linux/fs/f2fs/segment.c
<<
>>
Prefs
   1/*
   2 * fs/f2fs/segment.c
   3 *
   4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
   5 *             http://www.samsung.com/
   6 *
   7 * This program is free software; you can redistribute it and/or modify
   8 * it under the terms of the GNU General Public License version 2 as
   9 * published by the Free Software Foundation.
  10 */
  11#include <linux/fs.h>
  12#include <linux/f2fs_fs.h>
  13#include <linux/bio.h>
  14#include <linux/blkdev.h>
  15#include <linux/prefetch.h>
  16#include <linux/kthread.h>
  17#include <linux/vmalloc.h>
  18#include <linux/swap.h>
  19
  20#include "f2fs.h"
  21#include "segment.h"
  22#include "node.h"
  23#include <trace/events/f2fs.h>
  24
  25#define __reverse_ffz(x) __reverse_ffs(~(x))
  26
  27static struct kmem_cache *discard_entry_slab;
  28static struct kmem_cache *sit_entry_set_slab;
  29static struct kmem_cache *inmem_entry_slab;
  30
  31/*
  32 * __reverse_ffs is copied from include/asm-generic/bitops/__ffs.h since
  33 * MSB and LSB are reversed in a byte by f2fs_set_bit.
  34 */
  35static inline unsigned long __reverse_ffs(unsigned long word)
  36{
  37        int num = 0;
  38
  39#if BITS_PER_LONG == 64
  40        if ((word & 0xffffffff) == 0) {
  41                num += 32;
  42                word >>= 32;
  43        }
  44#endif
  45        if ((word & 0xffff) == 0) {
  46                num += 16;
  47                word >>= 16;
  48        }
  49        if ((word & 0xff) == 0) {
  50                num += 8;
  51                word >>= 8;
  52        }
  53        if ((word & 0xf0) == 0)
  54                num += 4;
  55        else
  56                word >>= 4;
  57        if ((word & 0xc) == 0)
  58                num += 2;
  59        else
  60                word >>= 2;
  61        if ((word & 0x2) == 0)
  62                num += 1;
  63        return num;
  64}
  65
  66/*
  67 * __find_rev_next(_zero)_bit is copied from lib/find_next_bit.c because
  68 * f2fs_set_bit makes MSB and LSB reversed in a byte.
  69 * Example:
  70 *                             LSB <--> MSB
  71 *   f2fs_set_bit(0, bitmap) => 0000 0001
  72 *   f2fs_set_bit(7, bitmap) => 1000 0000
  73 */
  74static unsigned long __find_rev_next_bit(const unsigned long *addr,
  75                        unsigned long size, unsigned long offset)
  76{
  77        const unsigned long *p = addr + BIT_WORD(offset);
  78        unsigned long result = offset & ~(BITS_PER_LONG - 1);
  79        unsigned long tmp;
  80        unsigned long mask, submask;
  81        unsigned long quot, rest;
  82
  83        if (offset >= size)
  84                return size;
  85
  86        size -= result;
  87        offset %= BITS_PER_LONG;
  88        if (!offset)
  89                goto aligned;
  90
  91        tmp = *(p++);
  92        quot = (offset >> 3) << 3;
  93        rest = offset & 0x7;
  94        mask = ~0UL << quot;
  95        submask = (unsigned char)(0xff << rest) >> rest;
  96        submask <<= quot;
  97        mask &= submask;
  98        tmp &= mask;
  99        if (size < BITS_PER_LONG)
 100                goto found_first;
 101        if (tmp)
 102                goto found_middle;
 103
 104        size -= BITS_PER_LONG;
 105        result += BITS_PER_LONG;
 106aligned:
 107        while (size & ~(BITS_PER_LONG-1)) {
 108                tmp = *(p++);
 109                if (tmp)
 110                        goto found_middle;
 111                result += BITS_PER_LONG;
 112                size -= BITS_PER_LONG;
 113        }
 114        if (!size)
 115                return result;
 116        tmp = *p;
 117found_first:
 118        tmp &= (~0UL >> (BITS_PER_LONG - size));
 119        if (tmp == 0UL)         /* Are any bits set? */
 120                return result + size;   /* Nope. */
 121found_middle:
 122        return result + __reverse_ffs(tmp);
 123}
 124
 125static unsigned long __find_rev_next_zero_bit(const unsigned long *addr,
 126                        unsigned long size, unsigned long offset)
 127{
 128        const unsigned long *p = addr + BIT_WORD(offset);
 129        unsigned long result = offset & ~(BITS_PER_LONG - 1);
 130        unsigned long tmp;
 131        unsigned long mask, submask;
 132        unsigned long quot, rest;
 133
 134        if (offset >= size)
 135                return size;
 136
 137        size -= result;
 138        offset %= BITS_PER_LONG;
 139        if (!offset)
 140                goto aligned;
 141
 142        tmp = *(p++);
 143        quot = (offset >> 3) << 3;
 144        rest = offset & 0x7;
 145        mask = ~(~0UL << quot);
 146        submask = (unsigned char)~((unsigned char)(0xff << rest) >> rest);
 147        submask <<= quot;
 148        mask += submask;
 149        tmp |= mask;
 150        if (size < BITS_PER_LONG)
 151                goto found_first;
 152        if (~tmp)
 153                goto found_middle;
 154
 155        size -= BITS_PER_LONG;
 156        result += BITS_PER_LONG;
 157aligned:
 158        while (size & ~(BITS_PER_LONG - 1)) {
 159                tmp = *(p++);
 160                if (~tmp)
 161                        goto found_middle;
 162                result += BITS_PER_LONG;
 163                size -= BITS_PER_LONG;
 164        }
 165        if (!size)
 166                return result;
 167        tmp = *p;
 168
 169found_first:
 170        tmp |= ~0UL << size;
 171        if (tmp == ~0UL)        /* Are any bits zero? */
 172                return result + size;   /* Nope. */
 173found_middle:
 174        return result + __reverse_ffz(tmp);
 175}
 176
 177void register_inmem_page(struct inode *inode, struct page *page)
 178{
 179        struct f2fs_inode_info *fi = F2FS_I(inode);
 180        struct inmem_pages *new;
 181
 182        new = f2fs_kmem_cache_alloc(inmem_entry_slab, GFP_NOFS);
 183
 184        /* add atomic page indices to the list */
 185        new->page = page;
 186        INIT_LIST_HEAD(&new->list);
 187
 188        /* increase reference count with clean state */
 189        mutex_lock(&fi->inmem_lock);
 190        get_page(page);
 191        list_add_tail(&new->list, &fi->inmem_pages);
 192        mutex_unlock(&fi->inmem_lock);
 193}
 194
 195void commit_inmem_pages(struct inode *inode, bool abort)
 196{
 197        struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
 198        struct f2fs_inode_info *fi = F2FS_I(inode);
 199        struct inmem_pages *cur, *tmp;
 200        bool submit_bio = false;
 201        struct f2fs_io_info fio = {
 202                .type = DATA,
 203                .rw = WRITE_SYNC,
 204        };
 205
 206        f2fs_balance_fs(sbi);
 207        f2fs_lock_op(sbi);
 208
 209        mutex_lock(&fi->inmem_lock);
 210        list_for_each_entry_safe(cur, tmp, &fi->inmem_pages, list) {
 211                lock_page(cur->page);
 212                if (!abort && cur->page->mapping == inode->i_mapping) {
 213                        f2fs_wait_on_page_writeback(cur->page, DATA);
 214                        if (clear_page_dirty_for_io(cur->page))
 215                                inode_dec_dirty_pages(inode);
 216                        do_write_data_page(cur->page, &fio);
 217                        submit_bio = true;
 218                }
 219                f2fs_put_page(cur->page, 1);
 220                list_del(&cur->list);
 221                kmem_cache_free(inmem_entry_slab, cur);
 222        }
 223        if (submit_bio)
 224                f2fs_submit_merged_bio(sbi, DATA, WRITE);
 225        mutex_unlock(&fi->inmem_lock);
 226
 227        filemap_fdatawait_range(inode->i_mapping, 0, LLONG_MAX);
 228        f2fs_unlock_op(sbi);
 229}
 230
 231/*
 232 * This function balances dirty node and dentry pages.
 233 * In addition, it controls garbage collection.
 234 */
 235void f2fs_balance_fs(struct f2fs_sb_info *sbi)
 236{
 237        /*
 238         * We should do GC or end up with checkpoint, if there are so many dirty
 239         * dir/node pages without enough free segments.
 240         */
 241        if (has_not_enough_free_secs(sbi, 0)) {
 242                mutex_lock(&sbi->gc_mutex);
 243                f2fs_gc(sbi);
 244        }
 245}
 246
 247void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi)
 248{
 249        /* check the # of cached NAT entries and prefree segments */
 250        if (try_to_free_nats(sbi, NAT_ENTRY_PER_BLOCK) ||
 251                                excess_prefree_segs(sbi))
 252                f2fs_sync_fs(sbi->sb, true);
 253}
 254
 255static int issue_flush_thread(void *data)
 256{
 257        struct f2fs_sb_info *sbi = data;
 258        struct flush_cmd_control *fcc = SM_I(sbi)->cmd_control_info;
 259        wait_queue_head_t *q = &fcc->flush_wait_queue;
 260repeat:
 261        if (kthread_should_stop())
 262                return 0;
 263
 264        if (!llist_empty(&fcc->issue_list)) {
 265                struct bio *bio = bio_alloc(GFP_NOIO, 0);
 266                struct flush_cmd *cmd, *next;
 267                int ret;
 268
 269                fcc->dispatch_list = llist_del_all(&fcc->issue_list);
 270                fcc->dispatch_list = llist_reverse_order(fcc->dispatch_list);
 271
 272                bio->bi_bdev = sbi->sb->s_bdev;
 273                ret = submit_bio_wait(WRITE_FLUSH, bio);
 274
 275                llist_for_each_entry_safe(cmd, next,
 276                                          fcc->dispatch_list, llnode) {
 277                        cmd->ret = ret;
 278                        complete(&cmd->wait);
 279                }
 280                bio_put(bio);
 281                fcc->dispatch_list = NULL;
 282        }
 283
 284        wait_event_interruptible(*q,
 285                kthread_should_stop() || !llist_empty(&fcc->issue_list));
 286        goto repeat;
 287}
 288
 289int f2fs_issue_flush(struct f2fs_sb_info *sbi)
 290{
 291        struct flush_cmd_control *fcc = SM_I(sbi)->cmd_control_info;
 292        struct flush_cmd cmd;
 293
 294        trace_f2fs_issue_flush(sbi->sb, test_opt(sbi, NOBARRIER),
 295                                        test_opt(sbi, FLUSH_MERGE));
 296
 297        if (test_opt(sbi, NOBARRIER))
 298                return 0;
 299
 300        if (!test_opt(sbi, FLUSH_MERGE))
 301                return blkdev_issue_flush(sbi->sb->s_bdev, GFP_KERNEL, NULL);
 302
 303        init_completion(&cmd.wait);
 304
 305        llist_add(&cmd.llnode, &fcc->issue_list);
 306
 307        if (!fcc->dispatch_list)
 308                wake_up(&fcc->flush_wait_queue);
 309
 310        wait_for_completion(&cmd.wait);
 311
 312        return cmd.ret;
 313}
 314
 315int create_flush_cmd_control(struct f2fs_sb_info *sbi)
 316{
 317        dev_t dev = sbi->sb->s_bdev->bd_dev;
 318        struct flush_cmd_control *fcc;
 319        int err = 0;
 320
 321        fcc = kzalloc(sizeof(struct flush_cmd_control), GFP_KERNEL);
 322        if (!fcc)
 323                return -ENOMEM;
 324        init_waitqueue_head(&fcc->flush_wait_queue);
 325        init_llist_head(&fcc->issue_list);
 326        SM_I(sbi)->cmd_control_info = fcc;
 327        fcc->f2fs_issue_flush = kthread_run(issue_flush_thread, sbi,
 328                                "f2fs_flush-%u:%u", MAJOR(dev), MINOR(dev));
 329        if (IS_ERR(fcc->f2fs_issue_flush)) {
 330                err = PTR_ERR(fcc->f2fs_issue_flush);
 331                kfree(fcc);
 332                SM_I(sbi)->cmd_control_info = NULL;
 333                return err;
 334        }
 335
 336        return err;
 337}
 338
 339void destroy_flush_cmd_control(struct f2fs_sb_info *sbi)
 340{
 341        struct flush_cmd_control *fcc = SM_I(sbi)->cmd_control_info;
 342
 343        if (fcc && fcc->f2fs_issue_flush)
 344                kthread_stop(fcc->f2fs_issue_flush);
 345        kfree(fcc);
 346        SM_I(sbi)->cmd_control_info = NULL;
 347}
 348
 349static void __locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
 350                enum dirty_type dirty_type)
 351{
 352        struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
 353
 354        /* need not be added */
 355        if (IS_CURSEG(sbi, segno))
 356                return;
 357
 358        if (!test_and_set_bit(segno, dirty_i->dirty_segmap[dirty_type]))
 359                dirty_i->nr_dirty[dirty_type]++;
 360
 361        if (dirty_type == DIRTY) {
 362                struct seg_entry *sentry = get_seg_entry(sbi, segno);
 363                enum dirty_type t = sentry->type;
 364
 365                if (unlikely(t >= DIRTY)) {
 366                        f2fs_bug_on(sbi, 1);
 367                        return;
 368                }
 369                if (!test_and_set_bit(segno, dirty_i->dirty_segmap[t]))
 370                        dirty_i->nr_dirty[t]++;
 371        }
 372}
 373
 374static void __remove_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
 375                enum dirty_type dirty_type)
 376{
 377        struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
 378
 379        if (test_and_clear_bit(segno, dirty_i->dirty_segmap[dirty_type]))
 380                dirty_i->nr_dirty[dirty_type]--;
 381
 382        if (dirty_type == DIRTY) {
 383                struct seg_entry *sentry = get_seg_entry(sbi, segno);
 384                enum dirty_type t = sentry->type;
 385
 386                if (test_and_clear_bit(segno, dirty_i->dirty_segmap[t]))
 387                        dirty_i->nr_dirty[t]--;
 388
 389                if (get_valid_blocks(sbi, segno, sbi->segs_per_sec) == 0)
 390                        clear_bit(GET_SECNO(sbi, segno),
 391                                                dirty_i->victim_secmap);
 392        }
 393}
 394
 395/*
 396 * Should not occur error such as -ENOMEM.
 397 * Adding dirty entry into seglist is not critical operation.
 398 * If a given segment is one of current working segments, it won't be added.
 399 */
 400static void locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno)
 401{
 402        struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
 403        unsigned short valid_blocks;
 404
 405        if (segno == NULL_SEGNO || IS_CURSEG(sbi, segno))
 406                return;
 407
 408        mutex_lock(&dirty_i->seglist_lock);
 409
 410        valid_blocks = get_valid_blocks(sbi, segno, 0);
 411
 412        if (valid_blocks == 0) {
 413                __locate_dirty_segment(sbi, segno, PRE);
 414                __remove_dirty_segment(sbi, segno, DIRTY);
 415        } else if (valid_blocks < sbi->blocks_per_seg) {
 416                __locate_dirty_segment(sbi, segno, DIRTY);
 417        } else {
 418                /* Recovery routine with SSR needs this */
 419                __remove_dirty_segment(sbi, segno, DIRTY);
 420        }
 421
 422        mutex_unlock(&dirty_i->seglist_lock);
 423}
 424
 425static int f2fs_issue_discard(struct f2fs_sb_info *sbi,
 426                                block_t blkstart, block_t blklen)
 427{
 428        sector_t start = SECTOR_FROM_BLOCK(blkstart);
 429        sector_t len = SECTOR_FROM_BLOCK(blklen);
 430        trace_f2fs_issue_discard(sbi->sb, blkstart, blklen);
 431        return blkdev_issue_discard(sbi->sb->s_bdev, start, len, GFP_NOFS, 0);
 432}
 433
 434void discard_next_dnode(struct f2fs_sb_info *sbi, block_t blkaddr)
 435{
 436        if (f2fs_issue_discard(sbi, blkaddr, 1)) {
 437                struct page *page = grab_meta_page(sbi, blkaddr);
 438                /* zero-filled page */
 439                set_page_dirty(page);
 440                f2fs_put_page(page, 1);
 441        }
 442}
 443
 444static void add_discard_addrs(struct f2fs_sb_info *sbi, struct cp_control *cpc)
 445{
 446        struct list_head *head = &SM_I(sbi)->discard_list;
 447        struct discard_entry *new;
 448        int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
 449        int max_blocks = sbi->blocks_per_seg;
 450        struct seg_entry *se = get_seg_entry(sbi, cpc->trim_start);
 451        unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
 452        unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
 453        unsigned long dmap[entries];
 454        unsigned int start = 0, end = -1;
 455        bool force = (cpc->reason == CP_DISCARD);
 456        int i;
 457
 458        if (!force && !test_opt(sbi, DISCARD))
 459                return;
 460
 461        if (force && !se->valid_blocks) {
 462                struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
 463                /*
 464                 * if this segment is registered in the prefree list, then
 465                 * we should skip adding a discard candidate, and let the
 466                 * checkpoint do that later.
 467                 */
 468                mutex_lock(&dirty_i->seglist_lock);
 469                if (test_bit(cpc->trim_start, dirty_i->dirty_segmap[PRE])) {
 470                        mutex_unlock(&dirty_i->seglist_lock);
 471                        cpc->trimmed += sbi->blocks_per_seg;
 472                        return;
 473                }
 474                mutex_unlock(&dirty_i->seglist_lock);
 475
 476                new = f2fs_kmem_cache_alloc(discard_entry_slab, GFP_NOFS);
 477                INIT_LIST_HEAD(&new->list);
 478                new->blkaddr = START_BLOCK(sbi, cpc->trim_start);
 479                new->len = sbi->blocks_per_seg;
 480                list_add_tail(&new->list, head);
 481                SM_I(sbi)->nr_discards += sbi->blocks_per_seg;
 482                cpc->trimmed += sbi->blocks_per_seg;
 483                return;
 484        }
 485
 486        /* zero block will be discarded through the prefree list */
 487        if (!se->valid_blocks || se->valid_blocks == max_blocks)
 488                return;
 489
 490        /* SIT_VBLOCK_MAP_SIZE should be multiple of sizeof(unsigned long) */
 491        for (i = 0; i < entries; i++)
 492                dmap[i] = (cur_map[i] ^ ckpt_map[i]) & ckpt_map[i];
 493
 494        while (force || SM_I(sbi)->nr_discards <= SM_I(sbi)->max_discards) {
 495                start = __find_rev_next_bit(dmap, max_blocks, end + 1);
 496                if (start >= max_blocks)
 497                        break;
 498
 499                end = __find_rev_next_zero_bit(dmap, max_blocks, start + 1);
 500
 501                if (end - start < cpc->trim_minlen)
 502                        continue;
 503
 504                new = f2fs_kmem_cache_alloc(discard_entry_slab, GFP_NOFS);
 505                INIT_LIST_HEAD(&new->list);
 506                new->blkaddr = START_BLOCK(sbi, cpc->trim_start) + start;
 507                new->len = end - start;
 508                cpc->trimmed += end - start;
 509
 510                list_add_tail(&new->list, head);
 511                SM_I(sbi)->nr_discards += end - start;
 512        }
 513}
 514
 515void release_discard_addrs(struct f2fs_sb_info *sbi)
 516{
 517        struct list_head *head = &(SM_I(sbi)->discard_list);
 518        struct discard_entry *entry, *this;
 519
 520        /* drop caches */
 521        list_for_each_entry_safe(entry, this, head, list) {
 522                list_del(&entry->list);
 523                kmem_cache_free(discard_entry_slab, entry);
 524        }
 525}
 526
 527/*
 528 * Should call clear_prefree_segments after checkpoint is done.
 529 */
 530static void set_prefree_as_free_segments(struct f2fs_sb_info *sbi)
 531{
 532        struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
 533        unsigned int segno;
 534
 535        mutex_lock(&dirty_i->seglist_lock);
 536        for_each_set_bit(segno, dirty_i->dirty_segmap[PRE], MAIN_SEGS(sbi))
 537                __set_test_and_free(sbi, segno);
 538        mutex_unlock(&dirty_i->seglist_lock);
 539}
 540
 541void clear_prefree_segments(struct f2fs_sb_info *sbi)
 542{
 543        struct list_head *head = &(SM_I(sbi)->discard_list);
 544        struct discard_entry *entry, *this;
 545        struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
 546        unsigned long *prefree_map = dirty_i->dirty_segmap[PRE];
 547        unsigned int start = 0, end = -1;
 548
 549        mutex_lock(&dirty_i->seglist_lock);
 550
 551        while (1) {
 552                int i;
 553                start = find_next_bit(prefree_map, MAIN_SEGS(sbi), end + 1);
 554                if (start >= MAIN_SEGS(sbi))
 555                        break;
 556                end = find_next_zero_bit(prefree_map, MAIN_SEGS(sbi),
 557                                                                start + 1);
 558
 559                for (i = start; i < end; i++)
 560                        clear_bit(i, prefree_map);
 561
 562                dirty_i->nr_dirty[PRE] -= end - start;
 563
 564                if (!test_opt(sbi, DISCARD))
 565                        continue;
 566
 567                f2fs_issue_discard(sbi, START_BLOCK(sbi, start),
 568                                (end - start) << sbi->log_blocks_per_seg);
 569        }
 570        mutex_unlock(&dirty_i->seglist_lock);
 571
 572        /* send small discards */
 573        list_for_each_entry_safe(entry, this, head, list) {
 574                f2fs_issue_discard(sbi, entry->blkaddr, entry->len);
 575                list_del(&entry->list);
 576                SM_I(sbi)->nr_discards -= entry->len;
 577                kmem_cache_free(discard_entry_slab, entry);
 578        }
 579}
 580
 581static bool __mark_sit_entry_dirty(struct f2fs_sb_info *sbi, unsigned int segno)
 582{
 583        struct sit_info *sit_i = SIT_I(sbi);
 584
 585        if (!__test_and_set_bit(segno, sit_i->dirty_sentries_bitmap)) {
 586                sit_i->dirty_sentries++;
 587                return false;
 588        }
 589
 590        return true;
 591}
 592
 593static void __set_sit_entry_type(struct f2fs_sb_info *sbi, int type,
 594                                        unsigned int segno, int modified)
 595{
 596        struct seg_entry *se = get_seg_entry(sbi, segno);
 597        se->type = type;
 598        if (modified)
 599                __mark_sit_entry_dirty(sbi, segno);
 600}
 601
 602static void update_sit_entry(struct f2fs_sb_info *sbi, block_t blkaddr, int del)
 603{
 604        struct seg_entry *se;
 605        unsigned int segno, offset;
 606        long int new_vblocks;
 607
 608        segno = GET_SEGNO(sbi, blkaddr);
 609
 610        se = get_seg_entry(sbi, segno);
 611        new_vblocks = se->valid_blocks + del;
 612        offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
 613
 614        f2fs_bug_on(sbi, (new_vblocks >> (sizeof(unsigned short) << 3) ||
 615                                (new_vblocks > sbi->blocks_per_seg)));
 616
 617        se->valid_blocks = new_vblocks;
 618        se->mtime = get_mtime(sbi);
 619        SIT_I(sbi)->max_mtime = se->mtime;
 620
 621        /* Update valid block bitmap */
 622        if (del > 0) {
 623                if (f2fs_set_bit(offset, se->cur_valid_map))
 624                        f2fs_bug_on(sbi, 1);
 625        } else {
 626                if (!f2fs_clear_bit(offset, se->cur_valid_map))
 627                        f2fs_bug_on(sbi, 1);
 628        }
 629        if (!f2fs_test_bit(offset, se->ckpt_valid_map))
 630                se->ckpt_valid_blocks += del;
 631
 632        __mark_sit_entry_dirty(sbi, segno);
 633
 634        /* update total number of valid blocks to be written in ckpt area */
 635        SIT_I(sbi)->written_valid_blocks += del;
 636
 637        if (sbi->segs_per_sec > 1)
 638                get_sec_entry(sbi, segno)->valid_blocks += del;
 639}
 640
 641void refresh_sit_entry(struct f2fs_sb_info *sbi, block_t old, block_t new)
 642{
 643        update_sit_entry(sbi, new, 1);
 644        if (GET_SEGNO(sbi, old) != NULL_SEGNO)
 645                update_sit_entry(sbi, old, -1);
 646
 647        locate_dirty_segment(sbi, GET_SEGNO(sbi, old));
 648        locate_dirty_segment(sbi, GET_SEGNO(sbi, new));
 649}
 650
 651void invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr)
 652{
 653        unsigned int segno = GET_SEGNO(sbi, addr);
 654        struct sit_info *sit_i = SIT_I(sbi);
 655
 656        f2fs_bug_on(sbi, addr == NULL_ADDR);
 657        if (addr == NEW_ADDR)
 658                return;
 659
 660        /* add it into sit main buffer */
 661        mutex_lock(&sit_i->sentry_lock);
 662
 663        update_sit_entry(sbi, addr, -1);
 664
 665        /* add it into dirty seglist */
 666        locate_dirty_segment(sbi, segno);
 667
 668        mutex_unlock(&sit_i->sentry_lock);
 669}
 670
 671/*
 672 * This function should be resided under the curseg_mutex lock
 673 */
 674static void __add_sum_entry(struct f2fs_sb_info *sbi, int type,
 675                                        struct f2fs_summary *sum)
 676{
 677        struct curseg_info *curseg = CURSEG_I(sbi, type);
 678        void *addr = curseg->sum_blk;
 679        addr += curseg->next_blkoff * sizeof(struct f2fs_summary);
 680        memcpy(addr, sum, sizeof(struct f2fs_summary));
 681}
 682
 683/*
 684 * Calculate the number of current summary pages for writing
 685 */
 686int npages_for_summary_flush(struct f2fs_sb_info *sbi)
 687{
 688        int valid_sum_count = 0;
 689        int i, sum_in_page;
 690
 691        for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
 692                if (sbi->ckpt->alloc_type[i] == SSR)
 693                        valid_sum_count += sbi->blocks_per_seg;
 694                else
 695                        valid_sum_count += curseg_blkoff(sbi, i);
 696        }
 697
 698        sum_in_page = (PAGE_CACHE_SIZE - 2 * SUM_JOURNAL_SIZE -
 699                        SUM_FOOTER_SIZE) / SUMMARY_SIZE;
 700        if (valid_sum_count <= sum_in_page)
 701                return 1;
 702        else if ((valid_sum_count - sum_in_page) <=
 703                (PAGE_CACHE_SIZE - SUM_FOOTER_SIZE) / SUMMARY_SIZE)
 704                return 2;
 705        return 3;
 706}
 707
 708/*
 709 * Caller should put this summary page
 710 */
 711struct page *get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno)
 712{
 713        return get_meta_page(sbi, GET_SUM_BLOCK(sbi, segno));
 714}
 715
 716static void write_sum_page(struct f2fs_sb_info *sbi,
 717                        struct f2fs_summary_block *sum_blk, block_t blk_addr)
 718{
 719        struct page *page = grab_meta_page(sbi, blk_addr);
 720        void *kaddr = page_address(page);
 721        memcpy(kaddr, sum_blk, PAGE_CACHE_SIZE);
 722        set_page_dirty(page);
 723        f2fs_put_page(page, 1);
 724}
 725
 726static int is_next_segment_free(struct f2fs_sb_info *sbi, int type)
 727{
 728        struct curseg_info *curseg = CURSEG_I(sbi, type);
 729        unsigned int segno = curseg->segno + 1;
 730        struct free_segmap_info *free_i = FREE_I(sbi);
 731
 732        if (segno < MAIN_SEGS(sbi) && segno % sbi->segs_per_sec)
 733                return !test_bit(segno, free_i->free_segmap);
 734        return 0;
 735}
 736
 737/*
 738 * Find a new segment from the free segments bitmap to right order
 739 * This function should be returned with success, otherwise BUG
 740 */
 741static void get_new_segment(struct f2fs_sb_info *sbi,
 742                        unsigned int *newseg, bool new_sec, int dir)
 743{
 744        struct free_segmap_info *free_i = FREE_I(sbi);
 745        unsigned int segno, secno, zoneno;
 746        unsigned int total_zones = MAIN_SECS(sbi) / sbi->secs_per_zone;
 747        unsigned int hint = *newseg / sbi->segs_per_sec;
 748        unsigned int old_zoneno = GET_ZONENO_FROM_SEGNO(sbi, *newseg);
 749        unsigned int left_start = hint;
 750        bool init = true;
 751        int go_left = 0;
 752        int i;
 753
 754        write_lock(&free_i->segmap_lock);
 755
 756        if (!new_sec && ((*newseg + 1) % sbi->segs_per_sec)) {
 757                segno = find_next_zero_bit(free_i->free_segmap,
 758                                        MAIN_SEGS(sbi), *newseg + 1);
 759                if (segno - *newseg < sbi->segs_per_sec -
 760                                        (*newseg % sbi->segs_per_sec))
 761                        goto got_it;
 762        }
 763find_other_zone:
 764        secno = find_next_zero_bit(free_i->free_secmap, MAIN_SECS(sbi), hint);
 765        if (secno >= MAIN_SECS(sbi)) {
 766                if (dir == ALLOC_RIGHT) {
 767                        secno = find_next_zero_bit(free_i->free_secmap,
 768                                                        MAIN_SECS(sbi), 0);
 769                        f2fs_bug_on(sbi, secno >= MAIN_SECS(sbi));
 770                } else {
 771                        go_left = 1;
 772                        left_start = hint - 1;
 773                }
 774        }
 775        if (go_left == 0)
 776                goto skip_left;
 777
 778        while (test_bit(left_start, free_i->free_secmap)) {
 779                if (left_start > 0) {
 780                        left_start--;
 781                        continue;
 782                }
 783                left_start = find_next_zero_bit(free_i->free_secmap,
 784                                                        MAIN_SECS(sbi), 0);
 785                f2fs_bug_on(sbi, left_start >= MAIN_SECS(sbi));
 786                break;
 787        }
 788        secno = left_start;
 789skip_left:
 790        hint = secno;
 791        segno = secno * sbi->segs_per_sec;
 792        zoneno = secno / sbi->secs_per_zone;
 793
 794        /* give up on finding another zone */
 795        if (!init)
 796                goto got_it;
 797        if (sbi->secs_per_zone == 1)
 798                goto got_it;
 799        if (zoneno == old_zoneno)
 800                goto got_it;
 801        if (dir == ALLOC_LEFT) {
 802                if (!go_left && zoneno + 1 >= total_zones)
 803                        goto got_it;
 804                if (go_left && zoneno == 0)
 805                        goto got_it;
 806        }
 807        for (i = 0; i < NR_CURSEG_TYPE; i++)
 808                if (CURSEG_I(sbi, i)->zone == zoneno)
 809                        break;
 810
 811        if (i < NR_CURSEG_TYPE) {
 812                /* zone is in user, try another */
 813                if (go_left)
 814                        hint = zoneno * sbi->secs_per_zone - 1;
 815                else if (zoneno + 1 >= total_zones)
 816                        hint = 0;
 817                else
 818                        hint = (zoneno + 1) * sbi->secs_per_zone;
 819                init = false;
 820                goto find_other_zone;
 821        }
 822got_it:
 823        /* set it as dirty segment in free segmap */
 824        f2fs_bug_on(sbi, test_bit(segno, free_i->free_segmap));
 825        __set_inuse(sbi, segno);
 826        *newseg = segno;
 827        write_unlock(&free_i->segmap_lock);
 828}
 829
 830static void reset_curseg(struct f2fs_sb_info *sbi, int type, int modified)
 831{
 832        struct curseg_info *curseg = CURSEG_I(sbi, type);
 833        struct summary_footer *sum_footer;
 834
 835        curseg->segno = curseg->next_segno;
 836        curseg->zone = GET_ZONENO_FROM_SEGNO(sbi, curseg->segno);
 837        curseg->next_blkoff = 0;
 838        curseg->next_segno = NULL_SEGNO;
 839
 840        sum_footer = &(curseg->sum_blk->footer);
 841        memset(sum_footer, 0, sizeof(struct summary_footer));
 842        if (IS_DATASEG(type))
 843                SET_SUM_TYPE(sum_footer, SUM_TYPE_DATA);
 844        if (IS_NODESEG(type))
 845                SET_SUM_TYPE(sum_footer, SUM_TYPE_NODE);
 846        __set_sit_entry_type(sbi, type, curseg->segno, modified);
 847}
 848
 849/*
 850 * Allocate a current working segment.
 851 * This function always allocates a free segment in LFS manner.
 852 */
 853static void new_curseg(struct f2fs_sb_info *sbi, int type, bool new_sec)
 854{
 855        struct curseg_info *curseg = CURSEG_I(sbi, type);
 856        unsigned int segno = curseg->segno;
 857        int dir = ALLOC_LEFT;
 858
 859        write_sum_page(sbi, curseg->sum_blk,
 860                                GET_SUM_BLOCK(sbi, segno));
 861        if (type == CURSEG_WARM_DATA || type == CURSEG_COLD_DATA)
 862                dir = ALLOC_RIGHT;
 863
 864        if (test_opt(sbi, NOHEAP))
 865                dir = ALLOC_RIGHT;
 866
 867        get_new_segment(sbi, &segno, new_sec, dir);
 868        curseg->next_segno = segno;
 869        reset_curseg(sbi, type, 1);
 870        curseg->alloc_type = LFS;
 871}
 872
 873static void __next_free_blkoff(struct f2fs_sb_info *sbi,
 874                        struct curseg_info *seg, block_t start)
 875{
 876        struct seg_entry *se = get_seg_entry(sbi, seg->segno);
 877        int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
 878        unsigned long target_map[entries];
 879        unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
 880        unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
 881        int i, pos;
 882
 883        for (i = 0; i < entries; i++)
 884                target_map[i] = ckpt_map[i] | cur_map[i];
 885
 886        pos = __find_rev_next_zero_bit(target_map, sbi->blocks_per_seg, start);
 887
 888        seg->next_blkoff = pos;
 889}
 890
 891/*
 892 * If a segment is written by LFS manner, next block offset is just obtained
 893 * by increasing the current block offset. However, if a segment is written by
 894 * SSR manner, next block offset obtained by calling __next_free_blkoff
 895 */
 896static void __refresh_next_blkoff(struct f2fs_sb_info *sbi,
 897                                struct curseg_info *seg)
 898{
 899        if (seg->alloc_type == SSR)
 900                __next_free_blkoff(sbi, seg, seg->next_blkoff + 1);
 901        else
 902                seg->next_blkoff++;
 903}
 904
 905/*
 906 * This function always allocates a used segment(from dirty seglist) by SSR
 907 * manner, so it should recover the existing segment information of valid blocks
 908 */
 909static void change_curseg(struct f2fs_sb_info *sbi, int type, bool reuse)
 910{
 911        struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
 912        struct curseg_info *curseg = CURSEG_I(sbi, type);
 913        unsigned int new_segno = curseg->next_segno;
 914        struct f2fs_summary_block *sum_node;
 915        struct page *sum_page;
 916
 917        write_sum_page(sbi, curseg->sum_blk,
 918                                GET_SUM_BLOCK(sbi, curseg->segno));
 919        __set_test_and_inuse(sbi, new_segno);
 920
 921        mutex_lock(&dirty_i->seglist_lock);
 922        __remove_dirty_segment(sbi, new_segno, PRE);
 923        __remove_dirty_segment(sbi, new_segno, DIRTY);
 924        mutex_unlock(&dirty_i->seglist_lock);
 925
 926        reset_curseg(sbi, type, 1);
 927        curseg->alloc_type = SSR;
 928        __next_free_blkoff(sbi, curseg, 0);
 929
 930        if (reuse) {
 931                sum_page = get_sum_page(sbi, new_segno);
 932                sum_node = (struct f2fs_summary_block *)page_address(sum_page);
 933                memcpy(curseg->sum_blk, sum_node, SUM_ENTRY_SIZE);
 934                f2fs_put_page(sum_page, 1);
 935        }
 936}
 937
 938static int get_ssr_segment(struct f2fs_sb_info *sbi, int type)
 939{
 940        struct curseg_info *curseg = CURSEG_I(sbi, type);
 941        const struct victim_selection *v_ops = DIRTY_I(sbi)->v_ops;
 942
 943        if (IS_NODESEG(type) || !has_not_enough_free_secs(sbi, 0))
 944                return v_ops->get_victim(sbi,
 945                                &(curseg)->next_segno, BG_GC, type, SSR);
 946
 947        /* For data segments, let's do SSR more intensively */
 948        for (; type >= CURSEG_HOT_DATA; type--)
 949                if (v_ops->get_victim(sbi, &(curseg)->next_segno,
 950                                                BG_GC, type, SSR))
 951                        return 1;
 952        return 0;
 953}
 954
 955/*
 956 * flush out current segment and replace it with new segment
 957 * This function should be returned with success, otherwise BUG
 958 */
 959static void allocate_segment_by_default(struct f2fs_sb_info *sbi,
 960                                                int type, bool force)
 961{
 962        struct curseg_info *curseg = CURSEG_I(sbi, type);
 963
 964        if (force)
 965                new_curseg(sbi, type, true);
 966        else if (type == CURSEG_WARM_NODE)
 967                new_curseg(sbi, type, false);
 968        else if (curseg->alloc_type == LFS && is_next_segment_free(sbi, type))
 969                new_curseg(sbi, type, false);
 970        else if (need_SSR(sbi) && get_ssr_segment(sbi, type))
 971                change_curseg(sbi, type, true);
 972        else
 973                new_curseg(sbi, type, false);
 974
 975        stat_inc_seg_type(sbi, curseg);
 976}
 977
 978void allocate_new_segments(struct f2fs_sb_info *sbi)
 979{
 980        struct curseg_info *curseg;
 981        unsigned int old_curseg;
 982        int i;
 983
 984        for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
 985                curseg = CURSEG_I(sbi, i);
 986                old_curseg = curseg->segno;
 987                SIT_I(sbi)->s_ops->allocate_segment(sbi, i, true);
 988                locate_dirty_segment(sbi, old_curseg);
 989        }
 990}
 991
 992static const struct segment_allocation default_salloc_ops = {
 993        .allocate_segment = allocate_segment_by_default,
 994};
 995
 996int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range)
 997{
 998        __u64 start = range->start >> sbi->log_blocksize;
 999        __u64 end = start + (range->len >> sbi->log_blocksize) - 1;
1000        unsigned int start_segno, end_segno;
1001        struct cp_control cpc;
1002
1003        if (range->minlen > SEGMENT_SIZE(sbi) || start >= MAX_BLKADDR(sbi) ||
1004                                                range->len < sbi->blocksize)
1005                return -EINVAL;
1006
1007        if (end <= MAIN_BLKADDR(sbi))
1008                goto out;
1009
1010        /* start/end segment number in main_area */
1011        start_segno = (start <= MAIN_BLKADDR(sbi)) ? 0 : GET_SEGNO(sbi, start);
1012        end_segno = (end >= MAX_BLKADDR(sbi)) ? MAIN_SEGS(sbi) - 1 :
1013                                                GET_SEGNO(sbi, end);
1014        cpc.reason = CP_DISCARD;
1015        cpc.trim_start = start_segno;
1016        cpc.trim_end = end_segno;
1017        cpc.trim_minlen = range->minlen >> sbi->log_blocksize;
1018        cpc.trimmed = 0;
1019
1020        /* do checkpoint to issue discard commands safely */
1021        write_checkpoint(sbi, &cpc);
1022out:
1023        range->len = cpc.trimmed << sbi->log_blocksize;
1024        return 0;
1025}
1026
1027static bool __has_curseg_space(struct f2fs_sb_info *sbi, int type)
1028{
1029        struct curseg_info *curseg = CURSEG_I(sbi, type);
1030        if (curseg->next_blkoff < sbi->blocks_per_seg)
1031                return true;
1032        return false;
1033}
1034
1035static int __get_segment_type_2(struct page *page, enum page_type p_type)
1036{
1037        if (p_type == DATA)
1038                return CURSEG_HOT_DATA;
1039        else
1040                return CURSEG_HOT_NODE;
1041}
1042
1043static int __get_segment_type_4(struct page *page, enum page_type p_type)
1044{
1045        if (p_type == DATA) {
1046                struct inode *inode = page->mapping->host;
1047
1048                if (S_ISDIR(inode->i_mode))
1049                        return CURSEG_HOT_DATA;
1050                else
1051                        return CURSEG_COLD_DATA;
1052        } else {
1053                if (IS_DNODE(page) && !is_cold_node(page))
1054                        return CURSEG_HOT_NODE;
1055                else
1056                        return CURSEG_COLD_NODE;
1057        }
1058}
1059
1060static int __get_segment_type_6(struct page *page, enum page_type p_type)
1061{
1062        if (p_type == DATA) {
1063                struct inode *inode = page->mapping->host;
1064
1065                if (S_ISDIR(inode->i_mode))
1066                        return CURSEG_HOT_DATA;
1067                else if (is_cold_data(page) || file_is_cold(inode))
1068                        return CURSEG_COLD_DATA;
1069                else
1070                        return CURSEG_WARM_DATA;
1071        } else {
1072                if (IS_DNODE(page))
1073                        return is_cold_node(page) ? CURSEG_WARM_NODE :
1074                                                CURSEG_HOT_NODE;
1075                else
1076                        return CURSEG_COLD_NODE;
1077        }
1078}
1079
1080static int __get_segment_type(struct page *page, enum page_type p_type)
1081{
1082        switch (F2FS_P_SB(page)->active_logs) {
1083        case 2:
1084                return __get_segment_type_2(page, p_type);
1085        case 4:
1086                return __get_segment_type_4(page, p_type);
1087        }
1088        /* NR_CURSEG_TYPE(6) logs by default */
1089        f2fs_bug_on(F2FS_P_SB(page),
1090                F2FS_P_SB(page)->active_logs != NR_CURSEG_TYPE);
1091        return __get_segment_type_6(page, p_type);
1092}
1093
1094void allocate_data_block(struct f2fs_sb_info *sbi, struct page *page,
1095                block_t old_blkaddr, block_t *new_blkaddr,
1096                struct f2fs_summary *sum, int type)
1097{
1098        struct sit_info *sit_i = SIT_I(sbi);
1099        struct curseg_info *curseg;
1100
1101        curseg = CURSEG_I(sbi, type);
1102
1103        mutex_lock(&curseg->curseg_mutex);
1104
1105        *new_blkaddr = NEXT_FREE_BLKADDR(sbi, curseg);
1106
1107        /*
1108         * __add_sum_entry should be resided under the curseg_mutex
1109         * because, this function updates a summary entry in the
1110         * current summary block.
1111         */
1112        __add_sum_entry(sbi, type, sum);
1113
1114        mutex_lock(&sit_i->sentry_lock);
1115        __refresh_next_blkoff(sbi, curseg);
1116
1117        stat_inc_block_count(sbi, curseg);
1118
1119        if (!__has_curseg_space(sbi, type))
1120                sit_i->s_ops->allocate_segment(sbi, type, false);
1121        /*
1122         * SIT information should be updated before segment allocation,
1123         * since SSR needs latest valid block information.
1124         */
1125        refresh_sit_entry(sbi, old_blkaddr, *new_blkaddr);
1126
1127        mutex_unlock(&sit_i->sentry_lock);
1128
1129        if (page && IS_NODESEG(type))
1130                fill_node_footer_blkaddr(page, NEXT_FREE_BLKADDR(sbi, curseg));
1131
1132        mutex_unlock(&curseg->curseg_mutex);
1133}
1134
1135static void do_write_page(struct f2fs_sb_info *sbi, struct page *page,
1136                        block_t old_blkaddr, block_t *new_blkaddr,
1137                        struct f2fs_summary *sum, struct f2fs_io_info *fio)
1138{
1139        int type = __get_segment_type(page, fio->type);
1140
1141        allocate_data_block(sbi, page, old_blkaddr, new_blkaddr, sum, type);
1142
1143        /* writeout dirty page into bdev */
1144        f2fs_submit_page_mbio(sbi, page, *new_blkaddr, fio);
1145}
1146
1147void write_meta_page(struct f2fs_sb_info *sbi, struct page *page)
1148{
1149        struct f2fs_io_info fio = {
1150                .type = META,
1151                .rw = WRITE_SYNC | REQ_META | REQ_PRIO
1152        };
1153
1154        set_page_writeback(page);
1155        f2fs_submit_page_mbio(sbi, page, page->index, &fio);
1156}
1157
1158void write_node_page(struct f2fs_sb_info *sbi, struct page *page,
1159                struct f2fs_io_info *fio,
1160                unsigned int nid, block_t old_blkaddr, block_t *new_blkaddr)
1161{
1162        struct f2fs_summary sum;
1163        set_summary(&sum, nid, 0, 0);
1164        do_write_page(sbi, page, old_blkaddr, new_blkaddr, &sum, fio);
1165}
1166
1167void write_data_page(struct page *page, struct dnode_of_data *dn,
1168                block_t *new_blkaddr, struct f2fs_io_info *fio)
1169{
1170        struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1171        struct f2fs_summary sum;
1172        struct node_info ni;
1173
1174        f2fs_bug_on(sbi, dn->data_blkaddr == NULL_ADDR);
1175        get_node_info(sbi, dn->nid, &ni);
1176        set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version);
1177
1178        do_write_page(sbi, page, dn->data_blkaddr, new_blkaddr, &sum, fio);
1179}
1180
1181void rewrite_data_page(struct page *page, block_t old_blkaddr,
1182                                        struct f2fs_io_info *fio)
1183{
1184        f2fs_submit_page_mbio(F2FS_P_SB(page), page, old_blkaddr, fio);
1185}
1186
1187void recover_data_page(struct f2fs_sb_info *sbi,
1188                        struct page *page, struct f2fs_summary *sum,
1189                        block_t old_blkaddr, block_t new_blkaddr)
1190{
1191        struct sit_info *sit_i = SIT_I(sbi);
1192        struct curseg_info *curseg;
1193        unsigned int segno, old_cursegno;
1194        struct seg_entry *se;
1195        int type;
1196
1197        segno = GET_SEGNO(sbi, new_blkaddr);
1198        se = get_seg_entry(sbi, segno);
1199        type = se->type;
1200
1201        if (se->valid_blocks == 0 && !IS_CURSEG(sbi, segno)) {
1202                if (old_blkaddr == NULL_ADDR)
1203                        type = CURSEG_COLD_DATA;
1204                else
1205                        type = CURSEG_WARM_DATA;
1206        }
1207        curseg = CURSEG_I(sbi, type);
1208
1209        mutex_lock(&curseg->curseg_mutex);
1210        mutex_lock(&sit_i->sentry_lock);
1211
1212        old_cursegno = curseg->segno;
1213
1214        /* change the current segment */
1215        if (segno != curseg->segno) {
1216                curseg->next_segno = segno;
1217                change_curseg(sbi, type, true);
1218        }
1219
1220        curseg->next_blkoff = GET_BLKOFF_FROM_SEG0(sbi, new_blkaddr);
1221        __add_sum_entry(sbi, type, sum);
1222
1223        refresh_sit_entry(sbi, old_blkaddr, new_blkaddr);
1224        locate_dirty_segment(sbi, old_cursegno);
1225
1226        mutex_unlock(&sit_i->sentry_lock);
1227        mutex_unlock(&curseg->curseg_mutex);
1228}
1229
1230static inline bool is_merged_page(struct f2fs_sb_info *sbi,
1231                                        struct page *page, enum page_type type)
1232{
1233        enum page_type btype = PAGE_TYPE_OF_BIO(type);
1234        struct f2fs_bio_info *io = &sbi->write_io[btype];
1235        struct bio_vec *bvec;
1236        int i;
1237
1238        down_read(&io->io_rwsem);
1239        if (!io->bio)
1240                goto out;
1241
1242        bio_for_each_segment_all(bvec, io->bio, i) {
1243                if (page == bvec->bv_page) {
1244                        up_read(&io->io_rwsem);
1245                        return true;
1246                }
1247        }
1248
1249out:
1250        up_read(&io->io_rwsem);
1251        return false;
1252}
1253
1254void f2fs_wait_on_page_writeback(struct page *page,
1255                                enum page_type type)
1256{
1257        if (PageWriteback(page)) {
1258                struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1259
1260                if (is_merged_page(sbi, page, type))
1261                        f2fs_submit_merged_bio(sbi, type, WRITE);
1262                wait_on_page_writeback(page);
1263        }
1264}
1265
1266static int read_compacted_summaries(struct f2fs_sb_info *sbi)
1267{
1268        struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1269        struct curseg_info *seg_i;
1270        unsigned char *kaddr;
1271        struct page *page;
1272        block_t start;
1273        int i, j, offset;
1274
1275        start = start_sum_block(sbi);
1276
1277        page = get_meta_page(sbi, start++);
1278        kaddr = (unsigned char *)page_address(page);
1279
1280        /* Step 1: restore nat cache */
1281        seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
1282        memcpy(&seg_i->sum_blk->n_nats, kaddr, SUM_JOURNAL_SIZE);
1283
1284        /* Step 2: restore sit cache */
1285        seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
1286        memcpy(&seg_i->sum_blk->n_sits, kaddr + SUM_JOURNAL_SIZE,
1287                                                SUM_JOURNAL_SIZE);
1288        offset = 2 * SUM_JOURNAL_SIZE;
1289
1290        /* Step 3: restore summary entries */
1291        for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
1292                unsigned short blk_off;
1293                unsigned int segno;
1294
1295                seg_i = CURSEG_I(sbi, i);
1296                segno = le32_to_cpu(ckpt->cur_data_segno[i]);
1297                blk_off = le16_to_cpu(ckpt->cur_data_blkoff[i]);
1298                seg_i->next_segno = segno;
1299                reset_curseg(sbi, i, 0);
1300                seg_i->alloc_type = ckpt->alloc_type[i];
1301                seg_i->next_blkoff = blk_off;
1302
1303                if (seg_i->alloc_type == SSR)
1304                        blk_off = sbi->blocks_per_seg;
1305
1306                for (j = 0; j < blk_off; j++) {
1307                        struct f2fs_summary *s;
1308                        s = (struct f2fs_summary *)(kaddr + offset);
1309                        seg_i->sum_blk->entries[j] = *s;
1310                        offset += SUMMARY_SIZE;
1311                        if (offset + SUMMARY_SIZE <= PAGE_CACHE_SIZE -
1312                                                SUM_FOOTER_SIZE)
1313                                continue;
1314
1315                        f2fs_put_page(page, 1);
1316                        page = NULL;
1317
1318                        page = get_meta_page(sbi, start++);
1319                        kaddr = (unsigned char *)page_address(page);
1320                        offset = 0;
1321                }
1322        }
1323        f2fs_put_page(page, 1);
1324        return 0;
1325}
1326
1327static int read_normal_summaries(struct f2fs_sb_info *sbi, int type)
1328{
1329        struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1330        struct f2fs_summary_block *sum;
1331        struct curseg_info *curseg;
1332        struct page *new;
1333        unsigned short blk_off;
1334        unsigned int segno = 0;
1335        block_t blk_addr = 0;
1336
1337        /* get segment number and block addr */
1338        if (IS_DATASEG(type)) {
1339                segno = le32_to_cpu(ckpt->cur_data_segno[type]);
1340                blk_off = le16_to_cpu(ckpt->cur_data_blkoff[type -
1341                                                        CURSEG_HOT_DATA]);
1342                if (is_set_ckpt_flags(ckpt, CP_UMOUNT_FLAG))
1343                        blk_addr = sum_blk_addr(sbi, NR_CURSEG_TYPE, type);
1344                else
1345                        blk_addr = sum_blk_addr(sbi, NR_CURSEG_DATA_TYPE, type);
1346        } else {
1347                segno = le32_to_cpu(ckpt->cur_node_segno[type -
1348                                                        CURSEG_HOT_NODE]);
1349                blk_off = le16_to_cpu(ckpt->cur_node_blkoff[type -
1350                                                        CURSEG_HOT_NODE]);
1351                if (is_set_ckpt_flags(ckpt, CP_UMOUNT_FLAG))
1352                        blk_addr = sum_blk_addr(sbi, NR_CURSEG_NODE_TYPE,
1353                                                        type - CURSEG_HOT_NODE);
1354                else
1355                        blk_addr = GET_SUM_BLOCK(sbi, segno);
1356        }
1357
1358        new = get_meta_page(sbi, blk_addr);
1359        sum = (struct f2fs_summary_block *)page_address(new);
1360
1361        if (IS_NODESEG(type)) {
1362                if (is_set_ckpt_flags(ckpt, CP_UMOUNT_FLAG)) {
1363                        struct f2fs_summary *ns = &sum->entries[0];
1364                        int i;
1365                        for (i = 0; i < sbi->blocks_per_seg; i++, ns++) {
1366                                ns->version = 0;
1367                                ns->ofs_in_node = 0;
1368                        }
1369                } else {
1370                        int err;
1371
1372                        err = restore_node_summary(sbi, segno, sum);
1373                        if (err) {
1374                                f2fs_put_page(new, 1);
1375                                return err;
1376                        }
1377                }
1378        }
1379
1380        /* set uncompleted segment to curseg */
1381        curseg = CURSEG_I(sbi, type);
1382        mutex_lock(&curseg->curseg_mutex);
1383        memcpy(curseg->sum_blk, sum, PAGE_CACHE_SIZE);
1384        curseg->next_segno = segno;
1385        reset_curseg(sbi, type, 0);
1386        curseg->alloc_type = ckpt->alloc_type[type];
1387        curseg->next_blkoff = blk_off;
1388        mutex_unlock(&curseg->curseg_mutex);
1389        f2fs_put_page(new, 1);
1390        return 0;
1391}
1392
1393static int restore_curseg_summaries(struct f2fs_sb_info *sbi)
1394{
1395        int type = CURSEG_HOT_DATA;
1396        int err;
1397
1398        if (is_set_ckpt_flags(F2FS_CKPT(sbi), CP_COMPACT_SUM_FLAG)) {
1399                /* restore for compacted data summary */
1400                if (read_compacted_summaries(sbi))
1401                        return -EINVAL;
1402                type = CURSEG_HOT_NODE;
1403        }
1404
1405        for (; type <= CURSEG_COLD_NODE; type++) {
1406                err = read_normal_summaries(sbi, type);
1407                if (err)
1408                        return err;
1409        }
1410
1411        return 0;
1412}
1413
1414static void write_compacted_summaries(struct f2fs_sb_info *sbi, block_t blkaddr)
1415{
1416        struct page *page;
1417        unsigned char *kaddr;
1418        struct f2fs_summary *summary;
1419        struct curseg_info *seg_i;
1420        int written_size = 0;
1421        int i, j;
1422
1423        page = grab_meta_page(sbi, blkaddr++);
1424        kaddr = (unsigned char *)page_address(page);
1425
1426        /* Step 1: write nat cache */
1427        seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
1428        memcpy(kaddr, &seg_i->sum_blk->n_nats, SUM_JOURNAL_SIZE);
1429        written_size += SUM_JOURNAL_SIZE;
1430
1431        /* Step 2: write sit cache */
1432        seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
1433        memcpy(kaddr + written_size, &seg_i->sum_blk->n_sits,
1434                                                SUM_JOURNAL_SIZE);
1435        written_size += SUM_JOURNAL_SIZE;
1436
1437        /* Step 3: write summary entries */
1438        for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
1439                unsigned short blkoff;
1440                seg_i = CURSEG_I(sbi, i);
1441                if (sbi->ckpt->alloc_type[i] == SSR)
1442                        blkoff = sbi->blocks_per_seg;
1443                else
1444                        blkoff = curseg_blkoff(sbi, i);
1445
1446                for (j = 0; j < blkoff; j++) {
1447                        if (!page) {
1448                                page = grab_meta_page(sbi, blkaddr++);
1449                                kaddr = (unsigned char *)page_address(page);
1450                                written_size = 0;
1451                        }
1452                        summary = (struct f2fs_summary *)(kaddr + written_size);
1453                        *summary = seg_i->sum_blk->entries[j];
1454                        written_size += SUMMARY_SIZE;
1455
1456                        if (written_size + SUMMARY_SIZE <= PAGE_CACHE_SIZE -
1457                                                        SUM_FOOTER_SIZE)
1458                                continue;
1459
1460                        set_page_dirty(page);
1461                        f2fs_put_page(page, 1);
1462                        page = NULL;
1463                }
1464        }
1465        if (page) {
1466                set_page_dirty(page);
1467                f2fs_put_page(page, 1);
1468        }
1469}
1470
1471static void write_normal_summaries(struct f2fs_sb_info *sbi,
1472                                        block_t blkaddr, int type)
1473{
1474        int i, end;
1475        if (IS_DATASEG(type))
1476                end = type + NR_CURSEG_DATA_TYPE;
1477        else
1478                end = type + NR_CURSEG_NODE_TYPE;
1479
1480        for (i = type; i < end; i++) {
1481                struct curseg_info *sum = CURSEG_I(sbi, i);
1482                mutex_lock(&sum->curseg_mutex);
1483                write_sum_page(sbi, sum->sum_blk, blkaddr + (i - type));
1484                mutex_unlock(&sum->curseg_mutex);
1485        }
1486}
1487
1488void write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
1489{
1490        if (is_set_ckpt_flags(F2FS_CKPT(sbi), CP_COMPACT_SUM_FLAG))
1491                write_compacted_summaries(sbi, start_blk);
1492        else
1493                write_normal_summaries(sbi, start_blk, CURSEG_HOT_DATA);
1494}
1495
1496void write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
1497{
1498        if (is_set_ckpt_flags(F2FS_CKPT(sbi), CP_UMOUNT_FLAG))
1499                write_normal_summaries(sbi, start_blk, CURSEG_HOT_NODE);
1500}
1501
1502int lookup_journal_in_cursum(struct f2fs_summary_block *sum, int type,
1503                                        unsigned int val, int alloc)
1504{
1505        int i;
1506
1507        if (type == NAT_JOURNAL) {
1508                for (i = 0; i < nats_in_cursum(sum); i++) {
1509                        if (le32_to_cpu(nid_in_journal(sum, i)) == val)
1510                                return i;
1511                }
1512                if (alloc && nats_in_cursum(sum) < NAT_JOURNAL_ENTRIES)
1513                        return update_nats_in_cursum(sum, 1);
1514        } else if (type == SIT_JOURNAL) {
1515                for (i = 0; i < sits_in_cursum(sum); i++)
1516                        if (le32_to_cpu(segno_in_journal(sum, i)) == val)
1517                                return i;
1518                if (alloc && sits_in_cursum(sum) < SIT_JOURNAL_ENTRIES)
1519                        return update_sits_in_cursum(sum, 1);
1520        }
1521        return -1;
1522}
1523
1524static struct page *get_current_sit_page(struct f2fs_sb_info *sbi,
1525                                        unsigned int segno)
1526{
1527        struct sit_info *sit_i = SIT_I(sbi);
1528        unsigned int offset = SIT_BLOCK_OFFSET(segno);
1529        block_t blk_addr = sit_i->sit_base_addr + offset;
1530
1531        check_seg_range(sbi, segno);
1532
1533        /* calculate sit block address */
1534        if (f2fs_test_bit(offset, sit_i->sit_bitmap))
1535                blk_addr += sit_i->sit_blocks;
1536
1537        return get_meta_page(sbi, blk_addr);
1538}
1539
1540static struct page *get_next_sit_page(struct f2fs_sb_info *sbi,
1541                                        unsigned int start)
1542{
1543        struct sit_info *sit_i = SIT_I(sbi);
1544        struct page *src_page, *dst_page;
1545        pgoff_t src_off, dst_off;
1546        void *src_addr, *dst_addr;
1547
1548        src_off = current_sit_addr(sbi, start);
1549        dst_off = next_sit_addr(sbi, src_off);
1550
1551        /* get current sit block page without lock */
1552        src_page = get_meta_page(sbi, src_off);
1553        dst_page = grab_meta_page(sbi, dst_off);
1554        f2fs_bug_on(sbi, PageDirty(src_page));
1555
1556        src_addr = page_address(src_page);
1557        dst_addr = page_address(dst_page);
1558        memcpy(dst_addr, src_addr, PAGE_CACHE_SIZE);
1559
1560        set_page_dirty(dst_page);
1561        f2fs_put_page(src_page, 1);
1562
1563        set_to_next_sit(sit_i, start);
1564
1565        return dst_page;
1566}
1567
1568static struct sit_entry_set *grab_sit_entry_set(void)
1569{
1570        struct sit_entry_set *ses =
1571                        f2fs_kmem_cache_alloc(sit_entry_set_slab, GFP_ATOMIC);
1572
1573        ses->entry_cnt = 0;
1574        INIT_LIST_HEAD(&ses->set_list);
1575        return ses;
1576}
1577
1578static void release_sit_entry_set(struct sit_entry_set *ses)
1579{
1580        list_del(&ses->set_list);
1581        kmem_cache_free(sit_entry_set_slab, ses);
1582}
1583
1584static void adjust_sit_entry_set(struct sit_entry_set *ses,
1585                                                struct list_head *head)
1586{
1587        struct sit_entry_set *next = ses;
1588
1589        if (list_is_last(&ses->set_list, head))
1590                return;
1591
1592        list_for_each_entry_continue(next, head, set_list)
1593                if (ses->entry_cnt <= next->entry_cnt)
1594                        break;
1595
1596        list_move_tail(&ses->set_list, &next->set_list);
1597}
1598
1599static void add_sit_entry(unsigned int segno, struct list_head *head)
1600{
1601        struct sit_entry_set *ses;
1602        unsigned int start_segno = START_SEGNO(segno);
1603
1604        list_for_each_entry(ses, head, set_list) {
1605                if (ses->start_segno == start_segno) {
1606                        ses->entry_cnt++;
1607                        adjust_sit_entry_set(ses, head);
1608                        return;
1609                }
1610        }
1611
1612        ses = grab_sit_entry_set();
1613
1614        ses->start_segno = start_segno;
1615        ses->entry_cnt++;
1616        list_add(&ses->set_list, head);
1617}
1618
1619static void add_sits_in_set(struct f2fs_sb_info *sbi)
1620{
1621        struct f2fs_sm_info *sm_info = SM_I(sbi);
1622        struct list_head *set_list = &sm_info->sit_entry_set;
1623        unsigned long *bitmap = SIT_I(sbi)->dirty_sentries_bitmap;
1624        unsigned int segno;
1625
1626        for_each_set_bit(segno, bitmap, MAIN_SEGS(sbi))
1627                add_sit_entry(segno, set_list);
1628}
1629
1630static void remove_sits_in_journal(struct f2fs_sb_info *sbi)
1631{
1632        struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
1633        struct f2fs_summary_block *sum = curseg->sum_blk;
1634        int i;
1635
1636        for (i = sits_in_cursum(sum) - 1; i >= 0; i--) {
1637                unsigned int segno;
1638                bool dirtied;
1639
1640                segno = le32_to_cpu(segno_in_journal(sum, i));
1641                dirtied = __mark_sit_entry_dirty(sbi, segno);
1642
1643                if (!dirtied)
1644                        add_sit_entry(segno, &SM_I(sbi)->sit_entry_set);
1645        }
1646        update_sits_in_cursum(sum, -sits_in_cursum(sum));
1647}
1648
1649/*
1650 * CP calls this function, which flushes SIT entries including sit_journal,
1651 * and moves prefree segs to free segs.
1652 */
1653void flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc)
1654{
1655        struct sit_info *sit_i = SIT_I(sbi);
1656        unsigned long *bitmap = sit_i->dirty_sentries_bitmap;
1657        struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
1658        struct f2fs_summary_block *sum = curseg->sum_blk;
1659        struct sit_entry_set *ses, *tmp;
1660        struct list_head *head = &SM_I(sbi)->sit_entry_set;
1661        bool to_journal = true;
1662        struct seg_entry *se;
1663
1664        mutex_lock(&curseg->curseg_mutex);
1665        mutex_lock(&sit_i->sentry_lock);
1666
1667        /*
1668         * add and account sit entries of dirty bitmap in sit entry
1669         * set temporarily
1670         */
1671        add_sits_in_set(sbi);
1672
1673        /*
1674         * if there are no enough space in journal to store dirty sit
1675         * entries, remove all entries from journal and add and account
1676         * them in sit entry set.
1677         */
1678        if (!__has_cursum_space(sum, sit_i->dirty_sentries, SIT_JOURNAL))
1679                remove_sits_in_journal(sbi);
1680
1681        if (!sit_i->dirty_sentries)
1682                goto out;
1683
1684        /*
1685         * there are two steps to flush sit entries:
1686         * #1, flush sit entries to journal in current cold data summary block.
1687         * #2, flush sit entries to sit page.
1688         */
1689        list_for_each_entry_safe(ses, tmp, head, set_list) {
1690                struct page *page;
1691                struct f2fs_sit_block *raw_sit = NULL;
1692                unsigned int start_segno = ses->start_segno;
1693                unsigned int end = min(start_segno + SIT_ENTRY_PER_BLOCK,
1694                                                (unsigned long)MAIN_SEGS(sbi));
1695                unsigned int segno = start_segno;
1696
1697                if (to_journal &&
1698                        !__has_cursum_space(sum, ses->entry_cnt, SIT_JOURNAL))
1699                        to_journal = false;
1700
1701                if (!to_journal) {
1702                        page = get_next_sit_page(sbi, start_segno);
1703                        raw_sit = page_address(page);
1704                }
1705
1706                /* flush dirty sit entries in region of current sit set */
1707                for_each_set_bit_from(segno, bitmap, end) {
1708                        int offset, sit_offset;
1709
1710                        se = get_seg_entry(sbi, segno);
1711
1712                        /* add discard candidates */
1713                        if (SM_I(sbi)->nr_discards < SM_I(sbi)->max_discards) {
1714                                cpc->trim_start = segno;
1715                                add_discard_addrs(sbi, cpc);
1716                        }
1717
1718                        if (to_journal) {
1719                                offset = lookup_journal_in_cursum(sum,
1720                                                        SIT_JOURNAL, segno, 1);
1721                                f2fs_bug_on(sbi, offset < 0);
1722                                segno_in_journal(sum, offset) =
1723                                                        cpu_to_le32(segno);
1724                                seg_info_to_raw_sit(se,
1725                                                &sit_in_journal(sum, offset));
1726                        } else {
1727                                sit_offset = SIT_ENTRY_OFFSET(sit_i, segno);
1728                                seg_info_to_raw_sit(se,
1729                                                &raw_sit->entries[sit_offset]);
1730                        }
1731
1732                        __clear_bit(segno, bitmap);
1733                        sit_i->dirty_sentries--;
1734                        ses->entry_cnt--;
1735                }
1736
1737                if (!to_journal)
1738                        f2fs_put_page(page, 1);
1739
1740                f2fs_bug_on(sbi, ses->entry_cnt);
1741                release_sit_entry_set(ses);
1742        }
1743
1744        f2fs_bug_on(sbi, !list_empty(head));
1745        f2fs_bug_on(sbi, sit_i->dirty_sentries);
1746out:
1747        if (cpc->reason == CP_DISCARD) {
1748                for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++)
1749                        add_discard_addrs(sbi, cpc);
1750        }
1751        mutex_unlock(&sit_i->sentry_lock);
1752        mutex_unlock(&curseg->curseg_mutex);
1753
1754        set_prefree_as_free_segments(sbi);
1755}
1756
1757static int build_sit_info(struct f2fs_sb_info *sbi)
1758{
1759        struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
1760        struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1761        struct sit_info *sit_i;
1762        unsigned int sit_segs, start;
1763        char *src_bitmap, *dst_bitmap;
1764        unsigned int bitmap_size;
1765
1766        /* allocate memory for SIT information */
1767        sit_i = kzalloc(sizeof(struct sit_info), GFP_KERNEL);
1768        if (!sit_i)
1769                return -ENOMEM;
1770
1771        SM_I(sbi)->sit_info = sit_i;
1772
1773        sit_i->sentries = vzalloc(MAIN_SEGS(sbi) * sizeof(struct seg_entry));
1774        if (!sit_i->sentries)
1775                return -ENOMEM;
1776
1777        bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
1778        sit_i->dirty_sentries_bitmap = kzalloc(bitmap_size, GFP_KERNEL);
1779        if (!sit_i->dirty_sentries_bitmap)
1780                return -ENOMEM;
1781
1782        for (start = 0; start < MAIN_SEGS(sbi); start++) {
1783                sit_i->sentries[start].cur_valid_map
1784                        = kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
1785                sit_i->sentries[start].ckpt_valid_map
1786                        = kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
1787                if (!sit_i->sentries[start].cur_valid_map
1788                                || !sit_i->sentries[start].ckpt_valid_map)
1789                        return -ENOMEM;
1790        }
1791
1792        if (sbi->segs_per_sec > 1) {
1793                sit_i->sec_entries = vzalloc(MAIN_SECS(sbi) *
1794                                        sizeof(struct sec_entry));
1795                if (!sit_i->sec_entries)
1796                        return -ENOMEM;
1797        }
1798
1799        /* get information related with SIT */
1800        sit_segs = le32_to_cpu(raw_super->segment_count_sit) >> 1;
1801
1802        /* setup SIT bitmap from ckeckpoint pack */
1803        bitmap_size = __bitmap_size(sbi, SIT_BITMAP);
1804        src_bitmap = __bitmap_ptr(sbi, SIT_BITMAP);
1805
1806        dst_bitmap = kmemdup(src_bitmap, bitmap_size, GFP_KERNEL);
1807        if (!dst_bitmap)
1808                return -ENOMEM;
1809
1810        /* init SIT information */
1811        sit_i->s_ops = &default_salloc_ops;
1812
1813        sit_i->sit_base_addr = le32_to_cpu(raw_super->sit_blkaddr);
1814        sit_i->sit_blocks = sit_segs << sbi->log_blocks_per_seg;
1815        sit_i->written_valid_blocks = le64_to_cpu(ckpt->valid_block_count);
1816        sit_i->sit_bitmap = dst_bitmap;
1817        sit_i->bitmap_size = bitmap_size;
1818        sit_i->dirty_sentries = 0;
1819        sit_i->sents_per_block = SIT_ENTRY_PER_BLOCK;
1820        sit_i->elapsed_time = le64_to_cpu(sbi->ckpt->elapsed_time);
1821        sit_i->mounted_time = CURRENT_TIME_SEC.tv_sec;
1822        mutex_init(&sit_i->sentry_lock);
1823        return 0;
1824}
1825
1826static int build_free_segmap(struct f2fs_sb_info *sbi)
1827{
1828        struct free_segmap_info *free_i;
1829        unsigned int bitmap_size, sec_bitmap_size;
1830
1831        /* allocate memory for free segmap information */
1832        free_i = kzalloc(sizeof(struct free_segmap_info), GFP_KERNEL);
1833        if (!free_i)
1834                return -ENOMEM;
1835
1836        SM_I(sbi)->free_info = free_i;
1837
1838        bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
1839        free_i->free_segmap = kmalloc(bitmap_size, GFP_KERNEL);
1840        if (!free_i->free_segmap)
1841                return -ENOMEM;
1842
1843        sec_bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
1844        free_i->free_secmap = kmalloc(sec_bitmap_size, GFP_KERNEL);
1845        if (!free_i->free_secmap)
1846                return -ENOMEM;
1847
1848        /* set all segments as dirty temporarily */
1849        memset(free_i->free_segmap, 0xff, bitmap_size);
1850        memset(free_i->free_secmap, 0xff, sec_bitmap_size);
1851
1852        /* init free segmap information */
1853        free_i->start_segno = GET_SEGNO_FROM_SEG0(sbi, MAIN_BLKADDR(sbi));
1854        free_i->free_segments = 0;
1855        free_i->free_sections = 0;
1856        rwlock_init(&free_i->segmap_lock);
1857        return 0;
1858}
1859
1860static int build_curseg(struct f2fs_sb_info *sbi)
1861{
1862        struct curseg_info *array;
1863        int i;
1864
1865        array = kcalloc(NR_CURSEG_TYPE, sizeof(*array), GFP_KERNEL);
1866        if (!array)
1867                return -ENOMEM;
1868
1869        SM_I(sbi)->curseg_array = array;
1870
1871        for (i = 0; i < NR_CURSEG_TYPE; i++) {
1872                mutex_init(&array[i].curseg_mutex);
1873                array[i].sum_blk = kzalloc(PAGE_CACHE_SIZE, GFP_KERNEL);
1874                if (!array[i].sum_blk)
1875                        return -ENOMEM;
1876                array[i].segno = NULL_SEGNO;
1877                array[i].next_blkoff = 0;
1878        }
1879        return restore_curseg_summaries(sbi);
1880}
1881
1882static void build_sit_entries(struct f2fs_sb_info *sbi)
1883{
1884        struct sit_info *sit_i = SIT_I(sbi);
1885        struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
1886        struct f2fs_summary_block *sum = curseg->sum_blk;
1887        int sit_blk_cnt = SIT_BLK_CNT(sbi);
1888        unsigned int i, start, end;
1889        unsigned int readed, start_blk = 0;
1890        int nrpages = MAX_BIO_BLOCKS(sbi);
1891
1892        do {
1893                readed = ra_meta_pages(sbi, start_blk, nrpages, META_SIT);
1894
1895                start = start_blk * sit_i->sents_per_block;
1896                end = (start_blk + readed) * sit_i->sents_per_block;
1897
1898                for (; start < end && start < MAIN_SEGS(sbi); start++) {
1899                        struct seg_entry *se = &sit_i->sentries[start];
1900                        struct f2fs_sit_block *sit_blk;
1901                        struct f2fs_sit_entry sit;
1902                        struct page *page;
1903
1904                        mutex_lock(&curseg->curseg_mutex);
1905                        for (i = 0; i < sits_in_cursum(sum); i++) {
1906                                if (le32_to_cpu(segno_in_journal(sum, i))
1907                                                                == start) {
1908                                        sit = sit_in_journal(sum, i);
1909                                        mutex_unlock(&curseg->curseg_mutex);
1910                                        goto got_it;
1911                                }
1912                        }
1913                        mutex_unlock(&curseg->curseg_mutex);
1914
1915                        page = get_current_sit_page(sbi, start);
1916                        sit_blk = (struct f2fs_sit_block *)page_address(page);
1917                        sit = sit_blk->entries[SIT_ENTRY_OFFSET(sit_i, start)];
1918                        f2fs_put_page(page, 1);
1919got_it:
1920                        check_block_count(sbi, start, &sit);
1921                        seg_info_from_raw_sit(se, &sit);
1922                        if (sbi->segs_per_sec > 1) {
1923                                struct sec_entry *e = get_sec_entry(sbi, start);
1924                                e->valid_blocks += se->valid_blocks;
1925                        }
1926                }
1927                start_blk += readed;
1928        } while (start_blk < sit_blk_cnt);
1929}
1930
1931static void init_free_segmap(struct f2fs_sb_info *sbi)
1932{
1933        unsigned int start;
1934        int type;
1935
1936        for (start = 0; start < MAIN_SEGS(sbi); start++) {
1937                struct seg_entry *sentry = get_seg_entry(sbi, start);
1938                if (!sentry->valid_blocks)
1939                        __set_free(sbi, start);
1940        }
1941
1942        /* set use the current segments */
1943        for (type = CURSEG_HOT_DATA; type <= CURSEG_COLD_NODE; type++) {
1944                struct curseg_info *curseg_t = CURSEG_I(sbi, type);
1945                __set_test_and_inuse(sbi, curseg_t->segno);
1946        }
1947}
1948
1949static void init_dirty_segmap(struct f2fs_sb_info *sbi)
1950{
1951        struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1952        struct free_segmap_info *free_i = FREE_I(sbi);
1953        unsigned int segno = 0, offset = 0;
1954        unsigned short valid_blocks;
1955
1956        while (1) {
1957                /* find dirty segment based on free segmap */
1958                segno = find_next_inuse(free_i, MAIN_SEGS(sbi), offset);
1959                if (segno >= MAIN_SEGS(sbi))
1960                        break;
1961                offset = segno + 1;
1962                valid_blocks = get_valid_blocks(sbi, segno, 0);
1963                if (valid_blocks == sbi->blocks_per_seg || !valid_blocks)
1964                        continue;
1965                if (valid_blocks > sbi->blocks_per_seg) {
1966                        f2fs_bug_on(sbi, 1);
1967                        continue;
1968                }
1969                mutex_lock(&dirty_i->seglist_lock);
1970                __locate_dirty_segment(sbi, segno, DIRTY);
1971                mutex_unlock(&dirty_i->seglist_lock);
1972        }
1973}
1974
1975static int init_victim_secmap(struct f2fs_sb_info *sbi)
1976{
1977        struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1978        unsigned int bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
1979
1980        dirty_i->victim_secmap = kzalloc(bitmap_size, GFP_KERNEL);
1981        if (!dirty_i->victim_secmap)
1982                return -ENOMEM;
1983        return 0;
1984}
1985
1986static int build_dirty_segmap(struct f2fs_sb_info *sbi)
1987{
1988        struct dirty_seglist_info *dirty_i;
1989        unsigned int bitmap_size, i;
1990
1991        /* allocate memory for dirty segments list information */
1992        dirty_i = kzalloc(sizeof(struct dirty_seglist_info), GFP_KERNEL);
1993        if (!dirty_i)
1994                return -ENOMEM;
1995
1996        SM_I(sbi)->dirty_info = dirty_i;
1997        mutex_init(&dirty_i->seglist_lock);
1998
1999        bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
2000
2001        for (i = 0; i < NR_DIRTY_TYPE; i++) {
2002                dirty_i->dirty_segmap[i] = kzalloc(bitmap_size, GFP_KERNEL);
2003                if (!dirty_i->dirty_segmap[i])
2004                        return -ENOMEM;
2005        }
2006
2007        init_dirty_segmap(sbi);
2008        return init_victim_secmap(sbi);
2009}
2010
2011/*
2012 * Update min, max modified time for cost-benefit GC algorithm
2013 */
2014static void init_min_max_mtime(struct f2fs_sb_info *sbi)
2015{
2016        struct sit_info *sit_i = SIT_I(sbi);
2017        unsigned int segno;
2018
2019        mutex_lock(&sit_i->sentry_lock);
2020
2021        sit_i->min_mtime = LLONG_MAX;
2022
2023        for (segno = 0; segno < MAIN_SEGS(sbi); segno += sbi->segs_per_sec) {
2024                unsigned int i;
2025                unsigned long long mtime = 0;
2026
2027                for (i = 0; i < sbi->segs_per_sec; i++)
2028                        mtime += get_seg_entry(sbi, segno + i)->mtime;
2029
2030                mtime = div_u64(mtime, sbi->segs_per_sec);
2031
2032                if (sit_i->min_mtime > mtime)
2033                        sit_i->min_mtime = mtime;
2034        }
2035        sit_i->max_mtime = get_mtime(sbi);
2036        mutex_unlock(&sit_i->sentry_lock);
2037}
2038
2039int build_segment_manager(struct f2fs_sb_info *sbi)
2040{
2041        struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
2042        struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
2043        struct f2fs_sm_info *sm_info;
2044        int err;
2045
2046        sm_info = kzalloc(sizeof(struct f2fs_sm_info), GFP_KERNEL);
2047        if (!sm_info)
2048                return -ENOMEM;
2049
2050        /* init sm info */
2051        sbi->sm_info = sm_info;
2052        sm_info->seg0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr);
2053        sm_info->main_blkaddr = le32_to_cpu(raw_super->main_blkaddr);
2054        sm_info->segment_count = le32_to_cpu(raw_super->segment_count);
2055        sm_info->reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count);
2056        sm_info->ovp_segments = le32_to_cpu(ckpt->overprov_segment_count);
2057        sm_info->main_segments = le32_to_cpu(raw_super->segment_count_main);
2058        sm_info->ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr);
2059        sm_info->rec_prefree_segments = sm_info->main_segments *
2060                                        DEF_RECLAIM_PREFREE_SEGMENTS / 100;
2061        sm_info->ipu_policy = 1 << F2FS_IPU_FSYNC;
2062        sm_info->min_ipu_util = DEF_MIN_IPU_UTIL;
2063        sm_info->min_fsync_blocks = DEF_MIN_FSYNC_BLOCKS;
2064
2065        INIT_LIST_HEAD(&sm_info->discard_list);
2066        sm_info->nr_discards = 0;
2067        sm_info->max_discards = 0;
2068
2069        INIT_LIST_HEAD(&sm_info->sit_entry_set);
2070
2071        if (test_opt(sbi, FLUSH_MERGE) && !f2fs_readonly(sbi->sb)) {
2072                err = create_flush_cmd_control(sbi);
2073                if (err)
2074                        return err;
2075        }
2076
2077        err = build_sit_info(sbi);
2078        if (err)
2079                return err;
2080        err = build_free_segmap(sbi);
2081        if (err)
2082                return err;
2083        err = build_curseg(sbi);
2084        if (err)
2085                return err;
2086
2087        /* reinit free segmap based on SIT */
2088        build_sit_entries(sbi);
2089
2090        init_free_segmap(sbi);
2091        err = build_dirty_segmap(sbi);
2092        if (err)
2093                return err;
2094
2095        init_min_max_mtime(sbi);
2096        return 0;
2097}
2098
2099static void discard_dirty_segmap(struct f2fs_sb_info *sbi,
2100                enum dirty_type dirty_type)
2101{
2102        struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2103
2104        mutex_lock(&dirty_i->seglist_lock);
2105        kfree(dirty_i->dirty_segmap[dirty_type]);
2106        dirty_i->nr_dirty[dirty_type] = 0;
2107        mutex_unlock(&dirty_i->seglist_lock);
2108}
2109
2110static void destroy_victim_secmap(struct f2fs_sb_info *sbi)
2111{
2112        struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2113        kfree(dirty_i->victim_secmap);
2114}
2115
2116static void destroy_dirty_segmap(struct f2fs_sb_info *sbi)
2117{
2118        struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2119        int i;
2120
2121        if (!dirty_i)
2122                return;
2123
2124        /* discard pre-free/dirty segments list */
2125        for (i = 0; i < NR_DIRTY_TYPE; i++)
2126                discard_dirty_segmap(sbi, i);
2127
2128        destroy_victim_secmap(sbi);
2129        SM_I(sbi)->dirty_info = NULL;
2130        kfree(dirty_i);
2131}
2132
2133static void destroy_curseg(struct f2fs_sb_info *sbi)
2134{
2135        struct curseg_info *array = SM_I(sbi)->curseg_array;
2136        int i;
2137
2138        if (!array)
2139                return;
2140        SM_I(sbi)->curseg_array = NULL;
2141        for (i = 0; i < NR_CURSEG_TYPE; i++)
2142                kfree(array[i].sum_blk);
2143        kfree(array);
2144}
2145
2146static void destroy_free_segmap(struct f2fs_sb_info *sbi)
2147{
2148        struct free_segmap_info *free_i = SM_I(sbi)->free_info;
2149        if (!free_i)
2150                return;
2151        SM_I(sbi)->free_info = NULL;
2152        kfree(free_i->free_segmap);
2153        kfree(free_i->free_secmap);
2154        kfree(free_i);
2155}
2156
2157static void destroy_sit_info(struct f2fs_sb_info *sbi)
2158{
2159        struct sit_info *sit_i = SIT_I(sbi);
2160        unsigned int start;
2161
2162        if (!sit_i)
2163                return;
2164
2165        if (sit_i->sentries) {
2166                for (start = 0; start < MAIN_SEGS(sbi); start++) {
2167                        kfree(sit_i->sentries[start].cur_valid_map);
2168                        kfree(sit_i->sentries[start].ckpt_valid_map);
2169                }
2170        }
2171        vfree(sit_i->sentries);
2172        vfree(sit_i->sec_entries);
2173        kfree(sit_i->dirty_sentries_bitmap);
2174
2175        SM_I(sbi)->sit_info = NULL;
2176        kfree(sit_i->sit_bitmap);
2177        kfree(sit_i);
2178}
2179
2180void destroy_segment_manager(struct f2fs_sb_info *sbi)
2181{
2182        struct f2fs_sm_info *sm_info = SM_I(sbi);
2183
2184        if (!sm_info)
2185                return;
2186        destroy_flush_cmd_control(sbi);
2187        destroy_dirty_segmap(sbi);
2188        destroy_curseg(sbi);
2189        destroy_free_segmap(sbi);
2190        destroy_sit_info(sbi);
2191        sbi->sm_info = NULL;
2192        kfree(sm_info);
2193}
2194
2195int __init create_segment_manager_caches(void)
2196{
2197        discard_entry_slab = f2fs_kmem_cache_create("discard_entry",
2198                        sizeof(struct discard_entry));
2199        if (!discard_entry_slab)
2200                goto fail;
2201
2202        sit_entry_set_slab = f2fs_kmem_cache_create("sit_entry_set",
2203                        sizeof(struct nat_entry_set));
2204        if (!sit_entry_set_slab)
2205                goto destory_discard_entry;
2206
2207        inmem_entry_slab = f2fs_kmem_cache_create("inmem_page_entry",
2208                        sizeof(struct inmem_pages));
2209        if (!inmem_entry_slab)
2210                goto destroy_sit_entry_set;
2211        return 0;
2212
2213destroy_sit_entry_set:
2214        kmem_cache_destroy(sit_entry_set_slab);
2215destory_discard_entry:
2216        kmem_cache_destroy(discard_entry_slab);
2217fail:
2218        return -ENOMEM;
2219}
2220
2221void destroy_segment_manager_caches(void)
2222{
2223        kmem_cache_destroy(sit_entry_set_slab);
2224        kmem_cache_destroy(discard_entry_slab);
2225        kmem_cache_destroy(inmem_entry_slab);
2226}
2227