linux/fs/xfs/xfs_mount.c
<<
>>
Prefs
   1/*
   2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
   3 * All Rights Reserved.
   4 *
   5 * This program is free software; you can redistribute it and/or
   6 * modify it under the terms of the GNU General Public License as
   7 * published by the Free Software Foundation.
   8 *
   9 * This program is distributed in the hope that it would be useful,
  10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  12 * GNU General Public License for more details.
  13 *
  14 * You should have received a copy of the GNU General Public License
  15 * along with this program; if not, write the Free Software Foundation,
  16 * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
  17 */
  18#include "xfs.h"
  19#include "xfs_fs.h"
  20#include "xfs_shared.h"
  21#include "xfs_format.h"
  22#include "xfs_log_format.h"
  23#include "xfs_trans_resv.h"
  24#include "xfs_bit.h"
  25#include "xfs_inum.h"
  26#include "xfs_sb.h"
  27#include "xfs_ag.h"
  28#include "xfs_mount.h"
  29#include "xfs_da_format.h"
  30#include "xfs_inode.h"
  31#include "xfs_dir2.h"
  32#include "xfs_ialloc.h"
  33#include "xfs_alloc.h"
  34#include "xfs_rtalloc.h"
  35#include "xfs_bmap.h"
  36#include "xfs_trans.h"
  37#include "xfs_trans_priv.h"
  38#include "xfs_log.h"
  39#include "xfs_error.h"
  40#include "xfs_quota.h"
  41#include "xfs_fsops.h"
  42#include "xfs_trace.h"
  43#include "xfs_icache.h"
  44#include "xfs_dinode.h"
  45#include "xfs_sysfs.h"
  46
  47
  48#ifdef HAVE_PERCPU_SB
  49STATIC void     xfs_icsb_balance_counter(xfs_mount_t *, xfs_sb_field_t,
  50                                                int);
  51STATIC void     xfs_icsb_balance_counter_locked(xfs_mount_t *, xfs_sb_field_t,
  52                                                int);
  53STATIC void     xfs_icsb_disable_counter(xfs_mount_t *, xfs_sb_field_t);
  54#else
  55
  56#define xfs_icsb_balance_counter(mp, a, b)              do { } while (0)
  57#define xfs_icsb_balance_counter_locked(mp, a, b)       do { } while (0)
  58#endif
  59
  60static DEFINE_MUTEX(xfs_uuid_table_mutex);
  61static int xfs_uuid_table_size;
  62static uuid_t *xfs_uuid_table;
  63
  64/*
  65 * See if the UUID is unique among mounted XFS filesystems.
  66 * Mount fails if UUID is nil or a FS with the same UUID is already mounted.
  67 */
  68STATIC int
  69xfs_uuid_mount(
  70        struct xfs_mount        *mp)
  71{
  72        uuid_t                  *uuid = &mp->m_sb.sb_uuid;
  73        int                     hole, i;
  74
  75        if (mp->m_flags & XFS_MOUNT_NOUUID)
  76                return 0;
  77
  78        if (uuid_is_nil(uuid)) {
  79                xfs_warn(mp, "Filesystem has nil UUID - can't mount");
  80                return -EINVAL;
  81        }
  82
  83        mutex_lock(&xfs_uuid_table_mutex);
  84        for (i = 0, hole = -1; i < xfs_uuid_table_size; i++) {
  85                if (uuid_is_nil(&xfs_uuid_table[i])) {
  86                        hole = i;
  87                        continue;
  88                }
  89                if (uuid_equal(uuid, &xfs_uuid_table[i]))
  90                        goto out_duplicate;
  91        }
  92
  93        if (hole < 0) {
  94                xfs_uuid_table = kmem_realloc(xfs_uuid_table,
  95                        (xfs_uuid_table_size + 1) * sizeof(*xfs_uuid_table),
  96                        xfs_uuid_table_size  * sizeof(*xfs_uuid_table),
  97                        KM_SLEEP);
  98                hole = xfs_uuid_table_size++;
  99        }
 100        xfs_uuid_table[hole] = *uuid;
 101        mutex_unlock(&xfs_uuid_table_mutex);
 102
 103        return 0;
 104
 105 out_duplicate:
 106        mutex_unlock(&xfs_uuid_table_mutex);
 107        xfs_warn(mp, "Filesystem has duplicate UUID %pU - can't mount", uuid);
 108        return -EINVAL;
 109}
 110
 111STATIC void
 112xfs_uuid_unmount(
 113        struct xfs_mount        *mp)
 114{
 115        uuid_t                  *uuid = &mp->m_sb.sb_uuid;
 116        int                     i;
 117
 118        if (mp->m_flags & XFS_MOUNT_NOUUID)
 119                return;
 120
 121        mutex_lock(&xfs_uuid_table_mutex);
 122        for (i = 0; i < xfs_uuid_table_size; i++) {
 123                if (uuid_is_nil(&xfs_uuid_table[i]))
 124                        continue;
 125                if (!uuid_equal(uuid, &xfs_uuid_table[i]))
 126                        continue;
 127                memset(&xfs_uuid_table[i], 0, sizeof(uuid_t));
 128                break;
 129        }
 130        ASSERT(i < xfs_uuid_table_size);
 131        mutex_unlock(&xfs_uuid_table_mutex);
 132}
 133
 134
 135STATIC void
 136__xfs_free_perag(
 137        struct rcu_head *head)
 138{
 139        struct xfs_perag *pag = container_of(head, struct xfs_perag, rcu_head);
 140
 141        ASSERT(atomic_read(&pag->pag_ref) == 0);
 142        kmem_free(pag);
 143}
 144
 145/*
 146 * Free up the per-ag resources associated with the mount structure.
 147 */
 148STATIC void
 149xfs_free_perag(
 150        xfs_mount_t     *mp)
 151{
 152        xfs_agnumber_t  agno;
 153        struct xfs_perag *pag;
 154
 155        for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
 156                spin_lock(&mp->m_perag_lock);
 157                pag = radix_tree_delete(&mp->m_perag_tree, agno);
 158                spin_unlock(&mp->m_perag_lock);
 159                ASSERT(pag);
 160                ASSERT(atomic_read(&pag->pag_ref) == 0);
 161                call_rcu(&pag->rcu_head, __xfs_free_perag);
 162        }
 163}
 164
 165/*
 166 * Check size of device based on the (data/realtime) block count.
 167 * Note: this check is used by the growfs code as well as mount.
 168 */
 169int
 170xfs_sb_validate_fsb_count(
 171        xfs_sb_t        *sbp,
 172        __uint64_t      nblocks)
 173{
 174        ASSERT(PAGE_SHIFT >= sbp->sb_blocklog);
 175        ASSERT(sbp->sb_blocklog >= BBSHIFT);
 176
 177        /* Limited by ULONG_MAX of page cache index */
 178        if (nblocks >> (PAGE_CACHE_SHIFT - sbp->sb_blocklog) > ULONG_MAX)
 179                return -EFBIG;
 180        return 0;
 181}
 182
 183int
 184xfs_initialize_perag(
 185        xfs_mount_t     *mp,
 186        xfs_agnumber_t  agcount,
 187        xfs_agnumber_t  *maxagi)
 188{
 189        xfs_agnumber_t  index;
 190        xfs_agnumber_t  first_initialised = 0;
 191        xfs_perag_t     *pag;
 192        xfs_agino_t     agino;
 193        xfs_ino_t       ino;
 194        xfs_sb_t        *sbp = &mp->m_sb;
 195        int             error = -ENOMEM;
 196
 197        /*
 198         * Walk the current per-ag tree so we don't try to initialise AGs
 199         * that already exist (growfs case). Allocate and insert all the
 200         * AGs we don't find ready for initialisation.
 201         */
 202        for (index = 0; index < agcount; index++) {
 203                pag = xfs_perag_get(mp, index);
 204                if (pag) {
 205                        xfs_perag_put(pag);
 206                        continue;
 207                }
 208                if (!first_initialised)
 209                        first_initialised = index;
 210
 211                pag = kmem_zalloc(sizeof(*pag), KM_MAYFAIL);
 212                if (!pag)
 213                        goto out_unwind;
 214                pag->pag_agno = index;
 215                pag->pag_mount = mp;
 216                spin_lock_init(&pag->pag_ici_lock);
 217                mutex_init(&pag->pag_ici_reclaim_lock);
 218                INIT_RADIX_TREE(&pag->pag_ici_root, GFP_ATOMIC);
 219                spin_lock_init(&pag->pag_buf_lock);
 220                pag->pag_buf_tree = RB_ROOT;
 221
 222                if (radix_tree_preload(GFP_NOFS))
 223                        goto out_unwind;
 224
 225                spin_lock(&mp->m_perag_lock);
 226                if (radix_tree_insert(&mp->m_perag_tree, index, pag)) {
 227                        BUG();
 228                        spin_unlock(&mp->m_perag_lock);
 229                        radix_tree_preload_end();
 230                        error = -EEXIST;
 231                        goto out_unwind;
 232                }
 233                spin_unlock(&mp->m_perag_lock);
 234                radix_tree_preload_end();
 235        }
 236
 237        /*
 238         * If we mount with the inode64 option, or no inode overflows
 239         * the legacy 32-bit address space clear the inode32 option.
 240         */
 241        agino = XFS_OFFBNO_TO_AGINO(mp, sbp->sb_agblocks - 1, 0);
 242        ino = XFS_AGINO_TO_INO(mp, agcount - 1, agino);
 243
 244        if ((mp->m_flags & XFS_MOUNT_SMALL_INUMS) && ino > XFS_MAXINUMBER_32)
 245                mp->m_flags |= XFS_MOUNT_32BITINODES;
 246        else
 247                mp->m_flags &= ~XFS_MOUNT_32BITINODES;
 248
 249        if (mp->m_flags & XFS_MOUNT_32BITINODES)
 250                index = xfs_set_inode32(mp, agcount);
 251        else
 252                index = xfs_set_inode64(mp, agcount);
 253
 254        if (maxagi)
 255                *maxagi = index;
 256        return 0;
 257
 258out_unwind:
 259        kmem_free(pag);
 260        for (; index > first_initialised; index--) {
 261                pag = radix_tree_delete(&mp->m_perag_tree, index);
 262                kmem_free(pag);
 263        }
 264        return error;
 265}
 266
 267/*
 268 * xfs_readsb
 269 *
 270 * Does the initial read of the superblock.
 271 */
 272int
 273xfs_readsb(
 274        struct xfs_mount *mp,
 275        int             flags)
 276{
 277        unsigned int    sector_size;
 278        struct xfs_buf  *bp;
 279        struct xfs_sb   *sbp = &mp->m_sb;
 280        int             error;
 281        int             loud = !(flags & XFS_MFSI_QUIET);
 282        const struct xfs_buf_ops *buf_ops;
 283
 284        ASSERT(mp->m_sb_bp == NULL);
 285        ASSERT(mp->m_ddev_targp != NULL);
 286
 287        /*
 288         * For the initial read, we must guess at the sector
 289         * size based on the block device.  It's enough to
 290         * get the sb_sectsize out of the superblock and
 291         * then reread with the proper length.
 292         * We don't verify it yet, because it may not be complete.
 293         */
 294        sector_size = xfs_getsize_buftarg(mp->m_ddev_targp);
 295        buf_ops = NULL;
 296
 297        /*
 298         * Allocate a (locked) buffer to hold the superblock.
 299         * This will be kept around at all times to optimize
 300         * access to the superblock.
 301         */
 302reread:
 303        error = xfs_buf_read_uncached(mp->m_ddev_targp, XFS_SB_DADDR,
 304                                   BTOBB(sector_size), 0, &bp, buf_ops);
 305        if (error) {
 306                if (loud)
 307                        xfs_warn(mp, "SB validate failed with error %d.", error);
 308                /* bad CRC means corrupted metadata */
 309                if (error == -EFSBADCRC)
 310                        error = -EFSCORRUPTED;
 311                return error;
 312        }
 313
 314        /*
 315         * Initialize the mount structure from the superblock.
 316         */
 317        xfs_sb_from_disk(sbp, XFS_BUF_TO_SBP(bp));
 318
 319        /*
 320         * If we haven't validated the superblock, do so now before we try
 321         * to check the sector size and reread the superblock appropriately.
 322         */
 323        if (sbp->sb_magicnum != XFS_SB_MAGIC) {
 324                if (loud)
 325                        xfs_warn(mp, "Invalid superblock magic number");
 326                error = -EINVAL;
 327                goto release_buf;
 328        }
 329
 330        /*
 331         * We must be able to do sector-sized and sector-aligned IO.
 332         */
 333        if (sector_size > sbp->sb_sectsize) {
 334                if (loud)
 335                        xfs_warn(mp, "device supports %u byte sectors (not %u)",
 336                                sector_size, sbp->sb_sectsize);
 337                error = -ENOSYS;
 338                goto release_buf;
 339        }
 340
 341        if (buf_ops == NULL) {
 342                /*
 343                 * Re-read the superblock so the buffer is correctly sized,
 344                 * and properly verified.
 345                 */
 346                xfs_buf_relse(bp);
 347                sector_size = sbp->sb_sectsize;
 348                buf_ops = loud ? &xfs_sb_buf_ops : &xfs_sb_quiet_buf_ops;
 349                goto reread;
 350        }
 351
 352        /* Initialize per-cpu counters */
 353        xfs_icsb_reinit_counters(mp);
 354
 355        /* no need to be quiet anymore, so reset the buf ops */
 356        bp->b_ops = &xfs_sb_buf_ops;
 357
 358        mp->m_sb_bp = bp;
 359        xfs_buf_unlock(bp);
 360        return 0;
 361
 362release_buf:
 363        xfs_buf_relse(bp);
 364        return error;
 365}
 366
 367/*
 368 * Update alignment values based on mount options and sb values
 369 */
 370STATIC int
 371xfs_update_alignment(xfs_mount_t *mp)
 372{
 373        xfs_sb_t        *sbp = &(mp->m_sb);
 374
 375        if (mp->m_dalign) {
 376                /*
 377                 * If stripe unit and stripe width are not multiples
 378                 * of the fs blocksize turn off alignment.
 379                 */
 380                if ((BBTOB(mp->m_dalign) & mp->m_blockmask) ||
 381                    (BBTOB(mp->m_swidth) & mp->m_blockmask)) {
 382                        xfs_warn(mp,
 383                "alignment check failed: sunit/swidth vs. blocksize(%d)",
 384                                sbp->sb_blocksize);
 385                        return -EINVAL;
 386                } else {
 387                        /*
 388                         * Convert the stripe unit and width to FSBs.
 389                         */
 390                        mp->m_dalign = XFS_BB_TO_FSBT(mp, mp->m_dalign);
 391                        if (mp->m_dalign && (sbp->sb_agblocks % mp->m_dalign)) {
 392                                xfs_warn(mp,
 393                        "alignment check failed: sunit/swidth vs. agsize(%d)",
 394                                         sbp->sb_agblocks);
 395                                return -EINVAL;
 396                        } else if (mp->m_dalign) {
 397                                mp->m_swidth = XFS_BB_TO_FSBT(mp, mp->m_swidth);
 398                        } else {
 399                                xfs_warn(mp,
 400                        "alignment check failed: sunit(%d) less than bsize(%d)",
 401                                         mp->m_dalign, sbp->sb_blocksize);
 402                                return -EINVAL;
 403                        }
 404                }
 405
 406                /*
 407                 * Update superblock with new values
 408                 * and log changes
 409                 */
 410                if (xfs_sb_version_hasdalign(sbp)) {
 411                        if (sbp->sb_unit != mp->m_dalign) {
 412                                sbp->sb_unit = mp->m_dalign;
 413                                mp->m_update_flags |= XFS_SB_UNIT;
 414                        }
 415                        if (sbp->sb_width != mp->m_swidth) {
 416                                sbp->sb_width = mp->m_swidth;
 417                                mp->m_update_flags |= XFS_SB_WIDTH;
 418                        }
 419                } else {
 420                        xfs_warn(mp,
 421        "cannot change alignment: superblock does not support data alignment");
 422                        return -EINVAL;
 423                }
 424        } else if ((mp->m_flags & XFS_MOUNT_NOALIGN) != XFS_MOUNT_NOALIGN &&
 425                    xfs_sb_version_hasdalign(&mp->m_sb)) {
 426                        mp->m_dalign = sbp->sb_unit;
 427                        mp->m_swidth = sbp->sb_width;
 428        }
 429
 430        return 0;
 431}
 432
 433/*
 434 * Set the maximum inode count for this filesystem
 435 */
 436STATIC void
 437xfs_set_maxicount(xfs_mount_t *mp)
 438{
 439        xfs_sb_t        *sbp = &(mp->m_sb);
 440        __uint64_t      icount;
 441
 442        if (sbp->sb_imax_pct) {
 443                /*
 444                 * Make sure the maximum inode count is a multiple
 445                 * of the units we allocate inodes in.
 446                 */
 447                icount = sbp->sb_dblocks * sbp->sb_imax_pct;
 448                do_div(icount, 100);
 449                do_div(icount, mp->m_ialloc_blks);
 450                mp->m_maxicount = (icount * mp->m_ialloc_blks)  <<
 451                                   sbp->sb_inopblog;
 452        } else {
 453                mp->m_maxicount = 0;
 454        }
 455}
 456
 457/*
 458 * Set the default minimum read and write sizes unless
 459 * already specified in a mount option.
 460 * We use smaller I/O sizes when the file system
 461 * is being used for NFS service (wsync mount option).
 462 */
 463STATIC void
 464xfs_set_rw_sizes(xfs_mount_t *mp)
 465{
 466        xfs_sb_t        *sbp = &(mp->m_sb);
 467        int             readio_log, writeio_log;
 468
 469        if (!(mp->m_flags & XFS_MOUNT_DFLT_IOSIZE)) {
 470                if (mp->m_flags & XFS_MOUNT_WSYNC) {
 471                        readio_log = XFS_WSYNC_READIO_LOG;
 472                        writeio_log = XFS_WSYNC_WRITEIO_LOG;
 473                } else {
 474                        readio_log = XFS_READIO_LOG_LARGE;
 475                        writeio_log = XFS_WRITEIO_LOG_LARGE;
 476                }
 477        } else {
 478                readio_log = mp->m_readio_log;
 479                writeio_log = mp->m_writeio_log;
 480        }
 481
 482        if (sbp->sb_blocklog > readio_log) {
 483                mp->m_readio_log = sbp->sb_blocklog;
 484        } else {
 485                mp->m_readio_log = readio_log;
 486        }
 487        mp->m_readio_blocks = 1 << (mp->m_readio_log - sbp->sb_blocklog);
 488        if (sbp->sb_blocklog > writeio_log) {
 489                mp->m_writeio_log = sbp->sb_blocklog;
 490        } else {
 491                mp->m_writeio_log = writeio_log;
 492        }
 493        mp->m_writeio_blocks = 1 << (mp->m_writeio_log - sbp->sb_blocklog);
 494}
 495
 496/*
 497 * precalculate the low space thresholds for dynamic speculative preallocation.
 498 */
 499void
 500xfs_set_low_space_thresholds(
 501        struct xfs_mount        *mp)
 502{
 503        int i;
 504
 505        for (i = 0; i < XFS_LOWSP_MAX; i++) {
 506                __uint64_t space = mp->m_sb.sb_dblocks;
 507
 508                do_div(space, 100);
 509                mp->m_low_space[i] = space * (i + 1);
 510        }
 511}
 512
 513
 514/*
 515 * Set whether we're using inode alignment.
 516 */
 517STATIC void
 518xfs_set_inoalignment(xfs_mount_t *mp)
 519{
 520        if (xfs_sb_version_hasalign(&mp->m_sb) &&
 521            mp->m_sb.sb_inoalignmt >=
 522            XFS_B_TO_FSBT(mp, mp->m_inode_cluster_size))
 523                mp->m_inoalign_mask = mp->m_sb.sb_inoalignmt - 1;
 524        else
 525                mp->m_inoalign_mask = 0;
 526        /*
 527         * If we are using stripe alignment, check whether
 528         * the stripe unit is a multiple of the inode alignment
 529         */
 530        if (mp->m_dalign && mp->m_inoalign_mask &&
 531            !(mp->m_dalign & mp->m_inoalign_mask))
 532                mp->m_sinoalign = mp->m_dalign;
 533        else
 534                mp->m_sinoalign = 0;
 535}
 536
 537/*
 538 * Check that the data (and log if separate) is an ok size.
 539 */
 540STATIC int
 541xfs_check_sizes(
 542        struct xfs_mount *mp)
 543{
 544        struct xfs_buf  *bp;
 545        xfs_daddr_t     d;
 546        int             error;
 547
 548        d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks);
 549        if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_dblocks) {
 550                xfs_warn(mp, "filesystem size mismatch detected");
 551                return -EFBIG;
 552        }
 553        error = xfs_buf_read_uncached(mp->m_ddev_targp,
 554                                        d - XFS_FSS_TO_BB(mp, 1),
 555                                        XFS_FSS_TO_BB(mp, 1), 0, &bp, NULL);
 556        if (error) {
 557                xfs_warn(mp, "last sector read failed");
 558                return error;
 559        }
 560        xfs_buf_relse(bp);
 561
 562        if (mp->m_logdev_targp == mp->m_ddev_targp)
 563                return 0;
 564
 565        d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_logblocks);
 566        if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_logblocks) {
 567                xfs_warn(mp, "log size mismatch detected");
 568                return -EFBIG;
 569        }
 570        error = xfs_buf_read_uncached(mp->m_logdev_targp,
 571                                        d - XFS_FSB_TO_BB(mp, 1),
 572                                        XFS_FSB_TO_BB(mp, 1), 0, &bp, NULL);
 573        if (error) {
 574                xfs_warn(mp, "log device read failed");
 575                return error;
 576        }
 577        xfs_buf_relse(bp);
 578        return 0;
 579}
 580
 581/*
 582 * Clear the quotaflags in memory and in the superblock.
 583 */
 584int
 585xfs_mount_reset_sbqflags(
 586        struct xfs_mount        *mp)
 587{
 588        int                     error;
 589        struct xfs_trans        *tp;
 590
 591        mp->m_qflags = 0;
 592
 593        /*
 594         * It is OK to look at sb_qflags here in mount path,
 595         * without m_sb_lock.
 596         */
 597        if (mp->m_sb.sb_qflags == 0)
 598                return 0;
 599        spin_lock(&mp->m_sb_lock);
 600        mp->m_sb.sb_qflags = 0;
 601        spin_unlock(&mp->m_sb_lock);
 602
 603        /*
 604         * If the fs is readonly, let the incore superblock run
 605         * with quotas off but don't flush the update out to disk
 606         */
 607        if (mp->m_flags & XFS_MOUNT_RDONLY)
 608                return 0;
 609
 610        tp = xfs_trans_alloc(mp, XFS_TRANS_QM_SBCHANGE);
 611        error = xfs_trans_reserve(tp, &M_RES(mp)->tr_qm_sbchange, 0, 0);
 612        if (error) {
 613                xfs_trans_cancel(tp, 0);
 614                xfs_alert(mp, "%s: Superblock update failed!", __func__);
 615                return error;
 616        }
 617
 618        xfs_mod_sb(tp, XFS_SB_QFLAGS);
 619        return xfs_trans_commit(tp, 0);
 620}
 621
 622__uint64_t
 623xfs_default_resblks(xfs_mount_t *mp)
 624{
 625        __uint64_t resblks;
 626
 627        /*
 628         * We default to 5% or 8192 fsbs of space reserved, whichever is
 629         * smaller.  This is intended to cover concurrent allocation
 630         * transactions when we initially hit enospc. These each require a 4
 631         * block reservation. Hence by default we cover roughly 2000 concurrent
 632         * allocation reservations.
 633         */
 634        resblks = mp->m_sb.sb_dblocks;
 635        do_div(resblks, 20);
 636        resblks = min_t(__uint64_t, resblks, 8192);
 637        return resblks;
 638}
 639
 640/*
 641 * This function does the following on an initial mount of a file system:
 642 *      - reads the superblock from disk and init the mount struct
 643 *      - if we're a 32-bit kernel, do a size check on the superblock
 644 *              so we don't mount terabyte filesystems
 645 *      - init mount struct realtime fields
 646 *      - allocate inode hash table for fs
 647 *      - init directory manager
 648 *      - perform recovery and init the log manager
 649 */
 650int
 651xfs_mountfs(
 652        xfs_mount_t     *mp)
 653{
 654        xfs_sb_t        *sbp = &(mp->m_sb);
 655        xfs_inode_t     *rip;
 656        __uint64_t      resblks;
 657        uint            quotamount = 0;
 658        uint            quotaflags = 0;
 659        int             error = 0;
 660
 661        xfs_sb_mount_common(mp, sbp);
 662
 663        /*
 664         * Check for a mismatched features2 values.  Older kernels
 665         * read & wrote into the wrong sb offset for sb_features2
 666         * on some platforms due to xfs_sb_t not being 64bit size aligned
 667         * when sb_features2 was added, which made older superblock
 668         * reading/writing routines swap it as a 64-bit value.
 669         *
 670         * For backwards compatibility, we make both slots equal.
 671         *
 672         * If we detect a mismatched field, we OR the set bits into the
 673         * existing features2 field in case it has already been modified; we
 674         * don't want to lose any features.  We then update the bad location
 675         * with the ORed value so that older kernels will see any features2
 676         * flags, and mark the two fields as needing updates once the
 677         * transaction subsystem is online.
 678         */
 679        if (xfs_sb_has_mismatched_features2(sbp)) {
 680                xfs_warn(mp, "correcting sb_features alignment problem");
 681                sbp->sb_features2 |= sbp->sb_bad_features2;
 682                sbp->sb_bad_features2 = sbp->sb_features2;
 683                mp->m_update_flags |= XFS_SB_FEATURES2 | XFS_SB_BAD_FEATURES2;
 684
 685                /*
 686                 * Re-check for ATTR2 in case it was found in bad_features2
 687                 * slot.
 688                 */
 689                if (xfs_sb_version_hasattr2(&mp->m_sb) &&
 690                   !(mp->m_flags & XFS_MOUNT_NOATTR2))
 691                        mp->m_flags |= XFS_MOUNT_ATTR2;
 692        }
 693
 694        if (xfs_sb_version_hasattr2(&mp->m_sb) &&
 695           (mp->m_flags & XFS_MOUNT_NOATTR2)) {
 696                xfs_sb_version_removeattr2(&mp->m_sb);
 697                mp->m_update_flags |= XFS_SB_FEATURES2;
 698
 699                /* update sb_versionnum for the clearing of the morebits */
 700                if (!sbp->sb_features2)
 701                        mp->m_update_flags |= XFS_SB_VERSIONNUM;
 702        }
 703
 704        /* always use v2 inodes by default now */
 705        if (!(mp->m_sb.sb_versionnum & XFS_SB_VERSION_NLINKBIT)) {
 706                mp->m_sb.sb_versionnum |= XFS_SB_VERSION_NLINKBIT;
 707                mp->m_update_flags |= XFS_SB_VERSIONNUM;
 708        }
 709
 710        /*
 711         * Check if sb_agblocks is aligned at stripe boundary
 712         * If sb_agblocks is NOT aligned turn off m_dalign since
 713         * allocator alignment is within an ag, therefore ag has
 714         * to be aligned at stripe boundary.
 715         */
 716        error = xfs_update_alignment(mp);
 717        if (error)
 718                goto out;
 719
 720        xfs_alloc_compute_maxlevels(mp);
 721        xfs_bmap_compute_maxlevels(mp, XFS_DATA_FORK);
 722        xfs_bmap_compute_maxlevels(mp, XFS_ATTR_FORK);
 723        xfs_ialloc_compute_maxlevels(mp);
 724
 725        xfs_set_maxicount(mp);
 726
 727        error = xfs_sysfs_init(&mp->m_kobj, &xfs_mp_ktype, NULL, mp->m_fsname);
 728        if (error)
 729                goto out;
 730
 731        error = xfs_uuid_mount(mp);
 732        if (error)
 733                goto out_remove_sysfs;
 734
 735        /*
 736         * Set the minimum read and write sizes
 737         */
 738        xfs_set_rw_sizes(mp);
 739
 740        /* set the low space thresholds for dynamic preallocation */
 741        xfs_set_low_space_thresholds(mp);
 742
 743        /*
 744         * Set the inode cluster size.
 745         * This may still be overridden by the file system
 746         * block size if it is larger than the chosen cluster size.
 747         *
 748         * For v5 filesystems, scale the cluster size with the inode size to
 749         * keep a constant ratio of inode per cluster buffer, but only if mkfs
 750         * has set the inode alignment value appropriately for larger cluster
 751         * sizes.
 752         */
 753        mp->m_inode_cluster_size = XFS_INODE_BIG_CLUSTER_SIZE;
 754        if (xfs_sb_version_hascrc(&mp->m_sb)) {
 755                int     new_size = mp->m_inode_cluster_size;
 756
 757                new_size *= mp->m_sb.sb_inodesize / XFS_DINODE_MIN_SIZE;
 758                if (mp->m_sb.sb_inoalignmt >= XFS_B_TO_FSBT(mp, new_size))
 759                        mp->m_inode_cluster_size = new_size;
 760        }
 761
 762        /*
 763         * Set inode alignment fields
 764         */
 765        xfs_set_inoalignment(mp);
 766
 767        /*
 768         * Check that the data (and log if separate) is an ok size.
 769         */
 770        error = xfs_check_sizes(mp);
 771        if (error)
 772                goto out_remove_uuid;
 773
 774        /*
 775         * Initialize realtime fields in the mount structure
 776         */
 777        error = xfs_rtmount_init(mp);
 778        if (error) {
 779                xfs_warn(mp, "RT mount failed");
 780                goto out_remove_uuid;
 781        }
 782
 783        /*
 784         *  Copies the low order bits of the timestamp and the randomly
 785         *  set "sequence" number out of a UUID.
 786         */
 787        uuid_getnodeuniq(&sbp->sb_uuid, mp->m_fixedfsid);
 788
 789        mp->m_dmevmask = 0;     /* not persistent; set after each mount */
 790
 791        error = xfs_da_mount(mp);
 792        if (error) {
 793                xfs_warn(mp, "Failed dir/attr init: %d", error);
 794                goto out_remove_uuid;
 795        }
 796
 797        /*
 798         * Initialize the precomputed transaction reservations values.
 799         */
 800        xfs_trans_init(mp);
 801
 802        /*
 803         * Allocate and initialize the per-ag data.
 804         */
 805        spin_lock_init(&mp->m_perag_lock);
 806        INIT_RADIX_TREE(&mp->m_perag_tree, GFP_ATOMIC);
 807        error = xfs_initialize_perag(mp, sbp->sb_agcount, &mp->m_maxagi);
 808        if (error) {
 809                xfs_warn(mp, "Failed per-ag init: %d", error);
 810                goto out_free_dir;
 811        }
 812
 813        if (!sbp->sb_logblocks) {
 814                xfs_warn(mp, "no log defined");
 815                XFS_ERROR_REPORT("xfs_mountfs", XFS_ERRLEVEL_LOW, mp);
 816                error = -EFSCORRUPTED;
 817                goto out_free_perag;
 818        }
 819
 820        /*
 821         * log's mount-time initialization. Perform 1st part recovery if needed
 822         */
 823        error = xfs_log_mount(mp, mp->m_logdev_targp,
 824                              XFS_FSB_TO_DADDR(mp, sbp->sb_logstart),
 825                              XFS_FSB_TO_BB(mp, sbp->sb_logblocks));
 826        if (error) {
 827                xfs_warn(mp, "log mount failed");
 828                goto out_fail_wait;
 829        }
 830
 831        /*
 832         * Now the log is mounted, we know if it was an unclean shutdown or
 833         * not. If it was, with the first phase of recovery has completed, we
 834         * have consistent AG blocks on disk. We have not recovered EFIs yet,
 835         * but they are recovered transactionally in the second recovery phase
 836         * later.
 837         *
 838         * Hence we can safely re-initialise incore superblock counters from
 839         * the per-ag data. These may not be correct if the filesystem was not
 840         * cleanly unmounted, so we need to wait for recovery to finish before
 841         * doing this.
 842         *
 843         * If the filesystem was cleanly unmounted, then we can trust the
 844         * values in the superblock to be correct and we don't need to do
 845         * anything here.
 846         *
 847         * If we are currently making the filesystem, the initialisation will
 848         * fail as the perag data is in an undefined state.
 849         */
 850        if (xfs_sb_version_haslazysbcount(&mp->m_sb) &&
 851            !XFS_LAST_UNMOUNT_WAS_CLEAN(mp) &&
 852             !mp->m_sb.sb_inprogress) {
 853                error = xfs_initialize_perag_data(mp, sbp->sb_agcount);
 854                if (error)
 855                        goto out_log_dealloc;
 856        }
 857
 858        /*
 859         * Get and sanity-check the root inode.
 860         * Save the pointer to it in the mount structure.
 861         */
 862        error = xfs_iget(mp, NULL, sbp->sb_rootino, 0, XFS_ILOCK_EXCL, &rip);
 863        if (error) {
 864                xfs_warn(mp, "failed to read root inode");
 865                goto out_log_dealloc;
 866        }
 867
 868        ASSERT(rip != NULL);
 869
 870        if (unlikely(!S_ISDIR(rip->i_d.di_mode))) {
 871                xfs_warn(mp, "corrupted root inode %llu: not a directory",
 872                        (unsigned long long)rip->i_ino);
 873                xfs_iunlock(rip, XFS_ILOCK_EXCL);
 874                XFS_ERROR_REPORT("xfs_mountfs_int(2)", XFS_ERRLEVEL_LOW,
 875                                 mp);
 876                error = -EFSCORRUPTED;
 877                goto out_rele_rip;
 878        }
 879        mp->m_rootip = rip;     /* save it */
 880
 881        xfs_iunlock(rip, XFS_ILOCK_EXCL);
 882
 883        /*
 884         * Initialize realtime inode pointers in the mount structure
 885         */
 886        error = xfs_rtmount_inodes(mp);
 887        if (error) {
 888                /*
 889                 * Free up the root inode.
 890                 */
 891                xfs_warn(mp, "failed to read RT inodes");
 892                goto out_rele_rip;
 893        }
 894
 895        /*
 896         * If this is a read-only mount defer the superblock updates until
 897         * the next remount into writeable mode.  Otherwise we would never
 898         * perform the update e.g. for the root filesystem.
 899         */
 900        if (mp->m_update_flags && !(mp->m_flags & XFS_MOUNT_RDONLY)) {
 901                error = xfs_mount_log_sb(mp, mp->m_update_flags);
 902                if (error) {
 903                        xfs_warn(mp, "failed to write sb changes");
 904                        goto out_rtunmount;
 905                }
 906        }
 907
 908        /*
 909         * Initialise the XFS quota management subsystem for this mount
 910         */
 911        if (XFS_IS_QUOTA_RUNNING(mp)) {
 912                error = xfs_qm_newmount(mp, &quotamount, &quotaflags);
 913                if (error)
 914                        goto out_rtunmount;
 915        } else {
 916                ASSERT(!XFS_IS_QUOTA_ON(mp));
 917
 918                /*
 919                 * If a file system had quotas running earlier, but decided to
 920                 * mount without -o uquota/pquota/gquota options, revoke the
 921                 * quotachecked license.
 922                 */
 923                if (mp->m_sb.sb_qflags & XFS_ALL_QUOTA_ACCT) {
 924                        xfs_notice(mp, "resetting quota flags");
 925                        error = xfs_mount_reset_sbqflags(mp);
 926                        if (error)
 927                                goto out_rtunmount;
 928                }
 929        }
 930
 931        /*
 932         * Finish recovering the file system.  This part needed to be
 933         * delayed until after the root and real-time bitmap inodes
 934         * were consistently read in.
 935         */
 936        error = xfs_log_mount_finish(mp);
 937        if (error) {
 938                xfs_warn(mp, "log mount finish failed");
 939                goto out_rtunmount;
 940        }
 941
 942        /*
 943         * Complete the quota initialisation, post-log-replay component.
 944         */
 945        if (quotamount) {
 946                ASSERT(mp->m_qflags == 0);
 947                mp->m_qflags = quotaflags;
 948
 949                xfs_qm_mount_quotas(mp);
 950        }
 951
 952        /*
 953         * Now we are mounted, reserve a small amount of unused space for
 954         * privileged transactions. This is needed so that transaction
 955         * space required for critical operations can dip into this pool
 956         * when at ENOSPC. This is needed for operations like create with
 957         * attr, unwritten extent conversion at ENOSPC, etc. Data allocations
 958         * are not allowed to use this reserved space.
 959         *
 960         * This may drive us straight to ENOSPC on mount, but that implies
 961         * we were already there on the last unmount. Warn if this occurs.
 962         */
 963        if (!(mp->m_flags & XFS_MOUNT_RDONLY)) {
 964                resblks = xfs_default_resblks(mp);
 965                error = xfs_reserve_blocks(mp, &resblks, NULL);
 966                if (error)
 967                        xfs_warn(mp,
 968        "Unable to allocate reserve blocks. Continuing without reserve pool.");
 969        }
 970
 971        return 0;
 972
 973 out_rtunmount:
 974        xfs_rtunmount_inodes(mp);
 975 out_rele_rip:
 976        IRELE(rip);
 977 out_log_dealloc:
 978        xfs_log_unmount(mp);
 979 out_fail_wait:
 980        if (mp->m_logdev_targp && mp->m_logdev_targp != mp->m_ddev_targp)
 981                xfs_wait_buftarg(mp->m_logdev_targp);
 982        xfs_wait_buftarg(mp->m_ddev_targp);
 983 out_free_perag:
 984        xfs_free_perag(mp);
 985 out_free_dir:
 986        xfs_da_unmount(mp);
 987 out_remove_uuid:
 988        xfs_uuid_unmount(mp);
 989 out_remove_sysfs:
 990        xfs_sysfs_del(&mp->m_kobj);
 991 out:
 992        return error;
 993}
 994
 995/*
 996 * This flushes out the inodes,dquots and the superblock, unmounts the
 997 * log and makes sure that incore structures are freed.
 998 */
 999void
1000xfs_unmountfs(
1001        struct xfs_mount        *mp)
1002{
1003        __uint64_t              resblks;
1004        int                     error;
1005
1006        cancel_delayed_work_sync(&mp->m_eofblocks_work);
1007
1008        xfs_qm_unmount_quotas(mp);
1009        xfs_rtunmount_inodes(mp);
1010        IRELE(mp->m_rootip);
1011
1012        /*
1013         * We can potentially deadlock here if we have an inode cluster
1014         * that has been freed has its buffer still pinned in memory because
1015         * the transaction is still sitting in a iclog. The stale inodes
1016         * on that buffer will have their flush locks held until the
1017         * transaction hits the disk and the callbacks run. the inode
1018         * flush takes the flush lock unconditionally and with nothing to
1019         * push out the iclog we will never get that unlocked. hence we
1020         * need to force the log first.
1021         */
1022        xfs_log_force(mp, XFS_LOG_SYNC);
1023
1024        /*
1025         * Flush all pending changes from the AIL.
1026         */
1027        xfs_ail_push_all_sync(mp->m_ail);
1028
1029        /*
1030         * And reclaim all inodes.  At this point there should be no dirty
1031         * inodes and none should be pinned or locked, but use synchronous
1032         * reclaim just to be sure. We can stop background inode reclaim
1033         * here as well if it is still running.
1034         */
1035        cancel_delayed_work_sync(&mp->m_reclaim_work);
1036        xfs_reclaim_inodes(mp, SYNC_WAIT);
1037
1038        xfs_qm_unmount(mp);
1039
1040        /*
1041         * Unreserve any blocks we have so that when we unmount we don't account
1042         * the reserved free space as used. This is really only necessary for
1043         * lazy superblock counting because it trusts the incore superblock
1044         * counters to be absolutely correct on clean unmount.
1045         *
1046         * We don't bother correcting this elsewhere for lazy superblock
1047         * counting because on mount of an unclean filesystem we reconstruct the
1048         * correct counter value and this is irrelevant.
1049         *
1050         * For non-lazy counter filesystems, this doesn't matter at all because
1051         * we only every apply deltas to the superblock and hence the incore
1052         * value does not matter....
1053         */
1054        resblks = 0;
1055        error = xfs_reserve_blocks(mp, &resblks, NULL);
1056        if (error)
1057                xfs_warn(mp, "Unable to free reserved block pool. "
1058                                "Freespace may not be correct on next mount.");
1059
1060        error = xfs_log_sbcount(mp);
1061        if (error)
1062                xfs_warn(mp, "Unable to update superblock counters. "
1063                                "Freespace may not be correct on next mount.");
1064
1065        xfs_log_unmount(mp);
1066        xfs_da_unmount(mp);
1067        xfs_uuid_unmount(mp);
1068
1069#if defined(DEBUG)
1070        xfs_errortag_clearall(mp, 0);
1071#endif
1072        xfs_free_perag(mp);
1073
1074        xfs_sysfs_del(&mp->m_kobj);
1075}
1076
1077int
1078xfs_fs_writable(xfs_mount_t *mp)
1079{
1080        return !(mp->m_super->s_writers.frozen || XFS_FORCED_SHUTDOWN(mp) ||
1081                (mp->m_flags & XFS_MOUNT_RDONLY));
1082}
1083
1084/*
1085 * xfs_log_sbcount
1086 *
1087 * Sync the superblock counters to disk.
1088 *
1089 * Note this code can be called during the process of freezing, so
1090 * we may need to use the transaction allocator which does not
1091 * block when the transaction subsystem is in its frozen state.
1092 */
1093int
1094xfs_log_sbcount(xfs_mount_t *mp)
1095{
1096        xfs_trans_t     *tp;
1097        int             error;
1098
1099        if (!xfs_fs_writable(mp))
1100                return 0;
1101
1102        xfs_icsb_sync_counters(mp, 0);
1103
1104        /*
1105         * we don't need to do this if we are updating the superblock
1106         * counters on every modification.
1107         */
1108        if (!xfs_sb_version_haslazysbcount(&mp->m_sb))
1109                return 0;
1110
1111        tp = _xfs_trans_alloc(mp, XFS_TRANS_SB_COUNT, KM_SLEEP);
1112        error = xfs_trans_reserve(tp, &M_RES(mp)->tr_sb, 0, 0);
1113        if (error) {
1114                xfs_trans_cancel(tp, 0);
1115                return error;
1116        }
1117
1118        xfs_mod_sb(tp, XFS_SB_IFREE | XFS_SB_ICOUNT | XFS_SB_FDBLOCKS);
1119        xfs_trans_set_sync(tp);
1120        error = xfs_trans_commit(tp, 0);
1121        return error;
1122}
1123
1124/*
1125 * xfs_mod_incore_sb_unlocked() is a utility routine commonly used to apply
1126 * a delta to a specified field in the in-core superblock.  Simply
1127 * switch on the field indicated and apply the delta to that field.
1128 * Fields are not allowed to dip below zero, so if the delta would
1129 * do this do not apply it and return EINVAL.
1130 *
1131 * The m_sb_lock must be held when this routine is called.
1132 */
1133STATIC int
1134xfs_mod_incore_sb_unlocked(
1135        xfs_mount_t     *mp,
1136        xfs_sb_field_t  field,
1137        int64_t         delta,
1138        int             rsvd)
1139{
1140        int             scounter;       /* short counter for 32 bit fields */
1141        long long       lcounter;       /* long counter for 64 bit fields */
1142        long long       res_used, rem;
1143
1144        /*
1145         * With the in-core superblock spin lock held, switch
1146         * on the indicated field.  Apply the delta to the
1147         * proper field.  If the fields value would dip below
1148         * 0, then do not apply the delta and return EINVAL.
1149         */
1150        switch (field) {
1151        case XFS_SBS_ICOUNT:
1152                lcounter = (long long)mp->m_sb.sb_icount;
1153                lcounter += delta;
1154                if (lcounter < 0) {
1155                        ASSERT(0);
1156                        return -EINVAL;
1157                }
1158                mp->m_sb.sb_icount = lcounter;
1159                return 0;
1160        case XFS_SBS_IFREE:
1161                lcounter = (long long)mp->m_sb.sb_ifree;
1162                lcounter += delta;
1163                if (lcounter < 0) {
1164                        ASSERT(0);
1165                        return -EINVAL;
1166                }
1167                mp->m_sb.sb_ifree = lcounter;
1168                return 0;
1169        case XFS_SBS_FDBLOCKS:
1170                lcounter = (long long)
1171                        mp->m_sb.sb_fdblocks - XFS_ALLOC_SET_ASIDE(mp);
1172                res_used = (long long)(mp->m_resblks - mp->m_resblks_avail);
1173
1174                if (delta > 0) {                /* Putting blocks back */
1175                        if (res_used > delta) {
1176                                mp->m_resblks_avail += delta;
1177                        } else {
1178                                rem = delta - res_used;
1179                                mp->m_resblks_avail = mp->m_resblks;
1180                                lcounter += rem;
1181                        }
1182                } else {                                /* Taking blocks away */
1183                        lcounter += delta;
1184                        if (lcounter >= 0) {
1185                                mp->m_sb.sb_fdblocks = lcounter +
1186                                                        XFS_ALLOC_SET_ASIDE(mp);
1187                                return 0;
1188                        }
1189
1190                        /*
1191                         * We are out of blocks, use any available reserved
1192                         * blocks if were allowed to.
1193                         */
1194                        if (!rsvd)
1195                                return -ENOSPC;
1196
1197                        lcounter = (long long)mp->m_resblks_avail + delta;
1198                        if (lcounter >= 0) {
1199                                mp->m_resblks_avail = lcounter;
1200                                return 0;
1201                        }
1202                        printk_once(KERN_WARNING
1203                                "Filesystem \"%s\": reserve blocks depleted! "
1204                                "Consider increasing reserve pool size.",
1205                                mp->m_fsname);
1206                        return -ENOSPC;
1207                }
1208
1209                mp->m_sb.sb_fdblocks = lcounter + XFS_ALLOC_SET_ASIDE(mp);
1210                return 0;
1211        case XFS_SBS_FREXTENTS:
1212                lcounter = (long long)mp->m_sb.sb_frextents;
1213                lcounter += delta;
1214                if (lcounter < 0) {
1215                        return -ENOSPC;
1216                }
1217                mp->m_sb.sb_frextents = lcounter;
1218                return 0;
1219        case XFS_SBS_DBLOCKS:
1220                lcounter = (long long)mp->m_sb.sb_dblocks;
1221                lcounter += delta;
1222                if (lcounter < 0) {
1223                        ASSERT(0);
1224                        return -EINVAL;
1225                }
1226                mp->m_sb.sb_dblocks = lcounter;
1227                return 0;
1228        case XFS_SBS_AGCOUNT:
1229                scounter = mp->m_sb.sb_agcount;
1230                scounter += delta;
1231                if (scounter < 0) {
1232                        ASSERT(0);
1233                        return -EINVAL;
1234                }
1235                mp->m_sb.sb_agcount = scounter;
1236                return 0;
1237        case XFS_SBS_IMAX_PCT:
1238                scounter = mp->m_sb.sb_imax_pct;
1239                scounter += delta;
1240                if (scounter < 0) {
1241                        ASSERT(0);
1242                        return -EINVAL;
1243                }
1244                mp->m_sb.sb_imax_pct = scounter;
1245                return 0;
1246        case XFS_SBS_REXTSIZE:
1247                scounter = mp->m_sb.sb_rextsize;
1248                scounter += delta;
1249                if (scounter < 0) {
1250                        ASSERT(0);
1251                        return -EINVAL;
1252                }
1253                mp->m_sb.sb_rextsize = scounter;
1254                return 0;
1255        case XFS_SBS_RBMBLOCKS:
1256                scounter = mp->m_sb.sb_rbmblocks;
1257                scounter += delta;
1258                if (scounter < 0) {
1259                        ASSERT(0);
1260                        return -EINVAL;
1261                }
1262                mp->m_sb.sb_rbmblocks = scounter;
1263                return 0;
1264        case XFS_SBS_RBLOCKS:
1265                lcounter = (long long)mp->m_sb.sb_rblocks;
1266                lcounter += delta;
1267                if (lcounter < 0) {
1268                        ASSERT(0);
1269                        return -EINVAL;
1270                }
1271                mp->m_sb.sb_rblocks = lcounter;
1272                return 0;
1273        case XFS_SBS_REXTENTS:
1274                lcounter = (long long)mp->m_sb.sb_rextents;
1275                lcounter += delta;
1276                if (lcounter < 0) {
1277                        ASSERT(0);
1278                        return -EINVAL;
1279                }
1280                mp->m_sb.sb_rextents = lcounter;
1281                return 0;
1282        case XFS_SBS_REXTSLOG:
1283                scounter = mp->m_sb.sb_rextslog;
1284                scounter += delta;
1285                if (scounter < 0) {
1286                        ASSERT(0);
1287                        return -EINVAL;
1288                }
1289                mp->m_sb.sb_rextslog = scounter;
1290                return 0;
1291        default:
1292                ASSERT(0);
1293                return -EINVAL;
1294        }
1295}
1296
1297/*
1298 * xfs_mod_incore_sb() is used to change a field in the in-core
1299 * superblock structure by the specified delta.  This modification
1300 * is protected by the m_sb_lock.  Just use the xfs_mod_incore_sb_unlocked()
1301 * routine to do the work.
1302 */
1303int
1304xfs_mod_incore_sb(
1305        struct xfs_mount        *mp,
1306        xfs_sb_field_t          field,
1307        int64_t                 delta,
1308        int                     rsvd)
1309{
1310        int                     status;
1311
1312#ifdef HAVE_PERCPU_SB
1313        ASSERT(field < XFS_SBS_ICOUNT || field > XFS_SBS_FDBLOCKS);
1314#endif
1315        spin_lock(&mp->m_sb_lock);
1316        status = xfs_mod_incore_sb_unlocked(mp, field, delta, rsvd);
1317        spin_unlock(&mp->m_sb_lock);
1318
1319        return status;
1320}
1321
1322/*
1323 * Change more than one field in the in-core superblock structure at a time.
1324 *
1325 * The fields and changes to those fields are specified in the array of
1326 * xfs_mod_sb structures passed in.  Either all of the specified deltas
1327 * will be applied or none of them will.  If any modified field dips below 0,
1328 * then all modifications will be backed out and EINVAL will be returned.
1329 *
1330 * Note that this function may not be used for the superblock values that
1331 * are tracked with the in-memory per-cpu counters - a direct call to
1332 * xfs_icsb_modify_counters is required for these.
1333 */
1334int
1335xfs_mod_incore_sb_batch(
1336        struct xfs_mount        *mp,
1337        xfs_mod_sb_t            *msb,
1338        uint                    nmsb,
1339        int                     rsvd)
1340{
1341        xfs_mod_sb_t            *msbp;
1342        int                     error = 0;
1343
1344        /*
1345         * Loop through the array of mod structures and apply each individually.
1346         * If any fail, then back out all those which have already been applied.
1347         * Do all of this within the scope of the m_sb_lock so that all of the
1348         * changes will be atomic.
1349         */
1350        spin_lock(&mp->m_sb_lock);
1351        for (msbp = msb; msbp < (msb + nmsb); msbp++) {
1352                ASSERT(msbp->msb_field < XFS_SBS_ICOUNT ||
1353                       msbp->msb_field > XFS_SBS_FDBLOCKS);
1354
1355                error = xfs_mod_incore_sb_unlocked(mp, msbp->msb_field,
1356                                                   msbp->msb_delta, rsvd);
1357                if (error)
1358                        goto unwind;
1359        }
1360        spin_unlock(&mp->m_sb_lock);
1361        return 0;
1362
1363unwind:
1364        while (--msbp >= msb) {
1365                error = xfs_mod_incore_sb_unlocked(mp, msbp->msb_field,
1366                                                   -msbp->msb_delta, rsvd);
1367                ASSERT(error == 0);
1368        }
1369        spin_unlock(&mp->m_sb_lock);
1370        return error;
1371}
1372
1373/*
1374 * xfs_getsb() is called to obtain the buffer for the superblock.
1375 * The buffer is returned locked and read in from disk.
1376 * The buffer should be released with a call to xfs_brelse().
1377 *
1378 * If the flags parameter is BUF_TRYLOCK, then we'll only return
1379 * the superblock buffer if it can be locked without sleeping.
1380 * If it can't then we'll return NULL.
1381 */
1382struct xfs_buf *
1383xfs_getsb(
1384        struct xfs_mount        *mp,
1385        int                     flags)
1386{
1387        struct xfs_buf          *bp = mp->m_sb_bp;
1388
1389        if (!xfs_buf_trylock(bp)) {
1390                if (flags & XBF_TRYLOCK)
1391                        return NULL;
1392                xfs_buf_lock(bp);
1393        }
1394
1395        xfs_buf_hold(bp);
1396        ASSERT(XFS_BUF_ISDONE(bp));
1397        return bp;
1398}
1399
1400/*
1401 * Used to free the superblock along various error paths.
1402 */
1403void
1404xfs_freesb(
1405        struct xfs_mount        *mp)
1406{
1407        struct xfs_buf          *bp = mp->m_sb_bp;
1408
1409        xfs_buf_lock(bp);
1410        mp->m_sb_bp = NULL;
1411        xfs_buf_relse(bp);
1412}
1413
1414/*
1415 * Used to log changes to the superblock unit and width fields which could
1416 * be altered by the mount options, as well as any potential sb_features2
1417 * fixup. Only the first superblock is updated.
1418 */
1419int
1420xfs_mount_log_sb(
1421        xfs_mount_t     *mp,
1422        __int64_t       fields)
1423{
1424        xfs_trans_t     *tp;
1425        int             error;
1426
1427        ASSERT(fields & (XFS_SB_UNIT | XFS_SB_WIDTH | XFS_SB_UUID |
1428                         XFS_SB_FEATURES2 | XFS_SB_BAD_FEATURES2 |
1429                         XFS_SB_VERSIONNUM));
1430
1431        tp = xfs_trans_alloc(mp, XFS_TRANS_SB_UNIT);
1432        error = xfs_trans_reserve(tp, &M_RES(mp)->tr_sb, 0, 0);
1433        if (error) {
1434                xfs_trans_cancel(tp, 0);
1435                return error;
1436        }
1437        xfs_mod_sb(tp, fields);
1438        error = xfs_trans_commit(tp, 0);
1439        return error;
1440}
1441
1442/*
1443 * If the underlying (data/log/rt) device is readonly, there are some
1444 * operations that cannot proceed.
1445 */
1446int
1447xfs_dev_is_read_only(
1448        struct xfs_mount        *mp,
1449        char                    *message)
1450{
1451        if (xfs_readonly_buftarg(mp->m_ddev_targp) ||
1452            xfs_readonly_buftarg(mp->m_logdev_targp) ||
1453            (mp->m_rtdev_targp && xfs_readonly_buftarg(mp->m_rtdev_targp))) {
1454                xfs_notice(mp, "%s required on read-only device.", message);
1455                xfs_notice(mp, "write access unavailable, cannot proceed.");
1456                return -EROFS;
1457        }
1458        return 0;
1459}
1460
1461#ifdef HAVE_PERCPU_SB
1462/*
1463 * Per-cpu incore superblock counters
1464 *
1465 * Simple concept, difficult implementation
1466 *
1467 * Basically, replace the incore superblock counters with a distributed per cpu
1468 * counter for contended fields (e.g.  free block count).
1469 *
1470 * Difficulties arise in that the incore sb is used for ENOSPC checking, and
1471 * hence needs to be accurately read when we are running low on space. Hence
1472 * there is a method to enable and disable the per-cpu counters based on how
1473 * much "stuff" is available in them.
1474 *
1475 * Basically, a counter is enabled if there is enough free resource to justify
1476 * running a per-cpu fast-path. If the per-cpu counter runs out (i.e. a local
1477 * ENOSPC), then we disable the counters to synchronise all callers and
1478 * re-distribute the available resources.
1479 *
1480 * If, once we redistributed the available resources, we still get a failure,
1481 * we disable the per-cpu counter and go through the slow path.
1482 *
1483 * The slow path is the current xfs_mod_incore_sb() function.  This means that
1484 * when we disable a per-cpu counter, we need to drain its resources back to
1485 * the global superblock. We do this after disabling the counter to prevent
1486 * more threads from queueing up on the counter.
1487 *
1488 * Essentially, this means that we still need a lock in the fast path to enable
1489 * synchronisation between the global counters and the per-cpu counters. This
1490 * is not a problem because the lock will be local to a CPU almost all the time
1491 * and have little contention except when we get to ENOSPC conditions.
1492 *
1493 * Basically, this lock becomes a barrier that enables us to lock out the fast
1494 * path while we do things like enabling and disabling counters and
1495 * synchronising the counters.
1496 *
1497 * Locking rules:
1498 *
1499 *      1. m_sb_lock before picking up per-cpu locks
1500 *      2. per-cpu locks always picked up via for_each_online_cpu() order
1501 *      3. accurate counter sync requires m_sb_lock + per cpu locks
1502 *      4. modifying per-cpu counters requires holding per-cpu lock
1503 *      5. modifying global counters requires holding m_sb_lock
1504 *      6. enabling or disabling a counter requires holding the m_sb_lock 
1505 *         and _none_ of the per-cpu locks.
1506 *
1507 * Disabled counters are only ever re-enabled by a balance operation
1508 * that results in more free resources per CPU than a given threshold.
1509 * To ensure counters don't remain disabled, they are rebalanced when
1510 * the global resource goes above a higher threshold (i.e. some hysteresis
1511 * is present to prevent thrashing).
1512 */
1513
1514#ifdef CONFIG_HOTPLUG_CPU
1515/*
1516 * hot-plug CPU notifier support.
1517 *
1518 * We need a notifier per filesystem as we need to be able to identify
1519 * the filesystem to balance the counters out. This is achieved by
1520 * having a notifier block embedded in the xfs_mount_t and doing pointer
1521 * magic to get the mount pointer from the notifier block address.
1522 */
1523STATIC int
1524xfs_icsb_cpu_notify(
1525        struct notifier_block *nfb,
1526        unsigned long action,
1527        void *hcpu)
1528{
1529        xfs_icsb_cnts_t *cntp;
1530        xfs_mount_t     *mp;
1531
1532        mp = (xfs_mount_t *)container_of(nfb, xfs_mount_t, m_icsb_notifier);
1533        cntp = (xfs_icsb_cnts_t *)
1534                        per_cpu_ptr(mp->m_sb_cnts, (unsigned long)hcpu);
1535        switch (action) {
1536        case CPU_UP_PREPARE:
1537        case CPU_UP_PREPARE_FROZEN:
1538                /* Easy Case - initialize the area and locks, and
1539                 * then rebalance when online does everything else for us. */
1540                memset(cntp, 0, sizeof(xfs_icsb_cnts_t));
1541                break;
1542        case CPU_ONLINE:
1543        case CPU_ONLINE_FROZEN:
1544                xfs_icsb_lock(mp);
1545                xfs_icsb_balance_counter(mp, XFS_SBS_ICOUNT, 0);
1546                xfs_icsb_balance_counter(mp, XFS_SBS_IFREE, 0);
1547                xfs_icsb_balance_counter(mp, XFS_SBS_FDBLOCKS, 0);
1548                xfs_icsb_unlock(mp);
1549                break;
1550        case CPU_DEAD:
1551        case CPU_DEAD_FROZEN:
1552                /* Disable all the counters, then fold the dead cpu's
1553                 * count into the total on the global superblock and
1554                 * re-enable the counters. */
1555                xfs_icsb_lock(mp);
1556                spin_lock(&mp->m_sb_lock);
1557                xfs_icsb_disable_counter(mp, XFS_SBS_ICOUNT);
1558                xfs_icsb_disable_counter(mp, XFS_SBS_IFREE);
1559                xfs_icsb_disable_counter(mp, XFS_SBS_FDBLOCKS);
1560
1561                mp->m_sb.sb_icount += cntp->icsb_icount;
1562                mp->m_sb.sb_ifree += cntp->icsb_ifree;
1563                mp->m_sb.sb_fdblocks += cntp->icsb_fdblocks;
1564
1565                memset(cntp, 0, sizeof(xfs_icsb_cnts_t));
1566
1567                xfs_icsb_balance_counter_locked(mp, XFS_SBS_ICOUNT, 0);
1568                xfs_icsb_balance_counter_locked(mp, XFS_SBS_IFREE, 0);
1569                xfs_icsb_balance_counter_locked(mp, XFS_SBS_FDBLOCKS, 0);
1570                spin_unlock(&mp->m_sb_lock);
1571                xfs_icsb_unlock(mp);
1572                break;
1573        }
1574
1575        return NOTIFY_OK;
1576}
1577#endif /* CONFIG_HOTPLUG_CPU */
1578
1579int
1580xfs_icsb_init_counters(
1581        xfs_mount_t     *mp)
1582{
1583        xfs_icsb_cnts_t *cntp;
1584        int             i;
1585
1586        mp->m_sb_cnts = alloc_percpu(xfs_icsb_cnts_t);
1587        if (mp->m_sb_cnts == NULL)
1588                return -ENOMEM;
1589
1590        for_each_online_cpu(i) {
1591                cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i);
1592                memset(cntp, 0, sizeof(xfs_icsb_cnts_t));
1593        }
1594
1595        mutex_init(&mp->m_icsb_mutex);
1596
1597        /*
1598         * start with all counters disabled so that the
1599         * initial balance kicks us off correctly
1600         */
1601        mp->m_icsb_counters = -1;
1602
1603#ifdef CONFIG_HOTPLUG_CPU
1604        mp->m_icsb_notifier.notifier_call = xfs_icsb_cpu_notify;
1605        mp->m_icsb_notifier.priority = 0;
1606        register_hotcpu_notifier(&mp->m_icsb_notifier);
1607#endif /* CONFIG_HOTPLUG_CPU */
1608
1609        return 0;
1610}
1611
1612void
1613xfs_icsb_reinit_counters(
1614        xfs_mount_t     *mp)
1615{
1616        xfs_icsb_lock(mp);
1617        /*
1618         * start with all counters disabled so that the
1619         * initial balance kicks us off correctly
1620         */
1621        mp->m_icsb_counters = -1;
1622        xfs_icsb_balance_counter(mp, XFS_SBS_ICOUNT, 0);
1623        xfs_icsb_balance_counter(mp, XFS_SBS_IFREE, 0);
1624        xfs_icsb_balance_counter(mp, XFS_SBS_FDBLOCKS, 0);
1625        xfs_icsb_unlock(mp);
1626}
1627
1628void
1629xfs_icsb_destroy_counters(
1630        xfs_mount_t     *mp)
1631{
1632        if (mp->m_sb_cnts) {
1633                unregister_hotcpu_notifier(&mp->m_icsb_notifier);
1634                free_percpu(mp->m_sb_cnts);
1635        }
1636        mutex_destroy(&mp->m_icsb_mutex);
1637}
1638
1639STATIC void
1640xfs_icsb_lock_cntr(
1641        xfs_icsb_cnts_t *icsbp)
1642{
1643        while (test_and_set_bit(XFS_ICSB_FLAG_LOCK, &icsbp->icsb_flags)) {
1644                ndelay(1000);
1645        }
1646}
1647
1648STATIC void
1649xfs_icsb_unlock_cntr(
1650        xfs_icsb_cnts_t *icsbp)
1651{
1652        clear_bit(XFS_ICSB_FLAG_LOCK, &icsbp->icsb_flags);
1653}
1654
1655
1656STATIC void
1657xfs_icsb_lock_all_counters(
1658        xfs_mount_t     *mp)
1659{
1660        xfs_icsb_cnts_t *cntp;
1661        int             i;
1662
1663        for_each_online_cpu(i) {
1664                cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i);
1665                xfs_icsb_lock_cntr(cntp);
1666        }
1667}
1668
1669STATIC void
1670xfs_icsb_unlock_all_counters(
1671        xfs_mount_t     *mp)
1672{
1673        xfs_icsb_cnts_t *cntp;
1674        int             i;
1675
1676        for_each_online_cpu(i) {
1677                cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i);
1678                xfs_icsb_unlock_cntr(cntp);
1679        }
1680}
1681
1682STATIC void
1683xfs_icsb_count(
1684        xfs_mount_t     *mp,
1685        xfs_icsb_cnts_t *cnt,
1686        int             flags)
1687{
1688        xfs_icsb_cnts_t *cntp;
1689        int             i;
1690
1691        memset(cnt, 0, sizeof(xfs_icsb_cnts_t));
1692
1693        if (!(flags & XFS_ICSB_LAZY_COUNT))
1694                xfs_icsb_lock_all_counters(mp);
1695
1696        for_each_online_cpu(i) {
1697                cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i);
1698                cnt->icsb_icount += cntp->icsb_icount;
1699                cnt->icsb_ifree += cntp->icsb_ifree;
1700                cnt->icsb_fdblocks += cntp->icsb_fdblocks;
1701        }
1702
1703        if (!(flags & XFS_ICSB_LAZY_COUNT))
1704                xfs_icsb_unlock_all_counters(mp);
1705}
1706
1707STATIC int
1708xfs_icsb_counter_disabled(
1709        xfs_mount_t     *mp,
1710        xfs_sb_field_t  field)
1711{
1712        ASSERT((field >= XFS_SBS_ICOUNT) && (field <= XFS_SBS_FDBLOCKS));
1713        return test_bit(field, &mp->m_icsb_counters);
1714}
1715
1716STATIC void
1717xfs_icsb_disable_counter(
1718        xfs_mount_t     *mp,
1719        xfs_sb_field_t  field)
1720{
1721        xfs_icsb_cnts_t cnt;
1722
1723        ASSERT((field >= XFS_SBS_ICOUNT) && (field <= XFS_SBS_FDBLOCKS));
1724
1725        /*
1726         * If we are already disabled, then there is nothing to do
1727         * here. We check before locking all the counters to avoid
1728         * the expensive lock operation when being called in the
1729         * slow path and the counter is already disabled. This is
1730         * safe because the only time we set or clear this state is under
1731         * the m_icsb_mutex.
1732         */
1733        if (xfs_icsb_counter_disabled(mp, field))
1734                return;
1735
1736        xfs_icsb_lock_all_counters(mp);
1737        if (!test_and_set_bit(field, &mp->m_icsb_counters)) {
1738                /* drain back to superblock */
1739
1740                xfs_icsb_count(mp, &cnt, XFS_ICSB_LAZY_COUNT);
1741                switch(field) {
1742                case XFS_SBS_ICOUNT:
1743                        mp->m_sb.sb_icount = cnt.icsb_icount;
1744                        break;
1745                case XFS_SBS_IFREE:
1746                        mp->m_sb.sb_ifree = cnt.icsb_ifree;
1747                        break;
1748                case XFS_SBS_FDBLOCKS:
1749                        mp->m_sb.sb_fdblocks = cnt.icsb_fdblocks;
1750                        break;
1751                default:
1752                        BUG();
1753                }
1754        }
1755
1756        xfs_icsb_unlock_all_counters(mp);
1757}
1758
1759STATIC void
1760xfs_icsb_enable_counter(
1761        xfs_mount_t     *mp,
1762        xfs_sb_field_t  field,
1763        uint64_t        count,
1764        uint64_t        resid)
1765{
1766        xfs_icsb_cnts_t *cntp;
1767        int             i;
1768
1769        ASSERT((field >= XFS_SBS_ICOUNT) && (field <= XFS_SBS_FDBLOCKS));
1770
1771        xfs_icsb_lock_all_counters(mp);
1772        for_each_online_cpu(i) {
1773                cntp = per_cpu_ptr(mp->m_sb_cnts, i);
1774                switch (field) {
1775                case XFS_SBS_ICOUNT:
1776                        cntp->icsb_icount = count + resid;
1777                        break;
1778                case XFS_SBS_IFREE:
1779                        cntp->icsb_ifree = count + resid;
1780                        break;
1781                case XFS_SBS_FDBLOCKS:
1782                        cntp->icsb_fdblocks = count + resid;
1783                        break;
1784                default:
1785                        BUG();
1786                        break;
1787                }
1788                resid = 0;
1789        }
1790        clear_bit(field, &mp->m_icsb_counters);
1791        xfs_icsb_unlock_all_counters(mp);
1792}
1793
1794void
1795xfs_icsb_sync_counters_locked(
1796        xfs_mount_t     *mp,
1797        int             flags)
1798{
1799        xfs_icsb_cnts_t cnt;
1800
1801        xfs_icsb_count(mp, &cnt, flags);
1802
1803        if (!xfs_icsb_counter_disabled(mp, XFS_SBS_ICOUNT))
1804                mp->m_sb.sb_icount = cnt.icsb_icount;
1805        if (!xfs_icsb_counter_disabled(mp, XFS_SBS_IFREE))
1806                mp->m_sb.sb_ifree = cnt.icsb_ifree;
1807        if (!xfs_icsb_counter_disabled(mp, XFS_SBS_FDBLOCKS))
1808                mp->m_sb.sb_fdblocks = cnt.icsb_fdblocks;
1809}
1810
1811/*
1812 * Accurate update of per-cpu counters to incore superblock
1813 */
1814void
1815xfs_icsb_sync_counters(
1816        xfs_mount_t     *mp,
1817        int             flags)
1818{
1819        spin_lock(&mp->m_sb_lock);
1820        xfs_icsb_sync_counters_locked(mp, flags);
1821        spin_unlock(&mp->m_sb_lock);
1822}
1823
1824/*
1825 * Balance and enable/disable counters as necessary.
1826 *
1827 * Thresholds for re-enabling counters are somewhat magic.  inode counts are
1828 * chosen to be the same number as single on disk allocation chunk per CPU, and
1829 * free blocks is something far enough zero that we aren't going thrash when we
1830 * get near ENOSPC. We also need to supply a minimum we require per cpu to
1831 * prevent looping endlessly when xfs_alloc_space asks for more than will
1832 * be distributed to a single CPU but each CPU has enough blocks to be
1833 * reenabled.
1834 *
1835 * Note that we can be called when counters are already disabled.
1836 * xfs_icsb_disable_counter() optimises the counter locking in this case to
1837 * prevent locking every per-cpu counter needlessly.
1838 */
1839
1840#define XFS_ICSB_INO_CNTR_REENABLE      (uint64_t)64
1841#define XFS_ICSB_FDBLK_CNTR_REENABLE(mp) \
1842                (uint64_t)(512 + XFS_ALLOC_SET_ASIDE(mp))
1843STATIC void
1844xfs_icsb_balance_counter_locked(
1845        xfs_mount_t     *mp,
1846        xfs_sb_field_t  field,
1847        int             min_per_cpu)
1848{
1849        uint64_t        count, resid;
1850        int             weight = num_online_cpus();
1851        uint64_t        min = (uint64_t)min_per_cpu;
1852
1853        /* disable counter and sync counter */
1854        xfs_icsb_disable_counter(mp, field);
1855
1856        /* update counters  - first CPU gets residual*/
1857        switch (field) {
1858        case XFS_SBS_ICOUNT:
1859                count = mp->m_sb.sb_icount;
1860                resid = do_div(count, weight);
1861                if (count < max(min, XFS_ICSB_INO_CNTR_REENABLE))
1862                        return;
1863                break;
1864        case XFS_SBS_IFREE:
1865                count = mp->m_sb.sb_ifree;
1866                resid = do_div(count, weight);
1867                if (count < max(min, XFS_ICSB_INO_CNTR_REENABLE))
1868                        return;
1869                break;
1870        case XFS_SBS_FDBLOCKS:
1871                count = mp->m_sb.sb_fdblocks;
1872                resid = do_div(count, weight);
1873                if (count < max(min, XFS_ICSB_FDBLK_CNTR_REENABLE(mp)))
1874                        return;
1875                break;
1876        default:
1877                BUG();
1878                count = resid = 0;      /* quiet, gcc */
1879                break;
1880        }
1881
1882        xfs_icsb_enable_counter(mp, field, count, resid);
1883}
1884
1885STATIC void
1886xfs_icsb_balance_counter(
1887        xfs_mount_t     *mp,
1888        xfs_sb_field_t  fields,
1889        int             min_per_cpu)
1890{
1891        spin_lock(&mp->m_sb_lock);
1892        xfs_icsb_balance_counter_locked(mp, fields, min_per_cpu);
1893        spin_unlock(&mp->m_sb_lock);
1894}
1895
1896int
1897xfs_icsb_modify_counters(
1898        xfs_mount_t     *mp,
1899        xfs_sb_field_t  field,
1900        int64_t         delta,
1901        int             rsvd)
1902{
1903        xfs_icsb_cnts_t *icsbp;
1904        long long       lcounter;       /* long counter for 64 bit fields */
1905        int             ret = 0;
1906
1907        might_sleep();
1908again:
1909        preempt_disable();
1910        icsbp = this_cpu_ptr(mp->m_sb_cnts);
1911
1912        /*
1913         * if the counter is disabled, go to slow path
1914         */
1915        if (unlikely(xfs_icsb_counter_disabled(mp, field)))
1916                goto slow_path;
1917        xfs_icsb_lock_cntr(icsbp);
1918        if (unlikely(xfs_icsb_counter_disabled(mp, field))) {
1919                xfs_icsb_unlock_cntr(icsbp);
1920                goto slow_path;
1921        }
1922
1923        switch (field) {
1924        case XFS_SBS_ICOUNT:
1925                lcounter = icsbp->icsb_icount;
1926                lcounter += delta;
1927                if (unlikely(lcounter < 0))
1928                        goto balance_counter;
1929                icsbp->icsb_icount = lcounter;
1930                break;
1931
1932        case XFS_SBS_IFREE:
1933                lcounter = icsbp->icsb_ifree;
1934                lcounter += delta;
1935                if (unlikely(lcounter < 0))
1936                        goto balance_counter;
1937                icsbp->icsb_ifree = lcounter;
1938                break;
1939
1940        case XFS_SBS_FDBLOCKS:
1941                BUG_ON((mp->m_resblks - mp->m_resblks_avail) != 0);
1942
1943                lcounter = icsbp->icsb_fdblocks - XFS_ALLOC_SET_ASIDE(mp);
1944                lcounter += delta;
1945                if (unlikely(lcounter < 0))
1946                        goto balance_counter;
1947                icsbp->icsb_fdblocks = lcounter + XFS_ALLOC_SET_ASIDE(mp);
1948                break;
1949        default:
1950                BUG();
1951                break;
1952        }
1953        xfs_icsb_unlock_cntr(icsbp);
1954        preempt_enable();
1955        return 0;
1956
1957slow_path:
1958        preempt_enable();
1959
1960        /*
1961         * serialise with a mutex so we don't burn lots of cpu on
1962         * the superblock lock. We still need to hold the superblock
1963         * lock, however, when we modify the global structures.
1964         */
1965        xfs_icsb_lock(mp);
1966
1967        /*
1968         * Now running atomically.
1969         *
1970         * If the counter is enabled, someone has beaten us to rebalancing.
1971         * Drop the lock and try again in the fast path....
1972         */
1973        if (!(xfs_icsb_counter_disabled(mp, field))) {
1974                xfs_icsb_unlock(mp);
1975                goto again;
1976        }
1977
1978        /*
1979         * The counter is currently disabled. Because we are
1980         * running atomically here, we know a rebalance cannot
1981         * be in progress. Hence we can go straight to operating
1982         * on the global superblock. We do not call xfs_mod_incore_sb()
1983         * here even though we need to get the m_sb_lock. Doing so
1984         * will cause us to re-enter this function and deadlock.
1985         * Hence we get the m_sb_lock ourselves and then call
1986         * xfs_mod_incore_sb_unlocked() as the unlocked path operates
1987         * directly on the global counters.
1988         */
1989        spin_lock(&mp->m_sb_lock);
1990        ret = xfs_mod_incore_sb_unlocked(mp, field, delta, rsvd);
1991        spin_unlock(&mp->m_sb_lock);
1992
1993        /*
1994         * Now that we've modified the global superblock, we
1995         * may be able to re-enable the distributed counters
1996         * (e.g. lots of space just got freed). After that
1997         * we are done.
1998         */
1999        if (ret != -ENOSPC)
2000                xfs_icsb_balance_counter(mp, field, 0);
2001        xfs_icsb_unlock(mp);
2002        return ret;
2003
2004balance_counter:
2005        xfs_icsb_unlock_cntr(icsbp);
2006        preempt_enable();
2007
2008        /*
2009         * We may have multiple threads here if multiple per-cpu
2010         * counters run dry at the same time. This will mean we can
2011         * do more balances than strictly necessary but it is not
2012         * the common slowpath case.
2013         */
2014        xfs_icsb_lock(mp);
2015
2016        /*
2017         * running atomically.
2018         *
2019         * This will leave the counter in the correct state for future
2020         * accesses. After the rebalance, we simply try again and our retry
2021         * will either succeed through the fast path or slow path without
2022         * another balance operation being required.
2023         */
2024        xfs_icsb_balance_counter(mp, field, delta);
2025        xfs_icsb_unlock(mp);
2026        goto again;
2027}
2028
2029#endif
2030