linux/drivers/pci/pci.c
<<
>>
Prefs
   1/*
   2 *      PCI Bus Services, see include/linux/pci.h for further explanation.
   3 *
   4 *      Copyright 1993 -- 1997 Drew Eckhardt, Frederic Potter,
   5 *      David Mosberger-Tang
   6 *
   7 *      Copyright 1997 -- 2000 Martin Mares <mj@ucw.cz>
   8 */
   9
  10#include <linux/kernel.h>
  11#include <linux/delay.h>
  12#include <linux/init.h>
  13#include <linux/pci.h>
  14#include <linux/pm.h>
  15#include <linux/slab.h>
  16#include <linux/module.h>
  17#include <linux/spinlock.h>
  18#include <linux/string.h>
  19#include <linux/log2.h>
  20#include <linux/pci-aspm.h>
  21#include <linux/pm_wakeup.h>
  22#include <linux/interrupt.h>
  23#include <linux/device.h>
  24#include <linux/pm_runtime.h>
  25#include <linux/pci_hotplug.h>
  26#include <asm-generic/pci-bridge.h>
  27#include <asm/setup.h>
  28#include "pci.h"
  29
  30const char *pci_power_names[] = {
  31        "error", "D0", "D1", "D2", "D3hot", "D3cold", "unknown",
  32};
  33EXPORT_SYMBOL_GPL(pci_power_names);
  34
  35int isa_dma_bridge_buggy;
  36EXPORT_SYMBOL(isa_dma_bridge_buggy);
  37
  38int pci_pci_problems;
  39EXPORT_SYMBOL(pci_pci_problems);
  40
  41unsigned int pci_pm_d3_delay;
  42
  43static void pci_pme_list_scan(struct work_struct *work);
  44
  45static LIST_HEAD(pci_pme_list);
  46static DEFINE_MUTEX(pci_pme_list_mutex);
  47static DECLARE_DELAYED_WORK(pci_pme_work, pci_pme_list_scan);
  48
  49struct pci_pme_device {
  50        struct list_head list;
  51        struct pci_dev *dev;
  52};
  53
  54#define PME_TIMEOUT 1000 /* How long between PME checks */
  55
  56static void pci_dev_d3_sleep(struct pci_dev *dev)
  57{
  58        unsigned int delay = dev->d3_delay;
  59
  60        if (delay < pci_pm_d3_delay)
  61                delay = pci_pm_d3_delay;
  62
  63        msleep(delay);
  64}
  65
  66#ifdef CONFIG_PCI_DOMAINS
  67int pci_domains_supported = 1;
  68#endif
  69
  70#define DEFAULT_CARDBUS_IO_SIZE         (256)
  71#define DEFAULT_CARDBUS_MEM_SIZE        (64*1024*1024)
  72/* pci=cbmemsize=nnM,cbiosize=nn can override this */
  73unsigned long pci_cardbus_io_size = DEFAULT_CARDBUS_IO_SIZE;
  74unsigned long pci_cardbus_mem_size = DEFAULT_CARDBUS_MEM_SIZE;
  75
  76#define DEFAULT_HOTPLUG_IO_SIZE         (256)
  77#define DEFAULT_HOTPLUG_MEM_SIZE        (2*1024*1024)
  78/* pci=hpmemsize=nnM,hpiosize=nn can override this */
  79unsigned long pci_hotplug_io_size  = DEFAULT_HOTPLUG_IO_SIZE;
  80unsigned long pci_hotplug_mem_size = DEFAULT_HOTPLUG_MEM_SIZE;
  81
  82enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_TUNE_OFF;
  83
  84/*
  85 * The default CLS is used if arch didn't set CLS explicitly and not
  86 * all pci devices agree on the same value.  Arch can override either
  87 * the dfl or actual value as it sees fit.  Don't forget this is
  88 * measured in 32-bit words, not bytes.
  89 */
  90u8 pci_dfl_cache_line_size = L1_CACHE_BYTES >> 2;
  91u8 pci_cache_line_size;
  92
  93/*
  94 * If we set up a device for bus mastering, we need to check the latency
  95 * timer as certain BIOSes forget to set it properly.
  96 */
  97unsigned int pcibios_max_latency = 255;
  98
  99/* If set, the PCIe ARI capability will not be used. */
 100static bool pcie_ari_disabled;
 101
 102/**
 103 * pci_bus_max_busnr - returns maximum PCI bus number of given bus' children
 104 * @bus: pointer to PCI bus structure to search
 105 *
 106 * Given a PCI bus, returns the highest PCI bus number present in the set
 107 * including the given PCI bus and its list of child PCI buses.
 108 */
 109unsigned char pci_bus_max_busnr(struct pci_bus *bus)
 110{
 111        struct pci_bus *tmp;
 112        unsigned char max, n;
 113
 114        max = bus->busn_res.end;
 115        list_for_each_entry(tmp, &bus->children, node) {
 116                n = pci_bus_max_busnr(tmp);
 117                if (n > max)
 118                        max = n;
 119        }
 120        return max;
 121}
 122EXPORT_SYMBOL_GPL(pci_bus_max_busnr);
 123
 124#ifdef CONFIG_HAS_IOMEM
 125void __iomem *pci_ioremap_bar(struct pci_dev *pdev, int bar)
 126{
 127        /*
 128         * Make sure the BAR is actually a memory resource, not an IO resource
 129         */
 130        if (!(pci_resource_flags(pdev, bar) & IORESOURCE_MEM)) {
 131                WARN_ON(1);
 132                return NULL;
 133        }
 134        return ioremap_nocache(pci_resource_start(pdev, bar),
 135                                     pci_resource_len(pdev, bar));
 136}
 137EXPORT_SYMBOL_GPL(pci_ioremap_bar);
 138#endif
 139
 140#define PCI_FIND_CAP_TTL        48
 141
 142static int __pci_find_next_cap_ttl(struct pci_bus *bus, unsigned int devfn,
 143                                   u8 pos, int cap, int *ttl)
 144{
 145        u8 id;
 146
 147        while ((*ttl)--) {
 148                pci_bus_read_config_byte(bus, devfn, pos, &pos);
 149                if (pos < 0x40)
 150                        break;
 151                pos &= ~3;
 152                pci_bus_read_config_byte(bus, devfn, pos + PCI_CAP_LIST_ID,
 153                                         &id);
 154                if (id == 0xff)
 155                        break;
 156                if (id == cap)
 157                        return pos;
 158                pos += PCI_CAP_LIST_NEXT;
 159        }
 160        return 0;
 161}
 162
 163static int __pci_find_next_cap(struct pci_bus *bus, unsigned int devfn,
 164                               u8 pos, int cap)
 165{
 166        int ttl = PCI_FIND_CAP_TTL;
 167
 168        return __pci_find_next_cap_ttl(bus, devfn, pos, cap, &ttl);
 169}
 170
 171int pci_find_next_capability(struct pci_dev *dev, u8 pos, int cap)
 172{
 173        return __pci_find_next_cap(dev->bus, dev->devfn,
 174                                   pos + PCI_CAP_LIST_NEXT, cap);
 175}
 176EXPORT_SYMBOL_GPL(pci_find_next_capability);
 177
 178static int __pci_bus_find_cap_start(struct pci_bus *bus,
 179                                    unsigned int devfn, u8 hdr_type)
 180{
 181        u16 status;
 182
 183        pci_bus_read_config_word(bus, devfn, PCI_STATUS, &status);
 184        if (!(status & PCI_STATUS_CAP_LIST))
 185                return 0;
 186
 187        switch (hdr_type) {
 188        case PCI_HEADER_TYPE_NORMAL:
 189        case PCI_HEADER_TYPE_BRIDGE:
 190                return PCI_CAPABILITY_LIST;
 191        case PCI_HEADER_TYPE_CARDBUS:
 192                return PCI_CB_CAPABILITY_LIST;
 193        default:
 194                return 0;
 195        }
 196
 197        return 0;
 198}
 199
 200/**
 201 * pci_find_capability - query for devices' capabilities
 202 * @dev: PCI device to query
 203 * @cap: capability code
 204 *
 205 * Tell if a device supports a given PCI capability.
 206 * Returns the address of the requested capability structure within the
 207 * device's PCI configuration space or 0 in case the device does not
 208 * support it.  Possible values for @cap:
 209 *
 210 *  %PCI_CAP_ID_PM           Power Management
 211 *  %PCI_CAP_ID_AGP          Accelerated Graphics Port
 212 *  %PCI_CAP_ID_VPD          Vital Product Data
 213 *  %PCI_CAP_ID_SLOTID       Slot Identification
 214 *  %PCI_CAP_ID_MSI          Message Signalled Interrupts
 215 *  %PCI_CAP_ID_CHSWP        CompactPCI HotSwap
 216 *  %PCI_CAP_ID_PCIX         PCI-X
 217 *  %PCI_CAP_ID_EXP          PCI Express
 218 */
 219int pci_find_capability(struct pci_dev *dev, int cap)
 220{
 221        int pos;
 222
 223        pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
 224        if (pos)
 225                pos = __pci_find_next_cap(dev->bus, dev->devfn, pos, cap);
 226
 227        return pos;
 228}
 229EXPORT_SYMBOL(pci_find_capability);
 230
 231/**
 232 * pci_bus_find_capability - query for devices' capabilities
 233 * @bus:   the PCI bus to query
 234 * @devfn: PCI device to query
 235 * @cap:   capability code
 236 *
 237 * Like pci_find_capability() but works for pci devices that do not have a
 238 * pci_dev structure set up yet.
 239 *
 240 * Returns the address of the requested capability structure within the
 241 * device's PCI configuration space or 0 in case the device does not
 242 * support it.
 243 */
 244int pci_bus_find_capability(struct pci_bus *bus, unsigned int devfn, int cap)
 245{
 246        int pos;
 247        u8 hdr_type;
 248
 249        pci_bus_read_config_byte(bus, devfn, PCI_HEADER_TYPE, &hdr_type);
 250
 251        pos = __pci_bus_find_cap_start(bus, devfn, hdr_type & 0x7f);
 252        if (pos)
 253                pos = __pci_find_next_cap(bus, devfn, pos, cap);
 254
 255        return pos;
 256}
 257EXPORT_SYMBOL(pci_bus_find_capability);
 258
 259/**
 260 * pci_find_next_ext_capability - Find an extended capability
 261 * @dev: PCI device to query
 262 * @start: address at which to start looking (0 to start at beginning of list)
 263 * @cap: capability code
 264 *
 265 * Returns the address of the next matching extended capability structure
 266 * within the device's PCI configuration space or 0 if the device does
 267 * not support it.  Some capabilities can occur several times, e.g., the
 268 * vendor-specific capability, and this provides a way to find them all.
 269 */
 270int pci_find_next_ext_capability(struct pci_dev *dev, int start, int cap)
 271{
 272        u32 header;
 273        int ttl;
 274        int pos = PCI_CFG_SPACE_SIZE;
 275
 276        /* minimum 8 bytes per capability */
 277        ttl = (PCI_CFG_SPACE_EXP_SIZE - PCI_CFG_SPACE_SIZE) / 8;
 278
 279        if (dev->cfg_size <= PCI_CFG_SPACE_SIZE)
 280                return 0;
 281
 282        if (start)
 283                pos = start;
 284
 285        if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
 286                return 0;
 287
 288        /*
 289         * If we have no capabilities, this is indicated by cap ID,
 290         * cap version and next pointer all being 0.
 291         */
 292        if (header == 0)
 293                return 0;
 294
 295        while (ttl-- > 0) {
 296                if (PCI_EXT_CAP_ID(header) == cap && pos != start)
 297                        return pos;
 298
 299                pos = PCI_EXT_CAP_NEXT(header);
 300                if (pos < PCI_CFG_SPACE_SIZE)
 301                        break;
 302
 303                if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
 304                        break;
 305        }
 306
 307        return 0;
 308}
 309EXPORT_SYMBOL_GPL(pci_find_next_ext_capability);
 310
 311/**
 312 * pci_find_ext_capability - Find an extended capability
 313 * @dev: PCI device to query
 314 * @cap: capability code
 315 *
 316 * Returns the address of the requested extended capability structure
 317 * within the device's PCI configuration space or 0 if the device does
 318 * not support it.  Possible values for @cap:
 319 *
 320 *  %PCI_EXT_CAP_ID_ERR         Advanced Error Reporting
 321 *  %PCI_EXT_CAP_ID_VC          Virtual Channel
 322 *  %PCI_EXT_CAP_ID_DSN         Device Serial Number
 323 *  %PCI_EXT_CAP_ID_PWR         Power Budgeting
 324 */
 325int pci_find_ext_capability(struct pci_dev *dev, int cap)
 326{
 327        return pci_find_next_ext_capability(dev, 0, cap);
 328}
 329EXPORT_SYMBOL_GPL(pci_find_ext_capability);
 330
 331static int __pci_find_next_ht_cap(struct pci_dev *dev, int pos, int ht_cap)
 332{
 333        int rc, ttl = PCI_FIND_CAP_TTL;
 334        u8 cap, mask;
 335
 336        if (ht_cap == HT_CAPTYPE_SLAVE || ht_cap == HT_CAPTYPE_HOST)
 337                mask = HT_3BIT_CAP_MASK;
 338        else
 339                mask = HT_5BIT_CAP_MASK;
 340
 341        pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, pos,
 342                                      PCI_CAP_ID_HT, &ttl);
 343        while (pos) {
 344                rc = pci_read_config_byte(dev, pos + 3, &cap);
 345                if (rc != PCIBIOS_SUCCESSFUL)
 346                        return 0;
 347
 348                if ((cap & mask) == ht_cap)
 349                        return pos;
 350
 351                pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn,
 352                                              pos + PCI_CAP_LIST_NEXT,
 353                                              PCI_CAP_ID_HT, &ttl);
 354        }
 355
 356        return 0;
 357}
 358/**
 359 * pci_find_next_ht_capability - query a device's Hypertransport capabilities
 360 * @dev: PCI device to query
 361 * @pos: Position from which to continue searching
 362 * @ht_cap: Hypertransport capability code
 363 *
 364 * To be used in conjunction with pci_find_ht_capability() to search for
 365 * all capabilities matching @ht_cap. @pos should always be a value returned
 366 * from pci_find_ht_capability().
 367 *
 368 * NB. To be 100% safe against broken PCI devices, the caller should take
 369 * steps to avoid an infinite loop.
 370 */
 371int pci_find_next_ht_capability(struct pci_dev *dev, int pos, int ht_cap)
 372{
 373        return __pci_find_next_ht_cap(dev, pos + PCI_CAP_LIST_NEXT, ht_cap);
 374}
 375EXPORT_SYMBOL_GPL(pci_find_next_ht_capability);
 376
 377/**
 378 * pci_find_ht_capability - query a device's Hypertransport capabilities
 379 * @dev: PCI device to query
 380 * @ht_cap: Hypertransport capability code
 381 *
 382 * Tell if a device supports a given Hypertransport capability.
 383 * Returns an address within the device's PCI configuration space
 384 * or 0 in case the device does not support the request capability.
 385 * The address points to the PCI capability, of type PCI_CAP_ID_HT,
 386 * which has a Hypertransport capability matching @ht_cap.
 387 */
 388int pci_find_ht_capability(struct pci_dev *dev, int ht_cap)
 389{
 390        int pos;
 391
 392        pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
 393        if (pos)
 394                pos = __pci_find_next_ht_cap(dev, pos, ht_cap);
 395
 396        return pos;
 397}
 398EXPORT_SYMBOL_GPL(pci_find_ht_capability);
 399
 400/**
 401 * pci_find_parent_resource - return resource region of parent bus of given region
 402 * @dev: PCI device structure contains resources to be searched
 403 * @res: child resource record for which parent is sought
 404 *
 405 *  For given resource region of given device, return the resource
 406 *  region of parent bus the given region is contained in.
 407 */
 408struct resource *pci_find_parent_resource(const struct pci_dev *dev,
 409                                          struct resource *res)
 410{
 411        const struct pci_bus *bus = dev->bus;
 412        struct resource *r;
 413        int i;
 414
 415        pci_bus_for_each_resource(bus, r, i) {
 416                if (!r)
 417                        continue;
 418                if (res->start && resource_contains(r, res)) {
 419
 420                        /*
 421                         * If the window is prefetchable but the BAR is
 422                         * not, the allocator made a mistake.
 423                         */
 424                        if (r->flags & IORESOURCE_PREFETCH &&
 425                            !(res->flags & IORESOURCE_PREFETCH))
 426                                return NULL;
 427
 428                        /*
 429                         * If we're below a transparent bridge, there may
 430                         * be both a positively-decoded aperture and a
 431                         * subtractively-decoded region that contain the BAR.
 432                         * We want the positively-decoded one, so this depends
 433                         * on pci_bus_for_each_resource() giving us those
 434                         * first.
 435                         */
 436                        return r;
 437                }
 438        }
 439        return NULL;
 440}
 441EXPORT_SYMBOL(pci_find_parent_resource);
 442
 443/**
 444 * pci_wait_for_pending - wait for @mask bit(s) to clear in status word @pos
 445 * @dev: the PCI device to operate on
 446 * @pos: config space offset of status word
 447 * @mask: mask of bit(s) to care about in status word
 448 *
 449 * Return 1 when mask bit(s) in status word clear, 0 otherwise.
 450 */
 451int pci_wait_for_pending(struct pci_dev *dev, int pos, u16 mask)
 452{
 453        int i;
 454
 455        /* Wait for Transaction Pending bit clean */
 456        for (i = 0; i < 4; i++) {
 457                u16 status;
 458                if (i)
 459                        msleep((1 << (i - 1)) * 100);
 460
 461                pci_read_config_word(dev, pos, &status);
 462                if (!(status & mask))
 463                        return 1;
 464        }
 465
 466        return 0;
 467}
 468
 469/**
 470 * pci_restore_bars - restore a devices BAR values (e.g. after wake-up)
 471 * @dev: PCI device to have its BARs restored
 472 *
 473 * Restore the BAR values for a given device, so as to make it
 474 * accessible by its driver.
 475 */
 476static void pci_restore_bars(struct pci_dev *dev)
 477{
 478        int i;
 479
 480        for (i = 0; i < PCI_BRIDGE_RESOURCES; i++)
 481                pci_update_resource(dev, i);
 482}
 483
 484static struct pci_platform_pm_ops *pci_platform_pm;
 485
 486int pci_set_platform_pm(struct pci_platform_pm_ops *ops)
 487{
 488        if (!ops->is_manageable || !ops->set_state || !ops->choose_state
 489            || !ops->sleep_wake)
 490                return -EINVAL;
 491        pci_platform_pm = ops;
 492        return 0;
 493}
 494
 495static inline bool platform_pci_power_manageable(struct pci_dev *dev)
 496{
 497        return pci_platform_pm ? pci_platform_pm->is_manageable(dev) : false;
 498}
 499
 500static inline int platform_pci_set_power_state(struct pci_dev *dev,
 501                                               pci_power_t t)
 502{
 503        return pci_platform_pm ? pci_platform_pm->set_state(dev, t) : -ENOSYS;
 504}
 505
 506static inline pci_power_t platform_pci_choose_state(struct pci_dev *dev)
 507{
 508        return pci_platform_pm ?
 509                        pci_platform_pm->choose_state(dev) : PCI_POWER_ERROR;
 510}
 511
 512static inline int platform_pci_sleep_wake(struct pci_dev *dev, bool enable)
 513{
 514        return pci_platform_pm ?
 515                        pci_platform_pm->sleep_wake(dev, enable) : -ENODEV;
 516}
 517
 518static inline int platform_pci_run_wake(struct pci_dev *dev, bool enable)
 519{
 520        return pci_platform_pm ?
 521                        pci_platform_pm->run_wake(dev, enable) : -ENODEV;
 522}
 523
 524/**
 525 * pci_raw_set_power_state - Use PCI PM registers to set the power state of
 526 *                           given PCI device
 527 * @dev: PCI device to handle.
 528 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
 529 *
 530 * RETURN VALUE:
 531 * -EINVAL if the requested state is invalid.
 532 * -EIO if device does not support PCI PM or its PM capabilities register has a
 533 * wrong version, or device doesn't support the requested state.
 534 * 0 if device already is in the requested state.
 535 * 0 if device's power state has been successfully changed.
 536 */
 537static int pci_raw_set_power_state(struct pci_dev *dev, pci_power_t state)
 538{
 539        u16 pmcsr;
 540        bool need_restore = false;
 541
 542        /* Check if we're already there */
 543        if (dev->current_state == state)
 544                return 0;
 545
 546        if (!dev->pm_cap)
 547                return -EIO;
 548
 549        if (state < PCI_D0 || state > PCI_D3hot)
 550                return -EINVAL;
 551
 552        /* Validate current state:
 553         * Can enter D0 from any state, but if we can only go deeper
 554         * to sleep if we're already in a low power state
 555         */
 556        if (state != PCI_D0 && dev->current_state <= PCI_D3cold
 557            && dev->current_state > state) {
 558                dev_err(&dev->dev, "invalid power transition (from state %d to %d)\n",
 559                        dev->current_state, state);
 560                return -EINVAL;
 561        }
 562
 563        /* check if this device supports the desired state */
 564        if ((state == PCI_D1 && !dev->d1_support)
 565           || (state == PCI_D2 && !dev->d2_support))
 566                return -EIO;
 567
 568        pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
 569
 570        /* If we're (effectively) in D3, force entire word to 0.
 571         * This doesn't affect PME_Status, disables PME_En, and
 572         * sets PowerState to 0.
 573         */
 574        switch (dev->current_state) {
 575        case PCI_D0:
 576        case PCI_D1:
 577        case PCI_D2:
 578                pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
 579                pmcsr |= state;
 580                break;
 581        case PCI_D3hot:
 582        case PCI_D3cold:
 583        case PCI_UNKNOWN: /* Boot-up */
 584                if ((pmcsr & PCI_PM_CTRL_STATE_MASK) == PCI_D3hot
 585                 && !(pmcsr & PCI_PM_CTRL_NO_SOFT_RESET))
 586                        need_restore = true;
 587                /* Fall-through: force to D0 */
 588        default:
 589                pmcsr = 0;
 590                break;
 591        }
 592
 593        /* enter specified state */
 594        pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
 595
 596        /* Mandatory power management transition delays */
 597        /* see PCI PM 1.1 5.6.1 table 18 */
 598        if (state == PCI_D3hot || dev->current_state == PCI_D3hot)
 599                pci_dev_d3_sleep(dev);
 600        else if (state == PCI_D2 || dev->current_state == PCI_D2)
 601                udelay(PCI_PM_D2_DELAY);
 602
 603        pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
 604        dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
 605        if (dev->current_state != state && printk_ratelimit())
 606                dev_info(&dev->dev, "Refused to change power state, currently in D%d\n",
 607                         dev->current_state);
 608
 609        /*
 610         * According to section 5.4.1 of the "PCI BUS POWER MANAGEMENT
 611         * INTERFACE SPECIFICATION, REV. 1.2", a device transitioning
 612         * from D3hot to D0 _may_ perform an internal reset, thereby
 613         * going to "D0 Uninitialized" rather than "D0 Initialized".
 614         * For example, at least some versions of the 3c905B and the
 615         * 3c556B exhibit this behaviour.
 616         *
 617         * At least some laptop BIOSen (e.g. the Thinkpad T21) leave
 618         * devices in a D3hot state at boot.  Consequently, we need to
 619         * restore at least the BARs so that the device will be
 620         * accessible to its driver.
 621         */
 622        if (need_restore)
 623                pci_restore_bars(dev);
 624
 625        if (dev->bus->self)
 626                pcie_aspm_pm_state_change(dev->bus->self);
 627
 628        return 0;
 629}
 630
 631/**
 632 * pci_update_current_state - Read PCI power state of given device from its
 633 *                            PCI PM registers and cache it
 634 * @dev: PCI device to handle.
 635 * @state: State to cache in case the device doesn't have the PM capability
 636 */
 637void pci_update_current_state(struct pci_dev *dev, pci_power_t state)
 638{
 639        if (dev->pm_cap) {
 640                u16 pmcsr;
 641
 642                /*
 643                 * Configuration space is not accessible for device in
 644                 * D3cold, so just keep or set D3cold for safety
 645                 */
 646                if (dev->current_state == PCI_D3cold)
 647                        return;
 648                if (state == PCI_D3cold) {
 649                        dev->current_state = PCI_D3cold;
 650                        return;
 651                }
 652                pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
 653                dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
 654        } else {
 655                dev->current_state = state;
 656        }
 657}
 658
 659/**
 660 * pci_power_up - Put the given device into D0 forcibly
 661 * @dev: PCI device to power up
 662 */
 663void pci_power_up(struct pci_dev *dev)
 664{
 665        if (platform_pci_power_manageable(dev))
 666                platform_pci_set_power_state(dev, PCI_D0);
 667
 668        pci_raw_set_power_state(dev, PCI_D0);
 669        pci_update_current_state(dev, PCI_D0);
 670}
 671
 672/**
 673 * pci_platform_power_transition - Use platform to change device power state
 674 * @dev: PCI device to handle.
 675 * @state: State to put the device into.
 676 */
 677static int pci_platform_power_transition(struct pci_dev *dev, pci_power_t state)
 678{
 679        int error;
 680
 681        if (platform_pci_power_manageable(dev)) {
 682                error = platform_pci_set_power_state(dev, state);
 683                if (!error)
 684                        pci_update_current_state(dev, state);
 685        } else
 686                error = -ENODEV;
 687
 688        if (error && !dev->pm_cap) /* Fall back to PCI_D0 */
 689                dev->current_state = PCI_D0;
 690
 691        return error;
 692}
 693
 694/**
 695 * pci_wakeup - Wake up a PCI device
 696 * @pci_dev: Device to handle.
 697 * @ign: ignored parameter
 698 */
 699static int pci_wakeup(struct pci_dev *pci_dev, void *ign)
 700{
 701        pci_wakeup_event(pci_dev);
 702        pm_request_resume(&pci_dev->dev);
 703        return 0;
 704}
 705
 706/**
 707 * pci_wakeup_bus - Walk given bus and wake up devices on it
 708 * @bus: Top bus of the subtree to walk.
 709 */
 710static void pci_wakeup_bus(struct pci_bus *bus)
 711{
 712        if (bus)
 713                pci_walk_bus(bus, pci_wakeup, NULL);
 714}
 715
 716/**
 717 * __pci_start_power_transition - Start power transition of a PCI device
 718 * @dev: PCI device to handle.
 719 * @state: State to put the device into.
 720 */
 721static void __pci_start_power_transition(struct pci_dev *dev, pci_power_t state)
 722{
 723        if (state == PCI_D0) {
 724                pci_platform_power_transition(dev, PCI_D0);
 725                /*
 726                 * Mandatory power management transition delays, see
 727                 * PCI Express Base Specification Revision 2.0 Section
 728                 * 6.6.1: Conventional Reset.  Do not delay for
 729                 * devices powered on/off by corresponding bridge,
 730                 * because have already delayed for the bridge.
 731                 */
 732                if (dev->runtime_d3cold) {
 733                        msleep(dev->d3cold_delay);
 734                        /*
 735                         * When powering on a bridge from D3cold, the
 736                         * whole hierarchy may be powered on into
 737                         * D0uninitialized state, resume them to give
 738                         * them a chance to suspend again
 739                         */
 740                        pci_wakeup_bus(dev->subordinate);
 741                }
 742        }
 743}
 744
 745/**
 746 * __pci_dev_set_current_state - Set current state of a PCI device
 747 * @dev: Device to handle
 748 * @data: pointer to state to be set
 749 */
 750static int __pci_dev_set_current_state(struct pci_dev *dev, void *data)
 751{
 752        pci_power_t state = *(pci_power_t *)data;
 753
 754        dev->current_state = state;
 755        return 0;
 756}
 757
 758/**
 759 * __pci_bus_set_current_state - Walk given bus and set current state of devices
 760 * @bus: Top bus of the subtree to walk.
 761 * @state: state to be set
 762 */
 763static void __pci_bus_set_current_state(struct pci_bus *bus, pci_power_t state)
 764{
 765        if (bus)
 766                pci_walk_bus(bus, __pci_dev_set_current_state, &state);
 767}
 768
 769/**
 770 * __pci_complete_power_transition - Complete power transition of a PCI device
 771 * @dev: PCI device to handle.
 772 * @state: State to put the device into.
 773 *
 774 * This function should not be called directly by device drivers.
 775 */
 776int __pci_complete_power_transition(struct pci_dev *dev, pci_power_t state)
 777{
 778        int ret;
 779
 780        if (state <= PCI_D0)
 781                return -EINVAL;
 782        ret = pci_platform_power_transition(dev, state);
 783        /* Power off the bridge may power off the whole hierarchy */
 784        if (!ret && state == PCI_D3cold)
 785                __pci_bus_set_current_state(dev->subordinate, PCI_D3cold);
 786        return ret;
 787}
 788EXPORT_SYMBOL_GPL(__pci_complete_power_transition);
 789
 790/**
 791 * pci_set_power_state - Set the power state of a PCI device
 792 * @dev: PCI device to handle.
 793 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
 794 *
 795 * Transition a device to a new power state, using the platform firmware and/or
 796 * the device's PCI PM registers.
 797 *
 798 * RETURN VALUE:
 799 * -EINVAL if the requested state is invalid.
 800 * -EIO if device does not support PCI PM or its PM capabilities register has a
 801 * wrong version, or device doesn't support the requested state.
 802 * 0 if device already is in the requested state.
 803 * 0 if device's power state has been successfully changed.
 804 */
 805int pci_set_power_state(struct pci_dev *dev, pci_power_t state)
 806{
 807        int error;
 808
 809        /* bound the state we're entering */
 810        if (state > PCI_D3cold)
 811                state = PCI_D3cold;
 812        else if (state < PCI_D0)
 813                state = PCI_D0;
 814        else if ((state == PCI_D1 || state == PCI_D2) && pci_no_d1d2(dev))
 815                /*
 816                 * If the device or the parent bridge do not support PCI PM,
 817                 * ignore the request if we're doing anything other than putting
 818                 * it into D0 (which would only happen on boot).
 819                 */
 820                return 0;
 821
 822        /* Check if we're already there */
 823        if (dev->current_state == state)
 824                return 0;
 825
 826        __pci_start_power_transition(dev, state);
 827
 828        /* This device is quirked not to be put into D3, so
 829           don't put it in D3 */
 830        if (state >= PCI_D3hot && (dev->dev_flags & PCI_DEV_FLAGS_NO_D3))
 831                return 0;
 832
 833        /*
 834         * To put device in D3cold, we put device into D3hot in native
 835         * way, then put device into D3cold with platform ops
 836         */
 837        error = pci_raw_set_power_state(dev, state > PCI_D3hot ?
 838                                        PCI_D3hot : state);
 839
 840        if (!__pci_complete_power_transition(dev, state))
 841                error = 0;
 842
 843        return error;
 844}
 845EXPORT_SYMBOL(pci_set_power_state);
 846
 847/**
 848 * pci_choose_state - Choose the power state of a PCI device
 849 * @dev: PCI device to be suspended
 850 * @state: target sleep state for the whole system. This is the value
 851 *      that is passed to suspend() function.
 852 *
 853 * Returns PCI power state suitable for given device and given system
 854 * message.
 855 */
 856
 857pci_power_t pci_choose_state(struct pci_dev *dev, pm_message_t state)
 858{
 859        pci_power_t ret;
 860
 861        if (!dev->pm_cap)
 862                return PCI_D0;
 863
 864        ret = platform_pci_choose_state(dev);
 865        if (ret != PCI_POWER_ERROR)
 866                return ret;
 867
 868        switch (state.event) {
 869        case PM_EVENT_ON:
 870                return PCI_D0;
 871        case PM_EVENT_FREEZE:
 872        case PM_EVENT_PRETHAW:
 873                /* REVISIT both freeze and pre-thaw "should" use D0 */
 874        case PM_EVENT_SUSPEND:
 875        case PM_EVENT_HIBERNATE:
 876                return PCI_D3hot;
 877        default:
 878                dev_info(&dev->dev, "unrecognized suspend event %d\n",
 879                         state.event);
 880                BUG();
 881        }
 882        return PCI_D0;
 883}
 884EXPORT_SYMBOL(pci_choose_state);
 885
 886#define PCI_EXP_SAVE_REGS       7
 887
 888static struct pci_cap_saved_state *_pci_find_saved_cap(struct pci_dev *pci_dev,
 889                                                       u16 cap, bool extended)
 890{
 891        struct pci_cap_saved_state *tmp;
 892
 893        hlist_for_each_entry(tmp, &pci_dev->saved_cap_space, next) {
 894                if (tmp->cap.cap_extended == extended && tmp->cap.cap_nr == cap)
 895                        return tmp;
 896        }
 897        return NULL;
 898}
 899
 900struct pci_cap_saved_state *pci_find_saved_cap(struct pci_dev *dev, char cap)
 901{
 902        return _pci_find_saved_cap(dev, cap, false);
 903}
 904
 905struct pci_cap_saved_state *pci_find_saved_ext_cap(struct pci_dev *dev, u16 cap)
 906{
 907        return _pci_find_saved_cap(dev, cap, true);
 908}
 909
 910static int pci_save_pcie_state(struct pci_dev *dev)
 911{
 912        int i = 0;
 913        struct pci_cap_saved_state *save_state;
 914        u16 *cap;
 915
 916        if (!pci_is_pcie(dev))
 917                return 0;
 918
 919        save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
 920        if (!save_state) {
 921                dev_err(&dev->dev, "buffer not found in %s\n", __func__);
 922                return -ENOMEM;
 923        }
 924
 925        cap = (u16 *)&save_state->cap.data[0];
 926        pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &cap[i++]);
 927        pcie_capability_read_word(dev, PCI_EXP_LNKCTL, &cap[i++]);
 928        pcie_capability_read_word(dev, PCI_EXP_SLTCTL, &cap[i++]);
 929        pcie_capability_read_word(dev, PCI_EXP_RTCTL,  &cap[i++]);
 930        pcie_capability_read_word(dev, PCI_EXP_DEVCTL2, &cap[i++]);
 931        pcie_capability_read_word(dev, PCI_EXP_LNKCTL2, &cap[i++]);
 932        pcie_capability_read_word(dev, PCI_EXP_SLTCTL2, &cap[i++]);
 933
 934        return 0;
 935}
 936
 937static void pci_restore_pcie_state(struct pci_dev *dev)
 938{
 939        int i = 0;
 940        struct pci_cap_saved_state *save_state;
 941        u16 *cap;
 942
 943        save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
 944        if (!save_state)
 945                return;
 946
 947        cap = (u16 *)&save_state->cap.data[0];
 948        pcie_capability_write_word(dev, PCI_EXP_DEVCTL, cap[i++]);
 949        pcie_capability_write_word(dev, PCI_EXP_LNKCTL, cap[i++]);
 950        pcie_capability_write_word(dev, PCI_EXP_SLTCTL, cap[i++]);
 951        pcie_capability_write_word(dev, PCI_EXP_RTCTL, cap[i++]);
 952        pcie_capability_write_word(dev, PCI_EXP_DEVCTL2, cap[i++]);
 953        pcie_capability_write_word(dev, PCI_EXP_LNKCTL2, cap[i++]);
 954        pcie_capability_write_word(dev, PCI_EXP_SLTCTL2, cap[i++]);
 955}
 956
 957
 958static int pci_save_pcix_state(struct pci_dev *dev)
 959{
 960        int pos;
 961        struct pci_cap_saved_state *save_state;
 962
 963        pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
 964        if (pos <= 0)
 965                return 0;
 966
 967        save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
 968        if (!save_state) {
 969                dev_err(&dev->dev, "buffer not found in %s\n", __func__);
 970                return -ENOMEM;
 971        }
 972
 973        pci_read_config_word(dev, pos + PCI_X_CMD,
 974                             (u16 *)save_state->cap.data);
 975
 976        return 0;
 977}
 978
 979static void pci_restore_pcix_state(struct pci_dev *dev)
 980{
 981        int i = 0, pos;
 982        struct pci_cap_saved_state *save_state;
 983        u16 *cap;
 984
 985        save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
 986        pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
 987        if (!save_state || pos <= 0)
 988                return;
 989        cap = (u16 *)&save_state->cap.data[0];
 990
 991        pci_write_config_word(dev, pos + PCI_X_CMD, cap[i++]);
 992}
 993
 994
 995/**
 996 * pci_save_state - save the PCI configuration space of a device before suspending
 997 * @dev: - PCI device that we're dealing with
 998 */
 999int pci_save_state(struct pci_dev *dev)
1000{
1001        int i;
1002        /* XXX: 100% dword access ok here? */
1003        for (i = 0; i < 16; i++)
1004                pci_read_config_dword(dev, i * 4, &dev->saved_config_space[i]);
1005        dev->state_saved = true;
1006
1007        i = pci_save_pcie_state(dev);
1008        if (i != 0)
1009                return i;
1010
1011        i = pci_save_pcix_state(dev);
1012        if (i != 0)
1013                return i;
1014
1015        i = pci_save_vc_state(dev);
1016        if (i != 0)
1017                return i;
1018
1019        return 0;
1020}
1021EXPORT_SYMBOL(pci_save_state);
1022
1023static void pci_restore_config_dword(struct pci_dev *pdev, int offset,
1024                                     u32 saved_val, int retry)
1025{
1026        u32 val;
1027
1028        pci_read_config_dword(pdev, offset, &val);
1029        if (val == saved_val)
1030                return;
1031
1032        for (;;) {
1033                dev_dbg(&pdev->dev, "restoring config space at offset %#x (was %#x, writing %#x)\n",
1034                        offset, val, saved_val);
1035                pci_write_config_dword(pdev, offset, saved_val);
1036                if (retry-- <= 0)
1037                        return;
1038
1039                pci_read_config_dword(pdev, offset, &val);
1040                if (val == saved_val)
1041                        return;
1042
1043                mdelay(1);
1044        }
1045}
1046
1047static void pci_restore_config_space_range(struct pci_dev *pdev,
1048                                           int start, int end, int retry)
1049{
1050        int index;
1051
1052        for (index = end; index >= start; index--)
1053                pci_restore_config_dword(pdev, 4 * index,
1054                                         pdev->saved_config_space[index],
1055                                         retry);
1056}
1057
1058static void pci_restore_config_space(struct pci_dev *pdev)
1059{
1060        if (pdev->hdr_type == PCI_HEADER_TYPE_NORMAL) {
1061                pci_restore_config_space_range(pdev, 10, 15, 0);
1062                /* Restore BARs before the command register. */
1063                pci_restore_config_space_range(pdev, 4, 9, 10);
1064                pci_restore_config_space_range(pdev, 0, 3, 0);
1065        } else {
1066                pci_restore_config_space_range(pdev, 0, 15, 0);
1067        }
1068}
1069
1070/**
1071 * pci_restore_state - Restore the saved state of a PCI device
1072 * @dev: - PCI device that we're dealing with
1073 */
1074void pci_restore_state(struct pci_dev *dev)
1075{
1076        if (!dev->state_saved)
1077                return;
1078
1079        /* PCI Express register must be restored first */
1080        pci_restore_pcie_state(dev);
1081        pci_restore_ats_state(dev);
1082        pci_restore_vc_state(dev);
1083
1084        pci_restore_config_space(dev);
1085
1086        pci_restore_pcix_state(dev);
1087        pci_restore_msi_state(dev);
1088        pci_restore_iov_state(dev);
1089
1090        dev->state_saved = false;
1091}
1092EXPORT_SYMBOL(pci_restore_state);
1093
1094struct pci_saved_state {
1095        u32 config_space[16];
1096        struct pci_cap_saved_data cap[0];
1097};
1098
1099/**
1100 * pci_store_saved_state - Allocate and return an opaque struct containing
1101 *                         the device saved state.
1102 * @dev: PCI device that we're dealing with
1103 *
1104 * Return NULL if no state or error.
1105 */
1106struct pci_saved_state *pci_store_saved_state(struct pci_dev *dev)
1107{
1108        struct pci_saved_state *state;
1109        struct pci_cap_saved_state *tmp;
1110        struct pci_cap_saved_data *cap;
1111        size_t size;
1112
1113        if (!dev->state_saved)
1114                return NULL;
1115
1116        size = sizeof(*state) + sizeof(struct pci_cap_saved_data);
1117
1118        hlist_for_each_entry(tmp, &dev->saved_cap_space, next)
1119                size += sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1120
1121        state = kzalloc(size, GFP_KERNEL);
1122        if (!state)
1123                return NULL;
1124
1125        memcpy(state->config_space, dev->saved_config_space,
1126               sizeof(state->config_space));
1127
1128        cap = state->cap;
1129        hlist_for_each_entry(tmp, &dev->saved_cap_space, next) {
1130                size_t len = sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1131                memcpy(cap, &tmp->cap, len);
1132                cap = (struct pci_cap_saved_data *)((u8 *)cap + len);
1133        }
1134        /* Empty cap_save terminates list */
1135
1136        return state;
1137}
1138EXPORT_SYMBOL_GPL(pci_store_saved_state);
1139
1140/**
1141 * pci_load_saved_state - Reload the provided save state into struct pci_dev.
1142 * @dev: PCI device that we're dealing with
1143 * @state: Saved state returned from pci_store_saved_state()
1144 */
1145static int pci_load_saved_state(struct pci_dev *dev,
1146                                struct pci_saved_state *state)
1147{
1148        struct pci_cap_saved_data *cap;
1149
1150        dev->state_saved = false;
1151
1152        if (!state)
1153                return 0;
1154
1155        memcpy(dev->saved_config_space, state->config_space,
1156               sizeof(state->config_space));
1157
1158        cap = state->cap;
1159        while (cap->size) {
1160                struct pci_cap_saved_state *tmp;
1161
1162                tmp = _pci_find_saved_cap(dev, cap->cap_nr, cap->cap_extended);
1163                if (!tmp || tmp->cap.size != cap->size)
1164                        return -EINVAL;
1165
1166                memcpy(tmp->cap.data, cap->data, tmp->cap.size);
1167                cap = (struct pci_cap_saved_data *)((u8 *)cap +
1168                       sizeof(struct pci_cap_saved_data) + cap->size);
1169        }
1170
1171        dev->state_saved = true;
1172        return 0;
1173}
1174
1175/**
1176 * pci_load_and_free_saved_state - Reload the save state pointed to by state,
1177 *                                 and free the memory allocated for it.
1178 * @dev: PCI device that we're dealing with
1179 * @state: Pointer to saved state returned from pci_store_saved_state()
1180 */
1181int pci_load_and_free_saved_state(struct pci_dev *dev,
1182                                  struct pci_saved_state **state)
1183{
1184        int ret = pci_load_saved_state(dev, *state);
1185        kfree(*state);
1186        *state = NULL;
1187        return ret;
1188}
1189EXPORT_SYMBOL_GPL(pci_load_and_free_saved_state);
1190
1191int __weak pcibios_enable_device(struct pci_dev *dev, int bars)
1192{
1193        return pci_enable_resources(dev, bars);
1194}
1195
1196static int do_pci_enable_device(struct pci_dev *dev, int bars)
1197{
1198        int err;
1199        struct pci_dev *bridge;
1200        u16 cmd;
1201        u8 pin;
1202
1203        err = pci_set_power_state(dev, PCI_D0);
1204        if (err < 0 && err != -EIO)
1205                return err;
1206
1207        bridge = pci_upstream_bridge(dev);
1208        if (bridge)
1209                pcie_aspm_powersave_config_link(bridge);
1210
1211        err = pcibios_enable_device(dev, bars);
1212        if (err < 0)
1213                return err;
1214        pci_fixup_device(pci_fixup_enable, dev);
1215
1216        if (dev->msi_enabled || dev->msix_enabled)
1217                return 0;
1218
1219        pci_read_config_byte(dev, PCI_INTERRUPT_PIN, &pin);
1220        if (pin) {
1221                pci_read_config_word(dev, PCI_COMMAND, &cmd);
1222                if (cmd & PCI_COMMAND_INTX_DISABLE)
1223                        pci_write_config_word(dev, PCI_COMMAND,
1224                                              cmd & ~PCI_COMMAND_INTX_DISABLE);
1225        }
1226
1227        return 0;
1228}
1229
1230/**
1231 * pci_reenable_device - Resume abandoned device
1232 * @dev: PCI device to be resumed
1233 *
1234 *  Note this function is a backend of pci_default_resume and is not supposed
1235 *  to be called by normal code, write proper resume handler and use it instead.
1236 */
1237int pci_reenable_device(struct pci_dev *dev)
1238{
1239        if (pci_is_enabled(dev))
1240                return do_pci_enable_device(dev, (1 << PCI_NUM_RESOURCES) - 1);
1241        return 0;
1242}
1243EXPORT_SYMBOL(pci_reenable_device);
1244
1245static void pci_enable_bridge(struct pci_dev *dev)
1246{
1247        struct pci_dev *bridge;
1248        int retval;
1249
1250        bridge = pci_upstream_bridge(dev);
1251        if (bridge)
1252                pci_enable_bridge(bridge);
1253
1254        if (pci_is_enabled(dev)) {
1255                if (!dev->is_busmaster)
1256                        pci_set_master(dev);
1257                return;
1258        }
1259
1260        retval = pci_enable_device(dev);
1261        if (retval)
1262                dev_err(&dev->dev, "Error enabling bridge (%d), continuing\n",
1263                        retval);
1264        pci_set_master(dev);
1265}
1266
1267static int pci_enable_device_flags(struct pci_dev *dev, unsigned long flags)
1268{
1269        struct pci_dev *bridge;
1270        int err;
1271        int i, bars = 0;
1272
1273        /*
1274         * Power state could be unknown at this point, either due to a fresh
1275         * boot or a device removal call.  So get the current power state
1276         * so that things like MSI message writing will behave as expected
1277         * (e.g. if the device really is in D0 at enable time).
1278         */
1279        if (dev->pm_cap) {
1280                u16 pmcsr;
1281                pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1282                dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
1283        }
1284
1285        if (atomic_inc_return(&dev->enable_cnt) > 1)
1286                return 0;               /* already enabled */
1287
1288        bridge = pci_upstream_bridge(dev);
1289        if (bridge)
1290                pci_enable_bridge(bridge);
1291
1292        /* only skip sriov related */
1293        for (i = 0; i <= PCI_ROM_RESOURCE; i++)
1294                if (dev->resource[i].flags & flags)
1295                        bars |= (1 << i);
1296        for (i = PCI_BRIDGE_RESOURCES; i < DEVICE_COUNT_RESOURCE; i++)
1297                if (dev->resource[i].flags & flags)
1298                        bars |= (1 << i);
1299
1300        err = do_pci_enable_device(dev, bars);
1301        if (err < 0)
1302                atomic_dec(&dev->enable_cnt);
1303        return err;
1304}
1305
1306/**
1307 * pci_enable_device_io - Initialize a device for use with IO space
1308 * @dev: PCI device to be initialized
1309 *
1310 *  Initialize device before it's used by a driver. Ask low-level code
1311 *  to enable I/O resources. Wake up the device if it was suspended.
1312 *  Beware, this function can fail.
1313 */
1314int pci_enable_device_io(struct pci_dev *dev)
1315{
1316        return pci_enable_device_flags(dev, IORESOURCE_IO);
1317}
1318EXPORT_SYMBOL(pci_enable_device_io);
1319
1320/**
1321 * pci_enable_device_mem - Initialize a device for use with Memory space
1322 * @dev: PCI device to be initialized
1323 *
1324 *  Initialize device before it's used by a driver. Ask low-level code
1325 *  to enable Memory resources. Wake up the device if it was suspended.
1326 *  Beware, this function can fail.
1327 */
1328int pci_enable_device_mem(struct pci_dev *dev)
1329{
1330        return pci_enable_device_flags(dev, IORESOURCE_MEM);
1331}
1332EXPORT_SYMBOL(pci_enable_device_mem);
1333
1334/**
1335 * pci_enable_device - Initialize device before it's used by a driver.
1336 * @dev: PCI device to be initialized
1337 *
1338 *  Initialize device before it's used by a driver. Ask low-level code
1339 *  to enable I/O and memory. Wake up the device if it was suspended.
1340 *  Beware, this function can fail.
1341 *
1342 *  Note we don't actually enable the device many times if we call
1343 *  this function repeatedly (we just increment the count).
1344 */
1345int pci_enable_device(struct pci_dev *dev)
1346{
1347        return pci_enable_device_flags(dev, IORESOURCE_MEM | IORESOURCE_IO);
1348}
1349EXPORT_SYMBOL(pci_enable_device);
1350
1351/*
1352 * Managed PCI resources.  This manages device on/off, intx/msi/msix
1353 * on/off and BAR regions.  pci_dev itself records msi/msix status, so
1354 * there's no need to track it separately.  pci_devres is initialized
1355 * when a device is enabled using managed PCI device enable interface.
1356 */
1357struct pci_devres {
1358        unsigned int enabled:1;
1359        unsigned int pinned:1;
1360        unsigned int orig_intx:1;
1361        unsigned int restore_intx:1;
1362        u32 region_mask;
1363};
1364
1365static void pcim_release(struct device *gendev, void *res)
1366{
1367        struct pci_dev *dev = container_of(gendev, struct pci_dev, dev);
1368        struct pci_devres *this = res;
1369        int i;
1370
1371        if (dev->msi_enabled)
1372                pci_disable_msi(dev);
1373        if (dev->msix_enabled)
1374                pci_disable_msix(dev);
1375
1376        for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
1377                if (this->region_mask & (1 << i))
1378                        pci_release_region(dev, i);
1379
1380        if (this->restore_intx)
1381                pci_intx(dev, this->orig_intx);
1382
1383        if (this->enabled && !this->pinned)
1384                pci_disable_device(dev);
1385}
1386
1387static struct pci_devres *get_pci_dr(struct pci_dev *pdev)
1388{
1389        struct pci_devres *dr, *new_dr;
1390
1391        dr = devres_find(&pdev->dev, pcim_release, NULL, NULL);
1392        if (dr)
1393                return dr;
1394
1395        new_dr = devres_alloc(pcim_release, sizeof(*new_dr), GFP_KERNEL);
1396        if (!new_dr)
1397                return NULL;
1398        return devres_get(&pdev->dev, new_dr, NULL, NULL);
1399}
1400
1401static struct pci_devres *find_pci_dr(struct pci_dev *pdev)
1402{
1403        if (pci_is_managed(pdev))
1404                return devres_find(&pdev->dev, pcim_release, NULL, NULL);
1405        return NULL;
1406}
1407
1408/**
1409 * pcim_enable_device - Managed pci_enable_device()
1410 * @pdev: PCI device to be initialized
1411 *
1412 * Managed pci_enable_device().
1413 */
1414int pcim_enable_device(struct pci_dev *pdev)
1415{
1416        struct pci_devres *dr;
1417        int rc;
1418
1419        dr = get_pci_dr(pdev);
1420        if (unlikely(!dr))
1421                return -ENOMEM;
1422        if (dr->enabled)
1423                return 0;
1424
1425        rc = pci_enable_device(pdev);
1426        if (!rc) {
1427                pdev->is_managed = 1;
1428                dr->enabled = 1;
1429        }
1430        return rc;
1431}
1432EXPORT_SYMBOL(pcim_enable_device);
1433
1434/**
1435 * pcim_pin_device - Pin managed PCI device
1436 * @pdev: PCI device to pin
1437 *
1438 * Pin managed PCI device @pdev.  Pinned device won't be disabled on
1439 * driver detach.  @pdev must have been enabled with
1440 * pcim_enable_device().
1441 */
1442void pcim_pin_device(struct pci_dev *pdev)
1443{
1444        struct pci_devres *dr;
1445
1446        dr = find_pci_dr(pdev);
1447        WARN_ON(!dr || !dr->enabled);
1448        if (dr)
1449                dr->pinned = 1;
1450}
1451EXPORT_SYMBOL(pcim_pin_device);
1452
1453/*
1454 * pcibios_add_device - provide arch specific hooks when adding device dev
1455 * @dev: the PCI device being added
1456 *
1457 * Permits the platform to provide architecture specific functionality when
1458 * devices are added. This is the default implementation. Architecture
1459 * implementations can override this.
1460 */
1461int __weak pcibios_add_device(struct pci_dev *dev)
1462{
1463        return 0;
1464}
1465
1466/**
1467 * pcibios_release_device - provide arch specific hooks when releasing device dev
1468 * @dev: the PCI device being released
1469 *
1470 * Permits the platform to provide architecture specific functionality when
1471 * devices are released. This is the default implementation. Architecture
1472 * implementations can override this.
1473 */
1474void __weak pcibios_release_device(struct pci_dev *dev) {}
1475
1476/**
1477 * pcibios_disable_device - disable arch specific PCI resources for device dev
1478 * @dev: the PCI device to disable
1479 *
1480 * Disables architecture specific PCI resources for the device. This
1481 * is the default implementation. Architecture implementations can
1482 * override this.
1483 */
1484void __weak pcibios_disable_device (struct pci_dev *dev) {}
1485
1486/**
1487 * pcibios_penalize_isa_irq - penalize an ISA IRQ
1488 * @irq: ISA IRQ to penalize
1489 * @active: IRQ active or not
1490 *
1491 * Permits the platform to provide architecture-specific functionality when
1492 * penalizing ISA IRQs. This is the default implementation. Architecture
1493 * implementations can override this.
1494 */
1495void __weak pcibios_penalize_isa_irq(int irq, int active) {}
1496
1497static void do_pci_disable_device(struct pci_dev *dev)
1498{
1499        u16 pci_command;
1500
1501        pci_read_config_word(dev, PCI_COMMAND, &pci_command);
1502        if (pci_command & PCI_COMMAND_MASTER) {
1503                pci_command &= ~PCI_COMMAND_MASTER;
1504                pci_write_config_word(dev, PCI_COMMAND, pci_command);
1505        }
1506
1507        pcibios_disable_device(dev);
1508}
1509
1510/**
1511 * pci_disable_enabled_device - Disable device without updating enable_cnt
1512 * @dev: PCI device to disable
1513 *
1514 * NOTE: This function is a backend of PCI power management routines and is
1515 * not supposed to be called drivers.
1516 */
1517void pci_disable_enabled_device(struct pci_dev *dev)
1518{
1519        if (pci_is_enabled(dev))
1520                do_pci_disable_device(dev);
1521}
1522
1523/**
1524 * pci_disable_device - Disable PCI device after use
1525 * @dev: PCI device to be disabled
1526 *
1527 * Signal to the system that the PCI device is not in use by the system
1528 * anymore.  This only involves disabling PCI bus-mastering, if active.
1529 *
1530 * Note we don't actually disable the device until all callers of
1531 * pci_enable_device() have called pci_disable_device().
1532 */
1533void pci_disable_device(struct pci_dev *dev)
1534{
1535        struct pci_devres *dr;
1536
1537        dr = find_pci_dr(dev);
1538        if (dr)
1539                dr->enabled = 0;
1540
1541        dev_WARN_ONCE(&dev->dev, atomic_read(&dev->enable_cnt) <= 0,
1542                      "disabling already-disabled device");
1543
1544        if (atomic_dec_return(&dev->enable_cnt) != 0)
1545                return;
1546
1547        do_pci_disable_device(dev);
1548
1549        dev->is_busmaster = 0;
1550}
1551EXPORT_SYMBOL(pci_disable_device);
1552
1553/**
1554 * pcibios_set_pcie_reset_state - set reset state for device dev
1555 * @dev: the PCIe device reset
1556 * @state: Reset state to enter into
1557 *
1558 *
1559 * Sets the PCIe reset state for the device. This is the default
1560 * implementation. Architecture implementations can override this.
1561 */
1562int __weak pcibios_set_pcie_reset_state(struct pci_dev *dev,
1563                                        enum pcie_reset_state state)
1564{
1565        return -EINVAL;
1566}
1567
1568/**
1569 * pci_set_pcie_reset_state - set reset state for device dev
1570 * @dev: the PCIe device reset
1571 * @state: Reset state to enter into
1572 *
1573 *
1574 * Sets the PCI reset state for the device.
1575 */
1576int pci_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state)
1577{
1578        return pcibios_set_pcie_reset_state(dev, state);
1579}
1580EXPORT_SYMBOL_GPL(pci_set_pcie_reset_state);
1581
1582/**
1583 * pci_check_pme_status - Check if given device has generated PME.
1584 * @dev: Device to check.
1585 *
1586 * Check the PME status of the device and if set, clear it and clear PME enable
1587 * (if set).  Return 'true' if PME status and PME enable were both set or
1588 * 'false' otherwise.
1589 */
1590bool pci_check_pme_status(struct pci_dev *dev)
1591{
1592        int pmcsr_pos;
1593        u16 pmcsr;
1594        bool ret = false;
1595
1596        if (!dev->pm_cap)
1597                return false;
1598
1599        pmcsr_pos = dev->pm_cap + PCI_PM_CTRL;
1600        pci_read_config_word(dev, pmcsr_pos, &pmcsr);
1601        if (!(pmcsr & PCI_PM_CTRL_PME_STATUS))
1602                return false;
1603
1604        /* Clear PME status. */
1605        pmcsr |= PCI_PM_CTRL_PME_STATUS;
1606        if (pmcsr & PCI_PM_CTRL_PME_ENABLE) {
1607                /* Disable PME to avoid interrupt flood. */
1608                pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
1609                ret = true;
1610        }
1611
1612        pci_write_config_word(dev, pmcsr_pos, pmcsr);
1613
1614        return ret;
1615}
1616
1617/**
1618 * pci_pme_wakeup - Wake up a PCI device if its PME Status bit is set.
1619 * @dev: Device to handle.
1620 * @pme_poll_reset: Whether or not to reset the device's pme_poll flag.
1621 *
1622 * Check if @dev has generated PME and queue a resume request for it in that
1623 * case.
1624 */
1625static int pci_pme_wakeup(struct pci_dev *dev, void *pme_poll_reset)
1626{
1627        if (pme_poll_reset && dev->pme_poll)
1628                dev->pme_poll = false;
1629
1630        if (pci_check_pme_status(dev)) {
1631                pci_wakeup_event(dev);
1632                pm_request_resume(&dev->dev);
1633        }
1634        return 0;
1635}
1636
1637/**
1638 * pci_pme_wakeup_bus - Walk given bus and wake up devices on it, if necessary.
1639 * @bus: Top bus of the subtree to walk.
1640 */
1641void pci_pme_wakeup_bus(struct pci_bus *bus)
1642{
1643        if (bus)
1644                pci_walk_bus(bus, pci_pme_wakeup, (void *)true);
1645}
1646
1647
1648/**
1649 * pci_pme_capable - check the capability of PCI device to generate PME#
1650 * @dev: PCI device to handle.
1651 * @state: PCI state from which device will issue PME#.
1652 */
1653bool pci_pme_capable(struct pci_dev *dev, pci_power_t state)
1654{
1655        if (!dev->pm_cap)
1656                return false;
1657
1658        return !!(dev->pme_support & (1 << state));
1659}
1660EXPORT_SYMBOL(pci_pme_capable);
1661
1662static void pci_pme_list_scan(struct work_struct *work)
1663{
1664        struct pci_pme_device *pme_dev, *n;
1665
1666        mutex_lock(&pci_pme_list_mutex);
1667        list_for_each_entry_safe(pme_dev, n, &pci_pme_list, list) {
1668                if (pme_dev->dev->pme_poll) {
1669                        struct pci_dev *bridge;
1670
1671                        bridge = pme_dev->dev->bus->self;
1672                        /*
1673                         * If bridge is in low power state, the
1674                         * configuration space of subordinate devices
1675                         * may be not accessible
1676                         */
1677                        if (bridge && bridge->current_state != PCI_D0)
1678                                continue;
1679                        pci_pme_wakeup(pme_dev->dev, NULL);
1680                } else {
1681                        list_del(&pme_dev->list);
1682                        kfree(pme_dev);
1683                }
1684        }
1685        if (!list_empty(&pci_pme_list))
1686                schedule_delayed_work(&pci_pme_work,
1687                                      msecs_to_jiffies(PME_TIMEOUT));
1688        mutex_unlock(&pci_pme_list_mutex);
1689}
1690
1691/**
1692 * pci_pme_active - enable or disable PCI device's PME# function
1693 * @dev: PCI device to handle.
1694 * @enable: 'true' to enable PME# generation; 'false' to disable it.
1695 *
1696 * The caller must verify that the device is capable of generating PME# before
1697 * calling this function with @enable equal to 'true'.
1698 */
1699void pci_pme_active(struct pci_dev *dev, bool enable)
1700{
1701        u16 pmcsr;
1702
1703        if (!dev->pme_support)
1704                return;
1705
1706        pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1707        /* Clear PME_Status by writing 1 to it and enable PME# */
1708        pmcsr |= PCI_PM_CTRL_PME_STATUS | PCI_PM_CTRL_PME_ENABLE;
1709        if (!enable)
1710                pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
1711
1712        pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
1713
1714        /*
1715         * PCI (as opposed to PCIe) PME requires that the device have
1716         * its PME# line hooked up correctly. Not all hardware vendors
1717         * do this, so the PME never gets delivered and the device
1718         * remains asleep. The easiest way around this is to
1719         * periodically walk the list of suspended devices and check
1720         * whether any have their PME flag set. The assumption is that
1721         * we'll wake up often enough anyway that this won't be a huge
1722         * hit, and the power savings from the devices will still be a
1723         * win.
1724         *
1725         * Although PCIe uses in-band PME message instead of PME# line
1726         * to report PME, PME does not work for some PCIe devices in
1727         * reality.  For example, there are devices that set their PME
1728         * status bits, but don't really bother to send a PME message;
1729         * there are PCI Express Root Ports that don't bother to
1730         * trigger interrupts when they receive PME messages from the
1731         * devices below.  So PME poll is used for PCIe devices too.
1732         */
1733
1734        if (dev->pme_poll) {
1735                struct pci_pme_device *pme_dev;
1736                if (enable) {
1737                        pme_dev = kmalloc(sizeof(struct pci_pme_device),
1738                                          GFP_KERNEL);
1739                        if (!pme_dev) {
1740                                dev_warn(&dev->dev, "can't enable PME#\n");
1741                                return;
1742                        }
1743                        pme_dev->dev = dev;
1744                        mutex_lock(&pci_pme_list_mutex);
1745                        list_add(&pme_dev->list, &pci_pme_list);
1746                        if (list_is_singular(&pci_pme_list))
1747                                schedule_delayed_work(&pci_pme_work,
1748                                                      msecs_to_jiffies(PME_TIMEOUT));
1749                        mutex_unlock(&pci_pme_list_mutex);
1750                } else {
1751                        mutex_lock(&pci_pme_list_mutex);
1752                        list_for_each_entry(pme_dev, &pci_pme_list, list) {
1753                                if (pme_dev->dev == dev) {
1754                                        list_del(&pme_dev->list);
1755                                        kfree(pme_dev);
1756                                        break;
1757                                }
1758                        }
1759                        mutex_unlock(&pci_pme_list_mutex);
1760                }
1761        }
1762
1763        dev_dbg(&dev->dev, "PME# %s\n", enable ? "enabled" : "disabled");
1764}
1765EXPORT_SYMBOL(pci_pme_active);
1766
1767/**
1768 * __pci_enable_wake - enable PCI device as wakeup event source
1769 * @dev: PCI device affected
1770 * @state: PCI state from which device will issue wakeup events
1771 * @runtime: True if the events are to be generated at run time
1772 * @enable: True to enable event generation; false to disable
1773 *
1774 * This enables the device as a wakeup event source, or disables it.
1775 * When such events involves platform-specific hooks, those hooks are
1776 * called automatically by this routine.
1777 *
1778 * Devices with legacy power management (no standard PCI PM capabilities)
1779 * always require such platform hooks.
1780 *
1781 * RETURN VALUE:
1782 * 0 is returned on success
1783 * -EINVAL is returned if device is not supposed to wake up the system
1784 * Error code depending on the platform is returned if both the platform and
1785 * the native mechanism fail to enable the generation of wake-up events
1786 */
1787int __pci_enable_wake(struct pci_dev *dev, pci_power_t state,
1788                      bool runtime, bool enable)
1789{
1790        int ret = 0;
1791
1792        if (enable && !runtime && !device_may_wakeup(&dev->dev))
1793                return -EINVAL;
1794
1795        /* Don't do the same thing twice in a row for one device. */
1796        if (!!enable == !!dev->wakeup_prepared)
1797                return 0;
1798
1799        /*
1800         * According to "PCI System Architecture" 4th ed. by Tom Shanley & Don
1801         * Anderson we should be doing PME# wake enable followed by ACPI wake
1802         * enable.  To disable wake-up we call the platform first, for symmetry.
1803         */
1804
1805        if (enable) {
1806                int error;
1807
1808                if (pci_pme_capable(dev, state))
1809                        pci_pme_active(dev, true);
1810                else
1811                        ret = 1;
1812                error = runtime ? platform_pci_run_wake(dev, true) :
1813                                        platform_pci_sleep_wake(dev, true);
1814                if (ret)
1815                        ret = error;
1816                if (!ret)
1817                        dev->wakeup_prepared = true;
1818        } else {
1819                if (runtime)
1820                        platform_pci_run_wake(dev, false);
1821                else
1822                        platform_pci_sleep_wake(dev, false);
1823                pci_pme_active(dev, false);
1824                dev->wakeup_prepared = false;
1825        }
1826
1827        return ret;
1828}
1829EXPORT_SYMBOL(__pci_enable_wake);
1830
1831/**
1832 * pci_wake_from_d3 - enable/disable device to wake up from D3_hot or D3_cold
1833 * @dev: PCI device to prepare
1834 * @enable: True to enable wake-up event generation; false to disable
1835 *
1836 * Many drivers want the device to wake up the system from D3_hot or D3_cold
1837 * and this function allows them to set that up cleanly - pci_enable_wake()
1838 * should not be called twice in a row to enable wake-up due to PCI PM vs ACPI
1839 * ordering constraints.
1840 *
1841 * This function only returns error code if the device is not capable of
1842 * generating PME# from both D3_hot and D3_cold, and the platform is unable to
1843 * enable wake-up power for it.
1844 */
1845int pci_wake_from_d3(struct pci_dev *dev, bool enable)
1846{
1847        return pci_pme_capable(dev, PCI_D3cold) ?
1848                        pci_enable_wake(dev, PCI_D3cold, enable) :
1849                        pci_enable_wake(dev, PCI_D3hot, enable);
1850}
1851EXPORT_SYMBOL(pci_wake_from_d3);
1852
1853/**
1854 * pci_target_state - find an appropriate low power state for a given PCI dev
1855 * @dev: PCI device
1856 *
1857 * Use underlying platform code to find a supported low power state for @dev.
1858 * If the platform can't manage @dev, return the deepest state from which it
1859 * can generate wake events, based on any available PME info.
1860 */
1861static pci_power_t pci_target_state(struct pci_dev *dev)
1862{
1863        pci_power_t target_state = PCI_D3hot;
1864
1865        if (platform_pci_power_manageable(dev)) {
1866                /*
1867                 * Call the platform to choose the target state of the device
1868                 * and enable wake-up from this state if supported.
1869                 */
1870                pci_power_t state = platform_pci_choose_state(dev);
1871
1872                switch (state) {
1873                case PCI_POWER_ERROR:
1874                case PCI_UNKNOWN:
1875                        break;
1876                case PCI_D1:
1877                case PCI_D2:
1878                        if (pci_no_d1d2(dev))
1879                                break;
1880                default:
1881                        target_state = state;
1882                }
1883        } else if (!dev->pm_cap) {
1884                target_state = PCI_D0;
1885        } else if (device_may_wakeup(&dev->dev)) {
1886                /*
1887                 * Find the deepest state from which the device can generate
1888                 * wake-up events, make it the target state and enable device
1889                 * to generate PME#.
1890                 */
1891                if (dev->pme_support) {
1892                        while (target_state
1893                              && !(dev->pme_support & (1 << target_state)))
1894                                target_state--;
1895                }
1896        }
1897
1898        return target_state;
1899}
1900
1901/**
1902 * pci_prepare_to_sleep - prepare PCI device for system-wide transition into a sleep state
1903 * @dev: Device to handle.
1904 *
1905 * Choose the power state appropriate for the device depending on whether
1906 * it can wake up the system and/or is power manageable by the platform
1907 * (PCI_D3hot is the default) and put the device into that state.
1908 */
1909int pci_prepare_to_sleep(struct pci_dev *dev)
1910{
1911        pci_power_t target_state = pci_target_state(dev);
1912        int error;
1913
1914        if (target_state == PCI_POWER_ERROR)
1915                return -EIO;
1916
1917        pci_enable_wake(dev, target_state, device_may_wakeup(&dev->dev));
1918
1919        error = pci_set_power_state(dev, target_state);
1920
1921        if (error)
1922                pci_enable_wake(dev, target_state, false);
1923
1924        return error;
1925}
1926EXPORT_SYMBOL(pci_prepare_to_sleep);
1927
1928/**
1929 * pci_back_from_sleep - turn PCI device on during system-wide transition into working state
1930 * @dev: Device to handle.
1931 *
1932 * Disable device's system wake-up capability and put it into D0.
1933 */
1934int pci_back_from_sleep(struct pci_dev *dev)
1935{
1936        pci_enable_wake(dev, PCI_D0, false);
1937        return pci_set_power_state(dev, PCI_D0);
1938}
1939EXPORT_SYMBOL(pci_back_from_sleep);
1940
1941/**
1942 * pci_finish_runtime_suspend - Carry out PCI-specific part of runtime suspend.
1943 * @dev: PCI device being suspended.
1944 *
1945 * Prepare @dev to generate wake-up events at run time and put it into a low
1946 * power state.
1947 */
1948int pci_finish_runtime_suspend(struct pci_dev *dev)
1949{
1950        pci_power_t target_state = pci_target_state(dev);
1951        int error;
1952
1953        if (target_state == PCI_POWER_ERROR)
1954                return -EIO;
1955
1956        dev->runtime_d3cold = target_state == PCI_D3cold;
1957
1958        __pci_enable_wake(dev, target_state, true, pci_dev_run_wake(dev));
1959
1960        error = pci_set_power_state(dev, target_state);
1961
1962        if (error) {
1963                __pci_enable_wake(dev, target_state, true, false);
1964                dev->runtime_d3cold = false;
1965        }
1966
1967        return error;
1968}
1969
1970/**
1971 * pci_dev_run_wake - Check if device can generate run-time wake-up events.
1972 * @dev: Device to check.
1973 *
1974 * Return true if the device itself is capable of generating wake-up events
1975 * (through the platform or using the native PCIe PME) or if the device supports
1976 * PME and one of its upstream bridges can generate wake-up events.
1977 */
1978bool pci_dev_run_wake(struct pci_dev *dev)
1979{
1980        struct pci_bus *bus = dev->bus;
1981
1982        if (device_run_wake(&dev->dev))
1983                return true;
1984
1985        if (!dev->pme_support)
1986                return false;
1987
1988        while (bus->parent) {
1989                struct pci_dev *bridge = bus->self;
1990
1991                if (device_run_wake(&bridge->dev))
1992                        return true;
1993
1994                bus = bus->parent;
1995        }
1996
1997        /* We have reached the root bus. */
1998        if (bus->bridge)
1999                return device_run_wake(bus->bridge);
2000
2001        return false;
2002}
2003EXPORT_SYMBOL_GPL(pci_dev_run_wake);
2004
2005void pci_config_pm_runtime_get(struct pci_dev *pdev)
2006{
2007        struct device *dev = &pdev->dev;
2008        struct device *parent = dev->parent;
2009
2010        if (parent)
2011                pm_runtime_get_sync(parent);
2012        pm_runtime_get_noresume(dev);
2013        /*
2014         * pdev->current_state is set to PCI_D3cold during suspending,
2015         * so wait until suspending completes
2016         */
2017        pm_runtime_barrier(dev);
2018        /*
2019         * Only need to resume devices in D3cold, because config
2020         * registers are still accessible for devices suspended but
2021         * not in D3cold.
2022         */
2023        if (pdev->current_state == PCI_D3cold)
2024                pm_runtime_resume(dev);
2025}
2026
2027void pci_config_pm_runtime_put(struct pci_dev *pdev)
2028{
2029        struct device *dev = &pdev->dev;
2030        struct device *parent = dev->parent;
2031
2032        pm_runtime_put(dev);
2033        if (parent)
2034                pm_runtime_put_sync(parent);
2035}
2036
2037/**
2038 * pci_pm_init - Initialize PM functions of given PCI device
2039 * @dev: PCI device to handle.
2040 */
2041void pci_pm_init(struct pci_dev *dev)
2042{
2043        int pm;
2044        u16 pmc;
2045
2046        pm_runtime_forbid(&dev->dev);
2047        pm_runtime_set_active(&dev->dev);
2048        pm_runtime_enable(&dev->dev);
2049        device_enable_async_suspend(&dev->dev);
2050        dev->wakeup_prepared = false;
2051
2052        dev->pm_cap = 0;
2053        dev->pme_support = 0;
2054
2055        /* find PCI PM capability in list */
2056        pm = pci_find_capability(dev, PCI_CAP_ID_PM);
2057        if (!pm)
2058                return;
2059        /* Check device's ability to generate PME# */
2060        pci_read_config_word(dev, pm + PCI_PM_PMC, &pmc);
2061
2062        if ((pmc & PCI_PM_CAP_VER_MASK) > 3) {
2063                dev_err(&dev->dev, "unsupported PM cap regs version (%u)\n",
2064                        pmc & PCI_PM_CAP_VER_MASK);
2065                return;
2066        }
2067
2068        dev->pm_cap = pm;
2069        dev->d3_delay = PCI_PM_D3_WAIT;
2070        dev->d3cold_delay = PCI_PM_D3COLD_WAIT;
2071        dev->d3cold_allowed = true;
2072
2073        dev->d1_support = false;
2074        dev->d2_support = false;
2075        if (!pci_no_d1d2(dev)) {
2076                if (pmc & PCI_PM_CAP_D1)
2077                        dev->d1_support = true;
2078                if (pmc & PCI_PM_CAP_D2)
2079                        dev->d2_support = true;
2080
2081                if (dev->d1_support || dev->d2_support)
2082                        dev_printk(KERN_DEBUG, &dev->dev, "supports%s%s\n",
2083                                   dev->d1_support ? " D1" : "",
2084                                   dev->d2_support ? " D2" : "");
2085        }
2086
2087        pmc &= PCI_PM_CAP_PME_MASK;
2088        if (pmc) {
2089                dev_printk(KERN_DEBUG, &dev->dev,
2090                         "PME# supported from%s%s%s%s%s\n",
2091                         (pmc & PCI_PM_CAP_PME_D0) ? " D0" : "",
2092                         (pmc & PCI_PM_CAP_PME_D1) ? " D1" : "",
2093                         (pmc & PCI_PM_CAP_PME_D2) ? " D2" : "",
2094                         (pmc & PCI_PM_CAP_PME_D3) ? " D3hot" : "",
2095                         (pmc & PCI_PM_CAP_PME_D3cold) ? " D3cold" : "");
2096                dev->pme_support = pmc >> PCI_PM_CAP_PME_SHIFT;
2097                dev->pme_poll = true;
2098                /*
2099                 * Make device's PM flags reflect the wake-up capability, but
2100                 * let the user space enable it to wake up the system as needed.
2101                 */
2102                device_set_wakeup_capable(&dev->dev, true);
2103                /* Disable the PME# generation functionality */
2104                pci_pme_active(dev, false);
2105        }
2106}
2107
2108static void pci_add_saved_cap(struct pci_dev *pci_dev,
2109        struct pci_cap_saved_state *new_cap)
2110{
2111        hlist_add_head(&new_cap->next, &pci_dev->saved_cap_space);
2112}
2113
2114/**
2115 * _pci_add_cap_save_buffer - allocate buffer for saving given
2116 *                            capability registers
2117 * @dev: the PCI device
2118 * @cap: the capability to allocate the buffer for
2119 * @extended: Standard or Extended capability ID
2120 * @size: requested size of the buffer
2121 */
2122static int _pci_add_cap_save_buffer(struct pci_dev *dev, u16 cap,
2123                                    bool extended, unsigned int size)
2124{
2125        int pos;
2126        struct pci_cap_saved_state *save_state;
2127
2128        if (extended)
2129                pos = pci_find_ext_capability(dev, cap);
2130        else
2131                pos = pci_find_capability(dev, cap);
2132
2133        if (pos <= 0)
2134                return 0;
2135
2136        save_state = kzalloc(sizeof(*save_state) + size, GFP_KERNEL);
2137        if (!save_state)
2138                return -ENOMEM;
2139
2140        save_state->cap.cap_nr = cap;
2141        save_state->cap.cap_extended = extended;
2142        save_state->cap.size = size;
2143        pci_add_saved_cap(dev, save_state);
2144
2145        return 0;
2146}
2147
2148int pci_add_cap_save_buffer(struct pci_dev *dev, char cap, unsigned int size)
2149{
2150        return _pci_add_cap_save_buffer(dev, cap, false, size);
2151}
2152
2153int pci_add_ext_cap_save_buffer(struct pci_dev *dev, u16 cap, unsigned int size)
2154{
2155        return _pci_add_cap_save_buffer(dev, cap, true, size);
2156}
2157
2158/**
2159 * pci_allocate_cap_save_buffers - allocate buffers for saving capabilities
2160 * @dev: the PCI device
2161 */
2162void pci_allocate_cap_save_buffers(struct pci_dev *dev)
2163{
2164        int error;
2165
2166        error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_EXP,
2167                                        PCI_EXP_SAVE_REGS * sizeof(u16));
2168        if (error)
2169                dev_err(&dev->dev,
2170                        "unable to preallocate PCI Express save buffer\n");
2171
2172        error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_PCIX, sizeof(u16));
2173        if (error)
2174                dev_err(&dev->dev,
2175                        "unable to preallocate PCI-X save buffer\n");
2176
2177        pci_allocate_vc_save_buffers(dev);
2178}
2179
2180void pci_free_cap_save_buffers(struct pci_dev *dev)
2181{
2182        struct pci_cap_saved_state *tmp;
2183        struct hlist_node *n;
2184
2185        hlist_for_each_entry_safe(tmp, n, &dev->saved_cap_space, next)
2186                kfree(tmp);
2187}
2188
2189/**
2190 * pci_configure_ari - enable or disable ARI forwarding
2191 * @dev: the PCI device
2192 *
2193 * If @dev and its upstream bridge both support ARI, enable ARI in the
2194 * bridge.  Otherwise, disable ARI in the bridge.
2195 */
2196void pci_configure_ari(struct pci_dev *dev)
2197{
2198        u32 cap;
2199        struct pci_dev *bridge;
2200
2201        if (pcie_ari_disabled || !pci_is_pcie(dev) || dev->devfn)
2202                return;
2203
2204        bridge = dev->bus->self;
2205        if (!bridge)
2206                return;
2207
2208        pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap);
2209        if (!(cap & PCI_EXP_DEVCAP2_ARI))
2210                return;
2211
2212        if (pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ARI)) {
2213                pcie_capability_set_word(bridge, PCI_EXP_DEVCTL2,
2214                                         PCI_EXP_DEVCTL2_ARI);
2215                bridge->ari_enabled = 1;
2216        } else {
2217                pcie_capability_clear_word(bridge, PCI_EXP_DEVCTL2,
2218                                           PCI_EXP_DEVCTL2_ARI);
2219                bridge->ari_enabled = 0;
2220        }
2221}
2222
2223static int pci_acs_enable;
2224
2225/**
2226 * pci_request_acs - ask for ACS to be enabled if supported
2227 */
2228void pci_request_acs(void)
2229{
2230        pci_acs_enable = 1;
2231}
2232
2233/**
2234 * pci_std_enable_acs - enable ACS on devices using standard ACS capabilites
2235 * @dev: the PCI device
2236 */
2237static int pci_std_enable_acs(struct pci_dev *dev)
2238{
2239        int pos;
2240        u16 cap;
2241        u16 ctrl;
2242
2243        pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ACS);
2244        if (!pos)
2245                return -ENODEV;
2246
2247        pci_read_config_word(dev, pos + PCI_ACS_CAP, &cap);
2248        pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl);
2249
2250        /* Source Validation */
2251        ctrl |= (cap & PCI_ACS_SV);
2252
2253        /* P2P Request Redirect */
2254        ctrl |= (cap & PCI_ACS_RR);
2255
2256        /* P2P Completion Redirect */
2257        ctrl |= (cap & PCI_ACS_CR);
2258
2259        /* Upstream Forwarding */
2260        ctrl |= (cap & PCI_ACS_UF);
2261
2262        pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl);
2263
2264        return 0;
2265}
2266
2267/**
2268 * pci_enable_acs - enable ACS if hardware support it
2269 * @dev: the PCI device
2270 */
2271void pci_enable_acs(struct pci_dev *dev)
2272{
2273        if (!pci_acs_enable)
2274                return;
2275
2276        if (!pci_std_enable_acs(dev))
2277                return;
2278
2279        pci_dev_specific_enable_acs(dev);
2280}
2281
2282static bool pci_acs_flags_enabled(struct pci_dev *pdev, u16 acs_flags)
2283{
2284        int pos;
2285        u16 cap, ctrl;
2286
2287        pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ACS);
2288        if (!pos)
2289                return false;
2290
2291        /*
2292         * Except for egress control, capabilities are either required
2293         * or only required if controllable.  Features missing from the
2294         * capability field can therefore be assumed as hard-wired enabled.
2295         */
2296        pci_read_config_word(pdev, pos + PCI_ACS_CAP, &cap);
2297        acs_flags &= (cap | PCI_ACS_EC);
2298
2299        pci_read_config_word(pdev, pos + PCI_ACS_CTRL, &ctrl);
2300        return (ctrl & acs_flags) == acs_flags;
2301}
2302
2303/**
2304 * pci_acs_enabled - test ACS against required flags for a given device
2305 * @pdev: device to test
2306 * @acs_flags: required PCI ACS flags
2307 *
2308 * Return true if the device supports the provided flags.  Automatically
2309 * filters out flags that are not implemented on multifunction devices.
2310 *
2311 * Note that this interface checks the effective ACS capabilities of the
2312 * device rather than the actual capabilities.  For instance, most single
2313 * function endpoints are not required to support ACS because they have no
2314 * opportunity for peer-to-peer access.  We therefore return 'true'
2315 * regardless of whether the device exposes an ACS capability.  This makes
2316 * it much easier for callers of this function to ignore the actual type
2317 * or topology of the device when testing ACS support.
2318 */
2319bool pci_acs_enabled(struct pci_dev *pdev, u16 acs_flags)
2320{
2321        int ret;
2322
2323        ret = pci_dev_specific_acs_enabled(pdev, acs_flags);
2324        if (ret >= 0)
2325                return ret > 0;
2326
2327        /*
2328         * Conventional PCI and PCI-X devices never support ACS, either
2329         * effectively or actually.  The shared bus topology implies that
2330         * any device on the bus can receive or snoop DMA.
2331         */
2332        if (!pci_is_pcie(pdev))
2333                return false;
2334
2335        switch (pci_pcie_type(pdev)) {
2336        /*
2337         * PCI/X-to-PCIe bridges are not specifically mentioned by the spec,
2338         * but since their primary interface is PCI/X, we conservatively
2339         * handle them as we would a non-PCIe device.
2340         */
2341        case PCI_EXP_TYPE_PCIE_BRIDGE:
2342        /*
2343         * PCIe 3.0, 6.12.1 excludes ACS on these devices.  "ACS is never
2344         * applicable... must never implement an ACS Extended Capability...".
2345         * This seems arbitrary, but we take a conservative interpretation
2346         * of this statement.
2347         */
2348        case PCI_EXP_TYPE_PCI_BRIDGE:
2349        case PCI_EXP_TYPE_RC_EC:
2350                return false;
2351        /*
2352         * PCIe 3.0, 6.12.1.1 specifies that downstream and root ports should
2353         * implement ACS in order to indicate their peer-to-peer capabilities,
2354         * regardless of whether they are single- or multi-function devices.
2355         */
2356        case PCI_EXP_TYPE_DOWNSTREAM:
2357        case PCI_EXP_TYPE_ROOT_PORT:
2358                return pci_acs_flags_enabled(pdev, acs_flags);
2359        /*
2360         * PCIe 3.0, 6.12.1.2 specifies ACS capabilities that should be
2361         * implemented by the remaining PCIe types to indicate peer-to-peer
2362         * capabilities, but only when they are part of a multifunction
2363         * device.  The footnote for section 6.12 indicates the specific
2364         * PCIe types included here.
2365         */
2366        case PCI_EXP_TYPE_ENDPOINT:
2367        case PCI_EXP_TYPE_UPSTREAM:
2368        case PCI_EXP_TYPE_LEG_END:
2369        case PCI_EXP_TYPE_RC_END:
2370                if (!pdev->multifunction)
2371                        break;
2372
2373                return pci_acs_flags_enabled(pdev, acs_flags);
2374        }
2375
2376        /*
2377         * PCIe 3.0, 6.12.1.3 specifies no ACS capabilities are applicable
2378         * to single function devices with the exception of downstream ports.
2379         */
2380        return true;
2381}
2382
2383/**
2384 * pci_acs_path_enable - test ACS flags from start to end in a hierarchy
2385 * @start: starting downstream device
2386 * @end: ending upstream device or NULL to search to the root bus
2387 * @acs_flags: required flags
2388 *
2389 * Walk up a device tree from start to end testing PCI ACS support.  If
2390 * any step along the way does not support the required flags, return false.
2391 */
2392bool pci_acs_path_enabled(struct pci_dev *start,
2393                          struct pci_dev *end, u16 acs_flags)
2394{
2395        struct pci_dev *pdev, *parent = start;
2396
2397        do {
2398                pdev = parent;
2399
2400                if (!pci_acs_enabled(pdev, acs_flags))
2401                        return false;
2402
2403                if (pci_is_root_bus(pdev->bus))
2404                        return (end == NULL);
2405
2406                parent = pdev->bus->self;
2407        } while (pdev != end);
2408
2409        return true;
2410}
2411
2412/**
2413 * pci_swizzle_interrupt_pin - swizzle INTx for device behind bridge
2414 * @dev: the PCI device
2415 * @pin: the INTx pin (1=INTA, 2=INTB, 3=INTC, 4=INTD)
2416 *
2417 * Perform INTx swizzling for a device behind one level of bridge.  This is
2418 * required by section 9.1 of the PCI-to-PCI bridge specification for devices
2419 * behind bridges on add-in cards.  For devices with ARI enabled, the slot
2420 * number is always 0 (see the Implementation Note in section 2.2.8.1 of
2421 * the PCI Express Base Specification, Revision 2.1)
2422 */
2423u8 pci_swizzle_interrupt_pin(const struct pci_dev *dev, u8 pin)
2424{
2425        int slot;
2426
2427        if (pci_ari_enabled(dev->bus))
2428                slot = 0;
2429        else
2430                slot = PCI_SLOT(dev->devfn);
2431
2432        return (((pin - 1) + slot) % 4) + 1;
2433}
2434
2435int pci_get_interrupt_pin(struct pci_dev *dev, struct pci_dev **bridge)
2436{
2437        u8 pin;
2438
2439        pin = dev->pin;
2440        if (!pin)
2441                return -1;
2442
2443        while (!pci_is_root_bus(dev->bus)) {
2444                pin = pci_swizzle_interrupt_pin(dev, pin);
2445                dev = dev->bus->self;
2446        }
2447        *bridge = dev;
2448        return pin;
2449}
2450
2451/**
2452 * pci_common_swizzle - swizzle INTx all the way to root bridge
2453 * @dev: the PCI device
2454 * @pinp: pointer to the INTx pin value (1=INTA, 2=INTB, 3=INTD, 4=INTD)
2455 *
2456 * Perform INTx swizzling for a device.  This traverses through all PCI-to-PCI
2457 * bridges all the way up to a PCI root bus.
2458 */
2459u8 pci_common_swizzle(struct pci_dev *dev, u8 *pinp)
2460{
2461        u8 pin = *pinp;
2462
2463        while (!pci_is_root_bus(dev->bus)) {
2464                pin = pci_swizzle_interrupt_pin(dev, pin);
2465                dev = dev->bus->self;
2466        }
2467        *pinp = pin;
2468        return PCI_SLOT(dev->devfn);
2469}
2470
2471/**
2472 *      pci_release_region - Release a PCI bar
2473 *      @pdev: PCI device whose resources were previously reserved by pci_request_region
2474 *      @bar: BAR to release
2475 *
2476 *      Releases the PCI I/O and memory resources previously reserved by a
2477 *      successful call to pci_request_region.  Call this function only
2478 *      after all use of the PCI regions has ceased.
2479 */
2480void pci_release_region(struct pci_dev *pdev, int bar)
2481{
2482        struct pci_devres *dr;
2483
2484        if (pci_resource_len(pdev, bar) == 0)
2485                return;
2486        if (pci_resource_flags(pdev, bar) & IORESOURCE_IO)
2487                release_region(pci_resource_start(pdev, bar),
2488                                pci_resource_len(pdev, bar));
2489        else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM)
2490                release_mem_region(pci_resource_start(pdev, bar),
2491                                pci_resource_len(pdev, bar));
2492
2493        dr = find_pci_dr(pdev);
2494        if (dr)
2495                dr->region_mask &= ~(1 << bar);
2496}
2497EXPORT_SYMBOL(pci_release_region);
2498
2499/**
2500 *      __pci_request_region - Reserved PCI I/O and memory resource
2501 *      @pdev: PCI device whose resources are to be reserved
2502 *      @bar: BAR to be reserved
2503 *      @res_name: Name to be associated with resource.
2504 *      @exclusive: whether the region access is exclusive or not
2505 *
2506 *      Mark the PCI region associated with PCI device @pdev BR @bar as
2507 *      being reserved by owner @res_name.  Do not access any
2508 *      address inside the PCI regions unless this call returns
2509 *      successfully.
2510 *
2511 *      If @exclusive is set, then the region is marked so that userspace
2512 *      is explicitly not allowed to map the resource via /dev/mem or
2513 *      sysfs MMIO access.
2514 *
2515 *      Returns 0 on success, or %EBUSY on error.  A warning
2516 *      message is also printed on failure.
2517 */
2518static int __pci_request_region(struct pci_dev *pdev, int bar,
2519                                const char *res_name, int exclusive)
2520{
2521        struct pci_devres *dr;
2522
2523        if (pci_resource_len(pdev, bar) == 0)
2524                return 0;
2525
2526        if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) {
2527                if (!request_region(pci_resource_start(pdev, bar),
2528                            pci_resource_len(pdev, bar), res_name))
2529                        goto err_out;
2530        } else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) {
2531                if (!__request_mem_region(pci_resource_start(pdev, bar),
2532                                        pci_resource_len(pdev, bar), res_name,
2533                                        exclusive))
2534                        goto err_out;
2535        }
2536
2537        dr = find_pci_dr(pdev);
2538        if (dr)
2539                dr->region_mask |= 1 << bar;
2540
2541        return 0;
2542
2543err_out:
2544        dev_warn(&pdev->dev, "BAR %d: can't reserve %pR\n", bar,
2545                 &pdev->resource[bar]);
2546        return -EBUSY;
2547}
2548
2549/**
2550 *      pci_request_region - Reserve PCI I/O and memory resource
2551 *      @pdev: PCI device whose resources are to be reserved
2552 *      @bar: BAR to be reserved
2553 *      @res_name: Name to be associated with resource
2554 *
2555 *      Mark the PCI region associated with PCI device @pdev BAR @bar as
2556 *      being reserved by owner @res_name.  Do not access any
2557 *      address inside the PCI regions unless this call returns
2558 *      successfully.
2559 *
2560 *      Returns 0 on success, or %EBUSY on error.  A warning
2561 *      message is also printed on failure.
2562 */
2563int pci_request_region(struct pci_dev *pdev, int bar, const char *res_name)
2564{
2565        return __pci_request_region(pdev, bar, res_name, 0);
2566}
2567EXPORT_SYMBOL(pci_request_region);
2568
2569/**
2570 *      pci_request_region_exclusive - Reserved PCI I/O and memory resource
2571 *      @pdev: PCI device whose resources are to be reserved
2572 *      @bar: BAR to be reserved
2573 *      @res_name: Name to be associated with resource.
2574 *
2575 *      Mark the PCI region associated with PCI device @pdev BR @bar as
2576 *      being reserved by owner @res_name.  Do not access any
2577 *      address inside the PCI regions unless this call returns
2578 *      successfully.
2579 *
2580 *      Returns 0 on success, or %EBUSY on error.  A warning
2581 *      message is also printed on failure.
2582 *
2583 *      The key difference that _exclusive makes it that userspace is
2584 *      explicitly not allowed to map the resource via /dev/mem or
2585 *      sysfs.
2586 */
2587int pci_request_region_exclusive(struct pci_dev *pdev, int bar,
2588                                 const char *res_name)
2589{
2590        return __pci_request_region(pdev, bar, res_name, IORESOURCE_EXCLUSIVE);
2591}
2592EXPORT_SYMBOL(pci_request_region_exclusive);
2593
2594/**
2595 * pci_release_selected_regions - Release selected PCI I/O and memory resources
2596 * @pdev: PCI device whose resources were previously reserved
2597 * @bars: Bitmask of BARs to be released
2598 *
2599 * Release selected PCI I/O and memory resources previously reserved.
2600 * Call this function only after all use of the PCI regions has ceased.
2601 */
2602void pci_release_selected_regions(struct pci_dev *pdev, int bars)
2603{
2604        int i;
2605
2606        for (i = 0; i < 6; i++)
2607                if (bars & (1 << i))
2608                        pci_release_region(pdev, i);
2609}
2610EXPORT_SYMBOL(pci_release_selected_regions);
2611
2612static int __pci_request_selected_regions(struct pci_dev *pdev, int bars,
2613                                          const char *res_name, int excl)
2614{
2615        int i;
2616
2617        for (i = 0; i < 6; i++)
2618                if (bars & (1 << i))
2619                        if (__pci_request_region(pdev, i, res_name, excl))
2620                                goto err_out;
2621        return 0;
2622
2623err_out:
2624        while (--i >= 0)
2625                if (bars & (1 << i))
2626                        pci_release_region(pdev, i);
2627
2628        return -EBUSY;
2629}
2630
2631
2632/**
2633 * pci_request_selected_regions - Reserve selected PCI I/O and memory resources
2634 * @pdev: PCI device whose resources are to be reserved
2635 * @bars: Bitmask of BARs to be requested
2636 * @res_name: Name to be associated with resource
2637 */
2638int pci_request_selected_regions(struct pci_dev *pdev, int bars,
2639                                 const char *res_name)
2640{
2641        return __pci_request_selected_regions(pdev, bars, res_name, 0);
2642}
2643EXPORT_SYMBOL(pci_request_selected_regions);
2644
2645int pci_request_selected_regions_exclusive(struct pci_dev *pdev, int bars,
2646                                           const char *res_name)
2647{
2648        return __pci_request_selected_regions(pdev, bars, res_name,
2649                        IORESOURCE_EXCLUSIVE);
2650}
2651EXPORT_SYMBOL(pci_request_selected_regions_exclusive);
2652
2653/**
2654 *      pci_release_regions - Release reserved PCI I/O and memory resources
2655 *      @pdev: PCI device whose resources were previously reserved by pci_request_regions
2656 *
2657 *      Releases all PCI I/O and memory resources previously reserved by a
2658 *      successful call to pci_request_regions.  Call this function only
2659 *      after all use of the PCI regions has ceased.
2660 */
2661
2662void pci_release_regions(struct pci_dev *pdev)
2663{
2664        pci_release_selected_regions(pdev, (1 << 6) - 1);
2665}
2666EXPORT_SYMBOL(pci_release_regions);
2667
2668/**
2669 *      pci_request_regions - Reserved PCI I/O and memory resources
2670 *      @pdev: PCI device whose resources are to be reserved
2671 *      @res_name: Name to be associated with resource.
2672 *
2673 *      Mark all PCI regions associated with PCI device @pdev as
2674 *      being reserved by owner @res_name.  Do not access any
2675 *      address inside the PCI regions unless this call returns
2676 *      successfully.
2677 *
2678 *      Returns 0 on success, or %EBUSY on error.  A warning
2679 *      message is also printed on failure.
2680 */
2681int pci_request_regions(struct pci_dev *pdev, const char *res_name)
2682{
2683        return pci_request_selected_regions(pdev, ((1 << 6) - 1), res_name);
2684}
2685EXPORT_SYMBOL(pci_request_regions);
2686
2687/**
2688 *      pci_request_regions_exclusive - Reserved PCI I/O and memory resources
2689 *      @pdev: PCI device whose resources are to be reserved
2690 *      @res_name: Name to be associated with resource.
2691 *
2692 *      Mark all PCI regions associated with PCI device @pdev as
2693 *      being reserved by owner @res_name.  Do not access any
2694 *      address inside the PCI regions unless this call returns
2695 *      successfully.
2696 *
2697 *      pci_request_regions_exclusive() will mark the region so that
2698 *      /dev/mem and the sysfs MMIO access will not be allowed.
2699 *
2700 *      Returns 0 on success, or %EBUSY on error.  A warning
2701 *      message is also printed on failure.
2702 */
2703int pci_request_regions_exclusive(struct pci_dev *pdev, const char *res_name)
2704{
2705        return pci_request_selected_regions_exclusive(pdev,
2706                                        ((1 << 6) - 1), res_name);
2707}
2708EXPORT_SYMBOL(pci_request_regions_exclusive);
2709
2710/**
2711 *      pci_remap_iospace - Remap the memory mapped I/O space
2712 *      @res: Resource describing the I/O space
2713 *      @phys_addr: physical address of range to be mapped
2714 *
2715 *      Remap the memory mapped I/O space described by the @res
2716 *      and the CPU physical address @phys_addr into virtual address space.
2717 *      Only architectures that have memory mapped IO functions defined
2718 *      (and the PCI_IOBASE value defined) should call this function.
2719 */
2720int __weak pci_remap_iospace(const struct resource *res, phys_addr_t phys_addr)
2721{
2722#if defined(PCI_IOBASE) && defined(CONFIG_MMU)
2723        unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start;
2724
2725        if (!(res->flags & IORESOURCE_IO))
2726                return -EINVAL;
2727
2728        if (res->end > IO_SPACE_LIMIT)
2729                return -EINVAL;
2730
2731        return ioremap_page_range(vaddr, vaddr + resource_size(res), phys_addr,
2732                                  pgprot_device(PAGE_KERNEL));
2733#else
2734        /* this architecture does not have memory mapped I/O space,
2735           so this function should never be called */
2736        WARN_ONCE(1, "This architecture does not support memory mapped I/O\n");
2737        return -ENODEV;
2738#endif
2739}
2740
2741static void __pci_set_master(struct pci_dev *dev, bool enable)
2742{
2743        u16 old_cmd, cmd;
2744
2745        pci_read_config_word(dev, PCI_COMMAND, &old_cmd);
2746        if (enable)
2747                cmd = old_cmd | PCI_COMMAND_MASTER;
2748        else
2749                cmd = old_cmd & ~PCI_COMMAND_MASTER;
2750        if (cmd != old_cmd) {
2751                dev_dbg(&dev->dev, "%s bus mastering\n",
2752                        enable ? "enabling" : "disabling");
2753                pci_write_config_word(dev, PCI_COMMAND, cmd);
2754        }
2755        dev->is_busmaster = enable;
2756}
2757
2758/**
2759 * pcibios_setup - process "pci=" kernel boot arguments
2760 * @str: string used to pass in "pci=" kernel boot arguments
2761 *
2762 * Process kernel boot arguments.  This is the default implementation.
2763 * Architecture specific implementations can override this as necessary.
2764 */
2765char * __weak __init pcibios_setup(char *str)
2766{
2767        return str;
2768}
2769
2770/**
2771 * pcibios_set_master - enable PCI bus-mastering for device dev
2772 * @dev: the PCI device to enable
2773 *
2774 * Enables PCI bus-mastering for the device.  This is the default
2775 * implementation.  Architecture specific implementations can override
2776 * this if necessary.
2777 */
2778void __weak pcibios_set_master(struct pci_dev *dev)
2779{
2780        u8 lat;
2781
2782        /* The latency timer doesn't apply to PCIe (either Type 0 or Type 1) */
2783        if (pci_is_pcie(dev))
2784                return;
2785
2786        pci_read_config_byte(dev, PCI_LATENCY_TIMER, &lat);
2787        if (lat < 16)
2788                lat = (64 <= pcibios_max_latency) ? 64 : pcibios_max_latency;
2789        else if (lat > pcibios_max_latency)
2790                lat = pcibios_max_latency;
2791        else
2792                return;
2793
2794        pci_write_config_byte(dev, PCI_LATENCY_TIMER, lat);
2795}
2796
2797/**
2798 * pci_set_master - enables bus-mastering for device dev
2799 * @dev: the PCI device to enable
2800 *
2801 * Enables bus-mastering on the device and calls pcibios_set_master()
2802 * to do the needed arch specific settings.
2803 */
2804void pci_set_master(struct pci_dev *dev)
2805{
2806        __pci_set_master(dev, true);
2807        pcibios_set_master(dev);
2808}
2809EXPORT_SYMBOL(pci_set_master);
2810
2811/**
2812 * pci_clear_master - disables bus-mastering for device dev
2813 * @dev: the PCI device to disable
2814 */
2815void pci_clear_master(struct pci_dev *dev)
2816{
2817        __pci_set_master(dev, false);
2818}
2819EXPORT_SYMBOL(pci_clear_master);
2820
2821/**
2822 * pci_set_cacheline_size - ensure the CACHE_LINE_SIZE register is programmed
2823 * @dev: the PCI device for which MWI is to be enabled
2824 *
2825 * Helper function for pci_set_mwi.
2826 * Originally copied from drivers/net/acenic.c.
2827 * Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>.
2828 *
2829 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
2830 */
2831int pci_set_cacheline_size(struct pci_dev *dev)
2832{
2833        u8 cacheline_size;
2834
2835        if (!pci_cache_line_size)
2836                return -EINVAL;
2837
2838        /* Validate current setting: the PCI_CACHE_LINE_SIZE must be
2839           equal to or multiple of the right value. */
2840        pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
2841        if (cacheline_size >= pci_cache_line_size &&
2842            (cacheline_size % pci_cache_line_size) == 0)
2843                return 0;
2844
2845        /* Write the correct value. */
2846        pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, pci_cache_line_size);
2847        /* Read it back. */
2848        pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
2849        if (cacheline_size == pci_cache_line_size)
2850                return 0;
2851
2852        dev_printk(KERN_DEBUG, &dev->dev, "cache line size of %d is not supported\n",
2853                   pci_cache_line_size << 2);
2854
2855        return -EINVAL;
2856}
2857EXPORT_SYMBOL_GPL(pci_set_cacheline_size);
2858
2859/**
2860 * pci_set_mwi - enables memory-write-invalidate PCI transaction
2861 * @dev: the PCI device for which MWI is enabled
2862 *
2863 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
2864 *
2865 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
2866 */
2867int pci_set_mwi(struct pci_dev *dev)
2868{
2869#ifdef PCI_DISABLE_MWI
2870        return 0;
2871#else
2872        int rc;
2873        u16 cmd;
2874
2875        rc = pci_set_cacheline_size(dev);
2876        if (rc)
2877                return rc;
2878
2879        pci_read_config_word(dev, PCI_COMMAND, &cmd);
2880        if (!(cmd & PCI_COMMAND_INVALIDATE)) {
2881                dev_dbg(&dev->dev, "enabling Mem-Wr-Inval\n");
2882                cmd |= PCI_COMMAND_INVALIDATE;
2883                pci_write_config_word(dev, PCI_COMMAND, cmd);
2884        }
2885        return 0;
2886#endif
2887}
2888EXPORT_SYMBOL(pci_set_mwi);
2889
2890/**
2891 * pci_try_set_mwi - enables memory-write-invalidate PCI transaction
2892 * @dev: the PCI device for which MWI is enabled
2893 *
2894 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
2895 * Callers are not required to check the return value.
2896 *
2897 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
2898 */
2899int pci_try_set_mwi(struct pci_dev *dev)
2900{
2901#ifdef PCI_DISABLE_MWI
2902        return 0;
2903#else
2904        return pci_set_mwi(dev);
2905#endif
2906}
2907EXPORT_SYMBOL(pci_try_set_mwi);
2908
2909/**
2910 * pci_clear_mwi - disables Memory-Write-Invalidate for device dev
2911 * @dev: the PCI device to disable
2912 *
2913 * Disables PCI Memory-Write-Invalidate transaction on the device
2914 */
2915void pci_clear_mwi(struct pci_dev *dev)
2916{
2917#ifndef PCI_DISABLE_MWI
2918        u16 cmd;
2919
2920        pci_read_config_word(dev, PCI_COMMAND, &cmd);
2921        if (cmd & PCI_COMMAND_INVALIDATE) {
2922                cmd &= ~PCI_COMMAND_INVALIDATE;
2923                pci_write_config_word(dev, PCI_COMMAND, cmd);
2924        }
2925#endif
2926}
2927EXPORT_SYMBOL(pci_clear_mwi);
2928
2929/**
2930 * pci_intx - enables/disables PCI INTx for device dev
2931 * @pdev: the PCI device to operate on
2932 * @enable: boolean: whether to enable or disable PCI INTx
2933 *
2934 * Enables/disables PCI INTx for device dev
2935 */
2936void pci_intx(struct pci_dev *pdev, int enable)
2937{
2938        u16 pci_command, new;
2939
2940        pci_read_config_word(pdev, PCI_COMMAND, &pci_command);
2941
2942        if (enable)
2943                new = pci_command & ~PCI_COMMAND_INTX_DISABLE;
2944        else
2945                new = pci_command | PCI_COMMAND_INTX_DISABLE;
2946
2947        if (new != pci_command) {
2948                struct pci_devres *dr;
2949
2950                pci_write_config_word(pdev, PCI_COMMAND, new);
2951
2952                dr = find_pci_dr(pdev);
2953                if (dr && !dr->restore_intx) {
2954                        dr->restore_intx = 1;
2955                        dr->orig_intx = !enable;
2956                }
2957        }
2958}
2959EXPORT_SYMBOL_GPL(pci_intx);
2960
2961/**
2962 * pci_intx_mask_supported - probe for INTx masking support
2963 * @dev: the PCI device to operate on
2964 *
2965 * Check if the device dev support INTx masking via the config space
2966 * command word.
2967 */
2968bool pci_intx_mask_supported(struct pci_dev *dev)
2969{
2970        bool mask_supported = false;
2971        u16 orig, new;
2972
2973        if (dev->broken_intx_masking)
2974                return false;
2975
2976        pci_cfg_access_lock(dev);
2977
2978        pci_read_config_word(dev, PCI_COMMAND, &orig);
2979        pci_write_config_word(dev, PCI_COMMAND,
2980                              orig ^ PCI_COMMAND_INTX_DISABLE);
2981        pci_read_config_word(dev, PCI_COMMAND, &new);
2982
2983        /*
2984         * There's no way to protect against hardware bugs or detect them
2985         * reliably, but as long as we know what the value should be, let's
2986         * go ahead and check it.
2987         */
2988        if ((new ^ orig) & ~PCI_COMMAND_INTX_DISABLE) {
2989                dev_err(&dev->dev, "Command register changed from 0x%x to 0x%x: driver or hardware bug?\n",
2990                        orig, new);
2991        } else if ((new ^ orig) & PCI_COMMAND_INTX_DISABLE) {
2992                mask_supported = true;
2993                pci_write_config_word(dev, PCI_COMMAND, orig);
2994        }
2995
2996        pci_cfg_access_unlock(dev);
2997        return mask_supported;
2998}
2999EXPORT_SYMBOL_GPL(pci_intx_mask_supported);
3000
3001static bool pci_check_and_set_intx_mask(struct pci_dev *dev, bool mask)
3002{
3003        struct pci_bus *bus = dev->bus;
3004        bool mask_updated = true;
3005        u32 cmd_status_dword;
3006        u16 origcmd, newcmd;
3007        unsigned long flags;
3008        bool irq_pending;
3009
3010        /*
3011         * We do a single dword read to retrieve both command and status.
3012         * Document assumptions that make this possible.
3013         */
3014        BUILD_BUG_ON(PCI_COMMAND % 4);
3015        BUILD_BUG_ON(PCI_COMMAND + 2 != PCI_STATUS);
3016
3017        raw_spin_lock_irqsave(&pci_lock, flags);
3018
3019        bus->ops->read(bus, dev->devfn, PCI_COMMAND, 4, &cmd_status_dword);
3020
3021        irq_pending = (cmd_status_dword >> 16) & PCI_STATUS_INTERRUPT;
3022
3023        /*
3024         * Check interrupt status register to see whether our device
3025         * triggered the interrupt (when masking) or the next IRQ is
3026         * already pending (when unmasking).
3027         */
3028        if (mask != irq_pending) {
3029                mask_updated = false;
3030                goto done;
3031        }
3032
3033        origcmd = cmd_status_dword;
3034        newcmd = origcmd & ~PCI_COMMAND_INTX_DISABLE;
3035        if (mask)
3036                newcmd |= PCI_COMMAND_INTX_DISABLE;
3037        if (newcmd != origcmd)
3038                bus->ops->write(bus, dev->devfn, PCI_COMMAND, 2, newcmd);
3039
3040done:
3041        raw_spin_unlock_irqrestore(&pci_lock, flags);
3042
3043        return mask_updated;
3044}
3045
3046/**
3047 * pci_check_and_mask_intx - mask INTx on pending interrupt
3048 * @dev: the PCI device to operate on
3049 *
3050 * Check if the device dev has its INTx line asserted, mask it and
3051 * return true in that case. False is returned if not interrupt was
3052 * pending.
3053 */
3054bool pci_check_and_mask_intx(struct pci_dev *dev)
3055{
3056        return pci_check_and_set_intx_mask(dev, true);
3057}
3058EXPORT_SYMBOL_GPL(pci_check_and_mask_intx);
3059
3060/**
3061 * pci_check_and_unmask_intx - unmask INTx if no interrupt is pending
3062 * @dev: the PCI device to operate on
3063 *
3064 * Check if the device dev has its INTx line asserted, unmask it if not
3065 * and return true. False is returned and the mask remains active if
3066 * there was still an interrupt pending.
3067 */
3068bool pci_check_and_unmask_intx(struct pci_dev *dev)
3069{
3070        return pci_check_and_set_intx_mask(dev, false);
3071}
3072EXPORT_SYMBOL_GPL(pci_check_and_unmask_intx);
3073
3074/**
3075 * pci_msi_off - disables any MSI or MSI-X capabilities
3076 * @dev: the PCI device to operate on
3077 *
3078 * If you want to use MSI, see pci_enable_msi() and friends.
3079 * This is a lower-level primitive that allows us to disable
3080 * MSI operation at the device level.
3081 */
3082void pci_msi_off(struct pci_dev *dev)
3083{
3084        int pos;
3085        u16 control;
3086
3087        /*
3088         * This looks like it could go in msi.c, but we need it even when
3089         * CONFIG_PCI_MSI=n.  For the same reason, we can't use
3090         * dev->msi_cap or dev->msix_cap here.
3091         */
3092        pos = pci_find_capability(dev, PCI_CAP_ID_MSI);
3093        if (pos) {
3094                pci_read_config_word(dev, pos + PCI_MSI_FLAGS, &control);
3095                control &= ~PCI_MSI_FLAGS_ENABLE;
3096                pci_write_config_word(dev, pos + PCI_MSI_FLAGS, control);
3097        }
3098        pos = pci_find_capability(dev, PCI_CAP_ID_MSIX);
3099        if (pos) {
3100                pci_read_config_word(dev, pos + PCI_MSIX_FLAGS, &control);
3101                control &= ~PCI_MSIX_FLAGS_ENABLE;
3102                pci_write_config_word(dev, pos + PCI_MSIX_FLAGS, control);
3103        }
3104}
3105EXPORT_SYMBOL_GPL(pci_msi_off);
3106
3107int pci_set_dma_max_seg_size(struct pci_dev *dev, unsigned int size)
3108{
3109        return dma_set_max_seg_size(&dev->dev, size);
3110}
3111EXPORT_SYMBOL(pci_set_dma_max_seg_size);
3112
3113int pci_set_dma_seg_boundary(struct pci_dev *dev, unsigned long mask)
3114{
3115        return dma_set_seg_boundary(&dev->dev, mask);
3116}
3117EXPORT_SYMBOL(pci_set_dma_seg_boundary);
3118
3119/**
3120 * pci_wait_for_pending_transaction - waits for pending transaction
3121 * @dev: the PCI device to operate on
3122 *
3123 * Return 0 if transaction is pending 1 otherwise.
3124 */
3125int pci_wait_for_pending_transaction(struct pci_dev *dev)
3126{
3127        if (!pci_is_pcie(dev))
3128                return 1;
3129
3130        return pci_wait_for_pending(dev, pci_pcie_cap(dev) + PCI_EXP_DEVSTA,
3131                                    PCI_EXP_DEVSTA_TRPND);
3132}
3133EXPORT_SYMBOL(pci_wait_for_pending_transaction);
3134
3135static int pcie_flr(struct pci_dev *dev, int probe)
3136{
3137        u32 cap;
3138
3139        pcie_capability_read_dword(dev, PCI_EXP_DEVCAP, &cap);
3140        if (!(cap & PCI_EXP_DEVCAP_FLR))
3141                return -ENOTTY;
3142
3143        if (probe)
3144                return 0;
3145
3146        if (!pci_wait_for_pending_transaction(dev))
3147                dev_err(&dev->dev, "transaction is not cleared; proceeding with reset anyway\n");
3148
3149        pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_BCR_FLR);
3150
3151        msleep(100);
3152
3153        return 0;
3154}
3155
3156static int pci_af_flr(struct pci_dev *dev, int probe)
3157{
3158        int pos;
3159        u8 cap;
3160
3161        pos = pci_find_capability(dev, PCI_CAP_ID_AF);
3162        if (!pos)
3163                return -ENOTTY;
3164
3165        pci_read_config_byte(dev, pos + PCI_AF_CAP, &cap);
3166        if (!(cap & PCI_AF_CAP_TP) || !(cap & PCI_AF_CAP_FLR))
3167                return -ENOTTY;
3168
3169        if (probe)
3170                return 0;
3171
3172        /*
3173         * Wait for Transaction Pending bit to clear.  A word-aligned test
3174         * is used, so we use the conrol offset rather than status and shift
3175         * the test bit to match.
3176         */
3177        if (pci_wait_for_pending(dev, pos + PCI_AF_CTRL,
3178                                 PCI_AF_STATUS_TP << 8))
3179                goto clear;
3180
3181        dev_err(&dev->dev, "transaction is not cleared; proceeding with reset anyway\n");
3182
3183clear:
3184        pci_write_config_byte(dev, pos + PCI_AF_CTRL, PCI_AF_CTRL_FLR);
3185        msleep(100);
3186
3187        return 0;
3188}
3189
3190/**
3191 * pci_pm_reset - Put device into PCI_D3 and back into PCI_D0.
3192 * @dev: Device to reset.
3193 * @probe: If set, only check if the device can be reset this way.
3194 *
3195 * If @dev supports native PCI PM and its PCI_PM_CTRL_NO_SOFT_RESET flag is
3196 * unset, it will be reinitialized internally when going from PCI_D3hot to
3197 * PCI_D0.  If that's the case and the device is not in a low-power state
3198 * already, force it into PCI_D3hot and back to PCI_D0, causing it to be reset.
3199 *
3200 * NOTE: This causes the caller to sleep for twice the device power transition
3201 * cooldown period, which for the D0->D3hot and D3hot->D0 transitions is 10 ms
3202 * by default (i.e. unless the @dev's d3_delay field has a different value).
3203 * Moreover, only devices in D0 can be reset by this function.
3204 */
3205static int pci_pm_reset(struct pci_dev *dev, int probe)
3206{
3207        u16 csr;
3208
3209        if (!dev->pm_cap)
3210                return -ENOTTY;
3211
3212        pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &csr);
3213        if (csr & PCI_PM_CTRL_NO_SOFT_RESET)
3214                return -ENOTTY;
3215
3216        if (probe)
3217                return 0;
3218
3219        if (dev->current_state != PCI_D0)
3220                return -EINVAL;
3221
3222        csr &= ~PCI_PM_CTRL_STATE_MASK;
3223        csr |= PCI_D3hot;
3224        pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
3225        pci_dev_d3_sleep(dev);
3226
3227        csr &= ~PCI_PM_CTRL_STATE_MASK;
3228        csr |= PCI_D0;
3229        pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
3230        pci_dev_d3_sleep(dev);
3231
3232        return 0;
3233}
3234
3235void pci_reset_secondary_bus(struct pci_dev *dev)
3236{
3237        u16 ctrl;
3238
3239        pci_read_config_word(dev, PCI_BRIDGE_CONTROL, &ctrl);
3240        ctrl |= PCI_BRIDGE_CTL_BUS_RESET;
3241        pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
3242        /*
3243         * PCI spec v3.0 7.6.4.2 requires minimum Trst of 1ms.  Double
3244         * this to 2ms to ensure that we meet the minimum requirement.
3245         */
3246        msleep(2);
3247
3248        ctrl &= ~PCI_BRIDGE_CTL_BUS_RESET;
3249        pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
3250
3251        /*
3252         * Trhfa for conventional PCI is 2^25 clock cycles.
3253         * Assuming a minimum 33MHz clock this results in a 1s
3254         * delay before we can consider subordinate devices to
3255         * be re-initialized.  PCIe has some ways to shorten this,
3256         * but we don't make use of them yet.
3257         */
3258        ssleep(1);
3259}
3260
3261void __weak pcibios_reset_secondary_bus(struct pci_dev *dev)
3262{
3263        pci_reset_secondary_bus(dev);
3264}
3265
3266/**
3267 * pci_reset_bridge_secondary_bus - Reset the secondary bus on a PCI bridge.
3268 * @dev: Bridge device
3269 *
3270 * Use the bridge control register to assert reset on the secondary bus.
3271 * Devices on the secondary bus are left in power-on state.
3272 */
3273void pci_reset_bridge_secondary_bus(struct pci_dev *dev)
3274{
3275        pcibios_reset_secondary_bus(dev);
3276}
3277EXPORT_SYMBOL_GPL(pci_reset_bridge_secondary_bus);
3278
3279static int pci_parent_bus_reset(struct pci_dev *dev, int probe)
3280{
3281        struct pci_dev *pdev;
3282
3283        if (pci_is_root_bus(dev->bus) || dev->subordinate || !dev->bus->self)
3284                return -ENOTTY;
3285
3286        list_for_each_entry(pdev, &dev->bus->devices, bus_list)
3287                if (pdev != dev)
3288                        return -ENOTTY;
3289
3290        if (probe)
3291                return 0;
3292
3293        pci_reset_bridge_secondary_bus(dev->bus->self);
3294
3295        return 0;
3296}
3297
3298static int pci_reset_hotplug_slot(struct hotplug_slot *hotplug, int probe)
3299{
3300        int rc = -ENOTTY;
3301
3302        if (!hotplug || !try_module_get(hotplug->ops->owner))
3303                return rc;
3304
3305        if (hotplug->ops->reset_slot)
3306                rc = hotplug->ops->reset_slot(hotplug, probe);
3307
3308        module_put(hotplug->ops->owner);
3309
3310        return rc;
3311}
3312
3313static int pci_dev_reset_slot_function(struct pci_dev *dev, int probe)
3314{
3315        struct pci_dev *pdev;
3316
3317        if (dev->subordinate || !dev->slot)
3318                return -ENOTTY;
3319
3320        list_for_each_entry(pdev, &dev->bus->devices, bus_list)
3321                if (pdev != dev && pdev->slot == dev->slot)
3322                        return -ENOTTY;
3323
3324        return pci_reset_hotplug_slot(dev->slot->hotplug, probe);
3325}
3326
3327static int __pci_dev_reset(struct pci_dev *dev, int probe)
3328{
3329        int rc;
3330
3331        might_sleep();
3332
3333        rc = pci_dev_specific_reset(dev, probe);
3334        if (rc != -ENOTTY)
3335                goto done;
3336
3337        rc = pcie_flr(dev, probe);
3338        if (rc != -ENOTTY)
3339                goto done;
3340
3341        rc = pci_af_flr(dev, probe);
3342        if (rc != -ENOTTY)
3343                goto done;
3344
3345        rc = pci_pm_reset(dev, probe);
3346        if (rc != -ENOTTY)
3347                goto done;
3348
3349        rc = pci_dev_reset_slot_function(dev, probe);
3350        if (rc != -ENOTTY)
3351                goto done;
3352
3353        rc = pci_parent_bus_reset(dev, probe);
3354done:
3355        return rc;
3356}
3357
3358static void pci_dev_lock(struct pci_dev *dev)
3359{
3360        pci_cfg_access_lock(dev);
3361        /* block PM suspend, driver probe, etc. */
3362        device_lock(&dev->dev);
3363}
3364
3365/* Return 1 on successful lock, 0 on contention */
3366static int pci_dev_trylock(struct pci_dev *dev)
3367{
3368        if (pci_cfg_access_trylock(dev)) {
3369                if (device_trylock(&dev->dev))
3370                        return 1;
3371                pci_cfg_access_unlock(dev);
3372        }
3373
3374        return 0;
3375}
3376
3377static void pci_dev_unlock(struct pci_dev *dev)
3378{
3379        device_unlock(&dev->dev);
3380        pci_cfg_access_unlock(dev);
3381}
3382
3383/**
3384 * pci_reset_notify - notify device driver of reset
3385 * @dev: device to be notified of reset
3386 * @prepare: 'true' if device is about to be reset; 'false' if reset attempt
3387 *           completed
3388 *
3389 * Must be called prior to device access being disabled and after device
3390 * access is restored.
3391 */
3392static void pci_reset_notify(struct pci_dev *dev, bool prepare)
3393{
3394        const struct pci_error_handlers *err_handler =
3395                        dev->driver ? dev->driver->err_handler : NULL;
3396        if (err_handler && err_handler->reset_notify)
3397                err_handler->reset_notify(dev, prepare);
3398}
3399
3400static void pci_dev_save_and_disable(struct pci_dev *dev)
3401{
3402        pci_reset_notify(dev, true);
3403
3404        /*
3405         * Wake-up device prior to save.  PM registers default to D0 after
3406         * reset and a simple register restore doesn't reliably return
3407         * to a non-D0 state anyway.
3408         */
3409        pci_set_power_state(dev, PCI_D0);
3410
3411        pci_save_state(dev);
3412        /*
3413         * Disable the device by clearing the Command register, except for
3414         * INTx-disable which is set.  This not only disables MMIO and I/O port
3415         * BARs, but also prevents the device from being Bus Master, preventing
3416         * DMA from the device including MSI/MSI-X interrupts.  For PCI 2.3
3417         * compliant devices, INTx-disable prevents legacy interrupts.
3418         */
3419        pci_write_config_word(dev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE);
3420}
3421
3422static void pci_dev_restore(struct pci_dev *dev)
3423{
3424        pci_restore_state(dev);
3425        pci_reset_notify(dev, false);
3426}
3427
3428static int pci_dev_reset(struct pci_dev *dev, int probe)
3429{
3430        int rc;
3431
3432        if (!probe)
3433                pci_dev_lock(dev);
3434
3435        rc = __pci_dev_reset(dev, probe);
3436
3437        if (!probe)
3438                pci_dev_unlock(dev);
3439
3440        return rc;
3441}
3442
3443/**
3444 * __pci_reset_function - reset a PCI device function
3445 * @dev: PCI device to reset
3446 *
3447 * Some devices allow an individual function to be reset without affecting
3448 * other functions in the same device.  The PCI device must be responsive
3449 * to PCI config space in order to use this function.
3450 *
3451 * The device function is presumed to be unused when this function is called.
3452 * Resetting the device will make the contents of PCI configuration space
3453 * random, so any caller of this must be prepared to reinitialise the
3454 * device including MSI, bus mastering, BARs, decoding IO and memory spaces,
3455 * etc.
3456 *
3457 * Returns 0 if the device function was successfully reset or negative if the
3458 * device doesn't support resetting a single function.
3459 */
3460int __pci_reset_function(struct pci_dev *dev)
3461{
3462        return pci_dev_reset(dev, 0);
3463}
3464EXPORT_SYMBOL_GPL(__pci_reset_function);
3465
3466/**
3467 * __pci_reset_function_locked - reset a PCI device function while holding
3468 * the @dev mutex lock.
3469 * @dev: PCI device to reset
3470 *
3471 * Some devices allow an individual function to be reset without affecting
3472 * other functions in the same device.  The PCI device must be responsive
3473 * to PCI config space in order to use this function.
3474 *
3475 * The device function is presumed to be unused and the caller is holding
3476 * the device mutex lock when this function is called.
3477 * Resetting the device will make the contents of PCI configuration space
3478 * random, so any caller of this must be prepared to reinitialise the
3479 * device including MSI, bus mastering, BARs, decoding IO and memory spaces,
3480 * etc.
3481 *
3482 * Returns 0 if the device function was successfully reset or negative if the
3483 * device doesn't support resetting a single function.
3484 */
3485int __pci_reset_function_locked(struct pci_dev *dev)
3486{
3487        return __pci_dev_reset(dev, 0);
3488}
3489EXPORT_SYMBOL_GPL(__pci_reset_function_locked);
3490
3491/**
3492 * pci_probe_reset_function - check whether the device can be safely reset
3493 * @dev: PCI device to reset
3494 *
3495 * Some devices allow an individual function to be reset without affecting
3496 * other functions in the same device.  The PCI device must be responsive
3497 * to PCI config space in order to use this function.
3498 *
3499 * Returns 0 if the device function can be reset or negative if the
3500 * device doesn't support resetting a single function.
3501 */
3502int pci_probe_reset_function(struct pci_dev *dev)
3503{
3504        return pci_dev_reset(dev, 1);
3505}
3506
3507/**
3508 * pci_reset_function - quiesce and reset a PCI device function
3509 * @dev: PCI device to reset
3510 *
3511 * Some devices allow an individual function to be reset without affecting
3512 * other functions in the same device.  The PCI device must be responsive
3513 * to PCI config space in order to use this function.
3514 *
3515 * This function does not just reset the PCI portion of a device, but
3516 * clears all the state associated with the device.  This function differs
3517 * from __pci_reset_function in that it saves and restores device state
3518 * over the reset.
3519 *
3520 * Returns 0 if the device function was successfully reset or negative if the
3521 * device doesn't support resetting a single function.
3522 */
3523int pci_reset_function(struct pci_dev *dev)
3524{
3525        int rc;
3526
3527        rc = pci_dev_reset(dev, 1);
3528        if (rc)
3529                return rc;
3530
3531        pci_dev_save_and_disable(dev);
3532
3533        rc = pci_dev_reset(dev, 0);
3534
3535        pci_dev_restore(dev);
3536
3537        return rc;
3538}
3539EXPORT_SYMBOL_GPL(pci_reset_function);
3540
3541/**
3542 * pci_try_reset_function - quiesce and reset a PCI device function
3543 * @dev: PCI device to reset
3544 *
3545 * Same as above, except return -EAGAIN if unable to lock device.
3546 */
3547int pci_try_reset_function(struct pci_dev *dev)
3548{
3549        int rc;
3550
3551        rc = pci_dev_reset(dev, 1);
3552        if (rc)
3553                return rc;
3554
3555        pci_dev_save_and_disable(dev);
3556
3557        if (pci_dev_trylock(dev)) {
3558                rc = __pci_dev_reset(dev, 0);
3559                pci_dev_unlock(dev);
3560        } else
3561                rc = -EAGAIN;
3562
3563        pci_dev_restore(dev);
3564
3565        return rc;
3566}
3567EXPORT_SYMBOL_GPL(pci_try_reset_function);
3568
3569/* Lock devices from the top of the tree down */
3570static void pci_bus_lock(struct pci_bus *bus)
3571{
3572        struct pci_dev *dev;
3573
3574        list_for_each_entry(dev, &bus->devices, bus_list) {
3575                pci_dev_lock(dev);
3576                if (dev->subordinate)
3577                        pci_bus_lock(dev->subordinate);
3578        }
3579}
3580
3581/* Unlock devices from the bottom of the tree up */
3582static void pci_bus_unlock(struct pci_bus *bus)
3583{
3584        struct pci_dev *dev;
3585
3586        list_for_each_entry(dev, &bus->devices, bus_list) {
3587                if (dev->subordinate)
3588                        pci_bus_unlock(dev->subordinate);
3589                pci_dev_unlock(dev);
3590        }
3591}
3592
3593/* Return 1 on successful lock, 0 on contention */
3594static int pci_bus_trylock(struct pci_bus *bus)
3595{
3596        struct pci_dev *dev;
3597
3598        list_for_each_entry(dev, &bus->devices, bus_list) {
3599                if (!pci_dev_trylock(dev))
3600                        goto unlock;
3601                if (dev->subordinate) {
3602                        if (!pci_bus_trylock(dev->subordinate)) {
3603                                pci_dev_unlock(dev);
3604                                goto unlock;
3605                        }
3606                }
3607        }
3608        return 1;
3609
3610unlock:
3611        list_for_each_entry_continue_reverse(dev, &bus->devices, bus_list) {
3612                if (dev->subordinate)
3613                        pci_bus_unlock(dev->subordinate);
3614                pci_dev_unlock(dev);
3615        }
3616        return 0;
3617}
3618
3619/* Lock devices from the top of the tree down */
3620static void pci_slot_lock(struct pci_slot *slot)
3621{
3622        struct pci_dev *dev;
3623
3624        list_for_each_entry(dev, &slot->bus->devices, bus_list) {
3625                if (!dev->slot || dev->slot != slot)
3626                        continue;
3627                pci_dev_lock(dev);
3628                if (dev->subordinate)
3629                        pci_bus_lock(dev->subordinate);
3630        }
3631}
3632
3633/* Unlock devices from the bottom of the tree up */
3634static void pci_slot_unlock(struct pci_slot *slot)
3635{
3636        struct pci_dev *dev;
3637
3638        list_for_each_entry(dev, &slot->bus->devices, bus_list) {
3639                if (!dev->slot || dev->slot != slot)
3640                        continue;
3641                if (dev->subordinate)
3642                        pci_bus_unlock(dev->subordinate);
3643                pci_dev_unlock(dev);
3644        }
3645}
3646
3647/* Return 1 on successful lock, 0 on contention */
3648static int pci_slot_trylock(struct pci_slot *slot)
3649{
3650        struct pci_dev *dev;
3651
3652        list_for_each_entry(dev, &slot->bus->devices, bus_list) {
3653                if (!dev->slot || dev->slot != slot)
3654                        continue;
3655                if (!pci_dev_trylock(dev))
3656                        goto unlock;
3657                if (dev->subordinate) {
3658                        if (!pci_bus_trylock(dev->subordinate)) {
3659                                pci_dev_unlock(dev);
3660                                goto unlock;
3661                        }
3662                }
3663        }
3664        return 1;
3665
3666unlock:
3667        list_for_each_entry_continue_reverse(dev,
3668                                             &slot->bus->devices, bus_list) {
3669                if (!dev->slot || dev->slot != slot)
3670                        continue;
3671                if (dev->subordinate)
3672                        pci_bus_unlock(dev->subordinate);
3673                pci_dev_unlock(dev);
3674        }
3675        return 0;
3676}
3677
3678/* Save and disable devices from the top of the tree down */
3679static void pci_bus_save_and_disable(struct pci_bus *bus)
3680{
3681        struct pci_dev *dev;
3682
3683        list_for_each_entry(dev, &bus->devices, bus_list) {
3684                pci_dev_save_and_disable(dev);
3685                if (dev->subordinate)
3686                        pci_bus_save_and_disable(dev->subordinate);
3687        }
3688}
3689
3690/*
3691 * Restore devices from top of the tree down - parent bridges need to be
3692 * restored before we can get to subordinate devices.
3693 */
3694static void pci_bus_restore(struct pci_bus *bus)
3695{
3696        struct pci_dev *dev;
3697
3698        list_for_each_entry(dev, &bus->devices, bus_list) {
3699                pci_dev_restore(dev);
3700                if (dev->subordinate)
3701                        pci_bus_restore(dev->subordinate);
3702        }
3703}
3704
3705/* Save and disable devices from the top of the tree down */
3706static void pci_slot_save_and_disable(struct pci_slot *slot)
3707{
3708        struct pci_dev *dev;
3709
3710        list_for_each_entry(dev, &slot->bus->devices, bus_list) {
3711                if (!dev->slot || dev->slot != slot)
3712                        continue;
3713                pci_dev_save_and_disable(dev);
3714                if (dev->subordinate)
3715                        pci_bus_save_and_disable(dev->subordinate);
3716        }
3717}
3718
3719/*
3720 * Restore devices from top of the tree down - parent bridges need to be
3721 * restored before we can get to subordinate devices.
3722 */
3723static void pci_slot_restore(struct pci_slot *slot)
3724{
3725        struct pci_dev *dev;
3726
3727        list_for_each_entry(dev, &slot->bus->devices, bus_list) {
3728                if (!dev->slot || dev->slot != slot)
3729                        continue;
3730                pci_dev_restore(dev);
3731                if (dev->subordinate)
3732                        pci_bus_restore(dev->subordinate);
3733        }
3734}
3735
3736static int pci_slot_reset(struct pci_slot *slot, int probe)
3737{
3738        int rc;
3739
3740        if (!slot)
3741                return -ENOTTY;
3742
3743        if (!probe)
3744                pci_slot_lock(slot);
3745
3746        might_sleep();
3747
3748        rc = pci_reset_hotplug_slot(slot->hotplug, probe);
3749
3750        if (!probe)
3751                pci_slot_unlock(slot);
3752
3753        return rc;
3754}
3755
3756/**
3757 * pci_probe_reset_slot - probe whether a PCI slot can be reset
3758 * @slot: PCI slot to probe
3759 *
3760 * Return 0 if slot can be reset, negative if a slot reset is not supported.
3761 */
3762int pci_probe_reset_slot(struct pci_slot *slot)
3763{
3764        return pci_slot_reset(slot, 1);
3765}
3766EXPORT_SYMBOL_GPL(pci_probe_reset_slot);
3767
3768/**
3769 * pci_reset_slot - reset a PCI slot
3770 * @slot: PCI slot to reset
3771 *
3772 * A PCI bus may host multiple slots, each slot may support a reset mechanism
3773 * independent of other slots.  For instance, some slots may support slot power
3774 * control.  In the case of a 1:1 bus to slot architecture, this function may
3775 * wrap the bus reset to avoid spurious slot related events such as hotplug.
3776 * Generally a slot reset should be attempted before a bus reset.  All of the
3777 * function of the slot and any subordinate buses behind the slot are reset
3778 * through this function.  PCI config space of all devices in the slot and
3779 * behind the slot is saved before and restored after reset.
3780 *
3781 * Return 0 on success, non-zero on error.
3782 */
3783int pci_reset_slot(struct pci_slot *slot)
3784{
3785        int rc;
3786
3787        rc = pci_slot_reset(slot, 1);
3788        if (rc)
3789                return rc;
3790
3791        pci_slot_save_and_disable(slot);
3792
3793        rc = pci_slot_reset(slot, 0);
3794
3795        pci_slot_restore(slot);
3796
3797        return rc;
3798}
3799EXPORT_SYMBOL_GPL(pci_reset_slot);
3800
3801/**
3802 * pci_try_reset_slot - Try to reset a PCI slot
3803 * @slot: PCI slot to reset
3804 *
3805 * Same as above except return -EAGAIN if the slot cannot be locked
3806 */
3807int pci_try_reset_slot(struct pci_slot *slot)
3808{
3809        int rc;
3810
3811        rc = pci_slot_reset(slot, 1);
3812        if (rc)
3813                return rc;
3814
3815        pci_slot_save_and_disable(slot);
3816
3817        if (pci_slot_trylock(slot)) {
3818                might_sleep();
3819                rc = pci_reset_hotplug_slot(slot->hotplug, 0);
3820                pci_slot_unlock(slot);
3821        } else
3822                rc = -EAGAIN;
3823
3824        pci_slot_restore(slot);
3825
3826        return rc;
3827}
3828EXPORT_SYMBOL_GPL(pci_try_reset_slot);
3829
3830static int pci_bus_reset(struct pci_bus *bus, int probe)
3831{
3832        if (!bus->self)
3833                return -ENOTTY;
3834
3835        if (probe)
3836                return 0;
3837
3838        pci_bus_lock(bus);
3839
3840        might_sleep();
3841
3842        pci_reset_bridge_secondary_bus(bus->self);
3843
3844        pci_bus_unlock(bus);
3845
3846        return 0;
3847}
3848
3849/**
3850 * pci_probe_reset_bus - probe whether a PCI bus can be reset
3851 * @bus: PCI bus to probe
3852 *
3853 * Return 0 if bus can be reset, negative if a bus reset is not supported.
3854 */
3855int pci_probe_reset_bus(struct pci_bus *bus)
3856{
3857        return pci_bus_reset(bus, 1);
3858}
3859EXPORT_SYMBOL_GPL(pci_probe_reset_bus);
3860
3861/**
3862 * pci_reset_bus - reset a PCI bus
3863 * @bus: top level PCI bus to reset
3864 *
3865 * Do a bus reset on the given bus and any subordinate buses, saving
3866 * and restoring state of all devices.
3867 *
3868 * Return 0 on success, non-zero on error.
3869 */
3870int pci_reset_bus(struct pci_bus *bus)
3871{
3872        int rc;
3873
3874        rc = pci_bus_reset(bus, 1);
3875        if (rc)
3876                return rc;
3877
3878        pci_bus_save_and_disable(bus);
3879
3880        rc = pci_bus_reset(bus, 0);
3881
3882        pci_bus_restore(bus);
3883
3884        return rc;
3885}
3886EXPORT_SYMBOL_GPL(pci_reset_bus);
3887
3888/**
3889 * pci_try_reset_bus - Try to reset a PCI bus
3890 * @bus: top level PCI bus to reset
3891 *
3892 * Same as above except return -EAGAIN if the bus cannot be locked
3893 */
3894int pci_try_reset_bus(struct pci_bus *bus)
3895{
3896        int rc;
3897
3898        rc = pci_bus_reset(bus, 1);
3899        if (rc)
3900                return rc;
3901
3902        pci_bus_save_and_disable(bus);
3903
3904        if (pci_bus_trylock(bus)) {
3905                might_sleep();
3906                pci_reset_bridge_secondary_bus(bus->self);
3907                pci_bus_unlock(bus);
3908        } else
3909                rc = -EAGAIN;
3910
3911        pci_bus_restore(bus);
3912
3913        return rc;
3914}
3915EXPORT_SYMBOL_GPL(pci_try_reset_bus);
3916
3917/**
3918 * pcix_get_max_mmrbc - get PCI-X maximum designed memory read byte count
3919 * @dev: PCI device to query
3920 *
3921 * Returns mmrbc: maximum designed memory read count in bytes
3922 *    or appropriate error value.
3923 */
3924int pcix_get_max_mmrbc(struct pci_dev *dev)
3925{
3926        int cap;
3927        u32 stat;
3928
3929        cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
3930        if (!cap)
3931                return -EINVAL;
3932
3933        if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
3934                return -EINVAL;
3935
3936        return 512 << ((stat & PCI_X_STATUS_MAX_READ) >> 21);
3937}
3938EXPORT_SYMBOL(pcix_get_max_mmrbc);
3939
3940/**
3941 * pcix_get_mmrbc - get PCI-X maximum memory read byte count
3942 * @dev: PCI device to query
3943 *
3944 * Returns mmrbc: maximum memory read count in bytes
3945 *    or appropriate error value.
3946 */
3947int pcix_get_mmrbc(struct pci_dev *dev)
3948{
3949        int cap;
3950        u16 cmd;
3951
3952        cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
3953        if (!cap)
3954                return -EINVAL;
3955
3956        if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
3957                return -EINVAL;
3958
3959        return 512 << ((cmd & PCI_X_CMD_MAX_READ) >> 2);
3960}
3961EXPORT_SYMBOL(pcix_get_mmrbc);
3962
3963/**
3964 * pcix_set_mmrbc - set PCI-X maximum memory read byte count
3965 * @dev: PCI device to query
3966 * @mmrbc: maximum memory read count in bytes
3967 *    valid values are 512, 1024, 2048, 4096
3968 *
3969 * If possible sets maximum memory read byte count, some bridges have erratas
3970 * that prevent this.
3971 */
3972int pcix_set_mmrbc(struct pci_dev *dev, int mmrbc)
3973{
3974        int cap;
3975        u32 stat, v, o;
3976        u16 cmd;
3977
3978        if (mmrbc < 512 || mmrbc > 4096 || !is_power_of_2(mmrbc))
3979                return -EINVAL;
3980
3981        v = ffs(mmrbc) - 10;
3982
3983        cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
3984        if (!cap)
3985                return -EINVAL;
3986
3987        if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
3988                return -EINVAL;
3989
3990        if (v > (stat & PCI_X_STATUS_MAX_READ) >> 21)
3991                return -E2BIG;
3992
3993        if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
3994                return -EINVAL;
3995
3996        o = (cmd & PCI_X_CMD_MAX_READ) >> 2;
3997        if (o != v) {
3998                if (v > o && (dev->bus->bus_flags & PCI_BUS_FLAGS_NO_MMRBC))
3999                        return -EIO;
4000
4001                cmd &= ~PCI_X_CMD_MAX_READ;
4002                cmd |= v << 2;
4003                if (pci_write_config_word(dev, cap + PCI_X_CMD, cmd))
4004                        return -EIO;
4005        }
4006        return 0;
4007}
4008EXPORT_SYMBOL(pcix_set_mmrbc);
4009
4010/**
4011 * pcie_get_readrq - get PCI Express read request size
4012 * @dev: PCI device to query
4013 *
4014 * Returns maximum memory read request in bytes
4015 *    or appropriate error value.
4016 */
4017int pcie_get_readrq(struct pci_dev *dev)
4018{
4019        u16 ctl;
4020
4021        pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
4022
4023        return 128 << ((ctl & PCI_EXP_DEVCTL_READRQ) >> 12);
4024}
4025EXPORT_SYMBOL(pcie_get_readrq);
4026
4027/**
4028 * pcie_set_readrq - set PCI Express maximum memory read request
4029 * @dev: PCI device to query
4030 * @rq: maximum memory read count in bytes
4031 *    valid values are 128, 256, 512, 1024, 2048, 4096
4032 *
4033 * If possible sets maximum memory read request in bytes
4034 */
4035int pcie_set_readrq(struct pci_dev *dev, int rq)
4036{
4037        u16 v;
4038
4039        if (rq < 128 || rq > 4096 || !is_power_of_2(rq))
4040                return -EINVAL;
4041
4042        /*
4043         * If using the "performance" PCIe config, we clamp the
4044         * read rq size to the max packet size to prevent the
4045         * host bridge generating requests larger than we can
4046         * cope with
4047         */
4048        if (pcie_bus_config == PCIE_BUS_PERFORMANCE) {
4049                int mps = pcie_get_mps(dev);
4050
4051                if (mps < rq)
4052                        rq = mps;
4053        }
4054
4055        v = (ffs(rq) - 8) << 12;
4056
4057        return pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
4058                                                  PCI_EXP_DEVCTL_READRQ, v);
4059}
4060EXPORT_SYMBOL(pcie_set_readrq);
4061
4062/**
4063 * pcie_get_mps - get PCI Express maximum payload size
4064 * @dev: PCI device to query
4065 *
4066 * Returns maximum payload size in bytes
4067 */
4068int pcie_get_mps(struct pci_dev *dev)
4069{
4070        u16 ctl;
4071
4072        pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
4073
4074        return 128 << ((ctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5);
4075}
4076EXPORT_SYMBOL(pcie_get_mps);
4077
4078/**
4079 * pcie_set_mps - set PCI Express maximum payload size
4080 * @dev: PCI device to query
4081 * @mps: maximum payload size in bytes
4082 *    valid values are 128, 256, 512, 1024, 2048, 4096
4083 *
4084 * If possible sets maximum payload size
4085 */
4086int pcie_set_mps(struct pci_dev *dev, int mps)
4087{
4088        u16 v;
4089
4090        if (mps < 128 || mps > 4096 || !is_power_of_2(mps))
4091                return -EINVAL;
4092
4093        v = ffs(mps) - 8;
4094        if (v > dev->pcie_mpss)
4095                return -EINVAL;
4096        v <<= 5;
4097
4098        return pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
4099                                                  PCI_EXP_DEVCTL_PAYLOAD, v);
4100}
4101EXPORT_SYMBOL(pcie_set_mps);
4102
4103/**
4104 * pcie_get_minimum_link - determine minimum link settings of a PCI device
4105 * @dev: PCI device to query
4106 * @speed: storage for minimum speed
4107 * @width: storage for minimum width
4108 *
4109 * This function will walk up the PCI device chain and determine the minimum
4110 * link width and speed of the device.
4111 */
4112int pcie_get_minimum_link(struct pci_dev *dev, enum pci_bus_speed *speed,
4113                          enum pcie_link_width *width)
4114{
4115        int ret;
4116
4117        *speed = PCI_SPEED_UNKNOWN;
4118        *width = PCIE_LNK_WIDTH_UNKNOWN;
4119
4120        while (dev) {
4121                u16 lnksta;
4122                enum pci_bus_speed next_speed;
4123                enum pcie_link_width next_width;
4124
4125                ret = pcie_capability_read_word(dev, PCI_EXP_LNKSTA, &lnksta);
4126                if (ret)
4127                        return ret;
4128
4129                next_speed = pcie_link_speed[lnksta & PCI_EXP_LNKSTA_CLS];
4130                next_width = (lnksta & PCI_EXP_LNKSTA_NLW) >>
4131                        PCI_EXP_LNKSTA_NLW_SHIFT;
4132
4133                if (next_speed < *speed)
4134                        *speed = next_speed;
4135
4136                if (next_width < *width)
4137                        *width = next_width;
4138
4139                dev = dev->bus->self;
4140        }
4141
4142        return 0;
4143}
4144EXPORT_SYMBOL(pcie_get_minimum_link);
4145
4146/**
4147 * pci_select_bars - Make BAR mask from the type of resource
4148 * @dev: the PCI device for which BAR mask is made
4149 * @flags: resource type mask to be selected
4150 *
4151 * This helper routine makes bar mask from the type of resource.
4152 */
4153int pci_select_bars(struct pci_dev *dev, unsigned long flags)
4154{
4155        int i, bars = 0;
4156        for (i = 0; i < PCI_NUM_RESOURCES; i++)
4157                if (pci_resource_flags(dev, i) & flags)
4158                        bars |= (1 << i);
4159        return bars;
4160}
4161EXPORT_SYMBOL(pci_select_bars);
4162
4163/**
4164 * pci_resource_bar - get position of the BAR associated with a resource
4165 * @dev: the PCI device
4166 * @resno: the resource number
4167 * @type: the BAR type to be filled in
4168 *
4169 * Returns BAR position in config space, or 0 if the BAR is invalid.
4170 */
4171int pci_resource_bar(struct pci_dev *dev, int resno, enum pci_bar_type *type)
4172{
4173        int reg;
4174
4175        if (resno < PCI_ROM_RESOURCE) {
4176                *type = pci_bar_unknown;
4177                return PCI_BASE_ADDRESS_0 + 4 * resno;
4178        } else if (resno == PCI_ROM_RESOURCE) {
4179                *type = pci_bar_mem32;
4180                return dev->rom_base_reg;
4181        } else if (resno < PCI_BRIDGE_RESOURCES) {
4182                /* device specific resource */
4183                reg = pci_iov_resource_bar(dev, resno, type);
4184                if (reg)
4185                        return reg;
4186        }
4187
4188        dev_err(&dev->dev, "BAR %d: invalid resource\n", resno);
4189        return 0;
4190}
4191
4192/* Some architectures require additional programming to enable VGA */
4193static arch_set_vga_state_t arch_set_vga_state;
4194
4195void __init pci_register_set_vga_state(arch_set_vga_state_t func)
4196{
4197        arch_set_vga_state = func;      /* NULL disables */
4198}
4199
4200static int pci_set_vga_state_arch(struct pci_dev *dev, bool decode,
4201                                  unsigned int command_bits, u32 flags)
4202{
4203        if (arch_set_vga_state)
4204                return arch_set_vga_state(dev, decode, command_bits,
4205                                                flags);
4206        return 0;
4207}
4208
4209/**
4210 * pci_set_vga_state - set VGA decode state on device and parents if requested
4211 * @dev: the PCI device
4212 * @decode: true = enable decoding, false = disable decoding
4213 * @command_bits: PCI_COMMAND_IO and/or PCI_COMMAND_MEMORY
4214 * @flags: traverse ancestors and change bridges
4215 * CHANGE_BRIDGE_ONLY / CHANGE_BRIDGE
4216 */
4217int pci_set_vga_state(struct pci_dev *dev, bool decode,
4218                      unsigned int command_bits, u32 flags)
4219{
4220        struct pci_bus *bus;
4221        struct pci_dev *bridge;
4222        u16 cmd;
4223        int rc;
4224
4225        WARN_ON((flags & PCI_VGA_STATE_CHANGE_DECODES) && (command_bits & ~(PCI_COMMAND_IO|PCI_COMMAND_MEMORY)));
4226
4227        /* ARCH specific VGA enables */
4228        rc = pci_set_vga_state_arch(dev, decode, command_bits, flags);
4229        if (rc)
4230                return rc;
4231
4232        if (flags & PCI_VGA_STATE_CHANGE_DECODES) {
4233                pci_read_config_word(dev, PCI_COMMAND, &cmd);
4234                if (decode == true)
4235                        cmd |= command_bits;
4236                else
4237                        cmd &= ~command_bits;
4238                pci_write_config_word(dev, PCI_COMMAND, cmd);
4239        }
4240
4241        if (!(flags & PCI_VGA_STATE_CHANGE_BRIDGE))
4242                return 0;
4243
4244        bus = dev->bus;
4245        while (bus) {
4246                bridge = bus->self;
4247                if (bridge) {
4248                        pci_read_config_word(bridge, PCI_BRIDGE_CONTROL,
4249                                             &cmd);
4250                        if (decode == true)
4251                                cmd |= PCI_BRIDGE_CTL_VGA;
4252                        else
4253                                cmd &= ~PCI_BRIDGE_CTL_VGA;
4254                        pci_write_config_word(bridge, PCI_BRIDGE_CONTROL,
4255                                              cmd);
4256                }
4257                bus = bus->parent;
4258        }
4259        return 0;
4260}
4261
4262bool pci_device_is_present(struct pci_dev *pdev)
4263{
4264        u32 v;
4265
4266        return pci_bus_read_dev_vendor_id(pdev->bus, pdev->devfn, &v, 0);
4267}
4268EXPORT_SYMBOL_GPL(pci_device_is_present);
4269
4270#define RESOURCE_ALIGNMENT_PARAM_SIZE COMMAND_LINE_SIZE
4271static char resource_alignment_param[RESOURCE_ALIGNMENT_PARAM_SIZE] = {0};
4272static DEFINE_SPINLOCK(resource_alignment_lock);
4273
4274/**
4275 * pci_specified_resource_alignment - get resource alignment specified by user.
4276 * @dev: the PCI device to get
4277 *
4278 * RETURNS: Resource alignment if it is specified.
4279 *          Zero if it is not specified.
4280 */
4281static resource_size_t pci_specified_resource_alignment(struct pci_dev *dev)
4282{
4283        int seg, bus, slot, func, align_order, count;
4284        resource_size_t align = 0;
4285        char *p;
4286
4287        spin_lock(&resource_alignment_lock);
4288        p = resource_alignment_param;
4289        while (*p) {
4290                count = 0;
4291                if (sscanf(p, "%d%n", &align_order, &count) == 1 &&
4292                                                        p[count] == '@') {
4293                        p += count + 1;
4294                } else {
4295                        align_order = -1;
4296                }
4297                if (sscanf(p, "%x:%x:%x.%x%n",
4298                        &seg, &bus, &slot, &func, &count) != 4) {
4299                        seg = 0;
4300                        if (sscanf(p, "%x:%x.%x%n",
4301                                        &bus, &slot, &func, &count) != 3) {
4302                                /* Invalid format */
4303                                printk(KERN_ERR "PCI: Can't parse resource_alignment parameter: %s\n",
4304                                        p);
4305                                break;
4306                        }
4307                }
4308                p += count;
4309                if (seg == pci_domain_nr(dev->bus) &&
4310                        bus == dev->bus->number &&
4311                        slot == PCI_SLOT(dev->devfn) &&
4312                        func == PCI_FUNC(dev->devfn)) {
4313                        if (align_order == -1)
4314                                align = PAGE_SIZE;
4315                        else
4316                                align = 1 << align_order;
4317                        /* Found */
4318                        break;
4319                }
4320                if (*p != ';' && *p != ',') {
4321                        /* End of param or invalid format */
4322                        break;
4323                }
4324                p++;
4325        }
4326        spin_unlock(&resource_alignment_lock);
4327        return align;
4328}
4329
4330/*
4331 * This function disables memory decoding and releases memory resources
4332 * of the device specified by kernel's boot parameter 'pci=resource_alignment='.
4333 * It also rounds up size to specified alignment.
4334 * Later on, the kernel will assign page-aligned memory resource back
4335 * to the device.
4336 */
4337void pci_reassigndev_resource_alignment(struct pci_dev *dev)
4338{
4339        int i;
4340        struct resource *r;
4341        resource_size_t align, size;
4342        u16 command;
4343
4344        /* check if specified PCI is target device to reassign */
4345        align = pci_specified_resource_alignment(dev);
4346        if (!align)
4347                return;
4348
4349        if (dev->hdr_type == PCI_HEADER_TYPE_NORMAL &&
4350            (dev->class >> 8) == PCI_CLASS_BRIDGE_HOST) {
4351                dev_warn(&dev->dev,
4352                        "Can't reassign resources to host bridge.\n");
4353                return;
4354        }
4355
4356        dev_info(&dev->dev,
4357                "Disabling memory decoding and releasing memory resources.\n");
4358        pci_read_config_word(dev, PCI_COMMAND, &command);
4359        command &= ~PCI_COMMAND_MEMORY;
4360        pci_write_config_word(dev, PCI_COMMAND, command);
4361
4362        for (i = 0; i < PCI_BRIDGE_RESOURCES; i++) {
4363                r = &dev->resource[i];
4364                if (!(r->flags & IORESOURCE_MEM))
4365                        continue;
4366                size = resource_size(r);
4367                if (size < align) {
4368                        size = align;
4369                        dev_info(&dev->dev,
4370                                "Rounding up size of resource #%d to %#llx.\n",
4371                                i, (unsigned long long)size);
4372                }
4373                r->flags |= IORESOURCE_UNSET;
4374                r->end = size - 1;
4375                r->start = 0;
4376        }
4377        /* Need to disable bridge's resource window,
4378         * to enable the kernel to reassign new resource
4379         * window later on.
4380         */
4381        if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE &&
4382            (dev->class >> 8) == PCI_CLASS_BRIDGE_PCI) {
4383                for (i = PCI_BRIDGE_RESOURCES; i < PCI_NUM_RESOURCES; i++) {
4384                        r = &dev->resource[i];
4385                        if (!(r->flags & IORESOURCE_MEM))
4386                                continue;
4387                        r->flags |= IORESOURCE_UNSET;
4388                        r->end = resource_size(r) - 1;
4389                        r->start = 0;
4390                }
4391                pci_disable_bridge_window(dev);
4392        }
4393}
4394
4395static ssize_t pci_set_resource_alignment_param(const char *buf, size_t count)
4396{
4397        if (count > RESOURCE_ALIGNMENT_PARAM_SIZE - 1)
4398                count = RESOURCE_ALIGNMENT_PARAM_SIZE - 1;
4399        spin_lock(&resource_alignment_lock);
4400        strncpy(resource_alignment_param, buf, count);
4401        resource_alignment_param[count] = '\0';
4402        spin_unlock(&resource_alignment_lock);
4403        return count;
4404}
4405
4406static ssize_t pci_get_resource_alignment_param(char *buf, size_t size)
4407{
4408        size_t count;
4409        spin_lock(&resource_alignment_lock);
4410        count = snprintf(buf, size, "%s", resource_alignment_param);
4411        spin_unlock(&resource_alignment_lock);
4412        return count;
4413}
4414
4415static ssize_t pci_resource_alignment_show(struct bus_type *bus, char *buf)
4416{
4417        return pci_get_resource_alignment_param(buf, PAGE_SIZE);
4418}
4419
4420static ssize_t pci_resource_alignment_store(struct bus_type *bus,
4421                                        const char *buf, size_t count)
4422{
4423        return pci_set_resource_alignment_param(buf, count);
4424}
4425
4426BUS_ATTR(resource_alignment, 0644, pci_resource_alignment_show,
4427                                        pci_resource_alignment_store);
4428
4429static int __init pci_resource_alignment_sysfs_init(void)
4430{
4431        return bus_create_file(&pci_bus_type,
4432                                        &bus_attr_resource_alignment);
4433}
4434late_initcall(pci_resource_alignment_sysfs_init);
4435
4436static void pci_no_domains(void)
4437{
4438#ifdef CONFIG_PCI_DOMAINS
4439        pci_domains_supported = 0;
4440#endif
4441}
4442
4443#ifdef CONFIG_PCI_DOMAINS
4444static atomic_t __domain_nr = ATOMIC_INIT(-1);
4445
4446int pci_get_new_domain_nr(void)
4447{
4448        return atomic_inc_return(&__domain_nr);
4449}
4450#endif
4451
4452/**
4453 * pci_ext_cfg_avail - can we access extended PCI config space?
4454 *
4455 * Returns 1 if we can access PCI extended config space (offsets
4456 * greater than 0xff). This is the default implementation. Architecture
4457 * implementations can override this.
4458 */
4459int __weak pci_ext_cfg_avail(void)
4460{
4461        return 1;
4462}
4463
4464void __weak pci_fixup_cardbus(struct pci_bus *bus)
4465{
4466}
4467EXPORT_SYMBOL(pci_fixup_cardbus);
4468
4469static int __init pci_setup(char *str)
4470{
4471        while (str) {
4472                char *k = strchr(str, ',');
4473                if (k)
4474                        *k++ = 0;
4475                if (*str && (str = pcibios_setup(str)) && *str) {
4476                        if (!strcmp(str, "nomsi")) {
4477                                pci_no_msi();
4478                        } else if (!strcmp(str, "noaer")) {
4479                                pci_no_aer();
4480                        } else if (!strncmp(str, "realloc=", 8)) {
4481                                pci_realloc_get_opt(str + 8);
4482                        } else if (!strncmp(str, "realloc", 7)) {
4483                                pci_realloc_get_opt("on");
4484                        } else if (!strcmp(str, "nodomains")) {
4485                                pci_no_domains();
4486                        } else if (!strncmp(str, "noari", 5)) {
4487                                pcie_ari_disabled = true;
4488                        } else if (!strncmp(str, "cbiosize=", 9)) {
4489                                pci_cardbus_io_size = memparse(str + 9, &str);
4490                        } else if (!strncmp(str, "cbmemsize=", 10)) {
4491                                pci_cardbus_mem_size = memparse(str + 10, &str);
4492                        } else if (!strncmp(str, "resource_alignment=", 19)) {
4493                                pci_set_resource_alignment_param(str + 19,
4494                                                        strlen(str + 19));
4495                        } else if (!strncmp(str, "ecrc=", 5)) {
4496                                pcie_ecrc_get_policy(str + 5);
4497                        } else if (!strncmp(str, "hpiosize=", 9)) {
4498                                pci_hotplug_io_size = memparse(str + 9, &str);
4499                        } else if (!strncmp(str, "hpmemsize=", 10)) {
4500                                pci_hotplug_mem_size = memparse(str + 10, &str);
4501                        } else if (!strncmp(str, "pcie_bus_tune_off", 17)) {
4502                                pcie_bus_config = PCIE_BUS_TUNE_OFF;
4503                        } else if (!strncmp(str, "pcie_bus_safe", 13)) {
4504                                pcie_bus_config = PCIE_BUS_SAFE;
4505                        } else if (!strncmp(str, "pcie_bus_perf", 13)) {
4506                                pcie_bus_config = PCIE_BUS_PERFORMANCE;
4507                        } else if (!strncmp(str, "pcie_bus_peer2peer", 18)) {
4508                                pcie_bus_config = PCIE_BUS_PEER2PEER;
4509                        } else if (!strncmp(str, "pcie_scan_all", 13)) {
4510                                pci_add_flags(PCI_SCAN_ALL_PCIE_DEVS);
4511                        } else {
4512                                printk(KERN_ERR "PCI: Unknown option `%s'\n",
4513                                                str);
4514                        }
4515                }
4516                str = k;
4517        }
4518        return 0;
4519}
4520early_param("pci", pci_setup);
4521