linux/fs/nfs/file.c
<<
>>
Prefs
   1/*
   2 *  linux/fs/nfs/file.c
   3 *
   4 *  Copyright (C) 1992  Rick Sladkey
   5 *
   6 *  Changes Copyright (C) 1994 by Florian La Roche
   7 *   - Do not copy data too often around in the kernel.
   8 *   - In nfs_file_read the return value of kmalloc wasn't checked.
   9 *   - Put in a better version of read look-ahead buffering. Original idea
  10 *     and implementation by Wai S Kok elekokws@ee.nus.sg.
  11 *
  12 *  Expire cache on write to a file by Wai S Kok (Oct 1994).
  13 *
  14 *  Total rewrite of read side for new NFS buffer cache.. Linus.
  15 *
  16 *  nfs regular file handling functions
  17 */
  18
  19#include <linux/module.h>
  20#include <linux/time.h>
  21#include <linux/kernel.h>
  22#include <linux/errno.h>
  23#include <linux/fcntl.h>
  24#include <linux/stat.h>
  25#include <linux/nfs_fs.h>
  26#include <linux/nfs_mount.h>
  27#include <linux/mm.h>
  28#include <linux/pagemap.h>
  29#include <linux/aio.h>
  30#include <linux/gfp.h>
  31#include <linux/swap.h>
  32
  33#include <asm/uaccess.h>
  34
  35#include "delegation.h"
  36#include "internal.h"
  37#include "iostat.h"
  38#include "fscache.h"
  39#include "pnfs.h"
  40
  41#include "nfstrace.h"
  42
  43#define NFSDBG_FACILITY         NFSDBG_FILE
  44
  45static const struct vm_operations_struct nfs_file_vm_ops;
  46
  47/* Hack for future NFS swap support */
  48#ifndef IS_SWAPFILE
  49# define IS_SWAPFILE(inode)     (0)
  50#endif
  51
  52int nfs_check_flags(int flags)
  53{
  54        if ((flags & (O_APPEND | O_DIRECT)) == (O_APPEND | O_DIRECT))
  55                return -EINVAL;
  56
  57        return 0;
  58}
  59EXPORT_SYMBOL_GPL(nfs_check_flags);
  60
  61/*
  62 * Open file
  63 */
  64static int
  65nfs_file_open(struct inode *inode, struct file *filp)
  66{
  67        int res;
  68
  69        dprintk("NFS: open file(%pD2)\n", filp);
  70
  71        nfs_inc_stats(inode, NFSIOS_VFSOPEN);
  72        res = nfs_check_flags(filp->f_flags);
  73        if (res)
  74                return res;
  75
  76        res = nfs_open(inode, filp);
  77        return res;
  78}
  79
  80int
  81nfs_file_release(struct inode *inode, struct file *filp)
  82{
  83        dprintk("NFS: release(%pD2)\n", filp);
  84
  85        nfs_inc_stats(inode, NFSIOS_VFSRELEASE);
  86        return nfs_release(inode, filp);
  87}
  88EXPORT_SYMBOL_GPL(nfs_file_release);
  89
  90/**
  91 * nfs_revalidate_size - Revalidate the file size
  92 * @inode - pointer to inode struct
  93 * @file - pointer to struct file
  94 *
  95 * Revalidates the file length. This is basically a wrapper around
  96 * nfs_revalidate_inode() that takes into account the fact that we may
  97 * have cached writes (in which case we don't care about the server's
  98 * idea of what the file length is), or O_DIRECT (in which case we
  99 * shouldn't trust the cache).
 100 */
 101static int nfs_revalidate_file_size(struct inode *inode, struct file *filp)
 102{
 103        struct nfs_server *server = NFS_SERVER(inode);
 104        struct nfs_inode *nfsi = NFS_I(inode);
 105
 106        if (nfs_have_delegated_attributes(inode))
 107                goto out_noreval;
 108
 109        if (filp->f_flags & O_DIRECT)
 110                goto force_reval;
 111        if (nfsi->cache_validity & NFS_INO_REVAL_PAGECACHE)
 112                goto force_reval;
 113        if (nfs_attribute_timeout(inode))
 114                goto force_reval;
 115out_noreval:
 116        return 0;
 117force_reval:
 118        return __nfs_revalidate_inode(server, inode);
 119}
 120
 121loff_t nfs_file_llseek(struct file *filp, loff_t offset, int whence)
 122{
 123        dprintk("NFS: llseek file(%pD2, %lld, %d)\n",
 124                        filp, offset, whence);
 125
 126        /*
 127         * whence == SEEK_END || SEEK_DATA || SEEK_HOLE => we must revalidate
 128         * the cached file length
 129         */
 130        if (whence != SEEK_SET && whence != SEEK_CUR) {
 131                struct inode *inode = filp->f_mapping->host;
 132
 133                int retval = nfs_revalidate_file_size(inode, filp);
 134                if (retval < 0)
 135                        return (loff_t)retval;
 136        }
 137
 138        return generic_file_llseek(filp, offset, whence);
 139}
 140EXPORT_SYMBOL_GPL(nfs_file_llseek);
 141
 142/*
 143 * Flush all dirty pages, and check for write errors.
 144 */
 145int
 146nfs_file_flush(struct file *file, fl_owner_t id)
 147{
 148        struct inode    *inode = file_inode(file);
 149
 150        dprintk("NFS: flush(%pD2)\n", file);
 151
 152        nfs_inc_stats(inode, NFSIOS_VFSFLUSH);
 153        if ((file->f_mode & FMODE_WRITE) == 0)
 154                return 0;
 155
 156        /*
 157         * If we're holding a write delegation, then just start the i/o
 158         * but don't wait for completion (or send a commit).
 159         */
 160        if (NFS_PROTO(inode)->have_delegation(inode, FMODE_WRITE))
 161                return filemap_fdatawrite(file->f_mapping);
 162
 163        /* Flush writes to the server and return any errors */
 164        return vfs_fsync(file, 0);
 165}
 166EXPORT_SYMBOL_GPL(nfs_file_flush);
 167
 168ssize_t
 169nfs_file_read(struct kiocb *iocb, struct iov_iter *to)
 170{
 171        struct inode *inode = file_inode(iocb->ki_filp);
 172        ssize_t result;
 173
 174        if (iocb->ki_filp->f_flags & O_DIRECT)
 175                return nfs_file_direct_read(iocb, to, iocb->ki_pos);
 176
 177        dprintk("NFS: read(%pD2, %zu@%lu)\n",
 178                iocb->ki_filp,
 179                iov_iter_count(to), (unsigned long) iocb->ki_pos);
 180
 181        result = nfs_revalidate_mapping(inode, iocb->ki_filp->f_mapping);
 182        if (!result) {
 183                result = generic_file_read_iter(iocb, to);
 184                if (result > 0)
 185                        nfs_add_stats(inode, NFSIOS_NORMALREADBYTES, result);
 186        }
 187        return result;
 188}
 189EXPORT_SYMBOL_GPL(nfs_file_read);
 190
 191ssize_t
 192nfs_file_splice_read(struct file *filp, loff_t *ppos,
 193                     struct pipe_inode_info *pipe, size_t count,
 194                     unsigned int flags)
 195{
 196        struct inode *inode = file_inode(filp);
 197        ssize_t res;
 198
 199        dprintk("NFS: splice_read(%pD2, %lu@%Lu)\n",
 200                filp, (unsigned long) count, (unsigned long long) *ppos);
 201
 202        res = nfs_revalidate_mapping(inode, filp->f_mapping);
 203        if (!res) {
 204                res = generic_file_splice_read(filp, ppos, pipe, count, flags);
 205                if (res > 0)
 206                        nfs_add_stats(inode, NFSIOS_NORMALREADBYTES, res);
 207        }
 208        return res;
 209}
 210EXPORT_SYMBOL_GPL(nfs_file_splice_read);
 211
 212int
 213nfs_file_mmap(struct file * file, struct vm_area_struct * vma)
 214{
 215        struct inode *inode = file_inode(file);
 216        int     status;
 217
 218        dprintk("NFS: mmap(%pD2)\n", file);
 219
 220        /* Note: generic_file_mmap() returns ENOSYS on nommu systems
 221         *       so we call that before revalidating the mapping
 222         */
 223        status = generic_file_mmap(file, vma);
 224        if (!status) {
 225                vma->vm_ops = &nfs_file_vm_ops;
 226                status = nfs_revalidate_mapping(inode, file->f_mapping);
 227        }
 228        return status;
 229}
 230EXPORT_SYMBOL_GPL(nfs_file_mmap);
 231
 232/*
 233 * Flush any dirty pages for this process, and check for write errors.
 234 * The return status from this call provides a reliable indication of
 235 * whether any write errors occurred for this process.
 236 *
 237 * Notice that it clears the NFS_CONTEXT_ERROR_WRITE before synching to
 238 * disk, but it retrieves and clears ctx->error after synching, despite
 239 * the two being set at the same time in nfs_context_set_write_error().
 240 * This is because the former is used to notify the _next_ call to
 241 * nfs_file_write() that a write error occurred, and hence cause it to
 242 * fall back to doing a synchronous write.
 243 */
 244int
 245nfs_file_fsync_commit(struct file *file, loff_t start, loff_t end, int datasync)
 246{
 247        struct nfs_open_context *ctx = nfs_file_open_context(file);
 248        struct inode *inode = file_inode(file);
 249        int have_error, do_resend, status;
 250        int ret = 0;
 251
 252        dprintk("NFS: fsync file(%pD2) datasync %d\n", file, datasync);
 253
 254        nfs_inc_stats(inode, NFSIOS_VFSFSYNC);
 255        do_resend = test_and_clear_bit(NFS_CONTEXT_RESEND_WRITES, &ctx->flags);
 256        have_error = test_and_clear_bit(NFS_CONTEXT_ERROR_WRITE, &ctx->flags);
 257        status = nfs_commit_inode(inode, FLUSH_SYNC);
 258        have_error |= test_bit(NFS_CONTEXT_ERROR_WRITE, &ctx->flags);
 259        if (have_error) {
 260                ret = xchg(&ctx->error, 0);
 261                if (ret)
 262                        goto out;
 263        }
 264        if (status < 0) {
 265                ret = status;
 266                goto out;
 267        }
 268        do_resend |= test_bit(NFS_CONTEXT_RESEND_WRITES, &ctx->flags);
 269        if (do_resend)
 270                ret = -EAGAIN;
 271out:
 272        return ret;
 273}
 274EXPORT_SYMBOL_GPL(nfs_file_fsync_commit);
 275
 276static int
 277nfs_file_fsync(struct file *file, loff_t start, loff_t end, int datasync)
 278{
 279        int ret;
 280        struct inode *inode = file_inode(file);
 281
 282        trace_nfs_fsync_enter(inode);
 283
 284        do {
 285                ret = filemap_write_and_wait_range(inode->i_mapping, start, end);
 286                if (ret != 0)
 287                        break;
 288                mutex_lock(&inode->i_mutex);
 289                ret = nfs_file_fsync_commit(file, start, end, datasync);
 290                mutex_unlock(&inode->i_mutex);
 291                /*
 292                 * If nfs_file_fsync_commit detected a server reboot, then
 293                 * resend all dirty pages that might have been covered by
 294                 * the NFS_CONTEXT_RESEND_WRITES flag
 295                 */
 296                start = 0;
 297                end = LLONG_MAX;
 298        } while (ret == -EAGAIN);
 299
 300        trace_nfs_fsync_exit(inode, ret);
 301        return ret;
 302}
 303
 304/*
 305 * Decide whether a read/modify/write cycle may be more efficient
 306 * then a modify/write/read cycle when writing to a page in the
 307 * page cache.
 308 *
 309 * The modify/write/read cycle may occur if a page is read before
 310 * being completely filled by the writer.  In this situation, the
 311 * page must be completely written to stable storage on the server
 312 * before it can be refilled by reading in the page from the server.
 313 * This can lead to expensive, small, FILE_SYNC mode writes being
 314 * done.
 315 *
 316 * It may be more efficient to read the page first if the file is
 317 * open for reading in addition to writing, the page is not marked
 318 * as Uptodate, it is not dirty or waiting to be committed,
 319 * indicating that it was previously allocated and then modified,
 320 * that there were valid bytes of data in that range of the file,
 321 * and that the new data won't completely replace the old data in
 322 * that range of the file.
 323 */
 324static int nfs_want_read_modify_write(struct file *file, struct page *page,
 325                        loff_t pos, unsigned len)
 326{
 327        unsigned int pglen = nfs_page_length(page);
 328        unsigned int offset = pos & (PAGE_CACHE_SIZE - 1);
 329        unsigned int end = offset + len;
 330
 331        if (pnfs_ld_read_whole_page(file->f_mapping->host)) {
 332                if (!PageUptodate(page))
 333                        return 1;
 334                return 0;
 335        }
 336
 337        if ((file->f_mode & FMODE_READ) &&      /* open for read? */
 338            !PageUptodate(page) &&              /* Uptodate? */
 339            !PagePrivate(page) &&               /* i/o request already? */
 340            pglen &&                            /* valid bytes of file? */
 341            (end < pglen || offset))            /* replace all valid bytes? */
 342                return 1;
 343        return 0;
 344}
 345
 346/*
 347 * This does the "real" work of the write. We must allocate and lock the
 348 * page to be sent back to the generic routine, which then copies the
 349 * data from user space.
 350 *
 351 * If the writer ends up delaying the write, the writer needs to
 352 * increment the page use counts until he is done with the page.
 353 */
 354static int nfs_write_begin(struct file *file, struct address_space *mapping,
 355                        loff_t pos, unsigned len, unsigned flags,
 356                        struct page **pagep, void **fsdata)
 357{
 358        int ret;
 359        pgoff_t index = pos >> PAGE_CACHE_SHIFT;
 360        struct page *page;
 361        int once_thru = 0;
 362
 363        dfprintk(PAGECACHE, "NFS: write_begin(%pD2(%lu), %u@%lld)\n",
 364                file, mapping->host->i_ino, len, (long long) pos);
 365
 366start:
 367        /*
 368         * Prevent starvation issues if someone is doing a consistency
 369         * sync-to-disk
 370         */
 371        ret = wait_on_bit_action(&NFS_I(mapping->host)->flags, NFS_INO_FLUSHING,
 372                                 nfs_wait_bit_killable, TASK_KILLABLE);
 373        if (ret)
 374                return ret;
 375
 376        page = grab_cache_page_write_begin(mapping, index, flags);
 377        if (!page)
 378                return -ENOMEM;
 379        *pagep = page;
 380
 381        ret = nfs_flush_incompatible(file, page);
 382        if (ret) {
 383                unlock_page(page);
 384                page_cache_release(page);
 385        } else if (!once_thru &&
 386                   nfs_want_read_modify_write(file, page, pos, len)) {
 387                once_thru = 1;
 388                ret = nfs_readpage(file, page);
 389                page_cache_release(page);
 390                if (!ret)
 391                        goto start;
 392        }
 393        return ret;
 394}
 395
 396static int nfs_write_end(struct file *file, struct address_space *mapping,
 397                        loff_t pos, unsigned len, unsigned copied,
 398                        struct page *page, void *fsdata)
 399{
 400        unsigned offset = pos & (PAGE_CACHE_SIZE - 1);
 401        struct nfs_open_context *ctx = nfs_file_open_context(file);
 402        int status;
 403
 404        dfprintk(PAGECACHE, "NFS: write_end(%pD2(%lu), %u@%lld)\n",
 405                file, mapping->host->i_ino, len, (long long) pos);
 406
 407        /*
 408         * Zero any uninitialised parts of the page, and then mark the page
 409         * as up to date if it turns out that we're extending the file.
 410         */
 411        if (!PageUptodate(page)) {
 412                unsigned pglen = nfs_page_length(page);
 413                unsigned end = offset + len;
 414
 415                if (pglen == 0) {
 416                        zero_user_segments(page, 0, offset,
 417                                        end, PAGE_CACHE_SIZE);
 418                        SetPageUptodate(page);
 419                } else if (end >= pglen) {
 420                        zero_user_segment(page, end, PAGE_CACHE_SIZE);
 421                        if (offset == 0)
 422                                SetPageUptodate(page);
 423                } else
 424                        zero_user_segment(page, pglen, PAGE_CACHE_SIZE);
 425        }
 426
 427        status = nfs_updatepage(file, page, offset, copied);
 428
 429        unlock_page(page);
 430        page_cache_release(page);
 431
 432        if (status < 0)
 433                return status;
 434        NFS_I(mapping->host)->write_io += copied;
 435
 436        if (nfs_ctx_key_to_expire(ctx)) {
 437                status = nfs_wb_all(mapping->host);
 438                if (status < 0)
 439                        return status;
 440        }
 441
 442        return copied;
 443}
 444
 445/*
 446 * Partially or wholly invalidate a page
 447 * - Release the private state associated with a page if undergoing complete
 448 *   page invalidation
 449 * - Called if either PG_private or PG_fscache is set on the page
 450 * - Caller holds page lock
 451 */
 452static void nfs_invalidate_page(struct page *page, unsigned int offset,
 453                                unsigned int length)
 454{
 455        dfprintk(PAGECACHE, "NFS: invalidate_page(%p, %u, %u)\n",
 456                 page, offset, length);
 457
 458        if (offset != 0 || length < PAGE_CACHE_SIZE)
 459                return;
 460        /* Cancel any unstarted writes on this page */
 461        nfs_wb_page_cancel(page_file_mapping(page)->host, page);
 462
 463        nfs_fscache_invalidate_page(page, page->mapping->host);
 464}
 465
 466/*
 467 * Attempt to release the private state associated with a page
 468 * - Called if either PG_private or PG_fscache is set on the page
 469 * - Caller holds page lock
 470 * - Return true (may release page) or false (may not)
 471 */
 472static int nfs_release_page(struct page *page, gfp_t gfp)
 473{
 474        struct address_space *mapping = page->mapping;
 475
 476        dfprintk(PAGECACHE, "NFS: release_page(%p)\n", page);
 477
 478        /* Always try to initiate a 'commit' if relevant, but only
 479         * wait for it if __GFP_WAIT is set.  Even then, only wait 1
 480         * second and only if the 'bdi' is not congested.
 481         * Waiting indefinitely can cause deadlocks when the NFS
 482         * server is on this machine, when a new TCP connection is
 483         * needed and in other rare cases.  There is no particular
 484         * need to wait extensively here.  A short wait has the
 485         * benefit that someone else can worry about the freezer.
 486         */
 487        if (mapping) {
 488                struct nfs_server *nfss = NFS_SERVER(mapping->host);
 489                nfs_commit_inode(mapping->host, 0);
 490                if ((gfp & __GFP_WAIT) &&
 491                    !bdi_write_congested(&nfss->backing_dev_info)) {
 492                        wait_on_page_bit_killable_timeout(page, PG_private,
 493                                                          HZ);
 494                        if (PagePrivate(page))
 495                                set_bdi_congested(&nfss->backing_dev_info,
 496                                                  BLK_RW_ASYNC);
 497                }
 498        }
 499        /* If PagePrivate() is set, then the page is not freeable */
 500        if (PagePrivate(page))
 501                return 0;
 502        return nfs_fscache_release_page(page, gfp);
 503}
 504
 505static void nfs_check_dirty_writeback(struct page *page,
 506                                bool *dirty, bool *writeback)
 507{
 508        struct nfs_inode *nfsi;
 509        struct address_space *mapping = page_file_mapping(page);
 510
 511        if (!mapping || PageSwapCache(page))
 512                return;
 513
 514        /*
 515         * Check if an unstable page is currently being committed and
 516         * if so, have the VM treat it as if the page is under writeback
 517         * so it will not block due to pages that will shortly be freeable.
 518         */
 519        nfsi = NFS_I(mapping->host);
 520        if (test_bit(NFS_INO_COMMIT, &nfsi->flags)) {
 521                *writeback = true;
 522                return;
 523        }
 524
 525        /*
 526         * If PagePrivate() is set, then the page is not freeable and as the
 527         * inode is not being committed, it's not going to be cleaned in the
 528         * near future so treat it as dirty
 529         */
 530        if (PagePrivate(page))
 531                *dirty = true;
 532}
 533
 534/*
 535 * Attempt to clear the private state associated with a page when an error
 536 * occurs that requires the cached contents of an inode to be written back or
 537 * destroyed
 538 * - Called if either PG_private or fscache is set on the page
 539 * - Caller holds page lock
 540 * - Return 0 if successful, -error otherwise
 541 */
 542static int nfs_launder_page(struct page *page)
 543{
 544        struct inode *inode = page_file_mapping(page)->host;
 545        struct nfs_inode *nfsi = NFS_I(inode);
 546
 547        dfprintk(PAGECACHE, "NFS: launder_page(%ld, %llu)\n",
 548                inode->i_ino, (long long)page_offset(page));
 549
 550        nfs_fscache_wait_on_page_write(nfsi, page);
 551        return nfs_wb_page(inode, page);
 552}
 553
 554#ifdef CONFIG_NFS_SWAP
 555static int nfs_swap_activate(struct swap_info_struct *sis, struct file *file,
 556                                                sector_t *span)
 557{
 558        int ret;
 559        struct rpc_clnt *clnt = NFS_CLIENT(file->f_mapping->host);
 560
 561        *span = sis->pages;
 562
 563        rcu_read_lock();
 564        ret = xs_swapper(rcu_dereference(clnt->cl_xprt), 1);
 565        rcu_read_unlock();
 566
 567        return ret;
 568}
 569
 570static void nfs_swap_deactivate(struct file *file)
 571{
 572        struct rpc_clnt *clnt = NFS_CLIENT(file->f_mapping->host);
 573
 574        rcu_read_lock();
 575        xs_swapper(rcu_dereference(clnt->cl_xprt), 0);
 576        rcu_read_unlock();
 577}
 578#endif
 579
 580const struct address_space_operations nfs_file_aops = {
 581        .readpage = nfs_readpage,
 582        .readpages = nfs_readpages,
 583        .set_page_dirty = __set_page_dirty_nobuffers,
 584        .writepage = nfs_writepage,
 585        .writepages = nfs_writepages,
 586        .write_begin = nfs_write_begin,
 587        .write_end = nfs_write_end,
 588        .invalidatepage = nfs_invalidate_page,
 589        .releasepage = nfs_release_page,
 590        .direct_IO = nfs_direct_IO,
 591        .migratepage = nfs_migrate_page,
 592        .launder_page = nfs_launder_page,
 593        .is_dirty_writeback = nfs_check_dirty_writeback,
 594        .error_remove_page = generic_error_remove_page,
 595#ifdef CONFIG_NFS_SWAP
 596        .swap_activate = nfs_swap_activate,
 597        .swap_deactivate = nfs_swap_deactivate,
 598#endif
 599};
 600
 601/*
 602 * Notification that a PTE pointing to an NFS page is about to be made
 603 * writable, implying that someone is about to modify the page through a
 604 * shared-writable mapping
 605 */
 606static int nfs_vm_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
 607{
 608        struct page *page = vmf->page;
 609        struct file *filp = vma->vm_file;
 610        struct inode *inode = file_inode(filp);
 611        unsigned pagelen;
 612        int ret = VM_FAULT_NOPAGE;
 613        struct address_space *mapping;
 614
 615        dfprintk(PAGECACHE, "NFS: vm_page_mkwrite(%pD2(%lu), offset %lld)\n",
 616                filp, filp->f_mapping->host->i_ino,
 617                (long long)page_offset(page));
 618
 619        /* make sure the cache has finished storing the page */
 620        nfs_fscache_wait_on_page_write(NFS_I(inode), page);
 621
 622        lock_page(page);
 623        mapping = page_file_mapping(page);
 624        if (mapping != inode->i_mapping)
 625                goto out_unlock;
 626
 627        wait_on_page_writeback(page);
 628
 629        pagelen = nfs_page_length(page);
 630        if (pagelen == 0)
 631                goto out_unlock;
 632
 633        ret = VM_FAULT_LOCKED;
 634        if (nfs_flush_incompatible(filp, page) == 0 &&
 635            nfs_updatepage(filp, page, 0, pagelen) == 0)
 636                goto out;
 637
 638        ret = VM_FAULT_SIGBUS;
 639out_unlock:
 640        unlock_page(page);
 641out:
 642        return ret;
 643}
 644
 645static const struct vm_operations_struct nfs_file_vm_ops = {
 646        .fault = filemap_fault,
 647        .map_pages = filemap_map_pages,
 648        .page_mkwrite = nfs_vm_page_mkwrite,
 649        .remap_pages = generic_file_remap_pages,
 650};
 651
 652static int nfs_need_sync_write(struct file *filp, struct inode *inode)
 653{
 654        struct nfs_open_context *ctx;
 655
 656        if (IS_SYNC(inode) || (filp->f_flags & O_DSYNC))
 657                return 1;
 658        ctx = nfs_file_open_context(filp);
 659        if (test_bit(NFS_CONTEXT_ERROR_WRITE, &ctx->flags) ||
 660            nfs_ctx_key_to_expire(ctx))
 661                return 1;
 662        return 0;
 663}
 664
 665ssize_t nfs_file_write(struct kiocb *iocb, struct iov_iter *from)
 666{
 667        struct file *file = iocb->ki_filp;
 668        struct inode *inode = file_inode(file);
 669        unsigned long written = 0;
 670        ssize_t result;
 671        size_t count = iov_iter_count(from);
 672        loff_t pos = iocb->ki_pos;
 673
 674        result = nfs_key_timeout_notify(file, inode);
 675        if (result)
 676                return result;
 677
 678        if (file->f_flags & O_DIRECT)
 679                return nfs_file_direct_write(iocb, from, pos);
 680
 681        dprintk("NFS: write(%pD2, %zu@%Ld)\n",
 682                file, count, (long long) pos);
 683
 684        result = -EBUSY;
 685        if (IS_SWAPFILE(inode))
 686                goto out_swapfile;
 687        /*
 688         * O_APPEND implies that we must revalidate the file length.
 689         */
 690        if (file->f_flags & O_APPEND) {
 691                result = nfs_revalidate_file_size(inode, file);
 692                if (result)
 693                        goto out;
 694        }
 695
 696        result = count;
 697        if (!count)
 698                goto out;
 699
 700        result = generic_file_write_iter(iocb, from);
 701        if (result > 0)
 702                written = result;
 703
 704        /* Return error values for O_DSYNC and IS_SYNC() */
 705        if (result >= 0 && nfs_need_sync_write(file, inode)) {
 706                int err = vfs_fsync(file, 0);
 707                if (err < 0)
 708                        result = err;
 709        }
 710        if (result > 0)
 711                nfs_add_stats(inode, NFSIOS_NORMALWRITTENBYTES, written);
 712out:
 713        return result;
 714
 715out_swapfile:
 716        printk(KERN_INFO "NFS: attempt to write to active swap file!\n");
 717        goto out;
 718}
 719EXPORT_SYMBOL_GPL(nfs_file_write);
 720
 721static int
 722do_getlk(struct file *filp, int cmd, struct file_lock *fl, int is_local)
 723{
 724        struct inode *inode = filp->f_mapping->host;
 725        int status = 0;
 726        unsigned int saved_type = fl->fl_type;
 727
 728        /* Try local locking first */
 729        posix_test_lock(filp, fl);
 730        if (fl->fl_type != F_UNLCK) {
 731                /* found a conflict */
 732                goto out;
 733        }
 734        fl->fl_type = saved_type;
 735
 736        if (NFS_PROTO(inode)->have_delegation(inode, FMODE_READ))
 737                goto out_noconflict;
 738
 739        if (is_local)
 740                goto out_noconflict;
 741
 742        status = NFS_PROTO(inode)->lock(filp, cmd, fl);
 743out:
 744        return status;
 745out_noconflict:
 746        fl->fl_type = F_UNLCK;
 747        goto out;
 748}
 749
 750static int do_vfs_lock(struct file *file, struct file_lock *fl)
 751{
 752        int res = 0;
 753        switch (fl->fl_flags & (FL_POSIX|FL_FLOCK)) {
 754                case FL_POSIX:
 755                        res = posix_lock_file_wait(file, fl);
 756                        break;
 757                case FL_FLOCK:
 758                        res = flock_lock_file_wait(file, fl);
 759                        break;
 760                default:
 761                        BUG();
 762        }
 763        return res;
 764}
 765
 766static int
 767do_unlk(struct file *filp, int cmd, struct file_lock *fl, int is_local)
 768{
 769        struct inode *inode = filp->f_mapping->host;
 770        struct nfs_lock_context *l_ctx;
 771        int status;
 772
 773        /*
 774         * Flush all pending writes before doing anything
 775         * with locks..
 776         */
 777        nfs_sync_mapping(filp->f_mapping);
 778
 779        l_ctx = nfs_get_lock_context(nfs_file_open_context(filp));
 780        if (!IS_ERR(l_ctx)) {
 781                status = nfs_iocounter_wait(&l_ctx->io_count);
 782                nfs_put_lock_context(l_ctx);
 783                if (status < 0)
 784                        return status;
 785        }
 786
 787        /* NOTE: special case
 788         *      If we're signalled while cleaning up locks on process exit, we
 789         *      still need to complete the unlock.
 790         */
 791        /*
 792         * Use local locking if mounted with "-onolock" or with appropriate
 793         * "-olocal_lock="
 794         */
 795        if (!is_local)
 796                status = NFS_PROTO(inode)->lock(filp, cmd, fl);
 797        else
 798                status = do_vfs_lock(filp, fl);
 799        return status;
 800}
 801
 802static int
 803is_time_granular(struct timespec *ts) {
 804        return ((ts->tv_sec == 0) && (ts->tv_nsec <= 1000));
 805}
 806
 807static int
 808do_setlk(struct file *filp, int cmd, struct file_lock *fl, int is_local)
 809{
 810        struct inode *inode = filp->f_mapping->host;
 811        int status;
 812
 813        /*
 814         * Flush all pending writes before doing anything
 815         * with locks..
 816         */
 817        status = nfs_sync_mapping(filp->f_mapping);
 818        if (status != 0)
 819                goto out;
 820
 821        /*
 822         * Use local locking if mounted with "-onolock" or with appropriate
 823         * "-olocal_lock="
 824         */
 825        if (!is_local)
 826                status = NFS_PROTO(inode)->lock(filp, cmd, fl);
 827        else
 828                status = do_vfs_lock(filp, fl);
 829        if (status < 0)
 830                goto out;
 831
 832        /*
 833         * Revalidate the cache if the server has time stamps granular
 834         * enough to detect subsecond changes.  Otherwise, clear the
 835         * cache to prevent missing any changes.
 836         *
 837         * This makes locking act as a cache coherency point.
 838         */
 839        nfs_sync_mapping(filp->f_mapping);
 840        if (!NFS_PROTO(inode)->have_delegation(inode, FMODE_READ)) {
 841                if (is_time_granular(&NFS_SERVER(inode)->time_delta))
 842                        __nfs_revalidate_inode(NFS_SERVER(inode), inode);
 843                else
 844                        nfs_zap_caches(inode);
 845        }
 846out:
 847        return status;
 848}
 849
 850/*
 851 * Lock a (portion of) a file
 852 */
 853int nfs_lock(struct file *filp, int cmd, struct file_lock *fl)
 854{
 855        struct inode *inode = filp->f_mapping->host;
 856        int ret = -ENOLCK;
 857        int is_local = 0;
 858
 859        dprintk("NFS: lock(%pD2, t=%x, fl=%x, r=%lld:%lld)\n",
 860                        filp, fl->fl_type, fl->fl_flags,
 861                        (long long)fl->fl_start, (long long)fl->fl_end);
 862
 863        nfs_inc_stats(inode, NFSIOS_VFSLOCK);
 864
 865        /* No mandatory locks over NFS */
 866        if (__mandatory_lock(inode) && fl->fl_type != F_UNLCK)
 867                goto out_err;
 868
 869        if (NFS_SERVER(inode)->flags & NFS_MOUNT_LOCAL_FCNTL)
 870                is_local = 1;
 871
 872        if (NFS_PROTO(inode)->lock_check_bounds != NULL) {
 873                ret = NFS_PROTO(inode)->lock_check_bounds(fl);
 874                if (ret < 0)
 875                        goto out_err;
 876        }
 877
 878        if (IS_GETLK(cmd))
 879                ret = do_getlk(filp, cmd, fl, is_local);
 880        else if (fl->fl_type == F_UNLCK)
 881                ret = do_unlk(filp, cmd, fl, is_local);
 882        else
 883                ret = do_setlk(filp, cmd, fl, is_local);
 884out_err:
 885        return ret;
 886}
 887EXPORT_SYMBOL_GPL(nfs_lock);
 888
 889/*
 890 * Lock a (portion of) a file
 891 */
 892int nfs_flock(struct file *filp, int cmd, struct file_lock *fl)
 893{
 894        struct inode *inode = filp->f_mapping->host;
 895        int is_local = 0;
 896
 897        dprintk("NFS: flock(%pD2, t=%x, fl=%x)\n",
 898                        filp, fl->fl_type, fl->fl_flags);
 899
 900        if (!(fl->fl_flags & FL_FLOCK))
 901                return -ENOLCK;
 902
 903        /*
 904         * The NFSv4 protocol doesn't support LOCK_MAND, which is not part of
 905         * any standard. In principle we might be able to support LOCK_MAND
 906         * on NFSv2/3 since NLMv3/4 support DOS share modes, but for now the
 907         * NFS code is not set up for it.
 908         */
 909        if (fl->fl_type & LOCK_MAND)
 910                return -EINVAL;
 911
 912        if (NFS_SERVER(inode)->flags & NFS_MOUNT_LOCAL_FLOCK)
 913                is_local = 1;
 914
 915        /* We're simulating flock() locks using posix locks on the server */
 916        if (fl->fl_type == F_UNLCK)
 917                return do_unlk(filp, cmd, fl, is_local);
 918        return do_setlk(filp, cmd, fl, is_local);
 919}
 920EXPORT_SYMBOL_GPL(nfs_flock);
 921
 922const struct file_operations nfs_file_operations = {
 923        .llseek         = nfs_file_llseek,
 924        .read           = new_sync_read,
 925        .write          = new_sync_write,
 926        .read_iter      = nfs_file_read,
 927        .write_iter     = nfs_file_write,
 928        .mmap           = nfs_file_mmap,
 929        .open           = nfs_file_open,
 930        .flush          = nfs_file_flush,
 931        .release        = nfs_file_release,
 932        .fsync          = nfs_file_fsync,
 933        .lock           = nfs_lock,
 934        .flock          = nfs_flock,
 935        .splice_read    = nfs_file_splice_read,
 936        .splice_write   = iter_file_splice_write,
 937        .check_flags    = nfs_check_flags,
 938        .setlease       = simple_nosetlease,
 939};
 940EXPORT_SYMBOL_GPL(nfs_file_operations);
 941