linux/include/linux/rculist.h
<<
>>
Prefs
   1#ifndef _LINUX_RCULIST_H
   2#define _LINUX_RCULIST_H
   3
   4#ifdef __KERNEL__
   5
   6/*
   7 * RCU-protected list version
   8 */
   9#include <linux/list.h>
  10#include <linux/rcupdate.h>
  11
  12/*
  13 * Why is there no list_empty_rcu()?  Because list_empty() serves this
  14 * purpose.  The list_empty() function fetches the RCU-protected pointer
  15 * and compares it to the address of the list head, but neither dereferences
  16 * this pointer itself nor provides this pointer to the caller.  Therefore,
  17 * it is not necessary to use rcu_dereference(), so that list_empty() can
  18 * be used anywhere you would want to use a list_empty_rcu().
  19 */
  20
  21/*
  22 * INIT_LIST_HEAD_RCU - Initialize a list_head visible to RCU readers
  23 * @list: list to be initialized
  24 *
  25 * You should instead use INIT_LIST_HEAD() for normal initialization and
  26 * cleanup tasks, when readers have no access to the list being initialized.
  27 * However, if the list being initialized is visible to readers, you
  28 * need to keep the compiler from being too mischievous.
  29 */
  30static inline void INIT_LIST_HEAD_RCU(struct list_head *list)
  31{
  32        ACCESS_ONCE(list->next) = list;
  33        ACCESS_ONCE(list->prev) = list;
  34}
  35
  36/*
  37 * return the ->next pointer of a list_head in an rcu safe
  38 * way, we must not access it directly
  39 */
  40#define list_next_rcu(list)     (*((struct list_head __rcu **)(&(list)->next)))
  41
  42/*
  43 * Insert a new entry between two known consecutive entries.
  44 *
  45 * This is only for internal list manipulation where we know
  46 * the prev/next entries already!
  47 */
  48#ifndef CONFIG_DEBUG_LIST
  49static inline void __list_add_rcu(struct list_head *new,
  50                struct list_head *prev, struct list_head *next)
  51{
  52        new->next = next;
  53        new->prev = prev;
  54        rcu_assign_pointer(list_next_rcu(prev), new);
  55        next->prev = new;
  56}
  57#else
  58void __list_add_rcu(struct list_head *new,
  59                    struct list_head *prev, struct list_head *next);
  60#endif
  61
  62/**
  63 * list_add_rcu - add a new entry to rcu-protected list
  64 * @new: new entry to be added
  65 * @head: list head to add it after
  66 *
  67 * Insert a new entry after the specified head.
  68 * This is good for implementing stacks.
  69 *
  70 * The caller must take whatever precautions are necessary
  71 * (such as holding appropriate locks) to avoid racing
  72 * with another list-mutation primitive, such as list_add_rcu()
  73 * or list_del_rcu(), running on this same list.
  74 * However, it is perfectly legal to run concurrently with
  75 * the _rcu list-traversal primitives, such as
  76 * list_for_each_entry_rcu().
  77 */
  78static inline void list_add_rcu(struct list_head *new, struct list_head *head)
  79{
  80        __list_add_rcu(new, head, head->next);
  81}
  82
  83/**
  84 * list_add_tail_rcu - add a new entry to rcu-protected list
  85 * @new: new entry to be added
  86 * @head: list head to add it before
  87 *
  88 * Insert a new entry before the specified head.
  89 * This is useful for implementing queues.
  90 *
  91 * The caller must take whatever precautions are necessary
  92 * (such as holding appropriate locks) to avoid racing
  93 * with another list-mutation primitive, such as list_add_tail_rcu()
  94 * or list_del_rcu(), running on this same list.
  95 * However, it is perfectly legal to run concurrently with
  96 * the _rcu list-traversal primitives, such as
  97 * list_for_each_entry_rcu().
  98 */
  99static inline void list_add_tail_rcu(struct list_head *new,
 100                                        struct list_head *head)
 101{
 102        __list_add_rcu(new, head->prev, head);
 103}
 104
 105/**
 106 * list_del_rcu - deletes entry from list without re-initialization
 107 * @entry: the element to delete from the list.
 108 *
 109 * Note: list_empty() on entry does not return true after this,
 110 * the entry is in an undefined state. It is useful for RCU based
 111 * lockfree traversal.
 112 *
 113 * In particular, it means that we can not poison the forward
 114 * pointers that may still be used for walking the list.
 115 *
 116 * The caller must take whatever precautions are necessary
 117 * (such as holding appropriate locks) to avoid racing
 118 * with another list-mutation primitive, such as list_del_rcu()
 119 * or list_add_rcu(), running on this same list.
 120 * However, it is perfectly legal to run concurrently with
 121 * the _rcu list-traversal primitives, such as
 122 * list_for_each_entry_rcu().
 123 *
 124 * Note that the caller is not permitted to immediately free
 125 * the newly deleted entry.  Instead, either synchronize_rcu()
 126 * or call_rcu() must be used to defer freeing until an RCU
 127 * grace period has elapsed.
 128 */
 129static inline void list_del_rcu(struct list_head *entry)
 130{
 131        __list_del_entry(entry);
 132        entry->prev = LIST_POISON2;
 133}
 134
 135/**
 136 * hlist_del_init_rcu - deletes entry from hash list with re-initialization
 137 * @n: the element to delete from the hash list.
 138 *
 139 * Note: list_unhashed() on the node return true after this. It is
 140 * useful for RCU based read lockfree traversal if the writer side
 141 * must know if the list entry is still hashed or already unhashed.
 142 *
 143 * In particular, it means that we can not poison the forward pointers
 144 * that may still be used for walking the hash list and we can only
 145 * zero the pprev pointer so list_unhashed() will return true after
 146 * this.
 147 *
 148 * The caller must take whatever precautions are necessary (such as
 149 * holding appropriate locks) to avoid racing with another
 150 * list-mutation primitive, such as hlist_add_head_rcu() or
 151 * hlist_del_rcu(), running on this same list.  However, it is
 152 * perfectly legal to run concurrently with the _rcu list-traversal
 153 * primitives, such as hlist_for_each_entry_rcu().
 154 */
 155static inline void hlist_del_init_rcu(struct hlist_node *n)
 156{
 157        if (!hlist_unhashed(n)) {
 158                __hlist_del(n);
 159                n->pprev = NULL;
 160        }
 161}
 162
 163/**
 164 * list_replace_rcu - replace old entry by new one
 165 * @old : the element to be replaced
 166 * @new : the new element to insert
 167 *
 168 * The @old entry will be replaced with the @new entry atomically.
 169 * Note: @old should not be empty.
 170 */
 171static inline void list_replace_rcu(struct list_head *old,
 172                                struct list_head *new)
 173{
 174        new->next = old->next;
 175        new->prev = old->prev;
 176        rcu_assign_pointer(list_next_rcu(new->prev), new);
 177        new->next->prev = new;
 178        old->prev = LIST_POISON2;
 179}
 180
 181/**
 182 * list_splice_init_rcu - splice an RCU-protected list into an existing list.
 183 * @list:       the RCU-protected list to splice
 184 * @head:       the place in the list to splice the first list into
 185 * @sync:       function to sync: synchronize_rcu(), synchronize_sched(), ...
 186 *
 187 * @head can be RCU-read traversed concurrently with this function.
 188 *
 189 * Note that this function blocks.
 190 *
 191 * Important note: the caller must take whatever action is necessary to
 192 *      prevent any other updates to @head.  In principle, it is possible
 193 *      to modify the list as soon as sync() begins execution.
 194 *      If this sort of thing becomes necessary, an alternative version
 195 *      based on call_rcu() could be created.  But only if -really-
 196 *      needed -- there is no shortage of RCU API members.
 197 */
 198static inline void list_splice_init_rcu(struct list_head *list,
 199                                        struct list_head *head,
 200                                        void (*sync)(void))
 201{
 202        struct list_head *first = list->next;
 203        struct list_head *last = list->prev;
 204        struct list_head *at = head->next;
 205
 206        if (list_empty(list))
 207                return;
 208
 209        /*
 210         * "first" and "last" tracking list, so initialize it.  RCU readers
 211         * have access to this list, so we must use INIT_LIST_HEAD_RCU()
 212         * instead of INIT_LIST_HEAD().
 213         */
 214
 215        INIT_LIST_HEAD_RCU(list);
 216
 217        /*
 218         * At this point, the list body still points to the source list.
 219         * Wait for any readers to finish using the list before splicing
 220         * the list body into the new list.  Any new readers will see
 221         * an empty list.
 222         */
 223
 224        sync();
 225
 226        /*
 227         * Readers are finished with the source list, so perform splice.
 228         * The order is important if the new list is global and accessible
 229         * to concurrent RCU readers.  Note that RCU readers are not
 230         * permitted to traverse the prev pointers without excluding
 231         * this function.
 232         */
 233
 234        last->next = at;
 235        rcu_assign_pointer(list_next_rcu(head), first);
 236        first->prev = head;
 237        at->prev = last;
 238}
 239
 240/**
 241 * list_entry_rcu - get the struct for this entry
 242 * @ptr:        the &struct list_head pointer.
 243 * @type:       the type of the struct this is embedded in.
 244 * @member:     the name of the list_struct within the struct.
 245 *
 246 * This primitive may safely run concurrently with the _rcu list-mutation
 247 * primitives such as list_add_rcu() as long as it's guarded by rcu_read_lock().
 248 */
 249#define list_entry_rcu(ptr, type, member) \
 250({ \
 251        typeof(*ptr) __rcu *__ptr = (typeof(*ptr) __rcu __force *)ptr; \
 252        container_of((typeof(ptr))rcu_dereference_raw(__ptr), type, member); \
 253})
 254
 255/**
 256 * Where are list_empty_rcu() and list_first_entry_rcu()?
 257 *
 258 * Implementing those functions following their counterparts list_empty() and
 259 * list_first_entry() is not advisable because they lead to subtle race
 260 * conditions as the following snippet shows:
 261 *
 262 * if (!list_empty_rcu(mylist)) {
 263 *      struct foo *bar = list_first_entry_rcu(mylist, struct foo, list_member);
 264 *      do_something(bar);
 265 * }
 266 *
 267 * The list may not be empty when list_empty_rcu checks it, but it may be when
 268 * list_first_entry_rcu rereads the ->next pointer.
 269 *
 270 * Rereading the ->next pointer is not a problem for list_empty() and
 271 * list_first_entry() because they would be protected by a lock that blocks
 272 * writers.
 273 *
 274 * See list_first_or_null_rcu for an alternative.
 275 */
 276
 277/**
 278 * list_first_or_null_rcu - get the first element from a list
 279 * @ptr:        the list head to take the element from.
 280 * @type:       the type of the struct this is embedded in.
 281 * @member:     the name of the list_struct within the struct.
 282 *
 283 * Note that if the list is empty, it returns NULL.
 284 *
 285 * This primitive may safely run concurrently with the _rcu list-mutation
 286 * primitives such as list_add_rcu() as long as it's guarded by rcu_read_lock().
 287 */
 288#define list_first_or_null_rcu(ptr, type, member) \
 289({ \
 290        struct list_head *__ptr = (ptr); \
 291        struct list_head *__next = ACCESS_ONCE(__ptr->next); \
 292        likely(__ptr != __next) ? list_entry_rcu(__next, type, member) : NULL; \
 293})
 294
 295/**
 296 * list_for_each_entry_rcu      -       iterate over rcu list of given type
 297 * @pos:        the type * to use as a loop cursor.
 298 * @head:       the head for your list.
 299 * @member:     the name of the list_struct within the struct.
 300 *
 301 * This list-traversal primitive may safely run concurrently with
 302 * the _rcu list-mutation primitives such as list_add_rcu()
 303 * as long as the traversal is guarded by rcu_read_lock().
 304 */
 305#define list_for_each_entry_rcu(pos, head, member) \
 306        for (pos = list_entry_rcu((head)->next, typeof(*pos), member); \
 307                &pos->member != (head); \
 308                pos = list_entry_rcu(pos->member.next, typeof(*pos), member))
 309
 310/**
 311 * list_for_each_entry_continue_rcu - continue iteration over list of given type
 312 * @pos:        the type * to use as a loop cursor.
 313 * @head:       the head for your list.
 314 * @member:     the name of the list_struct within the struct.
 315 *
 316 * Continue to iterate over list of given type, continuing after
 317 * the current position.
 318 */
 319#define list_for_each_entry_continue_rcu(pos, head, member)             \
 320        for (pos = list_entry_rcu(pos->member.next, typeof(*pos), member); \
 321             &pos->member != (head);    \
 322             pos = list_entry_rcu(pos->member.next, typeof(*pos), member))
 323
 324/**
 325 * hlist_del_rcu - deletes entry from hash list without re-initialization
 326 * @n: the element to delete from the hash list.
 327 *
 328 * Note: list_unhashed() on entry does not return true after this,
 329 * the entry is in an undefined state. It is useful for RCU based
 330 * lockfree traversal.
 331 *
 332 * In particular, it means that we can not poison the forward
 333 * pointers that may still be used for walking the hash list.
 334 *
 335 * The caller must take whatever precautions are necessary
 336 * (such as holding appropriate locks) to avoid racing
 337 * with another list-mutation primitive, such as hlist_add_head_rcu()
 338 * or hlist_del_rcu(), running on this same list.
 339 * However, it is perfectly legal to run concurrently with
 340 * the _rcu list-traversal primitives, such as
 341 * hlist_for_each_entry().
 342 */
 343static inline void hlist_del_rcu(struct hlist_node *n)
 344{
 345        __hlist_del(n);
 346        n->pprev = LIST_POISON2;
 347}
 348
 349/**
 350 * hlist_replace_rcu - replace old entry by new one
 351 * @old : the element to be replaced
 352 * @new : the new element to insert
 353 *
 354 * The @old entry will be replaced with the @new entry atomically.
 355 */
 356static inline void hlist_replace_rcu(struct hlist_node *old,
 357                                        struct hlist_node *new)
 358{
 359        struct hlist_node *next = old->next;
 360
 361        new->next = next;
 362        new->pprev = old->pprev;
 363        rcu_assign_pointer(*(struct hlist_node __rcu **)new->pprev, new);
 364        if (next)
 365                new->next->pprev = &new->next;
 366        old->pprev = LIST_POISON2;
 367}
 368
 369/*
 370 * return the first or the next element in an RCU protected hlist
 371 */
 372#define hlist_first_rcu(head)   (*((struct hlist_node __rcu **)(&(head)->first)))
 373#define hlist_next_rcu(node)    (*((struct hlist_node __rcu **)(&(node)->next)))
 374#define hlist_pprev_rcu(node)   (*((struct hlist_node __rcu **)((node)->pprev)))
 375
 376/**
 377 * hlist_add_head_rcu
 378 * @n: the element to add to the hash list.
 379 * @h: the list to add to.
 380 *
 381 * Description:
 382 * Adds the specified element to the specified hlist,
 383 * while permitting racing traversals.
 384 *
 385 * The caller must take whatever precautions are necessary
 386 * (such as holding appropriate locks) to avoid racing
 387 * with another list-mutation primitive, such as hlist_add_head_rcu()
 388 * or hlist_del_rcu(), running on this same list.
 389 * However, it is perfectly legal to run concurrently with
 390 * the _rcu list-traversal primitives, such as
 391 * hlist_for_each_entry_rcu(), used to prevent memory-consistency
 392 * problems on Alpha CPUs.  Regardless of the type of CPU, the
 393 * list-traversal primitive must be guarded by rcu_read_lock().
 394 */
 395static inline void hlist_add_head_rcu(struct hlist_node *n,
 396                                        struct hlist_head *h)
 397{
 398        struct hlist_node *first = h->first;
 399
 400        n->next = first;
 401        n->pprev = &h->first;
 402        rcu_assign_pointer(hlist_first_rcu(h), n);
 403        if (first)
 404                first->pprev = &n->next;
 405}
 406
 407/**
 408 * hlist_add_before_rcu
 409 * @n: the new element to add to the hash list.
 410 * @next: the existing element to add the new element before.
 411 *
 412 * Description:
 413 * Adds the specified element to the specified hlist
 414 * before the specified node while permitting racing traversals.
 415 *
 416 * The caller must take whatever precautions are necessary
 417 * (such as holding appropriate locks) to avoid racing
 418 * with another list-mutation primitive, such as hlist_add_head_rcu()
 419 * or hlist_del_rcu(), running on this same list.
 420 * However, it is perfectly legal to run concurrently with
 421 * the _rcu list-traversal primitives, such as
 422 * hlist_for_each_entry_rcu(), used to prevent memory-consistency
 423 * problems on Alpha CPUs.
 424 */
 425static inline void hlist_add_before_rcu(struct hlist_node *n,
 426                                        struct hlist_node *next)
 427{
 428        n->pprev = next->pprev;
 429        n->next = next;
 430        rcu_assign_pointer(hlist_pprev_rcu(n), n);
 431        next->pprev = &n->next;
 432}
 433
 434/**
 435 * hlist_add_behind_rcu
 436 * @n: the new element to add to the hash list.
 437 * @prev: the existing element to add the new element after.
 438 *
 439 * Description:
 440 * Adds the specified element to the specified hlist
 441 * after the specified node while permitting racing traversals.
 442 *
 443 * The caller must take whatever precautions are necessary
 444 * (such as holding appropriate locks) to avoid racing
 445 * with another list-mutation primitive, such as hlist_add_head_rcu()
 446 * or hlist_del_rcu(), running on this same list.
 447 * However, it is perfectly legal to run concurrently with
 448 * the _rcu list-traversal primitives, such as
 449 * hlist_for_each_entry_rcu(), used to prevent memory-consistency
 450 * problems on Alpha CPUs.
 451 */
 452static inline void hlist_add_behind_rcu(struct hlist_node *n,
 453                                        struct hlist_node *prev)
 454{
 455        n->next = prev->next;
 456        n->pprev = &prev->next;
 457        rcu_assign_pointer(hlist_next_rcu(prev), n);
 458        if (n->next)
 459                n->next->pprev = &n->next;
 460}
 461
 462#define __hlist_for_each_rcu(pos, head)                         \
 463        for (pos = rcu_dereference(hlist_first_rcu(head));      \
 464             pos;                                               \
 465             pos = rcu_dereference(hlist_next_rcu(pos)))
 466
 467/**
 468 * hlist_for_each_entry_rcu - iterate over rcu list of given type
 469 * @pos:        the type * to use as a loop cursor.
 470 * @head:       the head for your list.
 471 * @member:     the name of the hlist_node within the struct.
 472 *
 473 * This list-traversal primitive may safely run concurrently with
 474 * the _rcu list-mutation primitives such as hlist_add_head_rcu()
 475 * as long as the traversal is guarded by rcu_read_lock().
 476 */
 477#define hlist_for_each_entry_rcu(pos, head, member)                     \
 478        for (pos = hlist_entry_safe (rcu_dereference_raw(hlist_first_rcu(head)),\
 479                        typeof(*(pos)), member);                        \
 480                pos;                                                    \
 481                pos = hlist_entry_safe(rcu_dereference_raw(hlist_next_rcu(\
 482                        &(pos)->member)), typeof(*(pos)), member))
 483
 484/**
 485 * hlist_for_each_entry_rcu_notrace - iterate over rcu list of given type (for tracing)
 486 * @pos:        the type * to use as a loop cursor.
 487 * @head:       the head for your list.
 488 * @member:     the name of the hlist_node within the struct.
 489 *
 490 * This list-traversal primitive may safely run concurrently with
 491 * the _rcu list-mutation primitives such as hlist_add_head_rcu()
 492 * as long as the traversal is guarded by rcu_read_lock().
 493 *
 494 * This is the same as hlist_for_each_entry_rcu() except that it does
 495 * not do any RCU debugging or tracing.
 496 */
 497#define hlist_for_each_entry_rcu_notrace(pos, head, member)                     \
 498        for (pos = hlist_entry_safe (rcu_dereference_raw_notrace(hlist_first_rcu(head)),\
 499                        typeof(*(pos)), member);                        \
 500                pos;                                                    \
 501                pos = hlist_entry_safe(rcu_dereference_raw_notrace(hlist_next_rcu(\
 502                        &(pos)->member)), typeof(*(pos)), member))
 503
 504/**
 505 * hlist_for_each_entry_rcu_bh - iterate over rcu list of given type
 506 * @pos:        the type * to use as a loop cursor.
 507 * @head:       the head for your list.
 508 * @member:     the name of the hlist_node within the struct.
 509 *
 510 * This list-traversal primitive may safely run concurrently with
 511 * the _rcu list-mutation primitives such as hlist_add_head_rcu()
 512 * as long as the traversal is guarded by rcu_read_lock().
 513 */
 514#define hlist_for_each_entry_rcu_bh(pos, head, member)                  \
 515        for (pos = hlist_entry_safe(rcu_dereference_bh(hlist_first_rcu(head)),\
 516                        typeof(*(pos)), member);                        \
 517                pos;                                                    \
 518                pos = hlist_entry_safe(rcu_dereference_bh(hlist_next_rcu(\
 519                        &(pos)->member)), typeof(*(pos)), member))
 520
 521/**
 522 * hlist_for_each_entry_continue_rcu - iterate over a hlist continuing after current point
 523 * @pos:        the type * to use as a loop cursor.
 524 * @member:     the name of the hlist_node within the struct.
 525 */
 526#define hlist_for_each_entry_continue_rcu(pos, member)                  \
 527        for (pos = hlist_entry_safe(rcu_dereference((pos)->member.next),\
 528                        typeof(*(pos)), member);                        \
 529             pos;                                                       \
 530             pos = hlist_entry_safe(rcu_dereference((pos)->member.next),\
 531                        typeof(*(pos)), member))
 532
 533/**
 534 * hlist_for_each_entry_continue_rcu_bh - iterate over a hlist continuing after current point
 535 * @pos:        the type * to use as a loop cursor.
 536 * @member:     the name of the hlist_node within the struct.
 537 */
 538#define hlist_for_each_entry_continue_rcu_bh(pos, member)               \
 539        for (pos = hlist_entry_safe(rcu_dereference_bh((pos)->member.next),\
 540                        typeof(*(pos)), member);                        \
 541             pos;                                                       \
 542             pos = hlist_entry_safe(rcu_dereference_bh((pos)->member.next),\
 543                        typeof(*(pos)), member))
 544
 545
 546#endif  /* __KERNEL__ */
 547#endif
 548