linux/fs/btrfs/inode.c
<<
>>
Prefs
   1/*
   2 * Copyright (C) 2007 Oracle.  All rights reserved.
   3 *
   4 * This program is free software; you can redistribute it and/or
   5 * modify it under the terms of the GNU General Public
   6 * License v2 as published by the Free Software Foundation.
   7 *
   8 * This program is distributed in the hope that it will be useful,
   9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  11 * General Public License for more details.
  12 *
  13 * You should have received a copy of the GNU General Public
  14 * License along with this program; if not, write to the
  15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16 * Boston, MA 021110-1307, USA.
  17 */
  18
  19#include <linux/kernel.h>
  20#include <linux/bio.h>
  21#include <linux/buffer_head.h>
  22#include <linux/file.h>
  23#include <linux/fs.h>
  24#include <linux/pagemap.h>
  25#include <linux/highmem.h>
  26#include <linux/time.h>
  27#include <linux/init.h>
  28#include <linux/string.h>
  29#include <linux/backing-dev.h>
  30#include <linux/mpage.h>
  31#include <linux/swap.h>
  32#include <linux/writeback.h>
  33#include <linux/statfs.h>
  34#include <linux/compat.h>
  35#include <linux/aio.h>
  36#include <linux/bit_spinlock.h>
  37#include <linux/xattr.h>
  38#include <linux/posix_acl.h>
  39#include <linux/falloc.h>
  40#include <linux/slab.h>
  41#include <linux/ratelimit.h>
  42#include <linux/mount.h>
  43#include <linux/btrfs.h>
  44#include <linux/blkdev.h>
  45#include <linux/posix_acl_xattr.h>
  46#include "ctree.h"
  47#include "disk-io.h"
  48#include "transaction.h"
  49#include "btrfs_inode.h"
  50#include "print-tree.h"
  51#include "ordered-data.h"
  52#include "xattr.h"
  53#include "tree-log.h"
  54#include "volumes.h"
  55#include "compression.h"
  56#include "locking.h"
  57#include "free-space-cache.h"
  58#include "inode-map.h"
  59#include "backref.h"
  60#include "hash.h"
  61#include "props.h"
  62
  63struct btrfs_iget_args {
  64        struct btrfs_key *location;
  65        struct btrfs_root *root;
  66};
  67
  68static const struct inode_operations btrfs_dir_inode_operations;
  69static const struct inode_operations btrfs_symlink_inode_operations;
  70static const struct inode_operations btrfs_dir_ro_inode_operations;
  71static const struct inode_operations btrfs_special_inode_operations;
  72static const struct inode_operations btrfs_file_inode_operations;
  73static const struct address_space_operations btrfs_aops;
  74static const struct address_space_operations btrfs_symlink_aops;
  75static const struct file_operations btrfs_dir_file_operations;
  76static struct extent_io_ops btrfs_extent_io_ops;
  77
  78static struct kmem_cache *btrfs_inode_cachep;
  79static struct kmem_cache *btrfs_delalloc_work_cachep;
  80struct kmem_cache *btrfs_trans_handle_cachep;
  81struct kmem_cache *btrfs_transaction_cachep;
  82struct kmem_cache *btrfs_path_cachep;
  83struct kmem_cache *btrfs_free_space_cachep;
  84
  85#define S_SHIFT 12
  86static unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = {
  87        [S_IFREG >> S_SHIFT]    = BTRFS_FT_REG_FILE,
  88        [S_IFDIR >> S_SHIFT]    = BTRFS_FT_DIR,
  89        [S_IFCHR >> S_SHIFT]    = BTRFS_FT_CHRDEV,
  90        [S_IFBLK >> S_SHIFT]    = BTRFS_FT_BLKDEV,
  91        [S_IFIFO >> S_SHIFT]    = BTRFS_FT_FIFO,
  92        [S_IFSOCK >> S_SHIFT]   = BTRFS_FT_SOCK,
  93        [S_IFLNK >> S_SHIFT]    = BTRFS_FT_SYMLINK,
  94};
  95
  96static int btrfs_setsize(struct inode *inode, struct iattr *attr);
  97static int btrfs_truncate(struct inode *inode);
  98static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent);
  99static noinline int cow_file_range(struct inode *inode,
 100                                   struct page *locked_page,
 101                                   u64 start, u64 end, int *page_started,
 102                                   unsigned long *nr_written, int unlock);
 103static struct extent_map *create_pinned_em(struct inode *inode, u64 start,
 104                                           u64 len, u64 orig_start,
 105                                           u64 block_start, u64 block_len,
 106                                           u64 orig_block_len, u64 ram_bytes,
 107                                           int type);
 108
 109static int btrfs_dirty_inode(struct inode *inode);
 110
 111static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
 112                                     struct inode *inode,  struct inode *dir,
 113                                     const struct qstr *qstr)
 114{
 115        int err;
 116
 117        err = btrfs_init_acl(trans, inode, dir);
 118        if (!err)
 119                err = btrfs_xattr_security_init(trans, inode, dir, qstr);
 120        return err;
 121}
 122
 123/*
 124 * this does all the hard work for inserting an inline extent into
 125 * the btree.  The caller should have done a btrfs_drop_extents so that
 126 * no overlapping inline items exist in the btree
 127 */
 128static int insert_inline_extent(struct btrfs_trans_handle *trans,
 129                                struct btrfs_path *path, int extent_inserted,
 130                                struct btrfs_root *root, struct inode *inode,
 131                                u64 start, size_t size, size_t compressed_size,
 132                                int compress_type,
 133                                struct page **compressed_pages)
 134{
 135        struct extent_buffer *leaf;
 136        struct page *page = NULL;
 137        char *kaddr;
 138        unsigned long ptr;
 139        struct btrfs_file_extent_item *ei;
 140        int err = 0;
 141        int ret;
 142        size_t cur_size = size;
 143        unsigned long offset;
 144
 145        if (compressed_size && compressed_pages)
 146                cur_size = compressed_size;
 147
 148        inode_add_bytes(inode, size);
 149
 150        if (!extent_inserted) {
 151                struct btrfs_key key;
 152                size_t datasize;
 153
 154                key.objectid = btrfs_ino(inode);
 155                key.offset = start;
 156                key.type = BTRFS_EXTENT_DATA_KEY;
 157
 158                datasize = btrfs_file_extent_calc_inline_size(cur_size);
 159                path->leave_spinning = 1;
 160                ret = btrfs_insert_empty_item(trans, root, path, &key,
 161                                              datasize);
 162                if (ret) {
 163                        err = ret;
 164                        goto fail;
 165                }
 166        }
 167        leaf = path->nodes[0];
 168        ei = btrfs_item_ptr(leaf, path->slots[0],
 169                            struct btrfs_file_extent_item);
 170        btrfs_set_file_extent_generation(leaf, ei, trans->transid);
 171        btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
 172        btrfs_set_file_extent_encryption(leaf, ei, 0);
 173        btrfs_set_file_extent_other_encoding(leaf, ei, 0);
 174        btrfs_set_file_extent_ram_bytes(leaf, ei, size);
 175        ptr = btrfs_file_extent_inline_start(ei);
 176
 177        if (compress_type != BTRFS_COMPRESS_NONE) {
 178                struct page *cpage;
 179                int i = 0;
 180                while (compressed_size > 0) {
 181                        cpage = compressed_pages[i];
 182                        cur_size = min_t(unsigned long, compressed_size,
 183                                       PAGE_CACHE_SIZE);
 184
 185                        kaddr = kmap_atomic(cpage);
 186                        write_extent_buffer(leaf, kaddr, ptr, cur_size);
 187                        kunmap_atomic(kaddr);
 188
 189                        i++;
 190                        ptr += cur_size;
 191                        compressed_size -= cur_size;
 192                }
 193                btrfs_set_file_extent_compression(leaf, ei,
 194                                                  compress_type);
 195        } else {
 196                page = find_get_page(inode->i_mapping,
 197                                     start >> PAGE_CACHE_SHIFT);
 198                btrfs_set_file_extent_compression(leaf, ei, 0);
 199                kaddr = kmap_atomic(page);
 200                offset = start & (PAGE_CACHE_SIZE - 1);
 201                write_extent_buffer(leaf, kaddr + offset, ptr, size);
 202                kunmap_atomic(kaddr);
 203                page_cache_release(page);
 204        }
 205        btrfs_mark_buffer_dirty(leaf);
 206        btrfs_release_path(path);
 207
 208        /*
 209         * we're an inline extent, so nobody can
 210         * extend the file past i_size without locking
 211         * a page we already have locked.
 212         *
 213         * We must do any isize and inode updates
 214         * before we unlock the pages.  Otherwise we
 215         * could end up racing with unlink.
 216         */
 217        BTRFS_I(inode)->disk_i_size = inode->i_size;
 218        ret = btrfs_update_inode(trans, root, inode);
 219
 220        return ret;
 221fail:
 222        return err;
 223}
 224
 225
 226/*
 227 * conditionally insert an inline extent into the file.  This
 228 * does the checks required to make sure the data is small enough
 229 * to fit as an inline extent.
 230 */
 231static noinline int cow_file_range_inline(struct btrfs_root *root,
 232                                          struct inode *inode, u64 start,
 233                                          u64 end, size_t compressed_size,
 234                                          int compress_type,
 235                                          struct page **compressed_pages)
 236{
 237        struct btrfs_trans_handle *trans;
 238        u64 isize = i_size_read(inode);
 239        u64 actual_end = min(end + 1, isize);
 240        u64 inline_len = actual_end - start;
 241        u64 aligned_end = ALIGN(end, root->sectorsize);
 242        u64 data_len = inline_len;
 243        int ret;
 244        struct btrfs_path *path;
 245        int extent_inserted = 0;
 246        u32 extent_item_size;
 247
 248        if (compressed_size)
 249                data_len = compressed_size;
 250
 251        if (start > 0 ||
 252            actual_end > PAGE_CACHE_SIZE ||
 253            data_len > BTRFS_MAX_INLINE_DATA_SIZE(root) ||
 254            (!compressed_size &&
 255            (actual_end & (root->sectorsize - 1)) == 0) ||
 256            end + 1 < isize ||
 257            data_len > root->fs_info->max_inline) {
 258                return 1;
 259        }
 260
 261        path = btrfs_alloc_path();
 262        if (!path)
 263                return -ENOMEM;
 264
 265        trans = btrfs_join_transaction(root);
 266        if (IS_ERR(trans)) {
 267                btrfs_free_path(path);
 268                return PTR_ERR(trans);
 269        }
 270        trans->block_rsv = &root->fs_info->delalloc_block_rsv;
 271
 272        if (compressed_size && compressed_pages)
 273                extent_item_size = btrfs_file_extent_calc_inline_size(
 274                   compressed_size);
 275        else
 276                extent_item_size = btrfs_file_extent_calc_inline_size(
 277                    inline_len);
 278
 279        ret = __btrfs_drop_extents(trans, root, inode, path,
 280                                   start, aligned_end, NULL,
 281                                   1, 1, extent_item_size, &extent_inserted);
 282        if (ret) {
 283                btrfs_abort_transaction(trans, root, ret);
 284                goto out;
 285        }
 286
 287        if (isize > actual_end)
 288                inline_len = min_t(u64, isize, actual_end);
 289        ret = insert_inline_extent(trans, path, extent_inserted,
 290                                   root, inode, start,
 291                                   inline_len, compressed_size,
 292                                   compress_type, compressed_pages);
 293        if (ret && ret != -ENOSPC) {
 294                btrfs_abort_transaction(trans, root, ret);
 295                goto out;
 296        } else if (ret == -ENOSPC) {
 297                ret = 1;
 298                goto out;
 299        }
 300
 301        set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
 302        btrfs_delalloc_release_metadata(inode, end + 1 - start);
 303        btrfs_drop_extent_cache(inode, start, aligned_end - 1, 0);
 304out:
 305        btrfs_free_path(path);
 306        btrfs_end_transaction(trans, root);
 307        return ret;
 308}
 309
 310struct async_extent {
 311        u64 start;
 312        u64 ram_size;
 313        u64 compressed_size;
 314        struct page **pages;
 315        unsigned long nr_pages;
 316        int compress_type;
 317        struct list_head list;
 318};
 319
 320struct async_cow {
 321        struct inode *inode;
 322        struct btrfs_root *root;
 323        struct page *locked_page;
 324        u64 start;
 325        u64 end;
 326        struct list_head extents;
 327        struct btrfs_work work;
 328};
 329
 330static noinline int add_async_extent(struct async_cow *cow,
 331                                     u64 start, u64 ram_size,
 332                                     u64 compressed_size,
 333                                     struct page **pages,
 334                                     unsigned long nr_pages,
 335                                     int compress_type)
 336{
 337        struct async_extent *async_extent;
 338
 339        async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
 340        BUG_ON(!async_extent); /* -ENOMEM */
 341        async_extent->start = start;
 342        async_extent->ram_size = ram_size;
 343        async_extent->compressed_size = compressed_size;
 344        async_extent->pages = pages;
 345        async_extent->nr_pages = nr_pages;
 346        async_extent->compress_type = compress_type;
 347        list_add_tail(&async_extent->list, &cow->extents);
 348        return 0;
 349}
 350
 351static inline int inode_need_compress(struct inode *inode)
 352{
 353        struct btrfs_root *root = BTRFS_I(inode)->root;
 354
 355        /* force compress */
 356        if (btrfs_test_opt(root, FORCE_COMPRESS))
 357                return 1;
 358        /* bad compression ratios */
 359        if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS)
 360                return 0;
 361        if (btrfs_test_opt(root, COMPRESS) ||
 362            BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS ||
 363            BTRFS_I(inode)->force_compress)
 364                return 1;
 365        return 0;
 366}
 367
 368/*
 369 * we create compressed extents in two phases.  The first
 370 * phase compresses a range of pages that have already been
 371 * locked (both pages and state bits are locked).
 372 *
 373 * This is done inside an ordered work queue, and the compression
 374 * is spread across many cpus.  The actual IO submission is step
 375 * two, and the ordered work queue takes care of making sure that
 376 * happens in the same order things were put onto the queue by
 377 * writepages and friends.
 378 *
 379 * If this code finds it can't get good compression, it puts an
 380 * entry onto the work queue to write the uncompressed bytes.  This
 381 * makes sure that both compressed inodes and uncompressed inodes
 382 * are written in the same order that the flusher thread sent them
 383 * down.
 384 */
 385static noinline int compress_file_range(struct inode *inode,
 386                                        struct page *locked_page,
 387                                        u64 start, u64 end,
 388                                        struct async_cow *async_cow,
 389                                        int *num_added)
 390{
 391        struct btrfs_root *root = BTRFS_I(inode)->root;
 392        u64 num_bytes;
 393        u64 blocksize = root->sectorsize;
 394        u64 actual_end;
 395        u64 isize = i_size_read(inode);
 396        int ret = 0;
 397        struct page **pages = NULL;
 398        unsigned long nr_pages;
 399        unsigned long nr_pages_ret = 0;
 400        unsigned long total_compressed = 0;
 401        unsigned long total_in = 0;
 402        unsigned long max_compressed = 128 * 1024;
 403        unsigned long max_uncompressed = 128 * 1024;
 404        int i;
 405        int will_compress;
 406        int compress_type = root->fs_info->compress_type;
 407        int redirty = 0;
 408
 409        /* if this is a small write inside eof, kick off a defrag */
 410        if ((end - start + 1) < 16 * 1024 &&
 411            (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
 412                btrfs_add_inode_defrag(NULL, inode);
 413
 414        /*
 415         * skip compression for a small file range(<=blocksize) that
 416         * isn't an inline extent, since it dosen't save disk space at all.
 417         */
 418        if ((end - start + 1) <= blocksize &&
 419            (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
 420                goto cleanup_and_bail_uncompressed;
 421
 422        actual_end = min_t(u64, isize, end + 1);
 423again:
 424        will_compress = 0;
 425        nr_pages = (end >> PAGE_CACHE_SHIFT) - (start >> PAGE_CACHE_SHIFT) + 1;
 426        nr_pages = min(nr_pages, (128 * 1024UL) / PAGE_CACHE_SIZE);
 427
 428        /*
 429         * we don't want to send crud past the end of i_size through
 430         * compression, that's just a waste of CPU time.  So, if the
 431         * end of the file is before the start of our current
 432         * requested range of bytes, we bail out to the uncompressed
 433         * cleanup code that can deal with all of this.
 434         *
 435         * It isn't really the fastest way to fix things, but this is a
 436         * very uncommon corner.
 437         */
 438        if (actual_end <= start)
 439                goto cleanup_and_bail_uncompressed;
 440
 441        total_compressed = actual_end - start;
 442
 443        /* we want to make sure that amount of ram required to uncompress
 444         * an extent is reasonable, so we limit the total size in ram
 445         * of a compressed extent to 128k.  This is a crucial number
 446         * because it also controls how easily we can spread reads across
 447         * cpus for decompression.
 448         *
 449         * We also want to make sure the amount of IO required to do
 450         * a random read is reasonably small, so we limit the size of
 451         * a compressed extent to 128k.
 452         */
 453        total_compressed = min(total_compressed, max_uncompressed);
 454        num_bytes = ALIGN(end - start + 1, blocksize);
 455        num_bytes = max(blocksize,  num_bytes);
 456        total_in = 0;
 457        ret = 0;
 458
 459        /*
 460         * we do compression for mount -o compress and when the
 461         * inode has not been flagged as nocompress.  This flag can
 462         * change at any time if we discover bad compression ratios.
 463         */
 464        if (inode_need_compress(inode)) {
 465                WARN_ON(pages);
 466                pages = kzalloc(sizeof(struct page *) * nr_pages, GFP_NOFS);
 467                if (!pages) {
 468                        /* just bail out to the uncompressed code */
 469                        goto cont;
 470                }
 471
 472                if (BTRFS_I(inode)->force_compress)
 473                        compress_type = BTRFS_I(inode)->force_compress;
 474
 475                /*
 476                 * we need to call clear_page_dirty_for_io on each
 477                 * page in the range.  Otherwise applications with the file
 478                 * mmap'd can wander in and change the page contents while
 479                 * we are compressing them.
 480                 *
 481                 * If the compression fails for any reason, we set the pages
 482                 * dirty again later on.
 483                 */
 484                extent_range_clear_dirty_for_io(inode, start, end);
 485                redirty = 1;
 486                ret = btrfs_compress_pages(compress_type,
 487                                           inode->i_mapping, start,
 488                                           total_compressed, pages,
 489                                           nr_pages, &nr_pages_ret,
 490                                           &total_in,
 491                                           &total_compressed,
 492                                           max_compressed);
 493
 494                if (!ret) {
 495                        unsigned long offset = total_compressed &
 496                                (PAGE_CACHE_SIZE - 1);
 497                        struct page *page = pages[nr_pages_ret - 1];
 498                        char *kaddr;
 499
 500                        /* zero the tail end of the last page, we might be
 501                         * sending it down to disk
 502                         */
 503                        if (offset) {
 504                                kaddr = kmap_atomic(page);
 505                                memset(kaddr + offset, 0,
 506                                       PAGE_CACHE_SIZE - offset);
 507                                kunmap_atomic(kaddr);
 508                        }
 509                        will_compress = 1;
 510                }
 511        }
 512cont:
 513        if (start == 0) {
 514                /* lets try to make an inline extent */
 515                if (ret || total_in < (actual_end - start)) {
 516                        /* we didn't compress the entire range, try
 517                         * to make an uncompressed inline extent.
 518                         */
 519                        ret = cow_file_range_inline(root, inode, start, end,
 520                                                    0, 0, NULL);
 521                } else {
 522                        /* try making a compressed inline extent */
 523                        ret = cow_file_range_inline(root, inode, start, end,
 524                                                    total_compressed,
 525                                                    compress_type, pages);
 526                }
 527                if (ret <= 0) {
 528                        unsigned long clear_flags = EXTENT_DELALLOC |
 529                                EXTENT_DEFRAG;
 530                        clear_flags |= (ret < 0) ? EXTENT_DO_ACCOUNTING : 0;
 531
 532                        /*
 533                         * inline extent creation worked or returned error,
 534                         * we don't need to create any more async work items.
 535                         * Unlock and free up our temp pages.
 536                         */
 537                        extent_clear_unlock_delalloc(inode, start, end, NULL,
 538                                                     clear_flags, PAGE_UNLOCK |
 539                                                     PAGE_CLEAR_DIRTY |
 540                                                     PAGE_SET_WRITEBACK |
 541                                                     PAGE_END_WRITEBACK);
 542                        goto free_pages_out;
 543                }
 544        }
 545
 546        if (will_compress) {
 547                /*
 548                 * we aren't doing an inline extent round the compressed size
 549                 * up to a block size boundary so the allocator does sane
 550                 * things
 551                 */
 552                total_compressed = ALIGN(total_compressed, blocksize);
 553
 554                /*
 555                 * one last check to make sure the compression is really a
 556                 * win, compare the page count read with the blocks on disk
 557                 */
 558                total_in = ALIGN(total_in, PAGE_CACHE_SIZE);
 559                if (total_compressed >= total_in) {
 560                        will_compress = 0;
 561                } else {
 562                        num_bytes = total_in;
 563                }
 564        }
 565        if (!will_compress && pages) {
 566                /*
 567                 * the compression code ran but failed to make things smaller,
 568                 * free any pages it allocated and our page pointer array
 569                 */
 570                for (i = 0; i < nr_pages_ret; i++) {
 571                        WARN_ON(pages[i]->mapping);
 572                        page_cache_release(pages[i]);
 573                }
 574                kfree(pages);
 575                pages = NULL;
 576                total_compressed = 0;
 577                nr_pages_ret = 0;
 578
 579                /* flag the file so we don't compress in the future */
 580                if (!btrfs_test_opt(root, FORCE_COMPRESS) &&
 581                    !(BTRFS_I(inode)->force_compress)) {
 582                        BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
 583                }
 584        }
 585        if (will_compress) {
 586                *num_added += 1;
 587
 588                /* the async work queues will take care of doing actual
 589                 * allocation on disk for these compressed pages,
 590                 * and will submit them to the elevator.
 591                 */
 592                add_async_extent(async_cow, start, num_bytes,
 593                                 total_compressed, pages, nr_pages_ret,
 594                                 compress_type);
 595
 596                if (start + num_bytes < end) {
 597                        start += num_bytes;
 598                        pages = NULL;
 599                        cond_resched();
 600                        goto again;
 601                }
 602        } else {
 603cleanup_and_bail_uncompressed:
 604                /*
 605                 * No compression, but we still need to write the pages in
 606                 * the file we've been given so far.  redirty the locked
 607                 * page if it corresponds to our extent and set things up
 608                 * for the async work queue to run cow_file_range to do
 609                 * the normal delalloc dance
 610                 */
 611                if (page_offset(locked_page) >= start &&
 612                    page_offset(locked_page) <= end) {
 613                        __set_page_dirty_nobuffers(locked_page);
 614                        /* unlocked later on in the async handlers */
 615                }
 616                if (redirty)
 617                        extent_range_redirty_for_io(inode, start, end);
 618                add_async_extent(async_cow, start, end - start + 1,
 619                                 0, NULL, 0, BTRFS_COMPRESS_NONE);
 620                *num_added += 1;
 621        }
 622
 623out:
 624        return ret;
 625
 626free_pages_out:
 627        for (i = 0; i < nr_pages_ret; i++) {
 628                WARN_ON(pages[i]->mapping);
 629                page_cache_release(pages[i]);
 630        }
 631        kfree(pages);
 632
 633        goto out;
 634}
 635
 636/*
 637 * phase two of compressed writeback.  This is the ordered portion
 638 * of the code, which only gets called in the order the work was
 639 * queued.  We walk all the async extents created by compress_file_range
 640 * and send them down to the disk.
 641 */
 642static noinline int submit_compressed_extents(struct inode *inode,
 643                                              struct async_cow *async_cow)
 644{
 645        struct async_extent *async_extent;
 646        u64 alloc_hint = 0;
 647        struct btrfs_key ins;
 648        struct extent_map *em;
 649        struct btrfs_root *root = BTRFS_I(inode)->root;
 650        struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
 651        struct extent_io_tree *io_tree;
 652        int ret = 0;
 653
 654        if (list_empty(&async_cow->extents))
 655                return 0;
 656
 657again:
 658        while (!list_empty(&async_cow->extents)) {
 659                async_extent = list_entry(async_cow->extents.next,
 660                                          struct async_extent, list);
 661                list_del(&async_extent->list);
 662
 663                io_tree = &BTRFS_I(inode)->io_tree;
 664
 665retry:
 666                /* did the compression code fall back to uncompressed IO? */
 667                if (!async_extent->pages) {
 668                        int page_started = 0;
 669                        unsigned long nr_written = 0;
 670
 671                        lock_extent(io_tree, async_extent->start,
 672                                         async_extent->start +
 673                                         async_extent->ram_size - 1);
 674
 675                        /* allocate blocks */
 676                        ret = cow_file_range(inode, async_cow->locked_page,
 677                                             async_extent->start,
 678                                             async_extent->start +
 679                                             async_extent->ram_size - 1,
 680                                             &page_started, &nr_written, 0);
 681
 682                        /* JDM XXX */
 683
 684                        /*
 685                         * if page_started, cow_file_range inserted an
 686                         * inline extent and took care of all the unlocking
 687                         * and IO for us.  Otherwise, we need to submit
 688                         * all those pages down to the drive.
 689                         */
 690                        if (!page_started && !ret)
 691                                extent_write_locked_range(io_tree,
 692                                                  inode, async_extent->start,
 693                                                  async_extent->start +
 694                                                  async_extent->ram_size - 1,
 695                                                  btrfs_get_extent,
 696                                                  WB_SYNC_ALL);
 697                        else if (ret)
 698                                unlock_page(async_cow->locked_page);
 699                        kfree(async_extent);
 700                        cond_resched();
 701                        continue;
 702                }
 703
 704                lock_extent(io_tree, async_extent->start,
 705                            async_extent->start + async_extent->ram_size - 1);
 706
 707                ret = btrfs_reserve_extent(root,
 708                                           async_extent->compressed_size,
 709                                           async_extent->compressed_size,
 710                                           0, alloc_hint, &ins, 1, 1);
 711                if (ret) {
 712                        int i;
 713
 714                        for (i = 0; i < async_extent->nr_pages; i++) {
 715                                WARN_ON(async_extent->pages[i]->mapping);
 716                                page_cache_release(async_extent->pages[i]);
 717                        }
 718                        kfree(async_extent->pages);
 719                        async_extent->nr_pages = 0;
 720                        async_extent->pages = NULL;
 721
 722                        if (ret == -ENOSPC) {
 723                                unlock_extent(io_tree, async_extent->start,
 724                                              async_extent->start +
 725                                              async_extent->ram_size - 1);
 726
 727                                /*
 728                                 * we need to redirty the pages if we decide to
 729                                 * fallback to uncompressed IO, otherwise we
 730                                 * will not submit these pages down to lower
 731                                 * layers.
 732                                 */
 733                                extent_range_redirty_for_io(inode,
 734                                                async_extent->start,
 735                                                async_extent->start +
 736                                                async_extent->ram_size - 1);
 737
 738                                goto retry;
 739                        }
 740                        goto out_free;
 741                }
 742
 743                /*
 744                 * here we're doing allocation and writeback of the
 745                 * compressed pages
 746                 */
 747                btrfs_drop_extent_cache(inode, async_extent->start,
 748                                        async_extent->start +
 749                                        async_extent->ram_size - 1, 0);
 750
 751                em = alloc_extent_map();
 752                if (!em) {
 753                        ret = -ENOMEM;
 754                        goto out_free_reserve;
 755                }
 756                em->start = async_extent->start;
 757                em->len = async_extent->ram_size;
 758                em->orig_start = em->start;
 759                em->mod_start = em->start;
 760                em->mod_len = em->len;
 761
 762                em->block_start = ins.objectid;
 763                em->block_len = ins.offset;
 764                em->orig_block_len = ins.offset;
 765                em->ram_bytes = async_extent->ram_size;
 766                em->bdev = root->fs_info->fs_devices->latest_bdev;
 767                em->compress_type = async_extent->compress_type;
 768                set_bit(EXTENT_FLAG_PINNED, &em->flags);
 769                set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
 770                em->generation = -1;
 771
 772                while (1) {
 773                        write_lock(&em_tree->lock);
 774                        ret = add_extent_mapping(em_tree, em, 1);
 775                        write_unlock(&em_tree->lock);
 776                        if (ret != -EEXIST) {
 777                                free_extent_map(em);
 778                                break;
 779                        }
 780                        btrfs_drop_extent_cache(inode, async_extent->start,
 781                                                async_extent->start +
 782                                                async_extent->ram_size - 1, 0);
 783                }
 784
 785                if (ret)
 786                        goto out_free_reserve;
 787
 788                ret = btrfs_add_ordered_extent_compress(inode,
 789                                                async_extent->start,
 790                                                ins.objectid,
 791                                                async_extent->ram_size,
 792                                                ins.offset,
 793                                                BTRFS_ORDERED_COMPRESSED,
 794                                                async_extent->compress_type);
 795                if (ret) {
 796                        btrfs_drop_extent_cache(inode, async_extent->start,
 797                                                async_extent->start +
 798                                                async_extent->ram_size - 1, 0);
 799                        goto out_free_reserve;
 800                }
 801
 802                /*
 803                 * clear dirty, set writeback and unlock the pages.
 804                 */
 805                extent_clear_unlock_delalloc(inode, async_extent->start,
 806                                async_extent->start +
 807                                async_extent->ram_size - 1,
 808                                NULL, EXTENT_LOCKED | EXTENT_DELALLOC,
 809                                PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
 810                                PAGE_SET_WRITEBACK);
 811                ret = btrfs_submit_compressed_write(inode,
 812                                    async_extent->start,
 813                                    async_extent->ram_size,
 814                                    ins.objectid,
 815                                    ins.offset, async_extent->pages,
 816                                    async_extent->nr_pages);
 817                alloc_hint = ins.objectid + ins.offset;
 818                kfree(async_extent);
 819                if (ret)
 820                        goto out;
 821                cond_resched();
 822        }
 823        ret = 0;
 824out:
 825        return ret;
 826out_free_reserve:
 827        btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 1);
 828out_free:
 829        extent_clear_unlock_delalloc(inode, async_extent->start,
 830                                     async_extent->start +
 831                                     async_extent->ram_size - 1,
 832                                     NULL, EXTENT_LOCKED | EXTENT_DELALLOC |
 833                                     EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING,
 834                                     PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
 835                                     PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK);
 836        kfree(async_extent);
 837        goto again;
 838}
 839
 840static u64 get_extent_allocation_hint(struct inode *inode, u64 start,
 841                                      u64 num_bytes)
 842{
 843        struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
 844        struct extent_map *em;
 845        u64 alloc_hint = 0;
 846
 847        read_lock(&em_tree->lock);
 848        em = search_extent_mapping(em_tree, start, num_bytes);
 849        if (em) {
 850                /*
 851                 * if block start isn't an actual block number then find the
 852                 * first block in this inode and use that as a hint.  If that
 853                 * block is also bogus then just don't worry about it.
 854                 */
 855                if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
 856                        free_extent_map(em);
 857                        em = search_extent_mapping(em_tree, 0, 0);
 858                        if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
 859                                alloc_hint = em->block_start;
 860                        if (em)
 861                                free_extent_map(em);
 862                } else {
 863                        alloc_hint = em->block_start;
 864                        free_extent_map(em);
 865                }
 866        }
 867        read_unlock(&em_tree->lock);
 868
 869        return alloc_hint;
 870}
 871
 872/*
 873 * when extent_io.c finds a delayed allocation range in the file,
 874 * the call backs end up in this code.  The basic idea is to
 875 * allocate extents on disk for the range, and create ordered data structs
 876 * in ram to track those extents.
 877 *
 878 * locked_page is the page that writepage had locked already.  We use
 879 * it to make sure we don't do extra locks or unlocks.
 880 *
 881 * *page_started is set to one if we unlock locked_page and do everything
 882 * required to start IO on it.  It may be clean and already done with
 883 * IO when we return.
 884 */
 885static noinline int cow_file_range(struct inode *inode,
 886                                   struct page *locked_page,
 887                                   u64 start, u64 end, int *page_started,
 888                                   unsigned long *nr_written,
 889                                   int unlock)
 890{
 891        struct btrfs_root *root = BTRFS_I(inode)->root;
 892        u64 alloc_hint = 0;
 893        u64 num_bytes;
 894        unsigned long ram_size;
 895        u64 disk_num_bytes;
 896        u64 cur_alloc_size;
 897        u64 blocksize = root->sectorsize;
 898        struct btrfs_key ins;
 899        struct extent_map *em;
 900        struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
 901        int ret = 0;
 902
 903        if (btrfs_is_free_space_inode(inode)) {
 904                WARN_ON_ONCE(1);
 905                ret = -EINVAL;
 906                goto out_unlock;
 907        }
 908
 909        num_bytes = ALIGN(end - start + 1, blocksize);
 910        num_bytes = max(blocksize,  num_bytes);
 911        disk_num_bytes = num_bytes;
 912
 913        /* if this is a small write inside eof, kick off defrag */
 914        if (num_bytes < 64 * 1024 &&
 915            (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
 916                btrfs_add_inode_defrag(NULL, inode);
 917
 918        if (start == 0) {
 919                /* lets try to make an inline extent */
 920                ret = cow_file_range_inline(root, inode, start, end, 0, 0,
 921                                            NULL);
 922                if (ret == 0) {
 923                        extent_clear_unlock_delalloc(inode, start, end, NULL,
 924                                     EXTENT_LOCKED | EXTENT_DELALLOC |
 925                                     EXTENT_DEFRAG, PAGE_UNLOCK |
 926                                     PAGE_CLEAR_DIRTY | PAGE_SET_WRITEBACK |
 927                                     PAGE_END_WRITEBACK);
 928
 929                        *nr_written = *nr_written +
 930                             (end - start + PAGE_CACHE_SIZE) / PAGE_CACHE_SIZE;
 931                        *page_started = 1;
 932                        goto out;
 933                } else if (ret < 0) {
 934                        goto out_unlock;
 935                }
 936        }
 937
 938        BUG_ON(disk_num_bytes >
 939               btrfs_super_total_bytes(root->fs_info->super_copy));
 940
 941        alloc_hint = get_extent_allocation_hint(inode, start, num_bytes);
 942        btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0);
 943
 944        while (disk_num_bytes > 0) {
 945                unsigned long op;
 946
 947                cur_alloc_size = disk_num_bytes;
 948                ret = btrfs_reserve_extent(root, cur_alloc_size,
 949                                           root->sectorsize, 0, alloc_hint,
 950                                           &ins, 1, 1);
 951                if (ret < 0)
 952                        goto out_unlock;
 953
 954                em = alloc_extent_map();
 955                if (!em) {
 956                        ret = -ENOMEM;
 957                        goto out_reserve;
 958                }
 959                em->start = start;
 960                em->orig_start = em->start;
 961                ram_size = ins.offset;
 962                em->len = ins.offset;
 963                em->mod_start = em->start;
 964                em->mod_len = em->len;
 965
 966                em->block_start = ins.objectid;
 967                em->block_len = ins.offset;
 968                em->orig_block_len = ins.offset;
 969                em->ram_bytes = ram_size;
 970                em->bdev = root->fs_info->fs_devices->latest_bdev;
 971                set_bit(EXTENT_FLAG_PINNED, &em->flags);
 972                em->generation = -1;
 973
 974                while (1) {
 975                        write_lock(&em_tree->lock);
 976                        ret = add_extent_mapping(em_tree, em, 1);
 977                        write_unlock(&em_tree->lock);
 978                        if (ret != -EEXIST) {
 979                                free_extent_map(em);
 980                                break;
 981                        }
 982                        btrfs_drop_extent_cache(inode, start,
 983                                                start + ram_size - 1, 0);
 984                }
 985                if (ret)
 986                        goto out_reserve;
 987
 988                cur_alloc_size = ins.offset;
 989                ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
 990                                               ram_size, cur_alloc_size, 0);
 991                if (ret)
 992                        goto out_drop_extent_cache;
 993
 994                if (root->root_key.objectid ==
 995                    BTRFS_DATA_RELOC_TREE_OBJECTID) {
 996                        ret = btrfs_reloc_clone_csums(inode, start,
 997                                                      cur_alloc_size);
 998                        if (ret)
 999                                goto out_drop_extent_cache;
1000                }
1001
1002                if (disk_num_bytes < cur_alloc_size)
1003                        break;
1004
1005                /* we're not doing compressed IO, don't unlock the first
1006                 * page (which the caller expects to stay locked), don't
1007                 * clear any dirty bits and don't set any writeback bits
1008                 *
1009                 * Do set the Private2 bit so we know this page was properly
1010                 * setup for writepage
1011                 */
1012                op = unlock ? PAGE_UNLOCK : 0;
1013                op |= PAGE_SET_PRIVATE2;
1014
1015                extent_clear_unlock_delalloc(inode, start,
1016                                             start + ram_size - 1, locked_page,
1017                                             EXTENT_LOCKED | EXTENT_DELALLOC,
1018                                             op);
1019                disk_num_bytes -= cur_alloc_size;
1020                num_bytes -= cur_alloc_size;
1021                alloc_hint = ins.objectid + ins.offset;
1022                start += cur_alloc_size;
1023        }
1024out:
1025        return ret;
1026
1027out_drop_extent_cache:
1028        btrfs_drop_extent_cache(inode, start, start + ram_size - 1, 0);
1029out_reserve:
1030        btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 1);
1031out_unlock:
1032        extent_clear_unlock_delalloc(inode, start, end, locked_page,
1033                                     EXTENT_LOCKED | EXTENT_DO_ACCOUNTING |
1034                                     EXTENT_DELALLOC | EXTENT_DEFRAG,
1035                                     PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
1036                                     PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK);
1037        goto out;
1038}
1039
1040/*
1041 * work queue call back to started compression on a file and pages
1042 */
1043static noinline void async_cow_start(struct btrfs_work *work)
1044{
1045        struct async_cow *async_cow;
1046        int num_added = 0;
1047        async_cow = container_of(work, struct async_cow, work);
1048
1049        compress_file_range(async_cow->inode, async_cow->locked_page,
1050                            async_cow->start, async_cow->end, async_cow,
1051                            &num_added);
1052        if (num_added == 0) {
1053                btrfs_add_delayed_iput(async_cow->inode);
1054                async_cow->inode = NULL;
1055        }
1056}
1057
1058/*
1059 * work queue call back to submit previously compressed pages
1060 */
1061static noinline void async_cow_submit(struct btrfs_work *work)
1062{
1063        struct async_cow *async_cow;
1064        struct btrfs_root *root;
1065        unsigned long nr_pages;
1066
1067        async_cow = container_of(work, struct async_cow, work);
1068
1069        root = async_cow->root;
1070        nr_pages = (async_cow->end - async_cow->start + PAGE_CACHE_SIZE) >>
1071                PAGE_CACHE_SHIFT;
1072
1073        if (atomic_sub_return(nr_pages, &root->fs_info->async_delalloc_pages) <
1074            5 * 1024 * 1024 &&
1075            waitqueue_active(&root->fs_info->async_submit_wait))
1076                wake_up(&root->fs_info->async_submit_wait);
1077
1078        if (async_cow->inode)
1079                submit_compressed_extents(async_cow->inode, async_cow);
1080}
1081
1082static noinline void async_cow_free(struct btrfs_work *work)
1083{
1084        struct async_cow *async_cow;
1085        async_cow = container_of(work, struct async_cow, work);
1086        if (async_cow->inode)
1087                btrfs_add_delayed_iput(async_cow->inode);
1088        kfree(async_cow);
1089}
1090
1091static int cow_file_range_async(struct inode *inode, struct page *locked_page,
1092                                u64 start, u64 end, int *page_started,
1093                                unsigned long *nr_written)
1094{
1095        struct async_cow *async_cow;
1096        struct btrfs_root *root = BTRFS_I(inode)->root;
1097        unsigned long nr_pages;
1098        u64 cur_end;
1099        int limit = 10 * 1024 * 1024;
1100
1101        clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED,
1102                         1, 0, NULL, GFP_NOFS);
1103        while (start < end) {
1104                async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS);
1105                BUG_ON(!async_cow); /* -ENOMEM */
1106                async_cow->inode = igrab(inode);
1107                async_cow->root = root;
1108                async_cow->locked_page = locked_page;
1109                async_cow->start = start;
1110
1111                if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS &&
1112                    !btrfs_test_opt(root, FORCE_COMPRESS))
1113                        cur_end = end;
1114                else
1115                        cur_end = min(end, start + 512 * 1024 - 1);
1116
1117                async_cow->end = cur_end;
1118                INIT_LIST_HEAD(&async_cow->extents);
1119
1120                btrfs_init_work(&async_cow->work,
1121                                btrfs_delalloc_helper,
1122                                async_cow_start, async_cow_submit,
1123                                async_cow_free);
1124
1125                nr_pages = (cur_end - start + PAGE_CACHE_SIZE) >>
1126                        PAGE_CACHE_SHIFT;
1127                atomic_add(nr_pages, &root->fs_info->async_delalloc_pages);
1128
1129                btrfs_queue_work(root->fs_info->delalloc_workers,
1130                                 &async_cow->work);
1131
1132                if (atomic_read(&root->fs_info->async_delalloc_pages) > limit) {
1133                        wait_event(root->fs_info->async_submit_wait,
1134                           (atomic_read(&root->fs_info->async_delalloc_pages) <
1135                            limit));
1136                }
1137
1138                while (atomic_read(&root->fs_info->async_submit_draining) &&
1139                      atomic_read(&root->fs_info->async_delalloc_pages)) {
1140                        wait_event(root->fs_info->async_submit_wait,
1141                          (atomic_read(&root->fs_info->async_delalloc_pages) ==
1142                           0));
1143                }
1144
1145                *nr_written += nr_pages;
1146                start = cur_end + 1;
1147        }
1148        *page_started = 1;
1149        return 0;
1150}
1151
1152static noinline int csum_exist_in_range(struct btrfs_root *root,
1153                                        u64 bytenr, u64 num_bytes)
1154{
1155        int ret;
1156        struct btrfs_ordered_sum *sums;
1157        LIST_HEAD(list);
1158
1159        ret = btrfs_lookup_csums_range(root->fs_info->csum_root, bytenr,
1160                                       bytenr + num_bytes - 1, &list, 0);
1161        if (ret == 0 && list_empty(&list))
1162                return 0;
1163
1164        while (!list_empty(&list)) {
1165                sums = list_entry(list.next, struct btrfs_ordered_sum, list);
1166                list_del(&sums->list);
1167                kfree(sums);
1168        }
1169        return 1;
1170}
1171
1172/*
1173 * when nowcow writeback call back.  This checks for snapshots or COW copies
1174 * of the extents that exist in the file, and COWs the file as required.
1175 *
1176 * If no cow copies or snapshots exist, we write directly to the existing
1177 * blocks on disk
1178 */
1179static noinline int run_delalloc_nocow(struct inode *inode,
1180                                       struct page *locked_page,
1181                              u64 start, u64 end, int *page_started, int force,
1182                              unsigned long *nr_written)
1183{
1184        struct btrfs_root *root = BTRFS_I(inode)->root;
1185        struct btrfs_trans_handle *trans;
1186        struct extent_buffer *leaf;
1187        struct btrfs_path *path;
1188        struct btrfs_file_extent_item *fi;
1189        struct btrfs_key found_key;
1190        u64 cow_start;
1191        u64 cur_offset;
1192        u64 extent_end;
1193        u64 extent_offset;
1194        u64 disk_bytenr;
1195        u64 num_bytes;
1196        u64 disk_num_bytes;
1197        u64 ram_bytes;
1198        int extent_type;
1199        int ret, err;
1200        int type;
1201        int nocow;
1202        int check_prev = 1;
1203        bool nolock;
1204        u64 ino = btrfs_ino(inode);
1205
1206        path = btrfs_alloc_path();
1207        if (!path) {
1208                extent_clear_unlock_delalloc(inode, start, end, locked_page,
1209                                             EXTENT_LOCKED | EXTENT_DELALLOC |
1210                                             EXTENT_DO_ACCOUNTING |
1211                                             EXTENT_DEFRAG, PAGE_UNLOCK |
1212                                             PAGE_CLEAR_DIRTY |
1213                                             PAGE_SET_WRITEBACK |
1214                                             PAGE_END_WRITEBACK);
1215                return -ENOMEM;
1216        }
1217
1218        nolock = btrfs_is_free_space_inode(inode);
1219
1220        if (nolock)
1221                trans = btrfs_join_transaction_nolock(root);
1222        else
1223                trans = btrfs_join_transaction(root);
1224
1225        if (IS_ERR(trans)) {
1226                extent_clear_unlock_delalloc(inode, start, end, locked_page,
1227                                             EXTENT_LOCKED | EXTENT_DELALLOC |
1228                                             EXTENT_DO_ACCOUNTING |
1229                                             EXTENT_DEFRAG, PAGE_UNLOCK |
1230                                             PAGE_CLEAR_DIRTY |
1231                                             PAGE_SET_WRITEBACK |
1232                                             PAGE_END_WRITEBACK);
1233                btrfs_free_path(path);
1234                return PTR_ERR(trans);
1235        }
1236
1237        trans->block_rsv = &root->fs_info->delalloc_block_rsv;
1238
1239        cow_start = (u64)-1;
1240        cur_offset = start;
1241        while (1) {
1242                ret = btrfs_lookup_file_extent(trans, root, path, ino,
1243                                               cur_offset, 0);
1244                if (ret < 0)
1245                        goto error;
1246                if (ret > 0 && path->slots[0] > 0 && check_prev) {
1247                        leaf = path->nodes[0];
1248                        btrfs_item_key_to_cpu(leaf, &found_key,
1249                                              path->slots[0] - 1);
1250                        if (found_key.objectid == ino &&
1251                            found_key.type == BTRFS_EXTENT_DATA_KEY)
1252                                path->slots[0]--;
1253                }
1254                check_prev = 0;
1255next_slot:
1256                leaf = path->nodes[0];
1257                if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1258                        ret = btrfs_next_leaf(root, path);
1259                        if (ret < 0)
1260                                goto error;
1261                        if (ret > 0)
1262                                break;
1263                        leaf = path->nodes[0];
1264                }
1265
1266                nocow = 0;
1267                disk_bytenr = 0;
1268                num_bytes = 0;
1269                btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1270
1271                if (found_key.objectid > ino ||
1272                    found_key.type > BTRFS_EXTENT_DATA_KEY ||
1273                    found_key.offset > end)
1274                        break;
1275
1276                if (found_key.offset > cur_offset) {
1277                        extent_end = found_key.offset;
1278                        extent_type = 0;
1279                        goto out_check;
1280                }
1281
1282                fi = btrfs_item_ptr(leaf, path->slots[0],
1283                                    struct btrfs_file_extent_item);
1284                extent_type = btrfs_file_extent_type(leaf, fi);
1285
1286                ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
1287                if (extent_type == BTRFS_FILE_EXTENT_REG ||
1288                    extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1289                        disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1290                        extent_offset = btrfs_file_extent_offset(leaf, fi);
1291                        extent_end = found_key.offset +
1292                                btrfs_file_extent_num_bytes(leaf, fi);
1293                        disk_num_bytes =
1294                                btrfs_file_extent_disk_num_bytes(leaf, fi);
1295                        if (extent_end <= start) {
1296                                path->slots[0]++;
1297                                goto next_slot;
1298                        }
1299                        if (disk_bytenr == 0)
1300                                goto out_check;
1301                        if (btrfs_file_extent_compression(leaf, fi) ||
1302                            btrfs_file_extent_encryption(leaf, fi) ||
1303                            btrfs_file_extent_other_encoding(leaf, fi))
1304                                goto out_check;
1305                        if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1306                                goto out_check;
1307                        if (btrfs_extent_readonly(root, disk_bytenr))
1308                                goto out_check;
1309                        if (btrfs_cross_ref_exist(trans, root, ino,
1310                                                  found_key.offset -
1311                                                  extent_offset, disk_bytenr))
1312                                goto out_check;
1313                        disk_bytenr += extent_offset;
1314                        disk_bytenr += cur_offset - found_key.offset;
1315                        num_bytes = min(end + 1, extent_end) - cur_offset;
1316                        /*
1317                         * if there are pending snapshots for this root,
1318                         * we fall into common COW way.
1319                         */
1320                        if (!nolock) {
1321                                err = btrfs_start_nocow_write(root);
1322                                if (!err)
1323                                        goto out_check;
1324                        }
1325                        /*
1326                         * force cow if csum exists in the range.
1327                         * this ensure that csum for a given extent are
1328                         * either valid or do not exist.
1329                         */
1330                        if (csum_exist_in_range(root, disk_bytenr, num_bytes))
1331                                goto out_check;
1332                        nocow = 1;
1333                } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1334                        extent_end = found_key.offset +
1335                                btrfs_file_extent_inline_len(leaf,
1336                                                     path->slots[0], fi);
1337                        extent_end = ALIGN(extent_end, root->sectorsize);
1338                } else {
1339                        BUG_ON(1);
1340                }
1341out_check:
1342                if (extent_end <= start) {
1343                        path->slots[0]++;
1344                        if (!nolock && nocow)
1345                                btrfs_end_nocow_write(root);
1346                        goto next_slot;
1347                }
1348                if (!nocow) {
1349                        if (cow_start == (u64)-1)
1350                                cow_start = cur_offset;
1351                        cur_offset = extent_end;
1352                        if (cur_offset > end)
1353                                break;
1354                        path->slots[0]++;
1355                        goto next_slot;
1356                }
1357
1358                btrfs_release_path(path);
1359                if (cow_start != (u64)-1) {
1360                        ret = cow_file_range(inode, locked_page,
1361                                             cow_start, found_key.offset - 1,
1362                                             page_started, nr_written, 1);
1363                        if (ret) {
1364                                if (!nolock && nocow)
1365                                        btrfs_end_nocow_write(root);
1366                                goto error;
1367                        }
1368                        cow_start = (u64)-1;
1369                }
1370
1371                if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1372                        struct extent_map *em;
1373                        struct extent_map_tree *em_tree;
1374                        em_tree = &BTRFS_I(inode)->extent_tree;
1375                        em = alloc_extent_map();
1376                        BUG_ON(!em); /* -ENOMEM */
1377                        em->start = cur_offset;
1378                        em->orig_start = found_key.offset - extent_offset;
1379                        em->len = num_bytes;
1380                        em->block_len = num_bytes;
1381                        em->block_start = disk_bytenr;
1382                        em->orig_block_len = disk_num_bytes;
1383                        em->ram_bytes = ram_bytes;
1384                        em->bdev = root->fs_info->fs_devices->latest_bdev;
1385                        em->mod_start = em->start;
1386                        em->mod_len = em->len;
1387                        set_bit(EXTENT_FLAG_PINNED, &em->flags);
1388                        set_bit(EXTENT_FLAG_FILLING, &em->flags);
1389                        em->generation = -1;
1390                        while (1) {
1391                                write_lock(&em_tree->lock);
1392                                ret = add_extent_mapping(em_tree, em, 1);
1393                                write_unlock(&em_tree->lock);
1394                                if (ret != -EEXIST) {
1395                                        free_extent_map(em);
1396                                        break;
1397                                }
1398                                btrfs_drop_extent_cache(inode, em->start,
1399                                                em->start + em->len - 1, 0);
1400                        }
1401                        type = BTRFS_ORDERED_PREALLOC;
1402                } else {
1403                        type = BTRFS_ORDERED_NOCOW;
1404                }
1405
1406                ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr,
1407                                               num_bytes, num_bytes, type);
1408                BUG_ON(ret); /* -ENOMEM */
1409
1410                if (root->root_key.objectid ==
1411                    BTRFS_DATA_RELOC_TREE_OBJECTID) {
1412                        ret = btrfs_reloc_clone_csums(inode, cur_offset,
1413                                                      num_bytes);
1414                        if (ret) {
1415                                if (!nolock && nocow)
1416                                        btrfs_end_nocow_write(root);
1417                                goto error;
1418                        }
1419                }
1420
1421                extent_clear_unlock_delalloc(inode, cur_offset,
1422                                             cur_offset + num_bytes - 1,
1423                                             locked_page, EXTENT_LOCKED |
1424                                             EXTENT_DELALLOC, PAGE_UNLOCK |
1425                                             PAGE_SET_PRIVATE2);
1426                if (!nolock && nocow)
1427                        btrfs_end_nocow_write(root);
1428                cur_offset = extent_end;
1429                if (cur_offset > end)
1430                        break;
1431        }
1432        btrfs_release_path(path);
1433
1434        if (cur_offset <= end && cow_start == (u64)-1) {
1435                cow_start = cur_offset;
1436                cur_offset = end;
1437        }
1438
1439        if (cow_start != (u64)-1) {
1440                ret = cow_file_range(inode, locked_page, cow_start, end,
1441                                     page_started, nr_written, 1);
1442                if (ret)
1443                        goto error;
1444        }
1445
1446error:
1447        err = btrfs_end_transaction(trans, root);
1448        if (!ret)
1449                ret = err;
1450
1451        if (ret && cur_offset < end)
1452                extent_clear_unlock_delalloc(inode, cur_offset, end,
1453                                             locked_page, EXTENT_LOCKED |
1454                                             EXTENT_DELALLOC | EXTENT_DEFRAG |
1455                                             EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
1456                                             PAGE_CLEAR_DIRTY |
1457                                             PAGE_SET_WRITEBACK |
1458                                             PAGE_END_WRITEBACK);
1459        btrfs_free_path(path);
1460        return ret;
1461}
1462
1463static inline int need_force_cow(struct inode *inode, u64 start, u64 end)
1464{
1465
1466        if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
1467            !(BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC))
1468                return 0;
1469
1470        /*
1471         * @defrag_bytes is a hint value, no spinlock held here,
1472         * if is not zero, it means the file is defragging.
1473         * Force cow if given extent needs to be defragged.
1474         */
1475        if (BTRFS_I(inode)->defrag_bytes &&
1476            test_range_bit(&BTRFS_I(inode)->io_tree, start, end,
1477                           EXTENT_DEFRAG, 0, NULL))
1478                return 1;
1479
1480        return 0;
1481}
1482
1483/*
1484 * extent_io.c call back to do delayed allocation processing
1485 */
1486static int run_delalloc_range(struct inode *inode, struct page *locked_page,
1487                              u64 start, u64 end, int *page_started,
1488                              unsigned long *nr_written)
1489{
1490        int ret;
1491        int force_cow = need_force_cow(inode, start, end);
1492
1493        if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW && !force_cow) {
1494                ret = run_delalloc_nocow(inode, locked_page, start, end,
1495                                         page_started, 1, nr_written);
1496        } else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC && !force_cow) {
1497                ret = run_delalloc_nocow(inode, locked_page, start, end,
1498                                         page_started, 0, nr_written);
1499        } else if (!inode_need_compress(inode)) {
1500                ret = cow_file_range(inode, locked_page, start, end,
1501                                      page_started, nr_written, 1);
1502        } else {
1503                set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
1504                        &BTRFS_I(inode)->runtime_flags);
1505                ret = cow_file_range_async(inode, locked_page, start, end,
1506                                           page_started, nr_written);
1507        }
1508        return ret;
1509}
1510
1511static void btrfs_split_extent_hook(struct inode *inode,
1512                                    struct extent_state *orig, u64 split)
1513{
1514        /* not delalloc, ignore it */
1515        if (!(orig->state & EXTENT_DELALLOC))
1516                return;
1517
1518        spin_lock(&BTRFS_I(inode)->lock);
1519        BTRFS_I(inode)->outstanding_extents++;
1520        spin_unlock(&BTRFS_I(inode)->lock);
1521}
1522
1523/*
1524 * extent_io.c merge_extent_hook, used to track merged delayed allocation
1525 * extents so we can keep track of new extents that are just merged onto old
1526 * extents, such as when we are doing sequential writes, so we can properly
1527 * account for the metadata space we'll need.
1528 */
1529static void btrfs_merge_extent_hook(struct inode *inode,
1530                                    struct extent_state *new,
1531                                    struct extent_state *other)
1532{
1533        /* not delalloc, ignore it */
1534        if (!(other->state & EXTENT_DELALLOC))
1535                return;
1536
1537        spin_lock(&BTRFS_I(inode)->lock);
1538        BTRFS_I(inode)->outstanding_extents--;
1539        spin_unlock(&BTRFS_I(inode)->lock);
1540}
1541
1542static void btrfs_add_delalloc_inodes(struct btrfs_root *root,
1543                                      struct inode *inode)
1544{
1545        spin_lock(&root->delalloc_lock);
1546        if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1547                list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
1548                              &root->delalloc_inodes);
1549                set_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1550                        &BTRFS_I(inode)->runtime_flags);
1551                root->nr_delalloc_inodes++;
1552                if (root->nr_delalloc_inodes == 1) {
1553                        spin_lock(&root->fs_info->delalloc_root_lock);
1554                        BUG_ON(!list_empty(&root->delalloc_root));
1555                        list_add_tail(&root->delalloc_root,
1556                                      &root->fs_info->delalloc_roots);
1557                        spin_unlock(&root->fs_info->delalloc_root_lock);
1558                }
1559        }
1560        spin_unlock(&root->delalloc_lock);
1561}
1562
1563static void btrfs_del_delalloc_inode(struct btrfs_root *root,
1564                                     struct inode *inode)
1565{
1566        spin_lock(&root->delalloc_lock);
1567        if (!list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1568                list_del_init(&BTRFS_I(inode)->delalloc_inodes);
1569                clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1570                          &BTRFS_I(inode)->runtime_flags);
1571                root->nr_delalloc_inodes--;
1572                if (!root->nr_delalloc_inodes) {
1573                        spin_lock(&root->fs_info->delalloc_root_lock);
1574                        BUG_ON(list_empty(&root->delalloc_root));
1575                        list_del_init(&root->delalloc_root);
1576                        spin_unlock(&root->fs_info->delalloc_root_lock);
1577                }
1578        }
1579        spin_unlock(&root->delalloc_lock);
1580}
1581
1582/*
1583 * extent_io.c set_bit_hook, used to track delayed allocation
1584 * bytes in this file, and to maintain the list of inodes that
1585 * have pending delalloc work to be done.
1586 */
1587static void btrfs_set_bit_hook(struct inode *inode,
1588                               struct extent_state *state, unsigned long *bits)
1589{
1590
1591        if ((*bits & EXTENT_DEFRAG) && !(*bits & EXTENT_DELALLOC))
1592                WARN_ON(1);
1593        /*
1594         * set_bit and clear bit hooks normally require _irqsave/restore
1595         * but in this case, we are only testing for the DELALLOC
1596         * bit, which is only set or cleared with irqs on
1597         */
1598        if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
1599                struct btrfs_root *root = BTRFS_I(inode)->root;
1600                u64 len = state->end + 1 - state->start;
1601                bool do_list = !btrfs_is_free_space_inode(inode);
1602
1603                if (*bits & EXTENT_FIRST_DELALLOC) {
1604                        *bits &= ~EXTENT_FIRST_DELALLOC;
1605                } else {
1606                        spin_lock(&BTRFS_I(inode)->lock);
1607                        BTRFS_I(inode)->outstanding_extents++;
1608                        spin_unlock(&BTRFS_I(inode)->lock);
1609                }
1610
1611                __percpu_counter_add(&root->fs_info->delalloc_bytes, len,
1612                                     root->fs_info->delalloc_batch);
1613                spin_lock(&BTRFS_I(inode)->lock);
1614                BTRFS_I(inode)->delalloc_bytes += len;
1615                if (*bits & EXTENT_DEFRAG)
1616                        BTRFS_I(inode)->defrag_bytes += len;
1617                if (do_list && !test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1618                                         &BTRFS_I(inode)->runtime_flags))
1619                        btrfs_add_delalloc_inodes(root, inode);
1620                spin_unlock(&BTRFS_I(inode)->lock);
1621        }
1622}
1623
1624/*
1625 * extent_io.c clear_bit_hook, see set_bit_hook for why
1626 */
1627static void btrfs_clear_bit_hook(struct inode *inode,
1628                                 struct extent_state *state,
1629                                 unsigned long *bits)
1630{
1631        u64 len = state->end + 1 - state->start;
1632
1633        spin_lock(&BTRFS_I(inode)->lock);
1634        if ((state->state & EXTENT_DEFRAG) && (*bits & EXTENT_DEFRAG))
1635                BTRFS_I(inode)->defrag_bytes -= len;
1636        spin_unlock(&BTRFS_I(inode)->lock);
1637
1638        /*
1639         * set_bit and clear bit hooks normally require _irqsave/restore
1640         * but in this case, we are only testing for the DELALLOC
1641         * bit, which is only set or cleared with irqs on
1642         */
1643        if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
1644                struct btrfs_root *root = BTRFS_I(inode)->root;
1645                bool do_list = !btrfs_is_free_space_inode(inode);
1646
1647                if (*bits & EXTENT_FIRST_DELALLOC) {
1648                        *bits &= ~EXTENT_FIRST_DELALLOC;
1649                } else if (!(*bits & EXTENT_DO_ACCOUNTING)) {
1650                        spin_lock(&BTRFS_I(inode)->lock);
1651                        BTRFS_I(inode)->outstanding_extents--;
1652                        spin_unlock(&BTRFS_I(inode)->lock);
1653                }
1654
1655                /*
1656                 * We don't reserve metadata space for space cache inodes so we
1657                 * don't need to call dellalloc_release_metadata if there is an
1658                 * error.
1659                 */
1660                if (*bits & EXTENT_DO_ACCOUNTING &&
1661                    root != root->fs_info->tree_root)
1662                        btrfs_delalloc_release_metadata(inode, len);
1663
1664                if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID
1665                    && do_list && !(state->state & EXTENT_NORESERVE))
1666                        btrfs_free_reserved_data_space(inode, len);
1667
1668                __percpu_counter_add(&root->fs_info->delalloc_bytes, -len,
1669                                     root->fs_info->delalloc_batch);
1670                spin_lock(&BTRFS_I(inode)->lock);
1671                BTRFS_I(inode)->delalloc_bytes -= len;
1672                if (do_list && BTRFS_I(inode)->delalloc_bytes == 0 &&
1673                    test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1674                             &BTRFS_I(inode)->runtime_flags))
1675                        btrfs_del_delalloc_inode(root, inode);
1676                spin_unlock(&BTRFS_I(inode)->lock);
1677        }
1678}
1679
1680/*
1681 * extent_io.c merge_bio_hook, this must check the chunk tree to make sure
1682 * we don't create bios that span stripes or chunks
1683 */
1684int btrfs_merge_bio_hook(int rw, struct page *page, unsigned long offset,
1685                         size_t size, struct bio *bio,
1686                         unsigned long bio_flags)
1687{
1688        struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
1689        u64 logical = (u64)bio->bi_iter.bi_sector << 9;
1690        u64 length = 0;
1691        u64 map_length;
1692        int ret;
1693
1694        if (bio_flags & EXTENT_BIO_COMPRESSED)
1695                return 0;
1696
1697        length = bio->bi_iter.bi_size;
1698        map_length = length;
1699        ret = btrfs_map_block(root->fs_info, rw, logical,
1700                              &map_length, NULL, 0);
1701        /* Will always return 0 with map_multi == NULL */
1702        BUG_ON(ret < 0);
1703        if (map_length < length + size)
1704                return 1;
1705        return 0;
1706}
1707
1708/*
1709 * in order to insert checksums into the metadata in large chunks,
1710 * we wait until bio submission time.   All the pages in the bio are
1711 * checksummed and sums are attached onto the ordered extent record.
1712 *
1713 * At IO completion time the cums attached on the ordered extent record
1714 * are inserted into the btree
1715 */
1716static int __btrfs_submit_bio_start(struct inode *inode, int rw,
1717                                    struct bio *bio, int mirror_num,
1718                                    unsigned long bio_flags,
1719                                    u64 bio_offset)
1720{
1721        struct btrfs_root *root = BTRFS_I(inode)->root;
1722        int ret = 0;
1723
1724        ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
1725        BUG_ON(ret); /* -ENOMEM */
1726        return 0;
1727}
1728
1729/*
1730 * in order to insert checksums into the metadata in large chunks,
1731 * we wait until bio submission time.   All the pages in the bio are
1732 * checksummed and sums are attached onto the ordered extent record.
1733 *
1734 * At IO completion time the cums attached on the ordered extent record
1735 * are inserted into the btree
1736 */
1737static int __btrfs_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
1738                          int mirror_num, unsigned long bio_flags,
1739                          u64 bio_offset)
1740{
1741        struct btrfs_root *root = BTRFS_I(inode)->root;
1742        int ret;
1743
1744        ret = btrfs_map_bio(root, rw, bio, mirror_num, 1);
1745        if (ret)
1746                bio_endio(bio, ret);
1747        return ret;
1748}
1749
1750/*
1751 * extent_io.c submission hook. This does the right thing for csum calculation
1752 * on write, or reading the csums from the tree before a read
1753 */
1754static int btrfs_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
1755                          int mirror_num, unsigned long bio_flags,
1756                          u64 bio_offset)
1757{
1758        struct btrfs_root *root = BTRFS_I(inode)->root;
1759        int ret = 0;
1760        int skip_sum;
1761        int metadata = 0;
1762        int async = !atomic_read(&BTRFS_I(inode)->sync_writers);
1763
1764        skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
1765
1766        if (btrfs_is_free_space_inode(inode))
1767                metadata = 2;
1768
1769        if (!(rw & REQ_WRITE)) {
1770                ret = btrfs_bio_wq_end_io(root->fs_info, bio, metadata);
1771                if (ret)
1772                        goto out;
1773
1774                if (bio_flags & EXTENT_BIO_COMPRESSED) {
1775                        ret = btrfs_submit_compressed_read(inode, bio,
1776                                                           mirror_num,
1777                                                           bio_flags);
1778                        goto out;
1779                } else if (!skip_sum) {
1780                        ret = btrfs_lookup_bio_sums(root, inode, bio, NULL);
1781                        if (ret)
1782                                goto out;
1783                }
1784                goto mapit;
1785        } else if (async && !skip_sum) {
1786                /* csum items have already been cloned */
1787                if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
1788                        goto mapit;
1789                /* we're doing a write, do the async checksumming */
1790                ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
1791                                   inode, rw, bio, mirror_num,
1792                                   bio_flags, bio_offset,
1793                                   __btrfs_submit_bio_start,
1794                                   __btrfs_submit_bio_done);
1795                goto out;
1796        } else if (!skip_sum) {
1797                ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
1798                if (ret)
1799                        goto out;
1800        }
1801
1802mapit:
1803        ret = btrfs_map_bio(root, rw, bio, mirror_num, 0);
1804
1805out:
1806        if (ret < 0)
1807                bio_endio(bio, ret);
1808        return ret;
1809}
1810
1811/*
1812 * given a list of ordered sums record them in the inode.  This happens
1813 * at IO completion time based on sums calculated at bio submission time.
1814 */
1815static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
1816                             struct inode *inode, u64 file_offset,
1817                             struct list_head *list)
1818{
1819        struct btrfs_ordered_sum *sum;
1820
1821        list_for_each_entry(sum, list, list) {
1822                trans->adding_csums = 1;
1823                btrfs_csum_file_blocks(trans,
1824                       BTRFS_I(inode)->root->fs_info->csum_root, sum);
1825                trans->adding_csums = 0;
1826        }
1827        return 0;
1828}
1829
1830int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end,
1831                              struct extent_state **cached_state)
1832{
1833        WARN_ON((end & (PAGE_CACHE_SIZE - 1)) == 0);
1834        return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end,
1835                                   cached_state, GFP_NOFS);
1836}
1837
1838/* see btrfs_writepage_start_hook for details on why this is required */
1839struct btrfs_writepage_fixup {
1840        struct page *page;
1841        struct btrfs_work work;
1842};
1843
1844static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
1845{
1846        struct btrfs_writepage_fixup *fixup;
1847        struct btrfs_ordered_extent *ordered;
1848        struct extent_state *cached_state = NULL;
1849        struct page *page;
1850        struct inode *inode;
1851        u64 page_start;
1852        u64 page_end;
1853        int ret;
1854
1855        fixup = container_of(work, struct btrfs_writepage_fixup, work);
1856        page = fixup->page;
1857again:
1858        lock_page(page);
1859        if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
1860                ClearPageChecked(page);
1861                goto out_page;
1862        }
1863
1864        inode = page->mapping->host;
1865        page_start = page_offset(page);
1866        page_end = page_offset(page) + PAGE_CACHE_SIZE - 1;
1867
1868        lock_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end, 0,
1869                         &cached_state);
1870
1871        /* already ordered? We're done */
1872        if (PagePrivate2(page))
1873                goto out;
1874
1875        ordered = btrfs_lookup_ordered_extent(inode, page_start);
1876        if (ordered) {
1877                unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start,
1878                                     page_end, &cached_state, GFP_NOFS);
1879                unlock_page(page);
1880                btrfs_start_ordered_extent(inode, ordered, 1);
1881                btrfs_put_ordered_extent(ordered);
1882                goto again;
1883        }
1884
1885        ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
1886        if (ret) {
1887                mapping_set_error(page->mapping, ret);
1888                end_extent_writepage(page, ret, page_start, page_end);
1889                ClearPageChecked(page);
1890                goto out;
1891         }
1892
1893        btrfs_set_extent_delalloc(inode, page_start, page_end, &cached_state);
1894        ClearPageChecked(page);
1895        set_page_dirty(page);
1896out:
1897        unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, page_end,
1898                             &cached_state, GFP_NOFS);
1899out_page:
1900        unlock_page(page);
1901        page_cache_release(page);
1902        kfree(fixup);
1903}
1904
1905/*
1906 * There are a few paths in the higher layers of the kernel that directly
1907 * set the page dirty bit without asking the filesystem if it is a
1908 * good idea.  This causes problems because we want to make sure COW
1909 * properly happens and the data=ordered rules are followed.
1910 *
1911 * In our case any range that doesn't have the ORDERED bit set
1912 * hasn't been properly setup for IO.  We kick off an async process
1913 * to fix it up.  The async helper will wait for ordered extents, set
1914 * the delalloc bit and make it safe to write the page.
1915 */
1916static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end)
1917{
1918        struct inode *inode = page->mapping->host;
1919        struct btrfs_writepage_fixup *fixup;
1920        struct btrfs_root *root = BTRFS_I(inode)->root;
1921
1922        /* this page is properly in the ordered list */
1923        if (TestClearPagePrivate2(page))
1924                return 0;
1925
1926        if (PageChecked(page))
1927                return -EAGAIN;
1928
1929        fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
1930        if (!fixup)
1931                return -EAGAIN;
1932
1933        SetPageChecked(page);
1934        page_cache_get(page);
1935        btrfs_init_work(&fixup->work, btrfs_fixup_helper,
1936                        btrfs_writepage_fixup_worker, NULL, NULL);
1937        fixup->page = page;
1938        btrfs_queue_work(root->fs_info->fixup_workers, &fixup->work);
1939        return -EBUSY;
1940}
1941
1942static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
1943                                       struct inode *inode, u64 file_pos,
1944                                       u64 disk_bytenr, u64 disk_num_bytes,
1945                                       u64 num_bytes, u64 ram_bytes,
1946                                       u8 compression, u8 encryption,
1947                                       u16 other_encoding, int extent_type)
1948{
1949        struct btrfs_root *root = BTRFS_I(inode)->root;
1950        struct btrfs_file_extent_item *fi;
1951        struct btrfs_path *path;
1952        struct extent_buffer *leaf;
1953        struct btrfs_key ins;
1954        int extent_inserted = 0;
1955        int ret;
1956
1957        path = btrfs_alloc_path();
1958        if (!path)
1959                return -ENOMEM;
1960
1961        /*
1962         * we may be replacing one extent in the tree with another.
1963         * The new extent is pinned in the extent map, and we don't want
1964         * to drop it from the cache until it is completely in the btree.
1965         *
1966         * So, tell btrfs_drop_extents to leave this extent in the cache.
1967         * the caller is expected to unpin it and allow it to be merged
1968         * with the others.
1969         */
1970        ret = __btrfs_drop_extents(trans, root, inode, path, file_pos,
1971                                   file_pos + num_bytes, NULL, 0,
1972                                   1, sizeof(*fi), &extent_inserted);
1973        if (ret)
1974                goto out;
1975
1976        if (!extent_inserted) {
1977                ins.objectid = btrfs_ino(inode);
1978                ins.offset = file_pos;
1979                ins.type = BTRFS_EXTENT_DATA_KEY;
1980
1981                path->leave_spinning = 1;
1982                ret = btrfs_insert_empty_item(trans, root, path, &ins,
1983                                              sizeof(*fi));
1984                if (ret)
1985                        goto out;
1986        }
1987        leaf = path->nodes[0];
1988        fi = btrfs_item_ptr(leaf, path->slots[0],
1989                            struct btrfs_file_extent_item);
1990        btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1991        btrfs_set_file_extent_type(leaf, fi, extent_type);
1992        btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr);
1993        btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes);
1994        btrfs_set_file_extent_offset(leaf, fi, 0);
1995        btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
1996        btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes);
1997        btrfs_set_file_extent_compression(leaf, fi, compression);
1998        btrfs_set_file_extent_encryption(leaf, fi, encryption);
1999        btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding);
2000
2001        btrfs_mark_buffer_dirty(leaf);
2002        btrfs_release_path(path);
2003
2004        inode_add_bytes(inode, num_bytes);
2005
2006        ins.objectid = disk_bytenr;
2007        ins.offset = disk_num_bytes;
2008        ins.type = BTRFS_EXTENT_ITEM_KEY;
2009        ret = btrfs_alloc_reserved_file_extent(trans, root,
2010                                        root->root_key.objectid,
2011                                        btrfs_ino(inode), file_pos, &ins);
2012out:
2013        btrfs_free_path(path);
2014
2015        return ret;
2016}
2017
2018/* snapshot-aware defrag */
2019struct sa_defrag_extent_backref {
2020        struct rb_node node;
2021        struct old_sa_defrag_extent *old;
2022        u64 root_id;
2023        u64 inum;
2024        u64 file_pos;
2025        u64 extent_offset;
2026        u64 num_bytes;
2027        u64 generation;
2028};
2029
2030struct old_sa_defrag_extent {
2031        struct list_head list;
2032        struct new_sa_defrag_extent *new;
2033
2034        u64 extent_offset;
2035        u64 bytenr;
2036        u64 offset;
2037        u64 len;
2038        int count;
2039};
2040
2041struct new_sa_defrag_extent {
2042        struct rb_root root;
2043        struct list_head head;
2044        struct btrfs_path *path;
2045        struct inode *inode;
2046        u64 file_pos;
2047        u64 len;
2048        u64 bytenr;
2049        u64 disk_len;
2050        u8 compress_type;
2051};
2052
2053static int backref_comp(struct sa_defrag_extent_backref *b1,
2054                        struct sa_defrag_extent_backref *b2)
2055{
2056        if (b1->root_id < b2->root_id)
2057                return -1;
2058        else if (b1->root_id > b2->root_id)
2059                return 1;
2060
2061        if (b1->inum < b2->inum)
2062                return -1;
2063        else if (b1->inum > b2->inum)
2064                return 1;
2065
2066        if (b1->file_pos < b2->file_pos)
2067                return -1;
2068        else if (b1->file_pos > b2->file_pos)
2069                return 1;
2070
2071        /*
2072         * [------------------------------] ===> (a range of space)
2073         *     |<--->|   |<---->| =============> (fs/file tree A)
2074         * |<---------------------------->| ===> (fs/file tree B)
2075         *
2076         * A range of space can refer to two file extents in one tree while
2077         * refer to only one file extent in another tree.
2078         *
2079         * So we may process a disk offset more than one time(two extents in A)
2080         * and locate at the same extent(one extent in B), then insert two same
2081         * backrefs(both refer to the extent in B).
2082         */
2083        return 0;
2084}
2085
2086static void backref_insert(struct rb_root *root,
2087                           struct sa_defrag_extent_backref *backref)
2088{
2089        struct rb_node **p = &root->rb_node;
2090        struct rb_node *parent = NULL;
2091        struct sa_defrag_extent_backref *entry;
2092        int ret;
2093
2094        while (*p) {
2095                parent = *p;
2096                entry = rb_entry(parent, struct sa_defrag_extent_backref, node);
2097
2098                ret = backref_comp(backref, entry);
2099                if (ret < 0)
2100                        p = &(*p)->rb_left;
2101                else
2102                        p = &(*p)->rb_right;
2103        }
2104
2105        rb_link_node(&backref->node, parent, p);
2106        rb_insert_color(&backref->node, root);
2107}
2108
2109/*
2110 * Note the backref might has changed, and in this case we just return 0.
2111 */
2112static noinline int record_one_backref(u64 inum, u64 offset, u64 root_id,
2113                                       void *ctx)
2114{
2115        struct btrfs_file_extent_item *extent;
2116        struct btrfs_fs_info *fs_info;
2117        struct old_sa_defrag_extent *old = ctx;
2118        struct new_sa_defrag_extent *new = old->new;
2119        struct btrfs_path *path = new->path;
2120        struct btrfs_key key;
2121        struct btrfs_root *root;
2122        struct sa_defrag_extent_backref *backref;
2123        struct extent_buffer *leaf;
2124        struct inode *inode = new->inode;
2125        int slot;
2126        int ret;
2127        u64 extent_offset;
2128        u64 num_bytes;
2129
2130        if (BTRFS_I(inode)->root->root_key.objectid == root_id &&
2131            inum == btrfs_ino(inode))
2132                return 0;
2133
2134        key.objectid = root_id;
2135        key.type = BTRFS_ROOT_ITEM_KEY;
2136        key.offset = (u64)-1;
2137
2138        fs_info = BTRFS_I(inode)->root->fs_info;
2139        root = btrfs_read_fs_root_no_name(fs_info, &key);
2140        if (IS_ERR(root)) {
2141                if (PTR_ERR(root) == -ENOENT)
2142                        return 0;
2143                WARN_ON(1);
2144                pr_debug("inum=%llu, offset=%llu, root_id=%llu\n",
2145                         inum, offset, root_id);
2146                return PTR_ERR(root);
2147        }
2148
2149        key.objectid = inum;
2150        key.type = BTRFS_EXTENT_DATA_KEY;
2151        if (offset > (u64)-1 << 32)
2152                key.offset = 0;
2153        else
2154                key.offset = offset;
2155
2156        ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2157        if (WARN_ON(ret < 0))
2158                return ret;
2159        ret = 0;
2160
2161        while (1) {
2162                cond_resched();
2163
2164                leaf = path->nodes[0];
2165                slot = path->slots[0];
2166
2167                if (slot >= btrfs_header_nritems(leaf)) {
2168                        ret = btrfs_next_leaf(root, path);
2169                        if (ret < 0) {
2170                                goto out;
2171                        } else if (ret > 0) {
2172                                ret = 0;
2173                                goto out;
2174                        }
2175                        continue;
2176                }
2177
2178                path->slots[0]++;
2179
2180                btrfs_item_key_to_cpu(leaf, &key, slot);
2181
2182                if (key.objectid > inum)
2183                        goto out;
2184
2185                if (key.objectid < inum || key.type != BTRFS_EXTENT_DATA_KEY)
2186                        continue;
2187
2188                extent = btrfs_item_ptr(leaf, slot,
2189                                        struct btrfs_file_extent_item);
2190
2191                if (btrfs_file_extent_disk_bytenr(leaf, extent) != old->bytenr)
2192                        continue;
2193
2194                /*
2195                 * 'offset' refers to the exact key.offset,
2196                 * NOT the 'offset' field in btrfs_extent_data_ref, ie.
2197                 * (key.offset - extent_offset).
2198                 */
2199                if (key.offset != offset)
2200                        continue;
2201
2202                extent_offset = btrfs_file_extent_offset(leaf, extent);
2203                num_bytes = btrfs_file_extent_num_bytes(leaf, extent);
2204
2205                if (extent_offset >= old->extent_offset + old->offset +
2206                    old->len || extent_offset + num_bytes <=
2207                    old->extent_offset + old->offset)
2208                        continue;
2209                break;
2210        }
2211
2212        backref = kmalloc(sizeof(*backref), GFP_NOFS);
2213        if (!backref) {
2214                ret = -ENOENT;
2215                goto out;
2216        }
2217
2218        backref->root_id = root_id;
2219        backref->inum = inum;
2220        backref->file_pos = offset;
2221        backref->num_bytes = num_bytes;
2222        backref->extent_offset = extent_offset;
2223        backref->generation = btrfs_file_extent_generation(leaf, extent);
2224        backref->old = old;
2225        backref_insert(&new->root, backref);
2226        old->count++;
2227out:
2228        btrfs_release_path(path);
2229        WARN_ON(ret);
2230        return ret;
2231}
2232
2233static noinline bool record_extent_backrefs(struct btrfs_path *path,
2234                                   struct new_sa_defrag_extent *new)
2235{
2236        struct btrfs_fs_info *fs_info = BTRFS_I(new->inode)->root->fs_info;
2237        struct old_sa_defrag_extent *old, *tmp;
2238        int ret;
2239
2240        new->path = path;
2241
2242        list_for_each_entry_safe(old, tmp, &new->head, list) {
2243                ret = iterate_inodes_from_logical(old->bytenr +
2244                                                  old->extent_offset, fs_info,
2245                                                  path, record_one_backref,
2246                                                  old);
2247                if (ret < 0 && ret != -ENOENT)
2248                        return false;
2249
2250                /* no backref to be processed for this extent */
2251                if (!old->count) {
2252                        list_del(&old->list);
2253                        kfree(old);
2254                }
2255        }
2256
2257        if (list_empty(&new->head))
2258                return false;
2259
2260        return true;
2261}
2262
2263static int relink_is_mergable(struct extent_buffer *leaf,
2264                              struct btrfs_file_extent_item *fi,
2265                              struct new_sa_defrag_extent *new)
2266{
2267        if (btrfs_file_extent_disk_bytenr(leaf, fi) != new->bytenr)
2268                return 0;
2269
2270        if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
2271                return 0;
2272
2273        if (btrfs_file_extent_compression(leaf, fi) != new->compress_type)
2274                return 0;
2275
2276        if (btrfs_file_extent_encryption(leaf, fi) ||
2277            btrfs_file_extent_other_encoding(leaf, fi))
2278                return 0;
2279
2280        return 1;
2281}
2282
2283/*
2284 * Note the backref might has changed, and in this case we just return 0.
2285 */
2286static noinline int relink_extent_backref(struct btrfs_path *path,
2287                                 struct sa_defrag_extent_backref *prev,
2288                                 struct sa_defrag_extent_backref *backref)
2289{
2290        struct btrfs_file_extent_item *extent;
2291        struct btrfs_file_extent_item *item;
2292        struct btrfs_ordered_extent *ordered;
2293        struct btrfs_trans_handle *trans;
2294        struct btrfs_fs_info *fs_info;
2295        struct btrfs_root *root;
2296        struct btrfs_key key;
2297        struct extent_buffer *leaf;
2298        struct old_sa_defrag_extent *old = backref->old;
2299        struct new_sa_defrag_extent *new = old->new;
2300        struct inode *src_inode = new->inode;
2301        struct inode *inode;
2302        struct extent_state *cached = NULL;
2303        int ret = 0;
2304        u64 start;
2305        u64 len;
2306        u64 lock_start;
2307        u64 lock_end;
2308        bool merge = false;
2309        int index;
2310
2311        if (prev && prev->root_id == backref->root_id &&
2312            prev->inum == backref->inum &&
2313            prev->file_pos + prev->num_bytes == backref->file_pos)
2314                merge = true;
2315
2316        /* step 1: get root */
2317        key.objectid = backref->root_id;
2318        key.type = BTRFS_ROOT_ITEM_KEY;
2319        key.offset = (u64)-1;
2320
2321        fs_info = BTRFS_I(src_inode)->root->fs_info;
2322        index = srcu_read_lock(&fs_info->subvol_srcu);
2323
2324        root = btrfs_read_fs_root_no_name(fs_info, &key);
2325        if (IS_ERR(root)) {
2326                srcu_read_unlock(&fs_info->subvol_srcu, index);
2327                if (PTR_ERR(root) == -ENOENT)
2328                        return 0;
2329                return PTR_ERR(root);
2330        }
2331
2332        if (btrfs_root_readonly(root)) {
2333                srcu_read_unlock(&fs_info->subvol_srcu, index);
2334                return 0;
2335        }
2336
2337        /* step 2: get inode */
2338        key.objectid = backref->inum;
2339        key.type = BTRFS_INODE_ITEM_KEY;
2340        key.offset = 0;
2341
2342        inode = btrfs_iget(fs_info->sb, &key, root, NULL);
2343        if (IS_ERR(inode)) {
2344                srcu_read_unlock(&fs_info->subvol_srcu, index);
2345                return 0;
2346        }
2347
2348        srcu_read_unlock(&fs_info->subvol_srcu, index);
2349
2350        /* step 3: relink backref */
2351        lock_start = backref->file_pos;
2352        lock_end = backref->file_pos + backref->num_bytes - 1;
2353        lock_extent_bits(&BTRFS_I(inode)->io_tree, lock_start, lock_end,
2354                         0, &cached);
2355
2356        ordered = btrfs_lookup_first_ordered_extent(inode, lock_end);
2357        if (ordered) {
2358                btrfs_put_ordered_extent(ordered);
2359                goto out_unlock;
2360        }
2361
2362        trans = btrfs_join_transaction(root);
2363        if (IS_ERR(trans)) {
2364                ret = PTR_ERR(trans);
2365                goto out_unlock;
2366        }
2367
2368        key.objectid = backref->inum;
2369        key.type = BTRFS_EXTENT_DATA_KEY;
2370        key.offset = backref->file_pos;
2371
2372        ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2373        if (ret < 0) {
2374                goto out_free_path;
2375        } else if (ret > 0) {
2376                ret = 0;
2377                goto out_free_path;
2378        }
2379
2380        extent = btrfs_item_ptr(path->nodes[0], path->slots[0],
2381                                struct btrfs_file_extent_item);
2382
2383        if (btrfs_file_extent_generation(path->nodes[0], extent) !=
2384            backref->generation)
2385                goto out_free_path;
2386
2387        btrfs_release_path(path);
2388
2389        start = backref->file_pos;
2390        if (backref->extent_offset < old->extent_offset + old->offset)
2391                start += old->extent_offset + old->offset -
2392                         backref->extent_offset;
2393
2394        len = min(backref->extent_offset + backref->num_bytes,
2395                  old->extent_offset + old->offset + old->len);
2396        len -= max(backref->extent_offset, old->extent_offset + old->offset);
2397
2398        ret = btrfs_drop_extents(trans, root, inode, start,
2399                                 start + len, 1);
2400        if (ret)
2401                goto out_free_path;
2402again:
2403        key.objectid = btrfs_ino(inode);
2404        key.type = BTRFS_EXTENT_DATA_KEY;
2405        key.offset = start;
2406
2407        path->leave_spinning = 1;
2408        if (merge) {
2409                struct btrfs_file_extent_item *fi;
2410                u64 extent_len;
2411                struct btrfs_key found_key;
2412
2413                ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2414                if (ret < 0)
2415                        goto out_free_path;
2416
2417                path->slots[0]--;
2418                leaf = path->nodes[0];
2419                btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2420
2421                fi = btrfs_item_ptr(leaf, path->slots[0],
2422                                    struct btrfs_file_extent_item);
2423                extent_len = btrfs_file_extent_num_bytes(leaf, fi);
2424
2425                if (extent_len + found_key.offset == start &&
2426                    relink_is_mergable(leaf, fi, new)) {
2427                        btrfs_set_file_extent_num_bytes(leaf, fi,
2428                                                        extent_len + len);
2429                        btrfs_mark_buffer_dirty(leaf);
2430                        inode_add_bytes(inode, len);
2431
2432                        ret = 1;
2433                        goto out_free_path;
2434                } else {
2435                        merge = false;
2436                        btrfs_release_path(path);
2437                        goto again;
2438                }
2439        }
2440
2441        ret = btrfs_insert_empty_item(trans, root, path, &key,
2442                                        sizeof(*extent));
2443        if (ret) {
2444                btrfs_abort_transaction(trans, root, ret);
2445                goto out_free_path;
2446        }
2447
2448        leaf = path->nodes[0];
2449        item = btrfs_item_ptr(leaf, path->slots[0],
2450                                struct btrfs_file_extent_item);
2451        btrfs_set_file_extent_disk_bytenr(leaf, item, new->bytenr);
2452        btrfs_set_file_extent_disk_num_bytes(leaf, item, new->disk_len);
2453        btrfs_set_file_extent_offset(leaf, item, start - new->file_pos);
2454        btrfs_set_file_extent_num_bytes(leaf, item, len);
2455        btrfs_set_file_extent_ram_bytes(leaf, item, new->len);
2456        btrfs_set_file_extent_generation(leaf, item, trans->transid);
2457        btrfs_set_file_extent_type(leaf, item, BTRFS_FILE_EXTENT_REG);
2458        btrfs_set_file_extent_compression(leaf, item, new->compress_type);
2459        btrfs_set_file_extent_encryption(leaf, item, 0);
2460        btrfs_set_file_extent_other_encoding(leaf, item, 0);
2461
2462        btrfs_mark_buffer_dirty(leaf);
2463        inode_add_bytes(inode, len);
2464        btrfs_release_path(path);
2465
2466        ret = btrfs_inc_extent_ref(trans, root, new->bytenr,
2467                        new->disk_len, 0,
2468                        backref->root_id, backref->inum,
2469                        new->file_pos, 0);      /* start - extent_offset */
2470        if (ret) {
2471                btrfs_abort_transaction(trans, root, ret);
2472                goto out_free_path;
2473        }
2474
2475        ret = 1;
2476out_free_path:
2477        btrfs_release_path(path);
2478        path->leave_spinning = 0;
2479        btrfs_end_transaction(trans, root);
2480out_unlock:
2481        unlock_extent_cached(&BTRFS_I(inode)->io_tree, lock_start, lock_end,
2482                             &cached, GFP_NOFS);
2483        iput(inode);
2484        return ret;
2485}
2486
2487static void free_sa_defrag_extent(struct new_sa_defrag_extent *new)
2488{
2489        struct old_sa_defrag_extent *old, *tmp;
2490
2491        if (!new)
2492                return;
2493
2494        list_for_each_entry_safe(old, tmp, &new->head, list) {
2495                list_del(&old->list);
2496                kfree(old);
2497        }
2498        kfree(new);
2499}
2500
2501static void relink_file_extents(struct new_sa_defrag_extent *new)
2502{
2503        struct btrfs_path *path;
2504        struct sa_defrag_extent_backref *backref;
2505        struct sa_defrag_extent_backref *prev = NULL;
2506        struct inode *inode;
2507        struct btrfs_root *root;
2508        struct rb_node *node;
2509        int ret;
2510
2511        inode = new->inode;
2512        root = BTRFS_I(inode)->root;
2513
2514        path = btrfs_alloc_path();
2515        if (!path)
2516                return;
2517
2518        if (!record_extent_backrefs(path, new)) {
2519                btrfs_free_path(path);
2520                goto out;
2521        }
2522        btrfs_release_path(path);
2523
2524        while (1) {
2525                node = rb_first(&new->root);
2526                if (!node)
2527                        break;
2528                rb_erase(node, &new->root);
2529
2530                backref = rb_entry(node, struct sa_defrag_extent_backref, node);
2531
2532                ret = relink_extent_backref(path, prev, backref);
2533                WARN_ON(ret < 0);
2534
2535                kfree(prev);
2536
2537                if (ret == 1)
2538                        prev = backref;
2539                else
2540                        prev = NULL;
2541                cond_resched();
2542        }
2543        kfree(prev);
2544
2545        btrfs_free_path(path);
2546out:
2547        free_sa_defrag_extent(new);
2548
2549        atomic_dec(&root->fs_info->defrag_running);
2550        wake_up(&root->fs_info->transaction_wait);
2551}
2552
2553static struct new_sa_defrag_extent *
2554record_old_file_extents(struct inode *inode,
2555                        struct btrfs_ordered_extent *ordered)
2556{
2557        struct btrfs_root *root = BTRFS_I(inode)->root;
2558        struct btrfs_path *path;
2559        struct btrfs_key key;
2560        struct old_sa_defrag_extent *old;
2561        struct new_sa_defrag_extent *new;
2562        int ret;
2563
2564        new = kmalloc(sizeof(*new), GFP_NOFS);
2565        if (!new)
2566                return NULL;
2567
2568        new->inode = inode;
2569        new->file_pos = ordered->file_offset;
2570        new->len = ordered->len;
2571        new->bytenr = ordered->start;
2572        new->disk_len = ordered->disk_len;
2573        new->compress_type = ordered->compress_type;
2574        new->root = RB_ROOT;
2575        INIT_LIST_HEAD(&new->head);
2576
2577        path = btrfs_alloc_path();
2578        if (!path)
2579                goto out_kfree;
2580
2581        key.objectid = btrfs_ino(inode);
2582        key.type = BTRFS_EXTENT_DATA_KEY;
2583        key.offset = new->file_pos;
2584
2585        ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2586        if (ret < 0)
2587                goto out_free_path;
2588        if (ret > 0 && path->slots[0] > 0)
2589                path->slots[0]--;
2590
2591        /* find out all the old extents for the file range */
2592        while (1) {
2593                struct btrfs_file_extent_item *extent;
2594                struct extent_buffer *l;
2595                int slot;
2596                u64 num_bytes;
2597                u64 offset;
2598                u64 end;
2599                u64 disk_bytenr;
2600                u64 extent_offset;
2601
2602                l = path->nodes[0];
2603                slot = path->slots[0];
2604
2605                if (slot >= btrfs_header_nritems(l)) {
2606                        ret = btrfs_next_leaf(root, path);
2607                        if (ret < 0)
2608                                goto out_free_path;
2609                        else if (ret > 0)
2610                                break;
2611                        continue;
2612                }
2613
2614                btrfs_item_key_to_cpu(l, &key, slot);
2615
2616                if (key.objectid != btrfs_ino(inode))
2617                        break;
2618                if (key.type != BTRFS_EXTENT_DATA_KEY)
2619                        break;
2620                if (key.offset >= new->file_pos + new->len)
2621                        break;
2622
2623                extent = btrfs_item_ptr(l, slot, struct btrfs_file_extent_item);
2624
2625                num_bytes = btrfs_file_extent_num_bytes(l, extent);
2626                if (key.offset + num_bytes < new->file_pos)
2627                        goto next;
2628
2629                disk_bytenr = btrfs_file_extent_disk_bytenr(l, extent);
2630                if (!disk_bytenr)
2631                        goto next;
2632
2633                extent_offset = btrfs_file_extent_offset(l, extent);
2634
2635                old = kmalloc(sizeof(*old), GFP_NOFS);
2636                if (!old)
2637                        goto out_free_path;
2638
2639                offset = max(new->file_pos, key.offset);
2640                end = min(new->file_pos + new->len, key.offset + num_bytes);
2641
2642                old->bytenr = disk_bytenr;
2643                old->extent_offset = extent_offset;
2644                old->offset = offset - key.offset;
2645                old->len = end - offset;
2646                old->new = new;
2647                old->count = 0;
2648                list_add_tail(&old->list, &new->head);
2649next:
2650                path->slots[0]++;
2651                cond_resched();
2652        }
2653
2654        btrfs_free_path(path);
2655        atomic_inc(&root->fs_info->defrag_running);
2656
2657        return new;
2658
2659out_free_path:
2660        btrfs_free_path(path);
2661out_kfree:
2662        free_sa_defrag_extent(new);
2663        return NULL;
2664}
2665
2666static void btrfs_release_delalloc_bytes(struct btrfs_root *root,
2667                                         u64 start, u64 len)
2668{
2669        struct btrfs_block_group_cache *cache;
2670
2671        cache = btrfs_lookup_block_group(root->fs_info, start);
2672        ASSERT(cache);
2673
2674        spin_lock(&cache->lock);
2675        cache->delalloc_bytes -= len;
2676        spin_unlock(&cache->lock);
2677
2678        btrfs_put_block_group(cache);
2679}
2680
2681/* as ordered data IO finishes, this gets called so we can finish
2682 * an ordered extent if the range of bytes in the file it covers are
2683 * fully written.
2684 */
2685static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent)
2686{
2687        struct inode *inode = ordered_extent->inode;
2688        struct btrfs_root *root = BTRFS_I(inode)->root;
2689        struct btrfs_trans_handle *trans = NULL;
2690        struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2691        struct extent_state *cached_state = NULL;
2692        struct new_sa_defrag_extent *new = NULL;
2693        int compress_type = 0;
2694        int ret = 0;
2695        u64 logical_len = ordered_extent->len;
2696        bool nolock;
2697        bool truncated = false;
2698
2699        nolock = btrfs_is_free_space_inode(inode);
2700
2701        if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) {
2702                ret = -EIO;
2703                goto out;
2704        }
2705
2706        btrfs_free_io_failure_record(inode, ordered_extent->file_offset,
2707                                     ordered_extent->file_offset +
2708                                     ordered_extent->len - 1);
2709
2710        if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) {
2711                truncated = true;
2712                logical_len = ordered_extent->truncated_len;
2713                /* Truncated the entire extent, don't bother adding */
2714                if (!logical_len)
2715                        goto out;
2716        }
2717
2718        if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
2719                BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */
2720                btrfs_ordered_update_i_size(inode, 0, ordered_extent);
2721                if (nolock)
2722                        trans = btrfs_join_transaction_nolock(root);
2723                else
2724                        trans = btrfs_join_transaction(root);
2725                if (IS_ERR(trans)) {
2726                        ret = PTR_ERR(trans);
2727                        trans = NULL;
2728                        goto out;
2729                }
2730                trans->block_rsv = &root->fs_info->delalloc_block_rsv;
2731                ret = btrfs_update_inode_fallback(trans, root, inode);
2732                if (ret) /* -ENOMEM or corruption */
2733                        btrfs_abort_transaction(trans, root, ret);
2734                goto out;
2735        }
2736
2737        lock_extent_bits(io_tree, ordered_extent->file_offset,
2738                         ordered_extent->file_offset + ordered_extent->len - 1,
2739                         0, &cached_state);
2740
2741        ret = test_range_bit(io_tree, ordered_extent->file_offset,
2742                        ordered_extent->file_offset + ordered_extent->len - 1,
2743                        EXTENT_DEFRAG, 1, cached_state);
2744        if (ret) {
2745                u64 last_snapshot = btrfs_root_last_snapshot(&root->root_item);
2746                if (0 && last_snapshot >= BTRFS_I(inode)->generation)
2747                        /* the inode is shared */
2748                        new = record_old_file_extents(inode, ordered_extent);
2749
2750                clear_extent_bit(io_tree, ordered_extent->file_offset,
2751                        ordered_extent->file_offset + ordered_extent->len - 1,
2752                        EXTENT_DEFRAG, 0, 0, &cached_state, GFP_NOFS);
2753        }
2754
2755        if (nolock)
2756                trans = btrfs_join_transaction_nolock(root);
2757        else
2758                trans = btrfs_join_transaction(root);
2759        if (IS_ERR(trans)) {
2760                ret = PTR_ERR(trans);
2761                trans = NULL;
2762                goto out_unlock;
2763        }
2764
2765        trans->block_rsv = &root->fs_info->delalloc_block_rsv;
2766
2767        if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
2768                compress_type = ordered_extent->compress_type;
2769        if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
2770                BUG_ON(compress_type);
2771                ret = btrfs_mark_extent_written(trans, inode,
2772                                                ordered_extent->file_offset,
2773                                                ordered_extent->file_offset +
2774                                                logical_len);
2775        } else {
2776                BUG_ON(root == root->fs_info->tree_root);
2777                ret = insert_reserved_file_extent(trans, inode,
2778                                                ordered_extent->file_offset,
2779                                                ordered_extent->start,
2780                                                ordered_extent->disk_len,
2781                                                logical_len, logical_len,
2782                                                compress_type, 0, 0,
2783                                                BTRFS_FILE_EXTENT_REG);
2784                if (!ret)
2785                        btrfs_release_delalloc_bytes(root,
2786                                                     ordered_extent->start,
2787                                                     ordered_extent->disk_len);
2788        }
2789        unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
2790                           ordered_extent->file_offset, ordered_extent->len,
2791                           trans->transid);
2792        if (ret < 0) {
2793                btrfs_abort_transaction(trans, root, ret);
2794                goto out_unlock;
2795        }
2796
2797        add_pending_csums(trans, inode, ordered_extent->file_offset,
2798                          &ordered_extent->list);
2799
2800        btrfs_ordered_update_i_size(inode, 0, ordered_extent);
2801        ret = btrfs_update_inode_fallback(trans, root, inode);
2802        if (ret) { /* -ENOMEM or corruption */
2803                btrfs_abort_transaction(trans, root, ret);
2804                goto out_unlock;
2805        }
2806        ret = 0;
2807out_unlock:
2808        unlock_extent_cached(io_tree, ordered_extent->file_offset,
2809                             ordered_extent->file_offset +
2810                             ordered_extent->len - 1, &cached_state, GFP_NOFS);
2811out:
2812        if (root != root->fs_info->tree_root)
2813                btrfs_delalloc_release_metadata(inode, ordered_extent->len);
2814        if (trans)
2815                btrfs_end_transaction(trans, root);
2816
2817        if (ret || truncated) {
2818                u64 start, end;
2819
2820                if (truncated)
2821                        start = ordered_extent->file_offset + logical_len;
2822                else
2823                        start = ordered_extent->file_offset;
2824                end = ordered_extent->file_offset + ordered_extent->len - 1;
2825                clear_extent_uptodate(io_tree, start, end, NULL, GFP_NOFS);
2826
2827                /* Drop the cache for the part of the extent we didn't write. */
2828                btrfs_drop_extent_cache(inode, start, end, 0);
2829
2830                /*
2831                 * If the ordered extent had an IOERR or something else went
2832                 * wrong we need to return the space for this ordered extent
2833                 * back to the allocator.  We only free the extent in the
2834                 * truncated case if we didn't write out the extent at all.
2835                 */
2836                if ((ret || !logical_len) &&
2837                    !test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
2838                    !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags))
2839                        btrfs_free_reserved_extent(root, ordered_extent->start,
2840                                                   ordered_extent->disk_len, 1);
2841        }
2842
2843
2844        /*
2845         * This needs to be done to make sure anybody waiting knows we are done
2846         * updating everything for this ordered extent.
2847         */
2848        btrfs_remove_ordered_extent(inode, ordered_extent);
2849
2850        /* for snapshot-aware defrag */
2851        if (new) {
2852                if (ret) {
2853                        free_sa_defrag_extent(new);
2854                        atomic_dec(&root->fs_info->defrag_running);
2855                } else {
2856                        relink_file_extents(new);
2857                }
2858        }
2859
2860        /* once for us */
2861        btrfs_put_ordered_extent(ordered_extent);
2862        /* once for the tree */
2863        btrfs_put_ordered_extent(ordered_extent);
2864
2865        return ret;
2866}
2867
2868static void finish_ordered_fn(struct btrfs_work *work)
2869{
2870        struct btrfs_ordered_extent *ordered_extent;
2871        ordered_extent = container_of(work, struct btrfs_ordered_extent, work);
2872        btrfs_finish_ordered_io(ordered_extent);
2873}
2874
2875static int btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end,
2876                                struct extent_state *state, int uptodate)
2877{
2878        struct inode *inode = page->mapping->host;
2879        struct btrfs_root *root = BTRFS_I(inode)->root;
2880        struct btrfs_ordered_extent *ordered_extent = NULL;
2881        struct btrfs_workqueue *wq;
2882        btrfs_work_func_t func;
2883
2884        trace_btrfs_writepage_end_io_hook(page, start, end, uptodate);
2885
2886        ClearPagePrivate2(page);
2887        if (!btrfs_dec_test_ordered_pending(inode, &ordered_extent, start,
2888                                            end - start + 1, uptodate))
2889                return 0;
2890
2891        if (btrfs_is_free_space_inode(inode)) {
2892                wq = root->fs_info->endio_freespace_worker;
2893                func = btrfs_freespace_write_helper;
2894        } else {
2895                wq = root->fs_info->endio_write_workers;
2896                func = btrfs_endio_write_helper;
2897        }
2898
2899        btrfs_init_work(&ordered_extent->work, func, finish_ordered_fn, NULL,
2900                        NULL);
2901        btrfs_queue_work(wq, &ordered_extent->work);
2902
2903        return 0;
2904}
2905
2906static int __readpage_endio_check(struct inode *inode,
2907                                  struct btrfs_io_bio *io_bio,
2908                                  int icsum, struct page *page,
2909                                  int pgoff, u64 start, size_t len)
2910{
2911        char *kaddr;
2912        u32 csum_expected;
2913        u32 csum = ~(u32)0;
2914        static DEFINE_RATELIMIT_STATE(_rs, DEFAULT_RATELIMIT_INTERVAL,
2915                                      DEFAULT_RATELIMIT_BURST);
2916
2917        csum_expected = *(((u32 *)io_bio->csum) + icsum);
2918
2919        kaddr = kmap_atomic(page);
2920        csum = btrfs_csum_data(kaddr + pgoff, csum,  len);
2921        btrfs_csum_final(csum, (char *)&csum);
2922        if (csum != csum_expected)
2923                goto zeroit;
2924
2925        kunmap_atomic(kaddr);
2926        return 0;
2927zeroit:
2928        if (__ratelimit(&_rs))
2929                btrfs_info(BTRFS_I(inode)->root->fs_info,
2930                           "csum failed ino %llu off %llu csum %u expected csum %u",
2931                           btrfs_ino(inode), start, csum, csum_expected);
2932        memset(kaddr + pgoff, 1, len);
2933        flush_dcache_page(page);
2934        kunmap_atomic(kaddr);
2935        if (csum_expected == 0)
2936                return 0;
2937        return -EIO;
2938}
2939
2940/*
2941 * when reads are done, we need to check csums to verify the data is correct
2942 * if there's a match, we allow the bio to finish.  If not, the code in
2943 * extent_io.c will try to find good copies for us.
2944 */
2945static int btrfs_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
2946                                      u64 phy_offset, struct page *page,
2947                                      u64 start, u64 end, int mirror)
2948{
2949        size_t offset = start - page_offset(page);
2950        struct inode *inode = page->mapping->host;
2951        struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2952        struct btrfs_root *root = BTRFS_I(inode)->root;
2953
2954        if (PageChecked(page)) {
2955                ClearPageChecked(page);
2956                return 0;
2957        }
2958
2959        if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
2960                return 0;
2961
2962        if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
2963            test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) {
2964                clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM,
2965                                  GFP_NOFS);
2966                return 0;
2967        }
2968
2969        phy_offset >>= inode->i_sb->s_blocksize_bits;
2970        return __readpage_endio_check(inode, io_bio, phy_offset, page, offset,
2971                                      start, (size_t)(end - start + 1));
2972}
2973
2974struct delayed_iput {
2975        struct list_head list;
2976        struct inode *inode;
2977};
2978
2979/* JDM: If this is fs-wide, why can't we add a pointer to
2980 * btrfs_inode instead and avoid the allocation? */
2981void btrfs_add_delayed_iput(struct inode *inode)
2982{
2983        struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2984        struct delayed_iput *delayed;
2985
2986        if (atomic_add_unless(&inode->i_count, -1, 1))
2987                return;
2988
2989        delayed = kmalloc(sizeof(*delayed), GFP_NOFS | __GFP_NOFAIL);
2990        delayed->inode = inode;
2991
2992        spin_lock(&fs_info->delayed_iput_lock);
2993        list_add_tail(&delayed->list, &fs_info->delayed_iputs);
2994        spin_unlock(&fs_info->delayed_iput_lock);
2995}
2996
2997void btrfs_run_delayed_iputs(struct btrfs_root *root)
2998{
2999        LIST_HEAD(list);
3000        struct btrfs_fs_info *fs_info = root->fs_info;
3001        struct delayed_iput *delayed;
3002        int empty;
3003
3004        spin_lock(&fs_info->delayed_iput_lock);
3005        empty = list_empty(&fs_info->delayed_iputs);
3006        spin_unlock(&fs_info->delayed_iput_lock);
3007        if (empty)
3008                return;
3009
3010        spin_lock(&fs_info->delayed_iput_lock);
3011        list_splice_init(&fs_info->delayed_iputs, &list);
3012        spin_unlock(&fs_info->delayed_iput_lock);
3013
3014        while (!list_empty(&list)) {
3015                delayed = list_entry(list.next, struct delayed_iput, list);
3016                list_del(&delayed->list);
3017                iput(delayed->inode);
3018                kfree(delayed);
3019        }
3020}
3021
3022/*
3023 * This is called in transaction commit time. If there are no orphan
3024 * files in the subvolume, it removes orphan item and frees block_rsv
3025 * structure.
3026 */
3027void btrfs_orphan_commit_root(struct btrfs_trans_handle *trans,
3028                              struct btrfs_root *root)
3029{
3030        struct btrfs_block_rsv *block_rsv;
3031        int ret;
3032
3033        if (atomic_read(&root->orphan_inodes) ||
3034            root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE)
3035                return;
3036
3037        spin_lock(&root->orphan_lock);
3038        if (atomic_read(&root->orphan_inodes)) {
3039                spin_unlock(&root->orphan_lock);
3040                return;
3041        }
3042
3043        if (root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE) {
3044                spin_unlock(&root->orphan_lock);
3045                return;
3046        }
3047
3048        block_rsv = root->orphan_block_rsv;
3049        root->orphan_block_rsv = NULL;
3050        spin_unlock(&root->orphan_lock);
3051
3052        if (test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state) &&
3053            btrfs_root_refs(&root->root_item) > 0) {
3054                ret = btrfs_del_orphan_item(trans, root->fs_info->tree_root,
3055                                            root->root_key.objectid);
3056                if (ret)
3057                        btrfs_abort_transaction(trans, root, ret);
3058                else
3059                        clear_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED,
3060                                  &root->state);
3061        }
3062
3063        if (block_rsv) {
3064                WARN_ON(block_rsv->size > 0);
3065                btrfs_free_block_rsv(root, block_rsv);
3066        }
3067}
3068
3069/*
3070 * This creates an orphan entry for the given inode in case something goes
3071 * wrong in the middle of an unlink/truncate.
3072 *
3073 * NOTE: caller of this function should reserve 5 units of metadata for
3074 *       this function.
3075 */
3076int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode)
3077{
3078        struct btrfs_root *root = BTRFS_I(inode)->root;
3079        struct btrfs_block_rsv *block_rsv = NULL;
3080        int reserve = 0;
3081        int insert = 0;
3082        int ret;
3083
3084        if (!root->orphan_block_rsv) {
3085                block_rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
3086                if (!block_rsv)
3087                        return -ENOMEM;
3088        }
3089
3090        spin_lock(&root->orphan_lock);
3091        if (!root->orphan_block_rsv) {
3092                root->orphan_block_rsv = block_rsv;
3093        } else if (block_rsv) {
3094                btrfs_free_block_rsv(root, block_rsv);
3095                block_rsv = NULL;
3096        }
3097
3098        if (!test_and_set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3099                              &BTRFS_I(inode)->runtime_flags)) {
3100#if 0
3101                /*
3102                 * For proper ENOSPC handling, we should do orphan
3103                 * cleanup when mounting. But this introduces backward
3104                 * compatibility issue.
3105                 */
3106                if (!xchg(&root->orphan_item_inserted, 1))
3107                        insert = 2;
3108                else
3109                        insert = 1;
3110#endif
3111                insert = 1;
3112                atomic_inc(&root->orphan_inodes);
3113        }
3114
3115        if (!test_and_set_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
3116                              &BTRFS_I(inode)->runtime_flags))
3117                reserve = 1;
3118        spin_unlock(&root->orphan_lock);
3119
3120        /* grab metadata reservation from transaction handle */
3121        if (reserve) {
3122                ret = btrfs_orphan_reserve_metadata(trans, inode);
3123                BUG_ON(ret); /* -ENOSPC in reservation; Logic error? JDM */
3124        }
3125
3126        /* insert an orphan item to track this unlinked/truncated file */
3127        if (insert >= 1) {
3128                ret = btrfs_insert_orphan_item(trans, root, btrfs_ino(inode));
3129                if (ret) {
3130                        atomic_dec(&root->orphan_inodes);
3131                        if (reserve) {
3132                                clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
3133                                          &BTRFS_I(inode)->runtime_flags);
3134                                btrfs_orphan_release_metadata(inode);
3135                        }
3136                        if (ret != -EEXIST) {
3137                                clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3138                                          &BTRFS_I(inode)->runtime_flags);
3139                                btrfs_abort_transaction(trans, root, ret);
3140                                return ret;
3141                        }
3142                }
3143                ret = 0;
3144        }
3145
3146        /* insert an orphan item to track subvolume contains orphan files */
3147        if (insert >= 2) {
3148                ret = btrfs_insert_orphan_item(trans, root->fs_info->tree_root,
3149                                               root->root_key.objectid);
3150                if (ret && ret != -EEXIST) {
3151                        btrfs_abort_transaction(trans, root, ret);
3152                        return ret;
3153                }
3154        }
3155        return 0;
3156}
3157
3158/*
3159 * We have done the truncate/delete so we can go ahead and remove the orphan
3160 * item for this particular inode.
3161 */
3162static int btrfs_orphan_del(struct btrfs_trans_handle *trans,
3163                            struct inode *inode)
3164{
3165        struct btrfs_root *root = BTRFS_I(inode)->root;
3166        int delete_item = 0;
3167        int release_rsv = 0;
3168        int ret = 0;
3169
3170        spin_lock(&root->orphan_lock);
3171        if (test_and_clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3172                               &BTRFS_I(inode)->runtime_flags))
3173                delete_item = 1;
3174
3175        if (test_and_clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
3176                               &BTRFS_I(inode)->runtime_flags))
3177                release_rsv = 1;
3178        spin_unlock(&root->orphan_lock);
3179
3180        if (delete_item) {
3181                atomic_dec(&root->orphan_inodes);
3182                if (trans)
3183                        ret = btrfs_del_orphan_item(trans, root,
3184                                                    btrfs_ino(inode));
3185        }
3186
3187        if (release_rsv)
3188                btrfs_orphan_release_metadata(inode);
3189
3190        return ret;
3191}
3192
3193/*
3194 * this cleans up any orphans that may be left on the list from the last use
3195 * of this root.
3196 */
3197int btrfs_orphan_cleanup(struct btrfs_root *root)
3198{
3199        struct btrfs_path *path;
3200        struct extent_buffer *leaf;
3201        struct btrfs_key key, found_key;
3202        struct btrfs_trans_handle *trans;
3203        struct inode *inode;
3204        u64 last_objectid = 0;
3205        int ret = 0, nr_unlink = 0, nr_truncate = 0;
3206
3207        if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED))
3208                return 0;
3209
3210        path = btrfs_alloc_path();
3211        if (!path) {
3212                ret = -ENOMEM;
3213                goto out;
3214        }
3215        path->reada = -1;
3216
3217        key.objectid = BTRFS_ORPHAN_OBJECTID;
3218        key.type = BTRFS_ORPHAN_ITEM_KEY;
3219        key.offset = (u64)-1;
3220
3221        while (1) {
3222                ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3223                if (ret < 0)
3224                        goto out;
3225
3226                /*
3227                 * if ret == 0 means we found what we were searching for, which
3228                 * is weird, but possible, so only screw with path if we didn't
3229                 * find the key and see if we have stuff that matches
3230                 */
3231                if (ret > 0) {
3232                        ret = 0;
3233                        if (path->slots[0] == 0)
3234                                break;
3235                        path->slots[0]--;
3236                }
3237
3238                /* pull out the item */
3239                leaf = path->nodes[0];
3240                btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3241
3242                /* make sure the item matches what we want */
3243                if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
3244                        break;
3245                if (found_key.type != BTRFS_ORPHAN_ITEM_KEY)
3246                        break;
3247
3248                /* release the path since we're done with it */
3249                btrfs_release_path(path);
3250
3251                /*
3252                 * this is where we are basically btrfs_lookup, without the
3253                 * crossing root thing.  we store the inode number in the
3254                 * offset of the orphan item.
3255                 */
3256
3257                if (found_key.offset == last_objectid) {
3258                        btrfs_err(root->fs_info,
3259                                "Error removing orphan entry, stopping orphan cleanup");
3260                        ret = -EINVAL;
3261                        goto out;
3262                }
3263
3264                last_objectid = found_key.offset;
3265
3266                found_key.objectid = found_key.offset;
3267                found_key.type = BTRFS_INODE_ITEM_KEY;
3268                found_key.offset = 0;
3269                inode = btrfs_iget(root->fs_info->sb, &found_key, root, NULL);
3270                ret = PTR_ERR_OR_ZERO(inode);
3271                if (ret && ret != -ESTALE)
3272                        goto out;
3273
3274                if (ret == -ESTALE && root == root->fs_info->tree_root) {
3275                        struct btrfs_root *dead_root;
3276                        struct btrfs_fs_info *fs_info = root->fs_info;
3277                        int is_dead_root = 0;
3278
3279                        /*
3280                         * this is an orphan in the tree root. Currently these
3281                         * could come from 2 sources:
3282                         *  a) a snapshot deletion in progress
3283                         *  b) a free space cache inode
3284                         * We need to distinguish those two, as the snapshot
3285                         * orphan must not get deleted.
3286                         * find_dead_roots already ran before us, so if this
3287                         * is a snapshot deletion, we should find the root
3288                         * in the dead_roots list
3289                         */
3290                        spin_lock(&fs_info->trans_lock);
3291                        list_for_each_entry(dead_root, &fs_info->dead_roots,
3292                                            root_list) {
3293                                if (dead_root->root_key.objectid ==
3294                                    found_key.objectid) {
3295                                        is_dead_root = 1;
3296                                        break;
3297                                }
3298                        }
3299                        spin_unlock(&fs_info->trans_lock);
3300                        if (is_dead_root) {
3301                                /* prevent this orphan from being found again */
3302                                key.offset = found_key.objectid - 1;
3303                                continue;
3304                        }
3305                }
3306                /*
3307                 * Inode is already gone but the orphan item is still there,
3308                 * kill the orphan item.
3309                 */
3310                if (ret == -ESTALE) {
3311                        trans = btrfs_start_transaction(root, 1);
3312                        if (IS_ERR(trans)) {
3313                                ret = PTR_ERR(trans);
3314                                goto out;
3315                        }
3316                        btrfs_debug(root->fs_info, "auto deleting %Lu",
3317                                found_key.objectid);
3318                        ret = btrfs_del_orphan_item(trans, root,
3319                                                    found_key.objectid);
3320                        btrfs_end_transaction(trans, root);
3321                        if (ret)
3322                                goto out;
3323                        continue;
3324                }
3325
3326                /*
3327                 * add this inode to the orphan list so btrfs_orphan_del does
3328                 * the proper thing when we hit it
3329                 */
3330                set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3331                        &BTRFS_I(inode)->runtime_flags);
3332                atomic_inc(&root->orphan_inodes);
3333
3334                /* if we have links, this was a truncate, lets do that */
3335                if (inode->i_nlink) {
3336                        if (WARN_ON(!S_ISREG(inode->i_mode))) {
3337                                iput(inode);
3338                                continue;
3339                        }
3340                        nr_truncate++;
3341
3342                        /* 1 for the orphan item deletion. */
3343                        trans = btrfs_start_transaction(root, 1);
3344                        if (IS_ERR(trans)) {
3345                                iput(inode);
3346                                ret = PTR_ERR(trans);
3347                                goto out;
3348                        }
3349                        ret = btrfs_orphan_add(trans, inode);
3350                        btrfs_end_transaction(trans, root);
3351                        if (ret) {
3352                                iput(inode);
3353                                goto out;
3354                        }
3355
3356                        ret = btrfs_truncate(inode);
3357                        if (ret)
3358                                btrfs_orphan_del(NULL, inode);
3359                } else {
3360                        nr_unlink++;
3361                }
3362
3363                /* this will do delete_inode and everything for us */
3364                iput(inode);
3365                if (ret)
3366                        goto out;
3367        }
3368        /* release the path since we're done with it */
3369        btrfs_release_path(path);
3370
3371        root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE;
3372
3373        if (root->orphan_block_rsv)
3374                btrfs_block_rsv_release(root, root->orphan_block_rsv,
3375                                        (u64)-1);
3376
3377        if (root->orphan_block_rsv ||
3378            test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state)) {
3379                trans = btrfs_join_transaction(root);
3380                if (!IS_ERR(trans))
3381                        btrfs_end_transaction(trans, root);
3382        }
3383
3384        if (nr_unlink)
3385                btrfs_debug(root->fs_info, "unlinked %d orphans", nr_unlink);
3386        if (nr_truncate)
3387                btrfs_debug(root->fs_info, "truncated %d orphans", nr_truncate);
3388
3389out:
3390        if (ret)
3391                btrfs_crit(root->fs_info,
3392                        "could not do orphan cleanup %d", ret);
3393        btrfs_free_path(path);
3394        return ret;
3395}
3396
3397/*
3398 * very simple check to peek ahead in the leaf looking for xattrs.  If we
3399 * don't find any xattrs, we know there can't be any acls.
3400 *
3401 * slot is the slot the inode is in, objectid is the objectid of the inode
3402 */
3403static noinline int acls_after_inode_item(struct extent_buffer *leaf,
3404                                          int slot, u64 objectid,
3405                                          int *first_xattr_slot)
3406{
3407        u32 nritems = btrfs_header_nritems(leaf);
3408        struct btrfs_key found_key;
3409        static u64 xattr_access = 0;
3410        static u64 xattr_default = 0;
3411        int scanned = 0;
3412
3413        if (!xattr_access) {
3414                xattr_access = btrfs_name_hash(POSIX_ACL_XATTR_ACCESS,
3415                                        strlen(POSIX_ACL_XATTR_ACCESS));
3416                xattr_default = btrfs_name_hash(POSIX_ACL_XATTR_DEFAULT,
3417                                        strlen(POSIX_ACL_XATTR_DEFAULT));
3418        }
3419
3420        slot++;
3421        *first_xattr_slot = -1;
3422        while (slot < nritems) {
3423                btrfs_item_key_to_cpu(leaf, &found_key, slot);
3424
3425                /* we found a different objectid, there must not be acls */
3426                if (found_key.objectid != objectid)
3427                        return 0;
3428
3429                /* we found an xattr, assume we've got an acl */
3430                if (found_key.type == BTRFS_XATTR_ITEM_KEY) {
3431                        if (*first_xattr_slot == -1)
3432                                *first_xattr_slot = slot;
3433                        if (found_key.offset == xattr_access ||
3434                            found_key.offset == xattr_default)
3435                                return 1;
3436                }
3437
3438                /*
3439                 * we found a key greater than an xattr key, there can't
3440                 * be any acls later on
3441                 */
3442                if (found_key.type > BTRFS_XATTR_ITEM_KEY)
3443                        return 0;
3444
3445                slot++;
3446                scanned++;
3447
3448                /*
3449                 * it goes inode, inode backrefs, xattrs, extents,
3450                 * so if there are a ton of hard links to an inode there can
3451                 * be a lot of backrefs.  Don't waste time searching too hard,
3452                 * this is just an optimization
3453                 */
3454                if (scanned >= 8)
3455                        break;
3456        }
3457        /* we hit the end of the leaf before we found an xattr or
3458         * something larger than an xattr.  We have to assume the inode
3459         * has acls
3460         */
3461        if (*first_xattr_slot == -1)
3462                *first_xattr_slot = slot;
3463        return 1;
3464}
3465
3466/*
3467 * read an inode from the btree into the in-memory inode
3468 */
3469static void btrfs_read_locked_inode(struct inode *inode)
3470{
3471        struct btrfs_path *path;
3472        struct extent_buffer *leaf;
3473        struct btrfs_inode_item *inode_item;
3474        struct btrfs_timespec *tspec;
3475        struct btrfs_root *root = BTRFS_I(inode)->root;
3476        struct btrfs_key location;
3477        unsigned long ptr;
3478        int maybe_acls;
3479        u32 rdev;
3480        int ret;
3481        bool filled = false;
3482        int first_xattr_slot;
3483
3484        ret = btrfs_fill_inode(inode, &rdev);
3485        if (!ret)
3486                filled = true;
3487
3488        path = btrfs_alloc_path();
3489        if (!path)
3490                goto make_bad;
3491
3492        memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
3493
3494        ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
3495        if (ret)
3496                goto make_bad;
3497
3498        leaf = path->nodes[0];
3499
3500        if (filled)
3501                goto cache_index;
3502
3503        inode_item = btrfs_item_ptr(leaf, path->slots[0],
3504                                    struct btrfs_inode_item);
3505        inode->i_mode = btrfs_inode_mode(leaf, inode_item);
3506        set_nlink(inode, btrfs_inode_nlink(leaf, inode_item));
3507        i_uid_write(inode, btrfs_inode_uid(leaf, inode_item));
3508        i_gid_write(inode, btrfs_inode_gid(leaf, inode_item));
3509        btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item));
3510
3511        tspec = btrfs_inode_atime(inode_item);
3512        inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, tspec);
3513        inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
3514
3515        tspec = btrfs_inode_mtime(inode_item);
3516        inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, tspec);
3517        inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
3518
3519        tspec = btrfs_inode_ctime(inode_item);
3520        inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, tspec);
3521        inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
3522
3523        inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
3524        BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
3525        BTRFS_I(inode)->last_trans = btrfs_inode_transid(leaf, inode_item);
3526
3527        /*
3528         * If we were modified in the current generation and evicted from memory
3529         * and then re-read we need to do a full sync since we don't have any
3530         * idea about which extents were modified before we were evicted from
3531         * cache.
3532         */
3533        if (BTRFS_I(inode)->last_trans == root->fs_info->generation)
3534                set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3535                        &BTRFS_I(inode)->runtime_flags);
3536
3537        inode->i_version = btrfs_inode_sequence(leaf, inode_item);
3538        inode->i_generation = BTRFS_I(inode)->generation;
3539        inode->i_rdev = 0;
3540        rdev = btrfs_inode_rdev(leaf, inode_item);
3541
3542        BTRFS_I(inode)->index_cnt = (u64)-1;
3543        BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
3544
3545cache_index:
3546        path->slots[0]++;
3547        if (inode->i_nlink != 1 ||
3548            path->slots[0] >= btrfs_header_nritems(leaf))
3549                goto cache_acl;
3550
3551        btrfs_item_key_to_cpu(leaf, &location, path->slots[0]);
3552        if (location.objectid != btrfs_ino(inode))
3553                goto cache_acl;
3554
3555        ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
3556        if (location.type == BTRFS_INODE_REF_KEY) {
3557                struct btrfs_inode_ref *ref;
3558
3559                ref = (struct btrfs_inode_ref *)ptr;
3560                BTRFS_I(inode)->dir_index = btrfs_inode_ref_index(leaf, ref);
3561        } else if (location.type == BTRFS_INODE_EXTREF_KEY) {
3562                struct btrfs_inode_extref *extref;
3563
3564                extref = (struct btrfs_inode_extref *)ptr;
3565                BTRFS_I(inode)->dir_index = btrfs_inode_extref_index(leaf,
3566                                                                     extref);
3567        }
3568cache_acl:
3569        /*
3570         * try to precache a NULL acl entry for files that don't have
3571         * any xattrs or acls
3572         */
3573        maybe_acls = acls_after_inode_item(leaf, path->slots[0],
3574                                           btrfs_ino(inode), &first_xattr_slot);
3575        if (first_xattr_slot != -1) {
3576                path->slots[0] = first_xattr_slot;
3577                ret = btrfs_load_inode_props(inode, path);
3578                if (ret)
3579                        btrfs_err(root->fs_info,
3580                                  "error loading props for ino %llu (root %llu): %d",
3581                                  btrfs_ino(inode),
3582                                  root->root_key.objectid, ret);
3583        }
3584        btrfs_free_path(path);
3585
3586        if (!maybe_acls)
3587                cache_no_acl(inode);
3588
3589        switch (inode->i_mode & S_IFMT) {
3590        case S_IFREG:
3591                inode->i_mapping->a_ops = &btrfs_aops;
3592                inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
3593                BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
3594                inode->i_fop = &btrfs_file_operations;
3595                inode->i_op = &btrfs_file_inode_operations;
3596                break;
3597        case S_IFDIR:
3598                inode->i_fop = &btrfs_dir_file_operations;
3599                if (root == root->fs_info->tree_root)
3600                        inode->i_op = &btrfs_dir_ro_inode_operations;
3601                else
3602                        inode->i_op = &btrfs_dir_inode_operations;
3603                break;
3604        case S_IFLNK:
3605                inode->i_op = &btrfs_symlink_inode_operations;
3606                inode->i_mapping->a_ops = &btrfs_symlink_aops;
3607                inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
3608                break;
3609        default:
3610                inode->i_op = &btrfs_special_inode_operations;
3611                init_special_inode(inode, inode->i_mode, rdev);
3612                break;
3613        }
3614
3615        btrfs_update_iflags(inode);
3616        return;
3617
3618make_bad:
3619        btrfs_free_path(path);
3620        make_bad_inode(inode);
3621}
3622
3623/*
3624 * given a leaf and an inode, copy the inode fields into the leaf
3625 */
3626static void fill_inode_item(struct btrfs_trans_handle *trans,
3627                            struct extent_buffer *leaf,
3628                            struct btrfs_inode_item *item,
3629                            struct inode *inode)
3630{
3631        struct btrfs_map_token token;
3632
3633        btrfs_init_map_token(&token);
3634
3635        btrfs_set_token_inode_uid(leaf, item, i_uid_read(inode), &token);
3636        btrfs_set_token_inode_gid(leaf, item, i_gid_read(inode), &token);
3637        btrfs_set_token_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size,
3638                                   &token);
3639        btrfs_set_token_inode_mode(leaf, item, inode->i_mode, &token);
3640        btrfs_set_token_inode_nlink(leaf, item, inode->i_nlink, &token);
3641
3642        btrfs_set_token_timespec_sec(leaf, btrfs_inode_atime(item),
3643                                     inode->i_atime.tv_sec, &token);
3644        btrfs_set_token_timespec_nsec(leaf, btrfs_inode_atime(item),
3645                                      inode->i_atime.tv_nsec, &token);
3646
3647        btrfs_set_token_timespec_sec(leaf, btrfs_inode_mtime(item),
3648                                     inode->i_mtime.tv_sec, &token);
3649        btrfs_set_token_timespec_nsec(leaf, btrfs_inode_mtime(item),
3650                                      inode->i_mtime.tv_nsec, &token);
3651
3652        btrfs_set_token_timespec_sec(leaf, btrfs_inode_ctime(item),
3653                                     inode->i_ctime.tv_sec, &token);
3654        btrfs_set_token_timespec_nsec(leaf, btrfs_inode_ctime(item),
3655                                      inode->i_ctime.tv_nsec, &token);
3656
3657        btrfs_set_token_inode_nbytes(leaf, item, inode_get_bytes(inode),
3658                                     &token);
3659        btrfs_set_token_inode_generation(leaf, item, BTRFS_I(inode)->generation,
3660                                         &token);
3661        btrfs_set_token_inode_sequence(leaf, item, inode->i_version, &token);
3662        btrfs_set_token_inode_transid(leaf, item, trans->transid, &token);
3663        btrfs_set_token_inode_rdev(leaf, item, inode->i_rdev, &token);
3664        btrfs_set_token_inode_flags(leaf, item, BTRFS_I(inode)->flags, &token);
3665        btrfs_set_token_inode_block_group(leaf, item, 0, &token);
3666}
3667
3668/*
3669 * copy everything in the in-memory inode into the btree.
3670 */
3671static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans,
3672                                struct btrfs_root *root, struct inode *inode)
3673{
3674        struct btrfs_inode_item *inode_item;
3675        struct btrfs_path *path;
3676        struct extent_buffer *leaf;
3677        int ret;
3678
3679        path = btrfs_alloc_path();
3680        if (!path)
3681                return -ENOMEM;
3682
3683        path->leave_spinning = 1;
3684        ret = btrfs_lookup_inode(trans, root, path, &BTRFS_I(inode)->location,
3685                                 1);
3686        if (ret) {
3687                if (ret > 0)
3688                        ret = -ENOENT;
3689                goto failed;
3690        }
3691
3692        leaf = path->nodes[0];
3693        inode_item = btrfs_item_ptr(leaf, path->slots[0],
3694                                    struct btrfs_inode_item);
3695
3696        fill_inode_item(trans, leaf, inode_item, inode);
3697        btrfs_mark_buffer_dirty(leaf);
3698        btrfs_set_inode_last_trans(trans, inode);
3699        ret = 0;
3700failed:
3701        btrfs_free_path(path);
3702        return ret;
3703}
3704
3705/*
3706 * copy everything in the in-memory inode into the btree.
3707 */
3708noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
3709                                struct btrfs_root *root, struct inode *inode)
3710{
3711        int ret;
3712
3713        /*
3714         * If the inode is a free space inode, we can deadlock during commit
3715         * if we put it into the delayed code.
3716         *
3717         * The data relocation inode should also be directly updated
3718         * without delay
3719         */
3720        if (!btrfs_is_free_space_inode(inode)
3721            && root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID
3722            && !root->fs_info->log_root_recovering) {
3723                btrfs_update_root_times(trans, root);
3724
3725                ret = btrfs_delayed_update_inode(trans, root, inode);
3726                if (!ret)
3727                        btrfs_set_inode_last_trans(trans, inode);
3728                return ret;
3729        }
3730
3731        return btrfs_update_inode_item(trans, root, inode);
3732}
3733
3734noinline int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
3735                                         struct btrfs_root *root,
3736                                         struct inode *inode)
3737{
3738        int ret;
3739
3740        ret = btrfs_update_inode(trans, root, inode);
3741        if (ret == -ENOSPC)
3742                return btrfs_update_inode_item(trans, root, inode);
3743        return ret;
3744}
3745
3746/*
3747 * unlink helper that gets used here in inode.c and in the tree logging
3748 * recovery code.  It remove a link in a directory with a given name, and
3749 * also drops the back refs in the inode to the directory
3750 */
3751static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans,
3752                                struct btrfs_root *root,
3753                                struct inode *dir, struct inode *inode,
3754                                const char *name, int name_len)
3755{
3756        struct btrfs_path *path;
3757        int ret = 0;
3758        struct extent_buffer *leaf;
3759        struct btrfs_dir_item *di;
3760        struct btrfs_key key;
3761        u64 index;
3762        u64 ino = btrfs_ino(inode);
3763        u64 dir_ino = btrfs_ino(dir);
3764
3765        path = btrfs_alloc_path();
3766        if (!path) {
3767                ret = -ENOMEM;
3768                goto out;
3769        }
3770
3771        path->leave_spinning = 1;
3772        di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
3773                                    name, name_len, -1);
3774        if (IS_ERR(di)) {
3775                ret = PTR_ERR(di);
3776                goto err;
3777        }
3778        if (!di) {
3779                ret = -ENOENT;
3780                goto err;
3781        }
3782        leaf = path->nodes[0];
3783        btrfs_dir_item_key_to_cpu(leaf, di, &key);
3784        ret = btrfs_delete_one_dir_name(trans, root, path, di);
3785        if (ret)
3786                goto err;
3787        btrfs_release_path(path);
3788
3789        /*
3790         * If we don't have dir index, we have to get it by looking up
3791         * the inode ref, since we get the inode ref, remove it directly,
3792         * it is unnecessary to do delayed deletion.
3793         *
3794         * But if we have dir index, needn't search inode ref to get it.
3795         * Since the inode ref is close to the inode item, it is better
3796         * that we delay to delete it, and just do this deletion when
3797         * we update the inode item.
3798         */
3799        if (BTRFS_I(inode)->dir_index) {
3800                ret = btrfs_delayed_delete_inode_ref(inode);
3801                if (!ret) {
3802                        index = BTRFS_I(inode)->dir_index;
3803                        goto skip_backref;
3804                }
3805        }
3806
3807        ret = btrfs_del_inode_ref(trans, root, name, name_len, ino,
3808                                  dir_ino, &index);
3809        if (ret) {
3810                btrfs_info(root->fs_info,
3811                        "failed to delete reference to %.*s, inode %llu parent %llu",
3812                        name_len, name, ino, dir_ino);
3813                btrfs_abort_transaction(trans, root, ret);
3814                goto err;
3815        }
3816skip_backref:
3817        ret = btrfs_delete_delayed_dir_index(trans, root, dir, index);
3818        if (ret) {
3819                btrfs_abort_transaction(trans, root, ret);
3820                goto err;
3821        }
3822
3823        ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len,
3824                                         inode, dir_ino);
3825        if (ret != 0 && ret != -ENOENT) {
3826                btrfs_abort_transaction(trans, root, ret);
3827                goto err;
3828        }
3829
3830        ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len,
3831                                           dir, index);
3832        if (ret == -ENOENT)
3833                ret = 0;
3834        else if (ret)
3835                btrfs_abort_transaction(trans, root, ret);
3836err:
3837        btrfs_free_path(path);
3838        if (ret)
3839                goto out;
3840
3841        btrfs_i_size_write(dir, dir->i_size - name_len * 2);
3842        inode_inc_iversion(inode);
3843        inode_inc_iversion(dir);
3844        inode->i_ctime = dir->i_mtime = dir->i_ctime = CURRENT_TIME;
3845        ret = btrfs_update_inode(trans, root, dir);
3846out:
3847        return ret;
3848}
3849
3850int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
3851                       struct btrfs_root *root,
3852                       struct inode *dir, struct inode *inode,
3853                       const char *name, int name_len)
3854{
3855        int ret;
3856        ret = __btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
3857        if (!ret) {
3858                drop_nlink(inode);
3859                ret = btrfs_update_inode(trans, root, inode);
3860        }
3861        return ret;
3862}
3863
3864/*
3865 * helper to start transaction for unlink and rmdir.
3866 *
3867 * unlink and rmdir are special in btrfs, they do not always free space, so
3868 * if we cannot make our reservations the normal way try and see if there is
3869 * plenty of slack room in the global reserve to migrate, otherwise we cannot
3870 * allow the unlink to occur.
3871 */
3872static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir)
3873{
3874        struct btrfs_trans_handle *trans;
3875        struct btrfs_root *root = BTRFS_I(dir)->root;
3876        int ret;
3877
3878        /*
3879         * 1 for the possible orphan item
3880         * 1 for the dir item
3881         * 1 for the dir index
3882         * 1 for the inode ref
3883         * 1 for the inode
3884         */
3885        trans = btrfs_start_transaction(root, 5);
3886        if (!IS_ERR(trans) || PTR_ERR(trans) != -ENOSPC)
3887                return trans;
3888
3889        if (PTR_ERR(trans) == -ENOSPC) {
3890                u64 num_bytes = btrfs_calc_trans_metadata_size(root, 5);
3891
3892                trans = btrfs_start_transaction(root, 0);
3893                if (IS_ERR(trans))
3894                        return trans;
3895                ret = btrfs_cond_migrate_bytes(root->fs_info,
3896                                               &root->fs_info->trans_block_rsv,
3897                                               num_bytes, 5);
3898                if (ret) {
3899                        btrfs_end_transaction(trans, root);
3900                        return ERR_PTR(ret);
3901                }
3902                trans->block_rsv = &root->fs_info->trans_block_rsv;
3903                trans->bytes_reserved = num_bytes;
3904        }
3905        return trans;
3906}
3907
3908static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
3909{
3910        struct btrfs_root *root = BTRFS_I(dir)->root;
3911        struct btrfs_trans_handle *trans;
3912        struct inode *inode = dentry->d_inode;
3913        int ret;
3914
3915        trans = __unlink_start_trans(dir);
3916        if (IS_ERR(trans))
3917                return PTR_ERR(trans);
3918
3919        btrfs_record_unlink_dir(trans, dir, dentry->d_inode, 0);
3920
3921        ret = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
3922                                 dentry->d_name.name, dentry->d_name.len);
3923        if (ret)
3924                goto out;
3925
3926        if (inode->i_nlink == 0) {
3927                ret = btrfs_orphan_add(trans, inode);
3928                if (ret)
3929                        goto out;
3930        }
3931
3932out:
3933        btrfs_end_transaction(trans, root);
3934        btrfs_btree_balance_dirty(root);
3935        return ret;
3936}
3937
3938int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
3939                        struct btrfs_root *root,
3940                        struct inode *dir, u64 objectid,
3941                        const char *name, int name_len)
3942{
3943        struct btrfs_path *path;
3944        struct extent_buffer *leaf;
3945        struct btrfs_dir_item *di;
3946        struct btrfs_key key;
3947        u64 index;
3948        int ret;
3949        u64 dir_ino = btrfs_ino(dir);
3950
3951        path = btrfs_alloc_path();
3952        if (!path)
3953                return -ENOMEM;
3954
3955        di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
3956                                   name, name_len, -1);
3957        if (IS_ERR_OR_NULL(di)) {
3958                if (!di)
3959                        ret = -ENOENT;
3960                else
3961                        ret = PTR_ERR(di);
3962                goto out;
3963        }
3964
3965        leaf = path->nodes[0];
3966        btrfs_dir_item_key_to_cpu(leaf, di, &key);
3967        WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
3968        ret = btrfs_delete_one_dir_name(trans, root, path, di);
3969        if (ret) {
3970                btrfs_abort_transaction(trans, root, ret);
3971                goto out;
3972        }
3973        btrfs_release_path(path);
3974
3975        ret = btrfs_del_root_ref(trans, root->fs_info->tree_root,
3976                                 objectid, root->root_key.objectid,
3977                                 dir_ino, &index, name, name_len);
3978        if (ret < 0) {
3979                if (ret != -ENOENT) {
3980                        btrfs_abort_transaction(trans, root, ret);
3981                        goto out;
3982                }
3983                di = btrfs_search_dir_index_item(root, path, dir_ino,
3984                                                 name, name_len);
3985                if (IS_ERR_OR_NULL(di)) {
3986                        if (!di)
3987                                ret = -ENOENT;
3988                        else
3989                                ret = PTR_ERR(di);
3990                        btrfs_abort_transaction(trans, root, ret);
3991                        goto out;
3992                }
3993
3994                leaf = path->nodes[0];
3995                btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3996                btrfs_release_path(path);
3997                index = key.offset;
3998        }
3999        btrfs_release_path(path);
4000
4001        ret = btrfs_delete_delayed_dir_index(trans, root, dir, index);
4002        if (ret) {
4003                btrfs_abort_transaction(trans, root, ret);
4004                goto out;
4005        }
4006
4007        btrfs_i_size_write(dir, dir->i_size - name_len * 2);
4008        inode_inc_iversion(dir);
4009        dir->i_mtime = dir->i_ctime = CURRENT_TIME;
4010        ret = btrfs_update_inode_fallback(trans, root, dir);
4011        if (ret)
4012                btrfs_abort_transaction(trans, root, ret);
4013out:
4014        btrfs_free_path(path);
4015        return ret;
4016}
4017
4018static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
4019{
4020        struct inode *inode = dentry->d_inode;
4021        int err = 0;
4022        struct btrfs_root *root = BTRFS_I(dir)->root;
4023        struct btrfs_trans_handle *trans;
4024
4025        if (inode->i_size > BTRFS_EMPTY_DIR_SIZE)
4026                return -ENOTEMPTY;
4027        if (btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID)
4028                return -EPERM;
4029
4030        trans = __unlink_start_trans(dir);
4031        if (IS_ERR(trans))
4032                return PTR_ERR(trans);
4033
4034        if (unlikely(btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
4035                err = btrfs_unlink_subvol(trans, root, dir,
4036                                          BTRFS_I(inode)->location.objectid,
4037                                          dentry->d_name.name,
4038                                          dentry->d_name.len);
4039                goto out;
4040        }
4041
4042        err = btrfs_orphan_add(trans, inode);
4043        if (err)
4044                goto out;
4045
4046        /* now the directory is empty */
4047        err = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
4048                                 dentry->d_name.name, dentry->d_name.len);
4049        if (!err)
4050                btrfs_i_size_write(inode, 0);
4051out:
4052        btrfs_end_transaction(trans, root);
4053        btrfs_btree_balance_dirty(root);
4054
4055        return err;
4056}
4057
4058/*
4059 * this can truncate away extent items, csum items and directory items.
4060 * It starts at a high offset and removes keys until it can't find
4061 * any higher than new_size
4062 *
4063 * csum items that cross the new i_size are truncated to the new size
4064 * as well.
4065 *
4066 * min_type is the minimum key type to truncate down to.  If set to 0, this
4067 * will kill all the items on this inode, including the INODE_ITEM_KEY.
4068 */
4069int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
4070                               struct btrfs_root *root,
4071                               struct inode *inode,
4072                               u64 new_size, u32 min_type)
4073{
4074        struct btrfs_path *path;
4075        struct extent_buffer *leaf;
4076        struct btrfs_file_extent_item *fi;
4077        struct btrfs_key key;
4078        struct btrfs_key found_key;
4079        u64 extent_start = 0;
4080        u64 extent_num_bytes = 0;
4081        u64 extent_offset = 0;
4082        u64 item_end = 0;
4083        u64 last_size = (u64)-1;
4084        u32 found_type = (u8)-1;
4085        int found_extent;
4086        int del_item;
4087        int pending_del_nr = 0;
4088        int pending_del_slot = 0;
4089        int extent_type = -1;
4090        int ret;
4091        int err = 0;
4092        u64 ino = btrfs_ino(inode);
4093
4094        BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY);
4095
4096        path = btrfs_alloc_path();
4097        if (!path)
4098                return -ENOMEM;
4099        path->reada = -1;
4100
4101        /*
4102         * We want to drop from the next block forward in case this new size is
4103         * not block aligned since we will be keeping the last block of the
4104         * extent just the way it is.
4105         */
4106        if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
4107            root == root->fs_info->tree_root)
4108                btrfs_drop_extent_cache(inode, ALIGN(new_size,
4109                                        root->sectorsize), (u64)-1, 0);
4110
4111        /*
4112         * This function is also used to drop the items in the log tree before
4113         * we relog the inode, so if root != BTRFS_I(inode)->root, it means
4114         * it is used to drop the loged items. So we shouldn't kill the delayed
4115         * items.
4116         */
4117        if (min_type == 0 && root == BTRFS_I(inode)->root)
4118                btrfs_kill_delayed_inode_items(inode);
4119
4120        key.objectid = ino;
4121        key.offset = (u64)-1;
4122        key.type = (u8)-1;
4123
4124search_again:
4125        path->leave_spinning = 1;
4126        ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
4127        if (ret < 0) {
4128                err = ret;
4129                goto out;
4130        }
4131
4132        if (ret > 0) {
4133                /* there are no items in the tree for us to truncate, we're
4134                 * done
4135                 */
4136                if (path->slots[0] == 0)
4137                        goto out;
4138                path->slots[0]--;
4139        }
4140
4141        while (1) {
4142                fi = NULL;
4143                leaf = path->nodes[0];
4144                btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4145                found_type = found_key.type;
4146
4147                if (found_key.objectid != ino)
4148                        break;
4149
4150                if (found_type < min_type)
4151                        break;
4152
4153                item_end = found_key.offset;
4154                if (found_type == BTRFS_EXTENT_DATA_KEY) {
4155                        fi = btrfs_item_ptr(leaf, path->slots[0],
4156                                            struct btrfs_file_extent_item);
4157                        extent_type = btrfs_file_extent_type(leaf, fi);
4158                        if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
4159                                item_end +=
4160                                    btrfs_file_extent_num_bytes(leaf, fi);
4161                        } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
4162                                item_end += btrfs_file_extent_inline_len(leaf,
4163                                                         path->slots[0], fi);
4164                        }
4165                        item_end--;
4166                }
4167                if (found_type > min_type) {
4168                        del_item = 1;
4169                } else {
4170                        if (item_end < new_size)
4171                                break;
4172                        if (found_key.offset >= new_size)
4173                                del_item = 1;
4174                        else
4175                                del_item = 0;
4176                }
4177                found_extent = 0;
4178                /* FIXME, shrink the extent if the ref count is only 1 */
4179                if (found_type != BTRFS_EXTENT_DATA_KEY)
4180                        goto delete;
4181
4182                if (del_item)
4183                        last_size = found_key.offset;
4184                else
4185                        last_size = new_size;
4186
4187                if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
4188                        u64 num_dec;
4189                        extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
4190                        if (!del_item) {
4191                                u64 orig_num_bytes =
4192                                        btrfs_file_extent_num_bytes(leaf, fi);
4193                                extent_num_bytes = ALIGN(new_size -
4194                                                found_key.offset,
4195                                                root->sectorsize);
4196                                btrfs_set_file_extent_num_bytes(leaf, fi,
4197                                                         extent_num_bytes);
4198                                num_dec = (orig_num_bytes -
4199                                           extent_num_bytes);
4200                                if (test_bit(BTRFS_ROOT_REF_COWS,
4201                                             &root->state) &&
4202                                    extent_start != 0)
4203                                        inode_sub_bytes(inode, num_dec);
4204                                btrfs_mark_buffer_dirty(leaf);
4205                        } else {
4206                                extent_num_bytes =
4207                                        btrfs_file_extent_disk_num_bytes(leaf,
4208                                                                         fi);
4209                                extent_offset = found_key.offset -
4210                                        btrfs_file_extent_offset(leaf, fi);
4211
4212                                /* FIXME blocksize != 4096 */
4213                                num_dec = btrfs_file_extent_num_bytes(leaf, fi);
4214                                if (extent_start != 0) {
4215                                        found_extent = 1;
4216                                        if (test_bit(BTRFS_ROOT_REF_COWS,
4217                                                     &root->state))
4218                                                inode_sub_bytes(inode, num_dec);
4219                                }
4220                        }
4221                } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
4222                        /*
4223                         * we can't truncate inline items that have had
4224                         * special encodings
4225                         */
4226                        if (!del_item &&
4227                            btrfs_file_extent_compression(leaf, fi) == 0 &&
4228                            btrfs_file_extent_encryption(leaf, fi) == 0 &&
4229                            btrfs_file_extent_other_encoding(leaf, fi) == 0) {
4230                                u32 size = new_size - found_key.offset;
4231
4232                                if (test_bit(BTRFS_ROOT_REF_COWS, &root->state))
4233                                        inode_sub_bytes(inode, item_end + 1 -
4234                                                        new_size);
4235
4236                                /*
4237                                 * update the ram bytes to properly reflect
4238                                 * the new size of our item
4239                                 */
4240                                btrfs_set_file_extent_ram_bytes(leaf, fi, size);
4241                                size =
4242                                    btrfs_file_extent_calc_inline_size(size);
4243                                btrfs_truncate_item(root, path, size, 1);
4244                        } else if (test_bit(BTRFS_ROOT_REF_COWS,
4245                                            &root->state)) {
4246                                inode_sub_bytes(inode, item_end + 1 -
4247                                                found_key.offset);
4248                        }
4249                }
4250delete:
4251                if (del_item) {
4252                        if (!pending_del_nr) {
4253                                /* no pending yet, add ourselves */
4254                                pending_del_slot = path->slots[0];
4255                                pending_del_nr = 1;
4256                        } else if (pending_del_nr &&
4257                                   path->slots[0] + 1 == pending_del_slot) {
4258                                /* hop on the pending chunk */
4259                                pending_del_nr++;
4260                                pending_del_slot = path->slots[0];
4261                        } else {
4262                                BUG();
4263                        }
4264                } else {
4265                        break;
4266                }
4267                if (found_extent &&
4268                    (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
4269                     root == root->fs_info->tree_root)) {
4270                        btrfs_set_path_blocking(path);
4271                        ret = btrfs_free_extent(trans, root, extent_start,
4272                                                extent_num_bytes, 0,
4273                                                btrfs_header_owner(leaf),
4274                                                ino, extent_offset, 0);
4275                        BUG_ON(ret);
4276                }
4277
4278                if (found_type == BTRFS_INODE_ITEM_KEY)
4279                        break;
4280
4281                if (path->slots[0] == 0 ||
4282                    path->slots[0] != pending_del_slot) {
4283                        if (pending_del_nr) {
4284                                ret = btrfs_del_items(trans, root, path,
4285                                                pending_del_slot,
4286                                                pending_del_nr);
4287                                if (ret) {
4288                                        btrfs_abort_transaction(trans,
4289                                                                root, ret);
4290                                        goto error;
4291                                }
4292                                pending_del_nr = 0;
4293                        }
4294                        btrfs_release_path(path);
4295                        goto search_again;
4296                } else {
4297                        path->slots[0]--;
4298                }
4299        }
4300out:
4301        if (pending_del_nr) {
4302                ret = btrfs_del_items(trans, root, path, pending_del_slot,
4303                                      pending_del_nr);
4304                if (ret)
4305                        btrfs_abort_transaction(trans, root, ret);
4306        }
4307error:
4308        if (last_size != (u64)-1 &&
4309            root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID)
4310                btrfs_ordered_update_i_size(inode, last_size, NULL);
4311        btrfs_free_path(path);
4312        return err;
4313}
4314
4315/*
4316 * btrfs_truncate_page - read, zero a chunk and write a page
4317 * @inode - inode that we're zeroing
4318 * @from - the offset to start zeroing
4319 * @len - the length to zero, 0 to zero the entire range respective to the
4320 *      offset
4321 * @front - zero up to the offset instead of from the offset on
4322 *
4323 * This will find the page for the "from" offset and cow the page and zero the
4324 * part we want to zero.  This is used with truncate and hole punching.
4325 */
4326int btrfs_truncate_page(struct inode *inode, loff_t from, loff_t len,
4327                        int front)
4328{
4329        struct address_space *mapping = inode->i_mapping;
4330        struct btrfs_root *root = BTRFS_I(inode)->root;
4331        struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4332        struct btrfs_ordered_extent *ordered;
4333        struct extent_state *cached_state = NULL;
4334        char *kaddr;
4335        u32 blocksize = root->sectorsize;
4336        pgoff_t index = from >> PAGE_CACHE_SHIFT;
4337        unsigned offset = from & (PAGE_CACHE_SIZE-1);
4338        struct page *page;
4339        gfp_t mask = btrfs_alloc_write_mask(mapping);
4340        int ret = 0;
4341        u64 page_start;
4342        u64 page_end;
4343
4344        if ((offset & (blocksize - 1)) == 0 &&
4345            (!len || ((len & (blocksize - 1)) == 0)))
4346                goto out;
4347        ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
4348        if (ret)
4349                goto out;
4350
4351again:
4352        page = find_or_create_page(mapping, index, mask);
4353        if (!page) {
4354                btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
4355                ret = -ENOMEM;
4356                goto out;
4357        }
4358
4359        page_start = page_offset(page);
4360        page_end = page_start + PAGE_CACHE_SIZE - 1;
4361
4362        if (!PageUptodate(page)) {
4363                ret = btrfs_readpage(NULL, page);
4364                lock_page(page);
4365                if (page->mapping != mapping) {
4366                        unlock_page(page);
4367                        page_cache_release(page);
4368                        goto again;
4369                }
4370                if (!PageUptodate(page)) {
4371                        ret = -EIO;
4372                        goto out_unlock;
4373                }
4374        }
4375        wait_on_page_writeback(page);
4376
4377        lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state);
4378        set_page_extent_mapped(page);
4379
4380        ordered = btrfs_lookup_ordered_extent(inode, page_start);
4381        if (ordered) {
4382                unlock_extent_cached(io_tree, page_start, page_end,
4383                                     &cached_state, GFP_NOFS);
4384                unlock_page(page);
4385                page_cache_release(page);
4386                btrfs_start_ordered_extent(inode, ordered, 1);
4387                btrfs_put_ordered_extent(ordered);
4388                goto again;
4389        }
4390
4391        clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
4392                          EXTENT_DIRTY | EXTENT_DELALLOC |
4393                          EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
4394                          0, 0, &cached_state, GFP_NOFS);
4395
4396        ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
4397                                        &cached_state);
4398        if (ret) {
4399                unlock_extent_cached(io_tree, page_start, page_end,
4400                                     &cached_state, GFP_NOFS);
4401                goto out_unlock;
4402        }
4403
4404        if (offset != PAGE_CACHE_SIZE) {
4405                if (!len)
4406                        len = PAGE_CACHE_SIZE - offset;
4407                kaddr = kmap(page);
4408                if (front)
4409                        memset(kaddr, 0, offset);
4410                else
4411                        memset(kaddr + offset, 0, len);
4412                flush_dcache_page(page);
4413                kunmap(page);
4414        }
4415        ClearPageChecked(page);
4416        set_page_dirty(page);
4417        unlock_extent_cached(io_tree, page_start, page_end, &cached_state,
4418                             GFP_NOFS);
4419
4420out_unlock:
4421        if (ret)
4422                btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
4423        unlock_page(page);
4424        page_cache_release(page);
4425out:
4426        return ret;
4427}
4428
4429static int maybe_insert_hole(struct btrfs_root *root, struct inode *inode,
4430                             u64 offset, u64 len)
4431{
4432        struct btrfs_trans_handle *trans;
4433        int ret;
4434
4435        /*
4436         * Still need to make sure the inode looks like it's been updated so
4437         * that any holes get logged if we fsync.
4438         */
4439        if (btrfs_fs_incompat(root->fs_info, NO_HOLES)) {
4440                BTRFS_I(inode)->last_trans = root->fs_info->generation;
4441                BTRFS_I(inode)->last_sub_trans = root->log_transid;
4442                BTRFS_I(inode)->last_log_commit = root->last_log_commit;
4443                return 0;
4444        }
4445
4446        /*
4447         * 1 - for the one we're dropping
4448         * 1 - for the one we're adding
4449         * 1 - for updating the inode.
4450         */
4451        trans = btrfs_start_transaction(root, 3);
4452        if (IS_ERR(trans))
4453                return PTR_ERR(trans);
4454
4455        ret = btrfs_drop_extents(trans, root, inode, offset, offset + len, 1);
4456        if (ret) {
4457                btrfs_abort_transaction(trans, root, ret);
4458                btrfs_end_transaction(trans, root);
4459                return ret;
4460        }
4461
4462        ret = btrfs_insert_file_extent(trans, root, btrfs_ino(inode), offset,
4463                                       0, 0, len, 0, len, 0, 0, 0);
4464        if (ret)
4465                btrfs_abort_transaction(trans, root, ret);
4466        else
4467                btrfs_update_inode(trans, root, inode);
4468        btrfs_end_transaction(trans, root);
4469        return ret;
4470}
4471
4472/*
4473 * This function puts in dummy file extents for the area we're creating a hole
4474 * for.  So if we are truncating this file to a larger size we need to insert
4475 * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for
4476 * the range between oldsize and size
4477 */
4478int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size)
4479{
4480        struct btrfs_root *root = BTRFS_I(inode)->root;
4481        struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4482        struct extent_map *em = NULL;
4483        struct extent_state *cached_state = NULL;
4484        struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
4485        u64 hole_start = ALIGN(oldsize, root->sectorsize);
4486        u64 block_end = ALIGN(size, root->sectorsize);
4487        u64 last_byte;
4488        u64 cur_offset;
4489        u64 hole_size;
4490        int err = 0;
4491
4492        /*
4493         * If our size started in the middle of a page we need to zero out the
4494         * rest of the page before we expand the i_size, otherwise we could
4495         * expose stale data.
4496         */
4497        err = btrfs_truncate_page(inode, oldsize, 0, 0);
4498        if (err)
4499                return err;
4500
4501        if (size <= hole_start)
4502                return 0;
4503
4504        while (1) {
4505                struct btrfs_ordered_extent *ordered;
4506
4507                lock_extent_bits(io_tree, hole_start, block_end - 1, 0,
4508                                 &cached_state);
4509                ordered = btrfs_lookup_ordered_range(inode, hole_start,
4510                                                     block_end - hole_start);
4511                if (!ordered)
4512                        break;
4513                unlock_extent_cached(io_tree, hole_start, block_end - 1,
4514                                     &cached_state, GFP_NOFS);
4515                btrfs_start_ordered_extent(inode, ordered, 1);
4516                btrfs_put_ordered_extent(ordered);
4517        }
4518
4519        cur_offset = hole_start;
4520        while (1) {
4521                em = btrfs_get_extent(inode, NULL, 0, cur_offset,
4522                                block_end - cur_offset, 0);
4523                if (IS_ERR(em)) {
4524                        err = PTR_ERR(em);
4525                        em = NULL;
4526                        break;
4527                }
4528                last_byte = min(extent_map_end(em), block_end);
4529                last_byte = ALIGN(last_byte , root->sectorsize);
4530                if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
4531                        struct extent_map *hole_em;
4532                        hole_size = last_byte - cur_offset;
4533
4534                        err = maybe_insert_hole(root, inode, cur_offset,
4535                                                hole_size);
4536                        if (err)
4537                                break;
4538                        btrfs_drop_extent_cache(inode, cur_offset,
4539                                                cur_offset + hole_size - 1, 0);
4540                        hole_em = alloc_extent_map();
4541                        if (!hole_em) {
4542                                set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
4543                                        &BTRFS_I(inode)->runtime_flags);
4544                                goto next;
4545                        }
4546                        hole_em->start = cur_offset;
4547                        hole_em->len = hole_size;
4548                        hole_em->orig_start = cur_offset;
4549
4550                        hole_em->block_start = EXTENT_MAP_HOLE;
4551                        hole_em->block_len = 0;
4552                        hole_em->orig_block_len = 0;
4553                        hole_em->ram_bytes = hole_size;
4554                        hole_em->bdev = root->fs_info->fs_devices->latest_bdev;
4555                        hole_em->compress_type = BTRFS_COMPRESS_NONE;
4556                        hole_em->generation = root->fs_info->generation;
4557
4558                        while (1) {
4559                                write_lock(&em_tree->lock);
4560                                err = add_extent_mapping(em_tree, hole_em, 1);
4561                                write_unlock(&em_tree->lock);
4562                                if (err != -EEXIST)
4563                                        break;
4564                                btrfs_drop_extent_cache(inode, cur_offset,
4565                                                        cur_offset +
4566                                                        hole_size - 1, 0);
4567                        }
4568                        free_extent_map(hole_em);
4569                }
4570next:
4571                free_extent_map(em);
4572                em = NULL;
4573                cur_offset = last_byte;
4574                if (cur_offset >= block_end)
4575                        break;
4576        }
4577        free_extent_map(em);
4578        unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state,
4579                             GFP_NOFS);
4580        return err;
4581}
4582
4583static int btrfs_setsize(struct inode *inode, struct iattr *attr)
4584{
4585        struct btrfs_root *root = BTRFS_I(inode)->root;
4586        struct btrfs_trans_handle *trans;
4587        loff_t oldsize = i_size_read(inode);
4588        loff_t newsize = attr->ia_size;
4589        int mask = attr->ia_valid;
4590        int ret;
4591
4592        /*
4593         * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a
4594         * special case where we need to update the times despite not having
4595         * these flags set.  For all other operations the VFS set these flags
4596         * explicitly if it wants a timestamp update.
4597         */
4598        if (newsize != oldsize) {
4599                inode_inc_iversion(inode);
4600                if (!(mask & (ATTR_CTIME | ATTR_MTIME)))
4601                        inode->i_ctime = inode->i_mtime =
4602                                current_fs_time(inode->i_sb);
4603        }
4604
4605        if (newsize > oldsize) {
4606                truncate_pagecache(inode, newsize);
4607                ret = btrfs_cont_expand(inode, oldsize, newsize);
4608                if (ret)
4609                        return ret;
4610
4611                trans = btrfs_start_transaction(root, 1);
4612                if (IS_ERR(trans))
4613                        return PTR_ERR(trans);
4614
4615                i_size_write(inode, newsize);
4616                btrfs_ordered_update_i_size(inode, i_size_read(inode), NULL);
4617                ret = btrfs_update_inode(trans, root, inode);
4618                btrfs_end_transaction(trans, root);
4619        } else {
4620
4621                /*
4622                 * We're truncating a file that used to have good data down to
4623                 * zero. Make sure it gets into the ordered flush list so that
4624                 * any new writes get down to disk quickly.
4625                 */
4626                if (newsize == 0)
4627                        set_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
4628                                &BTRFS_I(inode)->runtime_flags);
4629
4630                /*
4631                 * 1 for the orphan item we're going to add
4632                 * 1 for the orphan item deletion.
4633                 */
4634                trans = btrfs_start_transaction(root, 2);
4635                if (IS_ERR(trans))
4636                        return PTR_ERR(trans);
4637
4638                /*
4639                 * We need to do this in case we fail at _any_ point during the
4640                 * actual truncate.  Once we do the truncate_setsize we could
4641                 * invalidate pages which forces any outstanding ordered io to
4642                 * be instantly completed which will give us extents that need
4643                 * to be truncated.  If we fail to get an orphan inode down we
4644                 * could have left over extents that were never meant to live,
4645                 * so we need to garuntee from this point on that everything
4646                 * will be consistent.
4647                 */
4648                ret = btrfs_orphan_add(trans, inode);
4649                btrfs_end_transaction(trans, root);
4650                if (ret)
4651                        return ret;
4652
4653                /* we don't support swapfiles, so vmtruncate shouldn't fail */
4654                truncate_setsize(inode, newsize);
4655
4656                /* Disable nonlocked read DIO to avoid the end less truncate */
4657                btrfs_inode_block_unlocked_dio(inode);
4658                inode_dio_wait(inode);
4659                btrfs_inode_resume_unlocked_dio(inode);
4660
4661                ret = btrfs_truncate(inode);
4662                if (ret && inode->i_nlink) {
4663                        int err;
4664
4665                        /*
4666                         * failed to truncate, disk_i_size is only adjusted down
4667                         * as we remove extents, so it should represent the true
4668                         * size of the inode, so reset the in memory size and
4669                         * delete our orphan entry.
4670                         */
4671                        trans = btrfs_join_transaction(root);
4672                        if (IS_ERR(trans)) {
4673                                btrfs_orphan_del(NULL, inode);
4674                                return ret;
4675                        }
4676                        i_size_write(inode, BTRFS_I(inode)->disk_i_size);
4677                        err = btrfs_orphan_del(trans, inode);
4678                        if (err)
4679                                btrfs_abort_transaction(trans, root, err);
4680                        btrfs_end_transaction(trans, root);
4681                }
4682        }
4683
4684        return ret;
4685}
4686
4687static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
4688{
4689        struct inode *inode = dentry->d_inode;
4690        struct btrfs_root *root = BTRFS_I(inode)->root;
4691        int err;
4692
4693        if (btrfs_root_readonly(root))
4694                return -EROFS;
4695
4696        err = inode_change_ok(inode, attr);
4697        if (err)
4698                return err;
4699
4700        if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
4701                err = btrfs_setsize(inode, attr);
4702                if (err)
4703                        return err;
4704        }
4705
4706        if (attr->ia_valid) {
4707                setattr_copy(inode, attr);
4708                inode_inc_iversion(inode);
4709                err = btrfs_dirty_inode(inode);
4710
4711                if (!err && attr->ia_valid & ATTR_MODE)
4712                        err = posix_acl_chmod(inode, inode->i_mode);
4713        }
4714
4715        return err;
4716}
4717
4718/*
4719 * While truncating the inode pages during eviction, we get the VFS calling
4720 * btrfs_invalidatepage() against each page of the inode. This is slow because
4721 * the calls to btrfs_invalidatepage() result in a huge amount of calls to
4722 * lock_extent_bits() and clear_extent_bit(), which keep merging and splitting
4723 * extent_state structures over and over, wasting lots of time.
4724 *
4725 * Therefore if the inode is being evicted, let btrfs_invalidatepage() skip all
4726 * those expensive operations on a per page basis and do only the ordered io
4727 * finishing, while we release here the extent_map and extent_state structures,
4728 * without the excessive merging and splitting.
4729 */
4730static void evict_inode_truncate_pages(struct inode *inode)
4731{
4732        struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4733        struct extent_map_tree *map_tree = &BTRFS_I(inode)->extent_tree;
4734        struct rb_node *node;
4735
4736        ASSERT(inode->i_state & I_FREEING);
4737        truncate_inode_pages_final(&inode->i_data);
4738
4739        write_lock(&map_tree->lock);
4740        while (!RB_EMPTY_ROOT(&map_tree->map)) {
4741                struct extent_map *em;
4742
4743                node = rb_first(&map_tree->map);
4744                em = rb_entry(node, struct extent_map, rb_node);
4745                clear_bit(EXTENT_FLAG_PINNED, &em->flags);
4746                clear_bit(EXTENT_FLAG_LOGGING, &em->flags);
4747                remove_extent_mapping(map_tree, em);
4748                free_extent_map(em);
4749                if (need_resched()) {
4750                        write_unlock(&map_tree->lock);
4751                        cond_resched();
4752                        write_lock(&map_tree->lock);
4753                }
4754        }
4755        write_unlock(&map_tree->lock);
4756
4757        spin_lock(&io_tree->lock);
4758        while (!RB_EMPTY_ROOT(&io_tree->state)) {
4759                struct extent_state *state;
4760                struct extent_state *cached_state = NULL;
4761
4762                node = rb_first(&io_tree->state);
4763                state = rb_entry(node, struct extent_state, rb_node);
4764                atomic_inc(&state->refs);
4765                spin_unlock(&io_tree->lock);
4766
4767                lock_extent_bits(io_tree, state->start, state->end,
4768                                 0, &cached_state);
4769                clear_extent_bit(io_tree, state->start, state->end,
4770                                 EXTENT_LOCKED | EXTENT_DIRTY |
4771                                 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
4772                                 EXTENT_DEFRAG, 1, 1,
4773                                 &cached_state, GFP_NOFS);
4774                free_extent_state(state);
4775
4776                cond_resched();
4777                spin_lock(&io_tree->lock);
4778        }
4779        spin_unlock(&io_tree->lock);
4780}
4781
4782void btrfs_evict_inode(struct inode *inode)
4783{
4784        struct btrfs_trans_handle *trans;
4785        struct btrfs_root *root = BTRFS_I(inode)->root;
4786        struct btrfs_block_rsv *rsv, *global_rsv;
4787        u64 min_size = btrfs_calc_trunc_metadata_size(root, 1);
4788        int ret;
4789
4790        trace_btrfs_inode_evict(inode);
4791
4792        evict_inode_truncate_pages(inode);
4793
4794        if (inode->i_nlink &&
4795            ((btrfs_root_refs(&root->root_item) != 0 &&
4796              root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID) ||
4797             btrfs_is_free_space_inode(inode)))
4798                goto no_delete;
4799
4800        if (is_bad_inode(inode)) {
4801                btrfs_orphan_del(NULL, inode);
4802                goto no_delete;
4803        }
4804        /* do we really want it for ->i_nlink > 0 and zero btrfs_root_refs? */
4805        btrfs_wait_ordered_range(inode, 0, (u64)-1);
4806
4807        btrfs_free_io_failure_record(inode, 0, (u64)-1);
4808
4809        if (root->fs_info->log_root_recovering) {
4810                BUG_ON(test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
4811                                 &BTRFS_I(inode)->runtime_flags));
4812                goto no_delete;
4813        }
4814
4815        if (inode->i_nlink > 0) {
4816                BUG_ON(btrfs_root_refs(&root->root_item) != 0 &&
4817                       root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID);
4818                goto no_delete;
4819        }
4820
4821        ret = btrfs_commit_inode_delayed_inode(inode);
4822        if (ret) {
4823                btrfs_orphan_del(NULL, inode);
4824                goto no_delete;
4825        }
4826
4827        rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
4828        if (!rsv) {
4829                btrfs_orphan_del(NULL, inode);
4830                goto no_delete;
4831        }
4832        rsv->size = min_size;
4833        rsv->failfast = 1;
4834        global_rsv = &root->fs_info->global_block_rsv;
4835
4836        btrfs_i_size_write(inode, 0);
4837
4838        /*
4839         * This is a bit simpler than btrfs_truncate since we've already
4840         * reserved our space for our orphan item in the unlink, so we just
4841         * need to reserve some slack space in case we add bytes and update
4842         * inode item when doing the truncate.
4843         */
4844        while (1) {
4845                ret = btrfs_block_rsv_refill(root, rsv, min_size,
4846                                             BTRFS_RESERVE_FLUSH_LIMIT);
4847
4848                /*
4849                 * Try and steal from the global reserve since we will
4850                 * likely not use this space anyway, we want to try as
4851                 * hard as possible to get this to work.
4852                 */
4853                if (ret)
4854                        ret = btrfs_block_rsv_migrate(global_rsv, rsv, min_size);
4855
4856                if (ret) {
4857                        btrfs_warn(root->fs_info,
4858                                "Could not get space for a delete, will truncate on mount %d",
4859                                ret);
4860                        btrfs_orphan_del(NULL, inode);
4861                        btrfs_free_block_rsv(root, rsv);
4862                        goto no_delete;
4863                }
4864
4865                trans = btrfs_join_transaction(root);
4866                if (IS_ERR(trans)) {
4867                        btrfs_orphan_del(NULL, inode);
4868                        btrfs_free_block_rsv(root, rsv);
4869                        goto no_delete;
4870                }
4871
4872                trans->block_rsv = rsv;
4873
4874                ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0);
4875                if (ret != -ENOSPC)
4876                        break;
4877
4878                trans->block_rsv = &root->fs_info->trans_block_rsv;
4879                btrfs_end_transaction(trans, root);
4880                trans = NULL;
4881                btrfs_btree_balance_dirty(root);
4882        }
4883
4884        btrfs_free_block_rsv(root, rsv);
4885
4886        /*
4887         * Errors here aren't a big deal, it just means we leave orphan items
4888         * in the tree.  They will be cleaned up on the next mount.
4889         */
4890        if (ret == 0) {
4891                trans->block_rsv = root->orphan_block_rsv;
4892                btrfs_orphan_del(trans, inode);
4893        } else {
4894                btrfs_orphan_del(NULL, inode);
4895        }
4896
4897        trans->block_rsv = &root->fs_info->trans_block_rsv;
4898        if (!(root == root->fs_info->tree_root ||
4899              root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID))
4900                btrfs_return_ino(root, btrfs_ino(inode));
4901
4902        btrfs_end_transaction(trans, root);
4903        btrfs_btree_balance_dirty(root);
4904no_delete:
4905        btrfs_remove_delayed_node(inode);
4906        clear_inode(inode);
4907        return;
4908}
4909
4910/*
4911 * this returns the key found in the dir entry in the location pointer.
4912 * If no dir entries were found, location->objectid is 0.
4913 */
4914static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
4915                               struct btrfs_key *location)
4916{
4917        const char *name = dentry->d_name.name;
4918        int namelen = dentry->d_name.len;
4919        struct btrfs_dir_item *di;
4920        struct btrfs_path *path;
4921        struct btrfs_root *root = BTRFS_I(dir)->root;
4922        int ret = 0;
4923
4924        path = btrfs_alloc_path();
4925        if (!path)
4926                return -ENOMEM;
4927
4928        di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(dir), name,
4929                                    namelen, 0);
4930        if (IS_ERR(di))
4931                ret = PTR_ERR(di);
4932
4933        if (IS_ERR_OR_NULL(di))
4934                goto out_err;
4935
4936        btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
4937out:
4938        btrfs_free_path(path);
4939        return ret;
4940out_err:
4941        location->objectid = 0;
4942        goto out;
4943}
4944
4945/*
4946 * when we hit a tree root in a directory, the btrfs part of the inode
4947 * needs to be changed to reflect the root directory of the tree root.  This
4948 * is kind of like crossing a mount point.
4949 */
4950static int fixup_tree_root_location(struct btrfs_root *root,
4951                                    struct inode *dir,
4952                                    struct dentry *dentry,
4953                                    struct btrfs_key *location,
4954                                    struct btrfs_root **sub_root)
4955{
4956        struct btrfs_path *path;
4957        struct btrfs_root *new_root;
4958        struct btrfs_root_ref *ref;
4959        struct extent_buffer *leaf;
4960        int ret;
4961        int err = 0;
4962
4963        path = btrfs_alloc_path();
4964        if (!path) {
4965                err = -ENOMEM;
4966                goto out;
4967        }
4968
4969        err = -ENOENT;
4970        ret = btrfs_find_item(root->fs_info->tree_root, path,
4971                                BTRFS_I(dir)->root->root_key.objectid,
4972                                location->objectid, BTRFS_ROOT_REF_KEY, NULL);
4973        if (ret) {
4974                if (ret < 0)
4975                        err = ret;
4976                goto out;
4977        }
4978
4979        leaf = path->nodes[0];
4980        ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
4981        if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(dir) ||
4982            btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len)
4983                goto out;
4984
4985        ret = memcmp_extent_buffer(leaf, dentry->d_name.name,
4986                                   (unsigned long)(ref + 1),
4987                                   dentry->d_name.len);
4988        if (ret)
4989                goto out;
4990
4991        btrfs_release_path(path);
4992
4993        new_root = btrfs_read_fs_root_no_name(root->fs_info, location);
4994        if (IS_ERR(new_root)) {
4995                err = PTR_ERR(new_root);
4996                goto out;
4997        }
4998
4999        *sub_root = new_root;
5000        location->objectid = btrfs_root_dirid(&new_root->root_item);
5001        location->type = BTRFS_INODE_ITEM_KEY;
5002        location->offset = 0;
5003        err = 0;
5004out:
5005        btrfs_free_path(path);
5006        return err;
5007}
5008
5009static void inode_tree_add(struct inode *inode)
5010{
5011        struct btrfs_root *root = BTRFS_I(inode)->root;
5012        struct btrfs_inode *entry;
5013        struct rb_node **p;
5014        struct rb_node *parent;
5015        struct rb_node *new = &BTRFS_I(inode)->rb_node;
5016        u64 ino = btrfs_ino(inode);
5017
5018        if (inode_unhashed(inode))
5019                return;
5020        parent = NULL;
5021        spin_lock(&root->inode_lock);
5022        p = &root->inode_tree.rb_node;
5023        while (*p) {
5024                parent = *p;
5025                entry = rb_entry(parent, struct btrfs_inode, rb_node);
5026
5027                if (ino < btrfs_ino(&entry->vfs_inode))
5028                        p = &parent->rb_left;
5029                else if (ino > btrfs_ino(&entry->vfs_inode))
5030                        p = &parent->rb_right;
5031                else {
5032                        WARN_ON(!(entry->vfs_inode.i_state &
5033                                  (I_WILL_FREE | I_FREEING)));
5034                        rb_replace_node(parent, new, &root->inode_tree);
5035                        RB_CLEAR_NODE(parent);
5036                        spin_unlock(&root->inode_lock);
5037                        return;
5038                }
5039        }
5040        rb_link_node(new, parent, p);
5041        rb_insert_color(new, &root->inode_tree);
5042        spin_unlock(&root->inode_lock);
5043}
5044
5045static void inode_tree_del(struct inode *inode)
5046{
5047        struct btrfs_root *root = BTRFS_I(inode)->root;
5048        int empty = 0;
5049
5050        spin_lock(&root->inode_lock);
5051        if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) {
5052                rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree);
5053                RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
5054                empty = RB_EMPTY_ROOT(&root->inode_tree);
5055        }
5056        spin_unlock(&root->inode_lock);
5057
5058        if (empty && btrfs_root_refs(&root->root_item) == 0) {
5059                synchronize_srcu(&root->fs_info->subvol_srcu);
5060                spin_lock(&root->inode_lock);
5061                empty = RB_EMPTY_ROOT(&root->inode_tree);
5062                spin_unlock(&root->inode_lock);
5063                if (empty)
5064                        btrfs_add_dead_root(root);
5065        }
5066}
5067
5068void btrfs_invalidate_inodes(struct btrfs_root *root)
5069{
5070        struct rb_node *node;
5071        struct rb_node *prev;
5072        struct btrfs_inode *entry;
5073        struct inode *inode;
5074        u64 objectid = 0;
5075
5076        if (!test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state))
5077                WARN_ON(btrfs_root_refs(&root->root_item) != 0);
5078
5079        spin_lock(&root->inode_lock);
5080again:
5081        node = root->inode_tree.rb_node;
5082        prev = NULL;
5083        while (node) {
5084                prev = node;
5085                entry = rb_entry(node, struct btrfs_inode, rb_node);
5086
5087                if (objectid < btrfs_ino(&entry->vfs_inode))
5088                        node = node->rb_left;
5089                else if (objectid > btrfs_ino(&entry->vfs_inode))
5090                        node = node->rb_right;
5091                else
5092                        break;
5093        }
5094        if (!node) {
5095                while (prev) {
5096                        entry = rb_entry(prev, struct btrfs_inode, rb_node);
5097                        if (objectid <= btrfs_ino(&entry->vfs_inode)) {
5098                                node = prev;
5099                                break;
5100                        }
5101                        prev = rb_next(prev);
5102                }
5103        }
5104        while (node) {
5105                entry = rb_entry(node, struct btrfs_inode, rb_node);
5106                objectid = btrfs_ino(&entry->vfs_inode) + 1;
5107                inode = igrab(&entry->vfs_inode);
5108                if (inode) {
5109                        spin_unlock(&root->inode_lock);
5110                        if (atomic_read(&inode->i_count) > 1)
5111                                d_prune_aliases(inode);
5112                        /*
5113                         * btrfs_drop_inode will have it removed from
5114                         * the inode cache when its usage count
5115                         * hits zero.
5116                         */
5117                        iput(inode);
5118                        cond_resched();
5119                        spin_lock(&root->inode_lock);
5120                        goto again;
5121                }
5122
5123                if (cond_resched_lock(&root->inode_lock))
5124                        goto again;
5125
5126                node = rb_next(node);
5127        }
5128        spin_unlock(&root->inode_lock);
5129}
5130
5131static int btrfs_init_locked_inode(struct inode *inode, void *p)
5132{
5133        struct btrfs_iget_args *args = p;
5134        inode->i_ino = args->location->objectid;
5135        memcpy(&BTRFS_I(inode)->location, args->location,
5136               sizeof(*args->location));
5137        BTRFS_I(inode)->root = args->root;
5138        return 0;
5139}
5140
5141static int btrfs_find_actor(struct inode *inode, void *opaque)
5142{
5143        struct btrfs_iget_args *args = opaque;
5144        return args->location->objectid == BTRFS_I(inode)->location.objectid &&
5145                args->root == BTRFS_I(inode)->root;
5146}
5147
5148static struct inode *btrfs_iget_locked(struct super_block *s,
5149                                       struct btrfs_key *location,
5150                                       struct btrfs_root *root)
5151{
5152        struct inode *inode;
5153        struct btrfs_iget_args args;
5154        unsigned long hashval = btrfs_inode_hash(location->objectid, root);
5155
5156        args.location = location;
5157        args.root = root;
5158
5159        inode = iget5_locked(s, hashval, btrfs_find_actor,
5160                             btrfs_init_locked_inode,
5161                             (void *)&args);
5162        return inode;
5163}
5164
5165/* Get an inode object given its location and corresponding root.
5166 * Returns in *is_new if the inode was read from disk
5167 */
5168struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
5169                         struct btrfs_root *root, int *new)
5170{
5171        struct inode *inode;
5172
5173        inode = btrfs_iget_locked(s, location, root);
5174        if (!inode)
5175                return ERR_PTR(-ENOMEM);
5176
5177        if (inode->i_state & I_NEW) {
5178                btrfs_read_locked_inode(inode);
5179                if (!is_bad_inode(inode)) {
5180                        inode_tree_add(inode);
5181                        unlock_new_inode(inode);
5182                        if (new)
5183                                *new = 1;
5184                } else {
5185                        unlock_new_inode(inode);
5186                        iput(inode);
5187                        inode = ERR_PTR(-ESTALE);
5188                }
5189        }
5190
5191        return inode;
5192}
5193
5194static struct inode *new_simple_dir(struct super_block *s,
5195                                    struct btrfs_key *key,
5196                                    struct btrfs_root *root)
5197{
5198        struct inode *inode = new_inode(s);
5199
5200        if (!inode)
5201                return ERR_PTR(-ENOMEM);
5202
5203        BTRFS_I(inode)->root = root;
5204        memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
5205        set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
5206
5207        inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
5208        inode->i_op = &btrfs_dir_ro_inode_operations;
5209        inode->i_fop = &simple_dir_operations;
5210        inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
5211        inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
5212
5213        return inode;
5214}
5215
5216struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
5217{
5218        struct inode *inode;
5219        struct btrfs_root *root = BTRFS_I(dir)->root;
5220        struct btrfs_root *sub_root = root;
5221        struct btrfs_key location;
5222        int index;
5223        int ret = 0;
5224
5225        if (dentry->d_name.len > BTRFS_NAME_LEN)
5226                return ERR_PTR(-ENAMETOOLONG);
5227
5228        ret = btrfs_inode_by_name(dir, dentry, &location);
5229        if (ret < 0)
5230                return ERR_PTR(ret);
5231
5232        if (location.objectid == 0)
5233                return ERR_PTR(-ENOENT);
5234
5235        if (location.type == BTRFS_INODE_ITEM_KEY) {
5236                inode = btrfs_iget(dir->i_sb, &location, root, NULL);
5237                return inode;
5238        }
5239
5240        BUG_ON(location.type != BTRFS_ROOT_ITEM_KEY);
5241
5242        index = srcu_read_lock(&root->fs_info->subvol_srcu);
5243        ret = fixup_tree_root_location(root, dir, dentry,
5244                                       &location, &sub_root);
5245        if (ret < 0) {
5246                if (ret != -ENOENT)
5247                        inode = ERR_PTR(ret);
5248                else
5249                        inode = new_simple_dir(dir->i_sb, &location, sub_root);
5250        } else {
5251                inode = btrfs_iget(dir->i_sb, &location, sub_root, NULL);
5252        }
5253        srcu_read_unlock(&root->fs_info->subvol_srcu, index);
5254
5255        if (!IS_ERR(inode) && root != sub_root) {
5256                down_read(&root->fs_info->cleanup_work_sem);
5257                if (!(inode->i_sb->s_flags & MS_RDONLY))
5258                        ret = btrfs_orphan_cleanup(sub_root);
5259                up_read(&root->fs_info->cleanup_work_sem);
5260                if (ret) {
5261                        iput(inode);
5262                        inode = ERR_PTR(ret);
5263                }
5264        }
5265
5266        return inode;
5267}
5268
5269static int btrfs_dentry_delete(const struct dentry *dentry)
5270{
5271        struct btrfs_root *root;
5272        struct inode *inode = dentry->d_inode;
5273
5274        if (!inode && !IS_ROOT(dentry))
5275                inode = dentry->d_parent->d_inode;
5276
5277        if (inode) {
5278                root = BTRFS_I(inode)->root;
5279                if (btrfs_root_refs(&root->root_item) == 0)
5280                        return 1;
5281
5282                if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
5283                        return 1;
5284        }
5285        return 0;
5286}
5287
5288static void btrfs_dentry_release(struct dentry *dentry)
5289{
5290        kfree(dentry->d_fsdata);
5291}
5292
5293static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
5294                                   unsigned int flags)
5295{
5296        struct inode *inode;
5297
5298        inode = btrfs_lookup_dentry(dir, dentry);
5299        if (IS_ERR(inode)) {
5300                if (PTR_ERR(inode) == -ENOENT)
5301                        inode = NULL;
5302                else
5303                        return ERR_CAST(inode);
5304        }
5305
5306        return d_materialise_unique(dentry, inode);
5307}
5308
5309unsigned char btrfs_filetype_table[] = {
5310        DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK
5311};
5312
5313static int btrfs_real_readdir(struct file *file, struct dir_context *ctx)
5314{
5315        struct inode *inode = file_inode(file);
5316        struct btrfs_root *root = BTRFS_I(inode)->root;
5317        struct btrfs_item *item;
5318        struct btrfs_dir_item *di;
5319        struct btrfs_key key;
5320        struct btrfs_key found_key;
5321        struct btrfs_path *path;
5322        struct list_head ins_list;
5323        struct list_head del_list;
5324        int ret;
5325        struct extent_buffer *leaf;
5326        int slot;
5327        unsigned char d_type;
5328        int over = 0;
5329        u32 di_cur;
5330        u32 di_total;
5331        u32 di_len;
5332        int key_type = BTRFS_DIR_INDEX_KEY;
5333        char tmp_name[32];
5334        char *name_ptr;
5335        int name_len;
5336        int is_curr = 0;        /* ctx->pos points to the current index? */
5337
5338        /* FIXME, use a real flag for deciding about the key type */
5339        if (root->fs_info->tree_root == root)
5340                key_type = BTRFS_DIR_ITEM_KEY;
5341
5342        if (!dir_emit_dots(file, ctx))
5343                return 0;
5344
5345        path = btrfs_alloc_path();
5346        if (!path)
5347                return -ENOMEM;
5348
5349        path->reada = 1;
5350
5351        if (key_type == BTRFS_DIR_INDEX_KEY) {
5352                INIT_LIST_HEAD(&ins_list);
5353                INIT_LIST_HEAD(&del_list);
5354                btrfs_get_delayed_items(inode, &ins_list, &del_list);
5355        }
5356
5357        key.type = key_type;
5358        key.offset = ctx->pos;
5359        key.objectid = btrfs_ino(inode);
5360
5361        ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5362        if (ret < 0)
5363                goto err;
5364
5365        while (1) {
5366                leaf = path->nodes[0];
5367                slot = path->slots[0];
5368                if (slot >= btrfs_header_nritems(leaf)) {
5369                        ret = btrfs_next_leaf(root, path);
5370                        if (ret < 0)
5371                                goto err;
5372                        else if (ret > 0)
5373                                break;
5374                        continue;
5375                }
5376
5377                item = btrfs_item_nr(slot);
5378                btrfs_item_key_to_cpu(leaf, &found_key, slot);
5379
5380                if (found_key.objectid != key.objectid)
5381                        break;
5382                if (found_key.type != key_type)
5383                        break;
5384                if (found_key.offset < ctx->pos)
5385                        goto next;
5386                if (key_type == BTRFS_DIR_INDEX_KEY &&
5387                    btrfs_should_delete_dir_index(&del_list,
5388                                                  found_key.offset))
5389                        goto next;
5390
5391                ctx->pos = found_key.offset;
5392                is_curr = 1;
5393
5394                di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
5395                di_cur = 0;
5396                di_total = btrfs_item_size(leaf, item);
5397
5398                while (di_cur < di_total) {
5399                        struct btrfs_key location;
5400
5401                        if (verify_dir_item(root, leaf, di))
5402                                break;
5403
5404                        name_len = btrfs_dir_name_len(leaf, di);
5405                        if (name_len <= sizeof(tmp_name)) {
5406                                name_ptr = tmp_name;
5407                        } else {
5408                                name_ptr = kmalloc(name_len, GFP_NOFS);
5409                                if (!name_ptr) {
5410                                        ret = -ENOMEM;
5411                                        goto err;
5412                                }
5413                        }
5414                        read_extent_buffer(leaf, name_ptr,
5415                                           (unsigned long)(di + 1), name_len);
5416
5417                        d_type = btrfs_filetype_table[btrfs_dir_type(leaf, di)];
5418                        btrfs_dir_item_key_to_cpu(leaf, di, &location);
5419
5420
5421                        /* is this a reference to our own snapshot? If so
5422                         * skip it.
5423                         *
5424                         * In contrast to old kernels, we insert the snapshot's
5425                         * dir item and dir index after it has been created, so
5426                         * we won't find a reference to our own snapshot. We
5427                         * still keep the following code for backward
5428                         * compatibility.
5429                         */
5430                        if (location.type == BTRFS_ROOT_ITEM_KEY &&
5431                            location.objectid == root->root_key.objectid) {
5432                                over = 0;
5433                                goto skip;
5434                        }
5435                        over = !dir_emit(ctx, name_ptr, name_len,
5436                                       location.objectid, d_type);
5437
5438skip:
5439                        if (name_ptr != tmp_name)
5440                                kfree(name_ptr);
5441
5442                        if (over)
5443                                goto nopos;
5444                        di_len = btrfs_dir_name_len(leaf, di) +
5445                                 btrfs_dir_data_len(leaf, di) + sizeof(*di);
5446                        di_cur += di_len;
5447                        di = (struct btrfs_dir_item *)((char *)di + di_len);
5448                }
5449next:
5450                path->slots[0]++;
5451        }
5452
5453        if (key_type == BTRFS_DIR_INDEX_KEY) {
5454                if (is_curr)
5455                        ctx->pos++;
5456                ret = btrfs_readdir_delayed_dir_index(ctx, &ins_list);
5457                if (ret)
5458                        goto nopos;
5459        }
5460
5461        /* Reached end of directory/root. Bump pos past the last item. */
5462        ctx->pos++;
5463
5464        /*
5465         * Stop new entries from being returned after we return the last
5466         * entry.
5467         *
5468         * New directory entries are assigned a strictly increasing
5469         * offset.  This means that new entries created during readdir
5470         * are *guaranteed* to be seen in the future by that readdir.
5471         * This has broken buggy programs which operate on names as
5472         * they're returned by readdir.  Until we re-use freed offsets
5473         * we have this hack to stop new entries from being returned
5474         * under the assumption that they'll never reach this huge
5475         * offset.
5476         *
5477         * This is being careful not to overflow 32bit loff_t unless the
5478         * last entry requires it because doing so has broken 32bit apps
5479         * in the past.
5480         */
5481        if (key_type == BTRFS_DIR_INDEX_KEY) {
5482                if (ctx->pos >= INT_MAX)
5483                        ctx->pos = LLONG_MAX;
5484                else
5485                        ctx->pos = INT_MAX;
5486        }
5487nopos:
5488        ret = 0;
5489err:
5490        if (key_type == BTRFS_DIR_INDEX_KEY)
5491                btrfs_put_delayed_items(&ins_list, &del_list);
5492        btrfs_free_path(path);
5493        return ret;
5494}
5495
5496int btrfs_write_inode(struct inode *inode, struct writeback_control *wbc)
5497{
5498        struct btrfs_root *root = BTRFS_I(inode)->root;
5499        struct btrfs_trans_handle *trans;
5500        int ret = 0;
5501        bool nolock = false;
5502
5503        if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
5504                return 0;
5505
5506        if (btrfs_fs_closing(root->fs_info) && btrfs_is_free_space_inode(inode))
5507                nolock = true;
5508
5509        if (wbc->sync_mode == WB_SYNC_ALL) {
5510                if (nolock)
5511                        trans = btrfs_join_transaction_nolock(root);
5512                else
5513                        trans = btrfs_join_transaction(root);
5514                if (IS_ERR(trans))
5515                        return PTR_ERR(trans);
5516                ret = btrfs_commit_transaction(trans, root);
5517        }
5518        return ret;
5519}
5520
5521/*
5522 * This is somewhat expensive, updating the tree every time the
5523 * inode changes.  But, it is most likely to find the inode in cache.
5524 * FIXME, needs more benchmarking...there are no reasons other than performance
5525 * to keep or drop this code.
5526 */
5527static int btrfs_dirty_inode(struct inode *inode)
5528{
5529        struct btrfs_root *root = BTRFS_I(inode)->root;
5530        struct btrfs_trans_handle *trans;
5531        int ret;
5532
5533        if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
5534                return 0;
5535
5536        trans = btrfs_join_transaction(root);
5537        if (IS_ERR(trans))
5538                return PTR_ERR(trans);
5539
5540        ret = btrfs_update_inode(trans, root, inode);
5541        if (ret && ret == -ENOSPC) {
5542                /* whoops, lets try again with the full transaction */
5543                btrfs_end_transaction(trans, root);
5544                trans = btrfs_start_transaction(root, 1);
5545                if (IS_ERR(trans))
5546                        return PTR_ERR(trans);
5547
5548                ret = btrfs_update_inode(trans, root, inode);
5549        }
5550        btrfs_end_transaction(trans, root);
5551        if (BTRFS_I(inode)->delayed_node)
5552                btrfs_balance_delayed_items(root);
5553
5554        return ret;
5555}
5556
5557/*
5558 * This is a copy of file_update_time.  We need this so we can return error on
5559 * ENOSPC for updating the inode in the case of file write and mmap writes.
5560 */
5561static int btrfs_update_time(struct inode *inode, struct timespec *now,
5562                             int flags)
5563{
5564        struct btrfs_root *root = BTRFS_I(inode)->root;
5565
5566        if (btrfs_root_readonly(root))
5567                return -EROFS;
5568
5569        if (flags & S_VERSION)
5570                inode_inc_iversion(inode);
5571        if (flags & S_CTIME)
5572                inode->i_ctime = *now;
5573        if (flags & S_MTIME)
5574                inode->i_mtime = *now;
5575        if (flags & S_ATIME)
5576                inode->i_atime = *now;
5577        return btrfs_dirty_inode(inode);
5578}
5579
5580/*
5581 * find the highest existing sequence number in a directory
5582 * and then set the in-memory index_cnt variable to reflect
5583 * free sequence numbers
5584 */
5585static int btrfs_set_inode_index_count(struct inode *inode)
5586{
5587        struct btrfs_root *root = BTRFS_I(inode)->root;
5588        struct btrfs_key key, found_key;
5589        struct btrfs_path *path;
5590        struct extent_buffer *leaf;
5591        int ret;
5592
5593        key.objectid = btrfs_ino(inode);
5594        key.type = BTRFS_DIR_INDEX_KEY;
5595        key.offset = (u64)-1;
5596
5597        path = btrfs_alloc_path();
5598        if (!path)
5599                return -ENOMEM;
5600
5601        ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5602        if (ret < 0)
5603                goto out;
5604        /* FIXME: we should be able to handle this */
5605        if (ret == 0)
5606                goto out;
5607        ret = 0;
5608
5609        /*
5610         * MAGIC NUMBER EXPLANATION:
5611         * since we search a directory based on f_pos we have to start at 2
5612         * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
5613         * else has to start at 2
5614         */
5615        if (path->slots[0] == 0) {
5616                BTRFS_I(inode)->index_cnt = 2;
5617                goto out;
5618        }
5619
5620        path->slots[0]--;
5621
5622        leaf = path->nodes[0];
5623        btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5624
5625        if (found_key.objectid != btrfs_ino(inode) ||
5626            found_key.type != BTRFS_DIR_INDEX_KEY) {
5627                BTRFS_I(inode)->index_cnt = 2;
5628                goto out;
5629        }
5630
5631        BTRFS_I(inode)->index_cnt = found_key.offset + 1;
5632out:
5633        btrfs_free_path(path);
5634        return ret;
5635}
5636
5637/*
5638 * helper to find a free sequence number in a given directory.  This current
5639 * code is very simple, later versions will do smarter things in the btree
5640 */
5641int btrfs_set_inode_index(struct inode *dir, u64 *index)
5642{
5643        int ret = 0;
5644
5645        if (BTRFS_I(dir)->index_cnt == (u64)-1) {
5646                ret = btrfs_inode_delayed_dir_index_count(dir);
5647                if (ret) {
5648                        ret = btrfs_set_inode_index_count(dir);
5649                        if (ret)
5650                                return ret;
5651                }
5652        }
5653
5654        *index = BTRFS_I(dir)->index_cnt;
5655        BTRFS_I(dir)->index_cnt++;
5656
5657        return ret;
5658}
5659
5660static int btrfs_insert_inode_locked(struct inode *inode)
5661{
5662        struct btrfs_iget_args args;
5663        args.location = &BTRFS_I(inode)->location;
5664        args.root = BTRFS_I(inode)->root;
5665
5666        return insert_inode_locked4(inode,
5667                   btrfs_inode_hash(inode->i_ino, BTRFS_I(inode)->root),
5668                   btrfs_find_actor, &args);
5669}
5670
5671static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
5672                                     struct btrfs_root *root,
5673                                     struct inode *dir,
5674                                     const char *name, int name_len,
5675                                     u64 ref_objectid, u64 objectid,
5676                                     umode_t mode, u64 *index)
5677{
5678        struct inode *inode;
5679        struct btrfs_inode_item *inode_item;
5680        struct btrfs_key *location;
5681        struct btrfs_path *path;
5682        struct btrfs_inode_ref *ref;
5683        struct btrfs_key key[2];
5684        u32 sizes[2];
5685        int nitems = name ? 2 : 1;
5686        unsigned long ptr;
5687        int ret;
5688
5689        path = btrfs_alloc_path();
5690        if (!path)
5691                return ERR_PTR(-ENOMEM);
5692
5693        inode = new_inode(root->fs_info->sb);
5694        if (!inode) {
5695                btrfs_free_path(path);
5696                return ERR_PTR(-ENOMEM);
5697        }
5698
5699        /*
5700         * O_TMPFILE, set link count to 0, so that after this point,
5701         * we fill in an inode item with the correct link count.
5702         */
5703        if (!name)
5704                set_nlink(inode, 0);
5705
5706        /*
5707         * we have to initialize this early, so we can reclaim the inode
5708         * number if we fail afterwards in this function.
5709         */
5710        inode->i_ino = objectid;
5711
5712        if (dir && name) {
5713                trace_btrfs_inode_request(dir);
5714
5715                ret = btrfs_set_inode_index(dir, index);
5716                if (ret) {
5717                        btrfs_free_path(path);
5718                        iput(inode);
5719                        return ERR_PTR(ret);
5720                }
5721        } else if (dir) {
5722                *index = 0;
5723        }
5724        /*
5725         * index_cnt is ignored for everything but a dir,
5726         * btrfs_get_inode_index_count has an explanation for the magic
5727         * number
5728         */
5729        BTRFS_I(inode)->index_cnt = 2;
5730        BTRFS_I(inode)->dir_index = *index;
5731        BTRFS_I(inode)->root = root;
5732        BTRFS_I(inode)->generation = trans->transid;
5733        inode->i_generation = BTRFS_I(inode)->generation;
5734
5735        /*
5736         * We could have gotten an inode number from somebody who was fsynced
5737         * and then removed in this same transaction, so let's just set full
5738         * sync since it will be a full sync anyway and this will blow away the
5739         * old info in the log.
5740         */
5741        set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
5742
5743        key[0].objectid = objectid;
5744        key[0].type = BTRFS_INODE_ITEM_KEY;
5745        key[0].offset = 0;
5746
5747        sizes[0] = sizeof(struct btrfs_inode_item);
5748
5749        if (name) {
5750                /*
5751                 * Start new inodes with an inode_ref. This is slightly more
5752                 * efficient for small numbers of hard links since they will
5753                 * be packed into one item. Extended refs will kick in if we
5754                 * add more hard links than can fit in the ref item.
5755                 */
5756                key[1].objectid = objectid;
5757                key[1].type = BTRFS_INODE_REF_KEY;
5758                key[1].offset = ref_objectid;
5759
5760                sizes[1] = name_len + sizeof(*ref);
5761        }
5762
5763        location = &BTRFS_I(inode)->location;
5764        location->objectid = objectid;
5765        location->offset = 0;
5766        location->type = BTRFS_INODE_ITEM_KEY;
5767
5768        ret = btrfs_insert_inode_locked(inode);
5769        if (ret < 0)
5770                goto fail;
5771
5772        path->leave_spinning = 1;
5773        ret = btrfs_insert_empty_items(trans, root, path, key, sizes, nitems);
5774        if (ret != 0)
5775                goto fail_unlock;
5776
5777        inode_init_owner(inode, dir, mode);
5778        inode_set_bytes(inode, 0);
5779        inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
5780        inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
5781                                  struct btrfs_inode_item);
5782        memset_extent_buffer(path->nodes[0], 0, (unsigned long)inode_item,
5783                             sizeof(*inode_item));
5784        fill_inode_item(trans, path->nodes[0], inode_item, inode);
5785
5786        if (name) {
5787                ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
5788                                     struct btrfs_inode_ref);
5789                btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
5790                btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
5791                ptr = (unsigned long)(ref + 1);
5792                write_extent_buffer(path->nodes[0], name, ptr, name_len);
5793        }
5794
5795        btrfs_mark_buffer_dirty(path->nodes[0]);
5796        btrfs_free_path(path);
5797
5798        btrfs_inherit_iflags(inode, dir);
5799
5800        if (S_ISREG(mode)) {
5801                if (btrfs_test_opt(root, NODATASUM))
5802                        BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
5803                if (btrfs_test_opt(root, NODATACOW))
5804                        BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW |
5805                                BTRFS_INODE_NODATASUM;
5806        }
5807
5808        inode_tree_add(inode);
5809
5810        trace_btrfs_inode_new(inode);
5811        btrfs_set_inode_last_trans(trans, inode);
5812
5813        btrfs_update_root_times(trans, root);
5814
5815        ret = btrfs_inode_inherit_props(trans, inode, dir);
5816        if (ret)
5817                btrfs_err(root->fs_info,
5818                          "error inheriting props for ino %llu (root %llu): %d",
5819                          btrfs_ino(inode), root->root_key.objectid, ret);
5820
5821        return inode;
5822
5823fail_unlock:
5824        unlock_new_inode(inode);
5825fail:
5826        if (dir && name)
5827                BTRFS_I(dir)->index_cnt--;
5828        btrfs_free_path(path);
5829        iput(inode);
5830        return ERR_PTR(ret);
5831}
5832
5833static inline u8 btrfs_inode_type(struct inode *inode)
5834{
5835        return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT];
5836}
5837
5838/*
5839 * utility function to add 'inode' into 'parent_inode' with
5840 * a give name and a given sequence number.
5841 * if 'add_backref' is true, also insert a backref from the
5842 * inode to the parent directory.
5843 */
5844int btrfs_add_link(struct btrfs_trans_handle *trans,
5845                   struct inode *parent_inode, struct inode *inode,
5846                   const char *name, int name_len, int add_backref, u64 index)
5847{
5848        int ret = 0;
5849        struct btrfs_key key;
5850        struct btrfs_root *root = BTRFS_I(parent_inode)->root;
5851        u64 ino = btrfs_ino(inode);
5852        u64 parent_ino = btrfs_ino(parent_inode);
5853
5854        if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
5855                memcpy(&key, &BTRFS_I(inode)->root->root_key, sizeof(key));
5856        } else {
5857                key.objectid = ino;
5858                key.type = BTRFS_INODE_ITEM_KEY;
5859                key.offset = 0;
5860        }
5861
5862        if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
5863                ret = btrfs_add_root_ref(trans, root->fs_info->tree_root,
5864                                         key.objectid, root->root_key.objectid,
5865                                         parent_ino, index, name, name_len);
5866        } else if (add_backref) {
5867                ret = btrfs_insert_inode_ref(trans, root, name, name_len, ino,
5868                                             parent_ino, index);
5869        }
5870
5871        /* Nothing to clean up yet */
5872        if (ret)
5873                return ret;
5874
5875        ret = btrfs_insert_dir_item(trans, root, name, name_len,
5876                                    parent_inode, &key,
5877                                    btrfs_inode_type(inode), index);
5878        if (ret == -EEXIST || ret == -EOVERFLOW)
5879                goto fail_dir_item;
5880        else if (ret) {
5881                btrfs_abort_transaction(trans, root, ret);
5882                return ret;
5883        }
5884
5885        btrfs_i_size_write(parent_inode, parent_inode->i_size +
5886                           name_len * 2);
5887        inode_inc_iversion(parent_inode);
5888        parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME;
5889        ret = btrfs_update_inode(trans, root, parent_inode);
5890        if (ret)
5891                btrfs_abort_transaction(trans, root, ret);
5892        return ret;
5893
5894fail_dir_item:
5895        if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
5896                u64 local_index;
5897                int err;
5898                err = btrfs_del_root_ref(trans, root->fs_info->tree_root,
5899                                 key.objectid, root->root_key.objectid,
5900                                 parent_ino, &local_index, name, name_len);
5901
5902        } else if (add_backref) {
5903                u64 local_index;
5904                int err;
5905
5906                err = btrfs_del_inode_ref(trans, root, name, name_len,
5907                                          ino, parent_ino, &local_index);
5908        }
5909        return ret;
5910}
5911
5912static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
5913                            struct inode *dir, struct dentry *dentry,
5914                            struct inode *inode, int backref, u64 index)
5915{
5916        int err = btrfs_add_link(trans, dir, inode,
5917                                 dentry->d_name.name, dentry->d_name.len,
5918                                 backref, index);
5919        if (err > 0)
5920                err = -EEXIST;
5921        return err;
5922}
5923
5924static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
5925                        umode_t mode, dev_t rdev)
5926{
5927        struct btrfs_trans_handle *trans;
5928        struct btrfs_root *root = BTRFS_I(dir)->root;
5929        struct inode *inode = NULL;
5930        int err;
5931        int drop_inode = 0;
5932        u64 objectid;
5933        u64 index = 0;
5934
5935        if (!new_valid_dev(rdev))
5936                return -EINVAL;
5937
5938        /*
5939         * 2 for inode item and ref
5940         * 2 for dir items
5941         * 1 for xattr if selinux is on
5942         */
5943        trans = btrfs_start_transaction(root, 5);
5944        if (IS_ERR(trans))
5945                return PTR_ERR(trans);
5946
5947        err = btrfs_find_free_ino(root, &objectid);
5948        if (err)
5949                goto out_unlock;
5950
5951        inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
5952                                dentry->d_name.len, btrfs_ino(dir), objectid,
5953                                mode, &index);
5954        if (IS_ERR(inode)) {
5955                err = PTR_ERR(inode);
5956                goto out_unlock;
5957        }
5958
5959        /*
5960        * If the active LSM wants to access the inode during
5961        * d_instantiate it needs these. Smack checks to see
5962        * if the filesystem supports xattrs by looking at the
5963        * ops vector.
5964        */
5965        inode->i_op = &btrfs_special_inode_operations;
5966        init_special_inode(inode, inode->i_mode, rdev);
5967
5968        err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
5969        if (err)
5970                goto out_unlock_inode;
5971
5972        err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
5973        if (err) {
5974                goto out_unlock_inode;
5975        } else {
5976                btrfs_update_inode(trans, root, inode);
5977                unlock_new_inode(inode);
5978                d_instantiate(dentry, inode);
5979        }
5980
5981out_unlock:
5982        btrfs_end_transaction(trans, root);
5983        btrfs_balance_delayed_items(root);
5984        btrfs_btree_balance_dirty(root);
5985        if (drop_inode) {
5986                inode_dec_link_count(inode);
5987                iput(inode);
5988        }
5989        return err;
5990
5991out_unlock_inode:
5992        drop_inode = 1;
5993        unlock_new_inode(inode);
5994        goto out_unlock;
5995
5996}
5997
5998static int btrfs_create(struct inode *dir, struct dentry *dentry,
5999                        umode_t mode, bool excl)
6000{
6001        struct btrfs_trans_handle *trans;
6002        struct btrfs_root *root = BTRFS_I(dir)->root;
6003        struct inode *inode = NULL;
6004        int drop_inode_on_err = 0;
6005        int err;
6006        u64 objectid;
6007        u64 index = 0;
6008
6009        /*
6010         * 2 for inode item and ref
6011         * 2 for dir items
6012         * 1 for xattr if selinux is on
6013         */
6014        trans = btrfs_start_transaction(root, 5);
6015        if (IS_ERR(trans))
6016                return PTR_ERR(trans);
6017
6018        err = btrfs_find_free_ino(root, &objectid);
6019        if (err)
6020                goto out_unlock;
6021
6022        inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
6023                                dentry->d_name.len, btrfs_ino(dir), objectid,
6024                                mode, &index);
6025        if (IS_ERR(inode)) {
6026                err = PTR_ERR(inode);
6027                goto out_unlock;
6028        }
6029        drop_inode_on_err = 1;
6030        /*
6031        * If the active LSM wants to access the inode during
6032        * d_instantiate it needs these. Smack checks to see
6033        * if the filesystem supports xattrs by looking at the
6034        * ops vector.
6035        */
6036        inode->i_fop = &btrfs_file_operations;
6037        inode->i_op = &btrfs_file_inode_operations;
6038        inode->i_mapping->a_ops = &btrfs_aops;
6039        inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
6040
6041        err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6042        if (err)
6043                goto out_unlock_inode;
6044
6045        err = btrfs_update_inode(trans, root, inode);
6046        if (err)
6047                goto out_unlock_inode;
6048
6049        err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
6050        if (err)
6051                goto out_unlock_inode;
6052
6053        BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
6054        unlock_new_inode(inode);
6055        d_instantiate(dentry, inode);
6056
6057out_unlock:
6058        btrfs_end_transaction(trans, root);
6059        if (err && drop_inode_on_err) {
6060                inode_dec_link_count(inode);
6061                iput(inode);
6062        }
6063        btrfs_balance_delayed_items(root);
6064        btrfs_btree_balance_dirty(root);
6065        return err;
6066
6067out_unlock_inode:
6068        unlock_new_inode(inode);
6069        goto out_unlock;
6070
6071}
6072
6073static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
6074                      struct dentry *dentry)
6075{
6076        struct btrfs_trans_handle *trans;
6077        struct btrfs_root *root = BTRFS_I(dir)->root;
6078        struct inode *inode = old_dentry->d_inode;
6079        u64 index;
6080        int err;
6081        int drop_inode = 0;
6082
6083        /* do not allow sys_link's with other subvols of the same device */
6084        if (root->objectid != BTRFS_I(inode)->root->objectid)
6085                return -EXDEV;
6086
6087        if (inode->i_nlink >= BTRFS_LINK_MAX)
6088                return -EMLINK;
6089
6090        err = btrfs_set_inode_index(dir, &index);
6091        if (err)
6092                goto fail;
6093
6094        /*
6095         * 2 items for inode and inode ref
6096         * 2 items for dir items
6097         * 1 item for parent inode
6098         */
6099        trans = btrfs_start_transaction(root, 5);
6100        if (IS_ERR(trans)) {
6101                err = PTR_ERR(trans);
6102                goto fail;
6103        }
6104
6105        /* There are several dir indexes for this inode, clear the cache. */
6106        BTRFS_I(inode)->dir_index = 0ULL;
6107        inc_nlink(inode);
6108        inode_inc_iversion(inode);
6109        inode->i_ctime = CURRENT_TIME;
6110        ihold(inode);
6111        set_bit(BTRFS_INODE_COPY_EVERYTHING, &BTRFS_I(inode)->runtime_flags);
6112
6113        err = btrfs_add_nondir(trans, dir, dentry, inode, 1, index);
6114
6115        if (err) {
6116                drop_inode = 1;
6117        } else {
6118                struct dentry *parent = dentry->d_parent;
6119                err = btrfs_update_inode(trans, root, inode);
6120                if (err)
6121                        goto fail;
6122                if (inode->i_nlink == 1) {
6123                        /*
6124                         * If new hard link count is 1, it's a file created
6125                         * with open(2) O_TMPFILE flag.
6126                         */
6127                        err = btrfs_orphan_del(trans, inode);
6128                        if (err)
6129                                goto fail;
6130                }
6131                d_instantiate(dentry, inode);
6132                btrfs_log_new_name(trans, inode, NULL, parent);
6133        }
6134
6135        btrfs_end_transaction(trans, root);
6136        btrfs_balance_delayed_items(root);
6137fail:
6138        if (drop_inode) {
6139                inode_dec_link_count(inode);
6140                iput(inode);
6141        }
6142        btrfs_btree_balance_dirty(root);
6143        return err;
6144}
6145
6146static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
6147{
6148        struct inode *inode = NULL;
6149        struct btrfs_trans_handle *trans;
6150        struct btrfs_root *root = BTRFS_I(dir)->root;
6151        int err = 0;
6152        int drop_on_err = 0;
6153        u64 objectid = 0;
6154        u64 index = 0;
6155
6156        /*
6157         * 2 items for inode and ref
6158         * 2 items for dir items
6159         * 1 for xattr if selinux is on
6160         */
6161        trans = btrfs_start_transaction(root, 5);
6162        if (IS_ERR(trans))
6163                return PTR_ERR(trans);
6164
6165        err = btrfs_find_free_ino(root, &objectid);
6166        if (err)
6167                goto out_fail;
6168
6169        inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
6170                                dentry->d_name.len, btrfs_ino(dir), objectid,
6171                                S_IFDIR | mode, &index);
6172        if (IS_ERR(inode)) {
6173                err = PTR_ERR(inode);
6174                goto out_fail;
6175        }
6176
6177        drop_on_err = 1;
6178        /* these must be set before we unlock the inode */
6179        inode->i_op = &btrfs_dir_inode_operations;
6180        inode->i_fop = &btrfs_dir_file_operations;
6181
6182        err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6183        if (err)
6184                goto out_fail_inode;
6185
6186        btrfs_i_size_write(inode, 0);
6187        err = btrfs_update_inode(trans, root, inode);
6188        if (err)
6189                goto out_fail_inode;
6190
6191        err = btrfs_add_link(trans, dir, inode, dentry->d_name.name,
6192                             dentry->d_name.len, 0, index);
6193        if (err)
6194                goto out_fail_inode;
6195
6196        d_instantiate(dentry, inode);
6197        /*
6198         * mkdir is special.  We're unlocking after we call d_instantiate
6199         * to avoid a race with nfsd calling d_instantiate.
6200         */
6201        unlock_new_inode(inode);
6202        drop_on_err = 0;
6203
6204out_fail:
6205        btrfs_end_transaction(trans, root);
6206        if (drop_on_err)
6207                iput(inode);
6208        btrfs_balance_delayed_items(root);
6209        btrfs_btree_balance_dirty(root);
6210        return err;
6211
6212out_fail_inode:
6213        unlock_new_inode(inode);
6214        goto out_fail;
6215}
6216
6217/* Find next extent map of a given extent map, caller needs to ensure locks */
6218static struct extent_map *next_extent_map(struct extent_map *em)
6219{
6220        struct rb_node *next;
6221
6222        next = rb_next(&em->rb_node);
6223        if (!next)
6224                return NULL;
6225        return container_of(next, struct extent_map, rb_node);
6226}
6227
6228static struct extent_map *prev_extent_map(struct extent_map *em)
6229{
6230        struct rb_node *prev;
6231
6232        prev = rb_prev(&em->rb_node);
6233        if (!prev)
6234                return NULL;
6235        return container_of(prev, struct extent_map, rb_node);
6236}
6237
6238/* helper for btfs_get_extent.  Given an existing extent in the tree,
6239 * the existing extent is the nearest extent to map_start,
6240 * and an extent that you want to insert, deal with overlap and insert
6241 * the best fitted new extent into the tree.
6242 */
6243static int merge_extent_mapping(struct extent_map_tree *em_tree,
6244                                struct extent_map *existing,
6245                                struct extent_map *em,
6246                                u64 map_start)
6247{
6248        struct extent_map *prev;
6249        struct extent_map *next;
6250        u64 start;
6251        u64 end;
6252        u64 start_diff;
6253
6254        BUG_ON(map_start < em->start || map_start >= extent_map_end(em));
6255
6256        if (existing->start > map_start) {
6257                next = existing;
6258                prev = prev_extent_map(next);
6259        } else {
6260                prev = existing;
6261                next = next_extent_map(prev);
6262        }
6263
6264        start = prev ? extent_map_end(prev) : em->start;
6265        start = max_t(u64, start, em->start);
6266        end = next ? next->start : extent_map_end(em);
6267        end = min_t(u64, end, extent_map_end(em));
6268        start_diff = start - em->start;
6269        em->start = start;
6270        em->len = end - start;
6271        if (em->block_start < EXTENT_MAP_LAST_BYTE &&
6272            !test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
6273                em->block_start += start_diff;
6274                em->block_len -= start_diff;
6275        }
6276        return add_extent_mapping(em_tree, em, 0);
6277}
6278
6279static noinline int uncompress_inline(struct btrfs_path *path,
6280                                      struct inode *inode, struct page *page,
6281                                      size_t pg_offset, u64 extent_offset,
6282                                      struct btrfs_file_extent_item *item)
6283{
6284        int ret;
6285        struct extent_buffer *leaf = path->nodes[0];
6286        char *tmp;
6287        size_t max_size;
6288        unsigned long inline_size;
6289        unsigned long ptr;
6290        int compress_type;
6291
6292        WARN_ON(pg_offset != 0);
6293        compress_type = btrfs_file_extent_compression(leaf, item);
6294        max_size = btrfs_file_extent_ram_bytes(leaf, item);
6295        inline_size = btrfs_file_extent_inline_item_len(leaf,
6296                                        btrfs_item_nr(path->slots[0]));
6297        tmp = kmalloc(inline_size, GFP_NOFS);
6298        if (!tmp)
6299                return -ENOMEM;
6300        ptr = btrfs_file_extent_inline_start(item);
6301
6302        read_extent_buffer(leaf, tmp, ptr, inline_size);
6303
6304        max_size = min_t(unsigned long, PAGE_CACHE_SIZE, max_size);
6305        ret = btrfs_decompress(compress_type, tmp, page,
6306                               extent_offset, inline_size, max_size);
6307        kfree(tmp);
6308        return ret;
6309}
6310
6311/*
6312 * a bit scary, this does extent mapping from logical file offset to the disk.
6313 * the ugly parts come from merging extents from the disk with the in-ram
6314 * representation.  This gets more complex because of the data=ordered code,
6315 * where the in-ram extents might be locked pending data=ordered completion.
6316 *
6317 * This also copies inline extents directly into the page.
6318 */
6319
6320struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page,
6321                                    size_t pg_offset, u64 start, u64 len,
6322                                    int create)
6323{
6324        int ret;
6325        int err = 0;
6326        u64 extent_start = 0;
6327        u64 extent_end = 0;
6328        u64 objectid = btrfs_ino(inode);
6329        u32 found_type;
6330        struct btrfs_path *path = NULL;
6331        struct btrfs_root *root = BTRFS_I(inode)->root;
6332        struct btrfs_file_extent_item *item;
6333        struct extent_buffer *leaf;
6334        struct btrfs_key found_key;
6335        struct extent_map *em = NULL;
6336        struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
6337        struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
6338        struct btrfs_trans_handle *trans = NULL;
6339        const bool new_inline = !page || create;
6340
6341again:
6342        read_lock(&em_tree->lock);
6343        em = lookup_extent_mapping(em_tree, start, len);
6344        if (em)
6345                em->bdev = root->fs_info->fs_devices->latest_bdev;
6346        read_unlock(&em_tree->lock);
6347
6348        if (em) {
6349                if (em->start > start || em->start + em->len <= start)
6350                        free_extent_map(em);
6351                else if (em->block_start == EXTENT_MAP_INLINE && page)
6352                        free_extent_map(em);
6353                else
6354                        goto out;
6355        }
6356        em = alloc_extent_map();
6357        if (!em) {
6358                err = -ENOMEM;
6359                goto out;
6360        }
6361        em->bdev = root->fs_info->fs_devices->latest_bdev;
6362        em->start = EXTENT_MAP_HOLE;
6363        em->orig_start = EXTENT_MAP_HOLE;
6364        em->len = (u64)-1;
6365        em->block_len = (u64)-1;
6366
6367        if (!path) {
6368                path = btrfs_alloc_path();
6369                if (!path) {
6370                        err = -ENOMEM;
6371                        goto out;
6372                }
6373                /*
6374                 * Chances are we'll be called again, so go ahead and do
6375                 * readahead
6376                 */
6377                path->reada = 1;
6378        }
6379
6380        ret = btrfs_lookup_file_extent(trans, root, path,
6381                                       objectid, start, trans != NULL);
6382        if (ret < 0) {
6383                err = ret;
6384                goto out;
6385        }
6386
6387        if (ret != 0) {
6388                if (path->slots[0] == 0)
6389                        goto not_found;
6390                path->slots[0]--;
6391        }
6392
6393        leaf = path->nodes[0];
6394        item = btrfs_item_ptr(leaf, path->slots[0],
6395                              struct btrfs_file_extent_item);
6396        /* are we inside the extent that was found? */
6397        btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6398        found_type = found_key.type;
6399        if (found_key.objectid != objectid ||
6400            found_type != BTRFS_EXTENT_DATA_KEY) {
6401                /*
6402                 * If we backup past the first extent we want to move forward
6403                 * and see if there is an extent in front of us, otherwise we'll
6404                 * say there is a hole for our whole search range which can
6405                 * cause problems.
6406                 */
6407                extent_end = start;
6408                goto next;
6409        }
6410
6411        found_type = btrfs_file_extent_type(leaf, item);
6412        extent_start = found_key.offset;
6413        if (found_type == BTRFS_FILE_EXTENT_REG ||
6414            found_type == BTRFS_FILE_EXTENT_PREALLOC) {
6415                extent_end = extent_start +
6416                       btrfs_file_extent_num_bytes(leaf, item);
6417        } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
6418                size_t size;
6419                size = btrfs_file_extent_inline_len(leaf, path->slots[0], item);
6420                extent_end = ALIGN(extent_start + size, root->sectorsize);
6421        }
6422next:
6423        if (start >= extent_end) {
6424                path->slots[0]++;
6425                if (path->slots[0] >= btrfs_header_nritems(leaf)) {
6426                        ret = btrfs_next_leaf(root, path);
6427                        if (ret < 0) {
6428                                err = ret;
6429                                goto out;
6430                        }
6431                        if (ret > 0)
6432                                goto not_found;
6433                        leaf = path->nodes[0];
6434                }
6435                btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6436                if (found_key.objectid != objectid ||
6437                    found_key.type != BTRFS_EXTENT_DATA_KEY)
6438                        goto not_found;
6439                if (start + len <= found_key.offset)
6440                        goto not_found;
6441                if (start > found_key.offset)
6442                        goto next;
6443                em->start = start;
6444                em->orig_start = start;
6445                em->len = found_key.offset - start;
6446                goto not_found_em;
6447        }
6448
6449        btrfs_extent_item_to_extent_map(inode, path, item, new_inline, em);
6450
6451        if (found_type == BTRFS_FILE_EXTENT_REG ||
6452            found_type == BTRFS_FILE_EXTENT_PREALLOC) {
6453                goto insert;
6454        } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
6455                unsigned long ptr;
6456                char *map;
6457                size_t size;
6458                size_t extent_offset;
6459                size_t copy_size;
6460
6461                if (new_inline)
6462                        goto out;
6463
6464                size = btrfs_file_extent_inline_len(leaf, path->slots[0], item);
6465                extent_offset = page_offset(page) + pg_offset - extent_start;
6466                copy_size = min_t(u64, PAGE_CACHE_SIZE - pg_offset,
6467                                size - extent_offset);
6468                em->start = extent_start + extent_offset;
6469                em->len = ALIGN(copy_size, root->sectorsize);
6470                em->orig_block_len = em->len;
6471                em->orig_start = em->start;
6472                ptr = btrfs_file_extent_inline_start(item) + extent_offset;
6473                if (create == 0 && !PageUptodate(page)) {
6474                        if (btrfs_file_extent_compression(leaf, item) !=
6475                            BTRFS_COMPRESS_NONE) {
6476                                ret = uncompress_inline(path, inode, page,
6477                                                        pg_offset,
6478                                                        extent_offset, item);
6479                                if (ret) {
6480                                        err = ret;
6481                                        goto out;
6482                                }
6483                        } else {
6484                                map = kmap(page);
6485                                read_extent_buffer(leaf, map + pg_offset, ptr,
6486                                                   copy_size);
6487                                if (pg_offset + copy_size < PAGE_CACHE_SIZE) {
6488                                        memset(map + pg_offset + copy_size, 0,
6489                                               PAGE_CACHE_SIZE - pg_offset -
6490                                               copy_size);
6491                                }
6492                                kunmap(page);
6493                        }
6494                        flush_dcache_page(page);
6495                } else if (create && PageUptodate(page)) {
6496                        BUG();
6497                        if (!trans) {
6498                                kunmap(page);
6499                                free_extent_map(em);
6500                                em = NULL;
6501
6502                                btrfs_release_path(path);
6503                                trans = btrfs_join_transaction(root);
6504
6505                                if (IS_ERR(trans))
6506                                        return ERR_CAST(trans);
6507                                goto again;
6508                        }
6509                        map = kmap(page);
6510                        write_extent_buffer(leaf, map + pg_offset, ptr,
6511                                            copy_size);
6512                        kunmap(page);
6513                        btrfs_mark_buffer_dirty(leaf);
6514                }
6515                set_extent_uptodate(io_tree, em->start,
6516                                    extent_map_end(em) - 1, NULL, GFP_NOFS);
6517                goto insert;
6518        }
6519not_found:
6520        em->start = start;
6521        em->orig_start = start;
6522        em->len = len;
6523not_found_em:
6524        em->block_start = EXTENT_MAP_HOLE;
6525        set_bit(EXTENT_FLAG_VACANCY, &em->flags);
6526insert:
6527        btrfs_release_path(path);
6528        if (em->start > start || extent_map_end(em) <= start) {
6529                btrfs_err(root->fs_info, "bad extent! em: [%llu %llu] passed [%llu %llu]",
6530                        em->start, em->len, start, len);
6531                err = -EIO;
6532                goto out;
6533        }
6534
6535        err = 0;
6536        write_lock(&em_tree->lock);
6537        ret = add_extent_mapping(em_tree, em, 0);
6538        /* it is possible that someone inserted the extent into the tree
6539         * while we had the lock dropped.  It is also possible that
6540         * an overlapping map exists in the tree
6541         */
6542        if (ret == -EEXIST) {
6543                struct extent_map *existing;
6544
6545                ret = 0;
6546
6547                existing = search_extent_mapping(em_tree, start, len);
6548                /*
6549                 * existing will always be non-NULL, since there must be
6550                 * extent causing the -EEXIST.
6551                 */
6552                if (start >= extent_map_end(existing) ||
6553                    start <= existing->start) {
6554                        /*
6555                         * The existing extent map is the one nearest to
6556                         * the [start, start + len) range which overlaps
6557                         */
6558                        err = merge_extent_mapping(em_tree, existing,
6559                                                   em, start);
6560                        free_extent_map(existing);
6561                        if (err) {
6562                                free_extent_map(em);
6563                                em = NULL;
6564                        }
6565                } else {
6566                        free_extent_map(em);
6567                        em = existing;
6568                        err = 0;
6569                }
6570        }
6571        write_unlock(&em_tree->lock);
6572out:
6573
6574        trace_btrfs_get_extent(root, em);
6575
6576        if (path)
6577                btrfs_free_path(path);
6578        if (trans) {
6579                ret = btrfs_end_transaction(trans, root);
6580                if (!err)
6581                        err = ret;
6582        }
6583        if (err) {
6584                free_extent_map(em);
6585                return ERR_PTR(err);
6586        }
6587        BUG_ON(!em); /* Error is always set */
6588        return em;
6589}
6590
6591struct extent_map *btrfs_get_extent_fiemap(struct inode *inode, struct page *page,
6592                                           size_t pg_offset, u64 start, u64 len,
6593                                           int create)
6594{
6595        struct extent_map *em;
6596        struct extent_map *hole_em = NULL;
6597        u64 range_start = start;
6598        u64 end;
6599        u64 found;
6600        u64 found_end;
6601        int err = 0;
6602
6603        em = btrfs_get_extent(inode, page, pg_offset, start, len, create);
6604        if (IS_ERR(em))
6605                return em;
6606        if (em) {
6607                /*
6608                 * if our em maps to
6609                 * -  a hole or
6610                 * -  a pre-alloc extent,
6611                 * there might actually be delalloc bytes behind it.
6612                 */
6613                if (em->block_start != EXTENT_MAP_HOLE &&
6614                    !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
6615                        return em;
6616                else
6617                        hole_em = em;
6618        }
6619
6620        /* check to see if we've wrapped (len == -1 or similar) */
6621        end = start + len;
6622        if (end < start)
6623                end = (u64)-1;
6624        else
6625                end -= 1;
6626
6627        em = NULL;
6628
6629        /* ok, we didn't find anything, lets look for delalloc */
6630        found = count_range_bits(&BTRFS_I(inode)->io_tree, &range_start,
6631                                 end, len, EXTENT_DELALLOC, 1);
6632        found_end = range_start + found;
6633        if (found_end < range_start)
6634                found_end = (u64)-1;
6635
6636        /*
6637         * we didn't find anything useful, return
6638         * the original results from get_extent()
6639         */
6640        if (range_start > end || found_end <= start) {
6641                em = hole_em;
6642                hole_em = NULL;
6643                goto out;
6644        }
6645
6646        /* adjust the range_start to make sure it doesn't
6647         * go backwards from the start they passed in
6648         */
6649        range_start = max(start, range_start);
6650        found = found_end - range_start;
6651
6652        if (found > 0) {
6653                u64 hole_start = start;
6654                u64 hole_len = len;
6655
6656                em = alloc_extent_map();
6657                if (!em) {
6658                        err = -ENOMEM;
6659                        goto out;
6660                }
6661                /*
6662                 * when btrfs_get_extent can't find anything it
6663                 * returns one huge hole
6664                 *
6665                 * make sure what it found really fits our range, and
6666                 * adjust to make sure it is based on the start from
6667                 * the caller
6668                 */
6669                if (hole_em) {
6670                        u64 calc_end = extent_map_end(hole_em);
6671
6672                        if (calc_end <= start || (hole_em->start > end)) {
6673                                free_extent_map(hole_em);
6674                                hole_em = NULL;
6675                        } else {
6676                                hole_start = max(hole_em->start, start);
6677                                hole_len = calc_end - hole_start;
6678                        }
6679                }
6680                em->bdev = NULL;
6681                if (hole_em && range_start > hole_start) {
6682                        /* our hole starts before our delalloc, so we
6683                         * have to return just the parts of the hole
6684                         * that go until  the delalloc starts
6685                         */
6686                        em->len = min(hole_len,
6687                                      range_start - hole_start);
6688                        em->start = hole_start;
6689                        em->orig_start = hole_start;
6690                        /*
6691                         * don't adjust block start at all,
6692                         * it is fixed at EXTENT_MAP_HOLE
6693                         */
6694                        em->block_start = hole_em->block_start;
6695                        em->block_len = hole_len;
6696                        if (test_bit(EXTENT_FLAG_PREALLOC, &hole_em->flags))
6697                                set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
6698                } else {
6699                        em->start = range_start;
6700                        em->len = found;
6701                        em->orig_start = range_start;
6702                        em->block_start = EXTENT_MAP_DELALLOC;
6703                        em->block_len = found;
6704                }
6705        } else if (hole_em) {
6706                return hole_em;
6707        }
6708out:
6709
6710        free_extent_map(hole_em);
6711        if (err) {
6712                free_extent_map(em);
6713                return ERR_PTR(err);
6714        }
6715        return em;
6716}
6717
6718static struct extent_map *btrfs_new_extent_direct(struct inode *inode,
6719                                                  u64 start, u64 len)
6720{
6721        struct btrfs_root *root = BTRFS_I(inode)->root;
6722        struct extent_map *em;
6723        struct btrfs_key ins;
6724        u64 alloc_hint;
6725        int ret;
6726
6727        alloc_hint = get_extent_allocation_hint(inode, start, len);
6728        ret = btrfs_reserve_extent(root, len, root->sectorsize, 0,
6729                                   alloc_hint, &ins, 1, 1);
6730        if (ret)
6731                return ERR_PTR(ret);
6732
6733        em = create_pinned_em(inode, start, ins.offset, start, ins.objectid,
6734                              ins.offset, ins.offset, ins.offset, 0);
6735        if (IS_ERR(em)) {
6736                btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 1);
6737                return em;
6738        }
6739
6740        ret = btrfs_add_ordered_extent_dio(inode, start, ins.objectid,
6741                                           ins.offset, ins.offset, 0);
6742        if (ret) {
6743                btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 1);
6744                free_extent_map(em);
6745                return ERR_PTR(ret);
6746        }
6747
6748        return em;
6749}
6750
6751/*
6752 * returns 1 when the nocow is safe, < 1 on error, 0 if the
6753 * block must be cow'd
6754 */
6755noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len,
6756                              u64 *orig_start, u64 *orig_block_len,
6757                              u64 *ram_bytes)
6758{
6759        struct btrfs_trans_handle *trans;
6760        struct btrfs_path *path;
6761        int ret;
6762        struct extent_buffer *leaf;
6763        struct btrfs_root *root = BTRFS_I(inode)->root;
6764        struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
6765        struct btrfs_file_extent_item *fi;
6766        struct btrfs_key key;
6767        u64 disk_bytenr;
6768        u64 backref_offset;
6769        u64 extent_end;
6770        u64 num_bytes;
6771        int slot;
6772        int found_type;
6773        bool nocow = (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW);
6774
6775        path = btrfs_alloc_path();
6776        if (!path)
6777                return -ENOMEM;
6778
6779        ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(inode),
6780                                       offset, 0);
6781        if (ret < 0)
6782                goto out;
6783
6784        slot = path->slots[0];
6785        if (ret == 1) {
6786                if (slot == 0) {
6787                        /* can't find the item, must cow */
6788                        ret = 0;
6789                        goto out;
6790                }
6791                slot--;
6792        }
6793        ret = 0;
6794        leaf = path->nodes[0];
6795        btrfs_item_key_to_cpu(leaf, &key, slot);
6796        if (key.objectid != btrfs_ino(inode) ||
6797            key.type != BTRFS_EXTENT_DATA_KEY) {
6798                /* not our file or wrong item type, must cow */
6799                goto out;
6800        }
6801
6802        if (key.offset > offset) {
6803                /* Wrong offset, must cow */
6804                goto out;
6805        }
6806
6807        fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
6808        found_type = btrfs_file_extent_type(leaf, fi);
6809        if (found_type != BTRFS_FILE_EXTENT_REG &&
6810            found_type != BTRFS_FILE_EXTENT_PREALLOC) {
6811                /* not a regular extent, must cow */
6812                goto out;
6813        }
6814
6815        if (!nocow && found_type == BTRFS_FILE_EXTENT_REG)
6816                goto out;
6817
6818        extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
6819        if (extent_end <= offset)
6820                goto out;
6821
6822        disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
6823        if (disk_bytenr == 0)
6824                goto out;
6825
6826        if (btrfs_file_extent_compression(leaf, fi) ||
6827            btrfs_file_extent_encryption(leaf, fi) ||
6828            btrfs_file_extent_other_encoding(leaf, fi))
6829                goto out;
6830
6831        backref_offset = btrfs_file_extent_offset(leaf, fi);
6832
6833        if (orig_start) {
6834                *orig_start = key.offset - backref_offset;
6835                *orig_block_len = btrfs_file_extent_disk_num_bytes(leaf, fi);
6836                *ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
6837        }
6838
6839        if (btrfs_extent_readonly(root, disk_bytenr))
6840                goto out;
6841
6842        num_bytes = min(offset + *len, extent_end) - offset;
6843        if (!nocow && found_type == BTRFS_FILE_EXTENT_PREALLOC) {
6844                u64 range_end;
6845
6846                range_end = round_up(offset + num_bytes, root->sectorsize) - 1;
6847                ret = test_range_bit(io_tree, offset, range_end,
6848                                     EXTENT_DELALLOC, 0, NULL);
6849                if (ret) {
6850                        ret = -EAGAIN;
6851                        goto out;
6852                }
6853        }
6854
6855        btrfs_release_path(path);
6856
6857        /*
6858         * look for other files referencing this extent, if we
6859         * find any we must cow
6860         */
6861        trans = btrfs_join_transaction(root);
6862        if (IS_ERR(trans)) {
6863                ret = 0;
6864                goto out;
6865        }
6866
6867        ret = btrfs_cross_ref_exist(trans, root, btrfs_ino(inode),
6868                                    key.offset - backref_offset, disk_bytenr);
6869        btrfs_end_transaction(trans, root);
6870        if (ret) {
6871                ret = 0;
6872                goto out;
6873        }
6874
6875        /*
6876         * adjust disk_bytenr and num_bytes to cover just the bytes
6877         * in this extent we are about to write.  If there
6878         * are any csums in that range we have to cow in order
6879         * to keep the csums correct
6880         */
6881        disk_bytenr += backref_offset;
6882        disk_bytenr += offset - key.offset;
6883        if (csum_exist_in_range(root, disk_bytenr, num_bytes))
6884                                goto out;
6885        /*
6886         * all of the above have passed, it is safe to overwrite this extent
6887         * without cow
6888         */
6889        *len = num_bytes;
6890        ret = 1;
6891out:
6892        btrfs_free_path(path);
6893        return ret;
6894}
6895
6896bool btrfs_page_exists_in_range(struct inode *inode, loff_t start, loff_t end)
6897{
6898        struct radix_tree_root *root = &inode->i_mapping->page_tree;
6899        int found = false;
6900        void **pagep = NULL;
6901        struct page *page = NULL;
6902        int start_idx;
6903        int end_idx;
6904
6905        start_idx = start >> PAGE_CACHE_SHIFT;
6906
6907        /*
6908         * end is the last byte in the last page.  end == start is legal
6909         */
6910        end_idx = end >> PAGE_CACHE_SHIFT;
6911
6912        rcu_read_lock();
6913
6914        /* Most of the code in this while loop is lifted from
6915         * find_get_page.  It's been modified to begin searching from a
6916         * page and return just the first page found in that range.  If the
6917         * found idx is less than or equal to the end idx then we know that
6918         * a page exists.  If no pages are found or if those pages are
6919         * outside of the range then we're fine (yay!) */
6920        while (page == NULL &&
6921               radix_tree_gang_lookup_slot(root, &pagep, NULL, start_idx, 1)) {
6922                page = radix_tree_deref_slot(pagep);
6923                if (unlikely(!page))
6924                        break;
6925
6926                if (radix_tree_exception(page)) {
6927                        if (radix_tree_deref_retry(page)) {
6928                                page = NULL;
6929                                continue;
6930                        }
6931                        /*
6932                         * Otherwise, shmem/tmpfs must be storing a swap entry
6933                         * here as an exceptional entry: so return it without
6934                         * attempting to raise page count.
6935                         */
6936                        page = NULL;
6937                        break; /* TODO: Is this relevant for this use case? */
6938                }
6939
6940                if (!page_cache_get_speculative(page)) {
6941                        page = NULL;
6942                        continue;
6943                }
6944
6945                /*
6946                 * Has the page moved?
6947                 * This is part of the lockless pagecache protocol. See
6948                 * include/linux/pagemap.h for details.
6949                 */
6950                if (unlikely(page != *pagep)) {
6951                        page_cache_release(page);
6952                        page = NULL;
6953                }
6954        }
6955
6956        if (page) {
6957                if (page->index <= end_idx)
6958                        found = true;
6959                page_cache_release(page);
6960        }
6961
6962        rcu_read_unlock();
6963        return found;
6964}
6965
6966static int lock_extent_direct(struct inode *inode, u64 lockstart, u64 lockend,
6967                              struct extent_state **cached_state, int writing)
6968{
6969        struct btrfs_ordered_extent *ordered;
6970        int ret = 0;
6971
6972        while (1) {
6973                lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
6974                                 0, cached_state);
6975                /*
6976                 * We're concerned with the entire range that we're going to be
6977                 * doing DIO to, so we need to make sure theres no ordered
6978                 * extents in this range.
6979                 */
6980                ordered = btrfs_lookup_ordered_range(inode, lockstart,
6981                                                     lockend - lockstart + 1);
6982
6983                /*
6984                 * We need to make sure there are no buffered pages in this
6985                 * range either, we could have raced between the invalidate in
6986                 * generic_file_direct_write and locking the extent.  The
6987                 * invalidate needs to happen so that reads after a write do not
6988                 * get stale data.
6989                 */
6990                if (!ordered &&
6991                    (!writing ||
6992                     !btrfs_page_exists_in_range(inode, lockstart, lockend)))
6993                        break;
6994
6995                unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
6996                                     cached_state, GFP_NOFS);
6997
6998                if (ordered) {
6999                        btrfs_start_ordered_extent(inode, ordered, 1);
7000                        btrfs_put_ordered_extent(ordered);
7001                } else {
7002                        /* Screw you mmap */
7003                        ret = filemap_write_and_wait_range(inode->i_mapping,
7004                                                           lockstart,
7005                                                           lockend);
7006                        if (ret)
7007                                break;
7008
7009                        /*
7010                         * If we found a page that couldn't be invalidated just
7011                         * fall back to buffered.
7012                         */
7013                        ret = invalidate_inode_pages2_range(inode->i_mapping,
7014                                        lockstart >> PAGE_CACHE_SHIFT,
7015                                        lockend >> PAGE_CACHE_SHIFT);
7016                        if (ret)
7017                                break;
7018                }
7019
7020                cond_resched();
7021        }
7022
7023        return ret;
7024}
7025
7026static struct extent_map *create_pinned_em(struct inode *inode, u64 start,
7027                                           u64 len, u64 orig_start,
7028                                           u64 block_start, u64 block_len,
7029                                           u64 orig_block_len, u64 ram_bytes,
7030                                           int type)
7031{
7032        struct extent_map_tree *em_tree;
7033        struct extent_map *em;
7034        struct btrfs_root *root = BTRFS_I(inode)->root;
7035        int ret;
7036
7037        em_tree = &BTRFS_I(inode)->extent_tree;
7038        em = alloc_extent_map();
7039        if (!em)
7040                return ERR_PTR(-ENOMEM);
7041
7042        em->start = start;
7043        em->orig_start = orig_start;
7044        em->mod_start = start;
7045        em->mod_len = len;
7046        em->len = len;
7047        em->block_len = block_len;
7048        em->block_start = block_start;
7049        em->bdev = root->fs_info->fs_devices->latest_bdev;
7050        em->orig_block_len = orig_block_len;
7051        em->ram_bytes = ram_bytes;
7052        em->generation = -1;
7053        set_bit(EXTENT_FLAG_PINNED, &em->flags);
7054        if (type == BTRFS_ORDERED_PREALLOC)
7055                set_bit(EXTENT_FLAG_FILLING, &em->flags);
7056
7057        do {
7058                btrfs_drop_extent_cache(inode, em->start,
7059                                em->start + em->len - 1, 0);
7060                write_lock(&em_tree->lock);
7061                ret = add_extent_mapping(em_tree, em, 1);
7062                write_unlock(&em_tree->lock);
7063        } while (ret == -EEXIST);
7064
7065        if (ret) {
7066                free_extent_map(em);
7067                return ERR_PTR(ret);
7068        }
7069
7070        return em;
7071}
7072
7073
7074static int btrfs_get_blocks_direct(struct inode *inode, sector_t iblock,
7075                                   struct buffer_head *bh_result, int create)
7076{
7077        struct extent_map *em;
7078        struct btrfs_root *root = BTRFS_I(inode)->root;
7079        struct extent_state *cached_state = NULL;
7080        u64 start = iblock << inode->i_blkbits;
7081        u64 lockstart, lockend;
7082        u64 len = bh_result->b_size;
7083        int unlock_bits = EXTENT_LOCKED;
7084        int ret = 0;
7085
7086        if (create)
7087                unlock_bits |= EXTENT_DELALLOC | EXTENT_DIRTY;
7088        else
7089                len = min_t(u64, len, root->sectorsize);
7090
7091        lockstart = start;
7092        lockend = start + len - 1;
7093
7094        /*
7095         * If this errors out it's because we couldn't invalidate pagecache for
7096         * this range and we need to fallback to buffered.
7097         */
7098        if (lock_extent_direct(inode, lockstart, lockend, &cached_state, create))
7099                return -ENOTBLK;
7100
7101        em = btrfs_get_extent(inode, NULL, 0, start, len, 0);
7102        if (IS_ERR(em)) {
7103                ret = PTR_ERR(em);
7104                goto unlock_err;
7105        }
7106
7107        /*
7108         * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
7109         * io.  INLINE is special, and we could probably kludge it in here, but
7110         * it's still buffered so for safety lets just fall back to the generic
7111         * buffered path.
7112         *
7113         * For COMPRESSED we _have_ to read the entire extent in so we can
7114         * decompress it, so there will be buffering required no matter what we
7115         * do, so go ahead and fallback to buffered.
7116         *
7117         * We return -ENOTBLK because thats what makes DIO go ahead and go back
7118         * to buffered IO.  Don't blame me, this is the price we pay for using
7119         * the generic code.
7120         */
7121        if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) ||
7122            em->block_start == EXTENT_MAP_INLINE) {
7123                free_extent_map(em);
7124                ret = -ENOTBLK;
7125                goto unlock_err;
7126        }
7127
7128        /* Just a good old fashioned hole, return */
7129        if (!create && (em->block_start == EXTENT_MAP_HOLE ||
7130                        test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
7131                free_extent_map(em);
7132                goto unlock_err;
7133        }
7134
7135        /*
7136         * We don't allocate a new extent in the following cases
7137         *
7138         * 1) The inode is marked as NODATACOW.  In this case we'll just use the
7139         * existing extent.
7140         * 2) The extent is marked as PREALLOC.  We're good to go here and can
7141         * just use the extent.
7142         *
7143         */
7144        if (!create) {
7145                len = min(len, em->len - (start - em->start));
7146                lockstart = start + len;
7147                goto unlock;
7148        }
7149
7150        if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
7151            ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
7152             em->block_start != EXTENT_MAP_HOLE)) {
7153                int type;
7154                int ret;
7155                u64 block_start, orig_start, orig_block_len, ram_bytes;
7156
7157                if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7158                        type = BTRFS_ORDERED_PREALLOC;
7159                else
7160                        type = BTRFS_ORDERED_NOCOW;
7161                len = min(len, em->len - (start - em->start));
7162                block_start = em->block_start + (start - em->start);
7163
7164                if (can_nocow_extent(inode, start, &len, &orig_start,
7165                                     &orig_block_len, &ram_bytes) == 1) {
7166                        if (type == BTRFS_ORDERED_PREALLOC) {
7167                                free_extent_map(em);
7168                                em = create_pinned_em(inode, start, len,
7169                                                       orig_start,
7170                                                       block_start, len,
7171                                                       orig_block_len,
7172                                                       ram_bytes, type);
7173                                if (IS_ERR(em)) {
7174                                        ret = PTR_ERR(em);
7175                                        goto unlock_err;
7176                                }
7177                        }
7178
7179                        ret = btrfs_add_ordered_extent_dio(inode, start,
7180                                           block_start, len, len, type);
7181                        if (ret) {
7182                                free_extent_map(em);
7183                                goto unlock_err;
7184                        }
7185                        goto unlock;
7186                }
7187        }
7188
7189        /*
7190         * this will cow the extent, reset the len in case we changed
7191         * it above
7192         */
7193        len = bh_result->b_size;
7194        free_extent_map(em);
7195        em = btrfs_new_extent_direct(inode, start, len);
7196        if (IS_ERR(em)) {
7197                ret = PTR_ERR(em);
7198                goto unlock_err;
7199        }
7200        len = min(len, em->len - (start - em->start));
7201unlock:
7202        bh_result->b_blocknr = (em->block_start + (start - em->start)) >>
7203                inode->i_blkbits;
7204        bh_result->b_size = len;
7205        bh_result->b_bdev = em->bdev;
7206        set_buffer_mapped(bh_result);
7207        if (create) {
7208                if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7209                        set_buffer_new(bh_result);
7210
7211                /*
7212                 * Need to update the i_size under the extent lock so buffered
7213                 * readers will get the updated i_size when we unlock.
7214                 */
7215                if (start + len > i_size_read(inode))
7216                        i_size_write(inode, start + len);
7217
7218                spin_lock(&BTRFS_I(inode)->lock);
7219                BTRFS_I(inode)->outstanding_extents++;
7220                spin_unlock(&BTRFS_I(inode)->lock);
7221
7222                ret = set_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
7223                                     lockstart + len - 1, EXTENT_DELALLOC, NULL,
7224                                     &cached_state, GFP_NOFS);
7225                BUG_ON(ret);
7226        }
7227
7228        /*
7229         * In the case of write we need to clear and unlock the entire range,
7230         * in the case of read we need to unlock only the end area that we
7231         * aren't using if there is any left over space.
7232         */
7233        if (lockstart < lockend) {
7234                clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
7235                                 lockend, unlock_bits, 1, 0,
7236                                 &cached_state, GFP_NOFS);
7237        } else {
7238                free_extent_state(cached_state);
7239        }
7240
7241        free_extent_map(em);
7242
7243        return 0;
7244
7245unlock_err:
7246        clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7247                         unlock_bits, 1, 0, &cached_state, GFP_NOFS);
7248        return ret;
7249}
7250
7251static inline int submit_dio_repair_bio(struct inode *inode, struct bio *bio,
7252                                        int rw, int mirror_num)
7253{
7254        struct btrfs_root *root = BTRFS_I(inode)->root;
7255        int ret;
7256
7257        BUG_ON(rw & REQ_WRITE);
7258
7259        bio_get(bio);
7260
7261        ret = btrfs_bio_wq_end_io(root->fs_info, bio,
7262                                  BTRFS_WQ_ENDIO_DIO_REPAIR);
7263        if (ret)
7264                goto err;
7265
7266        ret = btrfs_map_bio(root, rw, bio, mirror_num, 0);
7267err:
7268        bio_put(bio);
7269        return ret;
7270}
7271
7272static int btrfs_check_dio_repairable(struct inode *inode,
7273                                      struct bio *failed_bio,
7274                                      struct io_failure_record *failrec,
7275                                      int failed_mirror)
7276{
7277        int num_copies;
7278
7279        num_copies = btrfs_num_copies(BTRFS_I(inode)->root->fs_info,
7280                                      failrec->logical, failrec->len);
7281        if (num_copies == 1) {
7282                /*
7283                 * we only have a single copy of the data, so don't bother with
7284                 * all the retry and error correction code that follows. no
7285                 * matter what the error is, it is very likely to persist.
7286                 */
7287                pr_debug("Check DIO Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d\n",
7288                         num_copies, failrec->this_mirror, failed_mirror);
7289                return 0;
7290        }
7291
7292        failrec->failed_mirror = failed_mirror;
7293        failrec->this_mirror++;
7294        if (failrec->this_mirror == failed_mirror)
7295                failrec->this_mirror++;
7296
7297        if (failrec->this_mirror > num_copies) {
7298                pr_debug("Check DIO Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d\n",
7299                         num_copies, failrec->this_mirror, failed_mirror);
7300                return 0;
7301        }
7302
7303        return 1;
7304}
7305
7306static int dio_read_error(struct inode *inode, struct bio *failed_bio,
7307                          struct page *page, u64 start, u64 end,
7308                          int failed_mirror, bio_end_io_t *repair_endio,
7309                          void *repair_arg)
7310{
7311        struct io_failure_record *failrec;
7312        struct bio *bio;
7313        int isector;
7314        int read_mode;
7315        int ret;
7316
7317        BUG_ON(failed_bio->bi_rw & REQ_WRITE);
7318
7319        ret = btrfs_get_io_failure_record(inode, start, end, &failrec);
7320        if (ret)
7321                return ret;
7322
7323        ret = btrfs_check_dio_repairable(inode, failed_bio, failrec,
7324                                         failed_mirror);
7325        if (!ret) {
7326                free_io_failure(inode, failrec);
7327                return -EIO;
7328        }
7329
7330        if (failed_bio->bi_vcnt > 1)
7331                read_mode = READ_SYNC | REQ_FAILFAST_DEV;
7332        else
7333                read_mode = READ_SYNC;
7334
7335        isector = start - btrfs_io_bio(failed_bio)->logical;
7336        isector >>= inode->i_sb->s_blocksize_bits;
7337        bio = btrfs_create_repair_bio(inode, failed_bio, failrec, page,
7338                                      0, isector, repair_endio, repair_arg);
7339        if (!bio) {
7340                free_io_failure(inode, failrec);
7341                return -EIO;
7342        }
7343
7344        btrfs_debug(BTRFS_I(inode)->root->fs_info,
7345                    "Repair DIO Read Error: submitting new dio read[%#x] to this_mirror=%d, in_validation=%d\n",
7346                    read_mode, failrec->this_mirror, failrec->in_validation);
7347
7348        ret = submit_dio_repair_bio(inode, bio, read_mode,
7349                                    failrec->this_mirror);
7350        if (ret) {
7351                free_io_failure(inode, failrec);
7352                bio_put(bio);
7353        }
7354
7355        return ret;
7356}
7357
7358struct btrfs_retry_complete {
7359        struct completion done;
7360        struct inode *inode;
7361        u64 start;
7362        int uptodate;
7363};
7364
7365static void btrfs_retry_endio_nocsum(struct bio *bio, int err)
7366{
7367        struct btrfs_retry_complete *done = bio->bi_private;
7368        struct bio_vec *bvec;
7369        int i;
7370
7371        if (err)
7372                goto end;
7373
7374        done->uptodate = 1;
7375        bio_for_each_segment_all(bvec, bio, i)
7376                clean_io_failure(done->inode, done->start, bvec->bv_page, 0);
7377end:
7378        complete(&done->done);
7379        bio_put(bio);
7380}
7381
7382static int __btrfs_correct_data_nocsum(struct inode *inode,
7383                                       struct btrfs_io_bio *io_bio)
7384{
7385        struct bio_vec *bvec;
7386        struct btrfs_retry_complete done;
7387        u64 start;
7388        int i;
7389        int ret;
7390
7391        start = io_bio->logical;
7392        done.inode = inode;
7393
7394        bio_for_each_segment_all(bvec, &io_bio->bio, i) {
7395try_again:
7396                done.uptodate = 0;
7397                done.start = start;
7398                init_completion(&done.done);
7399
7400                ret = dio_read_error(inode, &io_bio->bio, bvec->bv_page, start,
7401                                     start + bvec->bv_len - 1,
7402                                     io_bio->mirror_num,
7403                                     btrfs_retry_endio_nocsum, &done);
7404                if (ret)
7405                        return ret;
7406
7407                wait_for_completion(&done.done);
7408
7409                if (!done.uptodate) {
7410                        /* We might have another mirror, so try again */
7411                        goto try_again;
7412                }
7413
7414                start += bvec->bv_len;
7415        }
7416
7417        return 0;
7418}
7419
7420static void btrfs_retry_endio(struct bio *bio, int err)
7421{
7422        struct btrfs_retry_complete *done = bio->bi_private;
7423        struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
7424        struct bio_vec *bvec;
7425        int uptodate;
7426        int ret;
7427        int i;
7428
7429        if (err)
7430                goto end;
7431
7432        uptodate = 1;
7433        bio_for_each_segment_all(bvec, bio, i) {
7434                ret = __readpage_endio_check(done->inode, io_bio, i,
7435                                             bvec->bv_page, 0,
7436                                             done->start, bvec->bv_len);
7437                if (!ret)
7438                        clean_io_failure(done->inode, done->start,
7439                                         bvec->bv_page, 0);
7440                else
7441                        uptodate = 0;
7442        }
7443
7444        done->uptodate = uptodate;
7445end:
7446        complete(&done->done);
7447        bio_put(bio);
7448}
7449
7450static int __btrfs_subio_endio_read(struct inode *inode,
7451                                    struct btrfs_io_bio *io_bio, int err)
7452{
7453        struct bio_vec *bvec;
7454        struct btrfs_retry_complete done;
7455        u64 start;
7456        u64 offset = 0;
7457        int i;
7458        int ret;
7459
7460        err = 0;
7461        start = io_bio->logical;
7462        done.inode = inode;
7463
7464        bio_for_each_segment_all(bvec, &io_bio->bio, i) {
7465                ret = __readpage_endio_check(inode, io_bio, i, bvec->bv_page,
7466                                             0, start, bvec->bv_len);
7467                if (likely(!ret))
7468                        goto next;
7469try_again:
7470                done.uptodate = 0;
7471                done.start = start;
7472                init_completion(&done.done);
7473
7474                ret = dio_read_error(inode, &io_bio->bio, bvec->bv_page, start,
7475                                     start + bvec->bv_len - 1,
7476                                     io_bio->mirror_num,
7477                                     btrfs_retry_endio, &done);
7478                if (ret) {
7479                        err = ret;
7480                        goto next;
7481                }
7482
7483                wait_for_completion(&done.done);
7484
7485                if (!done.uptodate) {
7486                        /* We might have another mirror, so try again */
7487                        goto try_again;
7488                }
7489next:
7490                offset += bvec->bv_len;
7491                start += bvec->bv_len;
7492        }
7493
7494        return err;
7495}
7496
7497static int btrfs_subio_endio_read(struct inode *inode,
7498                                  struct btrfs_io_bio *io_bio, int err)
7499{
7500        bool skip_csum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
7501
7502        if (skip_csum) {
7503                if (unlikely(err))
7504                        return __btrfs_correct_data_nocsum(inode, io_bio);
7505                else
7506                        return 0;
7507        } else {
7508                return __btrfs_subio_endio_read(inode, io_bio, err);
7509        }
7510}
7511
7512static void btrfs_endio_direct_read(struct bio *bio, int err)
7513{
7514        struct btrfs_dio_private *dip = bio->bi_private;
7515        struct inode *inode = dip->inode;
7516        struct bio *dio_bio;
7517        struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
7518
7519        if (dip->flags & BTRFS_DIO_ORIG_BIO_SUBMITTED)
7520                err = btrfs_subio_endio_read(inode, io_bio, err);
7521
7522        unlock_extent(&BTRFS_I(inode)->io_tree, dip->logical_offset,
7523                      dip->logical_offset + dip->bytes - 1);
7524        dio_bio = dip->dio_bio;
7525
7526        kfree(dip);
7527
7528        /* If we had a csum failure make sure to clear the uptodate flag */
7529        if (err)
7530                clear_bit(BIO_UPTODATE, &dio_bio->bi_flags);
7531        dio_end_io(dio_bio, err);
7532
7533        if (io_bio->end_io)
7534                io_bio->end_io(io_bio, err);
7535        bio_put(bio);
7536}
7537
7538static void btrfs_endio_direct_write(struct bio *bio, int err)
7539{
7540        struct btrfs_dio_private *dip = bio->bi_private;
7541        struct inode *inode = dip->inode;
7542        struct btrfs_root *root = BTRFS_I(inode)->root;
7543        struct btrfs_ordered_extent *ordered = NULL;
7544        u64 ordered_offset = dip->logical_offset;
7545        u64 ordered_bytes = dip->bytes;
7546        struct bio *dio_bio;
7547        int ret;
7548
7549        if (err)
7550                goto out_done;
7551again:
7552        ret = btrfs_dec_test_first_ordered_pending(inode, &ordered,
7553                                                   &ordered_offset,
7554                                                   ordered_bytes, !err);
7555        if (!ret)
7556                goto out_test;
7557
7558        btrfs_init_work(&ordered->work, btrfs_endio_write_helper,
7559                        finish_ordered_fn, NULL, NULL);
7560        btrfs_queue_work(root->fs_info->endio_write_workers,
7561                         &ordered->work);
7562out_test:
7563        /*
7564         * our bio might span multiple ordered extents.  If we haven't
7565         * completed the accounting for the whole dio, go back and try again
7566         */
7567        if (ordered_offset < dip->logical_offset + dip->bytes) {
7568                ordered_bytes = dip->logical_offset + dip->bytes -
7569                        ordered_offset;
7570                ordered = NULL;
7571                goto again;
7572        }
7573out_done:
7574        dio_bio = dip->dio_bio;
7575
7576        kfree(dip);
7577
7578        /* If we had an error make sure to clear the uptodate flag */
7579        if (err)
7580                clear_bit(BIO_UPTODATE, &dio_bio->bi_flags);
7581        dio_end_io(dio_bio, err);
7582        bio_put(bio);
7583}
7584
7585static int __btrfs_submit_bio_start_direct_io(struct inode *inode, int rw,
7586                                    struct bio *bio, int mirror_num,
7587                                    unsigned long bio_flags, u64 offset)
7588{
7589        int ret;
7590        struct btrfs_root *root = BTRFS_I(inode)->root;
7591        ret = btrfs_csum_one_bio(root, inode, bio, offset, 1);
7592        BUG_ON(ret); /* -ENOMEM */
7593        return 0;
7594}
7595
7596static void btrfs_end_dio_bio(struct bio *bio, int err)
7597{
7598        struct btrfs_dio_private *dip = bio->bi_private;
7599
7600        if (err)
7601                btrfs_warn(BTRFS_I(dip->inode)->root->fs_info,
7602                           "direct IO failed ino %llu rw %lu sector %#Lx len %u err no %d",
7603                           btrfs_ino(dip->inode), bio->bi_rw,
7604                           (unsigned long long)bio->bi_iter.bi_sector,
7605                           bio->bi_iter.bi_size, err);
7606
7607        if (dip->subio_endio)
7608                err = dip->subio_endio(dip->inode, btrfs_io_bio(bio), err);
7609
7610        if (err) {
7611                dip->errors = 1;
7612
7613                /*
7614                 * before atomic variable goto zero, we must make sure
7615                 * dip->errors is perceived to be set.
7616                 */
7617                smp_mb__before_atomic();
7618        }
7619
7620        /* if there are more bios still pending for this dio, just exit */
7621        if (!atomic_dec_and_test(&dip->pending_bios))
7622                goto out;
7623
7624        if (dip->errors) {
7625                bio_io_error(dip->orig_bio);
7626        } else {
7627                set_bit(BIO_UPTODATE, &dip->dio_bio->bi_flags);
7628                bio_endio(dip->orig_bio, 0);
7629        }
7630out:
7631        bio_put(bio);
7632}
7633
7634static struct bio *btrfs_dio_bio_alloc(struct block_device *bdev,
7635                                       u64 first_sector, gfp_t gfp_flags)
7636{
7637        int nr_vecs = bio_get_nr_vecs(bdev);
7638        return btrfs_bio_alloc(bdev, first_sector, nr_vecs, gfp_flags);
7639}
7640
7641static inline int btrfs_lookup_and_bind_dio_csum(struct btrfs_root *root,
7642                                                 struct inode *inode,
7643                                                 struct btrfs_dio_private *dip,
7644                                                 struct bio *bio,
7645                                                 u64 file_offset)
7646{
7647        struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
7648        struct btrfs_io_bio *orig_io_bio = btrfs_io_bio(dip->orig_bio);
7649        int ret;
7650
7651        /*
7652         * We load all the csum data we need when we submit
7653         * the first bio to reduce the csum tree search and
7654         * contention.
7655         */
7656        if (dip->logical_offset == file_offset) {
7657                ret = btrfs_lookup_bio_sums_dio(root, inode, dip->orig_bio,
7658                                                file_offset);
7659                if (ret)
7660                        return ret;
7661        }
7662
7663        if (bio == dip->orig_bio)
7664                return 0;
7665
7666        file_offset -= dip->logical_offset;
7667        file_offset >>= inode->i_sb->s_blocksize_bits;
7668        io_bio->csum = (u8 *)(((u32 *)orig_io_bio->csum) + file_offset);
7669
7670        return 0;
7671}
7672
7673static inline int __btrfs_submit_dio_bio(struct bio *bio, struct inode *inode,
7674                                         int rw, u64 file_offset, int skip_sum,
7675                                         int async_submit)
7676{
7677        struct btrfs_dio_private *dip = bio->bi_private;
7678        int write = rw & REQ_WRITE;
7679        struct btrfs_root *root = BTRFS_I(inode)->root;
7680        int ret;
7681
7682        if (async_submit)
7683                async_submit = !atomic_read(&BTRFS_I(inode)->sync_writers);
7684
7685        bio_get(bio);
7686
7687        if (!write) {
7688                ret = btrfs_bio_wq_end_io(root->fs_info, bio,
7689                                BTRFS_WQ_ENDIO_DATA);
7690                if (ret)
7691                        goto err;
7692        }
7693
7694        if (skip_sum)
7695                goto map;
7696
7697        if (write && async_submit) {
7698                ret = btrfs_wq_submit_bio(root->fs_info,
7699                                   inode, rw, bio, 0, 0,
7700                                   file_offset,
7701                                   __btrfs_submit_bio_start_direct_io,
7702                                   __btrfs_submit_bio_done);
7703                goto err;
7704        } else if (write) {
7705                /*
7706                 * If we aren't doing async submit, calculate the csum of the
7707                 * bio now.
7708                 */
7709                ret = btrfs_csum_one_bio(root, inode, bio, file_offset, 1);
7710                if (ret)
7711                        goto err;
7712        } else {
7713                ret = btrfs_lookup_and_bind_dio_csum(root, inode, dip, bio,
7714                                                     file_offset);
7715                if (ret)
7716                        goto err;
7717        }
7718map:
7719        ret = btrfs_map_bio(root, rw, bio, 0, async_submit);
7720err:
7721        bio_put(bio);
7722        return ret;
7723}
7724
7725static int btrfs_submit_direct_hook(int rw, struct btrfs_dio_private *dip,
7726                                    int skip_sum)
7727{
7728        struct inode *inode = dip->inode;
7729        struct btrfs_root *root = BTRFS_I(inode)->root;
7730        struct bio *bio;
7731        struct bio *orig_bio = dip->orig_bio;
7732        struct bio_vec *bvec = orig_bio->bi_io_vec;
7733        u64 start_sector = orig_bio->bi_iter.bi_sector;
7734        u64 file_offset = dip->logical_offset;
7735        u64 submit_len = 0;
7736        u64 map_length;
7737        int nr_pages = 0;
7738        int ret;
7739        int async_submit = 0;
7740
7741        map_length = orig_bio->bi_iter.bi_size;
7742        ret = btrfs_map_block(root->fs_info, rw, start_sector << 9,
7743                              &map_length, NULL, 0);
7744        if (ret)
7745                return -EIO;
7746
7747        if (map_length >= orig_bio->bi_iter.bi_size) {
7748                bio = orig_bio;
7749                dip->flags |= BTRFS_DIO_ORIG_BIO_SUBMITTED;
7750                goto submit;
7751        }
7752
7753        /* async crcs make it difficult to collect full stripe writes. */
7754        if (btrfs_get_alloc_profile(root, 1) &
7755            (BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6))
7756                async_submit = 0;
7757        else
7758                async_submit = 1;
7759
7760        bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev, start_sector, GFP_NOFS);
7761        if (!bio)
7762                return -ENOMEM;
7763
7764        bio->bi_private = dip;
7765        bio->bi_end_io = btrfs_end_dio_bio;
7766        btrfs_io_bio(bio)->logical = file_offset;
7767        atomic_inc(&dip->pending_bios);
7768
7769        while (bvec <= (orig_bio->bi_io_vec + orig_bio->bi_vcnt - 1)) {
7770                if (map_length < submit_len + bvec->bv_len ||
7771                    bio_add_page(bio, bvec->bv_page, bvec->bv_len,
7772                                 bvec->bv_offset) < bvec->bv_len) {
7773                        /*
7774                         * inc the count before we submit the bio so
7775                         * we know the end IO handler won't happen before
7776                         * we inc the count. Otherwise, the dip might get freed
7777                         * before we're done setting it up
7778                         */
7779                        atomic_inc(&dip->pending_bios);
7780                        ret = __btrfs_submit_dio_bio(bio, inode, rw,
7781                                                     file_offset, skip_sum,
7782                                                     async_submit);
7783                        if (ret) {
7784                                bio_put(bio);
7785                                atomic_dec(&dip->pending_bios);
7786                                goto out_err;
7787                        }
7788
7789                        start_sector += submit_len >> 9;
7790                        file_offset += submit_len;
7791
7792                        submit_len = 0;
7793                        nr_pages = 0;
7794
7795                        bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev,
7796                                                  start_sector, GFP_NOFS);
7797                        if (!bio)
7798                                goto out_err;
7799                        bio->bi_private = dip;
7800                        bio->bi_end_io = btrfs_end_dio_bio;
7801                        btrfs_io_bio(bio)->logical = file_offset;
7802
7803                        map_length = orig_bio->bi_iter.bi_size;
7804                        ret = btrfs_map_block(root->fs_info, rw,
7805                                              start_sector << 9,
7806                                              &map_length, NULL, 0);
7807                        if (ret) {
7808                                bio_put(bio);
7809                                goto out_err;
7810                        }
7811                } else {
7812                        submit_len += bvec->bv_len;
7813                        nr_pages++;
7814                        bvec++;
7815                }
7816        }
7817
7818submit:
7819        ret = __btrfs_submit_dio_bio(bio, inode, rw, file_offset, skip_sum,
7820                                     async_submit);
7821        if (!ret)
7822                return 0;
7823
7824        bio_put(bio);
7825out_err:
7826        dip->errors = 1;
7827        /*
7828         * before atomic variable goto zero, we must
7829         * make sure dip->errors is perceived to be set.
7830         */
7831        smp_mb__before_atomic();
7832        if (atomic_dec_and_test(&dip->pending_bios))
7833                bio_io_error(dip->orig_bio);
7834
7835        /* bio_end_io() will handle error, so we needn't return it */
7836        return 0;
7837}
7838
7839static void btrfs_submit_direct(int rw, struct bio *dio_bio,
7840                                struct inode *inode, loff_t file_offset)
7841{
7842        struct btrfs_root *root = BTRFS_I(inode)->root;
7843        struct btrfs_dio_private *dip;
7844        struct bio *io_bio;
7845        struct btrfs_io_bio *btrfs_bio;
7846        int skip_sum;
7847        int write = rw & REQ_WRITE;
7848        int ret = 0;
7849
7850        skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
7851
7852        io_bio = btrfs_bio_clone(dio_bio, GFP_NOFS);
7853        if (!io_bio) {
7854                ret = -ENOMEM;
7855                goto free_ordered;
7856        }
7857
7858        dip = kzalloc(sizeof(*dip), GFP_NOFS);
7859        if (!dip) {
7860                ret = -ENOMEM;
7861                goto free_io_bio;
7862        }
7863
7864        dip->private = dio_bio->bi_private;
7865        dip->inode = inode;
7866        dip->logical_offset = file_offset;
7867        dip->bytes = dio_bio->bi_iter.bi_size;
7868        dip->disk_bytenr = (u64)dio_bio->bi_iter.bi_sector << 9;
7869        io_bio->bi_private = dip;
7870        dip->orig_bio = io_bio;
7871        dip->dio_bio = dio_bio;
7872        atomic_set(&dip->pending_bios, 0);
7873        btrfs_bio = btrfs_io_bio(io_bio);
7874        btrfs_bio->logical = file_offset;
7875
7876        if (write) {
7877                io_bio->bi_end_io = btrfs_endio_direct_write;
7878        } else {
7879                io_bio->bi_end_io = btrfs_endio_direct_read;
7880                dip->subio_endio = btrfs_subio_endio_read;
7881        }
7882
7883        ret = btrfs_submit_direct_hook(rw, dip, skip_sum);
7884        if (!ret)
7885                return;
7886
7887        if (btrfs_bio->end_io)
7888                btrfs_bio->end_io(btrfs_bio, ret);
7889free_io_bio:
7890        bio_put(io_bio);
7891
7892free_ordered:
7893        /*
7894         * If this is a write, we need to clean up the reserved space and kill
7895         * the ordered extent.
7896         */
7897        if (write) {
7898                struct btrfs_ordered_extent *ordered;
7899                ordered = btrfs_lookup_ordered_extent(inode, file_offset);
7900                if (!test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags) &&
7901                    !test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags))
7902                        btrfs_free_reserved_extent(root, ordered->start,
7903                                                   ordered->disk_len, 1);
7904                btrfs_put_ordered_extent(ordered);
7905                btrfs_put_ordered_extent(ordered);
7906        }
7907        bio_endio(dio_bio, ret);
7908}
7909
7910static ssize_t check_direct_IO(struct btrfs_root *root, int rw, struct kiocb *iocb,
7911                        const struct iov_iter *iter, loff_t offset)
7912{
7913        int seg;
7914        int i;
7915        unsigned blocksize_mask = root->sectorsize - 1;
7916        ssize_t retval = -EINVAL;
7917
7918        if (offset & blocksize_mask)
7919                goto out;
7920
7921        if (iov_iter_alignment(iter) & blocksize_mask)
7922                goto out;
7923
7924        /* If this is a write we don't need to check anymore */
7925        if (rw & WRITE)
7926                return 0;
7927        /*
7928         * Check to make sure we don't have duplicate iov_base's in this
7929         * iovec, if so return EINVAL, otherwise we'll get csum errors
7930         * when reading back.
7931         */
7932        for (seg = 0; seg < iter->nr_segs; seg++) {
7933                for (i = seg + 1; i < iter->nr_segs; i++) {
7934                        if (iter->iov[seg].iov_base == iter->iov[i].iov_base)
7935                                goto out;
7936                }
7937        }
7938        retval = 0;
7939out:
7940        return retval;
7941}
7942
7943static ssize_t btrfs_direct_IO(int rw, struct kiocb *iocb,
7944                        struct iov_iter *iter, loff_t offset)
7945{
7946        struct file *file = iocb->ki_filp;
7947        struct inode *inode = file->f_mapping->host;
7948        size_t count = 0;
7949        int flags = 0;
7950        bool wakeup = true;
7951        bool relock = false;
7952        ssize_t ret;
7953
7954        if (check_direct_IO(BTRFS_I(inode)->root, rw, iocb, iter, offset))
7955                return 0;
7956
7957        atomic_inc(&inode->i_dio_count);
7958        smp_mb__after_atomic();
7959
7960        /*
7961         * The generic stuff only does filemap_write_and_wait_range, which
7962         * isn't enough if we've written compressed pages to this area, so
7963         * we need to flush the dirty pages again to make absolutely sure
7964         * that any outstanding dirty pages are on disk.
7965         */
7966        count = iov_iter_count(iter);
7967        if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
7968                     &BTRFS_I(inode)->runtime_flags))
7969                filemap_fdatawrite_range(inode->i_mapping, offset,
7970                                         offset + count - 1);
7971
7972        if (rw & WRITE) {
7973                /*
7974                 * If the write DIO is beyond the EOF, we need update
7975                 * the isize, but it is protected by i_mutex. So we can
7976                 * not unlock the i_mutex at this case.
7977                 */
7978                if (offset + count <= inode->i_size) {
7979                        mutex_unlock(&inode->i_mutex);
7980                        relock = true;
7981                }
7982                ret = btrfs_delalloc_reserve_space(inode, count);
7983                if (ret)
7984                        goto out;
7985        } else if (test_bit(BTRFS_INODE_READDIO_NEED_LOCK,
7986                                     &BTRFS_I(inode)->runtime_flags)) {
7987                inode_dio_done(inode);
7988                flags = DIO_LOCKING | DIO_SKIP_HOLES;
7989                wakeup = false;
7990        }
7991
7992        ret = __blockdev_direct_IO(rw, iocb, inode,
7993                        BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev,
7994                        iter, offset, btrfs_get_blocks_direct, NULL,
7995                        btrfs_submit_direct, flags);
7996        if (rw & WRITE) {
7997                if (ret < 0 && ret != -EIOCBQUEUED)
7998                        btrfs_delalloc_release_space(inode, count);
7999                else if (ret >= 0 && (size_t)ret < count)
8000                        btrfs_delalloc_release_space(inode,
8001                                                     count - (size_t)ret);
8002                else
8003                        btrfs_delalloc_release_metadata(inode, 0);
8004        }
8005out:
8006        if (wakeup)
8007                inode_dio_done(inode);
8008        if (relock)
8009                mutex_lock(&inode->i_mutex);
8010
8011        return ret;
8012}
8013
8014#define BTRFS_FIEMAP_FLAGS      (FIEMAP_FLAG_SYNC)
8015
8016static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
8017                __u64 start, __u64 len)
8018{
8019        int     ret;
8020
8021        ret = fiemap_check_flags(fieinfo, BTRFS_FIEMAP_FLAGS);
8022        if (ret)
8023                return ret;
8024
8025        return extent_fiemap(inode, fieinfo, start, len, btrfs_get_extent_fiemap);
8026}
8027
8028int btrfs_readpage(struct file *file, struct page *page)
8029{
8030        struct extent_io_tree *tree;
8031        tree = &BTRFS_I(page->mapping->host)->io_tree;
8032        return extent_read_full_page(tree, page, btrfs_get_extent, 0);
8033}
8034
8035static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
8036{
8037        struct extent_io_tree *tree;
8038
8039
8040        if (current->flags & PF_MEMALLOC) {
8041                redirty_page_for_writepage(wbc, page);
8042                unlock_page(page);
8043                return 0;
8044        }
8045        tree = &BTRFS_I(page->mapping->host)->io_tree;
8046        return extent_write_full_page(tree, page, btrfs_get_extent, wbc);
8047}
8048
8049static int btrfs_writepages(struct address_space *mapping,
8050                            struct writeback_control *wbc)
8051{
8052        struct extent_io_tree *tree;
8053
8054        tree = &BTRFS_I(mapping->host)->io_tree;
8055        return extent_writepages(tree, mapping, btrfs_get_extent, wbc);
8056}
8057
8058static int
8059btrfs_readpages(struct file *file, struct address_space *mapping,
8060                struct list_head *pages, unsigned nr_pages)
8061{
8062        struct extent_io_tree *tree;
8063        tree = &BTRFS_I(mapping->host)->io_tree;
8064        return extent_readpages(tree, mapping, pages, nr_pages,
8065                                btrfs_get_extent);
8066}
8067static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
8068{
8069        struct extent_io_tree *tree;
8070        struct extent_map_tree *map;
8071        int ret;
8072
8073        tree = &BTRFS_I(page->mapping->host)->io_tree;
8074        map = &BTRFS_I(page->mapping->host)->extent_tree;
8075        ret = try_release_extent_mapping(map, tree, page, gfp_flags);
8076        if (ret == 1) {
8077                ClearPagePrivate(page);
8078                set_page_private(page, 0);
8079                page_cache_release(page);
8080        }
8081        return ret;
8082}
8083
8084static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
8085{
8086        if (PageWriteback(page) || PageDirty(page))
8087                return 0;
8088        return __btrfs_releasepage(page, gfp_flags & GFP_NOFS);
8089}
8090
8091static void btrfs_invalidatepage(struct page *page, unsigned int offset,
8092                                 unsigned int length)
8093{
8094        struct inode *inode = page->mapping->host;
8095        struct extent_io_tree *tree;
8096        struct btrfs_ordered_extent *ordered;
8097        struct extent_state *cached_state = NULL;
8098        u64 page_start = page_offset(page);
8099        u64 page_end = page_start + PAGE_CACHE_SIZE - 1;
8100        int inode_evicting = inode->i_state & I_FREEING;
8101
8102        /*
8103         * we have the page locked, so new writeback can't start,
8104         * and the dirty bit won't be cleared while we are here.
8105         *
8106         * Wait for IO on this page so that we can safely clear
8107         * the PagePrivate2 bit and do ordered accounting
8108         */
8109        wait_on_page_writeback(page);
8110
8111        tree = &BTRFS_I(inode)->io_tree;
8112        if (offset) {
8113                btrfs_releasepage(page, GFP_NOFS);
8114                return;
8115        }
8116
8117        if (!inode_evicting)
8118                lock_extent_bits(tree, page_start, page_end, 0, &cached_state);
8119        ordered = btrfs_lookup_ordered_extent(inode, page_start);
8120        if (ordered) {
8121                /*
8122                 * IO on this page will never be started, so we need
8123                 * to account for any ordered extents now
8124                 */
8125                if (!inode_evicting)
8126                        clear_extent_bit(tree, page_start, page_end,
8127                                         EXTENT_DIRTY | EXTENT_DELALLOC |
8128                                         EXTENT_LOCKED | EXTENT_DO_ACCOUNTING |
8129                                         EXTENT_DEFRAG, 1, 0, &cached_state,
8130                                         GFP_NOFS);
8131                /*
8132                 * whoever cleared the private bit is responsible
8133                 * for the finish_ordered_io
8134                 */
8135                if (TestClearPagePrivate2(page)) {
8136                        struct btrfs_ordered_inode_tree *tree;
8137                        u64 new_len;
8138
8139                        tree = &BTRFS_I(inode)->ordered_tree;
8140
8141                        spin_lock_irq(&tree->lock);
8142                        set_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags);
8143                        new_len = page_start - ordered->file_offset;
8144                        if (new_len < ordered->truncated_len)
8145                                ordered->truncated_len = new_len;
8146                        spin_unlock_irq(&tree->lock);
8147
8148                        if (btrfs_dec_test_ordered_pending(inode, &ordered,
8149                                                           page_start,
8150                                                           PAGE_CACHE_SIZE, 1))
8151                                btrfs_finish_ordered_io(ordered);
8152                }
8153                btrfs_put_ordered_extent(ordered);
8154                if (!inode_evicting) {
8155                        cached_state = NULL;
8156                        lock_extent_bits(tree, page_start, page_end, 0,
8157                                         &cached_state);
8158                }
8159        }
8160
8161        if (!inode_evicting) {
8162                clear_extent_bit(tree, page_start, page_end,
8163                                 EXTENT_LOCKED | EXTENT_DIRTY |
8164                                 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
8165                                 EXTENT_DEFRAG, 1, 1,
8166                                 &cached_state, GFP_NOFS);
8167
8168                __btrfs_releasepage(page, GFP_NOFS);
8169        }
8170
8171        ClearPageChecked(page);
8172        if (PagePrivate(page)) {
8173                ClearPagePrivate(page);
8174                set_page_private(page, 0);
8175                page_cache_release(page);
8176        }
8177}
8178
8179/*
8180 * btrfs_page_mkwrite() is not allowed to change the file size as it gets
8181 * called from a page fault handler when a page is first dirtied. Hence we must
8182 * be careful to check for EOF conditions here. We set the page up correctly
8183 * for a written page which means we get ENOSPC checking when writing into
8184 * holes and correct delalloc and unwritten extent mapping on filesystems that
8185 * support these features.
8186 *
8187 * We are not allowed to take the i_mutex here so we have to play games to
8188 * protect against truncate races as the page could now be beyond EOF.  Because
8189 * vmtruncate() writes the inode size before removing pages, once we have the
8190 * page lock we can determine safely if the page is beyond EOF. If it is not
8191 * beyond EOF, then the page is guaranteed safe against truncation until we
8192 * unlock the page.
8193 */
8194int btrfs_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
8195{
8196        struct page *page = vmf->page;
8197        struct inode *inode = file_inode(vma->vm_file);
8198        struct btrfs_root *root = BTRFS_I(inode)->root;
8199        struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
8200        struct btrfs_ordered_extent *ordered;
8201        struct extent_state *cached_state = NULL;
8202        char *kaddr;
8203        unsigned long zero_start;
8204        loff_t size;
8205        int ret;
8206        int reserved = 0;
8207        u64 page_start;
8208        u64 page_end;
8209
8210        sb_start_pagefault(inode->i_sb);
8211        ret  = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
8212        if (!ret) {
8213                ret = file_update_time(vma->vm_file);
8214                reserved = 1;
8215        }
8216        if (ret) {
8217                if (ret == -ENOMEM)
8218                        ret = VM_FAULT_OOM;
8219                else /* -ENOSPC, -EIO, etc */
8220                        ret = VM_FAULT_SIGBUS;
8221                if (reserved)
8222                        goto out;
8223                goto out_noreserve;
8224        }
8225
8226        ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
8227again:
8228        lock_page(page);
8229        size = i_size_read(inode);
8230        page_start = page_offset(page);
8231        page_end = page_start + PAGE_CACHE_SIZE - 1;
8232
8233        if ((page->mapping != inode->i_mapping) ||
8234            (page_start >= size)) {
8235                /* page got truncated out from underneath us */
8236                goto out_unlock;
8237        }
8238        wait_on_page_writeback(page);
8239
8240        lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state);
8241        set_page_extent_mapped(page);
8242
8243        /*
8244         * we can't set the delalloc bits if there are pending ordered
8245         * extents.  Drop our locks and wait for them to finish
8246         */
8247        ordered = btrfs_lookup_ordered_extent(inode, page_start);
8248        if (ordered) {
8249                unlock_extent_cached(io_tree, page_start, page_end,
8250                                     &cached_state, GFP_NOFS);
8251                unlock_page(page);
8252                btrfs_start_ordered_extent(inode, ordered, 1);
8253                btrfs_put_ordered_extent(ordered);
8254                goto again;
8255        }
8256
8257        /*
8258         * XXX - page_mkwrite gets called every time the page is dirtied, even
8259         * if it was already dirty, so for space accounting reasons we need to
8260         * clear any delalloc bits for the range we are fixing to save.  There
8261         * is probably a better way to do this, but for now keep consistent with
8262         * prepare_pages in the normal write path.
8263         */
8264        clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
8265                          EXTENT_DIRTY | EXTENT_DELALLOC |
8266                          EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
8267                          0, 0, &cached_state, GFP_NOFS);
8268
8269        ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
8270                                        &cached_state);
8271        if (ret) {
8272                unlock_extent_cached(io_tree, page_start, page_end,
8273                                     &cached_state, GFP_NOFS);
8274                ret = VM_FAULT_SIGBUS;
8275                goto out_unlock;
8276        }
8277        ret = 0;
8278
8279        /* page is wholly or partially inside EOF */
8280        if (page_start + PAGE_CACHE_SIZE > size)
8281                zero_start = size & ~PAGE_CACHE_MASK;
8282        else
8283                zero_start = PAGE_CACHE_SIZE;
8284
8285        if (zero_start != PAGE_CACHE_SIZE) {
8286                kaddr = kmap(page);
8287                memset(kaddr + zero_start, 0, PAGE_CACHE_SIZE - zero_start);
8288                flush_dcache_page(page);
8289                kunmap(page);
8290        }
8291        ClearPageChecked(page);
8292        set_page_dirty(page);
8293        SetPageUptodate(page);
8294
8295        BTRFS_I(inode)->last_trans = root->fs_info->generation;
8296        BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid;
8297        BTRFS_I(inode)->last_log_commit = BTRFS_I(inode)->root->last_log_commit;
8298
8299        unlock_extent_cached(io_tree, page_start, page_end, &cached_state, GFP_NOFS);
8300
8301out_unlock:
8302        if (!ret) {
8303                sb_end_pagefault(inode->i_sb);
8304                return VM_FAULT_LOCKED;
8305        }
8306        unlock_page(page);
8307out:
8308        btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
8309out_noreserve:
8310        sb_end_pagefault(inode->i_sb);
8311        return ret;
8312}
8313
8314static int btrfs_truncate(struct inode *inode)
8315{
8316        struct btrfs_root *root = BTRFS_I(inode)->root;
8317        struct btrfs_block_rsv *rsv;
8318        int ret = 0;
8319        int err = 0;
8320        struct btrfs_trans_handle *trans;
8321        u64 mask = root->sectorsize - 1;
8322        u64 min_size = btrfs_calc_trunc_metadata_size(root, 1);
8323
8324        ret = btrfs_wait_ordered_range(inode, inode->i_size & (~mask),
8325                                       (u64)-1);
8326        if (ret)
8327                return ret;
8328
8329        /*
8330         * Yes ladies and gentelment, this is indeed ugly.  The fact is we have
8331         * 3 things going on here
8332         *
8333         * 1) We need to reserve space for our orphan item and the space to
8334         * delete our orphan item.  Lord knows we don't want to have a dangling
8335         * orphan item because we didn't reserve space to remove it.
8336         *
8337         * 2) We need to reserve space to update our inode.
8338         *
8339         * 3) We need to have something to cache all the space that is going to
8340         * be free'd up by the truncate operation, but also have some slack
8341         * space reserved in case it uses space during the truncate (thank you
8342         * very much snapshotting).
8343         *
8344         * And we need these to all be seperate.  The fact is we can use alot of
8345         * space doing the truncate, and we have no earthly idea how much space
8346         * we will use, so we need the truncate reservation to be seperate so it
8347         * doesn't end up using space reserved for updating the inode or
8348         * removing the orphan item.  We also need to be able to stop the
8349         * transaction and start a new one, which means we need to be able to
8350         * update the inode several times, and we have no idea of knowing how
8351         * many times that will be, so we can't just reserve 1 item for the
8352         * entirety of the opration, so that has to be done seperately as well.
8353         * Then there is the orphan item, which does indeed need to be held on
8354         * to for the whole operation, and we need nobody to touch this reserved
8355         * space except the orphan code.
8356         *
8357         * So that leaves us with
8358         *
8359         * 1) root->orphan_block_rsv - for the orphan deletion.
8360         * 2) rsv - for the truncate reservation, which we will steal from the
8361         * transaction reservation.
8362         * 3) fs_info->trans_block_rsv - this will have 1 items worth left for
8363         * updating the inode.
8364         */
8365        rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
8366        if (!rsv)
8367                return -ENOMEM;
8368        rsv->size = min_size;
8369        rsv->failfast = 1;
8370
8371        /*
8372         * 1 for the truncate slack space
8373         * 1 for updating the inode.
8374         */
8375        trans = btrfs_start_transaction(root, 2);
8376        if (IS_ERR(trans)) {
8377                err = PTR_ERR(trans);
8378                goto out;
8379        }
8380
8381        /* Migrate the slack space for the truncate to our reserve */
8382        ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv, rsv,
8383                                      min_size);
8384        BUG_ON(ret);
8385
8386        /*
8387         * So if we truncate and then write and fsync we normally would just
8388         * write the extents that changed, which is a problem if we need to
8389         * first truncate that entire inode.  So set this flag so we write out
8390         * all of the extents in the inode to the sync log so we're completely
8391         * safe.
8392         */
8393        set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
8394        trans->block_rsv = rsv;
8395
8396        while (1) {
8397                ret = btrfs_truncate_inode_items(trans, root, inode,
8398                                                 inode->i_size,
8399                                                 BTRFS_EXTENT_DATA_KEY);
8400                if (ret != -ENOSPC) {
8401                        err = ret;
8402                        break;
8403                }
8404
8405                trans->block_rsv = &root->fs_info->trans_block_rsv;
8406                ret = btrfs_update_inode(trans, root, inode);
8407                if (ret) {
8408                        err = ret;
8409                        break;
8410                }
8411
8412                btrfs_end_transaction(trans, root);
8413                btrfs_btree_balance_dirty(root);
8414
8415                trans = btrfs_start_transaction(root, 2);
8416                if (IS_ERR(trans)) {
8417                        ret = err = PTR_ERR(trans);
8418                        trans = NULL;
8419                        break;
8420                }
8421
8422                ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv,
8423                                              rsv, min_size);
8424                BUG_ON(ret);    /* shouldn't happen */
8425                trans->block_rsv = rsv;
8426        }
8427
8428        if (ret == 0 && inode->i_nlink > 0) {
8429                trans->block_rsv = root->orphan_block_rsv;
8430                ret = btrfs_orphan_del(trans, inode);
8431                if (ret)
8432                        err = ret;
8433        }
8434
8435        if (trans) {
8436                trans->block_rsv = &root->fs_info->trans_block_rsv;
8437                ret = btrfs_update_inode(trans, root, inode);
8438                if (ret && !err)
8439                        err = ret;
8440
8441                ret = btrfs_end_transaction(trans, root);
8442                btrfs_btree_balance_dirty(root);
8443        }
8444
8445out:
8446        btrfs_free_block_rsv(root, rsv);
8447
8448        if (ret && !err)
8449                err = ret;
8450
8451        return err;
8452}
8453
8454/*
8455 * create a new subvolume directory/inode (helper for the ioctl).
8456 */
8457int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
8458                             struct btrfs_root *new_root,
8459                             struct btrfs_root *parent_root,
8460                             u64 new_dirid)
8461{
8462        struct inode *inode;
8463        int err;
8464        u64 index = 0;
8465
8466        inode = btrfs_new_inode(trans, new_root, NULL, "..", 2,
8467                                new_dirid, new_dirid,
8468                                S_IFDIR | (~current_umask() & S_IRWXUGO),
8469                                &index);
8470        if (IS_ERR(inode))
8471                return PTR_ERR(inode);
8472        inode->i_op = &btrfs_dir_inode_operations;
8473        inode->i_fop = &btrfs_dir_file_operations;
8474
8475        set_nlink(inode, 1);
8476        btrfs_i_size_write(inode, 0);
8477        unlock_new_inode(inode);
8478
8479        err = btrfs_subvol_inherit_props(trans, new_root, parent_root);
8480        if (err)
8481                btrfs_err(new_root->fs_info,
8482                          "error inheriting subvolume %llu properties: %d",
8483                          new_root->root_key.objectid, err);
8484
8485        err = btrfs_update_inode(trans, new_root, inode);
8486
8487        iput(inode);
8488        return err;
8489}
8490
8491struct inode *btrfs_alloc_inode(struct super_block *sb)
8492{
8493        struct btrfs_inode *ei;
8494        struct inode *inode;
8495
8496        ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS);
8497        if (!ei)
8498                return NULL;
8499
8500        ei->root = NULL;
8501        ei->generation = 0;
8502        ei->last_trans = 0;
8503        ei->last_sub_trans = 0;
8504        ei->logged_trans = 0;
8505        ei->delalloc_bytes = 0;
8506        ei->defrag_bytes = 0;
8507        ei->disk_i_size = 0;
8508        ei->flags = 0;
8509        ei->csum_bytes = 0;
8510        ei->index_cnt = (u64)-1;
8511        ei->dir_index = 0;
8512        ei->last_unlink_trans = 0;
8513        ei->last_log_commit = 0;
8514
8515        spin_lock_init(&ei->lock);
8516        ei->outstanding_extents = 0;
8517        ei->reserved_extents = 0;
8518
8519        ei->runtime_flags = 0;
8520        ei->force_compress = BTRFS_COMPRESS_NONE;
8521
8522        ei->delayed_node = NULL;
8523
8524        inode = &ei->vfs_inode;
8525        extent_map_tree_init(&ei->extent_tree);
8526        extent_io_tree_init(&ei->io_tree, &inode->i_data);
8527        extent_io_tree_init(&ei->io_failure_tree, &inode->i_data);
8528        ei->io_tree.track_uptodate = 1;
8529        ei->io_failure_tree.track_uptodate = 1;
8530        atomic_set(&ei->sync_writers, 0);
8531        mutex_init(&ei->log_mutex);
8532        mutex_init(&ei->delalloc_mutex);
8533        btrfs_ordered_inode_tree_init(&ei->ordered_tree);
8534        INIT_LIST_HEAD(&ei->delalloc_inodes);
8535        RB_CLEAR_NODE(&ei->rb_node);
8536
8537        return inode;
8538}
8539
8540#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
8541void btrfs_test_destroy_inode(struct inode *inode)
8542{
8543        btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
8544        kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
8545}
8546#endif
8547
8548static void btrfs_i_callback(struct rcu_head *head)
8549{
8550        struct inode *inode = container_of(head, struct inode, i_rcu);
8551        kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
8552}
8553
8554void btrfs_destroy_inode(struct inode *inode)
8555{
8556        struct btrfs_ordered_extent *ordered;
8557        struct btrfs_root *root = BTRFS_I(inode)->root;
8558
8559        WARN_ON(!hlist_empty(&inode->i_dentry));
8560        WARN_ON(inode->i_data.nrpages);
8561        WARN_ON(BTRFS_I(inode)->outstanding_extents);
8562        WARN_ON(BTRFS_I(inode)->reserved_extents);
8563        WARN_ON(BTRFS_I(inode)->delalloc_bytes);
8564        WARN_ON(BTRFS_I(inode)->csum_bytes);
8565        WARN_ON(BTRFS_I(inode)->defrag_bytes);
8566
8567        /*
8568         * This can happen where we create an inode, but somebody else also
8569         * created the same inode and we need to destroy the one we already
8570         * created.
8571         */
8572        if (!root)
8573                goto free;
8574
8575        if (test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
8576                     &BTRFS_I(inode)->runtime_flags)) {
8577                btrfs_info(root->fs_info, "inode %llu still on the orphan list",
8578                        btrfs_ino(inode));
8579                atomic_dec(&root->orphan_inodes);
8580        }
8581
8582        while (1) {
8583                ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
8584                if (!ordered)
8585                        break;
8586                else {
8587                        btrfs_err(root->fs_info, "found ordered extent %llu %llu on inode cleanup",
8588                                ordered->file_offset, ordered->len);
8589                        btrfs_remove_ordered_extent(inode, ordered);
8590                        btrfs_put_ordered_extent(ordered);
8591                        btrfs_put_ordered_extent(ordered);
8592                }
8593        }
8594        inode_tree_del(inode);
8595        btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
8596free:
8597        call_rcu(&inode->i_rcu, btrfs_i_callback);
8598}
8599
8600int btrfs_drop_inode(struct inode *inode)
8601{
8602        struct btrfs_root *root = BTRFS_I(inode)->root;
8603
8604        if (root == NULL)
8605                return 1;
8606
8607        /* the snap/subvol tree is on deleting */
8608        if (btrfs_root_refs(&root->root_item) == 0)
8609                return 1;
8610        else
8611                return generic_drop_inode(inode);
8612}
8613
8614static void init_once(void *foo)
8615{
8616        struct btrfs_inode *ei = (struct btrfs_inode *) foo;
8617
8618        inode_init_once(&ei->vfs_inode);
8619}
8620
8621void btrfs_destroy_cachep(void)
8622{
8623        /*
8624         * Make sure all delayed rcu free inodes are flushed before we
8625         * destroy cache.
8626         */
8627        rcu_barrier();
8628        if (btrfs_inode_cachep)
8629                kmem_cache_destroy(btrfs_inode_cachep);
8630        if (btrfs_trans_handle_cachep)
8631                kmem_cache_destroy(btrfs_trans_handle_cachep);
8632        if (btrfs_transaction_cachep)
8633                kmem_cache_destroy(btrfs_transaction_cachep);
8634        if (btrfs_path_cachep)
8635                kmem_cache_destroy(btrfs_path_cachep);
8636        if (btrfs_free_space_cachep)
8637                kmem_cache_destroy(btrfs_free_space_cachep);
8638        if (btrfs_delalloc_work_cachep)
8639                kmem_cache_destroy(btrfs_delalloc_work_cachep);
8640}
8641
8642int btrfs_init_cachep(void)
8643{
8644        btrfs_inode_cachep = kmem_cache_create("btrfs_inode",
8645                        sizeof(struct btrfs_inode), 0,
8646                        SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, init_once);
8647        if (!btrfs_inode_cachep)
8648                goto fail;
8649
8650        btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle",
8651                        sizeof(struct btrfs_trans_handle), 0,
8652                        SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
8653        if (!btrfs_trans_handle_cachep)
8654                goto fail;
8655
8656        btrfs_transaction_cachep = kmem_cache_create("btrfs_transaction",
8657                        sizeof(struct btrfs_transaction), 0,
8658                        SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
8659        if (!btrfs_transaction_cachep)
8660                goto fail;
8661
8662        btrfs_path_cachep = kmem_cache_create("btrfs_path",
8663                        sizeof(struct btrfs_path), 0,
8664                        SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
8665        if (!btrfs_path_cachep)
8666                goto fail;
8667
8668        btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space",
8669                        sizeof(struct btrfs_free_space), 0,
8670                        SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
8671        if (!btrfs_free_space_cachep)
8672                goto fail;
8673
8674        btrfs_delalloc_work_cachep = kmem_cache_create("btrfs_delalloc_work",
8675                        sizeof(struct btrfs_delalloc_work), 0,
8676                        SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
8677                        NULL);
8678        if (!btrfs_delalloc_work_cachep)
8679                goto fail;
8680
8681        return 0;
8682fail:
8683        btrfs_destroy_cachep();
8684        return -ENOMEM;
8685}
8686
8687static int btrfs_getattr(struct vfsmount *mnt,
8688                         struct dentry *dentry, struct kstat *stat)
8689{
8690        u64 delalloc_bytes;
8691        struct inode *inode = dentry->d_inode;
8692        u32 blocksize = inode->i_sb->s_blocksize;
8693
8694        generic_fillattr(inode, stat);
8695        stat->dev = BTRFS_I(inode)->root->anon_dev;
8696        stat->blksize = PAGE_CACHE_SIZE;
8697
8698        spin_lock(&BTRFS_I(inode)->lock);
8699        delalloc_bytes = BTRFS_I(inode)->delalloc_bytes;
8700        spin_unlock(&BTRFS_I(inode)->lock);
8701        stat->blocks = (ALIGN(inode_get_bytes(inode), blocksize) +
8702                        ALIGN(delalloc_bytes, blocksize)) >> 9;
8703        return 0;
8704}
8705
8706static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry,
8707                           struct inode *new_dir, struct dentry *new_dentry)
8708{
8709        struct btrfs_trans_handle *trans;
8710        struct btrfs_root *root = BTRFS_I(old_dir)->root;
8711        struct btrfs_root *dest = BTRFS_I(new_dir)->root;
8712        struct inode *new_inode = new_dentry->d_inode;
8713        struct inode *old_inode = old_dentry->d_inode;
8714        struct timespec ctime = CURRENT_TIME;
8715        u64 index = 0;
8716        u64 root_objectid;
8717        int ret;
8718        u64 old_ino = btrfs_ino(old_inode);
8719
8720        if (btrfs_ino(new_dir) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
8721                return -EPERM;
8722
8723        /* we only allow rename subvolume link between subvolumes */
8724        if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
8725                return -EXDEV;
8726
8727        if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
8728            (new_inode && btrfs_ino(new_inode) == BTRFS_FIRST_FREE_OBJECTID))
8729                return -ENOTEMPTY;
8730
8731        if (S_ISDIR(old_inode->i_mode) && new_inode &&
8732            new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
8733                return -ENOTEMPTY;
8734
8735
8736        /* check for collisions, even if the  name isn't there */
8737        ret = btrfs_check_dir_item_collision(dest, new_dir->i_ino,
8738                             new_dentry->d_name.name,
8739                             new_dentry->d_name.len);
8740
8741        if (ret) {
8742                if (ret == -EEXIST) {
8743                        /* we shouldn't get
8744                         * eexist without a new_inode */
8745                        if (WARN_ON(!new_inode)) {
8746                                return ret;
8747                        }
8748                } else {
8749                        /* maybe -EOVERFLOW */
8750                        return ret;
8751                }
8752        }
8753        ret = 0;
8754
8755        /*
8756         * we're using rename to replace one file with another.  Start IO on it
8757         * now so  we don't add too much work to the end of the transaction
8758         */
8759        if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size)
8760                filemap_flush(old_inode->i_mapping);
8761
8762        /* close the racy window with snapshot create/destroy ioctl */
8763        if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
8764                down_read(&root->fs_info->subvol_sem);
8765        /*
8766         * We want to reserve the absolute worst case amount of items.  So if
8767         * both inodes are subvols and we need to unlink them then that would
8768         * require 4 item modifications, but if they are both normal inodes it
8769         * would require 5 item modifications, so we'll assume their normal
8770         * inodes.  So 5 * 2 is 10, plus 1 for the new link, so 11 total items
8771         * should cover the worst case number of items we'll modify.
8772         */
8773        trans = btrfs_start_transaction(root, 11);
8774        if (IS_ERR(trans)) {
8775                ret = PTR_ERR(trans);
8776                goto out_notrans;
8777        }
8778
8779        if (dest != root)
8780                btrfs_record_root_in_trans(trans, dest);
8781
8782        ret = btrfs_set_inode_index(new_dir, &index);
8783        if (ret)
8784                goto out_fail;
8785
8786        BTRFS_I(old_inode)->dir_index = 0ULL;
8787        if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
8788                /* force full log commit if subvolume involved. */
8789                btrfs_set_log_full_commit(root->fs_info, trans);
8790        } else {
8791                ret = btrfs_insert_inode_ref(trans, dest,
8792                                             new_dentry->d_name.name,
8793                                             new_dentry->d_name.len,
8794                                             old_ino,
8795                                             btrfs_ino(new_dir), index);
8796                if (ret)
8797                        goto out_fail;
8798                /*
8799                 * this is an ugly little race, but the rename is required
8800                 * to make sure that if we crash, the inode is either at the
8801                 * old name or the new one.  pinning the log transaction lets
8802                 * us make sure we don't allow a log commit to come in after
8803                 * we unlink the name but before we add the new name back in.
8804                 */
8805                btrfs_pin_log_trans(root);
8806        }
8807
8808        inode_inc_iversion(old_dir);
8809        inode_inc_iversion(new_dir);
8810        inode_inc_iversion(old_inode);
8811        old_dir->i_ctime = old_dir->i_mtime = ctime;
8812        new_dir->i_ctime = new_dir->i_mtime = ctime;
8813        old_inode->i_ctime = ctime;
8814
8815        if (old_dentry->d_parent != new_dentry->d_parent)
8816                btrfs_record_unlink_dir(trans, old_dir, old_inode, 1);
8817
8818        if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
8819                root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
8820                ret = btrfs_unlink_subvol(trans, root, old_dir, root_objectid,
8821                                        old_dentry->d_name.name,
8822                                        old_dentry->d_name.len);
8823        } else {
8824                ret = __btrfs_unlink_inode(trans, root, old_dir,
8825                                        old_dentry->d_inode,
8826                                        old_dentry->d_name.name,
8827                                        old_dentry->d_name.len);
8828                if (!ret)
8829                        ret = btrfs_update_inode(trans, root, old_inode);
8830        }
8831        if (ret) {
8832                btrfs_abort_transaction(trans, root, ret);
8833                goto out_fail;
8834        }
8835
8836        if (new_inode) {
8837                inode_inc_iversion(new_inode);
8838                new_inode->i_ctime = CURRENT_TIME;
8839                if (unlikely(btrfs_ino(new_inode) ==
8840                             BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
8841                        root_objectid = BTRFS_I(new_inode)->location.objectid;
8842                        ret = btrfs_unlink_subvol(trans, dest, new_dir,
8843                                                root_objectid,
8844                                                new_dentry->d_name.name,
8845                                                new_dentry->d_name.len);
8846                        BUG_ON(new_inode->i_nlink == 0);
8847                } else {
8848                        ret = btrfs_unlink_inode(trans, dest, new_dir,
8849                                                 new_dentry->d_inode,
8850                                                 new_dentry->d_name.name,
8851                                                 new_dentry->d_name.len);
8852                }
8853                if (!ret && new_inode->i_nlink == 0)
8854                        ret = btrfs_orphan_add(trans, new_dentry->d_inode);
8855                if (ret) {
8856                        btrfs_abort_transaction(trans, root, ret);
8857                        goto out_fail;
8858                }
8859        }
8860
8861        ret = btrfs_add_link(trans, new_dir, old_inode,
8862                             new_dentry->d_name.name,
8863                             new_dentry->d_name.len, 0, index);
8864        if (ret) {
8865                btrfs_abort_transaction(trans, root, ret);
8866                goto out_fail;
8867        }
8868
8869        if (old_inode->i_nlink == 1)
8870                BTRFS_I(old_inode)->dir_index = index;
8871
8872        if (old_ino != BTRFS_FIRST_FREE_OBJECTID) {
8873                struct dentry *parent = new_dentry->d_parent;
8874                btrfs_log_new_name(trans, old_inode, old_dir, parent);
8875                btrfs_end_log_trans(root);
8876        }
8877out_fail:
8878        btrfs_end_transaction(trans, root);
8879out_notrans:
8880        if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
8881                up_read(&root->fs_info->subvol_sem);
8882
8883        return ret;
8884}
8885
8886static int btrfs_rename2(struct inode *old_dir, struct dentry *old_dentry,
8887                         struct inode *new_dir, struct dentry *new_dentry,
8888                         unsigned int flags)
8889{
8890        if (flags & ~RENAME_NOREPLACE)
8891                return -EINVAL;
8892
8893        return btrfs_rename(old_dir, old_dentry, new_dir, new_dentry);
8894}
8895
8896static void btrfs_run_delalloc_work(struct btrfs_work *work)
8897{
8898        struct btrfs_delalloc_work *delalloc_work;
8899        struct inode *inode;
8900
8901        delalloc_work = container_of(work, struct btrfs_delalloc_work,
8902                                     work);
8903        inode = delalloc_work->inode;
8904        if (delalloc_work->wait) {
8905                btrfs_wait_ordered_range(inode, 0, (u64)-1);
8906        } else {
8907                filemap_flush(inode->i_mapping);
8908                if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
8909                             &BTRFS_I(inode)->runtime_flags))
8910                        filemap_flush(inode->i_mapping);
8911        }
8912
8913        if (delalloc_work->delay_iput)
8914                btrfs_add_delayed_iput(inode);
8915        else
8916                iput(inode);
8917        complete(&delalloc_work->completion);
8918}
8919
8920struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode,
8921                                                    int wait, int delay_iput)
8922{
8923        struct btrfs_delalloc_work *work;
8924
8925        work = kmem_cache_zalloc(btrfs_delalloc_work_cachep, GFP_NOFS);
8926        if (!work)
8927                return NULL;
8928
8929        init_completion(&work->completion);
8930        INIT_LIST_HEAD(&work->list);
8931        work->inode = inode;
8932        work->wait = wait;
8933        work->delay_iput = delay_iput;
8934        WARN_ON_ONCE(!inode);
8935        btrfs_init_work(&work->work, btrfs_flush_delalloc_helper,
8936                        btrfs_run_delalloc_work, NULL, NULL);
8937
8938        return work;
8939}
8940
8941void btrfs_wait_and_free_delalloc_work(struct btrfs_delalloc_work *work)
8942{
8943        wait_for_completion(&work->completion);
8944        kmem_cache_free(btrfs_delalloc_work_cachep, work);
8945}
8946
8947/*
8948 * some fairly slow code that needs optimization. This walks the list
8949 * of all the inodes with pending delalloc and forces them to disk.
8950 */
8951static int __start_delalloc_inodes(struct btrfs_root *root, int delay_iput,
8952                                   int nr)
8953{
8954        struct btrfs_inode *binode;
8955        struct inode *inode;
8956        struct btrfs_delalloc_work *work, *next;
8957        struct list_head works;
8958        struct list_head splice;
8959        int ret = 0;
8960
8961        INIT_LIST_HEAD(&works);
8962        INIT_LIST_HEAD(&splice);
8963
8964        mutex_lock(&root->delalloc_mutex);
8965        spin_lock(&root->delalloc_lock);
8966        list_splice_init(&root->delalloc_inodes, &splice);
8967        while (!list_empty(&splice)) {
8968                binode = list_entry(splice.next, struct btrfs_inode,
8969                                    delalloc_inodes);
8970
8971                list_move_tail(&binode->delalloc_inodes,
8972                               &root->delalloc_inodes);
8973                inode = igrab(&binode->vfs_inode);
8974                if (!inode) {
8975                        cond_resched_lock(&root->delalloc_lock);
8976                        continue;
8977                }
8978                spin_unlock(&root->delalloc_lock);
8979
8980                work = btrfs_alloc_delalloc_work(inode, 0, delay_iput);
8981                if (!work) {
8982                        if (delay_iput)
8983                                btrfs_add_delayed_iput(inode);
8984                        else
8985                                iput(inode);
8986                        ret = -ENOMEM;
8987                        goto out;
8988                }
8989                list_add_tail(&work->list, &works);
8990                btrfs_queue_work(root->fs_info->flush_workers,
8991                                 &work->work);
8992                ret++;
8993                if (nr != -1 && ret >= nr)
8994                        goto out;
8995                cond_resched();
8996                spin_lock(&root->delalloc_lock);
8997        }
8998        spin_unlock(&root->delalloc_lock);
8999
9000out:
9001        list_for_each_entry_safe(work, next, &works, list) {
9002                list_del_init(&work->list);
9003                btrfs_wait_and_free_delalloc_work(work);
9004        }
9005
9006        if (!list_empty_careful(&splice)) {
9007                spin_lock(&root->delalloc_lock);
9008                list_splice_tail(&splice, &root->delalloc_inodes);
9009                spin_unlock(&root->delalloc_lock);
9010        }
9011        mutex_unlock(&root->delalloc_mutex);
9012        return ret;
9013}
9014
9015int btrfs_start_delalloc_inodes(struct btrfs_root *root, int delay_iput)
9016{
9017        int ret;
9018
9019        if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state))
9020                return -EROFS;
9021
9022        ret = __start_delalloc_inodes(root, delay_iput, -1);
9023        if (ret > 0)
9024                ret = 0;
9025        /*
9026         * the filemap_flush will queue IO into the worker threads, but
9027         * we have to make sure the IO is actually started and that
9028         * ordered extents get created before we return
9029         */
9030        atomic_inc(&root->fs_info->async_submit_draining);
9031        while (atomic_read(&root->fs_info->nr_async_submits) ||
9032              atomic_read(&root->fs_info->async_delalloc_pages)) {
9033                wait_event(root->fs_info->async_submit_wait,
9034                   (atomic_read(&root->fs_info->nr_async_submits) == 0 &&
9035                    atomic_read(&root->fs_info->async_delalloc_pages) == 0));
9036        }
9037        atomic_dec(&root->fs_info->async_submit_draining);
9038        return ret;
9039}
9040
9041int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, int delay_iput,
9042                               int nr)
9043{
9044        struct btrfs_root *root;
9045        struct list_head splice;
9046        int ret;
9047
9048        if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
9049                return -EROFS;
9050
9051        INIT_LIST_HEAD(&splice);
9052
9053        mutex_lock(&fs_info->delalloc_root_mutex);
9054        spin_lock(&fs_info->delalloc_root_lock);
9055        list_splice_init(&fs_info->delalloc_roots, &splice);
9056        while (!list_empty(&splice) && nr) {
9057                root = list_first_entry(&splice, struct btrfs_root,
9058                                        delalloc_root);
9059                root = btrfs_grab_fs_root(root);
9060                BUG_ON(!root);
9061                list_move_tail(&root->delalloc_root,
9062                               &fs_info->delalloc_roots);
9063                spin_unlock(&fs_info->delalloc_root_lock);
9064
9065                ret = __start_delalloc_inodes(root, delay_iput, nr);
9066                btrfs_put_fs_root(root);
9067                if (ret < 0)
9068                        goto out;
9069
9070                if (nr != -1) {
9071                        nr -= ret;
9072                        WARN_ON(nr < 0);
9073                }
9074                spin_lock(&fs_info->delalloc_root_lock);
9075        }
9076        spin_unlock(&fs_info->delalloc_root_lock);
9077
9078        ret = 0;
9079        atomic_inc(&fs_info->async_submit_draining);
9080        while (atomic_read(&fs_info->nr_async_submits) ||
9081              atomic_read(&fs_info->async_delalloc_pages)) {
9082                wait_event(fs_info->async_submit_wait,
9083                   (atomic_read(&fs_info->nr_async_submits) == 0 &&
9084                    atomic_read(&fs_info->async_delalloc_pages) == 0));
9085        }
9086        atomic_dec(&fs_info->async_submit_draining);
9087out:
9088        if (!list_empty_careful(&splice)) {
9089                spin_lock(&fs_info->delalloc_root_lock);
9090                list_splice_tail(&splice, &fs_info->delalloc_roots);
9091                spin_unlock(&fs_info->delalloc_root_lock);
9092        }
9093        mutex_unlock(&fs_info->delalloc_root_mutex);
9094        return ret;
9095}
9096
9097static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
9098                         const char *symname)
9099{
9100        struct btrfs_trans_handle *trans;
9101        struct btrfs_root *root = BTRFS_I(dir)->root;
9102        struct btrfs_path *path;
9103        struct btrfs_key key;
9104        struct inode *inode = NULL;
9105        int err;
9106        int drop_inode = 0;
9107        u64 objectid;
9108        u64 index = 0;
9109        int name_len;
9110        int datasize;
9111        unsigned long ptr;
9112        struct btrfs_file_extent_item *ei;
9113        struct extent_buffer *leaf;
9114
9115        name_len = strlen(symname);
9116        if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(root))
9117                return -ENAMETOOLONG;
9118
9119        /*
9120         * 2 items for inode item and ref
9121         * 2 items for dir items
9122         * 1 item for xattr if selinux is on
9123         */
9124        trans = btrfs_start_transaction(root, 5);
9125        if (IS_ERR(trans))
9126                return PTR_ERR(trans);
9127
9128        err = btrfs_find_free_ino(root, &objectid);
9129        if (err)
9130                goto out_unlock;
9131
9132        inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
9133                                dentry->d_name.len, btrfs_ino(dir), objectid,
9134                                S_IFLNK|S_IRWXUGO, &index);
9135        if (IS_ERR(inode)) {
9136                err = PTR_ERR(inode);
9137                goto out_unlock;
9138        }
9139
9140        /*
9141        * If the active LSM wants to access the inode during
9142        * d_instantiate it needs these. Smack checks to see
9143        * if the filesystem supports xattrs by looking at the
9144        * ops vector.
9145        */
9146        inode->i_fop = &btrfs_file_operations;
9147        inode->i_op = &btrfs_file_inode_operations;
9148        inode->i_mapping->a_ops = &btrfs_aops;
9149        inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
9150        BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
9151
9152        err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
9153        if (err)
9154                goto out_unlock_inode;
9155
9156        err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
9157        if (err)
9158                goto out_unlock_inode;
9159
9160        path = btrfs_alloc_path();
9161        if (!path) {
9162                err = -ENOMEM;
9163                goto out_unlock_inode;
9164        }
9165        key.objectid = btrfs_ino(inode);
9166        key.offset = 0;
9167        key.type = BTRFS_EXTENT_DATA_KEY;
9168        datasize = btrfs_file_extent_calc_inline_size(name_len);
9169        err = btrfs_insert_empty_item(trans, root, path, &key,
9170                                      datasize);
9171        if (err) {
9172                btrfs_free_path(path);
9173                goto out_unlock_inode;
9174        }
9175        leaf = path->nodes[0];
9176        ei = btrfs_item_ptr(leaf, path->slots[0],
9177                            struct btrfs_file_extent_item);
9178        btrfs_set_file_extent_generation(leaf, ei, trans->transid);
9179        btrfs_set_file_extent_type(leaf, ei,
9180                                   BTRFS_FILE_EXTENT_INLINE);
9181        btrfs_set_file_extent_encryption(leaf, ei, 0);
9182        btrfs_set_file_extent_compression(leaf, ei, 0);
9183        btrfs_set_file_extent_other_encoding(leaf, ei, 0);
9184        btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
9185
9186        ptr = btrfs_file_extent_inline_start(ei);
9187        write_extent_buffer(leaf, symname, ptr, name_len);
9188        btrfs_mark_buffer_dirty(leaf);
9189        btrfs_free_path(path);
9190
9191        inode->i_op = &btrfs_symlink_inode_operations;
9192        inode->i_mapping->a_ops = &btrfs_symlink_aops;
9193        inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
9194        inode_set_bytes(inode, name_len);
9195        btrfs_i_size_write(inode, name_len);
9196        err = btrfs_update_inode(trans, root, inode);
9197        if (err) {
9198                drop_inode = 1;
9199                goto out_unlock_inode;
9200        }
9201
9202        unlock_new_inode(inode);
9203        d_instantiate(dentry, inode);
9204
9205out_unlock:
9206        btrfs_end_transaction(trans, root);
9207        if (drop_inode) {
9208                inode_dec_link_count(inode);
9209                iput(inode);
9210        }
9211        btrfs_btree_balance_dirty(root);
9212        return err;
9213
9214out_unlock_inode:
9215        drop_inode = 1;
9216        unlock_new_inode(inode);
9217        goto out_unlock;
9218}
9219
9220static int __btrfs_prealloc_file_range(struct inode *inode, int mode,
9221                                       u64 start, u64 num_bytes, u64 min_size,
9222                                       loff_t actual_len, u64 *alloc_hint,
9223                                       struct btrfs_trans_handle *trans)
9224{
9225        struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
9226        struct extent_map *em;
9227        struct btrfs_root *root = BTRFS_I(inode)->root;
9228        struct btrfs_key ins;
9229        u64 cur_offset = start;
9230        u64 i_size;
9231        u64 cur_bytes;
9232        int ret = 0;
9233        bool own_trans = true;
9234
9235        if (trans)
9236                own_trans = false;
9237        while (num_bytes > 0) {
9238                if (own_trans) {
9239                        trans = btrfs_start_transaction(root, 3);
9240                        if (IS_ERR(trans)) {
9241                                ret = PTR_ERR(trans);
9242                                break;
9243                        }
9244                }
9245
9246                cur_bytes = min(num_bytes, 256ULL * 1024 * 1024);
9247                cur_bytes = max(cur_bytes, min_size);
9248                ret = btrfs_reserve_extent(root, cur_bytes, min_size, 0,
9249                                           *alloc_hint, &ins, 1, 0);
9250                if (ret) {
9251                        if (own_trans)
9252                                btrfs_end_transaction(trans, root);
9253                        break;
9254                }
9255
9256                ret = insert_reserved_file_extent(trans, inode,
9257                                                  cur_offset, ins.objectid,
9258                                                  ins.offset, ins.offset,
9259                                                  ins.offset, 0, 0, 0,
9260                                                  BTRFS_FILE_EXTENT_PREALLOC);
9261                if (ret) {
9262                        btrfs_free_reserved_extent(root, ins.objectid,
9263                                                   ins.offset, 0);
9264                        btrfs_abort_transaction(trans, root, ret);
9265                        if (own_trans)
9266                                btrfs_end_transaction(trans, root);
9267                        break;
9268                }
9269                btrfs_drop_extent_cache(inode, cur_offset,
9270                                        cur_offset + ins.offset -1, 0);
9271
9272                em = alloc_extent_map();
9273                if (!em) {
9274                        set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
9275                                &BTRFS_I(inode)->runtime_flags);
9276                        goto next;
9277                }
9278
9279                em->start = cur_offset;
9280                em->orig_start = cur_offset;
9281                em->len = ins.offset;
9282                em->block_start = ins.objectid;
9283                em->block_len = ins.offset;
9284                em->orig_block_len = ins.offset;
9285                em->ram_bytes = ins.offset;
9286                em->bdev = root->fs_info->fs_devices->latest_bdev;
9287                set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
9288                em->generation = trans->transid;
9289
9290                while (1) {
9291                        write_lock(&em_tree->lock);
9292                        ret = add_extent_mapping(em_tree, em, 1);
9293                        write_unlock(&em_tree->lock);
9294                        if (ret != -EEXIST)
9295                                break;
9296                        btrfs_drop_extent_cache(inode, cur_offset,
9297                                                cur_offset + ins.offset - 1,
9298                                                0);
9299                }
9300                free_extent_map(em);
9301next:
9302                num_bytes -= ins.offset;
9303                cur_offset += ins.offset;
9304                *alloc_hint = ins.objectid + ins.offset;
9305
9306                inode_inc_iversion(inode);
9307                inode->i_ctime = CURRENT_TIME;
9308                BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
9309                if (!(mode & FALLOC_FL_KEEP_SIZE) &&
9310                    (actual_len > inode->i_size) &&
9311                    (cur_offset > inode->i_size)) {
9312                        if (cur_offset > actual_len)
9313                                i_size = actual_len;
9314                        else
9315                                i_size = cur_offset;
9316                        i_size_write(inode, i_size);
9317                        btrfs_ordered_update_i_size(inode, i_size, NULL);
9318                }
9319
9320                ret = btrfs_update_inode(trans, root, inode);
9321
9322                if (ret) {
9323                        btrfs_abort_transaction(trans, root, ret);
9324                        if (own_trans)
9325                                btrfs_end_transaction(trans, root);
9326                        break;
9327                }
9328
9329                if (own_trans)
9330                        btrfs_end_transaction(trans, root);
9331        }
9332        return ret;
9333}
9334
9335int btrfs_prealloc_file_range(struct inode *inode, int mode,
9336                              u64 start, u64 num_bytes, u64 min_size,
9337                              loff_t actual_len, u64 *alloc_hint)
9338{
9339        return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
9340                                           min_size, actual_len, alloc_hint,
9341                                           NULL);
9342}
9343
9344int btrfs_prealloc_file_range_trans(struct inode *inode,
9345                                    struct btrfs_trans_handle *trans, int mode,
9346                                    u64 start, u64 num_bytes, u64 min_size,
9347                                    loff_t actual_len, u64 *alloc_hint)
9348{
9349        return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
9350                                           min_size, actual_len, alloc_hint, trans);
9351}
9352
9353static int btrfs_set_page_dirty(struct page *page)
9354{
9355        return __set_page_dirty_nobuffers(page);
9356}
9357
9358static int btrfs_permission(struct inode *inode, int mask)
9359{
9360        struct btrfs_root *root = BTRFS_I(inode)->root;
9361        umode_t mode = inode->i_mode;
9362
9363        if (mask & MAY_WRITE &&
9364            (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) {
9365                if (btrfs_root_readonly(root))
9366                        return -EROFS;
9367                if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY)
9368                        return -EACCES;
9369        }
9370        return generic_permission(inode, mask);
9371}
9372
9373static int btrfs_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
9374{
9375        struct btrfs_trans_handle *trans;
9376        struct btrfs_root *root = BTRFS_I(dir)->root;
9377        struct inode *inode = NULL;
9378        u64 objectid;
9379        u64 index;
9380        int ret = 0;
9381
9382        /*
9383         * 5 units required for adding orphan entry
9384         */
9385        trans = btrfs_start_transaction(root, 5);
9386        if (IS_ERR(trans))
9387                return PTR_ERR(trans);
9388
9389        ret = btrfs_find_free_ino(root, &objectid);
9390        if (ret)
9391                goto out;
9392
9393        inode = btrfs_new_inode(trans, root, dir, NULL, 0,
9394                                btrfs_ino(dir), objectid, mode, &index);
9395        if (IS_ERR(inode)) {
9396                ret = PTR_ERR(inode);
9397                inode = NULL;
9398                goto out;
9399        }
9400
9401        inode->i_fop = &btrfs_file_operations;
9402        inode->i_op = &btrfs_file_inode_operations;
9403
9404        inode->i_mapping->a_ops = &btrfs_aops;
9405        inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
9406        BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
9407
9408        ret = btrfs_init_inode_security(trans, inode, dir, NULL);
9409        if (ret)
9410                goto out_inode;
9411
9412        ret = btrfs_update_inode(trans, root, inode);
9413        if (ret)
9414                goto out_inode;
9415        ret = btrfs_orphan_add(trans, inode);
9416        if (ret)
9417                goto out_inode;
9418
9419        /*
9420         * We set number of links to 0 in btrfs_new_inode(), and here we set
9421         * it to 1 because d_tmpfile() will issue a warning if the count is 0,
9422         * through:
9423         *
9424         *    d_tmpfile() -> inode_dec_link_count() -> drop_nlink()
9425         */
9426        set_nlink(inode, 1);
9427        unlock_new_inode(inode);
9428        d_tmpfile(dentry, inode);
9429        mark_inode_dirty(inode);
9430
9431out:
9432        btrfs_end_transaction(trans, root);
9433        if (ret)
9434                iput(inode);
9435        btrfs_balance_delayed_items(root);
9436        btrfs_btree_balance_dirty(root);
9437        return ret;
9438
9439out_inode:
9440        unlock_new_inode(inode);
9441        goto out;
9442
9443}
9444
9445static const struct inode_operations btrfs_dir_inode_operations = {
9446        .getattr        = btrfs_getattr,
9447        .lookup         = btrfs_lookup,
9448        .create         = btrfs_create,
9449        .unlink         = btrfs_unlink,
9450        .link           = btrfs_link,
9451        .mkdir          = btrfs_mkdir,
9452        .rmdir          = btrfs_rmdir,
9453        .rename2        = btrfs_rename2,
9454        .symlink        = btrfs_symlink,
9455        .setattr        = btrfs_setattr,
9456        .mknod          = btrfs_mknod,
9457        .setxattr       = btrfs_setxattr,
9458        .getxattr       = btrfs_getxattr,
9459        .listxattr      = btrfs_listxattr,
9460        .removexattr    = btrfs_removexattr,
9461        .permission     = btrfs_permission,
9462        .get_acl        = btrfs_get_acl,
9463        .set_acl        = btrfs_set_acl,
9464        .update_time    = btrfs_update_time,
9465        .tmpfile        = btrfs_tmpfile,
9466};
9467static const struct inode_operations btrfs_dir_ro_inode_operations = {
9468        .lookup         = btrfs_lookup,
9469        .permission     = btrfs_permission,
9470        .get_acl        = btrfs_get_acl,
9471        .set_acl        = btrfs_set_acl,
9472        .update_time    = btrfs_update_time,
9473};
9474
9475static const struct file_operations btrfs_dir_file_operations = {
9476        .llseek         = generic_file_llseek,
9477        .read           = generic_read_dir,
9478        .iterate        = btrfs_real_readdir,
9479        .unlocked_ioctl = btrfs_ioctl,
9480#ifdef CONFIG_COMPAT
9481        .compat_ioctl   = btrfs_ioctl,
9482#endif
9483        .release        = btrfs_release_file,
9484        .fsync          = btrfs_sync_file,
9485};
9486
9487static struct extent_io_ops btrfs_extent_io_ops = {
9488        .fill_delalloc = run_delalloc_range,
9489        .submit_bio_hook = btrfs_submit_bio_hook,
9490        .merge_bio_hook = btrfs_merge_bio_hook,
9491        .readpage_end_io_hook = btrfs_readpage_end_io_hook,
9492        .writepage_end_io_hook = btrfs_writepage_end_io_hook,
9493        .writepage_start_hook = btrfs_writepage_start_hook,
9494        .set_bit_hook = btrfs_set_bit_hook,
9495        .clear_bit_hook = btrfs_clear_bit_hook,
9496        .merge_extent_hook = btrfs_merge_extent_hook,
9497        .split_extent_hook = btrfs_split_extent_hook,
9498};
9499
9500/*
9501 * btrfs doesn't support the bmap operation because swapfiles
9502 * use bmap to make a mapping of extents in the file.  They assume
9503 * these extents won't change over the life of the file and they
9504 * use the bmap result to do IO directly to the drive.
9505 *
9506 * the btrfs bmap call would return logical addresses that aren't
9507 * suitable for IO and they also will change frequently as COW
9508 * operations happen.  So, swapfile + btrfs == corruption.
9509 *
9510 * For now we're avoiding this by dropping bmap.
9511 */
9512static const struct address_space_operations btrfs_aops = {
9513        .readpage       = btrfs_readpage,
9514        .writepage      = btrfs_writepage,
9515        .writepages     = btrfs_writepages,
9516        .readpages      = btrfs_readpages,
9517        .direct_IO      = btrfs_direct_IO,
9518        .invalidatepage = btrfs_invalidatepage,
9519        .releasepage    = btrfs_releasepage,
9520        .set_page_dirty = btrfs_set_page_dirty,
9521        .error_remove_page = generic_error_remove_page,
9522};
9523
9524static const struct address_space_operations btrfs_symlink_aops = {
9525        .readpage       = btrfs_readpage,
9526        .writepage      = btrfs_writepage,
9527        .invalidatepage = btrfs_invalidatepage,
9528        .releasepage    = btrfs_releasepage,
9529};
9530
9531static const struct inode_operations btrfs_file_inode_operations = {
9532        .getattr        = btrfs_getattr,
9533        .setattr        = btrfs_setattr,
9534        .setxattr       = btrfs_setxattr,
9535        .getxattr       = btrfs_getxattr,
9536        .listxattr      = btrfs_listxattr,
9537        .removexattr    = btrfs_removexattr,
9538        .permission     = btrfs_permission,
9539        .fiemap         = btrfs_fiemap,
9540        .get_acl        = btrfs_get_acl,
9541        .set_acl        = btrfs_set_acl,
9542        .update_time    = btrfs_update_time,
9543};
9544static const struct inode_operations btrfs_special_inode_operations = {
9545        .getattr        = btrfs_getattr,
9546        .setattr        = btrfs_setattr,
9547        .permission     = btrfs_permission,
9548        .setxattr       = btrfs_setxattr,
9549        .getxattr       = btrfs_getxattr,
9550        .listxattr      = btrfs_listxattr,
9551        .removexattr    = btrfs_removexattr,
9552        .get_acl        = btrfs_get_acl,
9553        .set_acl        = btrfs_set_acl,
9554        .update_time    = btrfs_update_time,
9555};
9556static const struct inode_operations btrfs_symlink_inode_operations = {
9557        .readlink       = generic_readlink,
9558        .follow_link    = page_follow_link_light,
9559        .put_link       = page_put_link,
9560        .getattr        = btrfs_getattr,
9561        .setattr        = btrfs_setattr,
9562        .permission     = btrfs_permission,
9563        .setxattr       = btrfs_setxattr,
9564        .getxattr       = btrfs_getxattr,
9565        .listxattr      = btrfs_listxattr,
9566        .removexattr    = btrfs_removexattr,
9567        .update_time    = btrfs_update_time,
9568};
9569
9570const struct dentry_operations btrfs_dentry_operations = {
9571        .d_delete       = btrfs_dentry_delete,
9572        .d_release      = btrfs_dentry_release,
9573};
9574