linux/include/linux/edac.h
<<
>>
Prefs
   1/*
   2 * Generic EDAC defs
   3 *
   4 * Author: Dave Jiang <djiang@mvista.com>
   5 *
   6 * 2006-2008 (c) MontaVista Software, Inc. This file is licensed under
   7 * the terms of the GNU General Public License version 2. This program
   8 * is licensed "as is" without any warranty of any kind, whether express
   9 * or implied.
  10 *
  11 */
  12#ifndef _LINUX_EDAC_H_
  13#define _LINUX_EDAC_H_
  14
  15#include <linux/atomic.h>
  16#include <linux/device.h>
  17#include <linux/completion.h>
  18#include <linux/workqueue.h>
  19#include <linux/debugfs.h>
  20
  21struct device;
  22
  23#define EDAC_OPSTATE_INVAL      -1
  24#define EDAC_OPSTATE_POLL       0
  25#define EDAC_OPSTATE_NMI        1
  26#define EDAC_OPSTATE_INT        2
  27
  28extern int edac_op_state;
  29extern int edac_err_assert;
  30extern atomic_t edac_handlers;
  31extern struct bus_type edac_subsys;
  32
  33extern int edac_handler_set(void);
  34extern void edac_atomic_assert_error(void);
  35extern struct bus_type *edac_get_sysfs_subsys(void);
  36extern void edac_put_sysfs_subsys(void);
  37
  38enum {
  39        EDAC_REPORTING_ENABLED,
  40        EDAC_REPORTING_DISABLED,
  41        EDAC_REPORTING_FORCE
  42};
  43
  44extern int edac_report_status;
  45#ifdef CONFIG_EDAC
  46static inline int get_edac_report_status(void)
  47{
  48        return edac_report_status;
  49}
  50
  51static inline void set_edac_report_status(int new)
  52{
  53        edac_report_status = new;
  54}
  55#else
  56static inline int get_edac_report_status(void)
  57{
  58        return EDAC_REPORTING_DISABLED;
  59}
  60
  61static inline void set_edac_report_status(int new)
  62{
  63}
  64#endif
  65
  66static inline void opstate_init(void)
  67{
  68        switch (edac_op_state) {
  69        case EDAC_OPSTATE_POLL:
  70        case EDAC_OPSTATE_NMI:
  71                break;
  72        default:
  73                edac_op_state = EDAC_OPSTATE_POLL;
  74        }
  75        return;
  76}
  77
  78/* Max length of a DIMM label*/
  79#define EDAC_MC_LABEL_LEN       31
  80
  81/* Maximum size of the location string */
  82#define LOCATION_SIZE 256
  83
  84/* Defines the maximum number of labels that can be reported */
  85#define EDAC_MAX_LABELS         8
  86
  87/* String used to join two or more labels */
  88#define OTHER_LABEL " or "
  89
  90/**
  91 * enum dev_type - describe the type of memory DRAM chips used at the stick
  92 * @DEV_UNKNOWN:        Can't be determined, or MC doesn't support detect it
  93 * @DEV_X1:             1 bit for data
  94 * @DEV_X2:             2 bits for data
  95 * @DEV_X4:             4 bits for data
  96 * @DEV_X8:             8 bits for data
  97 * @DEV_X16:            16 bits for data
  98 * @DEV_X32:            32 bits for data
  99 * @DEV_X64:            64 bits for data
 100 *
 101 * Typical values are x4 and x8.
 102 */
 103enum dev_type {
 104        DEV_UNKNOWN = 0,
 105        DEV_X1,
 106        DEV_X2,
 107        DEV_X4,
 108        DEV_X8,
 109        DEV_X16,
 110        DEV_X32,                /* Do these parts exist? */
 111        DEV_X64                 /* Do these parts exist? */
 112};
 113
 114#define DEV_FLAG_UNKNOWN        BIT(DEV_UNKNOWN)
 115#define DEV_FLAG_X1             BIT(DEV_X1)
 116#define DEV_FLAG_X2             BIT(DEV_X2)
 117#define DEV_FLAG_X4             BIT(DEV_X4)
 118#define DEV_FLAG_X8             BIT(DEV_X8)
 119#define DEV_FLAG_X16            BIT(DEV_X16)
 120#define DEV_FLAG_X32            BIT(DEV_X32)
 121#define DEV_FLAG_X64            BIT(DEV_X64)
 122
 123/**
 124 * enum hw_event_mc_err_type - type of the detected error
 125 *
 126 * @HW_EVENT_ERR_CORRECTED:     Corrected Error - Indicates that an ECC
 127 *                              corrected error was detected
 128 * @HW_EVENT_ERR_UNCORRECTED:   Uncorrected Error - Indicates an error that
 129 *                              can't be corrected by ECC, but it is not
 130 *                              fatal (maybe it is on an unused memory area,
 131 *                              or the memory controller could recover from
 132 *                              it for example, by re-trying the operation).
 133 * @HW_EVENT_ERR_FATAL:         Fatal Error - Uncorrected error that could not
 134 *                              be recovered.
 135 */
 136enum hw_event_mc_err_type {
 137        HW_EVENT_ERR_CORRECTED,
 138        HW_EVENT_ERR_UNCORRECTED,
 139        HW_EVENT_ERR_FATAL,
 140        HW_EVENT_ERR_INFO,
 141};
 142
 143static inline char *mc_event_error_type(const unsigned int err_type)
 144{
 145        switch (err_type) {
 146        case HW_EVENT_ERR_CORRECTED:
 147                return "Corrected";
 148        case HW_EVENT_ERR_UNCORRECTED:
 149                return "Uncorrected";
 150        case HW_EVENT_ERR_FATAL:
 151                return "Fatal";
 152        default:
 153        case HW_EVENT_ERR_INFO:
 154                return "Info";
 155        }
 156}
 157
 158/**
 159 * enum mem_type - memory types. For a more detailed reference, please see
 160 *                      http://en.wikipedia.org/wiki/DRAM
 161 *
 162 * @MEM_EMPTY           Empty csrow
 163 * @MEM_RESERVED:       Reserved csrow type
 164 * @MEM_UNKNOWN:        Unknown csrow type
 165 * @MEM_FPM:            FPM - Fast Page Mode, used on systems up to 1995.
 166 * @MEM_EDO:            EDO - Extended data out, used on systems up to 1998.
 167 * @MEM_BEDO:           BEDO - Burst Extended data out, an EDO variant.
 168 * @MEM_SDR:            SDR - Single data rate SDRAM
 169 *                      http://en.wikipedia.org/wiki/Synchronous_dynamic_random-access_memory
 170 *                      They use 3 pins for chip select: Pins 0 and 2 are
 171 *                      for rank 0; pins 1 and 3 are for rank 1, if the memory
 172 *                      is dual-rank.
 173 * @MEM_RDR:            Registered SDR SDRAM
 174 * @MEM_DDR:            Double data rate SDRAM
 175 *                      http://en.wikipedia.org/wiki/DDR_SDRAM
 176 * @MEM_RDDR:           Registered Double data rate SDRAM
 177 *                      This is a variant of the DDR memories.
 178 *                      A registered memory has a buffer inside it, hiding
 179 *                      part of the memory details to the memory controller.
 180 * @MEM_RMBS:           Rambus DRAM, used on a few Pentium III/IV controllers.
 181 * @MEM_DDR2:           DDR2 RAM, as described at JEDEC JESD79-2F.
 182 *                      Those memories are labed as "PC2-" instead of "PC" to
 183 *                      differenciate from DDR.
 184 * @MEM_FB_DDR2:        Fully-Buffered DDR2, as described at JEDEC Std No. 205
 185 *                      and JESD206.
 186 *                      Those memories are accessed per DIMM slot, and not by
 187 *                      a chip select signal.
 188 * @MEM_RDDR2:          Registered DDR2 RAM
 189 *                      This is a variant of the DDR2 memories.
 190 * @MEM_XDR:            Rambus XDR
 191 *                      It is an evolution of the original RAMBUS memories,
 192 *                      created to compete with DDR2. Weren't used on any
 193 *                      x86 arch, but cell_edac PPC memory controller uses it.
 194 * @MEM_DDR3:           DDR3 RAM
 195 * @MEM_RDDR3:          Registered DDR3 RAM
 196 *                      This is a variant of the DDR3 memories.
 197 * @MEM_DDR4:           DDR4 RAM
 198 * @MEM_RDDR4:          Registered DDR4 RAM
 199 *                      This is a variant of the DDR4 memories.
 200 */
 201enum mem_type {
 202        MEM_EMPTY = 0,
 203        MEM_RESERVED,
 204        MEM_UNKNOWN,
 205        MEM_FPM,
 206        MEM_EDO,
 207        MEM_BEDO,
 208        MEM_SDR,
 209        MEM_RDR,
 210        MEM_DDR,
 211        MEM_RDDR,
 212        MEM_RMBS,
 213        MEM_DDR2,
 214        MEM_FB_DDR2,
 215        MEM_RDDR2,
 216        MEM_XDR,
 217        MEM_DDR3,
 218        MEM_RDDR3,
 219        MEM_DDR4,
 220        MEM_RDDR4,
 221};
 222
 223#define MEM_FLAG_EMPTY          BIT(MEM_EMPTY)
 224#define MEM_FLAG_RESERVED       BIT(MEM_RESERVED)
 225#define MEM_FLAG_UNKNOWN        BIT(MEM_UNKNOWN)
 226#define MEM_FLAG_FPM            BIT(MEM_FPM)
 227#define MEM_FLAG_EDO            BIT(MEM_EDO)
 228#define MEM_FLAG_BEDO           BIT(MEM_BEDO)
 229#define MEM_FLAG_SDR            BIT(MEM_SDR)
 230#define MEM_FLAG_RDR            BIT(MEM_RDR)
 231#define MEM_FLAG_DDR            BIT(MEM_DDR)
 232#define MEM_FLAG_RDDR           BIT(MEM_RDDR)
 233#define MEM_FLAG_RMBS           BIT(MEM_RMBS)
 234#define MEM_FLAG_DDR2           BIT(MEM_DDR2)
 235#define MEM_FLAG_FB_DDR2        BIT(MEM_FB_DDR2)
 236#define MEM_FLAG_RDDR2          BIT(MEM_RDDR2)
 237#define MEM_FLAG_XDR            BIT(MEM_XDR)
 238#define MEM_FLAG_DDR3            BIT(MEM_DDR3)
 239#define MEM_FLAG_RDDR3           BIT(MEM_RDDR3)
 240
 241/**
 242 * enum edac-type - Error Detection and Correction capabilities and mode
 243 * @EDAC_UNKNOWN:       Unknown if ECC is available
 244 * @EDAC_NONE:          Doesn't support ECC
 245 * @EDAC_RESERVED:      Reserved ECC type
 246 * @EDAC_PARITY:        Detects parity errors
 247 * @EDAC_EC:            Error Checking - no correction
 248 * @EDAC_SECDED:        Single bit error correction, Double detection
 249 * @EDAC_S2ECD2ED:      Chipkill x2 devices - do these exist?
 250 * @EDAC_S4ECD4ED:      Chipkill x4 devices
 251 * @EDAC_S8ECD8ED:      Chipkill x8 devices
 252 * @EDAC_S16ECD16ED:    Chipkill x16 devices
 253 */
 254enum edac_type {
 255        EDAC_UNKNOWN =  0,
 256        EDAC_NONE,
 257        EDAC_RESERVED,
 258        EDAC_PARITY,
 259        EDAC_EC,
 260        EDAC_SECDED,
 261        EDAC_S2ECD2ED,
 262        EDAC_S4ECD4ED,
 263        EDAC_S8ECD8ED,
 264        EDAC_S16ECD16ED,
 265};
 266
 267#define EDAC_FLAG_UNKNOWN       BIT(EDAC_UNKNOWN)
 268#define EDAC_FLAG_NONE          BIT(EDAC_NONE)
 269#define EDAC_FLAG_PARITY        BIT(EDAC_PARITY)
 270#define EDAC_FLAG_EC            BIT(EDAC_EC)
 271#define EDAC_FLAG_SECDED        BIT(EDAC_SECDED)
 272#define EDAC_FLAG_S2ECD2ED      BIT(EDAC_S2ECD2ED)
 273#define EDAC_FLAG_S4ECD4ED      BIT(EDAC_S4ECD4ED)
 274#define EDAC_FLAG_S8ECD8ED      BIT(EDAC_S8ECD8ED)
 275#define EDAC_FLAG_S16ECD16ED    BIT(EDAC_S16ECD16ED)
 276
 277/**
 278 * enum scrub_type - scrubbing capabilities
 279 * @SCRUB_UNKNOWN               Unknown if scrubber is available
 280 * @SCRUB_NONE:                 No scrubber
 281 * @SCRUB_SW_PROG:              SW progressive (sequential) scrubbing
 282 * @SCRUB_SW_SRC:               Software scrub only errors
 283 * @SCRUB_SW_PROG_SRC:          Progressive software scrub from an error
 284 * @SCRUB_SW_TUNABLE:           Software scrub frequency is tunable
 285 * @SCRUB_HW_PROG:              HW progressive (sequential) scrubbing
 286 * @SCRUB_HW_SRC:               Hardware scrub only errors
 287 * @SCRUB_HW_PROG_SRC:          Progressive hardware scrub from an error
 288 * SCRUB_HW_TUNABLE:            Hardware scrub frequency is tunable
 289 */
 290enum scrub_type {
 291        SCRUB_UNKNOWN = 0,
 292        SCRUB_NONE,
 293        SCRUB_SW_PROG,
 294        SCRUB_SW_SRC,
 295        SCRUB_SW_PROG_SRC,
 296        SCRUB_SW_TUNABLE,
 297        SCRUB_HW_PROG,
 298        SCRUB_HW_SRC,
 299        SCRUB_HW_PROG_SRC,
 300        SCRUB_HW_TUNABLE
 301};
 302
 303#define SCRUB_FLAG_SW_PROG      BIT(SCRUB_SW_PROG)
 304#define SCRUB_FLAG_SW_SRC       BIT(SCRUB_SW_SRC)
 305#define SCRUB_FLAG_SW_PROG_SRC  BIT(SCRUB_SW_PROG_SRC)
 306#define SCRUB_FLAG_SW_TUN       BIT(SCRUB_SW_SCRUB_TUNABLE)
 307#define SCRUB_FLAG_HW_PROG      BIT(SCRUB_HW_PROG)
 308#define SCRUB_FLAG_HW_SRC       BIT(SCRUB_HW_SRC)
 309#define SCRUB_FLAG_HW_PROG_SRC  BIT(SCRUB_HW_PROG_SRC)
 310#define SCRUB_FLAG_HW_TUN       BIT(SCRUB_HW_TUNABLE)
 311
 312/* FIXME - should have notify capabilities: NMI, LOG, PROC, etc */
 313
 314/* EDAC internal operation states */
 315#define OP_ALLOC                0x100
 316#define OP_RUNNING_POLL         0x201
 317#define OP_RUNNING_INTERRUPT    0x202
 318#define OP_RUNNING_POLL_INTR    0x203
 319#define OP_OFFLINE              0x300
 320
 321/*
 322 * Concepts used at the EDAC subsystem
 323 *
 324 * There are several things to be aware of that aren't at all obvious:
 325 *
 326 * SOCKETS, SOCKET SETS, BANKS, ROWS, CHIP-SELECT ROWS, CHANNELS, etc..
 327 *
 328 * These are some of the many terms that are thrown about that don't always
 329 * mean what people think they mean (Inconceivable!).  In the interest of
 330 * creating a common ground for discussion, terms and their definitions
 331 * will be established.
 332 *
 333 * Memory devices:      The individual DRAM chips on a memory stick.  These
 334 *                      devices commonly output 4 and 8 bits each (x4, x8).
 335 *                      Grouping several of these in parallel provides the
 336 *                      number of bits that the memory controller expects:
 337 *                      typically 72 bits, in order to provide 64 bits +
 338 *                      8 bits of ECC data.
 339 *
 340 * Memory Stick:        A printed circuit board that aggregates multiple
 341 *                      memory devices in parallel.  In general, this is the
 342 *                      Field Replaceable Unit (FRU) which gets replaced, in
 343 *                      the case of excessive errors. Most often it is also
 344 *                      called DIMM (Dual Inline Memory Module).
 345 *
 346 * Memory Socket:       A physical connector on the motherboard that accepts
 347 *                      a single memory stick. Also called as "slot" on several
 348 *                      datasheets.
 349 *
 350 * Channel:             A memory controller channel, responsible to communicate
 351 *                      with a group of DIMMs. Each channel has its own
 352 *                      independent control (command) and data bus, and can
 353 *                      be used independently or grouped with other channels.
 354 *
 355 * Branch:              It is typically the highest hierarchy on a
 356 *                      Fully-Buffered DIMM memory controller.
 357 *                      Typically, it contains two channels.
 358 *                      Two channels at the same branch can be used in single
 359 *                      mode or in lockstep mode.
 360 *                      When lockstep is enabled, the cacheline is doubled,
 361 *                      but it generally brings some performance penalty.
 362 *                      Also, it is generally not possible to point to just one
 363 *                      memory stick when an error occurs, as the error
 364 *                      correction code is calculated using two DIMMs instead
 365 *                      of one. Due to that, it is capable of correcting more
 366 *                      errors than on single mode.
 367 *
 368 * Single-channel:      The data accessed by the memory controller is contained
 369 *                      into one dimm only. E. g. if the data is 64 bits-wide,
 370 *                      the data flows to the CPU using one 64 bits parallel
 371 *                      access.
 372 *                      Typically used with SDR, DDR, DDR2 and DDR3 memories.
 373 *                      FB-DIMM and RAMBUS use a different concept for channel,
 374 *                      so this concept doesn't apply there.
 375 *
 376 * Double-channel:      The data size accessed by the memory controller is
 377 *                      interlaced into two dimms, accessed at the same time.
 378 *                      E. g. if the DIMM is 64 bits-wide (72 bits with ECC),
 379 *                      the data flows to the CPU using a 128 bits parallel
 380 *                      access.
 381 *
 382 * Chip-select row:     This is the name of the DRAM signal used to select the
 383 *                      DRAM ranks to be accessed. Common chip-select rows for
 384 *                      single channel are 64 bits, for dual channel 128 bits.
 385 *                      It may not be visible by the memory controller, as some
 386 *                      DIMM types have a memory buffer that can hide direct
 387 *                      access to it from the Memory Controller.
 388 *
 389 * Single-Ranked stick: A Single-ranked stick has 1 chip-select row of memory.
 390 *                      Motherboards commonly drive two chip-select pins to
 391 *                      a memory stick. A single-ranked stick, will occupy
 392 *                      only one of those rows. The other will be unused.
 393 *
 394 * Double-Ranked stick: A double-ranked stick has two chip-select rows which
 395 *                      access different sets of memory devices.  The two
 396 *                      rows cannot be accessed concurrently.
 397 *
 398 * Double-sided stick:  DEPRECATED TERM, see Double-Ranked stick.
 399 *                      A double-sided stick has two chip-select rows which
 400 *                      access different sets of memory devices. The two
 401 *                      rows cannot be accessed concurrently. "Double-sided"
 402 *                      is irrespective of the memory devices being mounted
 403 *                      on both sides of the memory stick.
 404 *
 405 * Socket set:          All of the memory sticks that are required for
 406 *                      a single memory access or all of the memory sticks
 407 *                      spanned by a chip-select row.  A single socket set
 408 *                      has two chip-select rows and if double-sided sticks
 409 *                      are used these will occupy those chip-select rows.
 410 *
 411 * Bank:                This term is avoided because it is unclear when
 412 *                      needing to distinguish between chip-select rows and
 413 *                      socket sets.
 414 *
 415 * Controller pages:
 416 *
 417 * Physical pages:
 418 *
 419 * Virtual pages:
 420 *
 421 *
 422 * STRUCTURE ORGANIZATION AND CHOICES
 423 *
 424 *
 425 *
 426 * PS - I enjoyed writing all that about as much as you enjoyed reading it.
 427 */
 428
 429/**
 430 * enum edac_mc_layer - memory controller hierarchy layer
 431 *
 432 * @EDAC_MC_LAYER_BRANCH:       memory layer is named "branch"
 433 * @EDAC_MC_LAYER_CHANNEL:      memory layer is named "channel"
 434 * @EDAC_MC_LAYER_SLOT:         memory layer is named "slot"
 435 * @EDAC_MC_LAYER_CHIP_SELECT:  memory layer is named "chip select"
 436 * @EDAC_MC_LAYER_ALL_MEM:      memory layout is unknown. All memory is mapped
 437 *                              as a single memory area. This is used when
 438 *                              retrieving errors from a firmware driven driver.
 439 *
 440 * This enum is used by the drivers to tell edac_mc_sysfs what name should
 441 * be used when describing a memory stick location.
 442 */
 443enum edac_mc_layer_type {
 444        EDAC_MC_LAYER_BRANCH,
 445        EDAC_MC_LAYER_CHANNEL,
 446        EDAC_MC_LAYER_SLOT,
 447        EDAC_MC_LAYER_CHIP_SELECT,
 448        EDAC_MC_LAYER_ALL_MEM,
 449};
 450
 451/**
 452 * struct edac_mc_layer - describes the memory controller hierarchy
 453 * @layer:              layer type
 454 * @size:               number of components per layer. For example,
 455 *                      if the channel layer has two channels, size = 2
 456 * @is_virt_csrow:      This layer is part of the "csrow" when old API
 457 *                      compatibility mode is enabled. Otherwise, it is
 458 *                      a channel
 459 */
 460struct edac_mc_layer {
 461        enum edac_mc_layer_type type;
 462        unsigned                size;
 463        bool                    is_virt_csrow;
 464};
 465
 466/*
 467 * Maximum number of layers used by the memory controller to uniquely
 468 * identify a single memory stick.
 469 * NOTE: Changing this constant requires not only to change the constant
 470 * below, but also to change the existing code at the core, as there are
 471 * some code there that are optimized for 3 layers.
 472 */
 473#define EDAC_MAX_LAYERS         3
 474
 475/**
 476 * EDAC_DIMM_OFF - Macro responsible to get a pointer offset inside a pointer array
 477 *                 for the element given by [layer0,layer1,layer2] position
 478 *
 479 * @layers:     a struct edac_mc_layer array, describing how many elements
 480 *              were allocated for each layer
 481 * @n_layers:   Number of layers at the @layers array
 482 * @layer0:     layer0 position
 483 * @layer1:     layer1 position. Unused if n_layers < 2
 484 * @layer2:     layer2 position. Unused if n_layers < 3
 485 *
 486 * For 1 layer, this macro returns &var[layer0] - &var
 487 * For 2 layers, this macro is similar to allocate a bi-dimensional array
 488 *              and to return "&var[layer0][layer1] - &var"
 489 * For 3 layers, this macro is similar to allocate a tri-dimensional array
 490 *              and to return "&var[layer0][layer1][layer2] - &var"
 491 *
 492 * A loop could be used here to make it more generic, but, as we only have
 493 * 3 layers, this is a little faster.
 494 * By design, layers can never be 0 or more than 3. If that ever happens,
 495 * a NULL is returned, causing an OOPS during the memory allocation routine,
 496 * with would point to the developer that he's doing something wrong.
 497 */
 498#define EDAC_DIMM_OFF(layers, nlayers, layer0, layer1, layer2) ({               \
 499        int __i;                                                        \
 500        if ((nlayers) == 1)                                             \
 501                __i = layer0;                                           \
 502        else if ((nlayers) == 2)                                        \
 503                __i = (layer1) + ((layers[1]).size * (layer0));         \
 504        else if ((nlayers) == 3)                                        \
 505                __i = (layer2) + ((layers[2]).size * ((layer1) +        \
 506                            ((layers[1]).size * (layer0))));            \
 507        else                                                            \
 508                __i = -EINVAL;                                          \
 509        __i;                                                            \
 510})
 511
 512/**
 513 * EDAC_DIMM_PTR - Macro responsible to get a pointer inside a pointer array
 514 *                 for the element given by [layer0,layer1,layer2] position
 515 *
 516 * @layers:     a struct edac_mc_layer array, describing how many elements
 517 *              were allocated for each layer
 518 * @var:        name of the var where we want to get the pointer
 519 *              (like mci->dimms)
 520 * @n_layers:   Number of layers at the @layers array
 521 * @layer0:     layer0 position
 522 * @layer1:     layer1 position. Unused if n_layers < 2
 523 * @layer2:     layer2 position. Unused if n_layers < 3
 524 *
 525 * For 1 layer, this macro returns &var[layer0]
 526 * For 2 layers, this macro is similar to allocate a bi-dimensional array
 527 *              and to return "&var[layer0][layer1]"
 528 * For 3 layers, this macro is similar to allocate a tri-dimensional array
 529 *              and to return "&var[layer0][layer1][layer2]"
 530 */
 531#define EDAC_DIMM_PTR(layers, var, nlayers, layer0, layer1, layer2) ({  \
 532        typeof(*var) __p;                                               \
 533        int ___i = EDAC_DIMM_OFF(layers, nlayers, layer0, layer1, layer2);      \
 534        if (___i < 0)                                                   \
 535                __p = NULL;                                             \
 536        else                                                            \
 537                __p = (var)[___i];                                      \
 538        __p;                                                            \
 539})
 540
 541struct dimm_info {
 542        struct device dev;
 543
 544        char label[EDAC_MC_LABEL_LEN + 1];      /* DIMM label on motherboard */
 545
 546        /* Memory location data */
 547        unsigned location[EDAC_MAX_LAYERS];
 548
 549        struct mem_ctl_info *mci;       /* the parent */
 550
 551        u32 grain;              /* granularity of reported error in bytes */
 552        enum dev_type dtype;    /* memory device type */
 553        enum mem_type mtype;    /* memory dimm type */
 554        enum edac_type edac_mode;       /* EDAC mode for this dimm */
 555
 556        u32 nr_pages;                   /* number of pages on this dimm */
 557
 558        unsigned csrow, cschannel;      /* Points to the old API data */
 559};
 560
 561/**
 562 * struct rank_info - contains the information for one DIMM rank
 563 *
 564 * @chan_idx:   channel number where the rank is (typically, 0 or 1)
 565 * @ce_count:   number of correctable errors for this rank
 566 * @csrow:      A pointer to the chip select row structure (the parent
 567 *              structure). The location of the rank is given by
 568 *              the (csrow->csrow_idx, chan_idx) vector.
 569 * @dimm:       A pointer to the DIMM structure, where the DIMM label
 570 *              information is stored.
 571 *
 572 * FIXME: Currently, the EDAC core model will assume one DIMM per rank.
 573 *        This is a bad assumption, but it makes this patch easier. Later
 574 *        patches in this series will fix this issue.
 575 */
 576struct rank_info {
 577        int chan_idx;
 578        struct csrow_info *csrow;
 579        struct dimm_info *dimm;
 580
 581        u32 ce_count;           /* Correctable Errors for this csrow */
 582};
 583
 584struct csrow_info {
 585        struct device dev;
 586
 587        /* Used only by edac_mc_find_csrow_by_page() */
 588        unsigned long first_page;       /* first page number in csrow */
 589        unsigned long last_page;        /* last page number in csrow */
 590        unsigned long page_mask;        /* used for interleaving -
 591                                         * 0UL for non intlv */
 592
 593        int csrow_idx;                  /* the chip-select row */
 594
 595        u32 ue_count;           /* Uncorrectable Errors for this csrow */
 596        u32 ce_count;           /* Correctable Errors for this csrow */
 597
 598        struct mem_ctl_info *mci;       /* the parent */
 599
 600        /* channel information for this csrow */
 601        u32 nr_channels;
 602        struct rank_info **channels;
 603};
 604
 605/*
 606 * struct errcount_attribute - used to store the several error counts
 607 */
 608struct errcount_attribute_data {
 609        int n_layers;
 610        int pos[EDAC_MAX_LAYERS];
 611        int layer0, layer1, layer2;
 612};
 613
 614/**
 615 * edac_raw_error_desc - Raw error report structure
 616 * @grain:                      minimum granularity for an error report, in bytes
 617 * @error_count:                number of errors of the same type
 618 * @top_layer:                  top layer of the error (layer[0])
 619 * @mid_layer:                  middle layer of the error (layer[1])
 620 * @low_layer:                  low layer of the error (layer[2])
 621 * @page_frame_number:          page where the error happened
 622 * @offset_in_page:             page offset
 623 * @syndrome:                   syndrome of the error (or 0 if unknown or if
 624 *                              the syndrome is not applicable)
 625 * @msg:                        error message
 626 * @location:                   location of the error
 627 * @label:                      label of the affected DIMM(s)
 628 * @other_detail:               other driver-specific detail about the error
 629 * @enable_per_layer_report:    if false, the error affects all layers
 630 *                              (typically, a memory controller error)
 631 */
 632struct edac_raw_error_desc {
 633        /*
 634         * NOTE: everything before grain won't be cleaned by
 635         * edac_raw_error_desc_clean()
 636         */
 637        char location[LOCATION_SIZE];
 638        char label[(EDAC_MC_LABEL_LEN + 1 + sizeof(OTHER_LABEL)) * EDAC_MAX_LABELS];
 639        long grain;
 640
 641        /* the vars below and grain will be cleaned on every new error report */
 642        u16 error_count;
 643        int top_layer;
 644        int mid_layer;
 645        int low_layer;
 646        unsigned long page_frame_number;
 647        unsigned long offset_in_page;
 648        unsigned long syndrome;
 649        const char *msg;
 650        const char *other_detail;
 651        bool enable_per_layer_report;
 652};
 653
 654/* MEMORY controller information structure
 655 */
 656struct mem_ctl_info {
 657        struct device                   dev;
 658        struct bus_type                 *bus;
 659
 660        struct list_head link;  /* for global list of mem_ctl_info structs */
 661
 662        struct module *owner;   /* Module owner of this control struct */
 663
 664        unsigned long mtype_cap;        /* memory types supported by mc */
 665        unsigned long edac_ctl_cap;     /* Mem controller EDAC capabilities */
 666        unsigned long edac_cap; /* configuration capabilities - this is
 667                                 * closely related to edac_ctl_cap.  The
 668                                 * difference is that the controller may be
 669                                 * capable of s4ecd4ed which would be listed
 670                                 * in edac_ctl_cap, but if channels aren't
 671                                 * capable of s4ecd4ed then the edac_cap would
 672                                 * not have that capability.
 673                                 */
 674        unsigned long scrub_cap;        /* chipset scrub capabilities */
 675        enum scrub_type scrub_mode;     /* current scrub mode */
 676
 677        /* Translates sdram memory scrub rate given in bytes/sec to the
 678           internal representation and configures whatever else needs
 679           to be configured.
 680         */
 681        int (*set_sdram_scrub_rate) (struct mem_ctl_info * mci, u32 bw);
 682
 683        /* Get the current sdram memory scrub rate from the internal
 684           representation and converts it to the closest matching
 685           bandwidth in bytes/sec.
 686         */
 687        int (*get_sdram_scrub_rate) (struct mem_ctl_info * mci);
 688
 689
 690        /* pointer to edac checking routine */
 691        void (*edac_check) (struct mem_ctl_info * mci);
 692
 693        /*
 694         * Remaps memory pages: controller pages to physical pages.
 695         * For most MC's, this will be NULL.
 696         */
 697        /* FIXME - why not send the phys page to begin with? */
 698        unsigned long (*ctl_page_to_phys) (struct mem_ctl_info * mci,
 699                                           unsigned long page);
 700        int mc_idx;
 701        struct csrow_info **csrows;
 702        unsigned nr_csrows, num_cschannel;
 703
 704        /*
 705         * Memory Controller hierarchy
 706         *
 707         * There are basically two types of memory controller: the ones that
 708         * sees memory sticks ("dimms"), and the ones that sees memory ranks.
 709         * All old memory controllers enumerate memories per rank, but most
 710         * of the recent drivers enumerate memories per DIMM, instead.
 711         * When the memory controller is per rank, csbased is true.
 712         */
 713        unsigned n_layers;
 714        struct edac_mc_layer *layers;
 715        bool csbased;
 716
 717        /*
 718         * DIMM info. Will eventually remove the entire csrows_info some day
 719         */
 720        unsigned tot_dimms;
 721        struct dimm_info **dimms;
 722
 723        /*
 724         * FIXME - what about controllers on other busses? - IDs must be
 725         * unique.  dev pointer should be sufficiently unique, but
 726         * BUS:SLOT.FUNC numbers may not be unique.
 727         */
 728        struct device *pdev;
 729        const char *mod_name;
 730        const char *mod_ver;
 731        const char *ctl_name;
 732        const char *dev_name;
 733        void *pvt_info;
 734        unsigned long start_time;       /* mci load start time (in jiffies) */
 735
 736        /*
 737         * drivers shouldn't access those fields directly, as the core
 738         * already handles that.
 739         */
 740        u32 ce_noinfo_count, ue_noinfo_count;
 741        u32 ue_mc, ce_mc;
 742        u32 *ce_per_layer[EDAC_MAX_LAYERS], *ue_per_layer[EDAC_MAX_LAYERS];
 743
 744        struct completion complete;
 745
 746        /* Additional top controller level attributes, but specified
 747         * by the low level driver.
 748         *
 749         * Set by the low level driver to provide attributes at the
 750         * controller level.
 751         * An array of structures, NULL terminated
 752         *
 753         * If attributes are desired, then set to array of attributes
 754         * If no attributes are desired, leave NULL
 755         */
 756        const struct mcidev_sysfs_attribute *mc_driver_sysfs_attributes;
 757
 758        /* work struct for this MC */
 759        struct delayed_work work;
 760
 761        /*
 762         * Used to report an error - by being at the global struct
 763         * makes the memory allocated by the EDAC core
 764         */
 765        struct edac_raw_error_desc error_desc;
 766
 767        /* the internal state of this controller instance */
 768        int op_state;
 769
 770#ifdef CONFIG_EDAC_DEBUG
 771        struct dentry *debugfs;
 772        u8 fake_inject_layer[EDAC_MAX_LAYERS];
 773        u32 fake_inject_ue;
 774        u16 fake_inject_count;
 775#endif
 776};
 777
 778/*
 779 * Maximum number of memory controllers in the coherent fabric.
 780 */
 781#define EDAC_MAX_MCS    16
 782
 783#endif
 784