
7329                priv->assoc_request.auth_type = AUTH_OPEN;
7330
7331        if (priv->ieee->wpa_ie_len) {
7332                priv->assoc_request.policy_support = cpu_to_le16(0x02); /* RSN active */
7333                ipw_set_rsn_capa(priv, priv->ieee->wpa_ie,
7334                                 priv->ieee->wpa_ie_len);
7335        }
7336
7337        /*
7338         * It is valid for our ieee device to support multiple modes, but
7339         * when it comes to associating to a given network we have to choose
7340         * just one mode.
7341         */
7342        if (network->mode & priv->ieee->mode & IEEE_A)
7343                priv->assoc_request.ieee_mode = IPW_A_MODE;
7344        else if (network->mode & priv->ieee->mode & IEEE_G)
7345                priv->assoc_request.ieee_mode = IPW_G_MODE;
7346        else if (network->mode & priv->ieee->mode & IEEE_B)
7347                priv->assoc_request.ieee_mode = IPW_B_MODE;
7348
7349        priv->assoc_request.capability = cpu_to_le16(network->capability);
7350        if ((network->capability & WLAN_CAPABILITY_SHORT_PREAMBLE)
7351            && !(priv->config & CFG_PREAMBLE_LONG)) {
7352                priv->assoc_request.preamble_length = DCT_FLAG_SHORT_PREAMBLE;
7353        } else {
7354                priv->assoc_request.preamble_length = DCT_FLAG_LONG_PREAMBLE;
7355
7356                /* Clear the short preamble if we won't be supporting it */
7357                priv->assoc_request.capability &=
7358                    ~cpu_to_le16(WLAN_CAPABILITY_SHORT_PREAMBLE);
7359        }
7360
7361        /* Clear capability bits that aren't used in Ad Hoc */
7362        if (priv->ieee->iw_mode == IW_MODE_ADHOC)
7363                priv->assoc_request.capability &=
7364                    ~cpu_to_le16(WLAN_CAPABILITY_SHORT_SLOT_TIME);
7365
7366        IPW_DEBUG_ASSOC("%ssociation attempt: '%*pE', channel %d, 802.11%c [%d], %s[:%s], enc=%s%s%s%c%c\n",
7367                        roaming ? "Rea" : "A",
7368                        priv->essid_len, priv->essid,
7369                        network->channel,
7370                        ipw_modes[priv->assoc_request.ieee_mode],
7371                        rates->num_rates,
7372                        (priv->assoc_request.preamble_length ==
7373                         DCT_FLAG_LONG_PREAMBLE) ? "long" : "short",
7374                        network->capability &
7375                        WLAN_CAPABILITY_SHORT_PREAMBLE ? "short" : "long",
7376                        priv->capability & CAP_PRIVACY_ON ? "on " : "off",
7377                        priv->capability & CAP_PRIVACY_ON ?
7378                        (priv->capability & CAP_SHARED_KEY ? "(shared)" :
7379                         "(open)") : "",
7380                        priv->capability & CAP_PRIVACY_ON ? " key=" : "",
7381                        priv->capability & CAP_PRIVACY_ON ?
7382                        '1' + priv->ieee->sec.active_key : '.',
7383                        priv->capability & CAP_PRIVACY_ON ? '.' : ' ');
7384
7385        priv->assoc_request.beacon_interval = cpu_to_le16(network->beacon_interval);
7386        if ((priv->ieee->iw_mode == IW_MODE_ADHOC) &&
7387            (network->time_stamp[0] == 0) && (network->time_stamp[1] == 0)) {
7388                priv->assoc_request.assoc_type = HC_IBSS_START;
7389                priv->assoc_request.assoc_tsf_msw = 0;
7390                priv->assoc_request.assoc_tsf_lsw = 0;
7391        } else {
7392                if (unlikely(roaming))
7393                        priv->assoc_request.assoc_type = HC_REASSOCIATE;
7394                else
7395                        priv->assoc_request.assoc_type = HC_ASSOCIATE;
7396                priv->assoc_request.assoc_tsf_msw = cpu_to_le32(network->time_stamp[1]);
7397                priv->assoc_request.assoc_tsf_lsw = cpu_to_le32(network->time_stamp[0]);
7398        }
7399
7400        memcpy(priv->assoc_request.bssid, network->bssid, ETH_ALEN);
7401
7402        if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
7403                memset(&priv->assoc_request.dest, 0xFF, ETH_ALEN);
7404                priv->assoc_request.atim_window = cpu_to_le16(network->atim_window);
7405        } else {
7406                memcpy(priv->assoc_request.dest, network->bssid, ETH_ALEN);
7407                priv->assoc_request.atim_window = 0;
7408        }
7409
7410        priv->assoc_request.listen_interval = cpu_to_le16(network->listen_interval);
7411
7412        err = ipw_send_ssid(priv, priv->essid, priv->essid_len);
7413        if (err) {
7414                IPW_DEBUG_HC("Attempt to send SSID command failed.\n");
7415                return err;
7416        }
7417
7418        rates->ieee_mode = priv->assoc_request.ieee_mode;
7419        rates->purpose = IPW_RATE_CONNECT;
7420        ipw_send_supported_rates(priv, rates);
7421
7422        if (priv->assoc_request.ieee_mode == IPW_G_MODE)
7423                priv->sys_config.dot11g_auto_detection = 1;
7424        else
7425                priv->sys_config.dot11g_auto_detection = 0;
7426
7427        if (priv->ieee->iw_mode == IW_MODE_ADHOC)
7428                priv->sys_config.answer_broadcast_ssid_probe = 1;
7429        else
7430                priv->sys_config.answer_broadcast_ssid_probe = 0;
7431
7432        err = ipw_send_system_config(priv);
7433        if (err) {
7434                IPW_DEBUG_HC("Attempt to send sys config command failed.\n");
7435                return err;
7436        }
7437
7438        IPW_DEBUG_ASSOC("Association sensitivity: %d\n", network->stats.rssi);
7439        err = ipw_set_sensitivity(priv, network->stats.rssi + IPW_RSSI_TO_DBM);
7440        if (err) {
7441                IPW_DEBUG_HC("Attempt to send associate command failed.\n");
7442                return err;
7443        }
7444
7445        /*
7446         * If preemption is enabled, it is possible for the association
7447         * to complete before we return from ipw_send_associate.  Therefore
7448         * we have to be sure and update our priviate data first.
7449         */
7450        priv->channel = network->channel;
7451        memcpy(priv->bssid, network->bssid, ETH_ALEN);
7452        priv->status |= STATUS_ASSOCIATING;
7453        priv->status &= ~STATUS_SECURITY_UPDATED;
7454
7455        priv->assoc_network = network;
7456
7457#ifdef CONFIG_IPW2200_QOS
7458        ipw_qos_association(priv, network);
7459#endif
7460
7461        err = ipw_send_associate(priv, &priv->assoc_request);
7462        if (err) {
7463                IPW_DEBUG_HC("Attempt to send associate command failed.\n");
7464                return err;
7465        }
7466
7467        IPW_DEBUG(IPW_DL_STATE, "associating: '%*pE' %pM\n",
7468                  priv->essid_len, priv->essid, priv->bssid);
7469
7470        return 0;
7471}
7472
7473static void ipw_roam(void *data)
7474{
7475        struct ipw_priv *priv = data;
7476        struct libipw_network *network = NULL;
7477        struct ipw_network_match match = {
7478                .network = priv->assoc_network
7479        };
7480
7481        /* The roaming process is as follows:
7482         *
7483         * 1.  Missed beacon threshold triggers the roaming process by
7484         *     setting the status ROAM bit and requesting a scan.
7485         * 2.  When the scan completes, it schedules the ROAM work
7486         * 3.  The ROAM work looks at all of the known networks for one that
7487         *     is a better network than the currently associated.  If none
7488         *     found, the ROAM process is over (ROAM bit cleared)
7489         * 4.  If a better network is found, a disassociation request is
7490         *     sent.
7491         * 5.  When the disassociation completes, the roam work is again
7492         *     scheduled.  The second time through, the driver is no longer
7493         *     associated, and the newly selected network is sent an
7494         *     association request.
7495         * 6.  At this point ,the roaming process is complete and the ROAM
7496         *     status bit is cleared.
7497         */
7498
7499        /* If we are no longer associated, and the roaming bit is no longer
7500         * set, then we are not actively roaming, so just return */
7501        if (!(priv->status & (STATUS_ASSOCIATED | STATUS_ROAMING)))
7502                return;
7503
7504        if (priv->status & STATUS_ASSOCIATED) {
7505                /* First pass through ROAM process -- look for a better
7506                 * network */
7507                unsigned long flags;
7508                u8 rssi = priv->assoc_network->stats.rssi;
7509                priv->assoc_network->stats.rssi = -128;
7510                spin_lock_irqsave(&priv->ieee->lock, flags);
7511                list_for_each_entry(network, &priv->ieee->network_list, list) {
7512                        if (network != priv->assoc_network)
7513                                ipw_best_network(priv, &match, network, 1);
7514                }
7515                spin_unlock_irqrestore(&priv->ieee->lock, flags);
7516                priv->assoc_network->stats.rssi = rssi;
7517
7518                if (match.network == priv->assoc_network) {
7519                        IPW_DEBUG_ASSOC("No better APs in this network to "
7520                                        "roam to.\n");
7521                        priv->status &= ~STATUS_ROAMING;
7522                        ipw_debug_config(priv);
7523                        return;
7524                }
7525
7526                ipw_send_disassociate(priv, 1);
7527                priv->assoc_network = match.network;
7528
7529                return;
7530        }
7531
7532        /* Second pass through ROAM process -- request association */
7533        ipw_compatible_rates(priv, priv->assoc_network, &match.rates);
7534        ipw_associate_network(priv, priv->assoc_network, &match.rates, 1);
7535        priv->status &= ~STATUS_ROAMING;
7536}
7537
7538static void ipw_bg_roam(struct work_struct *work)
7539{
7540        struct ipw_priv *priv =
7541                container_of(work, struct ipw_priv, roam);
7542        mutex_lock(&priv->mutex);
7543        ipw_roam(priv);
7544        mutex_unlock(&priv->mutex);
7545}
7546
7547static int ipw_associate(void *data)
7548{
7549        struct ipw_priv *priv = data;
7550
7551        struct libipw_network *network = NULL;
7552        struct ipw_network_match match = {
7553                .network = NULL
7554        };
7555        struct ipw_supported_rates *rates;
7556        struct list_head *element;
7557        unsigned long flags;
7558
7559        if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
7560                IPW_DEBUG_ASSOC("Not attempting association (monitor mode)\n");
7561                return 0;
7562        }
7563
7564        if (priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) {
7565                IPW_DEBUG_ASSOC("Not attempting association (already in "
7566                                "progress)\n");
7567                return 0;
7568        }
7569
7570        if (priv->status & STATUS_DISASSOCIATING) {
7571                IPW_DEBUG_ASSOC("Not attempting association (in "
7572                                "disassociating)\n ");
7573                schedule_work(&priv->associate);
7574                return 0;
7575        }
7576
7577        if (!ipw_is_init(priv) || (priv->status & STATUS_SCANNING)) {
7578                IPW_DEBUG_ASSOC("Not attempting association (scanning or not "
7579                                "initialized)\n");
7580                return 0;
7581        }
7582
7583        if (!(priv->config & CFG_ASSOCIATE) &&
7584            !(priv->config & (CFG_STATIC_ESSID | CFG_STATIC_BSSID))) {
7585                IPW_DEBUG_ASSOC("Not attempting association (associate=0)\n");
7586                return 0;
7587        }
7588
7589        /* Protect our use of the network_list */
7590        spin_lock_irqsave(&priv->ieee->lock, flags);
7591        list_for_each_entry(network, &priv->ieee->network_list, list)
7592            ipw_best_network(priv, &match, network, 0);
7593
7594        network = match.network;
7595        rates = &match.rates;
7596
7597        if (network == NULL &&
7598            priv->ieee->iw_mode == IW_MODE_ADHOC &&
7599            priv->config & CFG_ADHOC_CREATE &&
7600            priv->config & CFG_STATIC_ESSID &&
7601            priv->config & CFG_STATIC_CHANNEL) {
7602                /* Use oldest network if the free list is empty */
7603                if (list_empty(&priv->ieee->network_free_list)) {
7604                        struct libipw_network *oldest = NULL;
7605                        struct libipw_network *target;
7606
7607                        list_for_each_entry(target, &priv->ieee->network_list, list) {
7608                                if ((oldest == NULL) ||
7609                                    (target->last_scanned < oldest->last_scanned))
7610                                        oldest = target;
7611                        }
7612
7613                        /* If there are no more slots, expire the oldest */
7614                        list_del(&oldest->list);
7615                        target = oldest;
7616                        IPW_DEBUG_ASSOC("Expired '%*pE' (%pM) from network list.\n",
7617                                        target->ssid_len, target->ssid,
7618                                        target->bssid);
7619                        list_add_tail(&target->list,
7620                                      &priv->ieee->network_free_list);
7621                }
7622
7623                element = priv->ieee->network_free_list.next;
7624                network = list_entry(element, struct libipw_network, list);
7625                ipw_adhoc_create(priv, network);
7626                rates = &priv->rates;
7627                list_del(element);
7628                list_add_tail(&network->list, &priv->ieee->network_list);
7629        }
7630        spin_unlock_irqrestore(&priv->ieee->lock, flags);
7631
7632        /* If we reached the end of the list, then we don't have any valid
7633         * matching APs */
7634        if (!network) {
7635                ipw_debug_config(priv);
7636
7637                if (!(priv->status & STATUS_SCANNING)) {
7638                        if (!(priv->config & CFG_SPEED_SCAN))
7639                                schedule_delayed_work(&priv->request_scan,
7640                                                      SCAN_INTERVAL);
7641                        else
7642                                schedule_delayed_work(&priv->request_scan, 0);
7643                }
7644
7645                return 0;
7646        }
7647
7648        ipw_associate_network(priv, network, rates, 0);
7649
7650        return 1;
7651}
7652
7653static void ipw_bg_associate(struct work_struct *work)
7654{
7655        struct ipw_priv *priv =
7656                container_of(work, struct ipw_priv, associate);
7657        mutex_lock(&priv->mutex);
7658        ipw_associate(priv);
7659        mutex_unlock(&priv->mutex);
7660}
7661
7662static void ipw_rebuild_decrypted_skb(struct ipw_priv *priv,
7663                                      struct sk_buff *skb)
7664{
7665        struct ieee80211_hdr *hdr;
7666        u16 fc;
7667
7668        hdr = (struct ieee80211_hdr *)skb->data;
7669        fc = le16_to_cpu(hdr->frame_control);
7670        if (!(fc & IEEE80211_FCTL_PROTECTED))
7671                return;
7672
7673        fc &= ~IEEE80211_FCTL_PROTECTED;
7674        hdr->frame_control = cpu_to_le16(fc);
7675        switch (priv->ieee->sec.level) {
7676        case SEC_LEVEL_3:
7677                /* Remove CCMP HDR */
7678                memmove(skb->data + LIBIPW_3ADDR_LEN,
7679                        skb->data + LIBIPW_3ADDR_LEN + 8,
7680                        skb->len - LIBIPW_3ADDR_LEN - 8);
7681                skb_trim(skb, skb->len - 16);   /* CCMP_HDR_LEN + CCMP_MIC_LEN */
7682                break;
7683        case SEC_LEVEL_2:
7684                break;
7685        case SEC_LEVEL_1:
7686                /* Remove IV */
7687                memmove(skb->data + LIBIPW_3ADDR_LEN,
7688                        skb->data + LIBIPW_3ADDR_LEN + 4,
7689                        skb->len - LIBIPW_3ADDR_LEN - 4);
7690                skb_trim(skb, skb->len - 8);    /* IV + ICV */
7691                break;
7692        case SEC_LEVEL_0:
7693                break;
7694        default:
7695                printk(KERN_ERR "Unknown security level %d\n",
7696                       priv->ieee->sec.level);
7697                break;
7698        }
7699}
7700
7701static void ipw_handle_data_packet(struct ipw_priv *priv,
7702                                   struct ipw_rx_mem_buffer *rxb,
7703                                   struct libipw_rx_stats *stats)
7704{
7705        struct net_device *dev = priv->net_dev;
7706        struct libipw_hdr_4addr *hdr;
7707        struct ipw_rx_packet *pkt = (struct ipw_rx_packet *)rxb->skb->data;
7708
7709        /* We received data from the HW, so stop the watchdog */
7710        dev->trans_start = jiffies;
7711
7712        /* We only process data packets if the
7713         * interface is open */
7714        if (unlikely((le16_to_cpu(pkt->u.frame.length) + IPW_RX_FRAME_SIZE) >
7715                     skb_tailroom(rxb->skb))) {
7716                dev->stats.rx_errors++;
7717                priv->wstats.discard.misc++;
7718                IPW_DEBUG_DROP("Corruption detected! Oh no!\n");
7719                return;
7720        } else if (unlikely(!netif_running(priv->net_dev))) {
7721                dev->stats.rx_dropped++;
7722                priv->wstats.discard.misc++;
7723                IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
7724                return;
7725        }
7726
7727        /* Advance skb->data to the start of the actual payload */
7728        skb_reserve(rxb->skb, offsetof(struct ipw_rx_packet, u.frame.data));
7729
7730        /* Set the size of the skb to the size of the frame */
7731        skb_put(rxb->skb, le16_to_cpu(pkt->u.frame.length));
7732
7733        IPW_DEBUG_RX("Rx packet of %d bytes.\n", rxb->skb->len);
7734
7735        /* HW decrypt will not clear the WEP bit, MIC, PN, etc. */
7736        hdr = (struct libipw_hdr_4addr *)rxb->skb->data;
7737        if (priv->ieee->iw_mode != IW_MODE_MONITOR &&
7738            (is_multicast_ether_addr(hdr->addr1) ?
7739             !priv->ieee->host_mc_decrypt : !priv->ieee->host_decrypt))
7740                ipw_rebuild_decrypted_skb(priv, rxb->skb);
7741
7742        if (!libipw_rx(priv->ieee, rxb->skb, stats))
7743                dev->stats.rx_errors++;
7744        else {                  /* libipw_rx succeeded, so it now owns the SKB */
7745                rxb->skb = NULL;
7746                __ipw_led_activity_on(priv);
7747        }
7748}
7749
7750#ifdef CONFIG_IPW2200_RADIOTAP
7751static void ipw_handle_data_packet_monitor(struct ipw_priv *priv,
7752                                           struct ipw_rx_mem_buffer *rxb,
7753                                           struct libipw_rx_stats *stats)
7754{
7755        struct net_device *dev = priv->net_dev;
7756        struct ipw_rx_packet *pkt = (struct ipw_rx_packet *)rxb->skb->data;
7757        struct ipw_rx_frame *frame = &pkt->u.frame;
7758
7759        /* initial pull of some data */
7760        u16 received_channel = frame->received_channel;
7761        u8 antennaAndPhy = frame->antennaAndPhy;
7762        s8 antsignal = frame->rssi_dbm - IPW_RSSI_TO_DBM;       /* call it signed anyhow */
7763        u16 pktrate = frame->rate;
7764
7765        /* Magic struct that slots into the radiotap header -- no reason
7766         * to build this manually element by element, we can write it much
7767         * more efficiently than we can parse it. ORDER MATTERS HERE */
7768        struct ipw_rt_hdr *ipw_rt;
7769
7770        unsigned short len = le16_to_cpu(pkt->u.frame.length);
7771
7772        /* We received data from the HW, so stop the watchdog */
7773        dev->trans_start = jiffies;
7774
7775        /* We only process data packets if the
7776         * interface is open */
7777        if (unlikely((le16_to_cpu(pkt->u.frame.length) + IPW_RX_FRAME_SIZE) >
7778                     skb_tailroom(rxb->skb))) {
7779                dev->stats.rx_errors++;
7780                priv->wstats.discard.misc++;
7781                IPW_DEBUG_DROP("Corruption detected! Oh no!\n");
7782                return;
7783        } else if (unlikely(!netif_running(priv->net_dev))) {
7784                dev->stats.rx_dropped++;
7785                priv->wstats.discard.misc++;
7786                IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
7787                return;
7788        }
7789
7790        /* Libpcap 0.9.3+ can handle variable length radiotap, so we'll use
7791         * that now */
7792        if (len > IPW_RX_BUF_SIZE - sizeof(struct ipw_rt_hdr)) {
7793                /* FIXME: Should alloc bigger skb instead */
7794                dev->stats.rx_dropped++;
7795                priv->wstats.discard.misc++;
7796                IPW_DEBUG_DROP("Dropping too large packet in monitor\n");
7797                return;
7798        }
7799
7800        /* copy the frame itself */
7801        memmove(rxb->skb->data + sizeof(struct ipw_rt_hdr),
7802                rxb->skb->data + IPW_RX_FRAME_SIZE, len);
7803
7804        ipw_rt = (struct ipw_rt_hdr *)rxb->skb->data;
7805
7806        ipw_rt->rt_hdr.it_version = PKTHDR_RADIOTAP_VERSION;
7807        ipw_rt->rt_hdr.it_pad = 0;      /* always good to zero */
7808        ipw_rt->rt_hdr.it_len = cpu_to_le16(sizeof(struct ipw_rt_hdr)); /* total header+data */
7809
7810        /* Big bitfield of all the fields we provide in radiotap */
7811        ipw_rt->rt_hdr.it_present = cpu_to_le32(
7812             (1 << IEEE80211_RADIOTAP_TSFT) |
7813             (1 << IEEE80211_RADIOTAP_FLAGS) |
7814             (1 << IEEE80211_RADIOTAP_RATE) |
7815             (1 << IEEE80211_RADIOTAP_CHANNEL) |
7816             (1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL) |
7817             (1 << IEEE80211_RADIOTAP_DBM_ANTNOISE) |
7818             (1 << IEEE80211_RADIOTAP_ANTENNA));
7819
7820        /* Zero the flags, we'll add to them as we go */
7821        ipw_rt->rt_flags = 0;
7822        ipw_rt->rt_tsf = (u64)(frame->parent_tsf[3] << 24 |
7823                               frame->parent_tsf[2] << 16 |
7824                               frame->parent_tsf[1] << 8  |
7825                               frame->parent_tsf[0]);
7826
7827        /* Convert signal to DBM */
7828        ipw_rt->rt_dbmsignal = antsignal;
7829        ipw_rt->rt_dbmnoise = (s8) le16_to_cpu(frame->noise);
7830
7831        /* Convert the channel data and set the flags */
7832        ipw_rt->rt_channel = cpu_to_le16(ieee80211chan2mhz(received_channel));
7833        if (received_channel > 14) {    /* 802.11a */
7834                ipw_rt->rt_chbitmask =
7835                    cpu_to_le16((IEEE80211_CHAN_OFDM | IEEE80211_CHAN_5GHZ));
7836        } else if (antennaAndPhy & 32) {        /* 802.11b */
7837                ipw_rt->rt_chbitmask =
7838                    cpu_to_le16((IEEE80211_CHAN_CCK | IEEE80211_CHAN_2GHZ));
7839        } else {                /* 802.11g */
7840                ipw_rt->rt_chbitmask =
7841                    cpu_to_le16(IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ);
7842        }
7843
7844        /* set the rate in multiples of 500k/s */
7845        switch (pktrate) {
7846        case IPW_TX_RATE_1MB:
7847                ipw_rt->rt_rate = 2;
7848                break;
7849        case IPW_TX_RATE_2MB:
7850                ipw_rt->rt_rate = 4;
7851                break;
7852        case IPW_TX_RATE_5MB:
7853                ipw_rt->rt_rate = 10;
7854                break;
7855        case IPW_TX_RATE_6MB:
7856                ipw_rt->rt_rate = 12;
7857                break;
7858        case IPW_TX_RATE_9MB:
7859                ipw_rt->rt_rate = 18;
7860                break;
7861        case IPW_TX_RATE_11MB:
7862                ipw_rt->rt_rate = 22;
7863                break;
7864        case IPW_TX_RATE_12MB:
7865                ipw_rt->rt_rate = 24;
7866                break;
7867        case IPW_TX_RATE_18MB:
7868                ipw_rt->rt_rate = 36;
7869                break;
7870        case IPW_TX_RATE_24MB:
7871                ipw_rt->rt_rate = 48;
7872                break;
7873        case IPW_TX_RATE_36MB:
7874                ipw_rt->rt_rate = 72;
7875                break;
7876        case IPW_TX_RATE_48MB:
7877                ipw_rt->rt_rate = 96;
7878                break;
7879        case IPW_TX_RATE_54MB:
7880                ipw_rt->rt_rate = 108;
7881                break;
7882        default:
7883                ipw_rt->rt_rate = 0;
7884                break;
7885        }
7886
7887        /* antenna number */
7888        ipw_rt->rt_antenna = (antennaAndPhy & 3);       /* Is this right? */
7889
7890        /* set the preamble flag if we have it */
7891        if ((antennaAndPhy & 64))
7892                ipw_rt->rt_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
7893
7894        /* Set the size of the skb to the size of the frame */
7895        skb_put(rxb->skb, len + sizeof(struct ipw_rt_hdr));
7896
7897        IPW_DEBUG_RX("Rx packet of %d bytes.\n", rxb->skb->len);
7898
7899        if (!libipw_rx(priv->ieee, rxb->skb, stats))
7900                dev->stats.rx_errors++;
7901        else {                  /* libipw_rx succeeded, so it now owns the SKB */
7902                rxb->skb = NULL;
7903                /* no LED during capture */
7904        }
7905}
7906#endif
7907
7908#ifdef CONFIG_IPW2200_PROMISCUOUS
7909#define libipw_is_probe_response(fc) \
7910   ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_MGMT && \
7911    (fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_PROBE_RESP )
7912
7913#define libipw_is_management(fc) \
7914   ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_MGMT)
7915
7916#define libipw_is_control(fc) \
7917   ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_CTL)
7918
7919#define libipw_is_data(fc) \
7920   ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_DATA)
7921
7922#define libipw_is_assoc_request(fc) \
7923   ((fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_ASSOC_REQ)
7924
7925#define libipw_is_reassoc_request(fc) \
7926   ((fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_REASSOC_REQ)
7927
7928static void ipw_handle_promiscuous_rx(struct ipw_priv *priv,
7929                                      struct ipw_rx_mem_buffer *rxb,
7930                                      struct libipw_rx_stats *stats)
7931{
7932        struct net_device *dev = priv->prom_net_dev;
7933        struct ipw_rx_packet *pkt = (struct ipw_rx_packet *)rxb->skb->data;
7934        struct ipw_rx_frame *frame = &pkt->u.frame;
7935        struct ipw_rt_hdr *ipw_rt;
7936
7937        /* First cache any information we need before we overwrite
7938         * the information provided in the skb from the hardware */
7939        struct ieee80211_hdr *hdr;
7940        u16 channel = frame->received_channel;
7941        u8 phy_flags = frame->antennaAndPhy;
7942        s8 signal = frame->rssi_dbm - IPW_RSSI_TO_DBM;
7943        s8 noise = (s8) le16_to_cpu(frame->noise);
7944        u8 rate = frame->rate;
7945        unsigned short len = le16_to_cpu(pkt->u.frame.length);
7946        struct sk_buff *skb;
7947        int hdr_only = 0;
7948        u16 filter = priv->prom_priv->filter;
7949
7950        /* If the filter is set to not include Rx frames then return */
7951        if (filter & IPW_PROM_NO_RX)
7952                return;
7953
7954        /* We received data from the HW, so stop the watchdog */
7955        dev->trans_start = jiffies;
7956
7957        if (unlikely((len + IPW_RX_FRAME_SIZE) > skb_tailroom(rxb->skb))) {
7958                dev->stats.rx_errors++;
7959                IPW_DEBUG_DROP("Corruption detected! Oh no!\n");
7960                return;
7961        }
7962
7963        /* We only process data packets if the interface is open */
7964        if (unlikely(!netif_running(dev))) {
7965                dev->stats.rx_dropped++;
7966                IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
7967                return;
7968        }
7969
7970        /* Libpcap 0.9.3+ can handle variable length radiotap, so we'll use
7971         * that now */
7972        if (len > IPW_RX_BUF_SIZE - sizeof(struct ipw_rt_hdr)) {
7973                /* FIXME: Should alloc bigger skb instead */
7974                dev->stats.rx_dropped++;
7975                IPW_DEBUG_DROP("Dropping too large packet in monitor\n");
7976                return;
7977        }
7978
7979        hdr = (void *)rxb->skb->data + IPW_RX_FRAME_SIZE;
7980        if (libipw_is_management(le16_to_cpu(hdr->frame_control))) {
7981                if (filter & IPW_PROM_NO_MGMT)
7982                        return;
7983                if (filter & IPW_PROM_MGMT_HEADER_ONLY)
7984                        hdr_only = 1;
7985        } else if (libipw_is_control(le16_to_cpu(hdr->frame_control))) {
7986                if (filter & IPW_PROM_NO_CTL)
7987                        return;
7988                if (filter & IPW_PROM_CTL_HEADER_ONLY)
7989                        hdr_only = 1;
7990        } else if (libipw_is_data(le16_to_cpu(hdr->frame_control))) {
7991                if (filter & IPW_PROM_NO_DATA)
7992                        return;
7993                if (filter & IPW_PROM_DATA_HEADER_ONLY)
7994                        hdr_only = 1;
7995        }
7996
7997        /* Copy the SKB since this is for the promiscuous side */
7998        skb = skb_copy(rxb->skb, GFP_ATOMIC);
7999        if (skb == NULL) {
8000                IPW_ERROR("skb_clone failed for promiscuous copy.\n");
8001                return;
8002        }
8003
8004        /* copy the frame data to write after where the radiotap header goes */
8005        ipw_rt = (void *)skb->data;
8006
8007        if (hdr_only)
8008                len = libipw_get_hdrlen(le16_to_cpu(hdr->frame_control));
8009
8010        memcpy(ipw_rt->payload, hdr, len);
8011
8012        ipw_rt->rt_hdr.it_version = PKTHDR_RADIOTAP_VERSION;
8013        ipw_rt->rt_hdr.it_pad = 0;      /* always good to zero */
8014        ipw_rt->rt_hdr.it_len = cpu_to_le16(sizeof(*ipw_rt));   /* total header+data */
8015
8016        /* Set the size of the skb to the size of the frame */
8017        skb_put(skb, sizeof(*ipw_rt) + len);
8018
8019        /* Big bitfield of all the fields we provide in radiotap */
8020        ipw_rt->rt_hdr.it_present = cpu_to_le32(
8021             (1 << IEEE80211_RADIOTAP_TSFT) |
8022             (1 << IEEE80211_RADIOTAP_FLAGS) |
8023             (1 << IEEE80211_RADIOTAP_RATE) |
8024             (1 << IEEE80211_RADIOTAP_CHANNEL) |
8025             (1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL) |
8026             (1 << IEEE80211_RADIOTAP_DBM_ANTNOISE) |
8027             (1 << IEEE80211_RADIOTAP_ANTENNA));
8028
8029        /* Zero the flags, we'll add to them as we go */
8030        ipw_rt->rt_flags = 0;
8031        ipw_rt->rt_tsf = (u64)(frame->parent_tsf[3] << 24 |
8032                               frame->parent_tsf[2] << 16 |
8033                               frame->parent_tsf[1] << 8  |
8034                               frame->parent_tsf[0]);
8035
8036        /* Convert to DBM */
8037        ipw_rt->rt_dbmsignal = signal;
8038        ipw_rt->rt_dbmnoise = noise;
8039
8040        /* Convert the channel data and set the flags */
8041        ipw_rt->rt_channel = cpu_to_le16(ieee80211chan2mhz(channel));
8042        if (channel > 14) {     /* 802.11a */
8043                ipw_rt->rt_chbitmask =
8044                    cpu_to_le16((IEEE80211_CHAN_OFDM | IEEE80211_CHAN_5GHZ));
8045        } else if (phy_flags & (1 << 5)) {      /* 802.11b */
8046                ipw_rt->rt_chbitmask =
8047                    cpu_to_le16((IEEE80211_CHAN_CCK | IEEE80211_CHAN_2GHZ));
8048        } else {                /* 802.11g */
8049                ipw_rt->rt_chbitmask =
8050                    cpu_to_le16(IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ);
8051        }
8052
8053        /* set the rate in multiples of 500k/s */
8054        switch (rate) {
8055        case IPW_TX_RATE_1MB:
8056                ipw_rt->rt_rate = 2;
8057                break;
8058        case IPW_TX_RATE_2MB:
8059                ipw_rt->rt_rate = 4;
8060                break;
8061        case IPW_TX_RATE_5MB:
8062                ipw_rt->rt_rate = 10;
8063                break;
8064        case IPW_TX_RATE_6MB:
8065                ipw_rt->rt_rate = 12;
8066                break;
8067        case IPW_TX_RATE_9MB:
8068                ipw_rt->rt_rate = 18;
8069                break;
8070        case IPW_TX_RATE_11MB:
8071                ipw_rt->rt_rate = 22;
8072                break;
8073        case IPW_TX_RATE_12MB:
8074                ipw_rt->rt_rate = 24;
8075                break;
8076        case IPW_TX_RATE_18MB:
8077                ipw_rt->rt_rate = 36;
8078                break;
8079        case IPW_TX_RATE_24MB:
8080                ipw_rt->rt_rate = 48;
8081                break;
8082        case IPW_TX_RATE_36MB:
8083                ipw_rt->rt_rate = 72;
8084                break;
8085        case IPW_TX_RATE_48MB:
8086                ipw_rt->rt_rate = 96;
8087                break;
8088        case IPW_TX_RATE_54MB:
8089                ipw_rt->rt_rate = 108;
8090                break;
8091        default:
8092                ipw_rt->rt_rate = 0;
8093                break;
8094        }
8095
8096        /* antenna number */
8097        ipw_rt->rt_antenna = (phy_flags & 3);
8098
8099        /* set the preamble flag if we have it */
8100        if (phy_flags & (1 << 6))
8101                ipw_rt->rt_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
8102
8103        IPW_DEBUG_RX("Rx packet of %d bytes.\n", skb->len);
8104
8105        if (!libipw_rx(priv->prom_priv->ieee, skb, stats)) {
8106                dev->stats.rx_errors++;
8107                dev_kfree_skb_any(skb);
8108        }
8109}
8110#endif
8111
8112static int is_network_packet(struct ipw_priv *priv,
8113                                    struct libipw_hdr_4addr *header)
8114{
8115        /* Filter incoming packets to determine if they are targeted toward
8116         * this network, discarding packets coming from ourselves */
8117        switch (priv->ieee->iw_mode) {
8118        case IW_MODE_ADHOC:     /* Header: Dest. | Source    | BSSID */
8119                /* packets from our adapter are dropped (echo) */
8120                if (ether_addr_equal(header->addr2, priv->net_dev->dev_addr))
8121                        return 0;
8122
8123                /* {broad,multi}cast packets to our BSSID go through */
8124                if (is_multicast_ether_addr(header->addr1))
8125                        return ether_addr_equal(header->addr3, priv->bssid);
8126
8127                /* packets to our adapter go through */
8128                return ether_addr_equal(header->addr1,
8129                                        priv->net_dev->dev_addr);
8130
8131        case IW_MODE_INFRA:     /* Header: Dest. | BSSID | Source */
8132                /* packets from our adapter are dropped (echo) */
8133                if (ether_addr_equal(header->addr3, priv->net_dev->dev_addr))
8134                        return 0;
8135
8136                /* {broad,multi}cast packets to our BSS go through */
8137                if (is_multicast_ether_addr(header->addr1))
8138                        return ether_addr_equal(header->addr2, priv->bssid);
8139
8140                /* packets to our adapter go through */
8141                return ether_addr_equal(header->addr1,
8142                                        priv->net_dev->dev_addr);
8143        }
8144
8145        return 1;
8146}
8147
8148#define IPW_PACKET_RETRY_TIME HZ
8149
8150static  int is_duplicate_packet(struct ipw_priv *priv,
8151                                      struct libipw_hdr_4addr *header)
8152{
8153        u16 sc = le16_to_cpu(header->seq_ctl);
8154        u16 seq = WLAN_GET_SEQ_SEQ(sc);
8155        u16 frag = WLAN_GET_SEQ_FRAG(sc);
8156        u16 *last_seq, *last_frag;
8157        unsigned long *last_time;
8158
8159        switch (priv->ieee->iw_mode) {
8160        case IW_MODE_ADHOC:
8161                {
8162                        struct list_head *p;
8163                        struct ipw_ibss_seq *entry = NULL;
8164                        u8 *mac = header->addr2;
8165                        int index = mac[5] % IPW_IBSS_MAC_HASH_SIZE;
8166
8167                        list_for_each(p, &priv->ibss_mac_hash[index]) {
8168                                entry =
8169                                    list_entry(p, struct ipw_ibss_seq, list);
8170                                if (ether_addr_equal(entry->mac, mac))
8171                                        break;
8172                        }
8173                        if (p == &priv->ibss_mac_hash[index]) {
8174                                entry = kmalloc(sizeof(*entry), GFP_ATOMIC);
8175                                if (!entry) {
8176                                        IPW_ERROR
8177                                            ("Cannot malloc new mac entry\n");
8178                                        return 0;
8179                                }
8180                                memcpy(entry->mac, mac, ETH_ALEN);
8181                                entry->seq_num = seq;
8182                                entry->frag_num = frag;
8183                                entry->packet_time = jiffies;
8184                                list_add(&entry->list,
8185                                         &priv->ibss_mac_hash[index]);
8186                                return 0;
8187                        }
8188                        last_seq = &entry->seq_num;
8189                        last_frag = &entry->frag_num;
8190                        last_time = &entry->packet_time;
8191                        break;
8192                }
8193        case IW_MODE_INFRA:
8194                last_seq = &priv->last_seq_num;
8195                last_frag = &priv->last_frag_num;
8196                last_time = &priv->last_packet_time;
8197                break;
8198        default:
8199                return 0;
8200        }
8201        if ((*last_seq == seq) &&
8202            time_after(*last_time + IPW_PACKET_RETRY_TIME, jiffies)) {
8203                if (*last_frag == frag)
8204                        goto drop;
8205                if (*last_frag + 1 != frag)
8206                        /* out-of-order fragment */
8207                        goto drop;
8208        } else
8209                *last_seq = seq;
8210
8211        *last_frag = frag;
8212        *last_time = jiffies;
8213        return 0;
8214
8215      drop:
8216        /* Comment this line now since we observed the card receives
8217         * duplicate packets but the FCTL_RETRY bit is not set in the
8218         * IBSS mode with fragmentation enabled.
8219         BUG_ON(!(le16_to_cpu(header->frame_control) & IEEE80211_FCTL_RETRY)); */
8220        return 1;
8221}
8222
8223static void ipw_handle_mgmt_packet(struct ipw_priv *priv,
8224                                   struct ipw_rx_mem_buffer *rxb,
8225                                   struct libipw_rx_stats *stats)
8226{
8227        struct sk_buff *skb = rxb->skb;
8228        struct ipw_rx_packet *pkt = (struct ipw_rx_packet *)skb->data;
8229        struct libipw_hdr_4addr *header = (struct libipw_hdr_4addr *)
8230            (skb->data + IPW_RX_FRAME_SIZE);
8231
8232        libipw_rx_mgt(priv->ieee, header, stats);
8233
8234        if (priv->ieee->iw_mode == IW_MODE_ADHOC &&
8235            ((WLAN_FC_GET_STYPE(le16_to_cpu(header->frame_ctl)) ==
8236              IEEE80211_STYPE_PROBE_RESP) ||
8237             (WLAN_FC_GET_STYPE(le16_to_cpu(header->frame_ctl)) ==
8238              IEEE80211_STYPE_BEACON))) {
8239                if (ether_addr_equal(header->addr3, priv->bssid))
8240                        ipw_add_station(priv, header->addr2);
8241        }
8242
8243        if (priv->config & CFG_NET_STATS) {
8244                IPW_DEBUG_HC("sending stat packet\n");
8245
8246                /* Set the size of the skb to the size of the full
8247                 * ipw header and 802.11 frame */
8248                skb_put(skb, le16_to_cpu(pkt->u.frame.length) +
8249                        IPW_RX_FRAME_SIZE);
8250
8251                /* Advance past the ipw packet header to the 802.11 frame */
8252                skb_pull(skb, IPW_RX_FRAME_SIZE);
8253
8254                /* Push the libipw_rx_stats before the 802.11 frame */
8255                memcpy(skb_push(skb, sizeof(*stats)), stats, sizeof(*stats));
8256
8257                skb->dev = priv->ieee->dev;
8258
8259                /* Point raw at the libipw_stats */
8260                skb_reset_mac_header(skb);
8261
8262                skb->pkt_type = PACKET_OTHERHOST;
8263                skb->protocol = cpu_to_be16(ETH_P_80211_STATS);
8264                memset(skb->cb, 0, sizeof(rxb->skb->cb));
8265                netif_rx(skb);
8266                rxb->skb = NULL;
8267        }
8268}
8269
8270/*
8271 * Main entry function for receiving a packet with 80211 headers.  This
8272 * should be called when ever the FW has notified us that there is a new
8273 * skb in the receive queue.
8274 */
8275static void ipw_rx(struct ipw_priv *priv)
8276{
8277        struct ipw_rx_mem_buffer *rxb;
8278        struct ipw_rx_packet *pkt;
8279        struct libipw_hdr_4addr *header;
8280        u32 r, w, i;
8281        u8 network_packet;
8282        u8 fill_rx = 0;
8283
8284        r = ipw_read32(priv, IPW_RX_READ_INDEX);
8285        w = ipw_read32(priv, IPW_RX_WRITE_INDEX);
8286        i = priv->rxq->read;
8287
8288        if (ipw_rx_queue_space (priv->rxq) > (RX_QUEUE_SIZE / 2))
8289                fill_rx = 1;
8290
8291        while (i != r) {
8292                rxb = priv->rxq->queue[i];
8293                if (unlikely(rxb == NULL)) {
8294                        printk(KERN_CRIT "Queue not allocated!\n");
8295                        break;
8296                }
8297                priv->rxq->queue[i] = NULL;
8298
8299                pci_dma_sync_single_for_cpu(priv->pci_dev, rxb->dma_addr,
8300                                            IPW_RX_BUF_SIZE,
8301                                            PCI_DMA_FROMDEVICE);
8302
8303                pkt = (struct ipw_rx_packet *)rxb->skb->data;
8304                IPW_DEBUG_RX("Packet: type=%02X seq=%02X bits=%02X\n",
8305                             pkt->header.message_type,
8306                             pkt->header.rx_seq_num, pkt->header.control_bits);
8307
8308                switch (pkt->header.message_type) {
8309                case RX_FRAME_TYPE:     /* 802.11 frame */  {
8310                                struct libipw_rx_stats stats = {
8311                                        .rssi = pkt->u.frame.rssi_dbm -
8312                                            IPW_RSSI_TO_DBM,
8313                                        .signal =
8314                                            pkt->u.frame.rssi_dbm -
8315                                            IPW_RSSI_TO_DBM + 0x100,
8316                                        .noise =
8317                                            le16_to_cpu(pkt->u.frame.noise),
8318                                        .rate = pkt->u.frame.rate,
8319                                        .mac_time = jiffies,
8320                                        .received_channel =
8321                                            pkt->u.frame.received_channel,
8322                                        .freq =
8323                                            (pkt->u.frame.
8324                                             control & (1 << 0)) ?
8325                                            LIBIPW_24GHZ_BAND :
8326                                            LIBIPW_52GHZ_BAND,
8327                                        .len = le16_to_cpu(pkt->u.frame.length),
8328                                };
8329
8330                                if (stats.rssi != 0)
8331                                        stats.mask |= LIBIPW_STATMASK_RSSI;
8332                                if (stats.signal != 0)
8333                                        stats.mask |= LIBIPW_STATMASK_SIGNAL;
8334                                if (stats.noise != 0)
8335                                        stats.mask |= LIBIPW_STATMASK_NOISE;
8336                                if (stats.rate != 0)
8337                                        stats.mask |= LIBIPW_STATMASK_RATE;
8338
8339                                priv->rx_packets++;
8340
8341#ifdef CONFIG_IPW2200_PROMISCUOUS
8342        if (priv->prom_net_dev && netif_running(priv->prom_net_dev))
8343                ipw_handle_promiscuous_rx(priv, rxb, &stats);
8344#endif
8345
8346#ifdef CONFIG_IPW2200_MONITOR
8347                                if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
8348#ifdef CONFIG_IPW2200_RADIOTAP
8349
8350                ipw_handle_data_packet_monitor(priv,
8351                                               rxb,
8352                                               &stats);
8353#else
8354                ipw_handle_data_packet(priv, rxb,
8355                                       &stats);
8356#endif
8357                                        break;
8358                                }
8359#endif
8360
8361                                header =
8362                                    (struct libipw_hdr_4addr *)(rxb->skb->
8363                                                                   data +
8364                                                                   IPW_RX_FRAME_SIZE);
8365                                /* TODO: Check Ad-Hoc dest/source and make sure
8366                                 * that we are actually parsing these packets
8367                                 * correctly -- we should probably use the
8368                                 * frame control of the packet and disregard
8369                                 * the current iw_mode */
8370
8371                                network_packet =
8372                                    is_network_packet(priv, header);
8373                                if (network_packet && priv->assoc_network) {
8374                                        priv->assoc_network->stats.rssi =
8375                                            stats.rssi;
8376                                        priv->exp_avg_rssi =
8377                                            exponential_average(priv->exp_avg_rssi,
8378                                            stats.rssi, DEPTH_RSSI);
8379                                }
8380
8381                                IPW_DEBUG_RX("Frame: len=%u\n",
8382                                             le16_to_cpu(pkt->u.frame.length));
8383
8384                                if (le16_to_cpu(pkt->u.frame.length) <
8385                                    libipw_get_hdrlen(le16_to_cpu(
8386                                                    header->frame_ctl))) {
8387                                        IPW_DEBUG_DROP
8388                                            ("Received packet is too small. "
8389                                             "Dropping.\n");
8390                                        priv->net_dev->stats.rx_errors++;
8391                                        priv->wstats.discard.misc++;
8392                                        break;
8393                                }
8394
8395                                switch (WLAN_FC_GET_TYPE
8396                                        (le16_to_cpu(header->frame_ctl))) {
8397
8398                                case IEEE80211_FTYPE_MGMT:
8399                                        ipw_handle_mgmt_packet(priv, rxb,
8400                                                               &stats);
8401                                        break;
8402
8403                                case IEEE80211_FTYPE_CTL:
8404                                        break;
8405
8406                                case IEEE80211_FTYPE_DATA:
8407                                        if (unlikely(!network_packet ||
8408                                                     is_duplicate_packet(priv,
8409                                                                         header)))
8410                                        {
8411                                                IPW_DEBUG_DROP("Dropping: "
8412                                                               "%pM, "
8413                                                               "%pM, "
8414                                                               "%pM\n",
8415                                                               header->addr1,
8416                                                               header->addr2,
8417                                                               header->addr3);
8418                                                break;
8419                                        }
8420
8421                                        ipw_handle_data_packet(priv, rxb,
8422                                                               &stats);
8423
8424                                        break;
8425                                }
8426                                break;
8427                        }
8428
8429                case RX_HOST_NOTIFICATION_TYPE:{
8430                                IPW_DEBUG_RX
8431                                    ("Notification: subtype=%02X flags=%02X size=%d\n",
8432                                     pkt->u.notification.subtype,
8433                                     pkt->u.notification.flags,
8434                                     le16_to_cpu(pkt->u.notification.size));
8435                                ipw_rx_notification(priv, &pkt->u.notification);
8436                                break;
8437                        }
8438
8439                default:
8440                        IPW_DEBUG_RX("Bad Rx packet of type %d\n",
8441                                     pkt->header.message_type);
8442                        break;
8443                }
8444
8445                /* For now we just don't re-use anything.  We can tweak this
8446                 * later to try and re-use notification packets and SKBs that
8447                 * fail to Rx correctly */
8448                if (rxb->skb != NULL) {
8449                        dev_kfree_skb_any(rxb->skb);
8450                        rxb->skb = NULL;
8451                }
8452
8453                pci_unmap_single(priv->pci_dev, rxb->dma_addr,
8454                                 IPW_RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
8455                list_add_tail(&rxb->list, &priv->rxq->rx_used);
8456
8457                i = (i + 1) % RX_QUEUE_SIZE;
8458
8459                /* If there are a lot of unsued frames, restock the Rx queue
8460                 * so the ucode won't assert */
8461                if (fill_rx) {
8462                        priv->rxq->read = i;
8463                        ipw_rx_queue_replenish(priv);
8464                }
8465        }
8466
8467        /* Backtrack one entry */
8468        priv->rxq->read = i;
8469        ipw_rx_queue_restock(priv);
8470}
8471
8472#define DEFAULT_RTS_THRESHOLD     2304U
8473#define MIN_RTS_THRESHOLD         1U
8474#define MAX_RTS_THRESHOLD         2304U
8475#define DEFAULT_BEACON_INTERVAL   100U
8476#define DEFAULT_SHORT_RETRY_LIMIT 7U
8477#define DEFAULT_LONG_RETRY_LIMIT  4U
8478
8479/**
8480 * ipw_sw_reset
8481 * @option: options to control different reset behaviour
8482 *          0 = reset everything except the 'disable' module_param
8483 *          1 = reset everything and print out driver info (for probe only)
8484 *          2 = reset everything
8485 */
8486static int ipw_sw_reset(struct ipw_priv *priv, int option)
8487{
8488        int band, modulation;
8489        int old_mode = priv->ieee->iw_mode;
8490
8491        /* Initialize module parameter values here */
8492        priv->config = 0;
8493
8494        /* We default to disabling the LED code as right now it causes
8495         * too many systems to lock up... */
8496        if (!led_support)
8497                priv->config |= CFG_NO_LED;
8498
8499        if (associate)
8500                priv->config |= CFG_ASSOCIATE;
8501        else
8502                IPW_DEBUG_INFO("Auto associate disabled.\n");
8503
8504        if (auto_create)
8505                priv->config |= CFG_ADHOC_CREATE;
8506        else
8507                IPW_DEBUG_INFO("Auto adhoc creation disabled.\n");
8508
8509        priv->config &= ~CFG_STATIC_ESSID;
8510        priv->essid_len = 0;
8511        memset(priv->essid, 0, IW_ESSID_MAX_SIZE);
8512
8513        if (disable && option) {
8514                priv->status |= STATUS_RF_KILL_SW;
8515                IPW_DEBUG_INFO("Radio disabled.\n");
8516        }
8517
8518        if (default_channel != 0) {
8519                priv->config |= CFG_STATIC_CHANNEL;
8520                priv->channel = default_channel;
8521                IPW_DEBUG_INFO("Bind to static channel %d\n", default_channel);
8522                /* TODO: Validate that provided channel is in range */
8523        }
8524#ifdef CONFIG_IPW2200_QOS
8525        ipw_qos_init(priv, qos_enable, qos_burst_enable,
8526                     burst_duration_CCK, burst_duration_OFDM);
8527#endif                          /* CONFIG_IPW2200_QOS */
8528
8529        switch (network_mode) {
8530        case 1:
8531                priv->ieee->iw_mode = IW_MODE_ADHOC;
8532                priv->net_dev->type = ARPHRD_ETHER;
8533
8534                break;
8535#ifdef CONFIG_IPW2200_MONITOR
8536        case 2:
8537                priv->ieee->iw_mode = IW_MODE_MONITOR;
8538#ifdef CONFIG_IPW2200_RADIOTAP
8539                priv->net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
8540#else
8541                priv->net_dev->type = ARPHRD_IEEE80211;
8542#endif
8543                break;
8544#endif
8545        default:
8546        case 0:
8547                priv->net_dev->type = ARPHRD_ETHER;
8548                priv->ieee->iw_mode = IW_MODE_INFRA;
8549                break;
8550        }
8551
8552        if (hwcrypto) {
8553                priv->ieee->host_encrypt = 0;
8554                priv->ieee->host_encrypt_msdu = 0;
8555                priv->ieee->host_decrypt = 0;
8556                priv->ieee->host_mc_decrypt = 0;
8557        }
8558        IPW_DEBUG_INFO("Hardware crypto [%s]\n", hwcrypto ? "on" : "off");
8559
8560        /* IPW2200/2915 is abled to do hardware fragmentation. */
8561        priv->ieee->host_open_frag = 0;
8562
8563        if ((priv->pci_dev->device == 0x4223) ||
8564            (priv->pci_dev->device == 0x4224)) {
8565                if (option == 1)
8566                        printk(KERN_INFO DRV_NAME
8567                               ": Detected Intel PRO/Wireless 2915ABG Network "
8568                               "Connection\n");
8569                priv->ieee->abg_true = 1;
8570                band = LIBIPW_52GHZ_BAND | LIBIPW_24GHZ_BAND;
8571                modulation = LIBIPW_OFDM_MODULATION |
8572                    LIBIPW_CCK_MODULATION;
8573                priv->adapter = IPW_2915ABG;
8574                priv->ieee->mode = IEEE_A | IEEE_G | IEEE_B;
8575        } else {
8576                if (option == 1)
8577                        printk(KERN_INFO DRV_NAME
8578                               ": Detected Intel PRO/Wireless 2200BG Network "
8579                               "Connection\n");
8580
8581                priv->ieee->abg_true = 0;
8582                band = LIBIPW_24GHZ_BAND;
8583                modulation = LIBIPW_OFDM_MODULATION |
8584                    LIBIPW_CCK_MODULATION;
8585                priv->adapter = IPW_2200BG;
8586                priv->ieee->mode = IEEE_G | IEEE_B;
8587        }
8588
8589        priv->ieee->freq_band = band;
8590        priv->ieee->modulation = modulation;
8591
8592        priv->rates_mask = LIBIPW_DEFAULT_RATES_MASK;
8593
8594        priv->disassociate_threshold = IPW_MB_DISASSOCIATE_THRESHOLD_DEFAULT;
8595        priv->roaming_threshold = IPW_MB_ROAMING_THRESHOLD_DEFAULT;
8596
8597        priv->rts_threshold = DEFAULT_RTS_THRESHOLD;
8598        priv->short_retry_limit = DEFAULT_SHORT_RETRY_LIMIT;
8599        priv->long_retry_limit = DEFAULT_LONG_RETRY_LIMIT;
8600
8601        /* If power management is turned on, default to AC mode */
8602        priv->power_mode = IPW_POWER_AC;
8603        priv->tx_power = IPW_TX_POWER_DEFAULT;
8604
8605        return old_mode == priv->ieee->iw_mode;
8606}
8607
8608/*
8609 * This file defines the Wireless Extension handlers.  It does not
8610 * define any methods of hardware manipulation and relies on the
8611 * functions defined in ipw_main to provide the HW interaction.
8612 *
8613 * The exception to this is the use of the ipw_get_ordinal()
8614 * function used to poll the hardware vs. making unnecessary calls.
8615 *
8616 */
8617
8618static int ipw_set_channel(struct ipw_priv *priv, u8 channel)
8619{
8620        if (channel == 0) {
8621                IPW_DEBUG_INFO("Setting channel to ANY (0)\n");
8622                priv->config &= ~CFG_STATIC_CHANNEL;
8623                IPW_DEBUG_ASSOC("Attempting to associate with new "
8624                                "parameters.\n");
8625                ipw_associate(priv);
8626                return 0;
8627        }
8628
8629        priv->config |= CFG_STATIC_CHANNEL;
8630
8631        if (priv->channel == channel) {
8632                IPW_DEBUG_INFO("Request to set channel to current value (%d)\n",
8633                               channel);
8634                return 0;
8635        }
8636
8637        IPW_DEBUG_INFO("Setting channel to %i\n", (int)channel);
8638        priv->channel = channel;
8639
8640#ifdef CONFIG_IPW2200_MONITOR
8641        if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
8642                int i;
8643                if (priv->status & STATUS_SCANNING) {
8644                        IPW_DEBUG_SCAN("Scan abort triggered due to "
8645                                       "channel change.\n");
8646                        ipw_abort_scan(priv);
8647                }
8648
8649                for (i = 1000; i && (priv->status & STATUS_SCANNING); i--)
8650                        udelay(10);
8651
8652                if (priv->status & STATUS_SCANNING)
8653                        IPW_DEBUG_SCAN("Still scanning...\n");
8654                else
8655                        IPW_DEBUG_SCAN("Took %dms to abort current scan\n",
8656                                       1000 - i);
8657
8658                return 0;
8659        }
8660#endif                          /* CONFIG_IPW2200_MONITOR */
8661
8662        /* Network configuration changed -- force [re]association */
8663        IPW_DEBUG_ASSOC("[re]association triggered due to channel change.\n");
8664        if (!ipw_disassociate(priv))
8665                ipw_associate(priv);
8666
8667        return 0;
8668}
8669
8670static int ipw_wx_set_freq(struct net_device *dev,
8671                           struct iw_request_info *info,
8672                           union iwreq_data *wrqu, char *extra)
8673{
8674        struct ipw_priv *priv = libipw_priv(dev);
8675        const struct libipw_geo *geo = libipw_get_geo(priv->ieee);
8676        struct iw_freq *fwrq = &wrqu->freq;
8677        int ret = 0, i;
8678        u8 channel, flags;
8679        int band;
8680
8681        if (fwrq->m == 0) {
8682                IPW_DEBUG_WX("SET Freq/Channel -> any\n");
8683                mutex_lock(&priv->mutex);
8684                ret = ipw_set_channel(priv, 0);
8685                mutex_unlock(&priv->mutex);
8686                return ret;
8687        }
8688        /* if setting by freq convert to channel */
8689        if (fwrq->e == 1) {
8690                channel = libipw_freq_to_channel(priv->ieee, fwrq->m);
8691                if (channel == 0)
8692                        return -EINVAL;
8693        } else
8694                channel = fwrq->m;
8695
8696        if (!(band = libipw_is_valid_channel(priv->ieee, channel)))
8697                return -EINVAL;
8698
8699        if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
8700                i = libipw_channel_to_index(priv->ieee, channel);
8701                if (i == -1)
8702                        return -EINVAL;
8703
8704                flags = (band == LIBIPW_24GHZ_BAND) ?
8705                    geo->bg[i].flags : geo->a[i].flags;
8706                if (flags & LIBIPW_CH_PASSIVE_ONLY) {
8707                        IPW_DEBUG_WX("Invalid Ad-Hoc channel for 802.11a\n");
8708                        return -EINVAL;
8709                }
8710        }
8711
8712        IPW_DEBUG_WX("SET Freq/Channel -> %d\n", fwrq->m);
8713        mutex_lock(&priv->mutex);
8714        ret = ipw_set_channel(priv, channel);
8715        mutex_unlock(&priv->mutex);
8716        return ret;
8717}
8718
8719static int ipw_wx_get_freq(struct net_device *dev,
8720                           struct iw_request_info *info,
8721                           union iwreq_data *wrqu, char *extra)
8722{
8723        struct ipw_priv *priv = libipw_priv(dev);
8724
8725        wrqu->freq.e = 0;
8726
8727        /* If we are associated, trying to associate, or have a statically
8728         * configured CHANNEL then return that; otherwise return ANY */
8729        mutex_lock(&priv->mutex);
8730        if (priv->config & CFG_STATIC_CHANNEL ||
8731            priv->status & (STATUS_ASSOCIATING | STATUS_ASSOCIATED)) {
8732                int i;
8733
8734                i = libipw_channel_to_index(priv->ieee, priv->channel);
8735                BUG_ON(i == -1);
8736                wrqu->freq.e = 1;
8737
8738                switch (libipw_is_valid_channel(priv->ieee, priv->channel)) {
8739                case LIBIPW_52GHZ_BAND:
8740                        wrqu->freq.m = priv->ieee->geo.a[i].freq * 100000;
8741                        break;
8742
8743                case LIBIPW_24GHZ_BAND:
8744                        wrqu->freq.m = priv->ieee->geo.bg[i].freq * 100000;
8745                        break;
8746
8747                default:
8748                        BUG();
8749                }
8750        } else
8751                wrqu->freq.m = 0;
8752
8753        mutex_unlock(&priv->mutex);
8754        IPW_DEBUG_WX("GET Freq/Channel -> %d\n", priv->channel);
8755        return 0;
8756}
8757
8758static int ipw_wx_set_mode(struct net_device *dev,
8759                           struct iw_request_info *info,
8760                           union iwreq_data *wrqu, char *extra)
8761{
8762        struct ipw_priv *priv = libipw_priv(dev);
8763        int err = 0;
8764
8765        IPW_DEBUG_WX("Set MODE: %d\n", wrqu->mode);
8766
8767        switch (wrqu->mode) {
8768#ifdef CONFIG_IPW2200_MONITOR
8769        case IW_MODE_MONITOR:
8770#endif
8771        case IW_MODE_ADHOC:
8772        case IW_MODE_INFRA:
8773                break;
8774        case IW_MODE_AUTO:
8775                wrqu->mode = IW_MODE_INFRA;
8776                break;
8777        default:
8778                return -EINVAL;
8779        }
8780        if (wrqu->mode == priv->ieee->iw_mode)
8781                return 0;
8782
8783        mutex_lock(&priv->mutex);
8784
8785        ipw_sw_reset(priv, 0);
8786
8787#ifdef CONFIG_IPW2200_MONITOR
8788        if (priv->ieee->iw_mode == IW_MODE_MONITOR)
8789                priv->net_dev->type = ARPHRD_ETHER;
8790
8791        if (wrqu->mode == IW_MODE_MONITOR)
8792#ifdef CONFIG_IPW2200_RADIOTAP
8793                priv->net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
8794#else
8795                priv->net_dev->type = ARPHRD_IEEE80211;
8796#endif
8797#endif                          /* CONFIG_IPW2200_MONITOR */
8798
8799        /* Free the existing firmware and reset the fw_loaded
8800         * flag so ipw_load() will bring in the new firmware */
8801        free_firmware();
8802
8803        priv->ieee->iw_mode = wrqu->mode;
8804
8805        schedule_work(&priv->adapter_restart);
8806        mutex_unlock(&priv->mutex);
8807        return err;
8808}
8809
8810static int ipw_wx_get_mode(struct net_device *dev,
8811                           struct iw_request_info *info,
8812                           union iwreq_data *wrqu, char *extra)
8813{
8814        struct ipw_priv *priv = libipw_priv(dev);
8815        mutex_lock(&priv->mutex);
8816        wrqu->mode = priv->ieee->iw_mode;
8817        IPW_DEBUG_WX("Get MODE -> %d\n", wrqu->mode);
8818        mutex_unlock(&priv->mutex);
8819        return 0;
8820}
8821
8822/* Values are in microsecond */
8823static const s32 timeout_duration[] = {
8824        350000,
8825        250000,
8826        75000,
8827        37000,
8828        25000,
8829};
8830
8831static const s32 period_duration[] = {
8832        400000,
8833        700000,
8834        1000000,
8835        1000000,
8836        1000000
8837};
8838
8839static int ipw_wx_get_range(struct net_device *dev,
8840                            struct iw_request_info *info,
8841                            union iwreq_data *wrqu, char *extra)
8842{
8843        struct ipw_priv *priv = libipw_priv(dev);
8844        struct iw_range *range = (struct iw_range *)extra;
8845        const struct libipw_geo *geo = libipw_get_geo(priv->ieee);
8846        int i = 0, j;
8847
8848        wrqu->data.length = sizeof(*range);
8849        memset(range, 0, sizeof(*range));
8850
8851        /* 54Mbs == ~27 Mb/s real (802.11g) */
8852        range->throughput = 27 * 1000 * 1000;
8853
8854        range->max_qual.qual = 100;
8855        /* TODO: Find real max RSSI and stick here */
8856        range->max_qual.level = 0;
8857        range->max_qual.noise = 0;
8858        range->max_qual.updated = 7;    /* Updated all three */
8859
8860        range->avg_qual.qual = 70;
8861        /* TODO: Find real 'good' to 'bad' threshold value for RSSI */
8862        range->avg_qual.level = 0;      /* FIXME to real average level */
8863        range->avg_qual.noise = 0;
8864        range->avg_qual.updated = 7;    /* Updated all three */
8865        mutex_lock(&priv->mutex);
8866        range->num_bitrates = min(priv->rates.num_rates, (u8) IW_MAX_BITRATES);
8867
8868        for (i = 0; i < range->num_bitrates; i++)
8869                range->bitrate[i] = (priv->rates.supported_rates[i] & 0x7F) *
8870                    500000;
8871
8872        range->max_rts = DEFAULT_RTS_THRESHOLD;
8873        range->min_frag = MIN_FRAG_THRESHOLD;
8874        range->max_frag = MAX_FRAG_THRESHOLD;
8875
8876        range->encoding_size[0] = 5;
8877        range->encoding_size[1] = 13;
8878        range->num_encoding_sizes = 2;
8879        range->max_encoding_tokens = WEP_KEYS;
8880
8881        /* Set the Wireless Extension versions */
8882        range->we_version_compiled = WIRELESS_EXT;
8883        range->we_version_source = 18;
8884
8885        i = 0;
8886        if (priv->ieee->mode & (IEEE_B | IEEE_G)) {
8887                for (j = 0; j < geo->bg_channels && i < IW_MAX_FREQUENCIES; j++) {
8888                        if ((priv->ieee->iw_mode == IW_MODE_ADHOC) &&
8889                            (geo->bg[j].flags & LIBIPW_CH_PASSIVE_ONLY))
8890                                continue;
8891
8892                        range->freq[i].i = geo->bg[j].channel;
8893                        range->freq[i].m = geo->bg[j].freq * 100000;
8894                        range->freq[i].e = 1;
8895                        i++;
8896                }
8897        }
8898
8899        if (priv->ieee->mode & IEEE_A) {
8900                for (j = 0; j < geo->a_channels && i < IW_MAX_FREQUENCIES; j++) {
8901                        if ((priv->ieee->iw_mode == IW_MODE_ADHOC) &&
8902                            (geo->a[j].flags & LIBIPW_CH_PASSIVE_ONLY))
8903                                continue;
8904
8905                        range->freq[i].i = geo->a[j].channel;
8906                        range->freq[i].m = geo->a[j].freq * 100000;
8907                        range->freq[i].e = 1;
8908                        i++;
8909                }
8910        }
8911
8912        range->num_channels = i;
8913        range->num_frequency = i;
8914
8915        mutex_unlock(&priv->mutex);
8916
8917        /* Event capability (kernel + driver) */
8918        range->event_capa[0] = (IW_EVENT_CAPA_K_0 |
8919                                IW_EVENT_CAPA_MASK(SIOCGIWTHRSPY) |
8920                                IW_EVENT_CAPA_MASK(SIOCGIWAP) |
8921                                IW_EVENT_CAPA_MASK(SIOCGIWSCAN));
8922        range->event_capa[1] = IW_EVENT_CAPA_K_1;
8923
8924        range->enc_capa = IW_ENC_CAPA_WPA | IW_ENC_CAPA_WPA2 |
8925                IW_ENC_CAPA_CIPHER_TKIP | IW_ENC_CAPA_CIPHER_CCMP;
8926
8927        range->scan_capa = IW_SCAN_CAPA_ESSID | IW_SCAN_CAPA_TYPE;
8928
8929        IPW_DEBUG_WX("GET Range\n");
8930        return 0;
8931}
8932
8933static int ipw_wx_set_wap(struct net_device *dev,
8934                          struct iw_request_info *info,
8935                          union iwreq_data *wrqu, char *extra)
8936{
8937        struct ipw_priv *priv = libipw_priv(dev);
8938
8939        if (wrqu->ap_addr.sa_family != ARPHRD_ETHER)
8940                return -EINVAL;
8941        mutex_lock(&priv->mutex);
8942        if (is_broadcast_ether_addr(wrqu->ap_addr.sa_data) ||
8943            is_zero_ether_addr(wrqu->ap_addr.sa_data)) {
8944                /* we disable mandatory BSSID association */
8945                IPW_DEBUG_WX("Setting AP BSSID to ANY\n");
8946                priv->config &= ~CFG_STATIC_BSSID;
8947                IPW_DEBUG_ASSOC("Attempting to associate with new "
8948                                "parameters.\n");
8949                ipw_associate(priv);
8950                mutex_unlock(&priv->mutex);
8951                return 0;
8952        }
8953
8954        priv->config |= CFG_STATIC_BSSID;
8955        if (ether_addr_equal(priv->bssid, wrqu->ap_addr.sa_data)) {
8956                IPW_DEBUG_WX("BSSID set to current BSSID.\n");
8957                mutex_unlock(&priv->mutex);
8958                return 0;
8959        }
8960
8961        IPW_DEBUG_WX("Setting mandatory BSSID to %pM\n",
8962                     wrqu->ap_addr.sa_data);
8963
8964        memcpy(priv->bssid, wrqu->ap_addr.sa_data, ETH_ALEN);
8965
8966        /* Network configuration changed -- force [re]association */
8967        IPW_DEBUG_ASSOC("[re]association triggered due to BSSID change.\n");
8968        if (!ipw_disassociate(priv))
8969                ipw_associate(priv);
8970
8971        mutex_unlock(&priv->mutex);
8972        return 0;
8973}
8974
8975static int ipw_wx_get_wap(struct net_device *dev,
8976                          struct iw_request_info *info,
8977                          union iwreq_data *wrqu, char *extra)
8978{
8979        struct ipw_priv *priv = libipw_priv(dev);
8980
8981        /* If we are associated, trying to associate, or have a statically
8982         * configured BSSID then return that; otherwise return ANY */
8983        mutex_lock(&priv->mutex);
8984        if (priv->config & CFG_STATIC_BSSID ||
8985            priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) {
8986                wrqu->ap_addr.sa_family = ARPHRD_ETHER;
8987                memcpy(wrqu->ap_addr.sa_data, priv->bssid, ETH_ALEN);
8988        } else
8989                memset(wrqu->ap_addr.sa_data, 0, ETH_ALEN);
8990
8991        IPW_DEBUG_WX("Getting WAP BSSID: %pM\n",
8992                     wrqu->ap_addr.sa_data);
8993        mutex_unlock(&priv->mutex);
8994        return 0;
8995}
8996
8997static int ipw_wx_set_essid(struct net_device *dev,
8998                            struct iw_request_info *info,
8999                            union iwreq_data *wrqu, char *extra)
9000{
9001        struct ipw_priv *priv = libipw_priv(dev);
9002        int length;
9003
9004        mutex_lock(&priv->mutex);
9005
9006        if (!wrqu->essid.flags)
9007        {
9008                IPW_DEBUG_WX("Setting ESSID to ANY\n");
9009                ipw_disassociate(priv);
9010                priv->config &= ~CFG_STATIC_ESSID;
9011                ipw_associate(priv);
9012                mutex_unlock(&priv->mutex);
9013                return 0;
9014        }
9015
9016        length = min((int)wrqu->essid.length, IW_ESSID_MAX_SIZE);
9017
9018        priv->config |= CFG_STATIC_ESSID;
9019
9020        if (priv->essid_len == length && !memcmp(priv->essid, extra, length)
9021            && (priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING))) {
9022                IPW_DEBUG_WX("ESSID set to current ESSID.\n");
9023                mutex_unlock(&priv->mutex);
9024                return 0;
9025        }
9026
9027        IPW_DEBUG_WX("Setting ESSID: '%*pE' (%d)\n", length, extra, length);
9028
9029        priv->essid_len = length;
9030        memcpy(priv->essid, extra, priv->essid_len);
9031
9032        /* Network configuration changed -- force [re]association */
9033        IPW_DEBUG_ASSOC("[re]association triggered due to ESSID change.\n");
9034        if (!ipw_disassociate(priv))
9035                ipw_associate(priv);
9036
9037        mutex_unlock(&priv->mutex);
9038        return 0;
9039}
9040
9041static int ipw_wx_get_essid(struct net_device *dev,
9042                            struct iw_request_info *info,
9043                            union iwreq_data *wrqu, char *extra)
9044{
9045        struct ipw_priv *priv = libipw_priv(dev);
9046
9047        /* If we are associated, trying to associate, or have a statically
9048         * configured ESSID then return that; otherwise return ANY */
9049        mutex_lock(&priv->mutex);
9050        if (priv->config & CFG_STATIC_ESSID ||
9051            priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) {
9052                IPW_DEBUG_WX("Getting essid: '%*pE'\n",
9053                             priv->essid_len, priv->essid);
9054                memcpy(extra, priv->essid, priv->essid_len);
9055                wrqu->essid.length = priv->essid_len;
9056                wrqu->essid.flags = 1;  /* active */
9057        } else {
9058                IPW_DEBUG_WX("Getting essid: ANY\n");
9059                wrqu->essid.length = 0;
9060                wrqu->essid.flags = 0;  /* active */
9061        }
9062        mutex_unlock(&priv->mutex);
9063        return 0;
9064}
9065
9066static int ipw_wx_set_nick(struct net_device *dev,
9067                           struct iw_request_info *info,
9068                           union iwreq_data *wrqu, char *extra)
9069{
9070        struct ipw_priv *priv = libipw_priv(dev);
9071
9072        IPW_DEBUG_WX("Setting nick to '%s'\n", extra);
9073        if (wrqu->data.length > IW_ESSID_MAX_SIZE)
9074                return -E2BIG;
9075        mutex_lock(&priv->mutex);
9076        wrqu->data.length = min_t(size_t, wrqu->data.length, sizeof(priv->nick));
9077        memset(priv->nick, 0, sizeof(priv->nick));
9078        memcpy(priv->nick, extra, wrqu->data.length);
9079        IPW_DEBUG_TRACE("<<\n");
9080        mutex_unlock(&priv->mutex);
9081        return 0;
9082
9083}
9084
9085static int ipw_wx_get_nick(struct net_device *dev,
9086                           struct iw_request_info *info,
9087                           union iwreq_data *wrqu, char *extra)
9088{
9089        struct ipw_priv *priv = libipw_priv(dev);
9090        IPW_DEBUG_WX("Getting nick\n");
9091        mutex_lock(&priv->mutex);
9092        wrqu->data.length = strlen(priv->nick);
9093        memcpy(extra, priv->nick, wrqu->data.length);
9094        wrqu->data.flags = 1;   /* active */
9095        mutex_unlock(&priv->mutex);
9096        return 0;
9097}
9098
9099static int ipw_wx_set_sens(struct net_device *dev,
9100                            struct iw_request_info *info,
9101                            union iwreq_data *wrqu, char *extra)
9102{
9103        struct ipw_priv *priv = libipw_priv(dev);
9104        int err = 0;
9105
9106        IPW_DEBUG_WX("Setting roaming threshold to %d\n", wrqu->sens.value);
9107        IPW_DEBUG_WX("Setting disassociate threshold to %d\n", 3*wrqu->sens.value);
9108        mutex_lock(&priv->mutex);
9109
9110        if (wrqu->sens.fixed == 0)
9111        {
9112                priv->roaming_threshold = IPW_MB_ROAMING_THRESHOLD_DEFAULT;
9113                priv->disassociate_threshold = IPW_MB_DISASSOCIATE_THRESHOLD_DEFAULT;
9114                goto out;
9115        }
9116        if ((wrqu->sens.value > IPW_MB_ROAMING_THRESHOLD_MAX) ||
9117            (wrqu->sens.value < IPW_MB_ROAMING_THRESHOLD_MIN)) {
9118                err = -EINVAL;
9119                goto out;
9120        }
9121
9122        priv->roaming_threshold = wrqu->sens.value;
9123        priv->disassociate_threshold = 3*wrqu->sens.value;
9124      out:
9125        mutex_unlock(&priv->mutex);
9126        return err;
9127}
9128
9129static int ipw_wx_get_sens(struct net_device *dev,
9130                            struct iw_request_info *info,
9131                            union iwreq_data *wrqu, char *extra)
9132{
9133        struct ipw_priv *priv = libipw_priv(dev);
9134        mutex_lock(&priv->mutex);
9135        wrqu->sens.fixed = 1;
9136        wrqu->sens.value = priv->roaming_threshold;
9137        mutex_unlock(&priv->mutex);
9138
9139        IPW_DEBUG_WX("GET roaming threshold -> %s %d\n",
9140                     wrqu->power.disabled ? "OFF" : "ON", wrqu->power.value);
9141
9142        return 0;
9143}
9144
9145static int ipw_wx_set_rate(struct net_device *dev,
9146                           struct iw_request_info *info,
9147                           union iwreq_data *wrqu, char *extra)
9148{
9149        /* TODO: We should use semaphores or locks for access to priv */
9150        struct ipw_priv *priv = libipw_priv(dev);
9151        u32 target_rate = wrqu->bitrate.value;
9152        u32 fixed, mask;
9153
9154        /* value = -1, fixed = 0 means auto only, so we should use all rates offered by AP */
9155        /* value = X, fixed = 1 means only rate X */
9156        /* value = X, fixed = 0 means all rates lower equal X */
9157
9158        if (target_rate == -1) {
9159                fixed = 0;
9160                mask = LIBIPW_DEFAULT_RATES_MASK;
9161                /* Now we should reassociate */
9162                goto apply;
9163        }
9164
9165        mask = 0;
9166        fixed = wrqu->bitrate.fixed;
9167
9168        if (target_rate == 1000000 || !fixed)
9169                mask |= LIBIPW_CCK_RATE_1MB_MASK;
9170        if (target_rate == 1000000)
9171                goto apply;
9172
9173        if (target_rate == 2000000 || !fixed)
9174                mask |= LIBIPW_CCK_RATE_2MB_MASK;
9175        if (target_rate == 2000000)
9176                goto apply;
9177
9178        if (target_rate == 5500000 || !fixed)
9179                mask |= LIBIPW_CCK_RATE_5MB_MASK;
9180        if (target_rate == 5500000)
9181                goto apply;
9182
9183        if (target_rate == 6000000 || !fixed)
9184                mask |= LIBIPW_OFDM_RATE_6MB_MASK;
9185        if (target_rate == 6000000)
9186                goto apply;
9187
9188        if (target_rate == 9000000 || !fixed)
9189                mask |= LIBIPW_OFDM_RATE_9MB_MASK;
9190        if (target_rate == 9000000)
9191                goto apply;
9192
9193        if (target_rate == 11000000 || !fixed)
9194                mask |= LIBIPW_CCK_RATE_11MB_MASK;
9195        if (target_rate == 11000000)
9196                goto apply;
9197
9198        if (target_rate == 12000000 || !fixed)
9199                mask |= LIBIPW_OFDM_RATE_12MB_MASK;
9200        if (target_rate == 12000000)
9201                goto apply;
9202
9203        if (target_rate == 18000000 || !fixed)
9204                mask |= LIBIPW_OFDM_RATE_18MB_MASK;
9205        if (target_rate == 18000000)
9206                goto apply;
9207
9208        if (target_rate == 24000000 || !fixed)
9209                mask |= LIBIPW_OFDM_RATE_24MB_MASK;
9210        if (target_rate == 24000000)
9211                goto apply;
9212
9213        if (target_rate == 36000000 || !fixed)
9214                mask |= LIBIPW_OFDM_RATE_36MB_MASK;
9215        if (target_rate == 36000000)
9216                goto apply;
9217
9218        if (target_rate == 48000000 || !fixed)
9219                mask |= LIBIPW_OFDM_RATE_48MB_MASK;
9220        if (target_rate == 48000000)
9221                goto apply;
9222
9223        if (target_rate == 54000000 || !fixed)
9224                mask |= LIBIPW_OFDM_RATE_54MB_MASK;
9225        if (target_rate == 54000000)
9226                goto apply;
9227
9228        IPW_DEBUG_WX("invalid rate specified, returning error\n");
9229        return -EINVAL;
9230
9231      apply:
9232        IPW_DEBUG_WX("Setting rate mask to 0x%08X [%s]\n",
9233                     mask, fixed ? "fixed" : "sub-rates");
9234        mutex_lock(&priv->mutex);
9235        if (mask == LIBIPW_DEFAULT_RATES_MASK) {
9236                priv->config &= ~CFG_FIXED_RATE;
9237                ipw_set_fixed_rate(priv, priv->ieee->mode);
9238        } else
9239                priv->config |= CFG_FIXED_RATE;
9240
9241        if (priv->rates_mask == mask) {
9242                IPW_DEBUG_WX("Mask set to current mask.\n");
9243                mutex_unlock(&priv->mutex);
9244                return 0;
9245        }
9246
9247        priv->rates_mask = mask;
9248
9249        /* Network configuration changed -- force [re]association */
9250        IPW_DEBUG_ASSOC("[re]association triggered due to rates change.\n");
9251        if (!ipw_disassociate(priv))
9252                ipw_associate(priv);
9253
9254        mutex_unlock(&priv->mutex);
9255        return 0;
9256}
9257
9258static int ipw_wx_get_rate(struct net_device *dev,
9259                           struct iw_request_info *info,
9260                           union iwreq_data *wrqu, char *extra)
9261{
9262        struct ipw_priv *priv = libipw_priv(dev);
9263        mutex_lock(&priv->mutex);
9264        wrqu->bitrate.value = priv->last_rate;
9265        wrqu->bitrate.fixed = (priv->config & CFG_FIXED_RATE) ? 1 : 0;
9266        mutex_unlock(&priv->mutex);
9267        IPW_DEBUG_WX("GET Rate -> %d\n", wrqu->bitrate.value);
9268        return 0;
9269}
9270
9271static int ipw_wx_set_rts(struct net_device *dev,
9272                          struct iw_request_info *info,
9273                          union iwreq_data *wrqu, char *extra)
9274{
9275        struct ipw_priv *priv = libipw_priv(dev);
9276        mutex_lock(&priv->mutex);
9277        if (wrqu->rts.disabled || !wrqu->rts.fixed)
9278                priv->rts_threshold = DEFAULT_RTS_THRESHOLD;
9279        else {
9280                if (wrqu->rts.value < MIN_RTS_THRESHOLD ||
9281                    wrqu->rts.value > MAX_RTS_THRESHOLD) {
9282                        mutex_unlock(&priv->mutex);
9283                        return -EINVAL;
9284                }
9285                priv->rts_threshold = wrqu->rts.value;
9286        }
9287
9288        ipw_send_rts_threshold(priv, priv->rts_threshold);
9289        mutex_unlock(&priv->mutex);
9290        IPW_DEBUG_WX("SET RTS Threshold -> %d\n", priv->rts_threshold);
9291        return 0;
9292}
9293
9294static int ipw_wx_get_rts(struct net_device *dev,
9295                          struct iw_request_info *info,
9296                          union iwreq_data *wrqu, char *extra)
9297{
9298        struct ipw_priv *priv = libipw_priv(dev);
9299        mutex_lock(&priv->mutex);
9300        wrqu->rts.value = priv->rts_threshold;
9301        wrqu->rts.fixed = 0;    /* no auto select */
9302        wrqu->rts.disabled = (wrqu->rts.value == DEFAULT_RTS_THRESHOLD);
9303        mutex_unlock(&priv->mutex);
9304        IPW_DEBUG_WX("GET RTS Threshold -> %d\n", wrqu->rts.value);
9305        return 0;
9306}
9307
9308static int ipw_wx_set_txpow(struct net_device *dev,
9309                            struct iw_request_info *info,
9310                            union iwreq_data *wrqu, char *extra)
9311{
9312        struct ipw_priv *priv = libipw_priv(dev);
9313        int err = 0;
9314
9315        mutex_lock(&priv->mutex);
9316        if (ipw_radio_kill_sw(priv, wrqu->power.disabled)) {
9317                err = -EINPROGRESS;
9318                goto out;
9319        }
9320
9321        if (!wrqu->power.fixed)
9322                wrqu->power.value = IPW_TX_POWER_DEFAULT;
9323
9324        if (wrqu->power.flags != IW_TXPOW_DBM) {
9325                err = -EINVAL;
9326                goto out;
9327        }
9328
9329        if ((wrqu->power.value > IPW_TX_POWER_MAX) ||
9330            (wrqu->power.value < IPW_TX_POWER_MIN)) {
9331                err = -EINVAL;
9332                goto out;
9333        }
9334
9335        priv->tx_power = wrqu->power.value;
9336        err = ipw_set_tx_power(priv);
9337      out:
9338        mutex_unlock(&priv->mutex);
9339        return err;
9340}
9341
9342static int ipw_wx_get_txpow(struct net_device *dev,
9343                            struct iw_request_info *info,
9344                            union iwreq_data *wrqu, char *extra)
9345{
9346        struct ipw_priv *priv = libipw_priv(dev);
9347        mutex_lock(&priv->mutex);
9348        wrqu->power.value = priv->tx_power;
9349        wrqu->power.fixed = 1;
9350        wrqu->power.flags = IW_TXPOW_DBM;
9351        wrqu->power.disabled = (priv->status & STATUS_RF_KILL_MASK) ? 1 : 0;
9352        mutex_unlock(&priv->mutex);
9353
9354        IPW_DEBUG_WX("GET TX Power -> %s %d\n",
9355                     wrqu->power.disabled ? "OFF" : "ON", wrqu->power.value);
9356
9357        return 0;
9358}
9359
9360static int ipw_wx_set_frag(struct net_device *dev,
9361                           struct iw_request_info *info,
9362                           union iwreq_data *wrqu, char *extra)
9363{
9364        struct ipw_priv *priv = libipw_priv(dev);
9365        mutex_lock(&priv->mutex);
9366        if (wrqu->frag.disabled || !wrqu->frag.fixed)
9367                priv->ieee->fts = DEFAULT_FTS;
9368        else {
9369                if (wrqu->frag.value < MIN_FRAG_THRESHOLD ||
9370                    wrqu->frag.value > MAX_FRAG_THRESHOLD) {
9371                        mutex_unlock(&priv->mutex);
9372                        return -EINVAL;
9373                }
9374
9375                priv->ieee->fts = wrqu->frag.value & ~0x1;
9376        }
9377
9378        ipw_send_frag_threshold(priv, wrqu->frag.value);
9379        mutex_unlock(&priv->mutex);
9380        IPW_DEBUG_WX("SET Frag Threshold -> %d\n", wrqu->frag.value);
9381        return 0;
9382}
9383
9384static int ipw_wx_get_frag(struct net_device *dev,
9385                           struct iw_request_info *info,
9386                           union iwreq_data *wrqu, char *extra)
9387{
9388        struct ipw_priv *priv = libipw_priv(dev);
9389        mutex_lock(&priv->mutex);
9390        wrqu->frag.value = priv->ieee->fts;
9391        wrqu->frag.fixed = 0;   /* no auto select */
9392        wrqu->frag.disabled = (wrqu->frag.value == DEFAULT_FTS);
9393        mutex_unlock(&priv->mutex);
9394        IPW_DEBUG_WX("GET Frag Threshold -> %d\n", wrqu->frag.value);
9395
9396        return 0;
9397}
9398
9399static int ipw_wx_set_retry(struct net_device *dev,
9400                            struct iw_request_info *info,
9401                            union iwreq_data *wrqu, char *extra)
9402{
9403        struct ipw_priv *priv = libipw_priv(dev);
9404
9405        if (wrqu->retry.flags & IW_RETRY_LIFETIME || wrqu->retry.disabled)
9406                return -EINVAL;
9407
9408        if (!(wrqu->retry.flags & IW_RETRY_LIMIT))
9409                return 0;
9410
9411        if (wrqu->retry.value < 0 || wrqu->retry.value >= 255)
9412                return -EINVAL;
9413
9414        mutex_lock(&priv->mutex);
9415        if (wrqu->retry.flags & IW_RETRY_SHORT)
9416                priv->short_retry_limit = (u8) wrqu->retry.value;
9417        else if (wrqu->retry.flags & IW_RETRY_LONG)
9418                priv->long_retry_limit = (u8) wrqu->retry.value;
9419        else {
9420                priv->short_retry_limit = (u8) wrqu->retry.value;
9421                priv->long_retry_limit = (u8) wrqu->retry.value;
9422        }
9423
9424        ipw_send_retry_limit(priv, priv->short_retry_limit,
9425                             priv->long_retry_limit);
9426        mutex_unlock(&priv->mutex);
9427        IPW_DEBUG_WX("SET retry limit -> short:%d long:%d\n",
9428                     priv->short_retry_limit, priv->long_retry_limit);
9429        return 0;
9430}
9431
9432static int ipw_wx_get_retry(struct net_device *dev,
9433                            struct iw_request_info *info,
9434                            union iwreq_data *wrqu, char *extra)
9435{
9436        struct ipw_priv *priv = libipw_priv(dev);
9437
9438        mutex_lock(&priv->mutex);
9439        wrqu->retry.disabled = 0;
9440
9441        if ((wrqu->retry.flags & IW_RETRY_TYPE) == IW_RETRY_LIFETIME) {
9442                mutex_unlock(&priv->mutex);
9443                return -EINVAL;
9444        }
9445
9446        if (wrqu->retry.flags & IW_RETRY_LONG) {
9447                wrqu->retry.flags = IW_RETRY_LIMIT | IW_RETRY_LONG;
9448                wrqu->retry.value = priv->long_retry_limit;
9449        } else if (wrqu->retry.flags & IW_RETRY_SHORT) {
9450                wrqu->retry.flags = IW_RETRY_LIMIT | IW_RETRY_SHORT;
9451                wrqu->retry.value = priv->short_retry_limit;
9452        } else {
9453                wrqu->retry.flags = IW_RETRY_LIMIT;
9454                wrqu->retry.value = priv->short_retry_limit;
9455        }
9456        mutex_unlock(&priv->mutex);
9457
9458        IPW_DEBUG_WX("GET retry -> %d\n", wrqu->retry.value);
9459
9460        return 0;
9461}
9462
9463static int ipw_wx_set_scan(struct net_device *dev,
9464                           struct iw_request_info *info,
9465                           union iwreq_data *wrqu, char *extra)
9466{
9467        struct ipw_priv *priv = libipw_priv(dev);
9468        struct iw_scan_req *req = (struct iw_scan_req *)extra;
9469        struct delayed_work *work = NULL;
9470
9471        mutex_lock(&priv->mutex);
9472
9473        priv->user_requested_scan = 1;
9474
9475        if (wrqu->data.length == sizeof(struct iw_scan_req)) {
9476                if (wrqu->data.flags & IW_SCAN_THIS_ESSID) {
9477                        int len = min((int)req->essid_len,
9478                                      (int)sizeof(priv->direct_scan_ssid));
9479                        memcpy(priv->direct_scan_ssid, req->essid, len);
9480                        priv->direct_scan_ssid_len = len;
9481                        work = &priv->request_direct_scan;
9482                } else if (req->scan_type == IW_SCAN_TYPE_PASSIVE) {
9483                        work = &priv->request_passive_scan;
9484                }
9485        } else {
9486                /* Normal active broadcast scan */
9487                work = &priv->request_scan;
9488        }
9489
9490        mutex_unlock(&priv->mutex);
9491
9492        IPW_DEBUG_WX("Start scan\n");
9493
9494        schedule_delayed_work(work, 0);
9495
9496        return 0;
9497}
9498
9499static int ipw_wx_get_scan(struct net_device *dev,
9500                           struct iw_request_info *info,
9501                           union iwreq_data *wrqu, char *extra)
9502{
9503        struct ipw_priv *priv = libipw_priv(dev);
9504        return libipw_wx_get_scan(priv->ieee, info, wrqu, extra);
9505}
9506
9507static int ipw_wx_set_encode(struct net_device *dev,
9508                             struct iw_request_info *info,
9509                             union iwreq_data *wrqu, char *key)
9510{
9511        struct ipw_priv *priv = libipw_priv(dev);
9512        int ret;
9513        u32 cap = priv->capability;
9514
9515        mutex_lock(&priv->mutex);
9516        ret = libipw_wx_set_encode(priv->ieee, info, wrqu, key);
9517
9518        /* In IBSS mode, we need to notify the firmware to update
9519         * the beacon info after we changed the capability. */
9520        if (cap != priv->capability &&
9521            priv->ieee->iw_mode == IW_MODE_ADHOC &&
9522            priv->status & STATUS_ASSOCIATED)
9523                ipw_disassociate(priv);
9524
9525        mutex_unlock(&priv->mutex);
9526        return ret;
9527}
9528
9529static int ipw_wx_get_encode(struct net_device *dev,
9530                             struct iw_request_info *info,
9531                             union iwreq_data *wrqu, char *key)
9532{
9533        struct ipw_priv *priv = libipw_priv(dev);
9534        return libipw_wx_get_encode(priv->ieee, info, wrqu, key);
9535}
9536
9537static int ipw_wx_set_power(struct net_device *dev,
9538                            struct iw_request_info *info,
9539                            union iwreq_data *wrqu, char *extra)
9540{
9541        struct ipw_priv *priv = libipw_priv(dev);
9542        int err;
9543        mutex_lock(&priv->mutex);
9544        if (wrqu->power.disabled) {
9545                priv->power_mode = IPW_POWER_LEVEL(priv->power_mode);
9546                err = ipw_send_power_mode(priv, IPW_POWER_MODE_CAM);
9547                if (err) {
9548                        IPW_DEBUG_WX("failed setting power mode.\n");
9549                        mutex_unlock(&priv->mutex);
9550                        return err;
9551                }
9552                IPW_DEBUG_WX("SET Power Management Mode -> off\n");
9553                mutex_unlock(&priv->mutex);
9554                return 0;
9555        }
9556
9557        switch (wrqu->power.flags & IW_POWER_MODE) {
9558        case IW_POWER_ON:       /* If not specified */
9559        case IW_POWER_MODE:     /* If set all mask */
9560        case IW_POWER_ALL_R:    /* If explicitly state all */
9561                break;
9562        default:                /* Otherwise we don't support it */
9563                IPW_DEBUG_WX("SET PM Mode: %X not supported.\n",
9564                             wrqu->power.flags);
9565                mutex_unlock(&priv->mutex);
9566                return -EOPNOTSUPP;
9567        }
9568
9569        /* If the user hasn't specified a power management mode yet, default
9570         * to BATTERY */
9571        if (IPW_POWER_LEVEL(priv->power_mode) == IPW_POWER_AC)
9572                priv->power_mode = IPW_POWER_ENABLED | IPW_POWER_BATTERY;
9573        else
9574                priv->power_mode = IPW_POWER_ENABLED | priv->power_mode;
9575
9576        err = ipw_send_power_mode(priv, IPW_POWER_LEVEL(priv->power_mode));
9577        if (err) {
9578                IPW_DEBUG_WX("failed setting power mode.\n");
9579                mutex_unlock(&priv->mutex);
9580                return err;
9581        }
9582
9583        IPW_DEBUG_WX("SET Power Management Mode -> 0x%02X\n", priv->power_mode);
9584        mutex_unlock(&priv->mutex);
9585        return 0;
9586}
9587
9588static int ipw_wx_get_power(struct net_device *dev,
9589                            struct iw_request_info *info,
9590                            union iwreq_data *wrqu, char *extra)
9591{
9592        struct ipw_priv *priv = libipw_priv(dev);
9593        mutex_lock(&priv->mutex);
9594        if (!(priv->power_mode & IPW_POWER_ENABLED))
9595                wrqu->power.disabled = 1;
9596        else
9597                wrqu->power.disabled = 0;
9598
9599        mutex_unlock(&priv->mutex);
9600        IPW_DEBUG_WX("GET Power Management Mode -> %02X\n", priv->power_mode);
9601
9602        return 0;
9603}
9604
9605static int ipw_wx_set_powermode(struct net_device *dev,
9606                                struct iw_request_info *info,
9607                                union iwreq_data *wrqu, char *extra)
9608{
9609        struct ipw_priv *priv = libipw_priv(dev);
9610        int mode = *(int *)extra;
9611        int err;
9612
9613        mutex_lock(&priv->mutex);
9614        if ((mode < 1) || (mode > IPW_POWER_LIMIT))
9615                mode = IPW_POWER_AC;
9616
9617        if (IPW_POWER_LEVEL(priv->power_mode) != mode) {
9618                err = ipw_send_power_mode(priv, mode);
9619                if (err) {
9620                        IPW_DEBUG_WX("failed setting power mode.\n");
9621                        mutex_unlock(&priv->mutex);
9622                        return err;
9623                }
9624                priv->power_mode = IPW_POWER_ENABLED | mode;
9625        }
9626        mutex_unlock(&priv->mutex);
9627        return 0;
9628}
9629
9630#define MAX_WX_STRING 80
9631static int ipw_wx_get_powermode(struct net_device *dev,
9632                                struct iw_request_info *info,
9633                                union iwreq_data *wrqu, char *extra)
9634{
9635        struct ipw_priv *priv = libipw_priv(dev);
9636        int level = IPW_POWER_LEVEL(priv->power_mode);
9637        char *p = extra;
9638
9639        p += snprintf(p, MAX_WX_STRING, "Power save level: %d ", level);
9640
9641        switch (level) {
9642        case IPW_POWER_AC:
9643                p += snprintf(p, MAX_WX_STRING - (p - extra), "(AC)");
9644                break;
9645        case IPW_POWER_BATTERY:
9646                p += snprintf(p, MAX_WX_STRING - (p - extra), "(BATTERY)");
9647                break;
9648        default:
9649                p += snprintf(p, MAX_WX_STRING - (p - extra),
9650                              "(Timeout %dms, Period %dms)",
9651                              timeout_duration[level - 1] / 1000,
9652                              period_duration[level - 1] / 1000);
9653        }
9654
9655        if (!(priv->power_mode & IPW_POWER_ENABLED))
9656                p += snprintf(p, MAX_WX_STRING - (p - extra), " OFF");
9657
9658        wrqu->data.length = p - extra + 1;
9659
9660        return 0;
9661}
9662
9663static int ipw_wx_set_wireless_mode(struct net_device *dev,
9664                                    struct iw_request_info *info,
9665                                    union iwreq_data *wrqu, char *extra)
9666{
9667        struct ipw_priv *priv = libipw_priv(dev);
9668        int mode = *(int *)extra;
9669        u8 band = 0, modulation = 0;
9670
9671        if (mode == 0 || mode & ~IEEE_MODE_MASK) {
9672                IPW_WARNING("Attempt to set invalid wireless mode: %d\n", mode);
9673                return -EINVAL;
9674        }
9675        mutex_lock(&priv->mutex);
9676        if (priv->adapter == IPW_2915ABG) {
9677                priv->ieee->abg_true = 1;
9678                if (mode & IEEE_A) {
9679                        band |= LIBIPW_52GHZ_BAND;
9680                        modulation |= LIBIPW_OFDM_MODULATION;
9681                } else
9682                        priv->ieee->abg_true = 0;
9683        } else {
9684                if (mode & IEEE_A) {
9685                        IPW_WARNING("Attempt to set 2200BG into "
9686                                    "802.11a mode\n");
9687                        mutex_unlock(&priv->mutex);
9688                        return -EINVAL;
9689                }
9690
9691                priv->ieee->abg_true = 0;
9692        }
9693
9694        if (mode & IEEE_B) {
9695                band |= LIBIPW_24GHZ_BAND;
9696                modulation |= LIBIPW_CCK_MODULATION;
9697        } else
9698                priv->ieee->abg_true = 0;
9699
9700        if (mode & IEEE_G) {
9701                band |= LIBIPW_24GHZ_BAND;
9702                modulation |= LIBIPW_OFDM_MODULATION;
9703        } else
9704                priv->ieee->abg_true = 0;
9705
9706        priv->ieee->mode = mode;
9707        priv->ieee->freq_band = band;
9708        priv->ieee->modulation = modulation;
9709        init_supported_rates(priv, &priv->rates);
9710
9711        /* Network configuration changed -- force [re]association */
9712        IPW_DEBUG_ASSOC("[re]association triggered due to mode change.\n");
9713        if (!ipw_disassociate(priv)) {
9714                ipw_send_supported_rates(priv, &priv->rates);
9715                ipw_associate(priv);
9716        }
9717
9718        /* Update the band LEDs */
9719        ipw_led_band_on(priv);
9720
9721        IPW_DEBUG_WX("PRIV SET MODE: %c%c%c\n",
9722                     mode & IEEE_A ? 'a' : '.',
9723                     mode & IEEE_B ? 'b' : '.', mode & IEEE_G ? 'g' : '.');
9724        mutex_unlock(&priv->mutex);
9725        return 0;
9726}
9727
9728static int ipw_wx_get_wireless_mode(struct net_device *dev,
9729                                    struct iw_request_info *info,
9730                                    union iwreq_data *wrqu, char *extra)
9731{
9732        struct ipw_priv *priv = libipw_priv(dev);
9733        mutex_lock(&priv->mutex);
9734        switch (priv->ieee->mode) {
9735        case IEEE_A:
9736                strncpy(extra, "802.11a (1)", MAX_WX_STRING);
9737                break;
9738        case IEEE_B:
9739                strncpy(extra, "802.11b (2)", MAX_WX_STRING);
9740                break;
9741        case IEEE_A | IEEE_B:
9742                strncpy(extra, "802.11ab (3)", MAX_WX_STRING);
9743                break;
9744        case IEEE_G:
9745                strncpy(extra, "802.11g (4)", MAX_WX_STRING);
9746                break;
9747        case IEEE_A | IEEE_G:
9748                strncpy(extra, "802.11ag (5)", MAX_WX_STRING);
9749                break;
9750        case IEEE_B | IEEE_G:
9751                strncpy(extra, "802.11bg (6)", MAX_WX_STRING);
9752                break;
9753        case IEEE_A | IEEE_B | IEEE_G:
9754                strncpy(extra, "802.11abg (7)", MAX_WX_STRING);
9755                break;
9756        default:
9757                strncpy(extra, "unknown", MAX_WX_STRING);
9758                break;
9759        }
9760        extra[MAX_WX_STRING - 1] = '\0';
9761
9762        IPW_DEBUG_WX("PRIV GET MODE: %s\n", extra);
9763
9764        wrqu->data.length = strlen(extra) + 1;
9765        mutex_unlock(&priv->mutex);
9766
9767        return 0;
9768}
9769
9770static int ipw_wx_set_preamble(struct net_device *dev,
9771                               struct iw_request_info *info,
9772                               union iwreq_data *wrqu, char *extra)
9773{
9774        struct ipw_priv *priv = libipw_priv(dev);
9775        int mode = *(int *)extra;
9776        mutex_lock(&priv->mutex);
9777        /* Switching from SHORT -> LONG requires a disassociation */
9778        if (mode == 1) {
9779                if (!(priv->config & CFG_PREAMBLE_LONG)) {
9780                        priv->config |= CFG_PREAMBLE_LONG;
9781
9782                        /* Network configuration changed -- force [re]association */
9783                        IPW_DEBUG_ASSOC
9784                            ("[re]association triggered due to preamble change.\n");
9785                        if (!ipw_disassociate(priv))
9786                                ipw_associate(priv);
9787                }
9788                goto done;
9789        }
9790
9791        if (mode == 0) {
9792                priv->config &= ~CFG_PREAMBLE_LONG;
9793                goto done;
9794        }
9795        mutex_unlock(&priv->mutex);
9796        return -EINVAL;
9797
9798      done:
9799        mutex_unlock(&priv->mutex);
9800        return 0;
9801}
9802
9803static int ipw_wx_get_preamble(struct net_device *dev,
9804                               struct iw_request_info *info,
9805                               union iwreq_data *wrqu, char *extra)
9806{
9807        struct ipw_priv *priv = libipw_priv(dev);
9808        mutex_lock(&priv->mutex);
9809        if (priv->config & CFG_PREAMBLE_LONG)
9810                snprintf(wrqu->name, IFNAMSIZ, "long (1)");
9811        else
9812                snprintf(wrqu->name, IFNAMSIZ, "auto (0)");
9813        mutex_unlock(&priv->mutex);
9814        return 0;
9815}
9816
9817#ifdef CONFIG_IPW2200_MONITOR
9818static int ipw_wx_set_monitor(struct net_device *dev,
9819                              struct iw_request_info *info,
9820                              union iwreq_data *wrqu, char *extra)
9821{
9822        struct ipw_priv *priv = libipw_priv(dev);
9823        int *parms = (int *)extra;
9824        int enable = (parms[0] > 0);
9825        mutex_lock(&priv->mutex);
9826        IPW_DEBUG_WX("SET MONITOR: %d %d\n", enable, parms[1]);
9827        if (enable) {
9828                if (priv->ieee->iw_mode != IW_MODE_MONITOR) {
9829#ifdef CONFIG_IPW2200_RADIOTAP
9830                        priv->net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
9831#else
9832                        priv->net_dev->type = ARPHRD_IEEE80211;
9833#endif
9834                        schedule_work(&priv->adapter_restart);
9835                }
9836
9837                ipw_set_channel(priv, parms[1]);
9838        } else {
9839                if (priv->ieee->iw_mode != IW_MODE_MONITOR) {
9840                        mutex_unlock(&priv->mutex);
9841                        return 0;
9842                }
9843                priv->net_dev->type = ARPHRD_ETHER;
9844                schedule_work(&priv->adapter_restart);
9845        }
9846        mutex_unlock(&priv->mutex);
9847        return 0;
9848}
9849
9850#endif                          /* CONFIG_IPW2200_MONITOR */
9851
9852static int ipw_wx_reset(struct net_device *dev,
9853                        struct iw_request_info *info,
9854                        union iwreq_data *wrqu, char *extra)
9855{
9856        struct ipw_priv *priv = libipw_priv(dev);
9857        IPW_DEBUG_WX("RESET\n");
9858        schedule_work(&priv->adapter_restart);
9859        return 0;
9860}
9861
9862static int ipw_wx_sw_reset(struct net_device *dev,
9863                           struct iw_request_info *info,
9864                           union iwreq_data *wrqu, char *extra)
9865{
9866        struct ipw_priv *priv = libipw_priv(dev);
9867        union iwreq_data wrqu_sec = {
9868                .encoding = {
9869                             .flags = IW_ENCODE_DISABLED,
9870                             },
9871        };
9872        int ret;
9873
9874        IPW_DEBUG_WX("SW_RESET\n");
9875
9876        mutex_lock(&priv->mutex);
9877
9878        ret = ipw_sw_reset(priv, 2);
9879        if (!ret) {
9880                free_firmware();
9881                ipw_adapter_restart(priv);
9882        }
9883
9884        /* The SW reset bit might have been toggled on by the 'disable'
9885         * module parameter, so take appropriate action */
9886        ipw_radio_kill_sw(priv, priv->status & STATUS_RF_KILL_SW);
9887
9888        mutex_unlock(&priv->mutex);
9889        libipw_wx_set_encode(priv->ieee, info, &wrqu_sec, NULL);
9890        mutex_lock(&priv->mutex);
9891
9892        if (!(priv->status & STATUS_RF_KILL_MASK)) {
9893                /* Configuration likely changed -- force [re]association */
9894                IPW_DEBUG_ASSOC("[re]association triggered due to sw "
9895                                "reset.\n");
9896                if (!ipw_disassociate(priv))
9897                        ipw_associate(priv);
9898        }
9899
9900        mutex_unlock(&priv->mutex);
9901
9902        return 0;
9903}
9904
9905/* Rebase the WE IOCTLs to zero for the handler array */
9906static iw_handler ipw_wx_handlers[] = {
9907        IW_HANDLER(SIOCGIWNAME, (iw_handler)cfg80211_wext_giwname),
9908        IW_HANDLER(SIOCSIWFREQ, ipw_wx_set_freq),
9909        IW_HANDLER(SIOCGIWFREQ, ipw_wx_get_freq),
9910        IW_HANDLER(SIOCSIWMODE, ipw_wx_set_mode),
9911        IW_HANDLER(SIOCGIWMODE, ipw_wx_get_mode),
9912        IW_HANDLER(SIOCSIWSENS, ipw_wx_set_sens),
9913        IW_HANDLER(SIOCGIWSENS, ipw_wx_get_sens),
9914        IW_HANDLER(SIOCGIWRANGE, ipw_wx_get_range),
9915        IW_HANDLER(SIOCSIWAP, ipw_wx_set_wap),
9916        IW_HANDLER(SIOCGIWAP, ipw_wx_get_wap),
9917        IW_HANDLER(SIOCSIWSCAN, ipw_wx_set_scan),
9918        IW_HANDLER(SIOCGIWSCAN, ipw_wx_get_scan),
9919        IW_HANDLER(SIOCSIWESSID, ipw_wx_set_essid),
9920        IW_HANDLER(SIOCGIWESSID, ipw_wx_get_essid),
9921        IW_HANDLER(SIOCSIWNICKN, ipw_wx_set_nick),
9922        IW_HANDLER(SIOCGIWNICKN, ipw_wx_get_nick),
9923        IW_HANDLER(SIOCSIWRATE, ipw_wx_set_rate),
9924        IW_HANDLER(SIOCGIWRATE, ipw_wx_get_rate),
9925        IW_HANDLER(SIOCSIWRTS, ipw_wx_set_rts),
9926        IW_HANDLER(SIOCGIWRTS, ipw_wx_get_rts),
9927        IW_HANDLER(SIOCSIWFRAG, ipw_wx_set_frag),
9928        IW_HANDLER(SIOCGIWFRAG, ipw_wx_get_frag),
9929        IW_HANDLER(SIOCSIWTXPOW, ipw_wx_set_txpow),
9930        IW_HANDLER(SIOCGIWTXPOW, ipw_wx_get_txpow),
9931        IW_HANDLER(SIOCSIWRETRY, ipw_wx_set_retry),
9932        IW_HANDLER(SIOCGIWRETRY, ipw_wx_get_retry),
9933        IW_HANDLER(SIOCSIWENCODE, ipw_wx_set_encode),
9934        IW_HANDLER(SIOCGIWENCODE, ipw_wx_get_encode),
9935        IW_HANDLER(SIOCSIWPOWER, ipw_wx_set_power),
9936        IW_HANDLER(SIOCGIWPOWER, ipw_wx_get_power),
9937        IW_HANDLER(SIOCSIWSPY, iw_handler_set_spy),
9938        IW_HANDLER(SIOCGIWSPY, iw_handler_get_spy),
9939        IW_HANDLER(SIOCSIWTHRSPY, iw_handler_set_thrspy),
9940        IW_HANDLER(SIOCGIWTHRSPY, iw_handler_get_thrspy),
9941        IW_HANDLER(SIOCSIWGENIE, ipw_wx_set_genie),
9942        IW_HANDLER(SIOCGIWGENIE, ipw_wx_get_genie),
9943        IW_HANDLER(SIOCSIWMLME, ipw_wx_set_mlme),
9944        IW_HANDLER(SIOCSIWAUTH, ipw_wx_set_auth),
9945        IW_HANDLER(SIOCGIWAUTH, ipw_wx_get_auth),
9946        IW_HANDLER(SIOCSIWENCODEEXT, ipw_wx_set_encodeext),
9947        IW_HANDLER(SIOCGIWENCODEEXT, ipw_wx_get_encodeext),
9948};
9949
9950enum {
9951        IPW_PRIV_SET_POWER = SIOCIWFIRSTPRIV,
9952        IPW_PRIV_GET_POWER,
9953        IPW_PRIV_SET_MODE,
9954        IPW_PRIV_GET_MODE,
9955        IPW_PRIV_SET_PREAMBLE,
9956        IPW_PRIV_GET_PREAMBLE,
9957        IPW_PRIV_RESET,
9958        IPW_PRIV_SW_RESET,
9959#ifdef CONFIG_IPW2200_MONITOR
9960        IPW_PRIV_SET_MONITOR,
9961#endif
9962};
9963
9964static struct iw_priv_args ipw_priv_args[] = {
9965        {
9966         .cmd = IPW_PRIV_SET_POWER,
9967         .set_args = IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1,
9968         .name = "set_power"},
9969        {
9970         .cmd = IPW_PRIV_GET_POWER,
9971         .get_args = IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | MAX_WX_STRING,
9972         .name = "get_power"},
9973        {
9974         .cmd = IPW_PRIV_SET_MODE,
9975         .set_args = IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1,
9976         .name = "set_mode"},
9977        {
9978         .cmd = IPW_PRIV_GET_MODE,
9979         .get_args = IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | MAX_WX_STRING,
9980         .name = "get_mode"},
9981        {
9982         .cmd = IPW_PRIV_SET_PREAMBLE,
9983         .set_args = IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1,
9984         .name = "set_preamble"},
9985        {
9986         .cmd = IPW_PRIV_GET_PREAMBLE,
9987         .get_args = IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | IFNAMSIZ,
9988         .name = "get_preamble"},
9989        {
9990         IPW_PRIV_RESET,
9991         IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 0, 0, "reset"},
9992        {
9993         IPW_PRIV_SW_RESET,
9994         IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 0, 0, "sw_reset"},
9995#ifdef CONFIG_IPW2200_MONITOR
9996        {
9997         IPW_PRIV_SET_MONITOR,
9998         IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 2, 0, "monitor"},
9999#endif                          /* CONFIG_IPW2200_MONITOR */
10000};
10001
10002static iw_handler ipw_priv_handler[] = {
10003        ipw_wx_set_powermode,
10004        ipw_wx_get_powermode,
10005        ipw_wx_set_wireless_mode,
10006        ipw_wx_get_wireless_mode,
10007        ipw_wx_set_preamble,
10008        ipw_wx_get_preamble,
10009        ipw_wx_reset,
10010        ipw_wx_sw_reset,
10011#ifdef CONFIG_IPW2200_MONITOR
10012        ipw_wx_set_monitor,
10013#endif
10014};
10015
10016static struct iw_handler_def ipw_wx_handler_def = {
10017        .standard = ipw_wx_handlers,
10018        .num_standard = ARRAY_SIZE(ipw_wx_handlers),
10019        .num_private = ARRAY_SIZE(ipw_priv_handler),
10020        .num_private_args = ARRAY_SIZE(ipw_priv_args),
10021        .private = ipw_priv_handler,
10022        .private_args = ipw_priv_args,
10023        .get_wireless_stats = ipw_get_wireless_stats,
10024};
10025
10026/*
10027 * Get wireless statistics.
10028 * Called by /proc/net/wireless
10029 * Also called by SIOCGIWSTATS
10030 */
10031static struct iw_statistics *ipw_get_wireless_stats(struct net_device *dev)
10032{
10033        struct ipw_priv *priv = libipw_priv(dev);
10034        struct iw_statistics *wstats;
10035
10036        wstats = &priv->wstats;
10037
10038        /* if hw is disabled, then ipw_get_ordinal() can't be called.
10039         * netdev->get_wireless_stats seems to be called before fw is
10040         * initialized.  STATUS_ASSOCIATED will only be set if the hw is up
10041         * and associated; if not associcated, the values are all meaningless
10042         * anyway, so set them all to NULL and INVALID */
10043        if (!(priv->status & STATUS_ASSOCIATED)) {
10044                wstats->miss.beacon = 0;
10045                wstats->discard.retries = 0;
10046                wstats->qual.qual = 0;
10047                wstats->qual.level = 0;
10048                wstats->qual.noise = 0;
10049                wstats->qual.updated = 7;
10050                wstats->qual.updated |= IW_QUAL_NOISE_INVALID |
10051                    IW_QUAL_QUAL_INVALID | IW_QUAL_LEVEL_INVALID;
10052                return wstats;
10053        }
10054
10055        wstats->qual.qual = priv->quality;
10056        wstats->qual.level = priv->exp_avg_rssi;
10057        wstats->qual.noise = priv->exp_avg_noise;
10058        wstats->qual.updated = IW_QUAL_QUAL_UPDATED | IW_QUAL_LEVEL_UPDATED |
10059            IW_QUAL_NOISE_UPDATED | IW_QUAL_DBM;
10060
10061        wstats->miss.beacon = average_value(&priv->average_missed_beacons);
10062        wstats->discard.retries = priv->last_tx_failures;
10063        wstats->discard.code = priv->ieee->ieee_stats.rx_discards_undecryptable;
10064
10065/*      if (ipw_get_ordinal(priv, IPW_ORD_STAT_TX_RETRY, &tx_retry, &len))
10066        goto fail_get_ordinal;
10067        wstats->discard.retries += tx_retry; */
10068
10069        return wstats;
10070}
10071
10072/* net device stuff */
10073
10074static  void init_sys_config(struct ipw_sys_config *sys_config)
10075{
10076        memset(sys_config, 0, sizeof(struct ipw_sys_config));
10077        sys_config->bt_coexistence = 0;
10078        sys_config->answer_broadcast_ssid_probe = 0;
10079        sys_config->accept_all_data_frames = 0;
10080        sys_config->accept_non_directed_frames = 1;
10081        sys_config->exclude_unicast_unencrypted = 0;
10082        sys_config->disable_unicast_decryption = 1;
10083        sys_config->exclude_multicast_unencrypted = 0;
10084        sys_config->disable_multicast_decryption = 1;
10085        if (antenna < CFG_SYS_ANTENNA_BOTH || antenna > CFG_SYS_ANTENNA_B)
10086                antenna = CFG_SYS_ANTENNA_BOTH;
10087        sys_config->antenna_diversity = antenna;
10088        sys_config->pass_crc_to_host = 0;       /* TODO: See if 1 gives us FCS */
10089        sys_config->dot11g_auto_detection = 0;
10090        sys_config->enable_cts_to_self = 0;
10091        sys_config->bt_coexist_collision_thr = 0;
10092        sys_config->pass_noise_stats_to_host = 1;       /* 1 -- fix for 256 */
10093        sys_config->silence_threshold = 0x1e;
10094}
10095
10096static int ipw_net_open(struct net_device *dev)
10097{
10098        IPW_DEBUG_INFO("dev->open\n");
10099        netif_start_queue(dev);
10100        return 0;
10101}
10102
10103static int ipw_net_stop(struct net_device *dev)
10104{
10105        IPW_DEBUG_INFO("dev->close\n");
10106        netif_stop_queue(dev);
10107        return 0;
10108}
10109
10110/*
10111todo:
10112
10113modify to send one tfd per fragment instead of using chunking.  otherwise
10114we need to heavily modify the libipw_skb_to_txb.
10115*/
10116
10117static int ipw_tx_skb(struct ipw_priv *priv, struct libipw_txb *txb,
10118                             int pri)
10119{
10120        struct libipw_hdr_3addrqos *hdr = (struct libipw_hdr_3addrqos *)
10121            txb->fragments[0]->data;
10122        int i = 0;
10123        struct tfd_frame *tfd;
10124#ifdef CONFIG_IPW2200_QOS
10125        int tx_id = ipw_get_tx_queue_number(priv, pri);
10126        struct clx2_tx_queue *txq = &priv->txq[tx_id];
10127#else
10128        struct clx2_tx_queue *txq = &priv->txq[0];
10129#endif
10130        struct clx2_queue *q = &txq->q;
10131        u8 id, hdr_len, unicast;
10132        int fc;
10133
10134        if (!(priv->status & STATUS_ASSOCIATED))
10135                goto drop;
10136
10137        hdr_len = libipw_get_hdrlen(le16_to_cpu(hdr->frame_ctl));
10138        switch (priv->ieee->iw_mode) {
10139        case IW_MODE_ADHOC:
10140                unicast = !is_multicast_ether_addr(hdr->addr1);
10141                id = ipw_find_station(priv, hdr->addr1);
10142                if (id == IPW_INVALID_STATION) {
10143                        id = ipw_add_station(priv, hdr->addr1);
10144                        if (id == IPW_INVALID_STATION) {
10145                                IPW_WARNING("Attempt to send data to "
10146                                            "invalid cell: %pM\n",
10147                                            hdr->addr1);
10148                                goto drop;
10149                        }
10150                }
10151                break;
10152
10153        case IW_MODE_INFRA:
10154        default:
10155                unicast = !is_multicast_ether_addr(hdr->addr3);
10156                id = 0;
10157                break;
10158        }
10159
10160        tfd = &txq->bd[q->first_empty];
10161        txq->txb[q->first_empty] = txb;
10162        memset(tfd, 0, sizeof(*tfd));
10163        tfd->u.data.station_number = id;
10164
10165        tfd->control_flags.message_type = TX_FRAME_TYPE;
10166        tfd->control_flags.control_bits = TFD_NEED_IRQ_MASK;
10167
10168        tfd->u.data.cmd_id = DINO_CMD_TX;
10169        tfd->u.data.len = cpu_to_le16(txb->payload_size);
10170
10171        if (priv->assoc_request.ieee_mode == IPW_B_MODE)
10172                tfd->u.data.tx_flags_ext |= DCT_FLAG_EXT_MODE_CCK;
10173        else
10174                tfd->u.data.tx_flags_ext |= DCT_FLAG_EXT_MODE_OFDM;
10175
10176        if (priv->assoc_request.preamble_length == DCT_FLAG_SHORT_PREAMBLE)
10177                tfd->u.data.tx_flags |= DCT_FLAG_SHORT_PREAMBLE;
10178
10179        fc = le16_to_cpu(hdr->frame_ctl);
10180        hdr->frame_ctl = cpu_to_le16(fc & ~IEEE80211_FCTL_MOREFRAGS);
10181
10182        memcpy(&tfd->u.data.tfd.tfd_24.mchdr, hdr, hdr_len);
10183
10184        if (likely(unicast))
10185                tfd->u.data.tx_flags |= DCT_FLAG_ACK_REQD;
10186
10187        if (txb->encrypted && !priv->ieee->host_encrypt) {
10188                switch (priv->ieee->sec.level) {
10189                case SEC_LEVEL_3:
10190                        tfd->u.data.tfd.tfd_24.mchdr.frame_ctl |=
10191                            cpu_to_le16(IEEE80211_FCTL_PROTECTED);
10192                        /* XXX: ACK flag must be set for CCMP even if it
10193                         * is a multicast/broadcast packet, because CCMP
10194                         * group communication encrypted by GTK is
10195                         * actually done by the AP. */
10196                        if (!unicast)
10197                                tfd->u.data.tx_flags |= DCT_FLAG_ACK_REQD;
10198
10199                        tfd->u.data.tx_flags &= ~DCT_FLAG_NO_WEP;
10200                        tfd->u.data.tx_flags_ext |= DCT_FLAG_EXT_SECURITY_CCM;
10201                        tfd->u.data.key_index = 0;
10202                        tfd->u.data.key_index |= DCT_WEP_INDEX_USE_IMMEDIATE;
10203                        break;
10204                case SEC_LEVEL_2:
10205                        tfd->u.data.tfd.tfd_24.mchdr.frame_ctl |=
10206                            cpu_to_le16(IEEE80211_FCTL_PROTECTED);
10207                        tfd->u.data.tx_flags &= ~DCT_FLAG_NO_WEP;
10208                        tfd->u.data.tx_flags_ext |= DCT_FLAG_EXT_SECURITY_TKIP;
10209                        tfd->u.data.key_index = DCT_WEP_INDEX_USE_IMMEDIATE;
10210                        break;
10211                case SEC_LEVEL_1:
10212                        tfd->u.data.tfd.tfd_24.mchdr.frame_ctl |=
10213                            cpu_to_le16(IEEE80211_FCTL_PROTECTED);
10214                        tfd->u.data.key_index = priv->ieee->crypt_info.tx_keyidx;
10215                        if (priv->ieee->sec.key_sizes[priv->ieee->crypt_info.tx_keyidx] <=
10216                            40)
10217                                tfd->u.data.key_index |= DCT_WEP_KEY_64Bit;
10218                        else
10219                                tfd->u.data.key_index |= DCT_WEP_KEY_128Bit;
10220                        break;
10221                case SEC_LEVEL_0:
10222                        break;
10223                default:
10224                        printk(KERN_ERR "Unknown security level %d\n",
10225                               priv->ieee->sec.level);
10226                        break;
10227                }
10228        } else
10229                /* No hardware encryption */
10230                tfd->u.data.tx_flags |= DCT_FLAG_NO_WEP;
10231
10232#ifdef CONFIG_IPW2200_QOS
10233        if (fc & IEEE80211_STYPE_QOS_DATA)
10234                ipw_qos_set_tx_queue_command(priv, pri, &(tfd->u.data));
10235#endif                          /* CONFIG_IPW2200_QOS */
10236
10237        /* payload */
10238        tfd->u.data.num_chunks = cpu_to_le32(min((u8) (NUM_TFD_CHUNKS - 2),
10239                                                 txb->nr_frags));
10240        IPW_DEBUG_FRAG("%i fragments being sent as %i chunks.\n",
10241                       txb->nr_frags, le32_to_cpu(tfd->u.data.num_chunks));
10242        for (i = 0; i < le32_to_cpu(tfd->u.data.num_chunks); i++) {
10243                IPW_DEBUG_FRAG("Adding fragment %i of %i (%d bytes).\n",
10244                               i, le32_to_cpu(tfd->u.data.num_chunks),
10245                               txb->fragments[i]->len - hdr_len);
10246                IPW_DEBUG_TX("Dumping TX packet frag %i of %i (%d bytes):\n",
10247                             i, tfd->u.data.num_chunks,
10248                             txb->fragments[i]->len - hdr_len);
10249                printk_buf(IPW_DL_TX, txb->fragments[i]->data + hdr_len,
10250                           txb->fragments[i]->len - hdr_len);
10251
10252                tfd->u.data.chunk_ptr[i] =
10253                    cpu_to_le32(pci_map_single
10254                                (priv->pci_dev,
10255                                 txb->fragments[i]->data + hdr_len,
10256                                 txb->fragments[i]->len - hdr_len,
10257                                 PCI_DMA_TODEVICE));
10258                tfd->u.data.chunk_len[i] =
10259                    cpu_to_le16(txb->fragments[i]->len - hdr_len);
10260        }
10261
10262        if (i != txb->nr_frags) {
10263                struct sk_buff *skb;
10264                u16 remaining_bytes = 0;
10265                int j;
10266
10267                for (j = i; j < txb->nr_frags; j++)
10268                        remaining_bytes += txb->fragments[j]->len - hdr_len;
10269
10270                printk(KERN_INFO "Trying to reallocate for %d bytes\n",
10271                       remaining_bytes);
10272                skb = alloc_skb(remaining_bytes, GFP_ATOMIC);
10273                if (skb != NULL) {
10274                        tfd->u.data.chunk_len[i] = cpu_to_le16(remaining_bytes);
10275                        for (j = i; j < txb->nr_frags; j++) {
10276                                int size = txb->fragments[j]->len - hdr_len;
10277
10278                                printk(KERN_INFO "Adding frag %d %d...\n",
10279                                       j, size);
10280                                memcpy(skb_put(skb, size),
10281                                       txb->fragments[j]->data + hdr_len, size);
10282                        }
10283                        dev_kfree_skb_any(txb->fragments[i]);
10284                        txb->fragments[i] = skb;
10285                        tfd->u.data.chunk_ptr[i] =
10286                            cpu_to_le32(pci_map_single
10287                                        (priv->pci_dev, skb->data,
10288                                         remaining_bytes,
10289                                         PCI_DMA_TODEVICE));
10290
10291                        le32_add_cpu(&tfd->u.data.num_chunks, 1);
10292                }
10293        }
10294
10295        /* kick DMA */
10296        q->first_empty = ipw_queue_inc_wrap(q->first_empty, q->n_bd);
10297        ipw_write32(priv, q->reg_w, q->first_empty);
10298
10299        if (ipw_tx_queue_space(q) < q->high_mark)
10300                netif_stop_queue(priv->net_dev);
10301
10302        return NETDEV_TX_OK;
10303
10304      drop:
10305        IPW_DEBUG_DROP("Silently dropping Tx packet.\n");
10306        libipw_txb_free(txb);
10307        return NETDEV_TX_OK;
10308}
10309
10310static int ipw_net_is_queue_full(struct net_device *dev, int pri)
10311{
10312        struct ipw_priv *priv = libipw_priv(dev);
10313#ifdef CONFIG_IPW2200_QOS
10314        int tx_id = ipw_get_tx_queue_number(priv, pri);
10315        struct clx2_tx_queue *txq = &priv->txq[tx_id];
10316#else
10317        struct clx2_tx_queue *txq = &priv->txq[0];
10318#endif                          /* CONFIG_IPW2200_QOS */
10319
10320        if (ipw_tx_queue_space(&txq->q) < txq->q.high_mark)
10321                return 1;
10322
10323        return 0;
10324}
10325
10326#ifdef CONFIG_IPW2200_PROMISCUOUS
10327static void ipw_handle_promiscuous_tx(struct ipw_priv *priv,
10328                                      struct libipw_txb *txb)
10329{
10330        struct libipw_rx_stats dummystats;
10331        struct ieee80211_hdr *hdr;
10332        u8 n;
10333        u16 filter = priv->prom_priv->filter;
10334        int hdr_only = 0;
10335
10336        if (filter & IPW_PROM_NO_TX)
10337                return;
10338
10339        memset(&dummystats, 0, sizeof(dummystats));
10340
10341        /* Filtering of fragment chains is done against the first fragment */
10342        hdr = (void *)txb->fragments[0]->data;
10343        if (libipw_is_management(le16_to_cpu(hdr->frame_control))) {
10344                if (filter & IPW_PROM_NO_MGMT)
10345                        return;
10346                if (filter & IPW_PROM_MGMT_HEADER_ONLY)
10347                        hdr_only = 1;
10348        } else if (libipw_is_control(le16_to_cpu(hdr->frame_control))) {
10349                if (filter & IPW_PROM_NO_CTL)
10350                        return;
10351                if (filter & IPW_PROM_CTL_HEADER_ONLY)
10352                        hdr_only = 1;
10353        } else if (libipw_is_data(le16_to_cpu(hdr->frame_control))) {
10354                if (filter & IPW_PROM_NO_DATA)
10355                        return;
10356                if (filter & IPW_PROM_DATA_HEADER_ONLY)
10357                        hdr_only = 1;
10358        }
10359
10360        for(n=0; n<txb->nr_frags; ++n) {
10361                struct sk_buff *src = txb->fragments[n];
10362                struct sk_buff *dst;
10363                struct ieee80211_radiotap_header *rt_hdr;
10364                int len;
10365
10366                if (hdr_only) {
10367                        hdr = (void *)src->data;
10368                        len = libipw_get_hdrlen(le16_to_cpu(hdr->frame_control));
10369                } else
10370                        len = src->len;
10371
10372                dst = alloc_skb(len + sizeof(*rt_hdr) + sizeof(u16)*2, GFP_ATOMIC);
10373                if (!dst)
10374                        continue;
10375
10376                rt_hdr = (void *)skb_put(dst, sizeof(*rt_hdr));
10377
10378                rt_hdr->it_version = PKTHDR_RADIOTAP_VERSION;
10379                rt_hdr->it_pad = 0;
10380                rt_hdr->it_present = 0; /* after all, it's just an idea */
10381                rt_hdr->it_present |=  cpu_to_le32(1 << IEEE80211_RADIOTAP_CHANNEL);
10382
10383                *(__le16*)skb_put(dst, sizeof(u16)) = cpu_to_le16(
10384                        ieee80211chan2mhz(priv->channel));
10385                if (priv->channel > 14)         /* 802.11a */
10386                        *(__le16*)skb_put(dst, sizeof(u16)) =
10387                                cpu_to_le16(IEEE80211_CHAN_OFDM |
10388                                             IEEE80211_CHAN_5GHZ);
10389                else if (priv->ieee->mode == IEEE_B) /* 802.11b */
10390                        *(__le16*)skb_put(dst, sizeof(u16)) =
10391                                cpu_to_le16(IEEE80211_CHAN_CCK |
10392                                             IEEE80211_CHAN_2GHZ);
10393                else            /* 802.11g */
10394                        *(__le16*)skb_put(dst, sizeof(u16)) =
10395                                cpu_to_le16(IEEE80211_CHAN_OFDM |
10396                                 IEEE80211_CHAN_2GHZ);
10397
10398                rt_hdr->it_len = cpu_to_le16(dst->len);
10399
10400                skb_copy_from_linear_data(src, skb_put(dst, len), len);
10401
10402                if (!libipw_rx(priv->prom_priv->ieee, dst, &dummystats))
10403                        dev_kfree_skb_any(dst);
10404        }
10405}
10406#endif
10407
10408static netdev_tx_t ipw_net_hard_start_xmit(struct libipw_txb *txb,
10409                                           struct net_device *dev, int pri)
10410{
10411        struct ipw_priv *priv = libipw_priv(dev);
10412        unsigned long flags;
10413        netdev_tx_t ret;
10414
10415        IPW_DEBUG_TX("dev->xmit(%d bytes)\n", txb->payload_size);
10416        spin_lock_irqsave(&priv->lock, flags);
10417
10418#ifdef CONFIG_IPW2200_PROMISCUOUS
10419        if (rtap_iface && netif_running(priv->prom_net_dev))
10420                ipw_handle_promiscuous_tx(priv, txb);
10421#endif
10422
10423        ret = ipw_tx_skb(priv, txb, pri);
10424        if (ret == NETDEV_TX_OK)
10425                __ipw_led_activity_on(priv);
10426        spin_unlock_irqrestore(&priv->lock, flags);
10427
10428        return ret;
10429}
10430
10431static void ipw_net_set_multicast_list(struct net_device *dev)
10432{
10433
10434}
10435
10436static int ipw_net_set_mac_address(struct net_device *dev, void *p)
10437{
10438        struct ipw_priv *priv = libipw_priv(dev);
10439        struct sockaddr *addr = p;
10440
10441        if (!is_valid_ether_addr(addr->sa_data))
10442                return -EADDRNOTAVAIL;
10443        mutex_lock(&priv->mutex);
10444        priv->config |= CFG_CUSTOM_MAC;
10445        memcpy(priv->mac_addr, addr->sa_data, ETH_ALEN);
10446        printk(KERN_INFO "%s: Setting MAC to %pM\n",
10447               priv->net_dev->name, priv->mac_addr);
10448        schedule_work(&priv->adapter_restart);
10449        mutex_unlock(&priv->mutex);
10450        return 0;
10451}
10452
10453static void ipw_ethtool_get_drvinfo(struct net_device *dev,
10454                                    struct ethtool_drvinfo *info)
10455{
10456        struct ipw_priv *p = libipw_priv(dev);
10457        char vers[64];
10458        char date[32];
10459        u32 len;
10460
10461        strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
10462        strlcpy(info->version, DRV_VERSION, sizeof(info->version));
10463
10464        len = sizeof(vers);
10465        ipw_get_ordinal(p, IPW_ORD_STAT_FW_VERSION, vers, &len);
10466        len = sizeof(date);
10467        ipw_get_ordinal(p, IPW_ORD_STAT_FW_DATE, date, &len);
10468
10469        snprintf(info->fw_version, sizeof(info->fw_version), "%s (%s)",
10470                 vers, date);
10471        strlcpy(info->bus_info, pci_name(p->pci_dev),
10472                sizeof(info->bus_info));
10473        info->eedump_len = IPW_EEPROM_IMAGE_SIZE;
10474}
10475
10476static u32 ipw_ethtool_get_link(struct net_device *dev)
10477{
10478        struct ipw_priv *priv = libipw_priv(dev);
10479        return (priv->status & STATUS_ASSOCIATED) != 0;
10480}
10481
10482static int ipw_ethtool_get_eeprom_len(struct net_device *dev)
10483{
10484        return IPW_EEPROM_IMAGE_SIZE;
10485}
10486
10487static int ipw_ethtool_get_eeprom(struct net_device *dev,
10488                                  struct ethtool_eeprom *eeprom, u8 * bytes)
10489{
10490        struct ipw_priv *p = libipw_priv(dev);
10491
10492        if (eeprom->offset + eeprom->len > IPW_EEPROM_IMAGE_SIZE)
10493                return -EINVAL;
10494        mutex_lock(&p->mutex);
10495        memcpy(bytes, &p->eeprom[eeprom->offset], eeprom->len);
10496        mutex_unlock(&p->mutex);
10497        return 0;
10498}
10499
10500static int ipw_ethtool_set_eeprom(struct net_device *dev,
10501                                  struct ethtool_eeprom *eeprom, u8 * bytes)
10502{
10503        struct ipw_priv *p = libipw_priv(dev);
10504        int i;
10505
10506        if (eeprom->offset + eeprom->len > IPW_EEPROM_IMAGE_SIZE)
10507                return -EINVAL;
10508        mutex_lock(&p->mutex);
10509        memcpy(&p->eeprom[eeprom->offset], bytes, eeprom->len);
10510        for (i = 0; i < IPW_EEPROM_IMAGE_SIZE; i++)
10511                ipw_write8(p, i + IPW_EEPROM_DATA, p->eeprom[i]);
10512        mutex_unlock(&p->mutex);
10513        return 0;
10514}
10515
10516static const struct ethtool_ops ipw_ethtool_ops = {
10517        .get_link = ipw_ethtool_get_link,
10518        .get_drvinfo = ipw_ethtool_get_drvinfo,
10519        .get_eeprom_len = ipw_ethtool_get_eeprom_len,
10520        .get_eeprom = ipw_ethtool_get_eeprom,
10521        .set_eeprom = ipw_ethtool_set_eeprom,
10522};
10523
10524static irqreturn_t ipw_isr(int irq, void *data)
10525{
10526        struct ipw_priv *priv = data;
10527        u32 inta, inta_mask;
10528
10529        if (!priv)
10530                return IRQ_NONE;
10531
10532        spin_lock(&priv->irq_lock);
10533
10534        if (!(priv->status & STATUS_INT_ENABLED)) {
10535                /* IRQ is disabled */
10536                goto none;
10537        }
10538
10539        inta = ipw_read32(priv, IPW_INTA_RW);
10540        inta_mask = ipw_read32(priv, IPW_INTA_MASK_R);
10541
10542        if (inta == 0xFFFFFFFF) {
10543                /* Hardware disappeared */
10544                IPW_WARNING("IRQ INTA == 0xFFFFFFFF\n");
10545                goto none;
10546        }
10547
10548        if (!(inta & (IPW_INTA_MASK_ALL & inta_mask))) {
10549                /* Shared interrupt */
10550                goto none;
10551        }
10552
10553        /* tell the device to stop sending interrupts */
10554        __ipw_disable_interrupts(priv);
10555
10556        /* ack current interrupts */
10557        inta &= (IPW_INTA_MASK_ALL & inta_mask);
10558        ipw_write32(priv, IPW_INTA_RW, inta);
10559
10560        /* Cache INTA value for our tasklet */
10561        priv->isr_inta = inta;
10562
10563        tasklet_schedule(&priv->irq_tasklet);
10564
10565        spin_unlock(&priv->irq_lock);
10566
10567        return IRQ_HANDLED;
10568      none:
10569        spin_unlock(&priv->irq_lock);
10570        return IRQ_NONE;
10571}
10572
10573static void ipw_rf_kill(void *adapter)
10574{
10575        struct ipw_priv *priv = adapter;
10576        unsigned long flags;
10577
10578        spin_lock_irqsave(&priv->lock, flags);
10579
10580        if (rf_kill_active(priv)) {
10581                IPW_DEBUG_RF_KILL("RF Kill active, rescheduling GPIO check\n");
10582                schedule_delayed_work(&priv->rf_kill, 2 * HZ);
10583                goto exit_unlock;
10584        }
10585
10586        /* RF Kill is now disabled, so bring the device back up */
10587
10588        if (!(priv->status & STATUS_RF_KILL_MASK)) {
10589                IPW_DEBUG_RF_KILL("HW RF Kill no longer active, restarting "
10590                                  "device\n");
10591
10592                /* we can not do an adapter restart while inside an irq lock */
10593                schedule_work(&priv->adapter_restart);
10594        } else
10595                IPW_DEBUG_RF_KILL("HW RF Kill deactivated.  SW RF Kill still "
10596                                  "enabled\n");
10597
10598      exit_unlock:
10599        spin_unlock_irqrestore(&priv->lock, flags);
10600}
10601
10602static void ipw_bg_rf_kill(struct work_struct *work)
10603{
10604        struct ipw_priv *priv =
10605                container_of(work, struct ipw_priv, rf_kill.work);
10606        mutex_lock(&priv->mutex);
10607        ipw_rf_kill(priv);
10608        mutex_unlock(&priv->mutex);
10609}
10610
10611static void ipw_link_up(struct ipw_priv *priv)
10612{
10613        priv->last_seq_num = -1;
10614        priv->last_frag_num = -1;
10615        priv->last_packet_time = 0;
10616
10617        netif_carrier_on(priv->net_dev);
10618
10619        cancel_delayed_work(&priv->request_scan);
10620        cancel_delayed_work(&priv->request_direct_scan);
10621        cancel_delayed_work(&priv->request_passive_scan);
10622        cancel_delayed_work(&priv->scan_event);
10623        ipw_reset_stats(priv);
10624        /* Ensure the rate is updated immediately */
10625        priv->last_rate = ipw_get_current_rate(priv);
10626        ipw_gather_stats(priv);
10627        ipw_led_link_up(priv);
10628        notify_wx_assoc_event(priv);
10629
10630        if (priv->config & CFG_BACKGROUND_SCAN)
10631                schedule_delayed_work(&priv->request_scan, HZ);
10632}
10633
10634static void ipw_bg_link_up(struct work_struct *work)
10635{
10636        struct ipw_priv *priv =
10637                container_of(work, struct ipw_priv, link_up);
10638        mutex_lock(&priv->mutex);
10639        ipw_link_up(priv);
10640        mutex_unlock(&priv->mutex);
10641}
10642
10643static void ipw_link_down(struct ipw_priv *priv)
10644{
10645        ipw_led_link_down(priv);
10646        netif_carrier_off(priv->net_dev);
10647        notify_wx_assoc_event(priv);
10648
10649        /* Cancel any queued work ... */
10650        cancel_delayed_work(&priv->request_scan);
10651        cancel_delayed_work(&priv->request_direct_scan);
10652        cancel_delayed_work(&priv->request_passive_scan);
10653        cancel_delayed_work(&priv->adhoc_check);
10654        cancel_delayed_work(&priv->gather_stats);
10655
10656        ipw_reset_stats(priv);
10657
10658        if (!(priv->status & STATUS_EXIT_PENDING)) {
10659                /* Queue up another scan... */
10660                schedule_delayed_work(&priv->request_scan, 0);
10661        } else
10662                cancel_delayed_work(&priv->scan_event);
10663}
10664
10665static void ipw_bg_link_down(struct work_struct *work)
10666{
10667        struct ipw_priv *priv =
10668                container_of(work, struct ipw_priv, link_down);
10669        mutex_lock(&priv->mutex);
10670        ipw_link_down(priv);
10671        mutex_unlock(&priv->mutex);
10672}
10673
10674static int ipw_setup_deferred_work(struct ipw_priv *priv)
10675{
10676        int ret = 0;
10677
10678        init_waitqueue_head(&priv->wait_command_queue);
10679        init_waitqueue_head(&priv->wait_state);
10680
10681        INIT_DELAYED_WORK(&priv->adhoc_check, ipw_bg_adhoc_check);
10682        INIT_WORK(&priv->associate, ipw_bg_associate);
10683        INIT_WORK(&priv->disassociate, ipw_bg_disassociate);
10684        INIT_WORK(&priv->system_config, ipw_system_config);
10685        INIT_WORK(&priv->rx_replenish, ipw_bg_rx_queue_replenish);
10686        INIT_WORK(&priv->adapter_restart, ipw_bg_adapter_restart);
10687        INIT_DELAYED_WORK(&priv->rf_kill, ipw_bg_rf_kill);
10688        INIT_WORK(&priv->up, ipw_bg_up);
10689        INIT_WORK(&priv->down, ipw_bg_down);
10690        INIT_DELAYED_WORK(&priv->request_scan, ipw_request_scan);
10691        INIT_DELAYED_WORK(&priv->request_direct_scan, ipw_request_direct_scan);
10692        INIT_DELAYED_WORK(&priv->request_passive_scan, ipw_request_passive_scan);
10693        INIT_DELAYED_WORK(&priv->scan_event, ipw_scan_event);
10694        INIT_DELAYED_WORK(&priv->gather_stats, ipw_bg_gather_stats);
10695        INIT_WORK(&priv->abort_scan, ipw_bg_abort_scan);
10696        INIT_WORK(&priv->roam, ipw_bg_roam);
10697        INIT_DELAYED_WORK(&priv->scan_check, ipw_bg_scan_check);
10698        INIT_WORK(&priv->link_up, ipw_bg_link_up);
10699        INIT_WORK(&priv->link_down, ipw_bg_link_down);
10700        INIT_DELAYED_WORK(&priv->led_link_on, ipw_bg_led_link_on);
10701        INIT_DELAYED_WORK(&priv->led_link_off, ipw_bg_led_link_off);
10702        INIT_DELAYED_WORK(&priv->led_act_off, ipw_bg_led_activity_off);
10703        INIT_WORK(&priv->merge_networks, ipw_merge_adhoc_network);
10704
10705#ifdef CONFIG_IPW2200_QOS
10706        INIT_WORK(&priv->qos_activate, ipw_bg_qos_activate);
10707#endif                          /* CONFIG_IPW2200_QOS */
10708
10709        tasklet_init(&priv->irq_tasklet, (void (*)(unsigned long))
10710                     ipw_irq_tasklet, (unsigned long)priv);
10711
10712        return ret;
10713}
10714
10715static void shim__set_security(struct net_device *dev,
10716                               struct libipw_security *sec)
10717{
10718        struct ipw_priv *priv = libipw_priv(dev);
10719        int i;
10720        for (i = 0; i < 4; i++) {
10721                if (sec->flags & (1 << i)) {
10722                        priv->ieee->sec.encode_alg[i] = sec->encode_alg[i];
10723                        priv->ieee->sec.key_sizes[i] = sec->key_sizes[i];
10724                        if (sec->key_sizes[i] == 0)
10725                                priv->ieee->sec.flags &= ~(1 << i);
10726                        else {
10727                                memcpy(priv->ieee->sec.keys[i], sec->keys[i],
10728                                       sec->key_sizes[i]);
10729                                priv->ieee->sec.flags |= (1 << i);
10730                        }
10731                        priv->status |= STATUS_SECURITY_UPDATED;
10732                } else if (sec->level != SEC_LEVEL_1)
10733                        priv->ieee->sec.flags &= ~(1 << i);
10734        }
10735
10736        if (sec->flags & SEC_ACTIVE_KEY) {
10737                if (sec->active_key <= 3) {
10738                        priv->ieee->sec.active_key = sec->active_key;
10739                        priv->ieee->sec.flags |= SEC_ACTIVE_KEY;
10740                } else
10741                        priv->ieee->sec.flags &= ~SEC_ACTIVE_KEY;
10742                priv->status |= STATUS_SECURITY_UPDATED;
10743        } else
10744                priv->ieee->sec.flags &= ~SEC_ACTIVE_KEY;
10745
10746        if ((sec->flags & SEC_AUTH_MODE) &&
10747            (priv->ieee->sec.auth_mode != sec->auth_mode)) {
10748                priv->ieee->sec.auth_mode = sec->auth_mode;
10749                priv->ieee->sec.flags |= SEC_AUTH_MODE;
10750                if (sec->auth_mode == WLAN_AUTH_SHARED_KEY)
10751                        priv->capability |= CAP_SHARED_KEY;
10752                else
10753                        priv->capability &= ~CAP_SHARED_KEY;
10754                priv->status |= STATUS_SECURITY_UPDATED;
10755        }
10756
10757        if (sec->flags & SEC_ENABLED && priv->ieee->sec.enabled != sec->enabled) {
10758                priv->ieee->sec.flags |= SEC_ENABLED;
10759                priv->ieee->sec.enabled = sec->enabled;
10760                priv->status |= STATUS_SECURITY_UPDATED;
10761                if (sec->enabled)
10762                        priv->capability |= CAP_PRIVACY_ON;
10763                else
10764                        priv->capability &= ~CAP_PRIVACY_ON;
10765        }
10766
10767        if (sec->flags & SEC_ENCRYPT)
10768                priv->ieee->sec.encrypt = sec->encrypt;
10769
10770        if (sec->flags & SEC_LEVEL && priv->ieee->sec.level != sec->level) {
10771                priv->ieee->sec.level = sec->level;
10772                priv->ieee->sec.flags |= SEC_LEVEL;
10773                priv->status |= STATUS_SECURITY_UPDATED;
10774        }
10775
10776        if (!priv->ieee->host_encrypt && (sec->flags & SEC_ENCRYPT))
10777                ipw_set_hwcrypto_keys(priv);
10778
10779        /* To match current functionality of ipw2100 (which works well w/
10780         * various supplicants, we don't force a disassociate if the
10781         * privacy capability changes ... */
10782#if 0
10783        if ((priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) &&
10784            (((priv->assoc_request.capability &
10785               cpu_to_le16(WLAN_CAPABILITY_PRIVACY)) && !sec->enabled) ||
10786             (!(priv->assoc_request.capability &
10787                cpu_to_le16(WLAN_CAPABILITY_PRIVACY)) && sec->enabled))) {
10788                IPW_DEBUG_ASSOC("Disassociating due to capability "
10789                                "change.\n");
10790                ipw_disassociate(priv);
10791        }
10792#endif
10793}
10794
10795static int init_supported_rates(struct ipw_priv *priv,
10796                                struct ipw_supported_rates *rates)
10797{
10798        /* TODO: Mask out rates based on priv->rates_mask */
10799
10800        memset(rates, 0, sizeof(*rates));
10801        /* configure supported rates */
10802        switch (priv->ieee->freq_band) {
10803        case LIBIPW_52GHZ_BAND:
10804                rates->ieee_mode = IPW_A_MODE;
10805                rates->purpose = IPW_RATE_CAPABILITIES;
10806                ipw_add_ofdm_scan_rates(rates, LIBIPW_CCK_MODULATION,
10807                                        LIBIPW_OFDM_DEFAULT_RATES_MASK);
10808                break;
10809
10810        default:                /* Mixed or 2.4Ghz */
10811                rates->ieee_mode = IPW_G_MODE;
10812                rates->purpose = IPW_RATE_CAPABILITIES;
10813                ipw_add_cck_scan_rates(rates, LIBIPW_CCK_MODULATION,
10814                                       LIBIPW_CCK_DEFAULT_RATES_MASK);
10815                if (priv->ieee->modulation & LIBIPW_OFDM_MODULATION) {
10816                        ipw_add_ofdm_scan_rates(rates, LIBIPW_CCK_MODULATION,
10817                                                LIBIPW_OFDM_DEFAULT_RATES_MASK);
10818                }
10819                break;
10820        }
10821
10822        return 0;
10823}
10824
10825static int ipw_config(struct ipw_priv *priv)
10826{
10827        /* This is only called from ipw_up, which resets/reloads the firmware
10828           so, we don't need to first disable the card before we configure
10829           it */
10830        if (ipw_set_tx_power(priv))
10831                goto error;
10832
10833        /* initialize adapter address */
10834        if (ipw_send_adapter_address(priv, priv->net_dev->dev_addr))
10835                goto error;
10836
10837        /* set basic system config settings */
10838        init_sys_config(&priv->sys_config);
10839
10840        /* Support Bluetooth if we have BT h/w on board, and user wants to.
10841         * Does not support BT priority yet (don't abort or defer our Tx) */
10842        if (bt_coexist) {
10843                unsigned char bt_caps = priv->eeprom[EEPROM_SKU_CAPABILITY];
10844
10845                if (bt_caps & EEPROM_SKU_CAP_BT_CHANNEL_SIG)
10846                        priv->sys_config.bt_coexistence
10847                            |= CFG_BT_COEXISTENCE_SIGNAL_CHNL;
10848                if (bt_caps & EEPROM_SKU_CAP_BT_OOB)
10849                        priv->sys_config.bt_coexistence
10850                            |= CFG_BT_COEXISTENCE_OOB;
10851        }
10852
10853#ifdef CONFIG_IPW2200_PROMISCUOUS
10854        if (priv->prom_net_dev && netif_running(priv->prom_net_dev)) {
10855                priv->sys_config.accept_all_data_frames = 1;
10856                priv->sys_config.accept_non_directed_frames = 1;
10857                priv->sys_config.accept_all_mgmt_bcpr = 1;
10858                priv->sys_config.accept_all_mgmt_frames = 1;
10859        }
10860#endif
10861
10862        if (priv->ieee->iw_mode == IW_MODE_ADHOC)
10863                priv->sys_config.answer_broadcast_ssid_probe = 1;
10864        else
10865                priv->sys_config.answer_broadcast_ssid_probe = 0;
10866
10867        if (ipw_send_system_config(priv))
10868                goto error;
10869
10870        init_supported_rates(priv, &priv->rates);
10871        if (ipw_send_supported_rates(priv, &priv->rates))
10872                goto error;
10873
10874        /* Set request-to-send threshold */
10875        if (priv->rts_threshold) {
10876                if (ipw_send_rts_threshold(priv, priv->rts_threshold))
10877                        goto error;
10878        }
10879#ifdef CONFIG_IPW2200_QOS
10880        IPW_DEBUG_QOS("QoS: call ipw_qos_activate\n");
10881        ipw_qos_activate(priv, NULL);
10882#endif                          /* CONFIG_IPW2200_QOS */
10883
10884        if (ipw_set_random_seed(priv))
10885                goto error;
10886
10887        /* final state transition to the RUN state */
10888        if (ipw_send_host_complete(priv))
10889                goto error;
10890
10891        priv->status |= STATUS_INIT;
10892
10893        ipw_led_init(priv);
10894        ipw_led_radio_on(priv);
10895        priv->notif_missed_beacons = 0;
10896
10897        /* Set hardware WEP key if it is configured. */
10898        if ((priv->capability & CAP_PRIVACY_ON) &&
10899            (priv->ieee->sec.level == SEC_LEVEL_1) &&
10900            !(priv->ieee->host_encrypt || priv->ieee->host_decrypt))
10901                ipw_set_hwcrypto_keys(priv);
10902
10903        return 0;
10904
10905      error:
10906        return -EIO;
10907}
10908
10909/*
10910 * NOTE:
10911 *
10912 * These tables have been tested in conjunction with the
10913 * Intel PRO/Wireless 2200BG and 2915ABG Network Connection Adapters.
10914 *
10915 * Altering this values, using it on other hardware, or in geographies
10916 * not intended for resale of the above mentioned Intel adapters has
10917 * not been tested.
10918 *
10919 * Remember to update the table in README.ipw2200 when changing this
10920 * table.
10921 *
10922 */
10923static const struct libipw_geo ipw_geos[] = {
10924        {                       /* Restricted */
10925         "---",
10926         .bg_channels = 11,
10927         .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10928                {2427, 4}, {2432, 5}, {2437, 6},
10929                {2442, 7}, {2447, 8}, {2452, 9},
10930                {2457, 10}, {2462, 11}},
10931         },
10932
10933        {                       /* Custom US/Canada */
10934         "ZZF",
10935         .bg_channels = 11,
10936         .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10937                {2427, 4}, {2432, 5}, {2437, 6},
10938                {2442, 7}, {2447, 8}, {2452, 9},
10939                {2457, 10}, {2462, 11}},
10940         .a_channels = 8,
10941         .a = {{5180, 36},
10942               {5200, 40},
10943               {5220, 44},
10944               {5240, 48},
10945               {5260, 52, LIBIPW_CH_PASSIVE_ONLY},
10946               {5280, 56, LIBIPW_CH_PASSIVE_ONLY},
10947               {5300, 60, LIBIPW_CH_PASSIVE_ONLY},
10948               {5320, 64, LIBIPW_CH_PASSIVE_ONLY}},
10949         },
10950
10951        {                       /* Rest of World */
10952         "ZZD",
10953         .bg_channels = 13,
10954         .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10955                {2427, 4}, {2432, 5}, {2437, 6},
10956                {2442, 7}, {2447, 8}, {2452, 9},
10957                {2457, 10}, {2462, 11}, {2467, 12},
10958                {2472, 13}},
10959         },
10960
10961        {                       /* Custom USA & Europe & High */
10962         "ZZA",
10963         .bg_channels = 11,
10964         .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10965                {2427, 4}, {2432, 5}, {2437, 6},
10966                {2442, 7}, {2447, 8}, {2452, 9},
10967                {2457, 10}, {2462, 11}},
10968         .a_channels = 13,
10969         .a = {{5180, 36},
10970               {5200, 40},
10971               {5220, 44},
10972               {5240, 48},
10973               {5260, 52, LIBIPW_CH_PASSIVE_ONLY},
10974               {5280, 56, LIBIPW_CH_PASSIVE_ONLY},
10975               {5300, 60, LIBIPW_CH_PASSIVE_ONLY},
10976               {5320, 64, LIBIPW_CH_PASSIVE_ONLY},
10977               {5745, 149},
10978               {5765, 153},
10979               {5785, 157},
10980               {5805, 161},
10981               {5825, 165}},
10982         },
10983
10984        {                       /* Custom NA & Europe */
10985         "ZZB",
10986         .bg_channels = 11,
10987         .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10988                {2427, 4}, {2432, 5}, {2437, 6},
10989                {2442, 7}, {2447, 8}, {2452, 9},
10990                {2457, 10}, {2462, 11}},
10991         .a_channels = 13,
10992         .a = {{5180, 36},
10993               {5200, 40},
10994               {5220, 44},
10995               {5240, 48},
10996               {5260, 52, LIBIPW_CH_PASSIVE_ONLY},
10997               {5280, 56, LIBIPW_CH_PASSIVE_ONLY},
10998               {5300, 60, LIBIPW_CH_PASSIVE_ONLY},
10999               {5320, 64, LIBIPW_CH_PASSIVE_ONLY},
11000               {5745, 149, LIBIPW_CH_PASSIVE_ONLY},
11001               {5765, 153, LIBIPW_CH_PASSIVE_ONLY},
11002               {5785, 157, LIBIPW_CH_PASSIVE_ONLY},
11003               {5805, 161, LIBIPW_CH_PASSIVE_ONLY},
11004               {5825, 165, LIBIPW_CH_PASSIVE_ONLY}},
11005         },
11006
11007        {                       /* Custom Japan */
11008         "ZZC",
11009         .bg_channels = 11,
11010         .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11011                {2427, 4}, {2432, 5}, {2437, 6},
11012                {2442, 7}, {2447, 8}, {2452, 9},
11013                {2457, 10}, {2462, 11}},
11014         .a_channels = 4,
11015         .a = {{5170, 34}, {5190, 38},
11016               {5210, 42}, {5230, 46}},
11017         },
11018
11019        {                       /* Custom */
11020         "ZZM",
11021         .bg_channels = 11,
11022         .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11023                {2427, 4}, {2432, 5}, {2437, 6},
11024                {2442, 7}, {2447, 8}, {2452, 9},
11025                {2457, 10}, {2462, 11}},
11026         },
11027
11028        {                       /* Europe */
11029         "ZZE",
11030         .bg_channels = 13,
11031         .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11032                {2427, 4}, {2432, 5}, {2437, 6},
11033                {2442, 7}, {2447, 8}, {2452, 9},
11034                {2457, 10}, {2462, 11}, {2467, 12},
11035                {2472, 13}},
11036         .a_channels = 19,
11037         .a = {{5180, 36},
11038               {5200, 40},
11039               {5220, 44},
11040               {5240, 48},
11041               {5260, 52, LIBIPW_CH_PASSIVE_ONLY},
11042               {5280, 56, LIBIPW_CH_PASSIVE_ONLY},
11043               {5300, 60, LIBIPW_CH_PASSIVE_ONLY},
11044               {5320, 64, LIBIPW_CH_PASSIVE_ONLY},
11045               {5500, 100, LIBIPW_CH_PASSIVE_ONLY},
11046               {5520, 104, LIBIPW_CH_PASSIVE_ONLY},
11047               {5540, 108, LIBIPW_CH_PASSIVE_ONLY},
11048               {5560, 112, LIBIPW_CH_PASSIVE_ONLY},
11049               {5580, 116, LIBIPW_CH_PASSIVE_ONLY},
11050               {5600, 120, LIBIPW_CH_PASSIVE_ONLY},
11051               {5620, 124, LIBIPW_CH_PASSIVE_ONLY},
11052               {5640, 128, LIBIPW_CH_PASSIVE_ONLY},
11053               {5660, 132, LIBIPW_CH_PASSIVE_ONLY},
11054               {5680, 136, LIBIPW_CH_PASSIVE_ONLY},
11055               {5700, 140, LIBIPW_CH_PASSIVE_ONLY}},
11056         },
11057
11058        {                       /* Custom Japan */
11059         "ZZJ",
11060         .bg_channels = 14,
11061         .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11062                {2427, 4}, {2432, 5}, {2437, 6},
11063                {2442, 7}, {2447, 8}, {2452, 9},
11064                {2457, 10}, {2462, 11}, {2467, 12},
11065                {2472, 13}, {2484, 14, LIBIPW_CH_B_ONLY}},
11066         .a_channels = 4,
11067         .a = {{5170, 34}, {5190, 38},
11068               {5210, 42}, {5230, 46}},
11069         },
11070
11071        {                       /* Rest of World */
11072         "ZZR",
11073         .bg_channels = 14,
11074         .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11075                {2427, 4}, {2432, 5}, {2437, 6},
11076                {2442, 7}, {2447, 8}, {2452, 9},
11077                {2457, 10}, {2462, 11}, {2467, 12},
11078                {2472, 13}, {2484, 14, LIBIPW_CH_B_ONLY |
11079                             LIBIPW_CH_PASSIVE_ONLY}},
11080         },
11081
11082        {                       /* High Band */
11083         "ZZH",
11084         .bg_channels = 13,
11085         .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11086                {2427, 4}, {2432, 5}, {2437, 6},
11087                {2442, 7}, {2447, 8}, {2452, 9},
11088                {2457, 10}, {2462, 11},
11089                {2467, 12, LIBIPW_CH_PASSIVE_ONLY},
11090                {2472, 13, LIBIPW_CH_PASSIVE_ONLY}},
11091         .a_channels = 4,
11092         .a = {{5745, 149}, {5765, 153},
11093               {5785, 157}, {5805, 161}},
11094         },
11095
11096        {                       /* Custom Europe */
11097         "ZZG",
11098         .bg_channels = 13,
11099         .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11100                {2427, 4}, {2432, 5}, {2437, 6},
11101                {2442, 7}, {2447, 8}, {2452, 9},
11102                {2457, 10}, {2462, 11},
11103                {2467, 12}, {2472, 13}},
11104         .a_channels = 4,
11105         .a = {{5180, 36}, {5200, 40},
11106               {5220, 44}, {5240, 48}},
11107         },
11108
11109        {                       /* Europe */
11110         "ZZK",
11111         .bg_channels = 13,
11112         .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11113                {2427, 4}, {2432, 5}, {2437, 6},
11114                {2442, 7}, {2447, 8}, {2452, 9},
11115                {2457, 10}, {2462, 11},
11116                {2467, 12, LIBIPW_CH_PASSIVE_ONLY},
11117                {2472, 13, LIBIPW_CH_PASSIVE_ONLY}},
11118         .a_channels = 24,
11119         .a = {{5180, 36, LIBIPW_CH_PASSIVE_ONLY},
11120               {5200, 40, LIBIPW_CH_PASSIVE_ONLY},
11121               {5220, 44, LIBIPW_CH_PASSIVE_ONLY},
11122               {5240, 48, LIBIPW_CH_PASSIVE_ONLY},
11123               {5260, 52, LIBIPW_CH_PASSIVE_ONLY},
11124               {5280, 56, LIBIPW_CH_PASSIVE_ONLY},
11125               {5300, 60, LIBIPW_CH_PASSIVE_ONLY},
11126               {5320, 64, LIBIPW_CH_PASSIVE_ONLY},
11127               {5500, 100, LIBIPW_CH_PASSIVE_ONLY},
11128               {5520, 104, LIBIPW_CH_PASSIVE_ONLY},
11129               {5540, 108, LIBIPW_CH_PASSIVE_ONLY},
11130               {5560, 112, LIBIPW_CH_PASSIVE_ONLY},
11131               {5580, 116, LIBIPW_CH_PASSIVE_ONLY},
11132               {5600, 120, LIBIPW_CH_PASSIVE_ONLY},
11133               {5620, 124, LIBIPW_CH_PASSIVE_ONLY},
11134               {5640, 128, LIBIPW_CH_PASSIVE_ONLY},
11135               {5660, 132, LIBIPW_CH_PASSIVE_ONLY},
11136               {5680, 136, LIBIPW_CH_PASSIVE_ONLY},
11137               {5700, 140, LIBIPW_CH_PASSIVE_ONLY},
11138               {5745, 149, LIBIPW_CH_PASSIVE_ONLY},
11139               {5765, 153, LIBIPW_CH_PASSIVE_ONLY},
11140               {5785, 157, LIBIPW_CH_PASSIVE_ONLY},
11141               {5805, 161, LIBIPW_CH_PASSIVE_ONLY},
11142               {5825, 165, LIBIPW_CH_PASSIVE_ONLY}},
11143         },
11144
11145        {                       /* Europe */
11146         "ZZL",
11147         .bg_channels = 11,
11148         .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11149                {2427, 4}, {2432, 5}, {2437, 6},
11150                {2442, 7}, {2447, 8}, {2452, 9},
11151                {2457, 10}, {2462, 11}},
11152         .a_channels = 13,
11153         .a = {{5180, 36, LIBIPW_CH_PASSIVE_ONLY},
11154               {5200, 40, LIBIPW_CH_PASSIVE_ONLY},
11155               {5220, 44, LIBIPW_CH_PASSIVE_ONLY},
11156               {5240, 48, LIBIPW_CH_PASSIVE_ONLY},
11157               {5260, 52, LIBIPW_CH_PASSIVE_ONLY},
11158               {5280, 56, LIBIPW_CH_PASSIVE_ONLY},
11159               {5300, 60, LIBIPW_CH_PASSIVE_ONLY},
11160               {5320, 64, LIBIPW_CH_PASSIVE_ONLY},
11161               {5745, 149, LIBIPW_CH_PASSIVE_ONLY},
11162               {5765, 153, LIBIPW_CH_PASSIVE_ONLY},
11163               {5785, 157, LIBIPW_CH_PASSIVE_ONLY},
11164               {5805, 161, LIBIPW_CH_PASSIVE_ONLY},
11165               {5825, 165, LIBIPW_CH_PASSIVE_ONLY}},
11166         }
11167};
11168
11169static void ipw_set_geo(struct ipw_priv *priv)
11170{
11171        int j;
11172
11173        for (j = 0; j < ARRAY_SIZE(ipw_geos); j++) {
11174                if (!memcmp(&priv->eeprom[EEPROM_COUNTRY_CODE],
11175                            ipw_geos[j].name, 3))
11176                        break;
11177        }
11178
11179        if (j == ARRAY_SIZE(ipw_geos)) {
11180                IPW_WARNING("SKU [%c%c%c] not recognized.\n",
11181                            priv->eeprom[EEPROM_COUNTRY_CODE + 0],
11182                            priv->eeprom[EEPROM_COUNTRY_CODE + 1],
11183                            priv->eeprom[EEPROM_COUNTRY_CODE + 2]);
11184                j = 0;
11185        }
11186
11187        libipw_set_geo(priv->ieee, &ipw_geos[j]);
11188}
11189
11190#define MAX_HW_RESTARTS 5
11191static int ipw_up(struct ipw_priv *priv)
11192{
11193        int rc, i;
11194
11195        /* Age scan list entries found before suspend */
11196        if (priv->suspend_time) {
11197                libipw_networks_age(priv->ieee, priv->suspend_time);
11198                priv->suspend_time = 0;
11199        }
11200
11201        if (priv->status & STATUS_EXIT_PENDING)
11202                return -EIO;
11203
11204        if (cmdlog && !priv->cmdlog) {
11205                priv->cmdlog = kcalloc(cmdlog, sizeof(*priv->cmdlog),
11206                                       GFP_KERNEL);
11207                if (priv->cmdlog == NULL) {
11208                        IPW_ERROR("Error allocating %d command log entries.\n",
11209                                  cmdlog);
11210                        return -ENOMEM;
11211                } else {
11212                        priv->cmdlog_len = cmdlog;
11213                }
11214        }
11215
11216        for (i = 0; i < MAX_HW_RESTARTS; i++) {
11217                /* Load the microcode, firmware, and eeprom.
11218                 * Also start the clocks. */
11219                rc = ipw_load(priv);
11220                if (rc) {
11221                        IPW_ERROR("Unable to load firmware: %d\n", rc);
11222                        return rc;
11223                }
11224
11225                ipw_init_ordinals(priv);
11226                if (!(priv->config & CFG_CUSTOM_MAC))
11227                        eeprom_parse_mac(priv, priv->mac_addr);
11228                memcpy(priv->net_dev->dev_addr, priv->mac_addr, ETH_ALEN);
11229
11230                ipw_set_geo(priv);
11231
11232                if (priv->status & STATUS_RF_KILL_SW) {
11233                        IPW_WARNING("Radio disabled by module parameter.\n");
11234                        return 0;
11235                } else if (rf_kill_active(priv)) {
11236                        IPW_WARNING("Radio Frequency Kill Switch is On:\n"
11237                                    "Kill switch must be turned off for "
11238                                    "wireless networking to work.\n");
11239                        schedule_delayed_work(&priv->rf_kill, 2 * HZ);
11240                        return 0;
11241                }
11242
11243                rc = ipw_config(priv);
11244                if (!rc) {
11245                        IPW_DEBUG_INFO("Configured device on count %i\n", i);
11246
11247                        /* If configure to try and auto-associate, kick
11248                         * off a scan. */
11249                        schedule_delayed_work(&priv->request_scan, 0);
11250
11251                        return 0;
11252                }
11253
11254                IPW_DEBUG_INFO("Device configuration failed: 0x%08X\n", rc);
11255                IPW_DEBUG_INFO("Failed to config device on retry %d of %d\n",
11256                               i, MAX_HW_RESTARTS);
11257
11258                /* We had an error bringing up the hardware, so take it
11259                 * all the way back down so we can try again */
11260                ipw_down(priv);
11261        }
11262
11263        /* tried to restart and config the device for as long as our
11264         * patience could withstand */
11265        IPW_ERROR("Unable to initialize device after %d attempts.\n", i);
11266
11267        return -EIO;
11268}
11269
11270static void ipw_bg_up(struct work_struct *work)
11271{
11272        struct ipw_priv *priv =
11273                container_of(work, struct ipw_priv, up);
11274        mutex_lock(&priv->mutex);
11275        ipw_up(priv);
11276        mutex_unlock(&priv->mutex);
11277}
11278
11279static void ipw_deinit(struct ipw_priv *priv)
11280{
11281        int i;
11282
11283        if (priv->status & STATUS_SCANNING) {
11284                IPW_DEBUG_INFO("Aborting scan during shutdown.\n");
11285                ipw_abort_scan(priv);
11286        }
11287
11288        if (priv->status & STATUS_ASSOCIATED) {
11289                IPW_DEBUG_INFO("Disassociating during shutdown.\n");
11290                ipw_disassociate(priv);
11291        }
11292
11293        ipw_led_shutdown(priv);
11294
11295        /* Wait up to 1s for status to change to not scanning and not
11296         * associated (disassociation can take a while for a ful 802.11
11297         * exchange */
11298        for (i = 1000; i && (priv->status &
11299                             (STATUS_DISASSOCIATING |
11300                              STATUS_ASSOCIATED | STATUS_SCANNING)); i--)
11301                udelay(10);
11302
11303        if (priv->status & (STATUS_DISASSOCIATING |
11304                            STATUS_ASSOCIATED | STATUS_SCANNING))
11305                IPW_DEBUG_INFO("Still associated or scanning...\n");
11306        else
11307                IPW_DEBUG_INFO("Took %dms to de-init\n", 1000 - i);
11308
11309        /* Attempt to disable the card */
11310        ipw_send_card_disable(priv, 0);
11311
11312        priv->status &= ~STATUS_INIT;
11313}
11314
11315static void ipw_down(struct ipw_priv *priv)
11316{
11317        int exit_pending = priv->status & STATUS_EXIT_PENDING;
11318
11319        priv->status |= STATUS_EXIT_PENDING;
11320
11321        if (ipw_is_init(priv))
11322                ipw_deinit(priv);
11323
11324        /* Wipe out the EXIT_PENDING status bit if we are not actually
11325         * exiting the module */
11326        if (!exit_pending)
11327                priv->status &= ~STATUS_EXIT_PENDING;
11328
11329        /* tell the device to stop sending interrupts */
11330        ipw_disable_interrupts(priv);
11331
11332        /* Clear all bits but the RF Kill */
11333        priv->status &= STATUS_RF_KILL_MASK | STATUS_EXIT_PENDING;
11334        netif_carrier_off(priv->net_dev);
11335
11336        ipw_stop_nic(priv);
11337
11338        ipw_led_radio_off(priv);
11339}
11340
11341static void ipw_bg_down(struct work_struct *work)
11342{
11343        struct ipw_priv *priv =
11344                container_of(work, struct ipw_priv, down);
11345        mutex_lock(&priv->mutex);
11346        ipw_down(priv);
11347        mutex_unlock(&priv->mutex);
11348}
11349
11350static int ipw_wdev_init(struct net_device *dev)
11351{
11352        int i, rc = 0;
11353        struct ipw_priv *priv = libipw_priv(dev);
11354        const struct libipw_geo *geo = libipw_get_geo(priv->ieee);
11355        struct wireless_dev *wdev = &priv->ieee->wdev;
11356
11357        memcpy(wdev->wiphy->perm_addr, priv->mac_addr, ETH_ALEN);
11358
11359        /* fill-out priv->ieee->bg_band */
11360        if (geo->bg_channels) {
11361                struct ieee80211_supported_band *bg_band = &priv->ieee->bg_band;
11362
11363                bg_band->band = IEEE80211_BAND_2GHZ;
11364                bg_band->n_channels = geo->bg_channels;
11365                bg_band->channels = kcalloc(geo->bg_channels,
11366                                            sizeof(struct ieee80211_channel),
11367                                            GFP_KERNEL);
11368                if (!bg_band->channels) {
11369                        rc = -ENOMEM;
11370                        goto out;
11371                }
11372                /* translate geo->bg to bg_band.channels */
11373                for (i = 0; i < geo->bg_channels; i++) {
11374                        bg_band->channels[i].band = IEEE80211_BAND_2GHZ;
11375                        bg_band->channels[i].center_freq = geo->bg[i].freq;
11376                        bg_band->channels[i].hw_value = geo->bg[i].channel;
11377                        bg_band->channels[i].max_power = geo->bg[i].max_power;
11378                        if (geo->bg[i].flags & LIBIPW_CH_PASSIVE_ONLY)
11379                                bg_band->channels[i].flags |=
11380                                        IEEE80211_CHAN_NO_IR;
11381                        if (geo->bg[i].flags & LIBIPW_CH_NO_IBSS)
11382                                bg_band->channels[i].flags |=
11383                                        IEEE80211_CHAN_NO_IR;
11384                        if (geo->bg[i].flags & LIBIPW_CH_RADAR_DETECT)
11385                                bg_band->channels[i].flags |=
11386                                        IEEE80211_CHAN_RADAR;
11387                        /* No equivalent for LIBIPW_CH_80211H_RULES,
11388                           LIBIPW_CH_UNIFORM_SPREADING, or
11389                           LIBIPW_CH_B_ONLY... */
11390                }
11391                /* point at bitrate info */
11392                bg_band->bitrates = ipw2200_bg_rates;
11393                bg_band->n_bitrates = ipw2200_num_bg_rates;
11394
11395                wdev->wiphy->bands[IEEE80211_BAND_2GHZ] = bg_band;
11396        }
11397
11398        /* fill-out priv->ieee->a_band */
11399        if (geo->a_channels) {
11400                struct ieee80211_supported_band *a_band = &priv->ieee->a_band;
11401
11402                a_band->band = IEEE80211_BAND_5GHZ;
11403                a_band->n_channels = geo->a_channels;
11404                a_band->channels = kcalloc(geo->a_channels,
11405                                           sizeof(struct ieee80211_channel),
11406                                           GFP_KERNEL);
11407                if (!a_band->channels) {
11408                        rc = -ENOMEM;
11409                        goto out;
11410                }
11411                /* translate geo->a to a_band.channels */
11412                for (i = 0; i < geo->a_channels; i++) {
11413                        a_band->channels[i].band = IEEE80211_BAND_5GHZ;
11414                        a_band->channels[i].center_freq = geo->a[i].freq;
11415                        a_band->channels[i].hw_value = geo->a[i].channel;
11416                        a_band->channels[i].max_power = geo->a[i].max_power;
11417                        if (geo->a[i].flags & LIBIPW_CH_PASSIVE_ONLY)
11418                                a_band->channels[i].flags |=
11419                                        IEEE80211_CHAN_NO_IR;
11420                        if (geo->a[i].flags & LIBIPW_CH_NO_IBSS)
11421                                a_band->channels[i].flags |=
11422                                        IEEE80211_CHAN_NO_IR;
11423                        if (geo->a[i].flags & LIBIPW_CH_RADAR_DETECT)
11424                                a_band->channels[i].flags |=
11425                                        IEEE80211_CHAN_RADAR;
11426                        /* No equivalent for LIBIPW_CH_80211H_RULES,
11427                           LIBIPW_CH_UNIFORM_SPREADING, or
11428                           LIBIPW_CH_B_ONLY... */
11429                }
11430                /* point at bitrate info */
11431                a_band->bitrates = ipw2200_a_rates;
11432                a_band->n_bitrates = ipw2200_num_a_rates;
11433
11434                wdev->wiphy->bands[IEEE80211_BAND_5GHZ] = a_band;
11435        }
11436
11437        wdev->wiphy->cipher_suites = ipw_cipher_suites;
11438        wdev->wiphy->n_cipher_suites = ARRAY_SIZE(ipw_cipher_suites);
11439
11440        set_wiphy_dev(wdev->wiphy, &priv->pci_dev->dev);
11441
11442        /* With that information in place, we can now register the wiphy... */
11443        if (wiphy_register(wdev->wiphy))
11444                rc = -EIO;
11445out:
11446        return rc;
11447}
11448
11449/* PCI driver stuff */
11450static const struct pci_device_id card_ids[] = {
11451        {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2701, 0, 0, 0},
11452        {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2702, 0, 0, 0},
11453        {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2711, 0, 0, 0},
11454        {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2712, 0, 0, 0},
11455        {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2721, 0, 0, 0},
11456        {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2722, 0, 0, 0},
11457        {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2731, 0, 0, 0},
11458        {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2732, 0, 0, 0},
11459        {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2741, 0, 0, 0},
11460        {PCI_VENDOR_ID_INTEL, 0x1043, 0x103c, 0x2741, 0, 0, 0},
11461        {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2742, 0, 0, 0},
11462        {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2751, 0, 0, 0},
11463        {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2752, 0, 0, 0},
11464        {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2753, 0, 0, 0},
11465        {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2754, 0, 0, 0},
11466        {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2761, 0, 0, 0},
11467        {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2762, 0, 0, 0},
11468        {PCI_VDEVICE(INTEL, 0x104f), 0},
11469        {PCI_VDEVICE(INTEL, 0x4220), 0},        /* BG */
11470        {PCI_VDEVICE(INTEL, 0x4221), 0},        /* BG */
11471        {PCI_VDEVICE(INTEL, 0x4223), 0},        /* ABG */
11472        {PCI_VDEVICE(INTEL, 0x4224), 0},        /* ABG */
11473
11474        /* required last entry */
11475        {0,}
11476};
11477
11478MODULE_DEVICE_TABLE(pci, card_ids);
11479
11480static struct attribute *ipw_sysfs_entries[] = {
11481        &dev_attr_rf_kill.attr,
11482        &dev_attr_direct_dword.attr,
11483        &dev_attr_indirect_byte.attr,
11484        &dev_attr_indirect_dword.attr,
11485        &dev_attr_mem_gpio_reg.attr,
11486        &dev_attr_command_event_reg.attr,
11487        &dev_attr_nic_type.attr,
11488        &dev_attr_status.attr,
11489        &dev_attr_cfg.attr,
11490        &dev_attr_error.attr,
11491        &dev_attr_event_log.attr,
11492        &dev_attr_cmd_log.attr,
11493        &dev_attr_eeprom_delay.attr,
11494        &dev_attr_ucode_version.attr,
11495        &dev_attr_rtc.attr,
11496        &dev_attr_scan_age.attr,
11497        &dev_attr_led.attr,
11498        &dev_attr_speed_scan.attr,
11499        &dev_attr_net_stats.attr,
11500        &dev_attr_channels.attr,
11501#ifdef CONFIG_IPW2200_PROMISCUOUS
11502        &dev_attr_rtap_iface.attr,
11503        &dev_attr_rtap_filter.attr,
11504#endif
11505        NULL
11506};
11507
11508static struct attribute_group ipw_attribute_group = {
11509        .name = NULL,           /* put in device directory */
11510        .attrs = ipw_sysfs_entries,
11511};
11512
11513#ifdef CONFIG_IPW2200_PROMISCUOUS
11514static int ipw_prom_open(struct net_device *dev)
11515{
11516        struct ipw_prom_priv *prom_priv = libipw_priv(dev);
11517        struct ipw_priv *priv = prom_priv->priv;
11518
11519        IPW_DEBUG_INFO("prom dev->open\n");
11520        netif_carrier_off(dev);
11521
11522        if (priv->ieee->iw_mode != IW_MODE_MONITOR) {
11523                priv->sys_config.accept_all_data_frames = 1;
11524                priv->sys_config.accept_non_directed_frames = 1;
11525                priv->sys_config.accept_all_mgmt_bcpr = 1;
11526                priv->sys_config.accept_all_mgmt_frames = 1;
11527
11528                ipw_send_system_config(priv);
11529        }
11530
11531        return 0;
11532}
11533
11534static int ipw_prom_stop(struct net_device *dev)
11535{
11536        struct ipw_prom_priv *prom_priv = libipw_priv(dev);
11537        struct ipw_priv *priv = prom_priv->priv;
11538
11539        IPW_DEBUG_INFO("prom dev->stop\n");
11540
11541        if (priv->ieee->iw_mode != IW_MODE_MONITOR) {
11542                priv->sys_config.accept_all_data_frames = 0;
11543                priv->sys_config.accept_non_directed_frames = 0;
11544                priv->sys_config.accept_all_mgmt_bcpr = 0;
11545                priv->sys_config.accept_all_mgmt_frames = 0;
11546
11547                ipw_send_system_config(priv);
11548        }
11549
11550        return 0;
11551}
11552
11553static netdev_tx_t ipw_prom_hard_start_xmit(struct sk_buff *skb,
11554                                            struct net_device *dev)
11555{
11556        IPW_DEBUG_INFO("prom dev->xmit\n");
11557        dev_kfree_skb(skb);
11558        return NETDEV_TX_OK;
11559}
11560
11561static const struct net_device_ops ipw_prom_netdev_ops = {
11562        .ndo_open               = ipw_prom_open,
11563        .ndo_stop               = ipw_prom_stop,
11564        .ndo_start_xmit         = ipw_prom_hard_start_xmit,
11565        .ndo_change_mtu         = libipw_change_mtu,
11566        .ndo_set_mac_address    = eth_mac_addr,
11567        .ndo_validate_addr      = eth_validate_addr,
11568};
11569
11570static int ipw_prom_alloc(struct ipw_priv *priv)
11571{
11572        int rc = 0;
11573
11574        if (priv->prom_net_dev)
11575                return -EPERM;
11576
11577        priv->prom_net_dev = alloc_libipw(sizeof(struct ipw_prom_priv), 1);
11578        if (priv->prom_net_dev == NULL)
11579                return -ENOMEM;
11580
11581        priv->prom_priv = libipw_priv(priv->prom_net_dev);
11582        priv->prom_priv->ieee = netdev_priv(priv->prom_net_dev);
11583        priv->prom_priv->priv = priv;
11584
11585        strcpy(priv->prom_net_dev->name, "rtap%d");
11586        memcpy(priv->prom_net_dev->dev_addr, priv->mac_addr, ETH_ALEN);
11587
11588        priv->prom_net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
11589        priv->prom_net_dev->netdev_ops = &ipw_prom_netdev_ops;
11590
11591        priv->prom_priv->ieee->iw_mode = IW_MODE_MONITOR;
11592        SET_NETDEV_DEV(priv->prom_net_dev, &priv->pci_dev->dev);
11593
11594        rc = register_netdev(priv->prom_net_dev);
11595        if (rc) {
11596                free_libipw(priv->prom_net_dev, 1);
11597                priv->prom_net_dev = NULL;
11598                return rc;
11599        }
11600
11601        return 0;
11602}
11603
11604static void ipw_prom_free(struct ipw_priv *priv)
11605{
11606        if (!priv->prom_net_dev)
11607                return;
11608
11609        unregister_netdev(priv->prom_net_dev);
11610        free_libipw(priv->prom_net_dev, 1);
11611
11612        priv->prom_net_dev = NULL;
11613}
11614
11615#endif
11616
11617static const struct net_device_ops ipw_netdev_ops = {
11618        .ndo_open               = ipw_net_open,
11619        .ndo_stop               = ipw_net_stop,
11620        .ndo_set_rx_mode        = ipw_net_set_multicast_list,
11621        .ndo_set_mac_address    = ipw_net_set_mac_address,
11622        .ndo_start_xmit         = libipw_xmit,
11623        .ndo_change_mtu         = libipw_change_mtu,
11624        .ndo_validate_addr      = eth_validate_addr,
11625};
11626
11627static int ipw_pci_probe(struct pci_dev *pdev,
11628                                   const struct pci_device_id *ent)
11629{
11630        int err = 0;
11631        struct net_device *net_dev;
11632        void __iomem *base;
11633        u32 length, val;
11634        struct ipw_priv *priv;
11635        int i;
11636
11637        net_dev = alloc_libipw(sizeof(struct ipw_priv), 0);
11638        if (net_dev == NULL) {
11639                err = -ENOMEM;
11640                goto out;
11641        }
11642
11643        priv = libipw_priv(net_dev);
11644        priv->ieee = netdev_priv(net_dev);
11645
11646        priv->net_dev = net_dev;
11647        priv->pci_dev = pdev;
11648        ipw_debug_level = debug;
11649        spin_lock_init(&priv->irq_lock);
11650        spin_lock_init(&priv->lock);
11651        for (i = 0; i < IPW_IBSS_MAC_HASH_SIZE; i++)
11652                INIT_LIST_HEAD(&priv->ibss_mac_hash[i]);
11653
11654        mutex_init(&priv->mutex);
11655        if (pci_enable_device(pdev)) {
11656                err = -ENODEV;
11657                goto out_free_libipw;
11658        }
11659
11660        pci_set_master(pdev);
11661
11662        err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
11663        if (!err)
11664                err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
11665        if (err) {
11666                printk(KERN_WARNING DRV_NAME ": No suitable DMA available.\n");
11667                goto out_pci_disable_device;
11668        }
11669
11670        pci_set_drvdata(pdev, priv);
11671
11672        err = pci_request_regions(pdev, DRV_NAME);
11673        if (err)
11674                goto out_pci_disable_device;
11675
11676        /* We disable the RETRY_TIMEOUT register (0x41) to keep
11677         * PCI Tx retries from interfering with C3 CPU state */
11678        pci_read_config_dword(pdev, 0x40, &val);
11679        if ((val & 0x0000ff00) != 0)
11680                pci_write_config_dword(pdev, 0x40, val & 0xffff00ff);
11681
11682        length = pci_resource_len(pdev, 0);
11683        priv->hw_len = length;
11684
11685        base = pci_ioremap_bar(pdev, 0);
11686        if (!base) {
11687                err = -ENODEV;
11688                goto out_pci_release_regions;
11689        }
11690
11691        priv->hw_base = base;
11692        IPW_DEBUG_INFO("pci_resource_len = 0x%08x\n", length);
11693        IPW_DEBUG_INFO("pci_resource_base = %p\n", base);
11694
11695        err = ipw_setup_deferred_work(priv);
11696        if (err) {
11697                IPW_ERROR("Unable to setup deferred work\n");
11698                goto out_iounmap;
11699        }
11700
11701        ipw_sw_reset(priv, 1);
11702
11703        err = request_irq(pdev->irq, ipw_isr, IRQF_SHARED, DRV_NAME, priv);
11704        if (err) {
11705                IPW_ERROR("Error allocating IRQ %d\n", pdev->irq);
11706                goto out_iounmap;
11707        }
11708
11709        SET_NETDEV_DEV(net_dev, &pdev->dev);
11710
11711        mutex_lock(&priv->mutex);
11712
11713        priv->ieee->hard_start_xmit = ipw_net_hard_start_xmit;
11714        priv->ieee->set_security = shim__set_security;
11715        priv->ieee->is_queue_full = ipw_net_is_queue_full;
11716
11717#ifdef CONFIG_IPW2200_QOS
11718        priv->ieee->is_qos_active = ipw_is_qos_active;
11719        priv->ieee->handle_probe_response = ipw_handle_beacon;
11720        priv->ieee->handle_beacon = ipw_handle_probe_response;
11721        priv->ieee->handle_assoc_response = ipw_handle_assoc_response;
11722#endif                          /* CONFIG_IPW2200_QOS */
11723
11724        priv->ieee->perfect_rssi = -20;
11725        priv->ieee->worst_rssi = -85;
11726
11727        net_dev->netdev_ops = &ipw_netdev_ops;
11728        priv->wireless_data.spy_data = &priv->ieee->spy_data;
11729        net_dev->wireless_data = &priv->wireless_data;
11730        net_dev->wireless_handlers = &ipw_wx_handler_def;
11731        net_dev->ethtool_ops = &ipw_ethtool_ops;
11732
11733        err = sysfs_create_group(&pdev->dev.kobj, &ipw_attribute_group);
11734        if (err) {
11735                IPW_ERROR("failed to create sysfs device attributes\n");
11736                mutex_unlock(&priv->mutex);
11737                goto out_release_irq;
11738        }
11739
11740        if (ipw_up(priv)) {
11741                mutex_unlock(&priv->mutex);
11742                err = -EIO;
11743                goto out_remove_sysfs;
11744        }
11745
11746        mutex_unlock(&priv->mutex);
11747
11748        err = ipw_wdev_init(net_dev);
11749        if (err) {
11750                IPW_ERROR("failed to register wireless device\n");
11751                goto out_remove_sysfs;
11752        }
11753
11754        err = register_netdev(net_dev);
11755        if (err) {
11756                IPW_ERROR("failed to register network device\n");
11757                goto out_unregister_wiphy;
11758        }
11759
11760#ifdef CONFIG_IPW2200_PROMISCUOUS
11761        if (rtap_iface) {
11762                err = ipw_prom_alloc(priv);
11763                if (err) {
11764                        IPW_ERROR("Failed to register promiscuous network "
11765                                  "device (error %d).\n", err);
11766                        unregister_netdev(priv->net_dev);
11767                        goto out_unregister_wiphy;
11768                }
11769        }
11770#endif
11771
11772        printk(KERN_INFO DRV_NAME ": Detected geography %s (%d 802.11bg "
11773               "channels, %d 802.11a channels)\n",
11774               priv->ieee->geo.name, priv->ieee->geo.bg_channels,
11775               priv->ieee->geo.a_channels);
11776
11777        return 0;
11778
11779      out_unregister_wiphy:
11780        wiphy_unregister(priv->ieee->wdev.wiphy);
11781        kfree(priv->ieee->a_band.channels);
11782        kfree(priv->ieee->bg_band.channels);
11783      out_remove_sysfs:
11784        sysfs_remove_group(&pdev->dev.kobj, &ipw_attribute_group);
11785      out_release_irq:
11786        free_irq(pdev->irq, priv);
11787      out_iounmap:
11788        iounmap(priv->hw_base);
11789      out_pci_release_regions:
11790        pci_release_regions(pdev);
11791      out_pci_disable_device:
11792        pci_disable_device(pdev);
11793      out_free_libipw:
11794        free_libipw(priv->net_dev, 0);
11795      out:
11796        return err;
11797}
11798
11799static void ipw_pci_remove(struct pci_dev *pdev)
11800{
11801        struct ipw_priv *priv = pci_get_drvdata(pdev);
11802        struct list_head *p, *q;
11803        int i;
11804
11805        if (!priv)
11806                return;
11807
11808        mutex_lock(&priv->mutex);
11809
11810        priv->status |= STATUS_EXIT_PENDING;
11811        ipw_down(priv);
11812        sysfs_remove_group(&pdev->dev.kobj, &ipw_attribute_group);
11813
11814        mutex_unlock(&priv->mutex);
11815
11816        unregister_netdev(priv->net_dev);
11817
11818        if (priv->rxq) {
11819                ipw_rx_queue_free(priv, priv->rxq);
11820                priv->rxq = NULL;
11821        }
11822        ipw_tx_queue_free(priv);
11823
11824        if (priv->cmdlog) {
11825                kfree(priv->cmdlog);
11826                priv->cmdlog = NULL;
11827        }
11828
11829        /* make sure all works are inactive */
11830        cancel_delayed_work_sync(&priv->adhoc_check);
11831        cancel_work_sync(&priv->associate);
11832        cancel_work_sync(&priv->disassociate);
11833        cancel_work_sync(&priv->system_config);
11834        cancel_work_sync(&priv->rx_replenish);
11835        cancel_work_sync(&priv->adapter_restart);
11836        cancel_delayed_work_sync(&priv->rf_kill);
11837        cancel_work_sync(&priv->up);
11838        cancel_work_sync(&priv->down);
11839        cancel_delayed_work_sync(&priv->request_scan);
11840        cancel_delayed_work_sync(&priv->request_direct_scan);
11841        cancel_delayed_work_sync(&priv->request_passive_scan);
11842        cancel_delayed_work_sync(&priv->scan_event);
11843        cancel_delayed_work_sync(&priv->gather_stats);
11844        cancel_work_sync(&priv->abort_scan);
11845        cancel_work_sync(&priv->roam);
11846        cancel_delayed_work_sync(&priv->scan_check);
11847        cancel_work_sync(&priv->link_up);
11848        cancel_work_sync(&priv->link_down);
11849        cancel_delayed_work_sync(&priv->led_link_on);
11850        cancel_delayed_work_sync(&priv->led_link_off);
11851        cancel_delayed_work_sync(&priv->led_act_off);
11852        cancel_work_sync(&priv->merge_networks);
11853
11854        /* Free MAC hash list for ADHOC */
11855        for (i = 0; i < IPW_IBSS_MAC_HASH_SIZE; i++) {
11856                list_for_each_safe(p, q, &priv->ibss_mac_hash[i]) {
11857                        list_del(p);
11858                        kfree(list_entry(p, struct ipw_ibss_seq, list));
11859                }
11860        }
11861
11862        kfree(priv->error);
11863        priv->error = NULL;
11864
11865#ifdef CONFIG_IPW2200_PROMISCUOUS
11866        ipw_prom_free(priv);
11867#endif
11868
11869        free_irq(pdev->irq, priv);
11870        iounmap(priv->hw_base);
11871        pci_release_regions(pdev);
11872        pci_disable_device(pdev);
11873        /* wiphy_unregister needs to be here, before free_libipw */
11874        wiphy_unregister(priv->ieee->wdev.wiphy);
11875        kfree(priv->ieee->a_band.channels);
11876        kfree(priv->ieee->bg_band.channels);
11877        free_libipw(priv->net_dev, 0);
11878        free_firmware();
11879}
11880
11881#ifdef CONFIG_PM
11882static int ipw_pci_suspend(struct pci_dev *pdev, pm_message_t state)
11883{
11884        struct ipw_priv *priv = pci_get_drvdata(pdev);
11885        struct net_device *dev = priv->net_dev;
11886
11887        printk(KERN_INFO "%s: Going into suspend...\n", dev->name);
11888
11889        /* Take down the device; powers it off, etc. */
11890        ipw_down(priv);
11891
11892        /* Remove the PRESENT state of the device */
11893        netif_device_detach(dev);
11894
11895        pci_save_state(pdev);
11896        pci_disable_device(pdev);
11897        pci_set_power_state(pdev, pci_choose_state(pdev, state));
11898
11899        priv->suspend_at = get_seconds();
11900
11901        return 0;
11902}
11903
11904static int ipw_pci_resume(struct pci_dev *pdev)
11905{
11906        struct ipw_priv *priv = pci_get_drvdata(pdev);
11907        struct net_device *dev = priv->net_dev;
11908        int err;
11909        u32 val;
11910
11911        printk(KERN_INFO "%s: Coming out of suspend...\n", dev->name);
11912
11913        pci_set_power_state(pdev, PCI_D0);
11914        err = pci_enable_device(pdev);
11915        if (err) {
11916                printk(KERN_ERR "%s: pci_enable_device failed on resume\n",
11917                       dev->name);
11918                return err;
11919        }
11920        pci_restore_state(pdev);
11921
11922        /*
11923         * Suspend/Resume resets the PCI configuration space, so we have to
11924         * re-disable the RETRY_TIMEOUT register (0x41) to keep PCI Tx retries
11925         * from interfering with C3 CPU state. pci_restore_state won't help
11926         * here since it only restores the first 64 bytes pci config header.
11927         */
11928        pci_read_config_dword(pdev, 0x40, &val);
11929        if ((val & 0x0000ff00) != 0)
11930                pci_write_config_dword(pdev, 0x40, val & 0xffff00ff);
11931
11932        /* Set the device back into the PRESENT state; this will also wake
11933         * the queue of needed */
11934        netif_device_attach(dev);
11935
11936        priv->suspend_time = get_seconds() - priv->suspend_at;
11937
11938        /* Bring the device back up */
11939        schedule_work(&priv->up);
11940
11941        return 0;
11942}
11943#endif
11944
11945static void ipw_pci_shutdown(struct pci_dev *pdev)
11946{
11947        struct ipw_priv *priv = pci_get_drvdata(pdev);
11948
11949        /* Take down the device; powers it off, etc. */
11950        ipw_down(priv);
11951
11952        pci_disable_device(pdev);
11953}
11954
11955/* driver initialization stuff */
11956static struct pci_driver ipw_driver = {
11957        .name = DRV_NAME,
11958        .id_table = card_ids,
11959        .probe = ipw_pci_probe,
11960        .remove = ipw_pci_remove,
11961#ifdef CONFIG_PM
11962        .suspend = ipw_pci_suspend,
11963        .resume = ipw_pci_resume,
11964#endif
11965        .shutdown = ipw_pci_shutdown,
11966};
11967
11968static int __init ipw_init(void)
11969{
11970        int ret;
11971
11972        printk(KERN_INFO DRV_NAME ": " DRV_DESCRIPTION ", " DRV_VERSION "\n");
11973        printk(KERN_INFO DRV_NAME ": " DRV_COPYRIGHT "\n");
11974
11975        ret = pci_register_driver(&ipw_driver);
11976        if (ret) {
11977                IPW_ERROR("Unable to initialize PCI module\n");
11978                return ret;
11979        }
11980
11981        ret = driver_create_file(&ipw_driver.driver, &driver_attr_debug_level);
11982        if (ret) {
11983                IPW_ERROR("Unable to create driver sysfs file\n");
11984                pci_unregister_driver(&ipw_driver);
11985                return ret;
11986        }
11987
11988        return ret;
11989}
11990
11991static void __exit ipw_exit(void)
11992{
11993        driver_remove_file(&ipw_driver.driver, &driver_attr_debug_level);
11994        pci_unregister_driver(&ipw_driver);
11995}
11996
11997module_param(disable, int, 0444);
11998MODULE_PARM_DESC(disable, "manually disable the radio (default 0 [radio on])");
11999
12000module_param(associate, int, 0444);
12001MODULE_PARM_DESC(associate, "auto associate when scanning (default off)");
12002
12003module_param(auto_create, int, 0444);
12004MODULE_PARM_DESC(auto_create, "auto create adhoc network (default on)");
12005
12006module_param_named(led, led_support, int, 0444);
12007MODULE_PARM_DESC(led, "enable led control on some systems (default 1 on)");
12008
12009module_param(debug, int, 0444);
12010MODULE_PARM_DESC(debug, "debug output mask");
12011
12012module_param_named(channel, default_channel, int, 0444);
12013MODULE_PARM_DESC(channel, "channel to limit associate to (default 0 [ANY])");
12014
12015#ifdef CONFIG_IPW2200_PROMISCUOUS
12016module_param(rtap_iface, int, 0444);
12017MODULE_PARM_DESC(rtap_iface, "create the rtap interface (1 - create, default 0)");
12018#endif
12019
12020#ifdef CONFIG_IPW2200_QOS
12021module_param(qos_enable, int, 0444);
12022MODULE_PARM_DESC(qos_enable, "enable all QoS functionalitis");
12023
12024module_param(qos_burst_enable, int, 0444);
12025MODULE_PARM_DESC(qos_burst_enable, "enable QoS burst mode");
12026
12027module_param(qos_no_ack_mask, int, 0444);
12028MODULE_PARM_DESC(qos_no_ack_mask, "mask Tx_Queue to no ack");
12029
12030module_param(burst_duration_CCK, int, 0444);
12031MODULE_PARM_DESC(burst_duration_CCK, "set CCK burst value");
12032
12033module_param(burst_duration_OFDM, int, 0444);
12034MODULE_PARM_DESC(burst_duration_OFDM, "set OFDM burst value");
12035#endif                          /* CONFIG_IPW2200_QOS */
12036
12037#ifdef CONFIG_IPW2200_MONITOR
12038module_param_named(mode, network_mode, int, 0444);
12039MODULE_PARM_DESC(mode, "network mode (0=BSS,1=IBSS,2=Monitor)");
12040#else
12041module_param_named(mode, network_mode, int, 0444);
12042MODULE_PARM_DESC(mode, "network mode (0=BSS,1=IBSS)");
12043#endif
12044
12045module_param(bt_coexist, int, 0444);
12046MODULE_PARM_DESC(bt_coexist, "enable bluetooth coexistence (default off)");
12047
12048module_param(hwcrypto, int, 0444);
12049MODULE_PARM_DESC(hwcrypto, "enable hardware crypto (default off)");
12050
12051module_param(cmdlog, int, 0444);
12052MODULE_PARM_DESC(cmdlog,
12053                 "allocate a ring buffer for logging firmware commands");
12054
12055module_param(roaming, int, 0444);
12056MODULE_PARM_DESC(roaming, "enable roaming support (default on)");
12057
12058module_param(antenna, int, 0444);
12059MODULE_PARM_DESC(antenna, "select antenna 1=Main, 3=Aux, default 0 [both], 2=slow_diversity (choose the one with lower background noise)");
12060
12061module_exit(ipw_exit);
12062module_init(ipw_init);
12063