linux/drivers/regulator/core.c
<<
>>
Prefs
   1/*
   2 * core.c  --  Voltage/Current Regulator framework.
   3 *
   4 * Copyright 2007, 2008 Wolfson Microelectronics PLC.
   5 * Copyright 2008 SlimLogic Ltd.
   6 *
   7 * Author: Liam Girdwood <lrg@slimlogic.co.uk>
   8 *
   9 *  This program is free software; you can redistribute  it and/or modify it
  10 *  under  the terms of  the GNU General  Public License as published by the
  11 *  Free Software Foundation;  either version 2 of the  License, or (at your
  12 *  option) any later version.
  13 *
  14 */
  15
  16#include <linux/kernel.h>
  17#include <linux/init.h>
  18#include <linux/debugfs.h>
  19#include <linux/device.h>
  20#include <linux/slab.h>
  21#include <linux/async.h>
  22#include <linux/err.h>
  23#include <linux/mutex.h>
  24#include <linux/suspend.h>
  25#include <linux/delay.h>
  26#include <linux/gpio.h>
  27#include <linux/gpio/consumer.h>
  28#include <linux/of.h>
  29#include <linux/regmap.h>
  30#include <linux/regulator/of_regulator.h>
  31#include <linux/regulator/consumer.h>
  32#include <linux/regulator/driver.h>
  33#include <linux/regulator/machine.h>
  34#include <linux/module.h>
  35
  36#define CREATE_TRACE_POINTS
  37#include <trace/events/regulator.h>
  38
  39#include "dummy.h"
  40#include "internal.h"
  41
  42#define rdev_crit(rdev, fmt, ...)                                       \
  43        pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
  44#define rdev_err(rdev, fmt, ...)                                        \
  45        pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
  46#define rdev_warn(rdev, fmt, ...)                                       \
  47        pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
  48#define rdev_info(rdev, fmt, ...)                                       \
  49        pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
  50#define rdev_dbg(rdev, fmt, ...)                                        \
  51        pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
  52
  53static DEFINE_MUTEX(regulator_list_mutex);
  54static LIST_HEAD(regulator_list);
  55static LIST_HEAD(regulator_map_list);
  56static LIST_HEAD(regulator_ena_gpio_list);
  57static LIST_HEAD(regulator_supply_alias_list);
  58static bool has_full_constraints;
  59
  60static struct dentry *debugfs_root;
  61
  62/*
  63 * struct regulator_map
  64 *
  65 * Used to provide symbolic supply names to devices.
  66 */
  67struct regulator_map {
  68        struct list_head list;
  69        const char *dev_name;   /* The dev_name() for the consumer */
  70        const char *supply;
  71        struct regulator_dev *regulator;
  72};
  73
  74/*
  75 * struct regulator_enable_gpio
  76 *
  77 * Management for shared enable GPIO pin
  78 */
  79struct regulator_enable_gpio {
  80        struct list_head list;
  81        struct gpio_desc *gpiod;
  82        u32 enable_count;       /* a number of enabled shared GPIO */
  83        u32 request_count;      /* a number of requested shared GPIO */
  84        unsigned int ena_gpio_invert:1;
  85};
  86
  87/*
  88 * struct regulator_supply_alias
  89 *
  90 * Used to map lookups for a supply onto an alternative device.
  91 */
  92struct regulator_supply_alias {
  93        struct list_head list;
  94        struct device *src_dev;
  95        const char *src_supply;
  96        struct device *alias_dev;
  97        const char *alias_supply;
  98};
  99
 100static int _regulator_is_enabled(struct regulator_dev *rdev);
 101static int _regulator_disable(struct regulator_dev *rdev);
 102static int _regulator_get_voltage(struct regulator_dev *rdev);
 103static int _regulator_get_current_limit(struct regulator_dev *rdev);
 104static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
 105static int _notifier_call_chain(struct regulator_dev *rdev,
 106                                  unsigned long event, void *data);
 107static int _regulator_do_set_voltage(struct regulator_dev *rdev,
 108                                     int min_uV, int max_uV);
 109static struct regulator *create_regulator(struct regulator_dev *rdev,
 110                                          struct device *dev,
 111                                          const char *supply_name);
 112
 113static const char *rdev_get_name(struct regulator_dev *rdev)
 114{
 115        if (rdev->constraints && rdev->constraints->name)
 116                return rdev->constraints->name;
 117        else if (rdev->desc->name)
 118                return rdev->desc->name;
 119        else
 120                return "";
 121}
 122
 123static bool have_full_constraints(void)
 124{
 125        return has_full_constraints || of_have_populated_dt();
 126}
 127
 128/**
 129 * of_get_regulator - get a regulator device node based on supply name
 130 * @dev: Device pointer for the consumer (of regulator) device
 131 * @supply: regulator supply name
 132 *
 133 * Extract the regulator device node corresponding to the supply name.
 134 * returns the device node corresponding to the regulator if found, else
 135 * returns NULL.
 136 */
 137static struct device_node *of_get_regulator(struct device *dev, const char *supply)
 138{
 139        struct device_node *regnode = NULL;
 140        char prop_name[32]; /* 32 is max size of property name */
 141
 142        dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);
 143
 144        snprintf(prop_name, 32, "%s-supply", supply);
 145        regnode = of_parse_phandle(dev->of_node, prop_name, 0);
 146
 147        if (!regnode) {
 148                dev_dbg(dev, "Looking up %s property in node %s failed",
 149                                prop_name, dev->of_node->full_name);
 150                return NULL;
 151        }
 152        return regnode;
 153}
 154
 155static int _regulator_can_change_status(struct regulator_dev *rdev)
 156{
 157        if (!rdev->constraints)
 158                return 0;
 159
 160        if (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_STATUS)
 161                return 1;
 162        else
 163                return 0;
 164}
 165
 166/* Platform voltage constraint check */
 167static int regulator_check_voltage(struct regulator_dev *rdev,
 168                                   int *min_uV, int *max_uV)
 169{
 170        BUG_ON(*min_uV > *max_uV);
 171
 172        if (!rdev->constraints) {
 173                rdev_err(rdev, "no constraints\n");
 174                return -ENODEV;
 175        }
 176        if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
 177                rdev_err(rdev, "operation not allowed\n");
 178                return -EPERM;
 179        }
 180
 181        if (*max_uV > rdev->constraints->max_uV)
 182                *max_uV = rdev->constraints->max_uV;
 183        if (*min_uV < rdev->constraints->min_uV)
 184                *min_uV = rdev->constraints->min_uV;
 185
 186        if (*min_uV > *max_uV) {
 187                rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
 188                         *min_uV, *max_uV);
 189                return -EINVAL;
 190        }
 191
 192        return 0;
 193}
 194
 195/* Make sure we select a voltage that suits the needs of all
 196 * regulator consumers
 197 */
 198static int regulator_check_consumers(struct regulator_dev *rdev,
 199                                     int *min_uV, int *max_uV)
 200{
 201        struct regulator *regulator;
 202
 203        list_for_each_entry(regulator, &rdev->consumer_list, list) {
 204                /*
 205                 * Assume consumers that didn't say anything are OK
 206                 * with anything in the constraint range.
 207                 */
 208                if (!regulator->min_uV && !regulator->max_uV)
 209                        continue;
 210
 211                if (*max_uV > regulator->max_uV)
 212                        *max_uV = regulator->max_uV;
 213                if (*min_uV < regulator->min_uV)
 214                        *min_uV = regulator->min_uV;
 215        }
 216
 217        if (*min_uV > *max_uV) {
 218                rdev_err(rdev, "Restricting voltage, %u-%uuV\n",
 219                        *min_uV, *max_uV);
 220                return -EINVAL;
 221        }
 222
 223        return 0;
 224}
 225
 226/* current constraint check */
 227static int regulator_check_current_limit(struct regulator_dev *rdev,
 228                                        int *min_uA, int *max_uA)
 229{
 230        BUG_ON(*min_uA > *max_uA);
 231
 232        if (!rdev->constraints) {
 233                rdev_err(rdev, "no constraints\n");
 234                return -ENODEV;
 235        }
 236        if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_CURRENT)) {
 237                rdev_err(rdev, "operation not allowed\n");
 238                return -EPERM;
 239        }
 240
 241        if (*max_uA > rdev->constraints->max_uA)
 242                *max_uA = rdev->constraints->max_uA;
 243        if (*min_uA < rdev->constraints->min_uA)
 244                *min_uA = rdev->constraints->min_uA;
 245
 246        if (*min_uA > *max_uA) {
 247                rdev_err(rdev, "unsupportable current range: %d-%duA\n",
 248                         *min_uA, *max_uA);
 249                return -EINVAL;
 250        }
 251
 252        return 0;
 253}
 254
 255/* operating mode constraint check */
 256static int regulator_mode_constrain(struct regulator_dev *rdev, int *mode)
 257{
 258        switch (*mode) {
 259        case REGULATOR_MODE_FAST:
 260        case REGULATOR_MODE_NORMAL:
 261        case REGULATOR_MODE_IDLE:
 262        case REGULATOR_MODE_STANDBY:
 263                break;
 264        default:
 265                rdev_err(rdev, "invalid mode %x specified\n", *mode);
 266                return -EINVAL;
 267        }
 268
 269        if (!rdev->constraints) {
 270                rdev_err(rdev, "no constraints\n");
 271                return -ENODEV;
 272        }
 273        if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_MODE)) {
 274                rdev_err(rdev, "operation not allowed\n");
 275                return -EPERM;
 276        }
 277
 278        /* The modes are bitmasks, the most power hungry modes having
 279         * the lowest values. If the requested mode isn't supported
 280         * try higher modes. */
 281        while (*mode) {
 282                if (rdev->constraints->valid_modes_mask & *mode)
 283                        return 0;
 284                *mode /= 2;
 285        }
 286
 287        return -EINVAL;
 288}
 289
 290/* dynamic regulator mode switching constraint check */
 291static int regulator_check_drms(struct regulator_dev *rdev)
 292{
 293        if (!rdev->constraints) {
 294                rdev_err(rdev, "no constraints\n");
 295                return -ENODEV;
 296        }
 297        if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) {
 298                rdev_err(rdev, "operation not allowed\n");
 299                return -EPERM;
 300        }
 301        return 0;
 302}
 303
 304static ssize_t regulator_uV_show(struct device *dev,
 305                                struct device_attribute *attr, char *buf)
 306{
 307        struct regulator_dev *rdev = dev_get_drvdata(dev);
 308        ssize_t ret;
 309
 310        mutex_lock(&rdev->mutex);
 311        ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
 312        mutex_unlock(&rdev->mutex);
 313
 314        return ret;
 315}
 316static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
 317
 318static ssize_t regulator_uA_show(struct device *dev,
 319                                struct device_attribute *attr, char *buf)
 320{
 321        struct regulator_dev *rdev = dev_get_drvdata(dev);
 322
 323        return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
 324}
 325static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
 326
 327static ssize_t name_show(struct device *dev, struct device_attribute *attr,
 328                         char *buf)
 329{
 330        struct regulator_dev *rdev = dev_get_drvdata(dev);
 331
 332        return sprintf(buf, "%s\n", rdev_get_name(rdev));
 333}
 334static DEVICE_ATTR_RO(name);
 335
 336static ssize_t regulator_print_opmode(char *buf, int mode)
 337{
 338        switch (mode) {
 339        case REGULATOR_MODE_FAST:
 340                return sprintf(buf, "fast\n");
 341        case REGULATOR_MODE_NORMAL:
 342                return sprintf(buf, "normal\n");
 343        case REGULATOR_MODE_IDLE:
 344                return sprintf(buf, "idle\n");
 345        case REGULATOR_MODE_STANDBY:
 346                return sprintf(buf, "standby\n");
 347        }
 348        return sprintf(buf, "unknown\n");
 349}
 350
 351static ssize_t regulator_opmode_show(struct device *dev,
 352                                    struct device_attribute *attr, char *buf)
 353{
 354        struct regulator_dev *rdev = dev_get_drvdata(dev);
 355
 356        return regulator_print_opmode(buf, _regulator_get_mode(rdev));
 357}
 358static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
 359
 360static ssize_t regulator_print_state(char *buf, int state)
 361{
 362        if (state > 0)
 363                return sprintf(buf, "enabled\n");
 364        else if (state == 0)
 365                return sprintf(buf, "disabled\n");
 366        else
 367                return sprintf(buf, "unknown\n");
 368}
 369
 370static ssize_t regulator_state_show(struct device *dev,
 371                                   struct device_attribute *attr, char *buf)
 372{
 373        struct regulator_dev *rdev = dev_get_drvdata(dev);
 374        ssize_t ret;
 375
 376        mutex_lock(&rdev->mutex);
 377        ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
 378        mutex_unlock(&rdev->mutex);
 379
 380        return ret;
 381}
 382static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
 383
 384static ssize_t regulator_status_show(struct device *dev,
 385                                   struct device_attribute *attr, char *buf)
 386{
 387        struct regulator_dev *rdev = dev_get_drvdata(dev);
 388        int status;
 389        char *label;
 390
 391        status = rdev->desc->ops->get_status(rdev);
 392        if (status < 0)
 393                return status;
 394
 395        switch (status) {
 396        case REGULATOR_STATUS_OFF:
 397                label = "off";
 398                break;
 399        case REGULATOR_STATUS_ON:
 400                label = "on";
 401                break;
 402        case REGULATOR_STATUS_ERROR:
 403                label = "error";
 404                break;
 405        case REGULATOR_STATUS_FAST:
 406                label = "fast";
 407                break;
 408        case REGULATOR_STATUS_NORMAL:
 409                label = "normal";
 410                break;
 411        case REGULATOR_STATUS_IDLE:
 412                label = "idle";
 413                break;
 414        case REGULATOR_STATUS_STANDBY:
 415                label = "standby";
 416                break;
 417        case REGULATOR_STATUS_BYPASS:
 418                label = "bypass";
 419                break;
 420        case REGULATOR_STATUS_UNDEFINED:
 421                label = "undefined";
 422                break;
 423        default:
 424                return -ERANGE;
 425        }
 426
 427        return sprintf(buf, "%s\n", label);
 428}
 429static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
 430
 431static ssize_t regulator_min_uA_show(struct device *dev,
 432                                    struct device_attribute *attr, char *buf)
 433{
 434        struct regulator_dev *rdev = dev_get_drvdata(dev);
 435
 436        if (!rdev->constraints)
 437                return sprintf(buf, "constraint not defined\n");
 438
 439        return sprintf(buf, "%d\n", rdev->constraints->min_uA);
 440}
 441static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
 442
 443static ssize_t regulator_max_uA_show(struct device *dev,
 444                                    struct device_attribute *attr, char *buf)
 445{
 446        struct regulator_dev *rdev = dev_get_drvdata(dev);
 447
 448        if (!rdev->constraints)
 449                return sprintf(buf, "constraint not defined\n");
 450
 451        return sprintf(buf, "%d\n", rdev->constraints->max_uA);
 452}
 453static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
 454
 455static ssize_t regulator_min_uV_show(struct device *dev,
 456                                    struct device_attribute *attr, char *buf)
 457{
 458        struct regulator_dev *rdev = dev_get_drvdata(dev);
 459
 460        if (!rdev->constraints)
 461                return sprintf(buf, "constraint not defined\n");
 462
 463        return sprintf(buf, "%d\n", rdev->constraints->min_uV);
 464}
 465static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
 466
 467static ssize_t regulator_max_uV_show(struct device *dev,
 468                                    struct device_attribute *attr, char *buf)
 469{
 470        struct regulator_dev *rdev = dev_get_drvdata(dev);
 471
 472        if (!rdev->constraints)
 473                return sprintf(buf, "constraint not defined\n");
 474
 475        return sprintf(buf, "%d\n", rdev->constraints->max_uV);
 476}
 477static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
 478
 479static ssize_t regulator_total_uA_show(struct device *dev,
 480                                      struct device_attribute *attr, char *buf)
 481{
 482        struct regulator_dev *rdev = dev_get_drvdata(dev);
 483        struct regulator *regulator;
 484        int uA = 0;
 485
 486        mutex_lock(&rdev->mutex);
 487        list_for_each_entry(regulator, &rdev->consumer_list, list)
 488                uA += regulator->uA_load;
 489        mutex_unlock(&rdev->mutex);
 490        return sprintf(buf, "%d\n", uA);
 491}
 492static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
 493
 494static ssize_t num_users_show(struct device *dev, struct device_attribute *attr,
 495                              char *buf)
 496{
 497        struct regulator_dev *rdev = dev_get_drvdata(dev);
 498        return sprintf(buf, "%d\n", rdev->use_count);
 499}
 500static DEVICE_ATTR_RO(num_users);
 501
 502static ssize_t type_show(struct device *dev, struct device_attribute *attr,
 503                         char *buf)
 504{
 505        struct regulator_dev *rdev = dev_get_drvdata(dev);
 506
 507        switch (rdev->desc->type) {
 508        case REGULATOR_VOLTAGE:
 509                return sprintf(buf, "voltage\n");
 510        case REGULATOR_CURRENT:
 511                return sprintf(buf, "current\n");
 512        }
 513        return sprintf(buf, "unknown\n");
 514}
 515static DEVICE_ATTR_RO(type);
 516
 517static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
 518                                struct device_attribute *attr, char *buf)
 519{
 520        struct regulator_dev *rdev = dev_get_drvdata(dev);
 521
 522        return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
 523}
 524static DEVICE_ATTR(suspend_mem_microvolts, 0444,
 525                regulator_suspend_mem_uV_show, NULL);
 526
 527static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
 528                                struct device_attribute *attr, char *buf)
 529{
 530        struct regulator_dev *rdev = dev_get_drvdata(dev);
 531
 532        return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
 533}
 534static DEVICE_ATTR(suspend_disk_microvolts, 0444,
 535                regulator_suspend_disk_uV_show, NULL);
 536
 537static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
 538                                struct device_attribute *attr, char *buf)
 539{
 540        struct regulator_dev *rdev = dev_get_drvdata(dev);
 541
 542        return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
 543}
 544static DEVICE_ATTR(suspend_standby_microvolts, 0444,
 545                regulator_suspend_standby_uV_show, NULL);
 546
 547static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
 548                                struct device_attribute *attr, char *buf)
 549{
 550        struct regulator_dev *rdev = dev_get_drvdata(dev);
 551
 552        return regulator_print_opmode(buf,
 553                rdev->constraints->state_mem.mode);
 554}
 555static DEVICE_ATTR(suspend_mem_mode, 0444,
 556                regulator_suspend_mem_mode_show, NULL);
 557
 558static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
 559                                struct device_attribute *attr, char *buf)
 560{
 561        struct regulator_dev *rdev = dev_get_drvdata(dev);
 562
 563        return regulator_print_opmode(buf,
 564                rdev->constraints->state_disk.mode);
 565}
 566static DEVICE_ATTR(suspend_disk_mode, 0444,
 567                regulator_suspend_disk_mode_show, NULL);
 568
 569static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
 570                                struct device_attribute *attr, char *buf)
 571{
 572        struct regulator_dev *rdev = dev_get_drvdata(dev);
 573
 574        return regulator_print_opmode(buf,
 575                rdev->constraints->state_standby.mode);
 576}
 577static DEVICE_ATTR(suspend_standby_mode, 0444,
 578                regulator_suspend_standby_mode_show, NULL);
 579
 580static ssize_t regulator_suspend_mem_state_show(struct device *dev,
 581                                   struct device_attribute *attr, char *buf)
 582{
 583        struct regulator_dev *rdev = dev_get_drvdata(dev);
 584
 585        return regulator_print_state(buf,
 586                        rdev->constraints->state_mem.enabled);
 587}
 588static DEVICE_ATTR(suspend_mem_state, 0444,
 589                regulator_suspend_mem_state_show, NULL);
 590
 591static ssize_t regulator_suspend_disk_state_show(struct device *dev,
 592                                   struct device_attribute *attr, char *buf)
 593{
 594        struct regulator_dev *rdev = dev_get_drvdata(dev);
 595
 596        return regulator_print_state(buf,
 597                        rdev->constraints->state_disk.enabled);
 598}
 599static DEVICE_ATTR(suspend_disk_state, 0444,
 600                regulator_suspend_disk_state_show, NULL);
 601
 602static ssize_t regulator_suspend_standby_state_show(struct device *dev,
 603                                   struct device_attribute *attr, char *buf)
 604{
 605        struct regulator_dev *rdev = dev_get_drvdata(dev);
 606
 607        return regulator_print_state(buf,
 608                        rdev->constraints->state_standby.enabled);
 609}
 610static DEVICE_ATTR(suspend_standby_state, 0444,
 611                regulator_suspend_standby_state_show, NULL);
 612
 613static ssize_t regulator_bypass_show(struct device *dev,
 614                                     struct device_attribute *attr, char *buf)
 615{
 616        struct regulator_dev *rdev = dev_get_drvdata(dev);
 617        const char *report;
 618        bool bypass;
 619        int ret;
 620
 621        ret = rdev->desc->ops->get_bypass(rdev, &bypass);
 622
 623        if (ret != 0)
 624                report = "unknown";
 625        else if (bypass)
 626                report = "enabled";
 627        else
 628                report = "disabled";
 629
 630        return sprintf(buf, "%s\n", report);
 631}
 632static DEVICE_ATTR(bypass, 0444,
 633                   regulator_bypass_show, NULL);
 634
 635/*
 636 * These are the only attributes are present for all regulators.
 637 * Other attributes are a function of regulator functionality.
 638 */
 639static struct attribute *regulator_dev_attrs[] = {
 640        &dev_attr_name.attr,
 641        &dev_attr_num_users.attr,
 642        &dev_attr_type.attr,
 643        NULL,
 644};
 645ATTRIBUTE_GROUPS(regulator_dev);
 646
 647static void regulator_dev_release(struct device *dev)
 648{
 649        struct regulator_dev *rdev = dev_get_drvdata(dev);
 650        kfree(rdev);
 651}
 652
 653static struct class regulator_class = {
 654        .name = "regulator",
 655        .dev_release = regulator_dev_release,
 656        .dev_groups = regulator_dev_groups,
 657};
 658
 659/* Calculate the new optimum regulator operating mode based on the new total
 660 * consumer load. All locks held by caller */
 661static void drms_uA_update(struct regulator_dev *rdev)
 662{
 663        struct regulator *sibling;
 664        int current_uA = 0, output_uV, input_uV, err;
 665        unsigned int mode;
 666
 667        err = regulator_check_drms(rdev);
 668        if (err < 0 || !rdev->desc->ops->get_optimum_mode ||
 669            (!rdev->desc->ops->get_voltage &&
 670             !rdev->desc->ops->get_voltage_sel) ||
 671            !rdev->desc->ops->set_mode)
 672                return;
 673
 674        /* get output voltage */
 675        output_uV = _regulator_get_voltage(rdev);
 676        if (output_uV <= 0)
 677                return;
 678
 679        /* get input voltage */
 680        input_uV = 0;
 681        if (rdev->supply)
 682                input_uV = regulator_get_voltage(rdev->supply);
 683        if (input_uV <= 0)
 684                input_uV = rdev->constraints->input_uV;
 685        if (input_uV <= 0)
 686                return;
 687
 688        /* calc total requested load */
 689        list_for_each_entry(sibling, &rdev->consumer_list, list)
 690                current_uA += sibling->uA_load;
 691
 692        /* now get the optimum mode for our new total regulator load */
 693        mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
 694                                                  output_uV, current_uA);
 695
 696        /* check the new mode is allowed */
 697        err = regulator_mode_constrain(rdev, &mode);
 698        if (err == 0)
 699                rdev->desc->ops->set_mode(rdev, mode);
 700}
 701
 702static int suspend_set_state(struct regulator_dev *rdev,
 703        struct regulator_state *rstate)
 704{
 705        int ret = 0;
 706
 707        /* If we have no suspend mode configration don't set anything;
 708         * only warn if the driver implements set_suspend_voltage or
 709         * set_suspend_mode callback.
 710         */
 711        if (!rstate->enabled && !rstate->disabled) {
 712                if (rdev->desc->ops->set_suspend_voltage ||
 713                    rdev->desc->ops->set_suspend_mode)
 714                        rdev_warn(rdev, "No configuration\n");
 715                return 0;
 716        }
 717
 718        if (rstate->enabled && rstate->disabled) {
 719                rdev_err(rdev, "invalid configuration\n");
 720                return -EINVAL;
 721        }
 722
 723        if (rstate->enabled && rdev->desc->ops->set_suspend_enable)
 724                ret = rdev->desc->ops->set_suspend_enable(rdev);
 725        else if (rstate->disabled && rdev->desc->ops->set_suspend_disable)
 726                ret = rdev->desc->ops->set_suspend_disable(rdev);
 727        else /* OK if set_suspend_enable or set_suspend_disable is NULL */
 728                ret = 0;
 729
 730        if (ret < 0) {
 731                rdev_err(rdev, "failed to enabled/disable\n");
 732                return ret;
 733        }
 734
 735        if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
 736                ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
 737                if (ret < 0) {
 738                        rdev_err(rdev, "failed to set voltage\n");
 739                        return ret;
 740                }
 741        }
 742
 743        if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
 744                ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
 745                if (ret < 0) {
 746                        rdev_err(rdev, "failed to set mode\n");
 747                        return ret;
 748                }
 749        }
 750        return ret;
 751}
 752
 753/* locks held by caller */
 754static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state)
 755{
 756        if (!rdev->constraints)
 757                return -EINVAL;
 758
 759        switch (state) {
 760        case PM_SUSPEND_STANDBY:
 761                return suspend_set_state(rdev,
 762                        &rdev->constraints->state_standby);
 763        case PM_SUSPEND_MEM:
 764                return suspend_set_state(rdev,
 765                        &rdev->constraints->state_mem);
 766        case PM_SUSPEND_MAX:
 767                return suspend_set_state(rdev,
 768                        &rdev->constraints->state_disk);
 769        default:
 770                return -EINVAL;
 771        }
 772}
 773
 774static void print_constraints(struct regulator_dev *rdev)
 775{
 776        struct regulation_constraints *constraints = rdev->constraints;
 777        char buf[80] = "";
 778        int count = 0;
 779        int ret;
 780
 781        if (constraints->min_uV && constraints->max_uV) {
 782                if (constraints->min_uV == constraints->max_uV)
 783                        count += sprintf(buf + count, "%d mV ",
 784                                         constraints->min_uV / 1000);
 785                else
 786                        count += sprintf(buf + count, "%d <--> %d mV ",
 787                                         constraints->min_uV / 1000,
 788                                         constraints->max_uV / 1000);
 789        }
 790
 791        if (!constraints->min_uV ||
 792            constraints->min_uV != constraints->max_uV) {
 793                ret = _regulator_get_voltage(rdev);
 794                if (ret > 0)
 795                        count += sprintf(buf + count, "at %d mV ", ret / 1000);
 796        }
 797
 798        if (constraints->uV_offset)
 799                count += sprintf(buf, "%dmV offset ",
 800                                 constraints->uV_offset / 1000);
 801
 802        if (constraints->min_uA && constraints->max_uA) {
 803                if (constraints->min_uA == constraints->max_uA)
 804                        count += sprintf(buf + count, "%d mA ",
 805                                         constraints->min_uA / 1000);
 806                else
 807                        count += sprintf(buf + count, "%d <--> %d mA ",
 808                                         constraints->min_uA / 1000,
 809                                         constraints->max_uA / 1000);
 810        }
 811
 812        if (!constraints->min_uA ||
 813            constraints->min_uA != constraints->max_uA) {
 814                ret = _regulator_get_current_limit(rdev);
 815                if (ret > 0)
 816                        count += sprintf(buf + count, "at %d mA ", ret / 1000);
 817        }
 818
 819        if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
 820                count += sprintf(buf + count, "fast ");
 821        if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
 822                count += sprintf(buf + count, "normal ");
 823        if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
 824                count += sprintf(buf + count, "idle ");
 825        if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
 826                count += sprintf(buf + count, "standby");
 827
 828        if (!count)
 829                sprintf(buf, "no parameters");
 830
 831        rdev_info(rdev, "%s\n", buf);
 832
 833        if ((constraints->min_uV != constraints->max_uV) &&
 834            !(constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE))
 835                rdev_warn(rdev,
 836                          "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
 837}
 838
 839static int machine_constraints_voltage(struct regulator_dev *rdev,
 840        struct regulation_constraints *constraints)
 841{
 842        const struct regulator_ops *ops = rdev->desc->ops;
 843        int ret;
 844
 845        /* do we need to apply the constraint voltage */
 846        if (rdev->constraints->apply_uV &&
 847            rdev->constraints->min_uV == rdev->constraints->max_uV) {
 848                int current_uV = _regulator_get_voltage(rdev);
 849                if (current_uV < 0) {
 850                        rdev_err(rdev,
 851                                 "failed to get the current voltage(%d)\n",
 852                                 current_uV);
 853                        return current_uV;
 854                }
 855                if (current_uV < rdev->constraints->min_uV ||
 856                    current_uV > rdev->constraints->max_uV) {
 857                        ret = _regulator_do_set_voltage(
 858                                rdev, rdev->constraints->min_uV,
 859                                rdev->constraints->max_uV);
 860                        if (ret < 0) {
 861                                rdev_err(rdev,
 862                                        "failed to apply %duV constraint(%d)\n",
 863                                        rdev->constraints->min_uV, ret);
 864                                return ret;
 865                        }
 866                }
 867        }
 868
 869        /* constrain machine-level voltage specs to fit
 870         * the actual range supported by this regulator.
 871         */
 872        if (ops->list_voltage && rdev->desc->n_voltages) {
 873                int     count = rdev->desc->n_voltages;
 874                int     i;
 875                int     min_uV = INT_MAX;
 876                int     max_uV = INT_MIN;
 877                int     cmin = constraints->min_uV;
 878                int     cmax = constraints->max_uV;
 879
 880                /* it's safe to autoconfigure fixed-voltage supplies
 881                   and the constraints are used by list_voltage. */
 882                if (count == 1 && !cmin) {
 883                        cmin = 1;
 884                        cmax = INT_MAX;
 885                        constraints->min_uV = cmin;
 886                        constraints->max_uV = cmax;
 887                }
 888
 889                /* voltage constraints are optional */
 890                if ((cmin == 0) && (cmax == 0))
 891                        return 0;
 892
 893                /* else require explicit machine-level constraints */
 894                if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
 895                        rdev_err(rdev, "invalid voltage constraints\n");
 896                        return -EINVAL;
 897                }
 898
 899                /* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
 900                for (i = 0; i < count; i++) {
 901                        int     value;
 902
 903                        value = ops->list_voltage(rdev, i);
 904                        if (value <= 0)
 905                                continue;
 906
 907                        /* maybe adjust [min_uV..max_uV] */
 908                        if (value >= cmin && value < min_uV)
 909                                min_uV = value;
 910                        if (value <= cmax && value > max_uV)
 911                                max_uV = value;
 912                }
 913
 914                /* final: [min_uV..max_uV] valid iff constraints valid */
 915                if (max_uV < min_uV) {
 916                        rdev_err(rdev,
 917                                 "unsupportable voltage constraints %u-%uuV\n",
 918                                 min_uV, max_uV);
 919                        return -EINVAL;
 920                }
 921
 922                /* use regulator's subset of machine constraints */
 923                if (constraints->min_uV < min_uV) {
 924                        rdev_dbg(rdev, "override min_uV, %d -> %d\n",
 925                                 constraints->min_uV, min_uV);
 926                        constraints->min_uV = min_uV;
 927                }
 928                if (constraints->max_uV > max_uV) {
 929                        rdev_dbg(rdev, "override max_uV, %d -> %d\n",
 930                                 constraints->max_uV, max_uV);
 931                        constraints->max_uV = max_uV;
 932                }
 933        }
 934
 935        return 0;
 936}
 937
 938static int machine_constraints_current(struct regulator_dev *rdev,
 939        struct regulation_constraints *constraints)
 940{
 941        const struct regulator_ops *ops = rdev->desc->ops;
 942        int ret;
 943
 944        if (!constraints->min_uA && !constraints->max_uA)
 945                return 0;
 946
 947        if (constraints->min_uA > constraints->max_uA) {
 948                rdev_err(rdev, "Invalid current constraints\n");
 949                return -EINVAL;
 950        }
 951
 952        if (!ops->set_current_limit || !ops->get_current_limit) {
 953                rdev_warn(rdev, "Operation of current configuration missing\n");
 954                return 0;
 955        }
 956
 957        /* Set regulator current in constraints range */
 958        ret = ops->set_current_limit(rdev, constraints->min_uA,
 959                        constraints->max_uA);
 960        if (ret < 0) {
 961                rdev_err(rdev, "Failed to set current constraint, %d\n", ret);
 962                return ret;
 963        }
 964
 965        return 0;
 966}
 967
 968static int _regulator_do_enable(struct regulator_dev *rdev);
 969
 970/**
 971 * set_machine_constraints - sets regulator constraints
 972 * @rdev: regulator source
 973 * @constraints: constraints to apply
 974 *
 975 * Allows platform initialisation code to define and constrain
 976 * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
 977 * Constraints *must* be set by platform code in order for some
 978 * regulator operations to proceed i.e. set_voltage, set_current_limit,
 979 * set_mode.
 980 */
 981static int set_machine_constraints(struct regulator_dev *rdev,
 982        const struct regulation_constraints *constraints)
 983{
 984        int ret = 0;
 985        const struct regulator_ops *ops = rdev->desc->ops;
 986
 987        if (constraints)
 988                rdev->constraints = kmemdup(constraints, sizeof(*constraints),
 989                                            GFP_KERNEL);
 990        else
 991                rdev->constraints = kzalloc(sizeof(*constraints),
 992                                            GFP_KERNEL);
 993        if (!rdev->constraints)
 994                return -ENOMEM;
 995
 996        ret = machine_constraints_voltage(rdev, rdev->constraints);
 997        if (ret != 0)
 998                goto out;
 999
1000        ret = machine_constraints_current(rdev, rdev->constraints);
1001        if (ret != 0)
1002                goto out;
1003
1004        /* do we need to setup our suspend state */
1005        if (rdev->constraints->initial_state) {
1006                ret = suspend_prepare(rdev, rdev->constraints->initial_state);
1007                if (ret < 0) {
1008                        rdev_err(rdev, "failed to set suspend state\n");
1009                        goto out;
1010                }
1011        }
1012
1013        if (rdev->constraints->initial_mode) {
1014                if (!ops->set_mode) {
1015                        rdev_err(rdev, "no set_mode operation\n");
1016                        ret = -EINVAL;
1017                        goto out;
1018                }
1019
1020                ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
1021                if (ret < 0) {
1022                        rdev_err(rdev, "failed to set initial mode: %d\n", ret);
1023                        goto out;
1024                }
1025        }
1026
1027        /* If the constraints say the regulator should be on at this point
1028         * and we have control then make sure it is enabled.
1029         */
1030        if (rdev->constraints->always_on || rdev->constraints->boot_on) {
1031                ret = _regulator_do_enable(rdev);
1032                if (ret < 0 && ret != -EINVAL) {
1033                        rdev_err(rdev, "failed to enable\n");
1034                        goto out;
1035                }
1036        }
1037
1038        if ((rdev->constraints->ramp_delay || rdev->constraints->ramp_disable)
1039                && ops->set_ramp_delay) {
1040                ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay);
1041                if (ret < 0) {
1042                        rdev_err(rdev, "failed to set ramp_delay\n");
1043                        goto out;
1044                }
1045        }
1046
1047        print_constraints(rdev);
1048        return 0;
1049out:
1050        kfree(rdev->constraints);
1051        rdev->constraints = NULL;
1052        return ret;
1053}
1054
1055/**
1056 * set_supply - set regulator supply regulator
1057 * @rdev: regulator name
1058 * @supply_rdev: supply regulator name
1059 *
1060 * Called by platform initialisation code to set the supply regulator for this
1061 * regulator. This ensures that a regulators supply will also be enabled by the
1062 * core if it's child is enabled.
1063 */
1064static int set_supply(struct regulator_dev *rdev,
1065                      struct regulator_dev *supply_rdev)
1066{
1067        int err;
1068
1069        rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));
1070
1071        rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
1072        if (rdev->supply == NULL) {
1073                err = -ENOMEM;
1074                return err;
1075        }
1076        supply_rdev->open_count++;
1077
1078        return 0;
1079}
1080
1081/**
1082 * set_consumer_device_supply - Bind a regulator to a symbolic supply
1083 * @rdev:         regulator source
1084 * @consumer_dev_name: dev_name() string for device supply applies to
1085 * @supply:       symbolic name for supply
1086 *
1087 * Allows platform initialisation code to map physical regulator
1088 * sources to symbolic names for supplies for use by devices.  Devices
1089 * should use these symbolic names to request regulators, avoiding the
1090 * need to provide board-specific regulator names as platform data.
1091 */
1092static int set_consumer_device_supply(struct regulator_dev *rdev,
1093                                      const char *consumer_dev_name,
1094                                      const char *supply)
1095{
1096        struct regulator_map *node;
1097        int has_dev;
1098
1099        if (supply == NULL)
1100                return -EINVAL;
1101
1102        if (consumer_dev_name != NULL)
1103                has_dev = 1;
1104        else
1105                has_dev = 0;
1106
1107        list_for_each_entry(node, &regulator_map_list, list) {
1108                if (node->dev_name && consumer_dev_name) {
1109                        if (strcmp(node->dev_name, consumer_dev_name) != 0)
1110                                continue;
1111                } else if (node->dev_name || consumer_dev_name) {
1112                        continue;
1113                }
1114
1115                if (strcmp(node->supply, supply) != 0)
1116                        continue;
1117
1118                pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
1119                         consumer_dev_name,
1120                         dev_name(&node->regulator->dev),
1121                         node->regulator->desc->name,
1122                         supply,
1123                         dev_name(&rdev->dev), rdev_get_name(rdev));
1124                return -EBUSY;
1125        }
1126
1127        node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1128        if (node == NULL)
1129                return -ENOMEM;
1130
1131        node->regulator = rdev;
1132        node->supply = supply;
1133
1134        if (has_dev) {
1135                node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
1136                if (node->dev_name == NULL) {
1137                        kfree(node);
1138                        return -ENOMEM;
1139                }
1140        }
1141
1142        list_add(&node->list, &regulator_map_list);
1143        return 0;
1144}
1145
1146static void unset_regulator_supplies(struct regulator_dev *rdev)
1147{
1148        struct regulator_map *node, *n;
1149
1150        list_for_each_entry_safe(node, n, &regulator_map_list, list) {
1151                if (rdev == node->regulator) {
1152                        list_del(&node->list);
1153                        kfree(node->dev_name);
1154                        kfree(node);
1155                }
1156        }
1157}
1158
1159#define REG_STR_SIZE    64
1160
1161static struct regulator *create_regulator(struct regulator_dev *rdev,
1162                                          struct device *dev,
1163                                          const char *supply_name)
1164{
1165        struct regulator *regulator;
1166        char buf[REG_STR_SIZE];
1167        int err, size;
1168
1169        regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1170        if (regulator == NULL)
1171                return NULL;
1172
1173        mutex_lock(&rdev->mutex);
1174        regulator->rdev = rdev;
1175        list_add(&regulator->list, &rdev->consumer_list);
1176
1177        if (dev) {
1178                regulator->dev = dev;
1179
1180                /* Add a link to the device sysfs entry */
1181                size = scnprintf(buf, REG_STR_SIZE, "%s-%s",
1182                                 dev->kobj.name, supply_name);
1183                if (size >= REG_STR_SIZE)
1184                        goto overflow_err;
1185
1186                regulator->supply_name = kstrdup(buf, GFP_KERNEL);
1187                if (regulator->supply_name == NULL)
1188                        goto overflow_err;
1189
1190                err = sysfs_create_link(&rdev->dev.kobj, &dev->kobj,
1191                                        buf);
1192                if (err) {
1193                        rdev_warn(rdev, "could not add device link %s err %d\n",
1194                                  dev->kobj.name, err);
1195                        /* non-fatal */
1196                }
1197        } else {
1198                regulator->supply_name = kstrdup(supply_name, GFP_KERNEL);
1199                if (regulator->supply_name == NULL)
1200                        goto overflow_err;
1201        }
1202
1203        regulator->debugfs = debugfs_create_dir(regulator->supply_name,
1204                                                rdev->debugfs);
1205        if (!regulator->debugfs) {
1206                rdev_warn(rdev, "Failed to create debugfs directory\n");
1207        } else {
1208                debugfs_create_u32("uA_load", 0444, regulator->debugfs,
1209                                   &regulator->uA_load);
1210                debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1211                                   &regulator->min_uV);
1212                debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1213                                   &regulator->max_uV);
1214        }
1215
1216        /*
1217         * Check now if the regulator is an always on regulator - if
1218         * it is then we don't need to do nearly so much work for
1219         * enable/disable calls.
1220         */
1221        if (!_regulator_can_change_status(rdev) &&
1222            _regulator_is_enabled(rdev))
1223                regulator->always_on = true;
1224
1225        mutex_unlock(&rdev->mutex);
1226        return regulator;
1227overflow_err:
1228        list_del(&regulator->list);
1229        kfree(regulator);
1230        mutex_unlock(&rdev->mutex);
1231        return NULL;
1232}
1233
1234static int _regulator_get_enable_time(struct regulator_dev *rdev)
1235{
1236        if (rdev->constraints && rdev->constraints->enable_time)
1237                return rdev->constraints->enable_time;
1238        if (!rdev->desc->ops->enable_time)
1239                return rdev->desc->enable_time;
1240        return rdev->desc->ops->enable_time(rdev);
1241}
1242
1243static struct regulator_supply_alias *regulator_find_supply_alias(
1244                struct device *dev, const char *supply)
1245{
1246        struct regulator_supply_alias *map;
1247
1248        list_for_each_entry(map, &regulator_supply_alias_list, list)
1249                if (map->src_dev == dev && strcmp(map->src_supply, supply) == 0)
1250                        return map;
1251
1252        return NULL;
1253}
1254
1255static void regulator_supply_alias(struct device **dev, const char **supply)
1256{
1257        struct regulator_supply_alias *map;
1258
1259        map = regulator_find_supply_alias(*dev, *supply);
1260        if (map) {
1261                dev_dbg(*dev, "Mapping supply %s to %s,%s\n",
1262                                *supply, map->alias_supply,
1263                                dev_name(map->alias_dev));
1264                *dev = map->alias_dev;
1265                *supply = map->alias_supply;
1266        }
1267}
1268
1269static struct regulator_dev *regulator_dev_lookup(struct device *dev,
1270                                                  const char *supply,
1271                                                  int *ret)
1272{
1273        struct regulator_dev *r;
1274        struct device_node *node;
1275        struct regulator_map *map;
1276        const char *devname = NULL;
1277
1278        regulator_supply_alias(&dev, &supply);
1279
1280        /* first do a dt based lookup */
1281        if (dev && dev->of_node) {
1282                node = of_get_regulator(dev, supply);
1283                if (node) {
1284                        list_for_each_entry(r, &regulator_list, list)
1285                                if (r->dev.parent &&
1286                                        node == r->dev.of_node)
1287                                        return r;
1288                        *ret = -EPROBE_DEFER;
1289                        return NULL;
1290                } else {
1291                        /*
1292                         * If we couldn't even get the node then it's
1293                         * not just that the device didn't register
1294                         * yet, there's no node and we'll never
1295                         * succeed.
1296                         */
1297                        *ret = -ENODEV;
1298                }
1299        }
1300
1301        /* if not found, try doing it non-dt way */
1302        if (dev)
1303                devname = dev_name(dev);
1304
1305        list_for_each_entry(r, &regulator_list, list)
1306                if (strcmp(rdev_get_name(r), supply) == 0)
1307                        return r;
1308
1309        list_for_each_entry(map, &regulator_map_list, list) {
1310                /* If the mapping has a device set up it must match */
1311                if (map->dev_name &&
1312                    (!devname || strcmp(map->dev_name, devname)))
1313                        continue;
1314
1315                if (strcmp(map->supply, supply) == 0)
1316                        return map->regulator;
1317        }
1318
1319
1320        return NULL;
1321}
1322
1323/* Internal regulator request function */
1324static struct regulator *_regulator_get(struct device *dev, const char *id,
1325                                        bool exclusive, bool allow_dummy)
1326{
1327        struct regulator_dev *rdev;
1328        struct regulator *regulator = ERR_PTR(-EPROBE_DEFER);
1329        const char *devname = NULL;
1330        int ret;
1331
1332        if (id == NULL) {
1333                pr_err("get() with no identifier\n");
1334                return ERR_PTR(-EINVAL);
1335        }
1336
1337        if (dev)
1338                devname = dev_name(dev);
1339
1340        if (have_full_constraints())
1341                ret = -ENODEV;
1342        else
1343                ret = -EPROBE_DEFER;
1344
1345        mutex_lock(&regulator_list_mutex);
1346
1347        rdev = regulator_dev_lookup(dev, id, &ret);
1348        if (rdev)
1349                goto found;
1350
1351        regulator = ERR_PTR(ret);
1352
1353        /*
1354         * If we have return value from dev_lookup fail, we do not expect to
1355         * succeed, so, quit with appropriate error value
1356         */
1357        if (ret && ret != -ENODEV)
1358                goto out;
1359
1360        if (!devname)
1361                devname = "deviceless";
1362
1363        /*
1364         * Assume that a regulator is physically present and enabled
1365         * even if it isn't hooked up and just provide a dummy.
1366         */
1367        if (have_full_constraints() && allow_dummy) {
1368                pr_warn("%s supply %s not found, using dummy regulator\n",
1369                        devname, id);
1370
1371                rdev = dummy_regulator_rdev;
1372                goto found;
1373        /* Don't log an error when called from regulator_get_optional() */
1374        } else if (!have_full_constraints() || exclusive) {
1375                dev_warn(dev, "dummy supplies not allowed\n");
1376        }
1377
1378        mutex_unlock(&regulator_list_mutex);
1379        return regulator;
1380
1381found:
1382        if (rdev->exclusive) {
1383                regulator = ERR_PTR(-EPERM);
1384                goto out;
1385        }
1386
1387        if (exclusive && rdev->open_count) {
1388                regulator = ERR_PTR(-EBUSY);
1389                goto out;
1390        }
1391
1392        if (!try_module_get(rdev->owner))
1393                goto out;
1394
1395        regulator = create_regulator(rdev, dev, id);
1396        if (regulator == NULL) {
1397                regulator = ERR_PTR(-ENOMEM);
1398                module_put(rdev->owner);
1399                goto out;
1400        }
1401
1402        rdev->open_count++;
1403        if (exclusive) {
1404                rdev->exclusive = 1;
1405
1406                ret = _regulator_is_enabled(rdev);
1407                if (ret > 0)
1408                        rdev->use_count = 1;
1409                else
1410                        rdev->use_count = 0;
1411        }
1412
1413out:
1414        mutex_unlock(&regulator_list_mutex);
1415
1416        return regulator;
1417}
1418
1419/**
1420 * regulator_get - lookup and obtain a reference to a regulator.
1421 * @dev: device for regulator "consumer"
1422 * @id: Supply name or regulator ID.
1423 *
1424 * Returns a struct regulator corresponding to the regulator producer,
1425 * or IS_ERR() condition containing errno.
1426 *
1427 * Use of supply names configured via regulator_set_device_supply() is
1428 * strongly encouraged.  It is recommended that the supply name used
1429 * should match the name used for the supply and/or the relevant
1430 * device pins in the datasheet.
1431 */
1432struct regulator *regulator_get(struct device *dev, const char *id)
1433{
1434        return _regulator_get(dev, id, false, true);
1435}
1436EXPORT_SYMBOL_GPL(regulator_get);
1437
1438/**
1439 * regulator_get_exclusive - obtain exclusive access to a regulator.
1440 * @dev: device for regulator "consumer"
1441 * @id: Supply name or regulator ID.
1442 *
1443 * Returns a struct regulator corresponding to the regulator producer,
1444 * or IS_ERR() condition containing errno.  Other consumers will be
1445 * unable to obtain this regulator while this reference is held and the
1446 * use count for the regulator will be initialised to reflect the current
1447 * state of the regulator.
1448 *
1449 * This is intended for use by consumers which cannot tolerate shared
1450 * use of the regulator such as those which need to force the
1451 * regulator off for correct operation of the hardware they are
1452 * controlling.
1453 *
1454 * Use of supply names configured via regulator_set_device_supply() is
1455 * strongly encouraged.  It is recommended that the supply name used
1456 * should match the name used for the supply and/or the relevant
1457 * device pins in the datasheet.
1458 */
1459struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
1460{
1461        return _regulator_get(dev, id, true, false);
1462}
1463EXPORT_SYMBOL_GPL(regulator_get_exclusive);
1464
1465/**
1466 * regulator_get_optional - obtain optional access to a regulator.
1467 * @dev: device for regulator "consumer"
1468 * @id: Supply name or regulator ID.
1469 *
1470 * Returns a struct regulator corresponding to the regulator producer,
1471 * or IS_ERR() condition containing errno.
1472 *
1473 * This is intended for use by consumers for devices which can have
1474 * some supplies unconnected in normal use, such as some MMC devices.
1475 * It can allow the regulator core to provide stub supplies for other
1476 * supplies requested using normal regulator_get() calls without
1477 * disrupting the operation of drivers that can handle absent
1478 * supplies.
1479 *
1480 * Use of supply names configured via regulator_set_device_supply() is
1481 * strongly encouraged.  It is recommended that the supply name used
1482 * should match the name used for the supply and/or the relevant
1483 * device pins in the datasheet.
1484 */
1485struct regulator *regulator_get_optional(struct device *dev, const char *id)
1486{
1487        return _regulator_get(dev, id, false, false);
1488}
1489EXPORT_SYMBOL_GPL(regulator_get_optional);
1490
1491/* Locks held by regulator_put() */
1492static void _regulator_put(struct regulator *regulator)
1493{
1494        struct regulator_dev *rdev;
1495
1496        if (regulator == NULL || IS_ERR(regulator))
1497                return;
1498
1499        rdev = regulator->rdev;
1500
1501        debugfs_remove_recursive(regulator->debugfs);
1502
1503        /* remove any sysfs entries */
1504        if (regulator->dev)
1505                sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
1506        kfree(regulator->supply_name);
1507        list_del(&regulator->list);
1508        kfree(regulator);
1509
1510        rdev->open_count--;
1511        rdev->exclusive = 0;
1512
1513        module_put(rdev->owner);
1514}
1515
1516/**
1517 * regulator_put - "free" the regulator source
1518 * @regulator: regulator source
1519 *
1520 * Note: drivers must ensure that all regulator_enable calls made on this
1521 * regulator source are balanced by regulator_disable calls prior to calling
1522 * this function.
1523 */
1524void regulator_put(struct regulator *regulator)
1525{
1526        mutex_lock(&regulator_list_mutex);
1527        _regulator_put(regulator);
1528        mutex_unlock(&regulator_list_mutex);
1529}
1530EXPORT_SYMBOL_GPL(regulator_put);
1531
1532/**
1533 * regulator_register_supply_alias - Provide device alias for supply lookup
1534 *
1535 * @dev: device that will be given as the regulator "consumer"
1536 * @id: Supply name or regulator ID
1537 * @alias_dev: device that should be used to lookup the supply
1538 * @alias_id: Supply name or regulator ID that should be used to lookup the
1539 * supply
1540 *
1541 * All lookups for id on dev will instead be conducted for alias_id on
1542 * alias_dev.
1543 */
1544int regulator_register_supply_alias(struct device *dev, const char *id,
1545                                    struct device *alias_dev,
1546                                    const char *alias_id)
1547{
1548        struct regulator_supply_alias *map;
1549
1550        map = regulator_find_supply_alias(dev, id);
1551        if (map)
1552                return -EEXIST;
1553
1554        map = kzalloc(sizeof(struct regulator_supply_alias), GFP_KERNEL);
1555        if (!map)
1556                return -ENOMEM;
1557
1558        map->src_dev = dev;
1559        map->src_supply = id;
1560        map->alias_dev = alias_dev;
1561        map->alias_supply = alias_id;
1562
1563        list_add(&map->list, &regulator_supply_alias_list);
1564
1565        pr_info("Adding alias for supply %s,%s -> %s,%s\n",
1566                id, dev_name(dev), alias_id, dev_name(alias_dev));
1567
1568        return 0;
1569}
1570EXPORT_SYMBOL_GPL(regulator_register_supply_alias);
1571
1572/**
1573 * regulator_unregister_supply_alias - Remove device alias
1574 *
1575 * @dev: device that will be given as the regulator "consumer"
1576 * @id: Supply name or regulator ID
1577 *
1578 * Remove a lookup alias if one exists for id on dev.
1579 */
1580void regulator_unregister_supply_alias(struct device *dev, const char *id)
1581{
1582        struct regulator_supply_alias *map;
1583
1584        map = regulator_find_supply_alias(dev, id);
1585        if (map) {
1586                list_del(&map->list);
1587                kfree(map);
1588        }
1589}
1590EXPORT_SYMBOL_GPL(regulator_unregister_supply_alias);
1591
1592/**
1593 * regulator_bulk_register_supply_alias - register multiple aliases
1594 *
1595 * @dev: device that will be given as the regulator "consumer"
1596 * @id: List of supply names or regulator IDs
1597 * @alias_dev: device that should be used to lookup the supply
1598 * @alias_id: List of supply names or regulator IDs that should be used to
1599 * lookup the supply
1600 * @num_id: Number of aliases to register
1601 *
1602 * @return 0 on success, an errno on failure.
1603 *
1604 * This helper function allows drivers to register several supply
1605 * aliases in one operation.  If any of the aliases cannot be
1606 * registered any aliases that were registered will be removed
1607 * before returning to the caller.
1608 */
1609int regulator_bulk_register_supply_alias(struct device *dev,
1610                                         const char *const *id,
1611                                         struct device *alias_dev,
1612                                         const char *const *alias_id,
1613                                         int num_id)
1614{
1615        int i;
1616        int ret;
1617
1618        for (i = 0; i < num_id; ++i) {
1619                ret = regulator_register_supply_alias(dev, id[i], alias_dev,
1620                                                      alias_id[i]);
1621                if (ret < 0)
1622                        goto err;
1623        }
1624
1625        return 0;
1626
1627err:
1628        dev_err(dev,
1629                "Failed to create supply alias %s,%s -> %s,%s\n",
1630                id[i], dev_name(dev), alias_id[i], dev_name(alias_dev));
1631
1632        while (--i >= 0)
1633                regulator_unregister_supply_alias(dev, id[i]);
1634
1635        return ret;
1636}
1637EXPORT_SYMBOL_GPL(regulator_bulk_register_supply_alias);
1638
1639/**
1640 * regulator_bulk_unregister_supply_alias - unregister multiple aliases
1641 *
1642 * @dev: device that will be given as the regulator "consumer"
1643 * @id: List of supply names or regulator IDs
1644 * @num_id: Number of aliases to unregister
1645 *
1646 * This helper function allows drivers to unregister several supply
1647 * aliases in one operation.
1648 */
1649void regulator_bulk_unregister_supply_alias(struct device *dev,
1650                                            const char *const *id,
1651                                            int num_id)
1652{
1653        int i;
1654
1655        for (i = 0; i < num_id; ++i)
1656                regulator_unregister_supply_alias(dev, id[i]);
1657}
1658EXPORT_SYMBOL_GPL(regulator_bulk_unregister_supply_alias);
1659
1660
1661/* Manage enable GPIO list. Same GPIO pin can be shared among regulators */
1662static int regulator_ena_gpio_request(struct regulator_dev *rdev,
1663                                const struct regulator_config *config)
1664{
1665        struct regulator_enable_gpio *pin;
1666        struct gpio_desc *gpiod;
1667        int ret;
1668
1669        gpiod = gpio_to_desc(config->ena_gpio);
1670
1671        list_for_each_entry(pin, &regulator_ena_gpio_list, list) {
1672                if (pin->gpiod == gpiod) {
1673                        rdev_dbg(rdev, "GPIO %d is already used\n",
1674                                config->ena_gpio);
1675                        goto update_ena_gpio_to_rdev;
1676                }
1677        }
1678
1679        ret = gpio_request_one(config->ena_gpio,
1680                                GPIOF_DIR_OUT | config->ena_gpio_flags,
1681                                rdev_get_name(rdev));
1682        if (ret)
1683                return ret;
1684
1685        pin = kzalloc(sizeof(struct regulator_enable_gpio), GFP_KERNEL);
1686        if (pin == NULL) {
1687                gpio_free(config->ena_gpio);
1688                return -ENOMEM;
1689        }
1690
1691        pin->gpiod = gpiod;
1692        pin->ena_gpio_invert = config->ena_gpio_invert;
1693        list_add(&pin->list, &regulator_ena_gpio_list);
1694
1695update_ena_gpio_to_rdev:
1696        pin->request_count++;
1697        rdev->ena_pin = pin;
1698        return 0;
1699}
1700
1701static void regulator_ena_gpio_free(struct regulator_dev *rdev)
1702{
1703        struct regulator_enable_gpio *pin, *n;
1704
1705        if (!rdev->ena_pin)
1706                return;
1707
1708        /* Free the GPIO only in case of no use */
1709        list_for_each_entry_safe(pin, n, &regulator_ena_gpio_list, list) {
1710                if (pin->gpiod == rdev->ena_pin->gpiod) {
1711                        if (pin->request_count <= 1) {
1712                                pin->request_count = 0;
1713                                gpiod_put(pin->gpiod);
1714                                list_del(&pin->list);
1715                                kfree(pin);
1716                        } else {
1717                                pin->request_count--;
1718                        }
1719                }
1720        }
1721}
1722
1723/**
1724 * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control
1725 * @rdev: regulator_dev structure
1726 * @enable: enable GPIO at initial use?
1727 *
1728 * GPIO is enabled in case of initial use. (enable_count is 0)
1729 * GPIO is disabled when it is not shared any more. (enable_count <= 1)
1730 */
1731static int regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable)
1732{
1733        struct regulator_enable_gpio *pin = rdev->ena_pin;
1734
1735        if (!pin)
1736                return -EINVAL;
1737
1738        if (enable) {
1739                /* Enable GPIO at initial use */
1740                if (pin->enable_count == 0)
1741                        gpiod_set_value_cansleep(pin->gpiod,
1742                                                 !pin->ena_gpio_invert);
1743
1744                pin->enable_count++;
1745        } else {
1746                if (pin->enable_count > 1) {
1747                        pin->enable_count--;
1748                        return 0;
1749                }
1750
1751                /* Disable GPIO if not used */
1752                if (pin->enable_count <= 1) {
1753                        gpiod_set_value_cansleep(pin->gpiod,
1754                                                 pin->ena_gpio_invert);
1755                        pin->enable_count = 0;
1756                }
1757        }
1758
1759        return 0;
1760}
1761
1762/**
1763 * _regulator_enable_delay - a delay helper function
1764 * @delay: time to delay in microseconds
1765 *
1766 * Delay for the requested amount of time as per the guidelines in:
1767 *
1768 *     Documentation/timers/timers-howto.txt
1769 *
1770 * The assumption here is that regulators will never be enabled in
1771 * atomic context and therefore sleeping functions can be used.
1772 */
1773static void _regulator_enable_delay(unsigned int delay)
1774{
1775        unsigned int ms = delay / 1000;
1776        unsigned int us = delay % 1000;
1777
1778        if (ms > 0) {
1779                /*
1780                 * For small enough values, handle super-millisecond
1781                 * delays in the usleep_range() call below.
1782                 */
1783                if (ms < 20)
1784                        us += ms * 1000;
1785                else
1786                        msleep(ms);
1787        }
1788
1789        /*
1790         * Give the scheduler some room to coalesce with any other
1791         * wakeup sources. For delays shorter than 10 us, don't even
1792         * bother setting up high-resolution timers and just busy-
1793         * loop.
1794         */
1795        if (us >= 10)
1796                usleep_range(us, us + 100);
1797        else
1798                udelay(us);
1799}
1800
1801static int _regulator_do_enable(struct regulator_dev *rdev)
1802{
1803        int ret, delay;
1804
1805        /* Query before enabling in case configuration dependent.  */
1806        ret = _regulator_get_enable_time(rdev);
1807        if (ret >= 0) {
1808                delay = ret;
1809        } else {
1810                rdev_warn(rdev, "enable_time() failed: %d\n", ret);
1811                delay = 0;
1812        }
1813
1814        trace_regulator_enable(rdev_get_name(rdev));
1815
1816        if (rdev->desc->off_on_delay) {
1817                /* if needed, keep a distance of off_on_delay from last time
1818                 * this regulator was disabled.
1819                 */
1820                unsigned long start_jiffy = jiffies;
1821                unsigned long intended, max_delay, remaining;
1822
1823                max_delay = usecs_to_jiffies(rdev->desc->off_on_delay);
1824                intended = rdev->last_off_jiffy + max_delay;
1825
1826                if (time_before(start_jiffy, intended)) {
1827                        /* calc remaining jiffies to deal with one-time
1828                         * timer wrapping.
1829                         * in case of multiple timer wrapping, either it can be
1830                         * detected by out-of-range remaining, or it cannot be
1831                         * detected and we gets a panelty of
1832                         * _regulator_enable_delay().
1833                         */
1834                        remaining = intended - start_jiffy;
1835                        if (remaining <= max_delay)
1836                                _regulator_enable_delay(
1837                                                jiffies_to_usecs(remaining));
1838                }
1839        }
1840
1841        if (rdev->ena_pin) {
1842                ret = regulator_ena_gpio_ctrl(rdev, true);
1843                if (ret < 0)
1844                        return ret;
1845                rdev->ena_gpio_state = 1;
1846        } else if (rdev->desc->ops->enable) {
1847                ret = rdev->desc->ops->enable(rdev);
1848                if (ret < 0)
1849                        return ret;
1850        } else {
1851                return -EINVAL;
1852        }
1853
1854        /* Allow the regulator to ramp; it would be useful to extend
1855         * this for bulk operations so that the regulators can ramp
1856         * together.  */
1857        trace_regulator_enable_delay(rdev_get_name(rdev));
1858
1859        _regulator_enable_delay(delay);
1860
1861        trace_regulator_enable_complete(rdev_get_name(rdev));
1862
1863        return 0;
1864}
1865
1866/* locks held by regulator_enable() */
1867static int _regulator_enable(struct regulator_dev *rdev)
1868{
1869        int ret;
1870
1871        /* check voltage and requested load before enabling */
1872        if (rdev->constraints &&
1873            (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS))
1874                drms_uA_update(rdev);
1875
1876        if (rdev->use_count == 0) {
1877                /* The regulator may on if it's not switchable or left on */
1878                ret = _regulator_is_enabled(rdev);
1879                if (ret == -EINVAL || ret == 0) {
1880                        if (!_regulator_can_change_status(rdev))
1881                                return -EPERM;
1882
1883                        ret = _regulator_do_enable(rdev);
1884                        if (ret < 0)
1885                                return ret;
1886
1887                } else if (ret < 0) {
1888                        rdev_err(rdev, "is_enabled() failed: %d\n", ret);
1889                        return ret;
1890                }
1891                /* Fallthrough on positive return values - already enabled */
1892        }
1893
1894        rdev->use_count++;
1895
1896        return 0;
1897}
1898
1899/**
1900 * regulator_enable - enable regulator output
1901 * @regulator: regulator source
1902 *
1903 * Request that the regulator be enabled with the regulator output at
1904 * the predefined voltage or current value.  Calls to regulator_enable()
1905 * must be balanced with calls to regulator_disable().
1906 *
1907 * NOTE: the output value can be set by other drivers, boot loader or may be
1908 * hardwired in the regulator.
1909 */
1910int regulator_enable(struct regulator *regulator)
1911{
1912        struct regulator_dev *rdev = regulator->rdev;
1913        int ret = 0;
1914
1915        if (regulator->always_on)
1916                return 0;
1917
1918        if (rdev->supply) {
1919                ret = regulator_enable(rdev->supply);
1920                if (ret != 0)
1921                        return ret;
1922        }
1923
1924        mutex_lock(&rdev->mutex);
1925        ret = _regulator_enable(rdev);
1926        mutex_unlock(&rdev->mutex);
1927
1928        if (ret != 0 && rdev->supply)
1929                regulator_disable(rdev->supply);
1930
1931        return ret;
1932}
1933EXPORT_SYMBOL_GPL(regulator_enable);
1934
1935static int _regulator_do_disable(struct regulator_dev *rdev)
1936{
1937        int ret;
1938
1939        trace_regulator_disable(rdev_get_name(rdev));
1940
1941        if (rdev->ena_pin) {
1942                ret = regulator_ena_gpio_ctrl(rdev, false);
1943                if (ret < 0)
1944                        return ret;
1945                rdev->ena_gpio_state = 0;
1946
1947        } else if (rdev->desc->ops->disable) {
1948                ret = rdev->desc->ops->disable(rdev);
1949                if (ret != 0)
1950                        return ret;
1951        }
1952
1953        /* cares about last_off_jiffy only if off_on_delay is required by
1954         * device.
1955         */
1956        if (rdev->desc->off_on_delay)
1957                rdev->last_off_jiffy = jiffies;
1958
1959        trace_regulator_disable_complete(rdev_get_name(rdev));
1960
1961        return 0;
1962}
1963
1964/* locks held by regulator_disable() */
1965static int _regulator_disable(struct regulator_dev *rdev)
1966{
1967        int ret = 0;
1968
1969        if (WARN(rdev->use_count <= 0,
1970                 "unbalanced disables for %s\n", rdev_get_name(rdev)))
1971                return -EIO;
1972
1973        /* are we the last user and permitted to disable ? */
1974        if (rdev->use_count == 1 &&
1975            (rdev->constraints && !rdev->constraints->always_on)) {
1976
1977                /* we are last user */
1978                if (_regulator_can_change_status(rdev)) {
1979                        ret = _regulator_do_disable(rdev);
1980                        if (ret < 0) {
1981                                rdev_err(rdev, "failed to disable\n");
1982                                return ret;
1983                        }
1984                        _notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
1985                                        NULL);
1986                }
1987
1988                rdev->use_count = 0;
1989        } else if (rdev->use_count > 1) {
1990
1991                if (rdev->constraints &&
1992                        (rdev->constraints->valid_ops_mask &
1993                        REGULATOR_CHANGE_DRMS))
1994                        drms_uA_update(rdev);
1995
1996                rdev->use_count--;
1997        }
1998
1999        return ret;
2000}
2001
2002/**
2003 * regulator_disable - disable regulator output
2004 * @regulator: regulator source
2005 *
2006 * Disable the regulator output voltage or current.  Calls to
2007 * regulator_enable() must be balanced with calls to
2008 * regulator_disable().
2009 *
2010 * NOTE: this will only disable the regulator output if no other consumer
2011 * devices have it enabled, the regulator device supports disabling and
2012 * machine constraints permit this operation.
2013 */
2014int regulator_disable(struct regulator *regulator)
2015{
2016        struct regulator_dev *rdev = regulator->rdev;
2017        int ret = 0;
2018
2019        if (regulator->always_on)
2020                return 0;
2021
2022        mutex_lock(&rdev->mutex);
2023        ret = _regulator_disable(rdev);
2024        mutex_unlock(&rdev->mutex);
2025
2026        if (ret == 0 && rdev->supply)
2027                regulator_disable(rdev->supply);
2028
2029        return ret;
2030}
2031EXPORT_SYMBOL_GPL(regulator_disable);
2032
2033/* locks held by regulator_force_disable() */
2034static int _regulator_force_disable(struct regulator_dev *rdev)
2035{
2036        int ret = 0;
2037
2038        ret = _regulator_do_disable(rdev);
2039        if (ret < 0) {
2040                rdev_err(rdev, "failed to force disable\n");
2041                return ret;
2042        }
2043
2044        _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2045                        REGULATOR_EVENT_DISABLE, NULL);
2046
2047        return 0;
2048}
2049
2050/**
2051 * regulator_force_disable - force disable regulator output
2052 * @regulator: regulator source
2053 *
2054 * Forcibly disable the regulator output voltage or current.
2055 * NOTE: this *will* disable the regulator output even if other consumer
2056 * devices have it enabled. This should be used for situations when device
2057 * damage will likely occur if the regulator is not disabled (e.g. over temp).
2058 */
2059int regulator_force_disable(struct regulator *regulator)
2060{
2061        struct regulator_dev *rdev = regulator->rdev;
2062        int ret;
2063
2064        mutex_lock(&rdev->mutex);
2065        regulator->uA_load = 0;
2066        ret = _regulator_force_disable(regulator->rdev);
2067        mutex_unlock(&rdev->mutex);
2068
2069        if (rdev->supply)
2070                while (rdev->open_count--)
2071                        regulator_disable(rdev->supply);
2072
2073        return ret;
2074}
2075EXPORT_SYMBOL_GPL(regulator_force_disable);
2076
2077static void regulator_disable_work(struct work_struct *work)
2078{
2079        struct regulator_dev *rdev = container_of(work, struct regulator_dev,
2080                                                  disable_work.work);
2081        int count, i, ret;
2082
2083        mutex_lock(&rdev->mutex);
2084
2085        BUG_ON(!rdev->deferred_disables);
2086
2087        count = rdev->deferred_disables;
2088        rdev->deferred_disables = 0;
2089
2090        for (i = 0; i < count; i++) {
2091                ret = _regulator_disable(rdev);
2092                if (ret != 0)
2093                        rdev_err(rdev, "Deferred disable failed: %d\n", ret);
2094        }
2095
2096        mutex_unlock(&rdev->mutex);
2097
2098        if (rdev->supply) {
2099                for (i = 0; i < count; i++) {
2100                        ret = regulator_disable(rdev->supply);
2101                        if (ret != 0) {
2102                                rdev_err(rdev,
2103                                         "Supply disable failed: %d\n", ret);
2104                        }
2105                }
2106        }
2107}
2108
2109/**
2110 * regulator_disable_deferred - disable regulator output with delay
2111 * @regulator: regulator source
2112 * @ms: miliseconds until the regulator is disabled
2113 *
2114 * Execute regulator_disable() on the regulator after a delay.  This
2115 * is intended for use with devices that require some time to quiesce.
2116 *
2117 * NOTE: this will only disable the regulator output if no other consumer
2118 * devices have it enabled, the regulator device supports disabling and
2119 * machine constraints permit this operation.
2120 */
2121int regulator_disable_deferred(struct regulator *regulator, int ms)
2122{
2123        struct regulator_dev *rdev = regulator->rdev;
2124        int ret;
2125
2126        if (regulator->always_on)
2127                return 0;
2128
2129        if (!ms)
2130                return regulator_disable(regulator);
2131
2132        mutex_lock(&rdev->mutex);
2133        rdev->deferred_disables++;
2134        mutex_unlock(&rdev->mutex);
2135
2136        ret = queue_delayed_work(system_power_efficient_wq,
2137                                 &rdev->disable_work,
2138                                 msecs_to_jiffies(ms));
2139        if (ret < 0)
2140                return ret;
2141        else
2142                return 0;
2143}
2144EXPORT_SYMBOL_GPL(regulator_disable_deferred);
2145
2146static int _regulator_is_enabled(struct regulator_dev *rdev)
2147{
2148        /* A GPIO control always takes precedence */
2149        if (rdev->ena_pin)
2150                return rdev->ena_gpio_state;
2151
2152        /* If we don't know then assume that the regulator is always on */
2153        if (!rdev->desc->ops->is_enabled)
2154                return 1;
2155
2156        return rdev->desc->ops->is_enabled(rdev);
2157}
2158
2159/**
2160 * regulator_is_enabled - is the regulator output enabled
2161 * @regulator: regulator source
2162 *
2163 * Returns positive if the regulator driver backing the source/client
2164 * has requested that the device be enabled, zero if it hasn't, else a
2165 * negative errno code.
2166 *
2167 * Note that the device backing this regulator handle can have multiple
2168 * users, so it might be enabled even if regulator_enable() was never
2169 * called for this particular source.
2170 */
2171int regulator_is_enabled(struct regulator *regulator)
2172{
2173        int ret;
2174
2175        if (regulator->always_on)
2176                return 1;
2177
2178        mutex_lock(&regulator->rdev->mutex);
2179        ret = _regulator_is_enabled(regulator->rdev);
2180        mutex_unlock(&regulator->rdev->mutex);
2181
2182        return ret;
2183}
2184EXPORT_SYMBOL_GPL(regulator_is_enabled);
2185
2186/**
2187 * regulator_can_change_voltage - check if regulator can change voltage
2188 * @regulator: regulator source
2189 *
2190 * Returns positive if the regulator driver backing the source/client
2191 * can change its voltage, false otherwise. Useful for detecting fixed
2192 * or dummy regulators and disabling voltage change logic in the client
2193 * driver.
2194 */
2195int regulator_can_change_voltage(struct regulator *regulator)
2196{
2197        struct regulator_dev    *rdev = regulator->rdev;
2198
2199        if (rdev->constraints &&
2200            (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
2201                if (rdev->desc->n_voltages - rdev->desc->linear_min_sel > 1)
2202                        return 1;
2203
2204                if (rdev->desc->continuous_voltage_range &&
2205                    rdev->constraints->min_uV && rdev->constraints->max_uV &&
2206                    rdev->constraints->min_uV != rdev->constraints->max_uV)
2207                        return 1;
2208        }
2209
2210        return 0;
2211}
2212EXPORT_SYMBOL_GPL(regulator_can_change_voltage);
2213
2214/**
2215 * regulator_count_voltages - count regulator_list_voltage() selectors
2216 * @regulator: regulator source
2217 *
2218 * Returns number of selectors, or negative errno.  Selectors are
2219 * numbered starting at zero, and typically correspond to bitfields
2220 * in hardware registers.
2221 */
2222int regulator_count_voltages(struct regulator *regulator)
2223{
2224        struct regulator_dev    *rdev = regulator->rdev;
2225
2226        if (rdev->desc->n_voltages)
2227                return rdev->desc->n_voltages;
2228
2229        if (!rdev->supply)
2230                return -EINVAL;
2231
2232        return regulator_count_voltages(rdev->supply);
2233}
2234EXPORT_SYMBOL_GPL(regulator_count_voltages);
2235
2236/**
2237 * regulator_list_voltage - enumerate supported voltages
2238 * @regulator: regulator source
2239 * @selector: identify voltage to list
2240 * Context: can sleep
2241 *
2242 * Returns a voltage that can be passed to @regulator_set_voltage(),
2243 * zero if this selector code can't be used on this system, or a
2244 * negative errno.
2245 */
2246int regulator_list_voltage(struct regulator *regulator, unsigned selector)
2247{
2248        struct regulator_dev *rdev = regulator->rdev;
2249        const struct regulator_ops *ops = rdev->desc->ops;
2250        int ret;
2251
2252        if (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1 && !selector)
2253                return rdev->desc->fixed_uV;
2254
2255        if (ops->list_voltage) {
2256                if (selector >= rdev->desc->n_voltages)
2257                        return -EINVAL;
2258                mutex_lock(&rdev->mutex);
2259                ret = ops->list_voltage(rdev, selector);
2260                mutex_unlock(&rdev->mutex);
2261        } else if (rdev->supply) {
2262                ret = regulator_list_voltage(rdev->supply, selector);
2263        } else {
2264                return -EINVAL;
2265        }
2266
2267        if (ret > 0) {
2268                if (ret < rdev->constraints->min_uV)
2269                        ret = 0;
2270                else if (ret > rdev->constraints->max_uV)
2271                        ret = 0;
2272        }
2273
2274        return ret;
2275}
2276EXPORT_SYMBOL_GPL(regulator_list_voltage);
2277
2278/**
2279 * regulator_get_regmap - get the regulator's register map
2280 * @regulator: regulator source
2281 *
2282 * Returns the register map for the given regulator, or an ERR_PTR value
2283 * if the regulator doesn't use regmap.
2284 */
2285struct regmap *regulator_get_regmap(struct regulator *regulator)
2286{
2287        struct regmap *map = regulator->rdev->regmap;
2288
2289        return map ? map : ERR_PTR(-EOPNOTSUPP);
2290}
2291
2292/**
2293 * regulator_get_hardware_vsel_register - get the HW voltage selector register
2294 * @regulator: regulator source
2295 * @vsel_reg: voltage selector register, output parameter
2296 * @vsel_mask: mask for voltage selector bitfield, output parameter
2297 *
2298 * Returns the hardware register offset and bitmask used for setting the
2299 * regulator voltage. This might be useful when configuring voltage-scaling
2300 * hardware or firmware that can make I2C requests behind the kernel's back,
2301 * for example.
2302 *
2303 * On success, the output parameters @vsel_reg and @vsel_mask are filled in
2304 * and 0 is returned, otherwise a negative errno is returned.
2305 */
2306int regulator_get_hardware_vsel_register(struct regulator *regulator,
2307                                         unsigned *vsel_reg,
2308                                         unsigned *vsel_mask)
2309{
2310        struct regulator_dev *rdev = regulator->rdev;
2311        const struct regulator_ops *ops = rdev->desc->ops;
2312
2313        if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
2314                return -EOPNOTSUPP;
2315
2316         *vsel_reg = rdev->desc->vsel_reg;
2317         *vsel_mask = rdev->desc->vsel_mask;
2318
2319         return 0;
2320}
2321EXPORT_SYMBOL_GPL(regulator_get_hardware_vsel_register);
2322
2323/**
2324 * regulator_list_hardware_vsel - get the HW-specific register value for a selector
2325 * @regulator: regulator source
2326 * @selector: identify voltage to list
2327 *
2328 * Converts the selector to a hardware-specific voltage selector that can be
2329 * directly written to the regulator registers. The address of the voltage
2330 * register can be determined by calling @regulator_get_hardware_vsel_register.
2331 *
2332 * On error a negative errno is returned.
2333 */
2334int regulator_list_hardware_vsel(struct regulator *regulator,
2335                                 unsigned selector)
2336{
2337        struct regulator_dev *rdev = regulator->rdev;
2338        const struct regulator_ops *ops = rdev->desc->ops;
2339
2340        if (selector >= rdev->desc->n_voltages)
2341                return -EINVAL;
2342        if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
2343                return -EOPNOTSUPP;
2344
2345        return selector;
2346}
2347EXPORT_SYMBOL_GPL(regulator_list_hardware_vsel);
2348
2349/**
2350 * regulator_get_linear_step - return the voltage step size between VSEL values
2351 * @regulator: regulator source
2352 *
2353 * Returns the voltage step size between VSEL values for linear
2354 * regulators, or return 0 if the regulator isn't a linear regulator.
2355 */
2356unsigned int regulator_get_linear_step(struct regulator *regulator)
2357{
2358        struct regulator_dev *rdev = regulator->rdev;
2359
2360        return rdev->desc->uV_step;
2361}
2362EXPORT_SYMBOL_GPL(regulator_get_linear_step);
2363
2364/**
2365 * regulator_is_supported_voltage - check if a voltage range can be supported
2366 *
2367 * @regulator: Regulator to check.
2368 * @min_uV: Minimum required voltage in uV.
2369 * @max_uV: Maximum required voltage in uV.
2370 *
2371 * Returns a boolean or a negative error code.
2372 */
2373int regulator_is_supported_voltage(struct regulator *regulator,
2374                                   int min_uV, int max_uV)
2375{
2376        struct regulator_dev *rdev = regulator->rdev;
2377        int i, voltages, ret;
2378
2379        /* If we can't change voltage check the current voltage */
2380        if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
2381                ret = regulator_get_voltage(regulator);
2382                if (ret >= 0)
2383                        return min_uV <= ret && ret <= max_uV;
2384                else
2385                        return ret;
2386        }
2387
2388        /* Any voltage within constrains range is fine? */
2389        if (rdev->desc->continuous_voltage_range)
2390                return min_uV >= rdev->constraints->min_uV &&
2391                                max_uV <= rdev->constraints->max_uV;
2392
2393        ret = regulator_count_voltages(regulator);
2394        if (ret < 0)
2395                return ret;
2396        voltages = ret;
2397
2398        for (i = 0; i < voltages; i++) {
2399                ret = regulator_list_voltage(regulator, i);
2400
2401                if (ret >= min_uV && ret <= max_uV)
2402                        return 1;
2403        }
2404
2405        return 0;
2406}
2407EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
2408
2409static int _regulator_call_set_voltage(struct regulator_dev *rdev,
2410                                       int min_uV, int max_uV,
2411                                       unsigned *selector)
2412{
2413        struct pre_voltage_change_data data;
2414        int ret;
2415
2416        data.old_uV = _regulator_get_voltage(rdev);
2417        data.min_uV = min_uV;
2418        data.max_uV = max_uV;
2419        ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
2420                                   &data);
2421        if (ret & NOTIFY_STOP_MASK)
2422                return -EINVAL;
2423
2424        ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV, selector);
2425        if (ret >= 0)
2426                return ret;
2427
2428        _notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
2429                             (void *)data.old_uV);
2430
2431        return ret;
2432}
2433
2434static int _regulator_call_set_voltage_sel(struct regulator_dev *rdev,
2435                                           int uV, unsigned selector)
2436{
2437        struct pre_voltage_change_data data;
2438        int ret;
2439
2440        data.old_uV = _regulator_get_voltage(rdev);
2441        data.min_uV = uV;
2442        data.max_uV = uV;
2443        ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
2444                                   &data);
2445        if (ret & NOTIFY_STOP_MASK)
2446                return -EINVAL;
2447
2448        ret = rdev->desc->ops->set_voltage_sel(rdev, selector);
2449        if (ret >= 0)
2450                return ret;
2451
2452        _notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
2453                             (void *)data.old_uV);
2454
2455        return ret;
2456}
2457
2458static int _regulator_do_set_voltage(struct regulator_dev *rdev,
2459                                     int min_uV, int max_uV)
2460{
2461        int ret;
2462        int delay = 0;
2463        int best_val = 0;
2464        unsigned int selector;
2465        int old_selector = -1;
2466
2467        trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
2468
2469        min_uV += rdev->constraints->uV_offset;
2470        max_uV += rdev->constraints->uV_offset;
2471
2472        /*
2473         * If we can't obtain the old selector there is not enough
2474         * info to call set_voltage_time_sel().
2475         */
2476        if (_regulator_is_enabled(rdev) &&
2477            rdev->desc->ops->set_voltage_time_sel &&
2478            rdev->desc->ops->get_voltage_sel) {
2479                old_selector = rdev->desc->ops->get_voltage_sel(rdev);
2480                if (old_selector < 0)
2481                        return old_selector;
2482        }
2483
2484        if (rdev->desc->ops->set_voltage) {
2485                ret = _regulator_call_set_voltage(rdev, min_uV, max_uV,
2486                                                  &selector);
2487
2488                if (ret >= 0) {
2489                        if (rdev->desc->ops->list_voltage)
2490                                best_val = rdev->desc->ops->list_voltage(rdev,
2491                                                                         selector);
2492                        else
2493                                best_val = _regulator_get_voltage(rdev);
2494                }
2495
2496        } else if (rdev->desc->ops->set_voltage_sel) {
2497                if (rdev->desc->ops->map_voltage) {
2498                        ret = rdev->desc->ops->map_voltage(rdev, min_uV,
2499                                                           max_uV);
2500                } else {
2501                        if (rdev->desc->ops->list_voltage ==
2502                            regulator_list_voltage_linear)
2503                                ret = regulator_map_voltage_linear(rdev,
2504                                                                min_uV, max_uV);
2505                        else if (rdev->desc->ops->list_voltage ==
2506                                 regulator_list_voltage_linear_range)
2507                                ret = regulator_map_voltage_linear_range(rdev,
2508                                                                min_uV, max_uV);
2509                        else
2510                                ret = regulator_map_voltage_iterate(rdev,
2511                                                                min_uV, max_uV);
2512                }
2513
2514                if (ret >= 0) {
2515                        best_val = rdev->desc->ops->list_voltage(rdev, ret);
2516                        if (min_uV <= best_val && max_uV >= best_val) {
2517                                selector = ret;
2518                                if (old_selector == selector)
2519                                        ret = 0;
2520                                else
2521                                        ret = _regulator_call_set_voltage_sel(
2522                                                rdev, best_val, selector);
2523                        } else {
2524                                ret = -EINVAL;
2525                        }
2526                }
2527        } else {
2528                ret = -EINVAL;
2529        }
2530
2531        /* Call set_voltage_time_sel if successfully obtained old_selector */
2532        if (ret == 0 && !rdev->constraints->ramp_disable && old_selector >= 0
2533                && old_selector != selector) {
2534
2535                delay = rdev->desc->ops->set_voltage_time_sel(rdev,
2536                                                old_selector, selector);
2537                if (delay < 0) {
2538                        rdev_warn(rdev, "set_voltage_time_sel() failed: %d\n",
2539                                  delay);
2540                        delay = 0;
2541                }
2542
2543                /* Insert any necessary delays */
2544                if (delay >= 1000) {
2545                        mdelay(delay / 1000);
2546                        udelay(delay % 1000);
2547                } else if (delay) {
2548                        udelay(delay);
2549                }
2550        }
2551
2552        if (ret == 0 && best_val >= 0) {
2553                unsigned long data = best_val;
2554
2555                _notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
2556                                     (void *)data);
2557        }
2558
2559        trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val);
2560
2561        return ret;
2562}
2563
2564/**
2565 * regulator_set_voltage - set regulator output voltage
2566 * @regulator: regulator source
2567 * @min_uV: Minimum required voltage in uV
2568 * @max_uV: Maximum acceptable voltage in uV
2569 *
2570 * Sets a voltage regulator to the desired output voltage. This can be set
2571 * during any regulator state. IOW, regulator can be disabled or enabled.
2572 *
2573 * If the regulator is enabled then the voltage will change to the new value
2574 * immediately otherwise if the regulator is disabled the regulator will
2575 * output at the new voltage when enabled.
2576 *
2577 * NOTE: If the regulator is shared between several devices then the lowest
2578 * request voltage that meets the system constraints will be used.
2579 * Regulator system constraints must be set for this regulator before
2580 * calling this function otherwise this call will fail.
2581 */
2582int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
2583{
2584        struct regulator_dev *rdev = regulator->rdev;
2585        int ret = 0;
2586        int old_min_uV, old_max_uV;
2587        int current_uV;
2588
2589        mutex_lock(&rdev->mutex);
2590
2591        /* If we're setting the same range as last time the change
2592         * should be a noop (some cpufreq implementations use the same
2593         * voltage for multiple frequencies, for example).
2594         */
2595        if (regulator->min_uV == min_uV && regulator->max_uV == max_uV)
2596                goto out;
2597
2598        /* If we're trying to set a range that overlaps the current voltage,
2599         * return succesfully even though the regulator does not support
2600         * changing the voltage.
2601         */
2602        if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
2603                current_uV = _regulator_get_voltage(rdev);
2604                if (min_uV <= current_uV && current_uV <= max_uV) {
2605                        regulator->min_uV = min_uV;
2606                        regulator->max_uV = max_uV;
2607                        goto out;
2608                }
2609        }
2610
2611        /* sanity check */
2612        if (!rdev->desc->ops->set_voltage &&
2613            !rdev->desc->ops->set_voltage_sel) {
2614                ret = -EINVAL;
2615                goto out;
2616        }
2617
2618        /* constraints check */
2619        ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
2620        if (ret < 0)
2621                goto out;
2622
2623        /* restore original values in case of error */
2624        old_min_uV = regulator->min_uV;
2625        old_max_uV = regulator->max_uV;
2626        regulator->min_uV = min_uV;
2627        regulator->max_uV = max_uV;
2628
2629        ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
2630        if (ret < 0)
2631                goto out2;
2632
2633        ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
2634        if (ret < 0)
2635                goto out2;
2636
2637out:
2638        mutex_unlock(&rdev->mutex);
2639        return ret;
2640out2:
2641        regulator->min_uV = old_min_uV;
2642        regulator->max_uV = old_max_uV;
2643        mutex_unlock(&rdev->mutex);
2644        return ret;
2645}
2646EXPORT_SYMBOL_GPL(regulator_set_voltage);
2647
2648/**
2649 * regulator_set_voltage_time - get raise/fall time
2650 * @regulator: regulator source
2651 * @old_uV: starting voltage in microvolts
2652 * @new_uV: target voltage in microvolts
2653 *
2654 * Provided with the starting and ending voltage, this function attempts to
2655 * calculate the time in microseconds required to rise or fall to this new
2656 * voltage.
2657 */
2658int regulator_set_voltage_time(struct regulator *regulator,
2659                               int old_uV, int new_uV)
2660{
2661        struct regulator_dev *rdev = regulator->rdev;
2662        const struct regulator_ops *ops = rdev->desc->ops;
2663        int old_sel = -1;
2664        int new_sel = -1;
2665        int voltage;
2666        int i;
2667
2668        /* Currently requires operations to do this */
2669        if (!ops->list_voltage || !ops->set_voltage_time_sel
2670            || !rdev->desc->n_voltages)
2671                return -EINVAL;
2672
2673        for (i = 0; i < rdev->desc->n_voltages; i++) {
2674                /* We only look for exact voltage matches here */
2675                voltage = regulator_list_voltage(regulator, i);
2676                if (voltage < 0)
2677                        return -EINVAL;
2678                if (voltage == 0)
2679                        continue;
2680                if (voltage == old_uV)
2681                        old_sel = i;
2682                if (voltage == new_uV)
2683                        new_sel = i;
2684        }
2685
2686        if (old_sel < 0 || new_sel < 0)
2687                return -EINVAL;
2688
2689        return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
2690}
2691EXPORT_SYMBOL_GPL(regulator_set_voltage_time);
2692
2693/**
2694 * regulator_set_voltage_time_sel - get raise/fall time
2695 * @rdev: regulator source device
2696 * @old_selector: selector for starting voltage
2697 * @new_selector: selector for target voltage
2698 *
2699 * Provided with the starting and target voltage selectors, this function
2700 * returns time in microseconds required to rise or fall to this new voltage
2701 *
2702 * Drivers providing ramp_delay in regulation_constraints can use this as their
2703 * set_voltage_time_sel() operation.
2704 */
2705int regulator_set_voltage_time_sel(struct regulator_dev *rdev,
2706                                   unsigned int old_selector,
2707                                   unsigned int new_selector)
2708{
2709        unsigned int ramp_delay = 0;
2710        int old_volt, new_volt;
2711
2712        if (rdev->constraints->ramp_delay)
2713                ramp_delay = rdev->constraints->ramp_delay;
2714        else if (rdev->desc->ramp_delay)
2715                ramp_delay = rdev->desc->ramp_delay;
2716
2717        if (ramp_delay == 0) {
2718                rdev_warn(rdev, "ramp_delay not set\n");
2719                return 0;
2720        }
2721
2722        /* sanity check */
2723        if (!rdev->desc->ops->list_voltage)
2724                return -EINVAL;
2725
2726        old_volt = rdev->desc->ops->list_voltage(rdev, old_selector);
2727        new_volt = rdev->desc->ops->list_voltage(rdev, new_selector);
2728
2729        return DIV_ROUND_UP(abs(new_volt - old_volt), ramp_delay);
2730}
2731EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel);
2732
2733/**
2734 * regulator_sync_voltage - re-apply last regulator output voltage
2735 * @regulator: regulator source
2736 *
2737 * Re-apply the last configured voltage.  This is intended to be used
2738 * where some external control source the consumer is cooperating with
2739 * has caused the configured voltage to change.
2740 */
2741int regulator_sync_voltage(struct regulator *regulator)
2742{
2743        struct regulator_dev *rdev = regulator->rdev;
2744        int ret, min_uV, max_uV;
2745
2746        mutex_lock(&rdev->mutex);
2747
2748        if (!rdev->desc->ops->set_voltage &&
2749            !rdev->desc->ops->set_voltage_sel) {
2750                ret = -EINVAL;
2751                goto out;
2752        }
2753
2754        /* This is only going to work if we've had a voltage configured. */
2755        if (!regulator->min_uV && !regulator->max_uV) {
2756                ret = -EINVAL;
2757                goto out;
2758        }
2759
2760        min_uV = regulator->min_uV;
2761        max_uV = regulator->max_uV;
2762
2763        /* This should be a paranoia check... */
2764        ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
2765        if (ret < 0)
2766                goto out;
2767
2768        ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
2769        if (ret < 0)
2770                goto out;
2771
2772        ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
2773
2774out:
2775        mutex_unlock(&rdev->mutex);
2776        return ret;
2777}
2778EXPORT_SYMBOL_GPL(regulator_sync_voltage);
2779
2780static int _regulator_get_voltage(struct regulator_dev *rdev)
2781{
2782        int sel, ret;
2783
2784        if (rdev->desc->ops->get_voltage_sel) {
2785                sel = rdev->desc->ops->get_voltage_sel(rdev);
2786                if (sel < 0)
2787                        return sel;
2788                ret = rdev->desc->ops->list_voltage(rdev, sel);
2789        } else if (rdev->desc->ops->get_voltage) {
2790                ret = rdev->desc->ops->get_voltage(rdev);
2791        } else if (rdev->desc->ops->list_voltage) {
2792                ret = rdev->desc->ops->list_voltage(rdev, 0);
2793        } else if (rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1)) {
2794                ret = rdev->desc->fixed_uV;
2795        } else if (rdev->supply) {
2796                ret = regulator_get_voltage(rdev->supply);
2797        } else {
2798                return -EINVAL;
2799        }
2800
2801        if (ret < 0)
2802                return ret;
2803        return ret - rdev->constraints->uV_offset;
2804}
2805
2806/**
2807 * regulator_get_voltage - get regulator output voltage
2808 * @regulator: regulator source
2809 *
2810 * This returns the current regulator voltage in uV.
2811 *
2812 * NOTE: If the regulator is disabled it will return the voltage value. This
2813 * function should not be used to determine regulator state.
2814 */
2815int regulator_get_voltage(struct regulator *regulator)
2816{
2817        int ret;
2818
2819        mutex_lock(&regulator->rdev->mutex);
2820
2821        ret = _regulator_get_voltage(regulator->rdev);
2822
2823        mutex_unlock(&regulator->rdev->mutex);
2824
2825        return ret;
2826}
2827EXPORT_SYMBOL_GPL(regulator_get_voltage);
2828
2829/**
2830 * regulator_set_current_limit - set regulator output current limit
2831 * @regulator: regulator source
2832 * @min_uA: Minimum supported current in uA
2833 * @max_uA: Maximum supported current in uA
2834 *
2835 * Sets current sink to the desired output current. This can be set during
2836 * any regulator state. IOW, regulator can be disabled or enabled.
2837 *
2838 * If the regulator is enabled then the current will change to the new value
2839 * immediately otherwise if the regulator is disabled the regulator will
2840 * output at the new current when enabled.
2841 *
2842 * NOTE: Regulator system constraints must be set for this regulator before
2843 * calling this function otherwise this call will fail.
2844 */
2845int regulator_set_current_limit(struct regulator *regulator,
2846                               int min_uA, int max_uA)
2847{
2848        struct regulator_dev *rdev = regulator->rdev;
2849        int ret;
2850
2851        mutex_lock(&rdev->mutex);
2852
2853        /* sanity check */
2854        if (!rdev->desc->ops->set_current_limit) {
2855                ret = -EINVAL;
2856                goto out;
2857        }
2858
2859        /* constraints check */
2860        ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
2861        if (ret < 0)
2862                goto out;
2863
2864        ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
2865out:
2866        mutex_unlock(&rdev->mutex);
2867        return ret;
2868}
2869EXPORT_SYMBOL_GPL(regulator_set_current_limit);
2870
2871static int _regulator_get_current_limit(struct regulator_dev *rdev)
2872{
2873        int ret;
2874
2875        mutex_lock(&rdev->mutex);
2876
2877        /* sanity check */
2878        if (!rdev->desc->ops->get_current_limit) {
2879                ret = -EINVAL;
2880                goto out;
2881        }
2882
2883        ret = rdev->desc->ops->get_current_limit(rdev);
2884out:
2885        mutex_unlock(&rdev->mutex);
2886        return ret;
2887}
2888
2889/**
2890 * regulator_get_current_limit - get regulator output current
2891 * @regulator: regulator source
2892 *
2893 * This returns the current supplied by the specified current sink in uA.
2894 *
2895 * NOTE: If the regulator is disabled it will return the current value. This
2896 * function should not be used to determine regulator state.
2897 */
2898int regulator_get_current_limit(struct regulator *regulator)
2899{
2900        return _regulator_get_current_limit(regulator->rdev);
2901}
2902EXPORT_SYMBOL_GPL(regulator_get_current_limit);
2903
2904/**
2905 * regulator_set_mode - set regulator operating mode
2906 * @regulator: regulator source
2907 * @mode: operating mode - one of the REGULATOR_MODE constants
2908 *
2909 * Set regulator operating mode to increase regulator efficiency or improve
2910 * regulation performance.
2911 *
2912 * NOTE: Regulator system constraints must be set for this regulator before
2913 * calling this function otherwise this call will fail.
2914 */
2915int regulator_set_mode(struct regulator *regulator, unsigned int mode)
2916{
2917        struct regulator_dev *rdev = regulator->rdev;
2918        int ret;
2919        int regulator_curr_mode;
2920
2921        mutex_lock(&rdev->mutex);
2922
2923        /* sanity check */
2924        if (!rdev->desc->ops->set_mode) {
2925                ret = -EINVAL;
2926                goto out;
2927        }
2928
2929        /* return if the same mode is requested */
2930        if (rdev->desc->ops->get_mode) {
2931                regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
2932                if (regulator_curr_mode == mode) {
2933                        ret = 0;
2934                        goto out;
2935                }
2936        }
2937
2938        /* constraints check */
2939        ret = regulator_mode_constrain(rdev, &mode);
2940        if (ret < 0)
2941                goto out;
2942
2943        ret = rdev->desc->ops->set_mode(rdev, mode);
2944out:
2945        mutex_unlock(&rdev->mutex);
2946        return ret;
2947}
2948EXPORT_SYMBOL_GPL(regulator_set_mode);
2949
2950static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
2951{
2952        int ret;
2953
2954        mutex_lock(&rdev->mutex);
2955
2956        /* sanity check */
2957        if (!rdev->desc->ops->get_mode) {
2958                ret = -EINVAL;
2959                goto out;
2960        }
2961
2962        ret = rdev->desc->ops->get_mode(rdev);
2963out:
2964        mutex_unlock(&rdev->mutex);
2965        return ret;
2966}
2967
2968/**
2969 * regulator_get_mode - get regulator operating mode
2970 * @regulator: regulator source
2971 *
2972 * Get the current regulator operating mode.
2973 */
2974unsigned int regulator_get_mode(struct regulator *regulator)
2975{
2976        return _regulator_get_mode(regulator->rdev);
2977}
2978EXPORT_SYMBOL_GPL(regulator_get_mode);
2979
2980/**
2981 * regulator_set_optimum_mode - set regulator optimum operating mode
2982 * @regulator: regulator source
2983 * @uA_load: load current
2984 *
2985 * Notifies the regulator core of a new device load. This is then used by
2986 * DRMS (if enabled by constraints) to set the most efficient regulator
2987 * operating mode for the new regulator loading.
2988 *
2989 * Consumer devices notify their supply regulator of the maximum power
2990 * they will require (can be taken from device datasheet in the power
2991 * consumption tables) when they change operational status and hence power
2992 * state. Examples of operational state changes that can affect power
2993 * consumption are :-
2994 *
2995 *    o Device is opened / closed.
2996 *    o Device I/O is about to begin or has just finished.
2997 *    o Device is idling in between work.
2998 *
2999 * This information is also exported via sysfs to userspace.
3000 *
3001 * DRMS will sum the total requested load on the regulator and change
3002 * to the most efficient operating mode if platform constraints allow.
3003 *
3004 * Returns the new regulator mode or error.
3005 */
3006int regulator_set_optimum_mode(struct regulator *regulator, int uA_load)
3007{
3008        struct regulator_dev *rdev = regulator->rdev;
3009        struct regulator *consumer;
3010        int ret, output_uV, input_uV = 0, total_uA_load = 0;
3011        unsigned int mode;
3012
3013        if (rdev->supply)
3014                input_uV = regulator_get_voltage(rdev->supply);
3015
3016        mutex_lock(&rdev->mutex);
3017
3018        /*
3019         * first check to see if we can set modes at all, otherwise just
3020         * tell the consumer everything is OK.
3021         */
3022        regulator->uA_load = uA_load;
3023        ret = regulator_check_drms(rdev);
3024        if (ret < 0) {
3025                ret = 0;
3026                goto out;
3027        }
3028
3029        if (!rdev->desc->ops->get_optimum_mode)
3030                goto out;
3031
3032        /*
3033         * we can actually do this so any errors are indicators of
3034         * potential real failure.
3035         */
3036        ret = -EINVAL;
3037
3038        if (!rdev->desc->ops->set_mode)
3039                goto out;
3040
3041        /* get output voltage */
3042        output_uV = _regulator_get_voltage(rdev);
3043        if (output_uV <= 0) {
3044                rdev_err(rdev, "invalid output voltage found\n");
3045                goto out;
3046        }
3047
3048        /* No supply? Use constraint voltage */
3049        if (input_uV <= 0)
3050                input_uV = rdev->constraints->input_uV;
3051        if (input_uV <= 0) {
3052                rdev_err(rdev, "invalid input voltage found\n");
3053                goto out;
3054        }
3055
3056        /* calc total requested load for this regulator */
3057        list_for_each_entry(consumer, &rdev->consumer_list, list)
3058                total_uA_load += consumer->uA_load;
3059
3060        mode = rdev->desc->ops->get_optimum_mode(rdev,
3061                                                 input_uV, output_uV,
3062                                                 total_uA_load);
3063        ret = regulator_mode_constrain(rdev, &mode);
3064        if (ret < 0) {
3065                rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n",
3066                         total_uA_load, input_uV, output_uV);
3067                goto out;
3068        }
3069
3070        ret = rdev->desc->ops->set_mode(rdev, mode);
3071        if (ret < 0) {
3072                rdev_err(rdev, "failed to set optimum mode %x\n", mode);
3073                goto out;
3074        }
3075        ret = mode;
3076out:
3077        mutex_unlock(&rdev->mutex);
3078        return ret;
3079}
3080EXPORT_SYMBOL_GPL(regulator_set_optimum_mode);
3081
3082/**
3083 * regulator_allow_bypass - allow the regulator to go into bypass mode
3084 *
3085 * @regulator: Regulator to configure
3086 * @enable: enable or disable bypass mode
3087 *
3088 * Allow the regulator to go into bypass mode if all other consumers
3089 * for the regulator also enable bypass mode and the machine
3090 * constraints allow this.  Bypass mode means that the regulator is
3091 * simply passing the input directly to the output with no regulation.
3092 */
3093int regulator_allow_bypass(struct regulator *regulator, bool enable)
3094{
3095        struct regulator_dev *rdev = regulator->rdev;
3096        int ret = 0;
3097
3098        if (!rdev->desc->ops->set_bypass)
3099                return 0;
3100
3101        if (rdev->constraints &&
3102            !(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_BYPASS))
3103                return 0;
3104
3105        mutex_lock(&rdev->mutex);
3106
3107        if (enable && !regulator->bypass) {
3108                rdev->bypass_count++;
3109
3110                if (rdev->bypass_count == rdev->open_count) {
3111                        ret = rdev->desc->ops->set_bypass(rdev, enable);
3112                        if (ret != 0)
3113                                rdev->bypass_count--;
3114                }
3115
3116        } else if (!enable && regulator->bypass) {
3117                rdev->bypass_count--;
3118
3119                if (rdev->bypass_count != rdev->open_count) {
3120                        ret = rdev->desc->ops->set_bypass(rdev, enable);
3121                        if (ret != 0)
3122                                rdev->bypass_count++;
3123                }
3124        }
3125
3126        if (ret == 0)
3127                regulator->bypass = enable;
3128
3129        mutex_unlock(&rdev->mutex);
3130
3131        return ret;
3132}
3133EXPORT_SYMBOL_GPL(regulator_allow_bypass);
3134
3135/**
3136 * regulator_register_notifier - register regulator event notifier
3137 * @regulator: regulator source
3138 * @nb: notifier block
3139 *
3140 * Register notifier block to receive regulator events.
3141 */
3142int regulator_register_notifier(struct regulator *regulator,
3143                              struct notifier_block *nb)
3144{
3145        return blocking_notifier_chain_register(&regulator->rdev->notifier,
3146                                                nb);
3147}
3148EXPORT_SYMBOL_GPL(regulator_register_notifier);
3149
3150/**
3151 * regulator_unregister_notifier - unregister regulator event notifier
3152 * @regulator: regulator source
3153 * @nb: notifier block
3154 *
3155 * Unregister regulator event notifier block.
3156 */
3157int regulator_unregister_notifier(struct regulator *regulator,
3158                                struct notifier_block *nb)
3159{
3160        return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
3161                                                  nb);
3162}
3163EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
3164
3165/* notify regulator consumers and downstream regulator consumers.
3166 * Note mutex must be held by caller.
3167 */
3168static int _notifier_call_chain(struct regulator_dev *rdev,
3169                                  unsigned long event, void *data)
3170{
3171        /* call rdev chain first */
3172        return blocking_notifier_call_chain(&rdev->notifier, event, data);
3173}
3174
3175/**
3176 * regulator_bulk_get - get multiple regulator consumers
3177 *
3178 * @dev:           Device to supply
3179 * @num_consumers: Number of consumers to register
3180 * @consumers:     Configuration of consumers; clients are stored here.
3181 *
3182 * @return 0 on success, an errno on failure.
3183 *
3184 * This helper function allows drivers to get several regulator
3185 * consumers in one operation.  If any of the regulators cannot be
3186 * acquired then any regulators that were allocated will be freed
3187 * before returning to the caller.
3188 */
3189int regulator_bulk_get(struct device *dev, int num_consumers,
3190                       struct regulator_bulk_data *consumers)
3191{
3192        int i;
3193        int ret;
3194
3195        for (i = 0; i < num_consumers; i++)
3196                consumers[i].consumer = NULL;
3197
3198        for (i = 0; i < num_consumers; i++) {
3199                consumers[i].consumer = regulator_get(dev,
3200                                                      consumers[i].supply);
3201                if (IS_ERR(consumers[i].consumer)) {
3202                        ret = PTR_ERR(consumers[i].consumer);
3203                        dev_err(dev, "Failed to get supply '%s': %d\n",
3204                                consumers[i].supply, ret);
3205                        consumers[i].consumer = NULL;
3206                        goto err;
3207                }
3208        }
3209
3210        return 0;
3211
3212err:
3213        while (--i >= 0)
3214                regulator_put(consumers[i].consumer);
3215
3216        return ret;
3217}
3218EXPORT_SYMBOL_GPL(regulator_bulk_get);
3219
3220static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
3221{
3222        struct regulator_bulk_data *bulk = data;
3223
3224        bulk->ret = regulator_enable(bulk->consumer);
3225}
3226
3227/**
3228 * regulator_bulk_enable - enable multiple regulator consumers
3229 *
3230 * @num_consumers: Number of consumers
3231 * @consumers:     Consumer data; clients are stored here.
3232 * @return         0 on success, an errno on failure
3233 *
3234 * This convenience API allows consumers to enable multiple regulator
3235 * clients in a single API call.  If any consumers cannot be enabled
3236 * then any others that were enabled will be disabled again prior to
3237 * return.
3238 */
3239int regulator_bulk_enable(int num_consumers,
3240                          struct regulator_bulk_data *consumers)
3241{
3242        ASYNC_DOMAIN_EXCLUSIVE(async_domain);
3243        int i;
3244        int ret = 0;
3245
3246        for (i = 0; i < num_consumers; i++) {
3247                if (consumers[i].consumer->always_on)
3248                        consumers[i].ret = 0;
3249                else
3250                        async_schedule_domain(regulator_bulk_enable_async,
3251                                              &consumers[i], &async_domain);
3252        }
3253
3254        async_synchronize_full_domain(&async_domain);
3255
3256        /* If any consumer failed we need to unwind any that succeeded */
3257        for (i = 0; i < num_consumers; i++) {
3258                if (consumers[i].ret != 0) {
3259                        ret = consumers[i].ret;
3260                        goto err;
3261                }
3262        }
3263
3264        return 0;
3265
3266err:
3267        for (i = 0; i < num_consumers; i++) {
3268                if (consumers[i].ret < 0)
3269                        pr_err("Failed to enable %s: %d\n", consumers[i].supply,
3270                               consumers[i].ret);
3271                else
3272                        regulator_disable(consumers[i].consumer);
3273        }
3274
3275        return ret;
3276}
3277EXPORT_SYMBOL_GPL(regulator_bulk_enable);
3278
3279/**
3280 * regulator_bulk_disable - disable multiple regulator consumers
3281 *
3282 * @num_consumers: Number of consumers
3283 * @consumers:     Consumer data; clients are stored here.
3284 * @return         0 on success, an errno on failure
3285 *
3286 * This convenience API allows consumers to disable multiple regulator
3287 * clients in a single API call.  If any consumers cannot be disabled
3288 * then any others that were disabled will be enabled again prior to
3289 * return.
3290 */
3291int regulator_bulk_disable(int num_consumers,
3292                           struct regulator_bulk_data *consumers)
3293{
3294        int i;
3295        int ret, r;
3296
3297        for (i = num_consumers - 1; i >= 0; --i) {
3298                ret = regulator_disable(consumers[i].consumer);
3299                if (ret != 0)
3300                        goto err;
3301        }
3302
3303        return 0;
3304
3305err:
3306        pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret);
3307        for (++i; i < num_consumers; ++i) {
3308                r = regulator_enable(consumers[i].consumer);
3309                if (r != 0)
3310                        pr_err("Failed to reename %s: %d\n",
3311                               consumers[i].supply, r);
3312        }
3313
3314        return ret;
3315}
3316EXPORT_SYMBOL_GPL(regulator_bulk_disable);
3317
3318/**
3319 * regulator_bulk_force_disable - force disable multiple regulator consumers
3320 *
3321 * @num_consumers: Number of consumers
3322 * @consumers:     Consumer data; clients are stored here.
3323 * @return         0 on success, an errno on failure
3324 *
3325 * This convenience API allows consumers to forcibly disable multiple regulator
3326 * clients in a single API call.
3327 * NOTE: This should be used for situations when device damage will
3328 * likely occur if the regulators are not disabled (e.g. over temp).
3329 * Although regulator_force_disable function call for some consumers can
3330 * return error numbers, the function is called for all consumers.
3331 */
3332int regulator_bulk_force_disable(int num_consumers,
3333                           struct regulator_bulk_data *consumers)
3334{
3335        int i;
3336        int ret;
3337
3338        for (i = 0; i < num_consumers; i++)
3339                consumers[i].ret =
3340                            regulator_force_disable(consumers[i].consumer);
3341
3342        for (i = 0; i < num_consumers; i++) {
3343                if (consumers[i].ret != 0) {
3344                        ret = consumers[i].ret;
3345                        goto out;
3346                }
3347        }
3348
3349        return 0;
3350out:
3351        return ret;
3352}
3353EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);
3354
3355/**
3356 * regulator_bulk_free - free multiple regulator consumers
3357 *
3358 * @num_consumers: Number of consumers
3359 * @consumers:     Consumer data; clients are stored here.
3360 *
3361 * This convenience API allows consumers to free multiple regulator
3362 * clients in a single API call.
3363 */
3364void regulator_bulk_free(int num_consumers,
3365                         struct regulator_bulk_data *consumers)
3366{
3367        int i;
3368
3369        for (i = 0; i < num_consumers; i++) {
3370                regulator_put(consumers[i].consumer);
3371                consumers[i].consumer = NULL;
3372        }
3373}
3374EXPORT_SYMBOL_GPL(regulator_bulk_free);
3375
3376/**
3377 * regulator_notifier_call_chain - call regulator event notifier
3378 * @rdev: regulator source
3379 * @event: notifier block
3380 * @data: callback-specific data.
3381 *
3382 * Called by regulator drivers to notify clients a regulator event has
3383 * occurred. We also notify regulator clients downstream.
3384 * Note lock must be held by caller.
3385 */
3386int regulator_notifier_call_chain(struct regulator_dev *rdev,
3387                                  unsigned long event, void *data)
3388{
3389        _notifier_call_chain(rdev, event, data);
3390        return NOTIFY_DONE;
3391
3392}
3393EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
3394
3395/**
3396 * regulator_mode_to_status - convert a regulator mode into a status
3397 *
3398 * @mode: Mode to convert
3399 *
3400 * Convert a regulator mode into a status.
3401 */
3402int regulator_mode_to_status(unsigned int mode)
3403{
3404        switch (mode) {
3405        case REGULATOR_MODE_FAST:
3406                return REGULATOR_STATUS_FAST;
3407        case REGULATOR_MODE_NORMAL:
3408                return REGULATOR_STATUS_NORMAL;
3409        case REGULATOR_MODE_IDLE:
3410                return REGULATOR_STATUS_IDLE;
3411        case REGULATOR_MODE_STANDBY:
3412                return REGULATOR_STATUS_STANDBY;
3413        default:
3414                return REGULATOR_STATUS_UNDEFINED;
3415        }
3416}
3417EXPORT_SYMBOL_GPL(regulator_mode_to_status);
3418
3419/*
3420 * To avoid cluttering sysfs (and memory) with useless state, only
3421 * create attributes that can be meaningfully displayed.
3422 */
3423static int add_regulator_attributes(struct regulator_dev *rdev)
3424{
3425        struct device *dev = &rdev->dev;
3426        const struct regulator_ops *ops = rdev->desc->ops;
3427        int status = 0;
3428
3429        /* some attributes need specific methods to be displayed */
3430        if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
3431            (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) ||
3432            (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0) ||
3433                (rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1))) {
3434                status = device_create_file(dev, &dev_attr_microvolts);
3435                if (status < 0)
3436                        return status;
3437        }
3438        if (ops->get_current_limit) {
3439                status = device_create_file(dev, &dev_attr_microamps);
3440                if (status < 0)
3441                        return status;
3442        }
3443        if (ops->get_mode) {
3444                status = device_create_file(dev, &dev_attr_opmode);
3445                if (status < 0)
3446                        return status;
3447        }
3448        if (rdev->ena_pin || ops->is_enabled) {
3449                status = device_create_file(dev, &dev_attr_state);
3450                if (status < 0)
3451                        return status;
3452        }
3453        if (ops->get_status) {
3454                status = device_create_file(dev, &dev_attr_status);
3455                if (status < 0)
3456                        return status;
3457        }
3458        if (ops->get_bypass) {
3459                status = device_create_file(dev, &dev_attr_bypass);
3460                if (status < 0)
3461                        return status;
3462        }
3463
3464        /* some attributes are type-specific */
3465        if (rdev->desc->type == REGULATOR_CURRENT) {
3466                status = device_create_file(dev, &dev_attr_requested_microamps);
3467                if (status < 0)
3468                        return status;
3469        }
3470
3471        /* all the other attributes exist to support constraints;
3472         * don't show them if there are no constraints, or if the
3473         * relevant supporting methods are missing.
3474         */
3475        if (!rdev->constraints)
3476                return status;
3477
3478        /* constraints need specific supporting methods */
3479        if (ops->set_voltage || ops->set_voltage_sel) {
3480                status = device_create_file(dev, &dev_attr_min_microvolts);
3481                if (status < 0)
3482                        return status;
3483                status = device_create_file(dev, &dev_attr_max_microvolts);
3484                if (status < 0)
3485                        return status;
3486        }
3487        if (ops->set_current_limit) {
3488                status = device_create_file(dev, &dev_attr_min_microamps);
3489                if (status < 0)
3490                        return status;
3491                status = device_create_file(dev, &dev_attr_max_microamps);
3492                if (status < 0)
3493                        return status;
3494        }
3495
3496        status = device_create_file(dev, &dev_attr_suspend_standby_state);
3497        if (status < 0)
3498                return status;
3499        status = device_create_file(dev, &dev_attr_suspend_mem_state);
3500        if (status < 0)
3501                return status;
3502        status = device_create_file(dev, &dev_attr_suspend_disk_state);
3503        if (status < 0)
3504                return status;
3505
3506        if (ops->set_suspend_voltage) {
3507                status = device_create_file(dev,
3508                                &dev_attr_suspend_standby_microvolts);
3509                if (status < 0)
3510                        return status;
3511                status = device_create_file(dev,
3512                                &dev_attr_suspend_mem_microvolts);
3513                if (status < 0)
3514                        return status;
3515                status = device_create_file(dev,
3516                                &dev_attr_suspend_disk_microvolts);
3517                if (status < 0)
3518                        return status;
3519        }
3520
3521        if (ops->set_suspend_mode) {
3522                status = device_create_file(dev,
3523                                &dev_attr_suspend_standby_mode);
3524                if (status < 0)
3525                        return status;
3526                status = device_create_file(dev,
3527                                &dev_attr_suspend_mem_mode);
3528                if (status < 0)
3529                        return status;
3530                status = device_create_file(dev,
3531                                &dev_attr_suspend_disk_mode);
3532                if (status < 0)
3533                        return status;
3534        }
3535
3536        return status;
3537}
3538
3539static void rdev_init_debugfs(struct regulator_dev *rdev)
3540{
3541        rdev->debugfs = debugfs_create_dir(rdev_get_name(rdev), debugfs_root);
3542        if (!rdev->debugfs) {
3543                rdev_warn(rdev, "Failed to create debugfs directory\n");
3544                return;
3545        }
3546
3547        debugfs_create_u32("use_count", 0444, rdev->debugfs,
3548                           &rdev->use_count);
3549        debugfs_create_u32("open_count", 0444, rdev->debugfs,
3550                           &rdev->open_count);
3551        debugfs_create_u32("bypass_count", 0444, rdev->debugfs,
3552                           &rdev->bypass_count);
3553}
3554
3555/**
3556 * regulator_register - register regulator
3557 * @regulator_desc: regulator to register
3558 * @config: runtime configuration for regulator
3559 *
3560 * Called by regulator drivers to register a regulator.
3561 * Returns a valid pointer to struct regulator_dev on success
3562 * or an ERR_PTR() on error.
3563 */
3564struct regulator_dev *
3565regulator_register(const struct regulator_desc *regulator_desc,
3566                   const struct regulator_config *config)
3567{
3568        const struct regulation_constraints *constraints = NULL;
3569        const struct regulator_init_data *init_data;
3570        static atomic_t regulator_no = ATOMIC_INIT(0);
3571        struct regulator_dev *rdev;
3572        struct device *dev;
3573        int ret, i;
3574        const char *supply = NULL;
3575
3576        if (regulator_desc == NULL || config == NULL)
3577                return ERR_PTR(-EINVAL);
3578
3579        dev = config->dev;
3580        WARN_ON(!dev);
3581
3582        if (regulator_desc->name == NULL || regulator_desc->ops == NULL)
3583                return ERR_PTR(-EINVAL);
3584
3585        if (regulator_desc->type != REGULATOR_VOLTAGE &&
3586            regulator_desc->type != REGULATOR_CURRENT)
3587                return ERR_PTR(-EINVAL);
3588
3589        /* Only one of each should be implemented */
3590        WARN_ON(regulator_desc->ops->get_voltage &&
3591                regulator_desc->ops->get_voltage_sel);
3592        WARN_ON(regulator_desc->ops->set_voltage &&
3593                regulator_desc->ops->set_voltage_sel);
3594
3595        /* If we're using selectors we must implement list_voltage. */
3596        if (regulator_desc->ops->get_voltage_sel &&
3597            !regulator_desc->ops->list_voltage) {
3598                return ERR_PTR(-EINVAL);
3599        }
3600        if (regulator_desc->ops->set_voltage_sel &&
3601            !regulator_desc->ops->list_voltage) {
3602                return ERR_PTR(-EINVAL);
3603        }
3604
3605        rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
3606        if (rdev == NULL)
3607                return ERR_PTR(-ENOMEM);
3608
3609        init_data = regulator_of_get_init_data(dev, regulator_desc,
3610                                               &rdev->dev.of_node);
3611        if (!init_data) {
3612                init_data = config->init_data;
3613                rdev->dev.of_node = of_node_get(config->of_node);
3614        }
3615
3616        mutex_lock(&regulator_list_mutex);
3617
3618        mutex_init(&rdev->mutex);
3619        rdev->reg_data = config->driver_data;
3620        rdev->owner = regulator_desc->owner;
3621        rdev->desc = regulator_desc;
3622        if (config->regmap)
3623                rdev->regmap = config->regmap;
3624        else if (dev_get_regmap(dev, NULL))
3625                rdev->regmap = dev_get_regmap(dev, NULL);
3626        else if (dev->parent)
3627                rdev->regmap = dev_get_regmap(dev->parent, NULL);
3628        INIT_LIST_HEAD(&rdev->consumer_list);
3629        INIT_LIST_HEAD(&rdev->list);
3630        BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
3631        INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
3632
3633        /* preform any regulator specific init */
3634        if (init_data && init_data->regulator_init) {
3635                ret = init_data->regulator_init(rdev->reg_data);
3636                if (ret < 0)
3637                        goto clean;
3638        }
3639
3640        /* register with sysfs */
3641        rdev->dev.class = &regulator_class;
3642        rdev->dev.parent = dev;
3643        dev_set_name(&rdev->dev, "regulator.%d",
3644                     atomic_inc_return(&regulator_no) - 1);
3645        ret = device_register(&rdev->dev);
3646        if (ret != 0) {
3647                put_device(&rdev->dev);
3648                goto clean;
3649        }
3650
3651        dev_set_drvdata(&rdev->dev, rdev);
3652
3653        if (config->ena_gpio && gpio_is_valid(config->ena_gpio)) {
3654                ret = regulator_ena_gpio_request(rdev, config);
3655                if (ret != 0) {
3656                        rdev_err(rdev, "Failed to request enable GPIO%d: %d\n",
3657                                 config->ena_gpio, ret);
3658                        goto wash;
3659                }
3660
3661                if (config->ena_gpio_flags & GPIOF_OUT_INIT_HIGH)
3662                        rdev->ena_gpio_state = 1;
3663
3664                if (config->ena_gpio_invert)
3665                        rdev->ena_gpio_state = !rdev->ena_gpio_state;
3666        }
3667
3668        /* set regulator constraints */
3669        if (init_data)
3670                constraints = &init_data->constraints;
3671
3672        ret = set_machine_constraints(rdev, constraints);
3673        if (ret < 0)
3674                goto scrub;
3675
3676        /* add attributes supported by this regulator */
3677        ret = add_regulator_attributes(rdev);
3678        if (ret < 0)
3679                goto scrub;
3680
3681        if (init_data && init_data->supply_regulator)
3682                supply = init_data->supply_regulator;
3683        else if (regulator_desc->supply_name)
3684                supply = regulator_desc->supply_name;
3685
3686        if (supply) {
3687                struct regulator_dev *r;
3688
3689                r = regulator_dev_lookup(dev, supply, &ret);
3690
3691                if (ret == -ENODEV) {
3692                        /*
3693                         * No supply was specified for this regulator and
3694                         * there will never be one.
3695                         */
3696                        ret = 0;
3697                        goto add_dev;
3698                } else if (!r) {
3699                        dev_err(dev, "Failed to find supply %s\n", supply);
3700                        ret = -EPROBE_DEFER;
3701                        goto scrub;
3702                }
3703
3704                ret = set_supply(rdev, r);
3705                if (ret < 0)
3706                        goto scrub;
3707
3708                /* Enable supply if rail is enabled */
3709                if (_regulator_is_enabled(rdev)) {
3710                        ret = regulator_enable(rdev->supply);
3711                        if (ret < 0)
3712                                goto scrub;
3713                }
3714        }
3715
3716add_dev:
3717        /* add consumers devices */
3718        if (init_data) {
3719                for (i = 0; i < init_data->num_consumer_supplies; i++) {
3720                        ret = set_consumer_device_supply(rdev,
3721                                init_data->consumer_supplies[i].dev_name,
3722                                init_data->consumer_supplies[i].supply);
3723                        if (ret < 0) {
3724                                dev_err(dev, "Failed to set supply %s\n",
3725                                        init_data->consumer_supplies[i].supply);
3726                                goto unset_supplies;
3727                        }
3728                }
3729        }
3730
3731        list_add(&rdev->list, &regulator_list);
3732
3733        rdev_init_debugfs(rdev);
3734out:
3735        mutex_unlock(&regulator_list_mutex);
3736        return rdev;
3737
3738unset_supplies:
3739        unset_regulator_supplies(rdev);
3740
3741scrub:
3742        if (rdev->supply)
3743                _regulator_put(rdev->supply);
3744        regulator_ena_gpio_free(rdev);
3745        kfree(rdev->constraints);
3746wash:
3747        device_unregister(&rdev->dev);
3748        /* device core frees rdev */
3749        rdev = ERR_PTR(ret);
3750        goto out;
3751
3752clean:
3753        kfree(rdev);
3754        rdev = ERR_PTR(ret);
3755        goto out;
3756}
3757EXPORT_SYMBOL_GPL(regulator_register);
3758
3759/**
3760 * regulator_unregister - unregister regulator
3761 * @rdev: regulator to unregister
3762 *
3763 * Called by regulator drivers to unregister a regulator.
3764 */
3765void regulator_unregister(struct regulator_dev *rdev)
3766{
3767        if (rdev == NULL)
3768                return;
3769
3770        if (rdev->supply) {
3771                while (rdev->use_count--)
3772                        regulator_disable(rdev->supply);
3773                regulator_put(rdev->supply);
3774        }
3775        mutex_lock(&regulator_list_mutex);
3776        debugfs_remove_recursive(rdev->debugfs);
3777        flush_work(&rdev->disable_work.work);
3778        WARN_ON(rdev->open_count);
3779        unset_regulator_supplies(rdev);
3780        list_del(&rdev->list);
3781        kfree(rdev->constraints);
3782        regulator_ena_gpio_free(rdev);
3783        of_node_put(rdev->dev.of_node);
3784        device_unregister(&rdev->dev);
3785        mutex_unlock(&regulator_list_mutex);
3786}
3787EXPORT_SYMBOL_GPL(regulator_unregister);
3788
3789/**
3790 * regulator_suspend_prepare - prepare regulators for system wide suspend
3791 * @state: system suspend state
3792 *
3793 * Configure each regulator with it's suspend operating parameters for state.
3794 * This will usually be called by machine suspend code prior to supending.
3795 */
3796int regulator_suspend_prepare(suspend_state_t state)
3797{
3798        struct regulator_dev *rdev;
3799        int ret = 0;
3800
3801        /* ON is handled by regulator active state */
3802        if (state == PM_SUSPEND_ON)
3803                return -EINVAL;
3804
3805        mutex_lock(&regulator_list_mutex);
3806        list_for_each_entry(rdev, &regulator_list, list) {
3807
3808                mutex_lock(&rdev->mutex);
3809                ret = suspend_prepare(rdev, state);
3810                mutex_unlock(&rdev->mutex);
3811
3812                if (ret < 0) {
3813                        rdev_err(rdev, "failed to prepare\n");
3814                        goto out;
3815                }
3816        }
3817out:
3818        mutex_unlock(&regulator_list_mutex);
3819        return ret;
3820}
3821EXPORT_SYMBOL_GPL(regulator_suspend_prepare);
3822
3823/**
3824 * regulator_suspend_finish - resume regulators from system wide suspend
3825 *
3826 * Turn on regulators that might be turned off by regulator_suspend_prepare
3827 * and that should be turned on according to the regulators properties.
3828 */
3829int regulator_suspend_finish(void)
3830{
3831        struct regulator_dev *rdev;
3832        int ret = 0, error;
3833
3834        mutex_lock(&regulator_list_mutex);
3835        list_for_each_entry(rdev, &regulator_list, list) {
3836                mutex_lock(&rdev->mutex);
3837                if (rdev->use_count > 0  || rdev->constraints->always_on) {
3838                        error = _regulator_do_enable(rdev);
3839                        if (error)
3840                                ret = error;
3841                } else {
3842                        if (!have_full_constraints())
3843                                goto unlock;
3844                        if (!_regulator_is_enabled(rdev))
3845                                goto unlock;
3846
3847                        error = _regulator_do_disable(rdev);
3848                        if (error)
3849                                ret = error;
3850                }
3851unlock:
3852                mutex_unlock(&rdev->mutex);
3853        }
3854        mutex_unlock(&regulator_list_mutex);
3855        return ret;
3856}
3857EXPORT_SYMBOL_GPL(regulator_suspend_finish);
3858
3859/**
3860 * regulator_has_full_constraints - the system has fully specified constraints
3861 *
3862 * Calling this function will cause the regulator API to disable all
3863 * regulators which have a zero use count and don't have an always_on
3864 * constraint in a late_initcall.
3865 *
3866 * The intention is that this will become the default behaviour in a
3867 * future kernel release so users are encouraged to use this facility
3868 * now.
3869 */
3870void regulator_has_full_constraints(void)
3871{
3872        has_full_constraints = 1;
3873}
3874EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
3875
3876/**
3877 * rdev_get_drvdata - get rdev regulator driver data
3878 * @rdev: regulator
3879 *
3880 * Get rdev regulator driver private data. This call can be used in the
3881 * regulator driver context.
3882 */
3883void *rdev_get_drvdata(struct regulator_dev *rdev)
3884{
3885        return rdev->reg_data;
3886}
3887EXPORT_SYMBOL_GPL(rdev_get_drvdata);
3888
3889/**
3890 * regulator_get_drvdata - get regulator driver data
3891 * @regulator: regulator
3892 *
3893 * Get regulator driver private data. This call can be used in the consumer
3894 * driver context when non API regulator specific functions need to be called.
3895 */
3896void *regulator_get_drvdata(struct regulator *regulator)
3897{
3898        return regulator->rdev->reg_data;
3899}
3900EXPORT_SYMBOL_GPL(regulator_get_drvdata);
3901
3902/**
3903 * regulator_set_drvdata - set regulator driver data
3904 * @regulator: regulator
3905 * @data: data
3906 */
3907void regulator_set_drvdata(struct regulator *regulator, void *data)
3908{
3909        regulator->rdev->reg_data = data;
3910}
3911EXPORT_SYMBOL_GPL(regulator_set_drvdata);
3912
3913/**
3914 * regulator_get_id - get regulator ID
3915 * @rdev: regulator
3916 */
3917int rdev_get_id(struct regulator_dev *rdev)
3918{
3919        return rdev->desc->id;
3920}
3921EXPORT_SYMBOL_GPL(rdev_get_id);
3922
3923struct device *rdev_get_dev(struct regulator_dev *rdev)
3924{
3925        return &rdev->dev;
3926}
3927EXPORT_SYMBOL_GPL(rdev_get_dev);
3928
3929void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
3930{
3931        return reg_init_data->driver_data;
3932}
3933EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
3934
3935#ifdef CONFIG_DEBUG_FS
3936static ssize_t supply_map_read_file(struct file *file, char __user *user_buf,
3937                                    size_t count, loff_t *ppos)
3938{
3939        char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
3940        ssize_t len, ret = 0;
3941        struct regulator_map *map;
3942
3943        if (!buf)
3944                return -ENOMEM;
3945
3946        list_for_each_entry(map, &regulator_map_list, list) {
3947                len = snprintf(buf + ret, PAGE_SIZE - ret,
3948                               "%s -> %s.%s\n",
3949                               rdev_get_name(map->regulator), map->dev_name,
3950                               map->supply);
3951                if (len >= 0)
3952                        ret += len;
3953                if (ret > PAGE_SIZE) {
3954                        ret = PAGE_SIZE;
3955                        break;
3956                }
3957        }
3958
3959        ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
3960
3961        kfree(buf);
3962
3963        return ret;
3964}
3965#endif
3966
3967static const struct file_operations supply_map_fops = {
3968#ifdef CONFIG_DEBUG_FS
3969        .read = supply_map_read_file,
3970        .llseek = default_llseek,
3971#endif
3972};
3973
3974static int __init regulator_init(void)
3975{
3976        int ret;
3977
3978        ret = class_register(&regulator_class);
3979
3980        debugfs_root = debugfs_create_dir("regulator", NULL);
3981        if (!debugfs_root)
3982                pr_warn("regulator: Failed to create debugfs directory\n");
3983
3984        debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
3985                            &supply_map_fops);
3986
3987        regulator_dummy_init();
3988
3989        return ret;
3990}
3991
3992/* init early to allow our consumers to complete system booting */
3993core_initcall(regulator_init);
3994
3995static int __init regulator_init_complete(void)
3996{
3997        struct regulator_dev *rdev;
3998        const struct regulator_ops *ops;
3999        struct regulation_constraints *c;
4000        int enabled, ret;
4001
4002        /*
4003         * Since DT doesn't provide an idiomatic mechanism for
4004         * enabling full constraints and since it's much more natural
4005         * with DT to provide them just assume that a DT enabled
4006         * system has full constraints.
4007         */
4008        if (of_have_populated_dt())
4009                has_full_constraints = true;
4010
4011        mutex_lock(&regulator_list_mutex);
4012
4013        /* If we have a full configuration then disable any regulators
4014         * we have permission to change the status for and which are
4015         * not in use or always_on.  This is effectively the default
4016         * for DT and ACPI as they have full constraints.
4017         */
4018        list_for_each_entry(rdev, &regulator_list, list) {
4019                ops = rdev->desc->ops;
4020                c = rdev->constraints;
4021
4022                if (c && c->always_on)
4023                        continue;
4024
4025                if (c && !(c->valid_ops_mask & REGULATOR_CHANGE_STATUS))
4026                        continue;
4027
4028                mutex_lock(&rdev->mutex);
4029
4030                if (rdev->use_count)
4031                        goto unlock;
4032
4033                /* If we can't read the status assume it's on. */
4034                if (ops->is_enabled)
4035                        enabled = ops->is_enabled(rdev);
4036                else
4037                        enabled = 1;
4038
4039                if (!enabled)
4040                        goto unlock;
4041
4042                if (have_full_constraints()) {
4043                        /* We log since this may kill the system if it
4044                         * goes wrong. */
4045                        rdev_info(rdev, "disabling\n");
4046                        ret = _regulator_do_disable(rdev);
4047                        if (ret != 0)
4048                                rdev_err(rdev, "couldn't disable: %d\n", ret);
4049                } else {
4050                        /* The intention is that in future we will
4051                         * assume that full constraints are provided
4052                         * so warn even if we aren't going to do
4053                         * anything here.
4054                         */
4055                        rdev_warn(rdev, "incomplete constraints, leaving on\n");
4056                }
4057
4058unlock:
4059                mutex_unlock(&rdev->mutex);
4060        }
4061
4062        mutex_unlock(&regulator_list_mutex);
4063
4064        return 0;
4065}
4066late_initcall_sync(regulator_init_complete);
4067