linux/include/linux/usb.h
<<
>>
Prefs
   1#ifndef __LINUX_USB_H
   2#define __LINUX_USB_H
   3
   4#include <linux/mod_devicetable.h>
   5#include <linux/usb/ch9.h>
   6
   7#define USB_MAJOR                       180
   8#define USB_DEVICE_MAJOR                189
   9
  10
  11#ifdef __KERNEL__
  12
  13#include <linux/errno.h>        /* for -ENODEV */
  14#include <linux/delay.h>        /* for mdelay() */
  15#include <linux/interrupt.h>    /* for in_interrupt() */
  16#include <linux/list.h>         /* for struct list_head */
  17#include <linux/kref.h>         /* for struct kref */
  18#include <linux/device.h>       /* for struct device */
  19#include <linux/fs.h>           /* for struct file_operations */
  20#include <linux/completion.h>   /* for struct completion */
  21#include <linux/sched.h>        /* for current && schedule_timeout */
  22#include <linux/mutex.h>        /* for struct mutex */
  23#include <linux/pm_runtime.h>   /* for runtime PM */
  24
  25struct usb_device;
  26struct usb_driver;
  27struct wusb_dev;
  28
  29/*-------------------------------------------------------------------------*/
  30
  31/*
  32 * Host-side wrappers for standard USB descriptors ... these are parsed
  33 * from the data provided by devices.  Parsing turns them from a flat
  34 * sequence of descriptors into a hierarchy:
  35 *
  36 *  - devices have one (usually) or more configs;
  37 *  - configs have one (often) or more interfaces;
  38 *  - interfaces have one (usually) or more settings;
  39 *  - each interface setting has zero or (usually) more endpoints.
  40 *  - a SuperSpeed endpoint has a companion descriptor
  41 *
  42 * And there might be other descriptors mixed in with those.
  43 *
  44 * Devices may also have class-specific or vendor-specific descriptors.
  45 */
  46
  47struct ep_device;
  48
  49/**
  50 * struct usb_host_endpoint - host-side endpoint descriptor and queue
  51 * @desc: descriptor for this endpoint, wMaxPacketSize in native byteorder
  52 * @ss_ep_comp: SuperSpeed companion descriptor for this endpoint
  53 * @urb_list: urbs queued to this endpoint; maintained by usbcore
  54 * @hcpriv: for use by HCD; typically holds hardware dma queue head (QH)
  55 *      with one or more transfer descriptors (TDs) per urb
  56 * @ep_dev: ep_device for sysfs info
  57 * @extra: descriptors following this endpoint in the configuration
  58 * @extralen: how many bytes of "extra" are valid
  59 * @enabled: URBs may be submitted to this endpoint
  60 * @streams: number of USB-3 streams allocated on the endpoint
  61 *
  62 * USB requests are always queued to a given endpoint, identified by a
  63 * descriptor within an active interface in a given USB configuration.
  64 */
  65struct usb_host_endpoint {
  66        struct usb_endpoint_descriptor          desc;
  67        struct usb_ss_ep_comp_descriptor        ss_ep_comp;
  68        struct list_head                urb_list;
  69        void                            *hcpriv;
  70        struct ep_device                *ep_dev;        /* For sysfs info */
  71
  72        unsigned char *extra;   /* Extra descriptors */
  73        int extralen;
  74        int enabled;
  75        int streams;
  76};
  77
  78/* host-side wrapper for one interface setting's parsed descriptors */
  79struct usb_host_interface {
  80        struct usb_interface_descriptor desc;
  81
  82        int extralen;
  83        unsigned char *extra;   /* Extra descriptors */
  84
  85        /* array of desc.bNumEndpoint endpoints associated with this
  86         * interface setting.  these will be in no particular order.
  87         */
  88        struct usb_host_endpoint *endpoint;
  89
  90        char *string;           /* iInterface string, if present */
  91};
  92
  93enum usb_interface_condition {
  94        USB_INTERFACE_UNBOUND = 0,
  95        USB_INTERFACE_BINDING,
  96        USB_INTERFACE_BOUND,
  97        USB_INTERFACE_UNBINDING,
  98};
  99
 100/**
 101 * struct usb_interface - what usb device drivers talk to
 102 * @altsetting: array of interface structures, one for each alternate
 103 *      setting that may be selected.  Each one includes a set of
 104 *      endpoint configurations.  They will be in no particular order.
 105 * @cur_altsetting: the current altsetting.
 106 * @num_altsetting: number of altsettings defined.
 107 * @intf_assoc: interface association descriptor
 108 * @minor: the minor number assigned to this interface, if this
 109 *      interface is bound to a driver that uses the USB major number.
 110 *      If this interface does not use the USB major, this field should
 111 *      be unused.  The driver should set this value in the probe()
 112 *      function of the driver, after it has been assigned a minor
 113 *      number from the USB core by calling usb_register_dev().
 114 * @condition: binding state of the interface: not bound, binding
 115 *      (in probe()), bound to a driver, or unbinding (in disconnect())
 116 * @sysfs_files_created: sysfs attributes exist
 117 * @ep_devs_created: endpoint child pseudo-devices exist
 118 * @unregistering: flag set when the interface is being unregistered
 119 * @needs_remote_wakeup: flag set when the driver requires remote-wakeup
 120 *      capability during autosuspend.
 121 * @needs_altsetting0: flag set when a set-interface request for altsetting 0
 122 *      has been deferred.
 123 * @needs_binding: flag set when the driver should be re-probed or unbound
 124 *      following a reset or suspend operation it doesn't support.
 125 * @dev: driver model's view of this device
 126 * @usb_dev: if an interface is bound to the USB major, this will point
 127 *      to the sysfs representation for that device.
 128 * @pm_usage_cnt: PM usage counter for this interface
 129 * @reset_ws: Used for scheduling resets from atomic context.
 130 * @reset_running: set to 1 if the interface is currently running a
 131 *      queued reset so that usb_cancel_queued_reset() doesn't try to
 132 *      remove from the workqueue when running inside the worker
 133 *      thread. See __usb_queue_reset_device().
 134 * @resetting_device: USB core reset the device, so use alt setting 0 as
 135 *      current; needs bandwidth alloc after reset.
 136 *
 137 * USB device drivers attach to interfaces on a physical device.  Each
 138 * interface encapsulates a single high level function, such as feeding
 139 * an audio stream to a speaker or reporting a change in a volume control.
 140 * Many USB devices only have one interface.  The protocol used to talk to
 141 * an interface's endpoints can be defined in a usb "class" specification,
 142 * or by a product's vendor.  The (default) control endpoint is part of
 143 * every interface, but is never listed among the interface's descriptors.
 144 *
 145 * The driver that is bound to the interface can use standard driver model
 146 * calls such as dev_get_drvdata() on the dev member of this structure.
 147 *
 148 * Each interface may have alternate settings.  The initial configuration
 149 * of a device sets altsetting 0, but the device driver can change
 150 * that setting using usb_set_interface().  Alternate settings are often
 151 * used to control the use of periodic endpoints, such as by having
 152 * different endpoints use different amounts of reserved USB bandwidth.
 153 * All standards-conformant USB devices that use isochronous endpoints
 154 * will use them in non-default settings.
 155 *
 156 * The USB specification says that alternate setting numbers must run from
 157 * 0 to one less than the total number of alternate settings.  But some
 158 * devices manage to mess this up, and the structures aren't necessarily
 159 * stored in numerical order anyhow.  Use usb_altnum_to_altsetting() to
 160 * look up an alternate setting in the altsetting array based on its number.
 161 */
 162struct usb_interface {
 163        /* array of alternate settings for this interface,
 164         * stored in no particular order */
 165        struct usb_host_interface *altsetting;
 166
 167        struct usb_host_interface *cur_altsetting;      /* the currently
 168                                         * active alternate setting */
 169        unsigned num_altsetting;        /* number of alternate settings */
 170
 171        /* If there is an interface association descriptor then it will list
 172         * the associated interfaces */
 173        struct usb_interface_assoc_descriptor *intf_assoc;
 174
 175        int minor;                      /* minor number this interface is
 176                                         * bound to */
 177        enum usb_interface_condition condition;         /* state of binding */
 178        unsigned sysfs_files_created:1; /* the sysfs attributes exist */
 179        unsigned ep_devs_created:1;     /* endpoint "devices" exist */
 180        unsigned unregistering:1;       /* unregistration is in progress */
 181        unsigned needs_remote_wakeup:1; /* driver requires remote wakeup */
 182        unsigned needs_altsetting0:1;   /* switch to altsetting 0 is pending */
 183        unsigned needs_binding:1;       /* needs delayed unbind/rebind */
 184        unsigned reset_running:1;
 185        unsigned resetting_device:1;    /* true: bandwidth alloc after reset */
 186
 187        struct device dev;              /* interface specific device info */
 188        struct device *usb_dev;
 189        atomic_t pm_usage_cnt;          /* usage counter for autosuspend */
 190        struct work_struct reset_ws;    /* for resets in atomic context */
 191};
 192#define to_usb_interface(d) container_of(d, struct usb_interface, dev)
 193
 194static inline void *usb_get_intfdata(struct usb_interface *intf)
 195{
 196        return dev_get_drvdata(&intf->dev);
 197}
 198
 199static inline void usb_set_intfdata(struct usb_interface *intf, void *data)
 200{
 201        dev_set_drvdata(&intf->dev, data);
 202}
 203
 204struct usb_interface *usb_get_intf(struct usb_interface *intf);
 205void usb_put_intf(struct usb_interface *intf);
 206
 207/* Hard limit */
 208#define USB_MAXENDPOINTS        30
 209/* this maximum is arbitrary */
 210#define USB_MAXINTERFACES       32
 211#define USB_MAXIADS             (USB_MAXINTERFACES/2)
 212
 213/**
 214 * struct usb_interface_cache - long-term representation of a device interface
 215 * @num_altsetting: number of altsettings defined.
 216 * @ref: reference counter.
 217 * @altsetting: variable-length array of interface structures, one for
 218 *      each alternate setting that may be selected.  Each one includes a
 219 *      set of endpoint configurations.  They will be in no particular order.
 220 *
 221 * These structures persist for the lifetime of a usb_device, unlike
 222 * struct usb_interface (which persists only as long as its configuration
 223 * is installed).  The altsetting arrays can be accessed through these
 224 * structures at any time, permitting comparison of configurations and
 225 * providing support for the /proc/bus/usb/devices pseudo-file.
 226 */
 227struct usb_interface_cache {
 228        unsigned num_altsetting;        /* number of alternate settings */
 229        struct kref ref;                /* reference counter */
 230
 231        /* variable-length array of alternate settings for this interface,
 232         * stored in no particular order */
 233        struct usb_host_interface altsetting[0];
 234};
 235#define ref_to_usb_interface_cache(r) \
 236                container_of(r, struct usb_interface_cache, ref)
 237#define altsetting_to_usb_interface_cache(a) \
 238                container_of(a, struct usb_interface_cache, altsetting[0])
 239
 240/**
 241 * struct usb_host_config - representation of a device's configuration
 242 * @desc: the device's configuration descriptor.
 243 * @string: pointer to the cached version of the iConfiguration string, if
 244 *      present for this configuration.
 245 * @intf_assoc: list of any interface association descriptors in this config
 246 * @interface: array of pointers to usb_interface structures, one for each
 247 *      interface in the configuration.  The number of interfaces is stored
 248 *      in desc.bNumInterfaces.  These pointers are valid only while the
 249 *      the configuration is active.
 250 * @intf_cache: array of pointers to usb_interface_cache structures, one
 251 *      for each interface in the configuration.  These structures exist
 252 *      for the entire life of the device.
 253 * @extra: pointer to buffer containing all extra descriptors associated
 254 *      with this configuration (those preceding the first interface
 255 *      descriptor).
 256 * @extralen: length of the extra descriptors buffer.
 257 *
 258 * USB devices may have multiple configurations, but only one can be active
 259 * at any time.  Each encapsulates a different operational environment;
 260 * for example, a dual-speed device would have separate configurations for
 261 * full-speed and high-speed operation.  The number of configurations
 262 * available is stored in the device descriptor as bNumConfigurations.
 263 *
 264 * A configuration can contain multiple interfaces.  Each corresponds to
 265 * a different function of the USB device, and all are available whenever
 266 * the configuration is active.  The USB standard says that interfaces
 267 * are supposed to be numbered from 0 to desc.bNumInterfaces-1, but a lot
 268 * of devices get this wrong.  In addition, the interface array is not
 269 * guaranteed to be sorted in numerical order.  Use usb_ifnum_to_if() to
 270 * look up an interface entry based on its number.
 271 *
 272 * Device drivers should not attempt to activate configurations.  The choice
 273 * of which configuration to install is a policy decision based on such
 274 * considerations as available power, functionality provided, and the user's
 275 * desires (expressed through userspace tools).  However, drivers can call
 276 * usb_reset_configuration() to reinitialize the current configuration and
 277 * all its interfaces.
 278 */
 279struct usb_host_config {
 280        struct usb_config_descriptor    desc;
 281
 282        char *string;           /* iConfiguration string, if present */
 283
 284        /* List of any Interface Association Descriptors in this
 285         * configuration. */
 286        struct usb_interface_assoc_descriptor *intf_assoc[USB_MAXIADS];
 287
 288        /* the interfaces associated with this configuration,
 289         * stored in no particular order */
 290        struct usb_interface *interface[USB_MAXINTERFACES];
 291
 292        /* Interface information available even when this is not the
 293         * active configuration */
 294        struct usb_interface_cache *intf_cache[USB_MAXINTERFACES];
 295
 296        unsigned char *extra;   /* Extra descriptors */
 297        int extralen;
 298};
 299
 300/* USB2.0 and USB3.0 device BOS descriptor set */
 301struct usb_host_bos {
 302        struct usb_bos_descriptor       *desc;
 303
 304        /* wireless cap descriptor is handled by wusb */
 305        struct usb_ext_cap_descriptor   *ext_cap;
 306        struct usb_ss_cap_descriptor    *ss_cap;
 307        struct usb_ss_container_id_descriptor   *ss_id;
 308};
 309
 310int __usb_get_extra_descriptor(char *buffer, unsigned size,
 311        unsigned char type, void **ptr);
 312#define usb_get_extra_descriptor(ifpoint, type, ptr) \
 313                                __usb_get_extra_descriptor((ifpoint)->extra, \
 314                                (ifpoint)->extralen, \
 315                                type, (void **)ptr)
 316
 317/* ----------------------------------------------------------------------- */
 318
 319/* USB device number allocation bitmap */
 320struct usb_devmap {
 321        unsigned long devicemap[128 / (8*sizeof(unsigned long))];
 322};
 323
 324/*
 325 * Allocated per bus (tree of devices) we have:
 326 */
 327struct usb_bus {
 328        struct device *controller;      /* host/master side hardware */
 329        int busnum;                     /* Bus number (in order of reg) */
 330        const char *bus_name;           /* stable id (PCI slot_name etc) */
 331        u8 uses_dma;                    /* Does the host controller use DMA? */
 332        u8 uses_pio_for_control;        /*
 333                                         * Does the host controller use PIO
 334                                         * for control transfers?
 335                                         */
 336        u8 otg_port;                    /* 0, or number of OTG/HNP port */
 337        unsigned is_b_host:1;           /* true during some HNP roleswitches */
 338        unsigned b_hnp_enable:1;        /* OTG: did A-Host enable HNP? */
 339        unsigned no_stop_on_short:1;    /*
 340                                         * Quirk: some controllers don't stop
 341                                         * the ep queue on a short transfer
 342                                         * with the URB_SHORT_NOT_OK flag set.
 343                                         */
 344        unsigned no_sg_constraint:1;    /* no sg constraint */
 345        unsigned sg_tablesize;          /* 0 or largest number of sg list entries */
 346
 347        int devnum_next;                /* Next open device number in
 348                                         * round-robin allocation */
 349
 350        struct usb_devmap devmap;       /* device address allocation map */
 351        struct usb_device *root_hub;    /* Root hub */
 352        struct usb_bus *hs_companion;   /* Companion EHCI bus, if any */
 353        struct list_head bus_list;      /* list of busses */
 354
 355        struct mutex usb_address0_mutex; /* unaddressed device mutex */
 356
 357        int bandwidth_allocated;        /* on this bus: how much of the time
 358                                         * reserved for periodic (intr/iso)
 359                                         * requests is used, on average?
 360                                         * Units: microseconds/frame.
 361                                         * Limits: Full/low speed reserve 90%,
 362                                         * while high speed reserves 80%.
 363                                         */
 364        int bandwidth_int_reqs;         /* number of Interrupt requests */
 365        int bandwidth_isoc_reqs;        /* number of Isoc. requests */
 366
 367        unsigned resuming_ports;        /* bit array: resuming root-hub ports */
 368
 369#if defined(CONFIG_USB_MON) || defined(CONFIG_USB_MON_MODULE)
 370        struct mon_bus *mon_bus;        /* non-null when associated */
 371        int monitored;                  /* non-zero when monitored */
 372#endif
 373};
 374
 375struct usb_dev_state;
 376
 377/* ----------------------------------------------------------------------- */
 378
 379struct usb_tt;
 380
 381enum usb_device_removable {
 382        USB_DEVICE_REMOVABLE_UNKNOWN = 0,
 383        USB_DEVICE_REMOVABLE,
 384        USB_DEVICE_FIXED,
 385};
 386
 387enum usb_port_connect_type {
 388        USB_PORT_CONNECT_TYPE_UNKNOWN = 0,
 389        USB_PORT_CONNECT_TYPE_HOT_PLUG,
 390        USB_PORT_CONNECT_TYPE_HARD_WIRED,
 391        USB_PORT_NOT_USED,
 392};
 393
 394/*
 395 * USB 2.0 Link Power Management (LPM) parameters.
 396 */
 397struct usb2_lpm_parameters {
 398        /* Best effort service latency indicate how long the host will drive
 399         * resume on an exit from L1.
 400         */
 401        unsigned int besl;
 402
 403        /* Timeout value in microseconds for the L1 inactivity (LPM) timer.
 404         * When the timer counts to zero, the parent hub will initiate a LPM
 405         * transition to L1.
 406         */
 407        int timeout;
 408};
 409
 410/*
 411 * USB 3.0 Link Power Management (LPM) parameters.
 412 *
 413 * PEL and SEL are USB 3.0 Link PM latencies for device-initiated LPM exit.
 414 * MEL is the USB 3.0 Link PM latency for host-initiated LPM exit.
 415 * All three are stored in nanoseconds.
 416 */
 417struct usb3_lpm_parameters {
 418        /*
 419         * Maximum exit latency (MEL) for the host to send a packet to the
 420         * device (either a Ping for isoc endpoints, or a data packet for
 421         * interrupt endpoints), the hubs to decode the packet, and for all hubs
 422         * in the path to transition the links to U0.
 423         */
 424        unsigned int mel;
 425        /*
 426         * Maximum exit latency for a device-initiated LPM transition to bring
 427         * all links into U0.  Abbreviated as "PEL" in section 9.4.12 of the USB
 428         * 3.0 spec, with no explanation of what "P" stands for.  "Path"?
 429         */
 430        unsigned int pel;
 431
 432        /*
 433         * The System Exit Latency (SEL) includes PEL, and three other
 434         * latencies.  After a device initiates a U0 transition, it will take
 435         * some time from when the device sends the ERDY to when it will finally
 436         * receive the data packet.  Basically, SEL should be the worse-case
 437         * latency from when a device starts initiating a U0 transition to when
 438         * it will get data.
 439         */
 440        unsigned int sel;
 441        /*
 442         * The idle timeout value that is currently programmed into the parent
 443         * hub for this device.  When the timer counts to zero, the parent hub
 444         * will initiate an LPM transition to either U1 or U2.
 445         */
 446        int timeout;
 447};
 448
 449/**
 450 * struct usb_device - kernel's representation of a USB device
 451 * @devnum: device number; address on a USB bus
 452 * @devpath: device ID string for use in messages (e.g., /port/...)
 453 * @route: tree topology hex string for use with xHCI
 454 * @state: device state: configured, not attached, etc.
 455 * @speed: device speed: high/full/low (or error)
 456 * @tt: Transaction Translator info; used with low/full speed dev, highspeed hub
 457 * @ttport: device port on that tt hub
 458 * @toggle: one bit for each endpoint, with ([0] = IN, [1] = OUT) endpoints
 459 * @parent: our hub, unless we're the root
 460 * @bus: bus we're part of
 461 * @ep0: endpoint 0 data (default control pipe)
 462 * @dev: generic device interface
 463 * @descriptor: USB device descriptor
 464 * @bos: USB device BOS descriptor set
 465 * @config: all of the device's configs
 466 * @actconfig: the active configuration
 467 * @ep_in: array of IN endpoints
 468 * @ep_out: array of OUT endpoints
 469 * @rawdescriptors: raw descriptors for each config
 470 * @bus_mA: Current available from the bus
 471 * @portnum: parent port number (origin 1)
 472 * @level: number of USB hub ancestors
 473 * @can_submit: URBs may be submitted
 474 * @persist_enabled:  USB_PERSIST enabled for this device
 475 * @have_langid: whether string_langid is valid
 476 * @authorized: policy has said we can use it;
 477 *      (user space) policy determines if we authorize this device to be
 478 *      used or not. By default, wired USB devices are authorized.
 479 *      WUSB devices are not, until we authorize them from user space.
 480 *      FIXME -- complete doc
 481 * @authenticated: Crypto authentication passed
 482 * @wusb: device is Wireless USB
 483 * @lpm_capable: device supports LPM
 484 * @usb2_hw_lpm_capable: device can perform USB2 hardware LPM
 485 * @usb2_hw_lpm_besl_capable: device can perform USB2 hardware BESL LPM
 486 * @usb2_hw_lpm_enabled: USB2 hardware LPM is enabled
 487 * @usb2_hw_lpm_allowed: Userspace allows USB 2.0 LPM to be enabled
 488 * @usb3_lpm_enabled: USB3 hardware LPM enabled
 489 * @string_langid: language ID for strings
 490 * @product: iProduct string, if present (static)
 491 * @manufacturer: iManufacturer string, if present (static)
 492 * @serial: iSerialNumber string, if present (static)
 493 * @filelist: usbfs files that are open to this device
 494 * @maxchild: number of ports if hub
 495 * @quirks: quirks of the whole device
 496 * @urbnum: number of URBs submitted for the whole device
 497 * @active_duration: total time device is not suspended
 498 * @connect_time: time device was first connected
 499 * @do_remote_wakeup:  remote wakeup should be enabled
 500 * @reset_resume: needs reset instead of resume
 501 * @port_is_suspended: the upstream port is suspended (L2 or U3)
 502 * @wusb_dev: if this is a Wireless USB device, link to the WUSB
 503 *      specific data for the device.
 504 * @slot_id: Slot ID assigned by xHCI
 505 * @removable: Device can be physically removed from this port
 506 * @l1_params: best effor service latency for USB2 L1 LPM state, and L1 timeout.
 507 * @u1_params: exit latencies for USB3 U1 LPM state, and hub-initiated timeout.
 508 * @u2_params: exit latencies for USB3 U2 LPM state, and hub-initiated timeout.
 509 * @lpm_disable_count: Ref count used by usb_disable_lpm() and usb_enable_lpm()
 510 *      to keep track of the number of functions that require USB 3.0 Link Power
 511 *      Management to be disabled for this usb_device.  This count should only
 512 *      be manipulated by those functions, with the bandwidth_mutex is held.
 513 *
 514 * Notes:
 515 * Usbcore drivers should not set usbdev->state directly.  Instead use
 516 * usb_set_device_state().
 517 */
 518struct usb_device {
 519        int             devnum;
 520        char            devpath[16];
 521        u32             route;
 522        enum usb_device_state   state;
 523        enum usb_device_speed   speed;
 524
 525        struct usb_tt   *tt;
 526        int             ttport;
 527
 528        unsigned int toggle[2];
 529
 530        struct usb_device *parent;
 531        struct usb_bus *bus;
 532        struct usb_host_endpoint ep0;
 533
 534        struct device dev;
 535
 536        struct usb_device_descriptor descriptor;
 537        struct usb_host_bos *bos;
 538        struct usb_host_config *config;
 539
 540        struct usb_host_config *actconfig;
 541        struct usb_host_endpoint *ep_in[16];
 542        struct usb_host_endpoint *ep_out[16];
 543
 544        char **rawdescriptors;
 545
 546        unsigned short bus_mA;
 547        u8 portnum;
 548        u8 level;
 549
 550        unsigned can_submit:1;
 551        unsigned persist_enabled:1;
 552        unsigned have_langid:1;
 553        unsigned authorized:1;
 554        unsigned authenticated:1;
 555        unsigned wusb:1;
 556        unsigned lpm_capable:1;
 557        unsigned usb2_hw_lpm_capable:1;
 558        unsigned usb2_hw_lpm_besl_capable:1;
 559        unsigned usb2_hw_lpm_enabled:1;
 560        unsigned usb2_hw_lpm_allowed:1;
 561        unsigned usb3_lpm_enabled:1;
 562        int string_langid;
 563
 564        /* static strings from the device */
 565        char *product;
 566        char *manufacturer;
 567        char *serial;
 568
 569        struct list_head filelist;
 570
 571        int maxchild;
 572
 573        u32 quirks;
 574        atomic_t urbnum;
 575
 576        unsigned long active_duration;
 577
 578#ifdef CONFIG_PM
 579        unsigned long connect_time;
 580
 581        unsigned do_remote_wakeup:1;
 582        unsigned reset_resume:1;
 583        unsigned port_is_suspended:1;
 584#endif
 585        struct wusb_dev *wusb_dev;
 586        int slot_id;
 587        enum usb_device_removable removable;
 588        struct usb2_lpm_parameters l1_params;
 589        struct usb3_lpm_parameters u1_params;
 590        struct usb3_lpm_parameters u2_params;
 591        unsigned lpm_disable_count;
 592};
 593#define to_usb_device(d) container_of(d, struct usb_device, dev)
 594
 595static inline struct usb_device *interface_to_usbdev(struct usb_interface *intf)
 596{
 597        return to_usb_device(intf->dev.parent);
 598}
 599
 600extern struct usb_device *usb_get_dev(struct usb_device *dev);
 601extern void usb_put_dev(struct usb_device *dev);
 602extern struct usb_device *usb_hub_find_child(struct usb_device *hdev,
 603        int port1);
 604
 605/**
 606 * usb_hub_for_each_child - iterate over all child devices on the hub
 607 * @hdev:  USB device belonging to the usb hub
 608 * @port1: portnum associated with child device
 609 * @child: child device pointer
 610 */
 611#define usb_hub_for_each_child(hdev, port1, child) \
 612        for (port1 = 1, child = usb_hub_find_child(hdev, port1); \
 613                        port1 <= hdev->maxchild; \
 614                        child = usb_hub_find_child(hdev, ++port1)) \
 615                if (!child) continue; else
 616
 617/* USB device locking */
 618#define usb_lock_device(udev)           device_lock(&(udev)->dev)
 619#define usb_unlock_device(udev)         device_unlock(&(udev)->dev)
 620#define usb_trylock_device(udev)        device_trylock(&(udev)->dev)
 621extern int usb_lock_device_for_reset(struct usb_device *udev,
 622                                     const struct usb_interface *iface);
 623
 624/* USB port reset for device reinitialization */
 625extern int usb_reset_device(struct usb_device *dev);
 626extern void usb_queue_reset_device(struct usb_interface *dev);
 627
 628#ifdef CONFIG_ACPI
 629extern int usb_acpi_set_power_state(struct usb_device *hdev, int index,
 630        bool enable);
 631extern bool usb_acpi_power_manageable(struct usb_device *hdev, int index);
 632#else
 633static inline int usb_acpi_set_power_state(struct usb_device *hdev, int index,
 634        bool enable) { return 0; }
 635static inline bool usb_acpi_power_manageable(struct usb_device *hdev, int index)
 636        { return true; }
 637#endif
 638
 639/* USB autosuspend and autoresume */
 640#ifdef CONFIG_PM_RUNTIME
 641extern void usb_enable_autosuspend(struct usb_device *udev);
 642extern void usb_disable_autosuspend(struct usb_device *udev);
 643
 644extern int usb_autopm_get_interface(struct usb_interface *intf);
 645extern void usb_autopm_put_interface(struct usb_interface *intf);
 646extern int usb_autopm_get_interface_async(struct usb_interface *intf);
 647extern void usb_autopm_put_interface_async(struct usb_interface *intf);
 648extern void usb_autopm_get_interface_no_resume(struct usb_interface *intf);
 649extern void usb_autopm_put_interface_no_suspend(struct usb_interface *intf);
 650
 651static inline void usb_mark_last_busy(struct usb_device *udev)
 652{
 653        pm_runtime_mark_last_busy(&udev->dev);
 654}
 655
 656#else
 657
 658static inline int usb_enable_autosuspend(struct usb_device *udev)
 659{ return 0; }
 660static inline int usb_disable_autosuspend(struct usb_device *udev)
 661{ return 0; }
 662
 663static inline int usb_autopm_get_interface(struct usb_interface *intf)
 664{ return 0; }
 665static inline int usb_autopm_get_interface_async(struct usb_interface *intf)
 666{ return 0; }
 667
 668static inline void usb_autopm_put_interface(struct usb_interface *intf)
 669{ }
 670static inline void usb_autopm_put_interface_async(struct usb_interface *intf)
 671{ }
 672static inline void usb_autopm_get_interface_no_resume(
 673                struct usb_interface *intf)
 674{ }
 675static inline void usb_autopm_put_interface_no_suspend(
 676                struct usb_interface *intf)
 677{ }
 678static inline void usb_mark_last_busy(struct usb_device *udev)
 679{ }
 680#endif
 681
 682extern int usb_disable_lpm(struct usb_device *udev);
 683extern void usb_enable_lpm(struct usb_device *udev);
 684/* Same as above, but these functions lock/unlock the bandwidth_mutex. */
 685extern int usb_unlocked_disable_lpm(struct usb_device *udev);
 686extern void usb_unlocked_enable_lpm(struct usb_device *udev);
 687
 688extern int usb_disable_ltm(struct usb_device *udev);
 689extern void usb_enable_ltm(struct usb_device *udev);
 690
 691static inline bool usb_device_supports_ltm(struct usb_device *udev)
 692{
 693        if (udev->speed != USB_SPEED_SUPER || !udev->bos || !udev->bos->ss_cap)
 694                return false;
 695        return udev->bos->ss_cap->bmAttributes & USB_LTM_SUPPORT;
 696}
 697
 698static inline bool usb_device_no_sg_constraint(struct usb_device *udev)
 699{
 700        return udev && udev->bus && udev->bus->no_sg_constraint;
 701}
 702
 703
 704/*-------------------------------------------------------------------------*/
 705
 706/* for drivers using iso endpoints */
 707extern int usb_get_current_frame_number(struct usb_device *usb_dev);
 708
 709/* Sets up a group of bulk endpoints to support multiple stream IDs. */
 710extern int usb_alloc_streams(struct usb_interface *interface,
 711                struct usb_host_endpoint **eps, unsigned int num_eps,
 712                unsigned int num_streams, gfp_t mem_flags);
 713
 714/* Reverts a group of bulk endpoints back to not using stream IDs. */
 715extern int usb_free_streams(struct usb_interface *interface,
 716                struct usb_host_endpoint **eps, unsigned int num_eps,
 717                gfp_t mem_flags);
 718
 719/* used these for multi-interface device registration */
 720extern int usb_driver_claim_interface(struct usb_driver *driver,
 721                        struct usb_interface *iface, void *priv);
 722
 723/**
 724 * usb_interface_claimed - returns true iff an interface is claimed
 725 * @iface: the interface being checked
 726 *
 727 * Return: %true (nonzero) iff the interface is claimed, else %false
 728 * (zero).
 729 *
 730 * Note:
 731 * Callers must own the driver model's usb bus readlock.  So driver
 732 * probe() entries don't need extra locking, but other call contexts
 733 * may need to explicitly claim that lock.
 734 *
 735 */
 736static inline int usb_interface_claimed(struct usb_interface *iface)
 737{
 738        return (iface->dev.driver != NULL);
 739}
 740
 741extern void usb_driver_release_interface(struct usb_driver *driver,
 742                        struct usb_interface *iface);
 743const struct usb_device_id *usb_match_id(struct usb_interface *interface,
 744                                         const struct usb_device_id *id);
 745extern int usb_match_one_id(struct usb_interface *interface,
 746                            const struct usb_device_id *id);
 747
 748extern int usb_for_each_dev(void *data, int (*fn)(struct usb_device *, void *));
 749extern struct usb_interface *usb_find_interface(struct usb_driver *drv,
 750                int minor);
 751extern struct usb_interface *usb_ifnum_to_if(const struct usb_device *dev,
 752                unsigned ifnum);
 753extern struct usb_host_interface *usb_altnum_to_altsetting(
 754                const struct usb_interface *intf, unsigned int altnum);
 755extern struct usb_host_interface *usb_find_alt_setting(
 756                struct usb_host_config *config,
 757                unsigned int iface_num,
 758                unsigned int alt_num);
 759
 760/* port claiming functions */
 761int usb_hub_claim_port(struct usb_device *hdev, unsigned port1,
 762                struct usb_dev_state *owner);
 763int usb_hub_release_port(struct usb_device *hdev, unsigned port1,
 764                struct usb_dev_state *owner);
 765
 766/**
 767 * usb_make_path - returns stable device path in the usb tree
 768 * @dev: the device whose path is being constructed
 769 * @buf: where to put the string
 770 * @size: how big is "buf"?
 771 *
 772 * Return: Length of the string (> 0) or negative if size was too small.
 773 *
 774 * Note:
 775 * This identifier is intended to be "stable", reflecting physical paths in
 776 * hardware such as physical bus addresses for host controllers or ports on
 777 * USB hubs.  That makes it stay the same until systems are physically
 778 * reconfigured, by re-cabling a tree of USB devices or by moving USB host
 779 * controllers.  Adding and removing devices, including virtual root hubs
 780 * in host controller driver modules, does not change these path identifiers;
 781 * neither does rebooting or re-enumerating.  These are more useful identifiers
 782 * than changeable ("unstable") ones like bus numbers or device addresses.
 783 *
 784 * With a partial exception for devices connected to USB 2.0 root hubs, these
 785 * identifiers are also predictable.  So long as the device tree isn't changed,
 786 * plugging any USB device into a given hub port always gives it the same path.
 787 * Because of the use of "companion" controllers, devices connected to ports on
 788 * USB 2.0 root hubs (EHCI host controllers) will get one path ID if they are
 789 * high speed, and a different one if they are full or low speed.
 790 */
 791static inline int usb_make_path(struct usb_device *dev, char *buf, size_t size)
 792{
 793        int actual;
 794        actual = snprintf(buf, size, "usb-%s-%s", dev->bus->bus_name,
 795                          dev->devpath);
 796        return (actual >= (int)size) ? -1 : actual;
 797}
 798
 799/*-------------------------------------------------------------------------*/
 800
 801#define USB_DEVICE_ID_MATCH_DEVICE \
 802                (USB_DEVICE_ID_MATCH_VENDOR | USB_DEVICE_ID_MATCH_PRODUCT)
 803#define USB_DEVICE_ID_MATCH_DEV_RANGE \
 804                (USB_DEVICE_ID_MATCH_DEV_LO | USB_DEVICE_ID_MATCH_DEV_HI)
 805#define USB_DEVICE_ID_MATCH_DEVICE_AND_VERSION \
 806                (USB_DEVICE_ID_MATCH_DEVICE | USB_DEVICE_ID_MATCH_DEV_RANGE)
 807#define USB_DEVICE_ID_MATCH_DEV_INFO \
 808                (USB_DEVICE_ID_MATCH_DEV_CLASS | \
 809                USB_DEVICE_ID_MATCH_DEV_SUBCLASS | \
 810                USB_DEVICE_ID_MATCH_DEV_PROTOCOL)
 811#define USB_DEVICE_ID_MATCH_INT_INFO \
 812                (USB_DEVICE_ID_MATCH_INT_CLASS | \
 813                USB_DEVICE_ID_MATCH_INT_SUBCLASS | \
 814                USB_DEVICE_ID_MATCH_INT_PROTOCOL)
 815
 816/**
 817 * USB_DEVICE - macro used to describe a specific usb device
 818 * @vend: the 16 bit USB Vendor ID
 819 * @prod: the 16 bit USB Product ID
 820 *
 821 * This macro is used to create a struct usb_device_id that matches a
 822 * specific device.
 823 */
 824#define USB_DEVICE(vend, prod) \
 825        .match_flags = USB_DEVICE_ID_MATCH_DEVICE, \
 826        .idVendor = (vend), \
 827        .idProduct = (prod)
 828/**
 829 * USB_DEVICE_VER - describe a specific usb device with a version range
 830 * @vend: the 16 bit USB Vendor ID
 831 * @prod: the 16 bit USB Product ID
 832 * @lo: the bcdDevice_lo value
 833 * @hi: the bcdDevice_hi value
 834 *
 835 * This macro is used to create a struct usb_device_id that matches a
 836 * specific device, with a version range.
 837 */
 838#define USB_DEVICE_VER(vend, prod, lo, hi) \
 839        .match_flags = USB_DEVICE_ID_MATCH_DEVICE_AND_VERSION, \
 840        .idVendor = (vend), \
 841        .idProduct = (prod), \
 842        .bcdDevice_lo = (lo), \
 843        .bcdDevice_hi = (hi)
 844
 845/**
 846 * USB_DEVICE_INTERFACE_CLASS - describe a usb device with a specific interface class
 847 * @vend: the 16 bit USB Vendor ID
 848 * @prod: the 16 bit USB Product ID
 849 * @cl: bInterfaceClass value
 850 *
 851 * This macro is used to create a struct usb_device_id that matches a
 852 * specific interface class of devices.
 853 */
 854#define USB_DEVICE_INTERFACE_CLASS(vend, prod, cl) \
 855        .match_flags = USB_DEVICE_ID_MATCH_DEVICE | \
 856                       USB_DEVICE_ID_MATCH_INT_CLASS, \
 857        .idVendor = (vend), \
 858        .idProduct = (prod), \
 859        .bInterfaceClass = (cl)
 860
 861/**
 862 * USB_DEVICE_INTERFACE_PROTOCOL - describe a usb device with a specific interface protocol
 863 * @vend: the 16 bit USB Vendor ID
 864 * @prod: the 16 bit USB Product ID
 865 * @pr: bInterfaceProtocol value
 866 *
 867 * This macro is used to create a struct usb_device_id that matches a
 868 * specific interface protocol of devices.
 869 */
 870#define USB_DEVICE_INTERFACE_PROTOCOL(vend, prod, pr) \
 871        .match_flags = USB_DEVICE_ID_MATCH_DEVICE | \
 872                       USB_DEVICE_ID_MATCH_INT_PROTOCOL, \
 873        .idVendor = (vend), \
 874        .idProduct = (prod), \
 875        .bInterfaceProtocol = (pr)
 876
 877/**
 878 * USB_DEVICE_INTERFACE_NUMBER - describe a usb device with a specific interface number
 879 * @vend: the 16 bit USB Vendor ID
 880 * @prod: the 16 bit USB Product ID
 881 * @num: bInterfaceNumber value
 882 *
 883 * This macro is used to create a struct usb_device_id that matches a
 884 * specific interface number of devices.
 885 */
 886#define USB_DEVICE_INTERFACE_NUMBER(vend, prod, num) \
 887        .match_flags = USB_DEVICE_ID_MATCH_DEVICE | \
 888                       USB_DEVICE_ID_MATCH_INT_NUMBER, \
 889        .idVendor = (vend), \
 890        .idProduct = (prod), \
 891        .bInterfaceNumber = (num)
 892
 893/**
 894 * USB_DEVICE_INFO - macro used to describe a class of usb devices
 895 * @cl: bDeviceClass value
 896 * @sc: bDeviceSubClass value
 897 * @pr: bDeviceProtocol value
 898 *
 899 * This macro is used to create a struct usb_device_id that matches a
 900 * specific class of devices.
 901 */
 902#define USB_DEVICE_INFO(cl, sc, pr) \
 903        .match_flags = USB_DEVICE_ID_MATCH_DEV_INFO, \
 904        .bDeviceClass = (cl), \
 905        .bDeviceSubClass = (sc), \
 906        .bDeviceProtocol = (pr)
 907
 908/**
 909 * USB_INTERFACE_INFO - macro used to describe a class of usb interfaces
 910 * @cl: bInterfaceClass value
 911 * @sc: bInterfaceSubClass value
 912 * @pr: bInterfaceProtocol value
 913 *
 914 * This macro is used to create a struct usb_device_id that matches a
 915 * specific class of interfaces.
 916 */
 917#define USB_INTERFACE_INFO(cl, sc, pr) \
 918        .match_flags = USB_DEVICE_ID_MATCH_INT_INFO, \
 919        .bInterfaceClass = (cl), \
 920        .bInterfaceSubClass = (sc), \
 921        .bInterfaceProtocol = (pr)
 922
 923/**
 924 * USB_DEVICE_AND_INTERFACE_INFO - describe a specific usb device with a class of usb interfaces
 925 * @vend: the 16 bit USB Vendor ID
 926 * @prod: the 16 bit USB Product ID
 927 * @cl: bInterfaceClass value
 928 * @sc: bInterfaceSubClass value
 929 * @pr: bInterfaceProtocol value
 930 *
 931 * This macro is used to create a struct usb_device_id that matches a
 932 * specific device with a specific class of interfaces.
 933 *
 934 * This is especially useful when explicitly matching devices that have
 935 * vendor specific bDeviceClass values, but standards-compliant interfaces.
 936 */
 937#define USB_DEVICE_AND_INTERFACE_INFO(vend, prod, cl, sc, pr) \
 938        .match_flags = USB_DEVICE_ID_MATCH_INT_INFO \
 939                | USB_DEVICE_ID_MATCH_DEVICE, \
 940        .idVendor = (vend), \
 941        .idProduct = (prod), \
 942        .bInterfaceClass = (cl), \
 943        .bInterfaceSubClass = (sc), \
 944        .bInterfaceProtocol = (pr)
 945
 946/**
 947 * USB_VENDOR_AND_INTERFACE_INFO - describe a specific usb vendor with a class of usb interfaces
 948 * @vend: the 16 bit USB Vendor ID
 949 * @cl: bInterfaceClass value
 950 * @sc: bInterfaceSubClass value
 951 * @pr: bInterfaceProtocol value
 952 *
 953 * This macro is used to create a struct usb_device_id that matches a
 954 * specific vendor with a specific class of interfaces.
 955 *
 956 * This is especially useful when explicitly matching devices that have
 957 * vendor specific bDeviceClass values, but standards-compliant interfaces.
 958 */
 959#define USB_VENDOR_AND_INTERFACE_INFO(vend, cl, sc, pr) \
 960        .match_flags = USB_DEVICE_ID_MATCH_INT_INFO \
 961                | USB_DEVICE_ID_MATCH_VENDOR, \
 962        .idVendor = (vend), \
 963        .bInterfaceClass = (cl), \
 964        .bInterfaceSubClass = (sc), \
 965        .bInterfaceProtocol = (pr)
 966
 967/* ----------------------------------------------------------------------- */
 968
 969/* Stuff for dynamic usb ids */
 970struct usb_dynids {
 971        spinlock_t lock;
 972        struct list_head list;
 973};
 974
 975struct usb_dynid {
 976        struct list_head node;
 977        struct usb_device_id id;
 978};
 979
 980extern ssize_t usb_store_new_id(struct usb_dynids *dynids,
 981                                const struct usb_device_id *id_table,
 982                                struct device_driver *driver,
 983                                const char *buf, size_t count);
 984
 985extern ssize_t usb_show_dynids(struct usb_dynids *dynids, char *buf);
 986
 987/**
 988 * struct usbdrv_wrap - wrapper for driver-model structure
 989 * @driver: The driver-model core driver structure.
 990 * @for_devices: Non-zero for device drivers, 0 for interface drivers.
 991 */
 992struct usbdrv_wrap {
 993        struct device_driver driver;
 994        int for_devices;
 995};
 996
 997/**
 998 * struct usb_driver - identifies USB interface driver to usbcore
 999 * @name: The driver name should be unique among USB drivers,
1000 *      and should normally be the same as the module name.
1001 * @probe: Called to see if the driver is willing to manage a particular
1002 *      interface on a device.  If it is, probe returns zero and uses
1003 *      usb_set_intfdata() to associate driver-specific data with the
1004 *      interface.  It may also use usb_set_interface() to specify the
1005 *      appropriate altsetting.  If unwilling to manage the interface,
1006 *      return -ENODEV, if genuine IO errors occurred, an appropriate
1007 *      negative errno value.
1008 * @disconnect: Called when the interface is no longer accessible, usually
1009 *      because its device has been (or is being) disconnected or the
1010 *      driver module is being unloaded.
1011 * @unlocked_ioctl: Used for drivers that want to talk to userspace through
1012 *      the "usbfs" filesystem.  This lets devices provide ways to
1013 *      expose information to user space regardless of where they
1014 *      do (or don't) show up otherwise in the filesystem.
1015 * @suspend: Called when the device is going to be suspended by the
1016 *      system either from system sleep or runtime suspend context. The
1017 *      return value will be ignored in system sleep context, so do NOT
1018 *      try to continue using the device if suspend fails in this case.
1019 *      Instead, let the resume or reset-resume routine recover from
1020 *      the failure.
1021 * @resume: Called when the device is being resumed by the system.
1022 * @reset_resume: Called when the suspended device has been reset instead
1023 *      of being resumed.
1024 * @pre_reset: Called by usb_reset_device() when the device is about to be
1025 *      reset.  This routine must not return until the driver has no active
1026 *      URBs for the device, and no more URBs may be submitted until the
1027 *      post_reset method is called.
1028 * @post_reset: Called by usb_reset_device() after the device
1029 *      has been reset
1030 * @id_table: USB drivers use ID table to support hotplugging.
1031 *      Export this with MODULE_DEVICE_TABLE(usb,...).  This must be set
1032 *      or your driver's probe function will never get called.
1033 * @dynids: used internally to hold the list of dynamically added device
1034 *      ids for this driver.
1035 * @drvwrap: Driver-model core structure wrapper.
1036 * @no_dynamic_id: if set to 1, the USB core will not allow dynamic ids to be
1037 *      added to this driver by preventing the sysfs file from being created.
1038 * @supports_autosuspend: if set to 0, the USB core will not allow autosuspend
1039 *      for interfaces bound to this driver.
1040 * @soft_unbind: if set to 1, the USB core will not kill URBs and disable
1041 *      endpoints before calling the driver's disconnect method.
1042 * @disable_hub_initiated_lpm: if set to 0, the USB core will not allow hubs
1043 *      to initiate lower power link state transitions when an idle timeout
1044 *      occurs.  Device-initiated USB 3.0 link PM will still be allowed.
1045 *
1046 * USB interface drivers must provide a name, probe() and disconnect()
1047 * methods, and an id_table.  Other driver fields are optional.
1048 *
1049 * The id_table is used in hotplugging.  It holds a set of descriptors,
1050 * and specialized data may be associated with each entry.  That table
1051 * is used by both user and kernel mode hotplugging support.
1052 *
1053 * The probe() and disconnect() methods are called in a context where
1054 * they can sleep, but they should avoid abusing the privilege.  Most
1055 * work to connect to a device should be done when the device is opened,
1056 * and undone at the last close.  The disconnect code needs to address
1057 * concurrency issues with respect to open() and close() methods, as
1058 * well as forcing all pending I/O requests to complete (by unlinking
1059 * them as necessary, and blocking until the unlinks complete).
1060 */
1061struct usb_driver {
1062        const char *name;
1063
1064        int (*probe) (struct usb_interface *intf,
1065                      const struct usb_device_id *id);
1066
1067        void (*disconnect) (struct usb_interface *intf);
1068
1069        int (*unlocked_ioctl) (struct usb_interface *intf, unsigned int code,
1070                        void *buf);
1071
1072        int (*suspend) (struct usb_interface *intf, pm_message_t message);
1073        int (*resume) (struct usb_interface *intf);
1074        int (*reset_resume)(struct usb_interface *intf);
1075
1076        int (*pre_reset)(struct usb_interface *intf);
1077        int (*post_reset)(struct usb_interface *intf);
1078
1079        const struct usb_device_id *id_table;
1080
1081        struct usb_dynids dynids;
1082        struct usbdrv_wrap drvwrap;
1083        unsigned int no_dynamic_id:1;
1084        unsigned int supports_autosuspend:1;
1085        unsigned int disable_hub_initiated_lpm:1;
1086        unsigned int soft_unbind:1;
1087};
1088#define to_usb_driver(d) container_of(d, struct usb_driver, drvwrap.driver)
1089
1090/**
1091 * struct usb_device_driver - identifies USB device driver to usbcore
1092 * @name: The driver name should be unique among USB drivers,
1093 *      and should normally be the same as the module name.
1094 * @probe: Called to see if the driver is willing to manage a particular
1095 *      device.  If it is, probe returns zero and uses dev_set_drvdata()
1096 *      to associate driver-specific data with the device.  If unwilling
1097 *      to manage the device, return a negative errno value.
1098 * @disconnect: Called when the device is no longer accessible, usually
1099 *      because it has been (or is being) disconnected or the driver's
1100 *      module is being unloaded.
1101 * @suspend: Called when the device is going to be suspended by the system.
1102 * @resume: Called when the device is being resumed by the system.
1103 * @drvwrap: Driver-model core structure wrapper.
1104 * @supports_autosuspend: if set to 0, the USB core will not allow autosuspend
1105 *      for devices bound to this driver.
1106 *
1107 * USB drivers must provide all the fields listed above except drvwrap.
1108 */
1109struct usb_device_driver {
1110        const char *name;
1111
1112        int (*probe) (struct usb_device *udev);
1113        void (*disconnect) (struct usb_device *udev);
1114
1115        int (*suspend) (struct usb_device *udev, pm_message_t message);
1116        int (*resume) (struct usb_device *udev, pm_message_t message);
1117        struct usbdrv_wrap drvwrap;
1118        unsigned int supports_autosuspend:1;
1119};
1120#define to_usb_device_driver(d) container_of(d, struct usb_device_driver, \
1121                drvwrap.driver)
1122
1123extern struct bus_type usb_bus_type;
1124
1125/**
1126 * struct usb_class_driver - identifies a USB driver that wants to use the USB major number
1127 * @name: the usb class device name for this driver.  Will show up in sysfs.
1128 * @devnode: Callback to provide a naming hint for a possible
1129 *      device node to create.
1130 * @fops: pointer to the struct file_operations of this driver.
1131 * @minor_base: the start of the minor range for this driver.
1132 *
1133 * This structure is used for the usb_register_dev() and
1134 * usb_unregister_dev() functions, to consolidate a number of the
1135 * parameters used for them.
1136 */
1137struct usb_class_driver {
1138        char *name;
1139        char *(*devnode)(struct device *dev, umode_t *mode);
1140        const struct file_operations *fops;
1141        int minor_base;
1142};
1143
1144/*
1145 * use these in module_init()/module_exit()
1146 * and don't forget MODULE_DEVICE_TABLE(usb, ...)
1147 */
1148extern int usb_register_driver(struct usb_driver *, struct module *,
1149                               const char *);
1150
1151/* use a define to avoid include chaining to get THIS_MODULE & friends */
1152#define usb_register(driver) \
1153        usb_register_driver(driver, THIS_MODULE, KBUILD_MODNAME)
1154
1155extern void usb_deregister(struct usb_driver *);
1156
1157/**
1158 * module_usb_driver() - Helper macro for registering a USB driver
1159 * @__usb_driver: usb_driver struct
1160 *
1161 * Helper macro for USB drivers which do not do anything special in module
1162 * init/exit. This eliminates a lot of boilerplate. Each module may only
1163 * use this macro once, and calling it replaces module_init() and module_exit()
1164 */
1165#define module_usb_driver(__usb_driver) \
1166        module_driver(__usb_driver, usb_register, \
1167                       usb_deregister)
1168
1169extern int usb_register_device_driver(struct usb_device_driver *,
1170                        struct module *);
1171extern void usb_deregister_device_driver(struct usb_device_driver *);
1172
1173extern int usb_register_dev(struct usb_interface *intf,
1174                            struct usb_class_driver *class_driver);
1175extern void usb_deregister_dev(struct usb_interface *intf,
1176                               struct usb_class_driver *class_driver);
1177
1178extern int usb_disabled(void);
1179
1180/* ----------------------------------------------------------------------- */
1181
1182/*
1183 * URB support, for asynchronous request completions
1184 */
1185
1186/*
1187 * urb->transfer_flags:
1188 *
1189 * Note: URB_DIR_IN/OUT is automatically set in usb_submit_urb().
1190 */
1191#define URB_SHORT_NOT_OK        0x0001  /* report short reads as errors */
1192#define URB_ISO_ASAP            0x0002  /* iso-only; use the first unexpired
1193                                         * slot in the schedule */
1194#define URB_NO_TRANSFER_DMA_MAP 0x0004  /* urb->transfer_dma valid on submit */
1195#define URB_NO_FSBR             0x0020  /* UHCI-specific */
1196#define URB_ZERO_PACKET         0x0040  /* Finish bulk OUT with short packet */
1197#define URB_NO_INTERRUPT        0x0080  /* HINT: no non-error interrupt
1198                                         * needed */
1199#define URB_FREE_BUFFER         0x0100  /* Free transfer buffer with the URB */
1200
1201/* The following flags are used internally by usbcore and HCDs */
1202#define URB_DIR_IN              0x0200  /* Transfer from device to host */
1203#define URB_DIR_OUT             0
1204#define URB_DIR_MASK            URB_DIR_IN
1205
1206#define URB_DMA_MAP_SINGLE      0x00010000      /* Non-scatter-gather mapping */
1207#define URB_DMA_MAP_PAGE        0x00020000      /* HCD-unsupported S-G */
1208#define URB_DMA_MAP_SG          0x00040000      /* HCD-supported S-G */
1209#define URB_MAP_LOCAL           0x00080000      /* HCD-local-memory mapping */
1210#define URB_SETUP_MAP_SINGLE    0x00100000      /* Setup packet DMA mapped */
1211#define URB_SETUP_MAP_LOCAL     0x00200000      /* HCD-local setup packet */
1212#define URB_DMA_SG_COMBINED     0x00400000      /* S-G entries were combined */
1213#define URB_ALIGNED_TEMP_BUFFER 0x00800000      /* Temp buffer was alloc'd */
1214
1215struct usb_iso_packet_descriptor {
1216        unsigned int offset;
1217        unsigned int length;            /* expected length */
1218        unsigned int actual_length;
1219        int status;
1220};
1221
1222struct urb;
1223
1224struct usb_anchor {
1225        struct list_head urb_list;
1226        wait_queue_head_t wait;
1227        spinlock_t lock;
1228        atomic_t suspend_wakeups;
1229        unsigned int poisoned:1;
1230};
1231
1232static inline void init_usb_anchor(struct usb_anchor *anchor)
1233{
1234        memset(anchor, 0, sizeof(*anchor));
1235        INIT_LIST_HEAD(&anchor->urb_list);
1236        init_waitqueue_head(&anchor->wait);
1237        spin_lock_init(&anchor->lock);
1238}
1239
1240typedef void (*usb_complete_t)(struct urb *);
1241
1242/**
1243 * struct urb - USB Request Block
1244 * @urb_list: For use by current owner of the URB.
1245 * @anchor_list: membership in the list of an anchor
1246 * @anchor: to anchor URBs to a common mooring
1247 * @ep: Points to the endpoint's data structure.  Will eventually
1248 *      replace @pipe.
1249 * @pipe: Holds endpoint number, direction, type, and more.
1250 *      Create these values with the eight macros available;
1251 *      usb_{snd,rcv}TYPEpipe(dev,endpoint), where the TYPE is "ctrl"
1252 *      (control), "bulk", "int" (interrupt), or "iso" (isochronous).
1253 *      For example usb_sndbulkpipe() or usb_rcvintpipe().  Endpoint
1254 *      numbers range from zero to fifteen.  Note that "in" endpoint two
1255 *      is a different endpoint (and pipe) from "out" endpoint two.
1256 *      The current configuration controls the existence, type, and
1257 *      maximum packet size of any given endpoint.
1258 * @stream_id: the endpoint's stream ID for bulk streams
1259 * @dev: Identifies the USB device to perform the request.
1260 * @status: This is read in non-iso completion functions to get the
1261 *      status of the particular request.  ISO requests only use it
1262 *      to tell whether the URB was unlinked; detailed status for
1263 *      each frame is in the fields of the iso_frame-desc.
1264 * @transfer_flags: A variety of flags may be used to affect how URB
1265 *      submission, unlinking, or operation are handled.  Different
1266 *      kinds of URB can use different flags.
1267 * @transfer_buffer:  This identifies the buffer to (or from) which the I/O
1268 *      request will be performed unless URB_NO_TRANSFER_DMA_MAP is set
1269 *      (however, do not leave garbage in transfer_buffer even then).
1270 *      This buffer must be suitable for DMA; allocate it with
1271 *      kmalloc() or equivalent.  For transfers to "in" endpoints, contents
1272 *      of this buffer will be modified.  This buffer is used for the data
1273 *      stage of control transfers.
1274 * @transfer_dma: When transfer_flags includes URB_NO_TRANSFER_DMA_MAP,
1275 *      the device driver is saying that it provided this DMA address,
1276 *      which the host controller driver should use in preference to the
1277 *      transfer_buffer.
1278 * @sg: scatter gather buffer list, the buffer size of each element in
1279 *      the list (except the last) must be divisible by the endpoint's
1280 *      max packet size if no_sg_constraint isn't set in 'struct usb_bus'
1281 * @num_mapped_sgs: (internal) number of mapped sg entries
1282 * @num_sgs: number of entries in the sg list
1283 * @transfer_buffer_length: How big is transfer_buffer.  The transfer may
1284 *      be broken up into chunks according to the current maximum packet
1285 *      size for the endpoint, which is a function of the configuration
1286 *      and is encoded in the pipe.  When the length is zero, neither
1287 *      transfer_buffer nor transfer_dma is used.
1288 * @actual_length: This is read in non-iso completion functions, and
1289 *      it tells how many bytes (out of transfer_buffer_length) were
1290 *      transferred.  It will normally be the same as requested, unless
1291 *      either an error was reported or a short read was performed.
1292 *      The URB_SHORT_NOT_OK transfer flag may be used to make such
1293 *      short reads be reported as errors.
1294 * @setup_packet: Only used for control transfers, this points to eight bytes
1295 *      of setup data.  Control transfers always start by sending this data
1296 *      to the device.  Then transfer_buffer is read or written, if needed.
1297 * @setup_dma: DMA pointer for the setup packet.  The caller must not use
1298 *      this field; setup_packet must point to a valid buffer.
1299 * @start_frame: Returns the initial frame for isochronous transfers.
1300 * @number_of_packets: Lists the number of ISO transfer buffers.
1301 * @interval: Specifies the polling interval for interrupt or isochronous
1302 *      transfers.  The units are frames (milliseconds) for full and low
1303 *      speed devices, and microframes (1/8 millisecond) for highspeed
1304 *      and SuperSpeed devices.
1305 * @error_count: Returns the number of ISO transfers that reported errors.
1306 * @context: For use in completion functions.  This normally points to
1307 *      request-specific driver context.
1308 * @complete: Completion handler. This URB is passed as the parameter to the
1309 *      completion function.  The completion function may then do what
1310 *      it likes with the URB, including resubmitting or freeing it.
1311 * @iso_frame_desc: Used to provide arrays of ISO transfer buffers and to
1312 *      collect the transfer status for each buffer.
1313 *
1314 * This structure identifies USB transfer requests.  URBs must be allocated by
1315 * calling usb_alloc_urb() and freed with a call to usb_free_urb().
1316 * Initialization may be done using various usb_fill_*_urb() functions.  URBs
1317 * are submitted using usb_submit_urb(), and pending requests may be canceled
1318 * using usb_unlink_urb() or usb_kill_urb().
1319 *
1320 * Data Transfer Buffers:
1321 *
1322 * Normally drivers provide I/O buffers allocated with kmalloc() or otherwise
1323 * taken from the general page pool.  That is provided by transfer_buffer
1324 * (control requests also use setup_packet), and host controller drivers
1325 * perform a dma mapping (and unmapping) for each buffer transferred.  Those
1326 * mapping operations can be expensive on some platforms (perhaps using a dma
1327 * bounce buffer or talking to an IOMMU),
1328 * although they're cheap on commodity x86 and ppc hardware.
1329 *
1330 * Alternatively, drivers may pass the URB_NO_TRANSFER_DMA_MAP transfer flag,
1331 * which tells the host controller driver that no such mapping is needed for
1332 * the transfer_buffer since
1333 * the device driver is DMA-aware.  For example, a device driver might
1334 * allocate a DMA buffer with usb_alloc_coherent() or call usb_buffer_map().
1335 * When this transfer flag is provided, host controller drivers will
1336 * attempt to use the dma address found in the transfer_dma
1337 * field rather than determining a dma address themselves.
1338 *
1339 * Note that transfer_buffer must still be set if the controller
1340 * does not support DMA (as indicated by bus.uses_dma) and when talking
1341 * to root hub. If you have to trasfer between highmem zone and the device
1342 * on such controller, create a bounce buffer or bail out with an error.
1343 * If transfer_buffer cannot be set (is in highmem) and the controller is DMA
1344 * capable, assign NULL to it, so that usbmon knows not to use the value.
1345 * The setup_packet must always be set, so it cannot be located in highmem.
1346 *
1347 * Initialization:
1348 *
1349 * All URBs submitted must initialize the dev, pipe, transfer_flags (may be
1350 * zero), and complete fields.  All URBs must also initialize
1351 * transfer_buffer and transfer_buffer_length.  They may provide the
1352 * URB_SHORT_NOT_OK transfer flag, indicating that short reads are
1353 * to be treated as errors; that flag is invalid for write requests.
1354 *
1355 * Bulk URBs may
1356 * use the URB_ZERO_PACKET transfer flag, indicating that bulk OUT transfers
1357 * should always terminate with a short packet, even if it means adding an
1358 * extra zero length packet.
1359 *
1360 * Control URBs must provide a valid pointer in the setup_packet field.
1361 * Unlike the transfer_buffer, the setup_packet may not be mapped for DMA
1362 * beforehand.
1363 *
1364 * Interrupt URBs must provide an interval, saying how often (in milliseconds
1365 * or, for highspeed devices, 125 microsecond units)
1366 * to poll for transfers.  After the URB has been submitted, the interval
1367 * field reflects how the transfer was actually scheduled.
1368 * The polling interval may be more frequent than requested.
1369 * For example, some controllers have a maximum interval of 32 milliseconds,
1370 * while others support intervals of up to 1024 milliseconds.
1371 * Isochronous URBs also have transfer intervals.  (Note that for isochronous
1372 * endpoints, as well as high speed interrupt endpoints, the encoding of
1373 * the transfer interval in the endpoint descriptor is logarithmic.
1374 * Device drivers must convert that value to linear units themselves.)
1375 *
1376 * If an isochronous endpoint queue isn't already running, the host
1377 * controller will schedule a new URB to start as soon as bandwidth
1378 * utilization allows.  If the queue is running then a new URB will be
1379 * scheduled to start in the first transfer slot following the end of the
1380 * preceding URB, if that slot has not already expired.  If the slot has
1381 * expired (which can happen when IRQ delivery is delayed for a long time),
1382 * the scheduling behavior depends on the URB_ISO_ASAP flag.  If the flag
1383 * is clear then the URB will be scheduled to start in the expired slot,
1384 * implying that some of its packets will not be transferred; if the flag
1385 * is set then the URB will be scheduled in the first unexpired slot,
1386 * breaking the queue's synchronization.  Upon URB completion, the
1387 * start_frame field will be set to the (micro)frame number in which the
1388 * transfer was scheduled.  Ranges for frame counter values are HC-specific
1389 * and can go from as low as 256 to as high as 65536 frames.
1390 *
1391 * Isochronous URBs have a different data transfer model, in part because
1392 * the quality of service is only "best effort".  Callers provide specially
1393 * allocated URBs, with number_of_packets worth of iso_frame_desc structures
1394 * at the end.  Each such packet is an individual ISO transfer.  Isochronous
1395 * URBs are normally queued, submitted by drivers to arrange that
1396 * transfers are at least double buffered, and then explicitly resubmitted
1397 * in completion handlers, so
1398 * that data (such as audio or video) streams at as constant a rate as the
1399 * host controller scheduler can support.
1400 *
1401 * Completion Callbacks:
1402 *
1403 * The completion callback is made in_interrupt(), and one of the first
1404 * things that a completion handler should do is check the status field.
1405 * The status field is provided for all URBs.  It is used to report
1406 * unlinked URBs, and status for all non-ISO transfers.  It should not
1407 * be examined before the URB is returned to the completion handler.
1408 *
1409 * The context field is normally used to link URBs back to the relevant
1410 * driver or request state.
1411 *
1412 * When the completion callback is invoked for non-isochronous URBs, the
1413 * actual_length field tells how many bytes were transferred.  This field
1414 * is updated even when the URB terminated with an error or was unlinked.
1415 *
1416 * ISO transfer status is reported in the status and actual_length fields
1417 * of the iso_frame_desc array, and the number of errors is reported in
1418 * error_count.  Completion callbacks for ISO transfers will normally
1419 * (re)submit URBs to ensure a constant transfer rate.
1420 *
1421 * Note that even fields marked "public" should not be touched by the driver
1422 * when the urb is owned by the hcd, that is, since the call to
1423 * usb_submit_urb() till the entry into the completion routine.
1424 */
1425struct urb {
1426        /* private: usb core and host controller only fields in the urb */
1427        struct kref kref;               /* reference count of the URB */
1428        void *hcpriv;                   /* private data for host controller */
1429        atomic_t use_count;             /* concurrent submissions counter */
1430        atomic_t reject;                /* submissions will fail */
1431        int unlinked;                   /* unlink error code */
1432
1433        /* public: documented fields in the urb that can be used by drivers */
1434        struct list_head urb_list;      /* list head for use by the urb's
1435                                         * current owner */
1436        struct list_head anchor_list;   /* the URB may be anchored */
1437        struct usb_anchor *anchor;
1438        struct usb_device *dev;         /* (in) pointer to associated device */
1439        struct usb_host_endpoint *ep;   /* (internal) pointer to endpoint */
1440        unsigned int pipe;              /* (in) pipe information */
1441        unsigned int stream_id;         /* (in) stream ID */
1442        int status;                     /* (return) non-ISO status */
1443        unsigned int transfer_flags;    /* (in) URB_SHORT_NOT_OK | ...*/
1444        void *transfer_buffer;          /* (in) associated data buffer */
1445        dma_addr_t transfer_dma;        /* (in) dma addr for transfer_buffer */
1446        struct scatterlist *sg;         /* (in) scatter gather buffer list */
1447        int num_mapped_sgs;             /* (internal) mapped sg entries */
1448        int num_sgs;                    /* (in) number of entries in the sg list */
1449        u32 transfer_buffer_length;     /* (in) data buffer length */
1450        u32 actual_length;              /* (return) actual transfer length */
1451        unsigned char *setup_packet;    /* (in) setup packet (control only) */
1452        dma_addr_t setup_dma;           /* (in) dma addr for setup_packet */
1453        int start_frame;                /* (modify) start frame (ISO) */
1454        int number_of_packets;          /* (in) number of ISO packets */
1455        int interval;                   /* (modify) transfer interval
1456                                         * (INT/ISO) */
1457        int error_count;                /* (return) number of ISO errors */
1458        void *context;                  /* (in) context for completion */
1459        usb_complete_t complete;        /* (in) completion routine */
1460        struct usb_iso_packet_descriptor iso_frame_desc[0];
1461                                        /* (in) ISO ONLY */
1462};
1463
1464/* ----------------------------------------------------------------------- */
1465
1466/**
1467 * usb_fill_control_urb - initializes a control urb
1468 * @urb: pointer to the urb to initialize.
1469 * @dev: pointer to the struct usb_device for this urb.
1470 * @pipe: the endpoint pipe
1471 * @setup_packet: pointer to the setup_packet buffer
1472 * @transfer_buffer: pointer to the transfer buffer
1473 * @buffer_length: length of the transfer buffer
1474 * @complete_fn: pointer to the usb_complete_t function
1475 * @context: what to set the urb context to.
1476 *
1477 * Initializes a control urb with the proper information needed to submit
1478 * it to a device.
1479 */
1480static inline void usb_fill_control_urb(struct urb *urb,
1481                                        struct usb_device *dev,
1482                                        unsigned int pipe,
1483                                        unsigned char *setup_packet,
1484                                        void *transfer_buffer,
1485                                        int buffer_length,
1486                                        usb_complete_t complete_fn,
1487                                        void *context)
1488{
1489        urb->dev = dev;
1490        urb->pipe = pipe;
1491        urb->setup_packet = setup_packet;
1492        urb->transfer_buffer = transfer_buffer;
1493        urb->transfer_buffer_length = buffer_length;
1494        urb->complete = complete_fn;
1495        urb->context = context;
1496}
1497
1498/**
1499 * usb_fill_bulk_urb - macro to help initialize a bulk urb
1500 * @urb: pointer to the urb to initialize.
1501 * @dev: pointer to the struct usb_device for this urb.
1502 * @pipe: the endpoint pipe
1503 * @transfer_buffer: pointer to the transfer buffer
1504 * @buffer_length: length of the transfer buffer
1505 * @complete_fn: pointer to the usb_complete_t function
1506 * @context: what to set the urb context to.
1507 *
1508 * Initializes a bulk urb with the proper information needed to submit it
1509 * to a device.
1510 */
1511static inline void usb_fill_bulk_urb(struct urb *urb,
1512                                     struct usb_device *dev,
1513                                     unsigned int pipe,
1514                                     void *transfer_buffer,
1515                                     int buffer_length,
1516                                     usb_complete_t complete_fn,
1517                                     void *context)
1518{
1519        urb->dev = dev;
1520        urb->pipe = pipe;
1521        urb->transfer_buffer = transfer_buffer;
1522        urb->transfer_buffer_length = buffer_length;
1523        urb->complete = complete_fn;
1524        urb->context = context;
1525}
1526
1527/**
1528 * usb_fill_int_urb - macro to help initialize a interrupt urb
1529 * @urb: pointer to the urb to initialize.
1530 * @dev: pointer to the struct usb_device for this urb.
1531 * @pipe: the endpoint pipe
1532 * @transfer_buffer: pointer to the transfer buffer
1533 * @buffer_length: length of the transfer buffer
1534 * @complete_fn: pointer to the usb_complete_t function
1535 * @context: what to set the urb context to.
1536 * @interval: what to set the urb interval to, encoded like
1537 *      the endpoint descriptor's bInterval value.
1538 *
1539 * Initializes a interrupt urb with the proper information needed to submit
1540 * it to a device.
1541 *
1542 * Note that High Speed and SuperSpeed interrupt endpoints use a logarithmic
1543 * encoding of the endpoint interval, and express polling intervals in
1544 * microframes (eight per millisecond) rather than in frames (one per
1545 * millisecond).
1546 *
1547 * Wireless USB also uses the logarithmic encoding, but specifies it in units of
1548 * 128us instead of 125us.  For Wireless USB devices, the interval is passed
1549 * through to the host controller, rather than being translated into microframe
1550 * units.
1551 */
1552static inline void usb_fill_int_urb(struct urb *urb,
1553                                    struct usb_device *dev,
1554                                    unsigned int pipe,
1555                                    void *transfer_buffer,
1556                                    int buffer_length,
1557                                    usb_complete_t complete_fn,
1558                                    void *context,
1559                                    int interval)
1560{
1561        urb->dev = dev;
1562        urb->pipe = pipe;
1563        urb->transfer_buffer = transfer_buffer;
1564        urb->transfer_buffer_length = buffer_length;
1565        urb->complete = complete_fn;
1566        urb->context = context;
1567
1568        if (dev->speed == USB_SPEED_HIGH || dev->speed == USB_SPEED_SUPER) {
1569                /* make sure interval is within allowed range */
1570                interval = clamp(interval, 1, 16);
1571
1572                urb->interval = 1 << (interval - 1);
1573        } else {
1574                urb->interval = interval;
1575        }
1576
1577        urb->start_frame = -1;
1578}
1579
1580extern void usb_init_urb(struct urb *urb);
1581extern struct urb *usb_alloc_urb(int iso_packets, gfp_t mem_flags);
1582extern void usb_free_urb(struct urb *urb);
1583#define usb_put_urb usb_free_urb
1584extern struct urb *usb_get_urb(struct urb *urb);
1585extern int usb_submit_urb(struct urb *urb, gfp_t mem_flags);
1586extern int usb_unlink_urb(struct urb *urb);
1587extern void usb_kill_urb(struct urb *urb);
1588extern void usb_poison_urb(struct urb *urb);
1589extern void usb_unpoison_urb(struct urb *urb);
1590extern void usb_block_urb(struct urb *urb);
1591extern void usb_kill_anchored_urbs(struct usb_anchor *anchor);
1592extern void usb_poison_anchored_urbs(struct usb_anchor *anchor);
1593extern void usb_unpoison_anchored_urbs(struct usb_anchor *anchor);
1594extern void usb_unlink_anchored_urbs(struct usb_anchor *anchor);
1595extern void usb_anchor_suspend_wakeups(struct usb_anchor *anchor);
1596extern void usb_anchor_resume_wakeups(struct usb_anchor *anchor);
1597extern void usb_anchor_urb(struct urb *urb, struct usb_anchor *anchor);
1598extern void usb_unanchor_urb(struct urb *urb);
1599extern int usb_wait_anchor_empty_timeout(struct usb_anchor *anchor,
1600                                         unsigned int timeout);
1601extern struct urb *usb_get_from_anchor(struct usb_anchor *anchor);
1602extern void usb_scuttle_anchored_urbs(struct usb_anchor *anchor);
1603extern int usb_anchor_empty(struct usb_anchor *anchor);
1604
1605#define usb_unblock_urb usb_unpoison_urb
1606
1607/**
1608 * usb_urb_dir_in - check if an URB describes an IN transfer
1609 * @urb: URB to be checked
1610 *
1611 * Return: 1 if @urb describes an IN transfer (device-to-host),
1612 * otherwise 0.
1613 */
1614static inline int usb_urb_dir_in(struct urb *urb)
1615{
1616        return (urb->transfer_flags & URB_DIR_MASK) == URB_DIR_IN;
1617}
1618
1619/**
1620 * usb_urb_dir_out - check if an URB describes an OUT transfer
1621 * @urb: URB to be checked
1622 *
1623 * Return: 1 if @urb describes an OUT transfer (host-to-device),
1624 * otherwise 0.
1625 */
1626static inline int usb_urb_dir_out(struct urb *urb)
1627{
1628        return (urb->transfer_flags & URB_DIR_MASK) == URB_DIR_OUT;
1629}
1630
1631void *usb_alloc_coherent(struct usb_device *dev, size_t size,
1632        gfp_t mem_flags, dma_addr_t *dma);
1633void usb_free_coherent(struct usb_device *dev, size_t size,
1634        void *addr, dma_addr_t dma);
1635
1636#if 0
1637struct urb *usb_buffer_map(struct urb *urb);
1638void usb_buffer_dmasync(struct urb *urb);
1639void usb_buffer_unmap(struct urb *urb);
1640#endif
1641
1642struct scatterlist;
1643int usb_buffer_map_sg(const struct usb_device *dev, int is_in,
1644                      struct scatterlist *sg, int nents);
1645#if 0
1646void usb_buffer_dmasync_sg(const struct usb_device *dev, int is_in,
1647                           struct scatterlist *sg, int n_hw_ents);
1648#endif
1649void usb_buffer_unmap_sg(const struct usb_device *dev, int is_in,
1650                         struct scatterlist *sg, int n_hw_ents);
1651
1652/*-------------------------------------------------------------------*
1653 *                         SYNCHRONOUS CALL SUPPORT                  *
1654 *-------------------------------------------------------------------*/
1655
1656extern int usb_control_msg(struct usb_device *dev, unsigned int pipe,
1657        __u8 request, __u8 requesttype, __u16 value, __u16 index,
1658        void *data, __u16 size, int timeout);
1659extern int usb_interrupt_msg(struct usb_device *usb_dev, unsigned int pipe,
1660        void *data, int len, int *actual_length, int timeout);
1661extern int usb_bulk_msg(struct usb_device *usb_dev, unsigned int pipe,
1662        void *data, int len, int *actual_length,
1663        int timeout);
1664
1665/* wrappers around usb_control_msg() for the most common standard requests */
1666extern int usb_get_descriptor(struct usb_device *dev, unsigned char desctype,
1667        unsigned char descindex, void *buf, int size);
1668extern int usb_get_status(struct usb_device *dev,
1669        int type, int target, void *data);
1670extern int usb_string(struct usb_device *dev, int index,
1671        char *buf, size_t size);
1672
1673/* wrappers that also update important state inside usbcore */
1674extern int usb_clear_halt(struct usb_device *dev, int pipe);
1675extern int usb_reset_configuration(struct usb_device *dev);
1676extern int usb_set_interface(struct usb_device *dev, int ifnum, int alternate);
1677extern void usb_reset_endpoint(struct usb_device *dev, unsigned int epaddr);
1678
1679/* this request isn't really synchronous, but it belongs with the others */
1680extern int usb_driver_set_configuration(struct usb_device *udev, int config);
1681
1682/* choose and set configuration for device */
1683extern int usb_choose_configuration(struct usb_device *udev);
1684extern int usb_set_configuration(struct usb_device *dev, int configuration);
1685
1686/*
1687 * timeouts, in milliseconds, used for sending/receiving control messages
1688 * they typically complete within a few frames (msec) after they're issued
1689 * USB identifies 5 second timeouts, maybe more in a few cases, and a few
1690 * slow devices (like some MGE Ellipse UPSes) actually push that limit.
1691 */
1692#define USB_CTRL_GET_TIMEOUT    5000
1693#define USB_CTRL_SET_TIMEOUT    5000
1694
1695
1696/**
1697 * struct usb_sg_request - support for scatter/gather I/O
1698 * @status: zero indicates success, else negative errno
1699 * @bytes: counts bytes transferred.
1700 *
1701 * These requests are initialized using usb_sg_init(), and then are used
1702 * as request handles passed to usb_sg_wait() or usb_sg_cancel().  Most
1703 * members of the request object aren't for driver access.
1704 *
1705 * The status and bytecount values are valid only after usb_sg_wait()
1706 * returns.  If the status is zero, then the bytecount matches the total
1707 * from the request.
1708 *
1709 * After an error completion, drivers may need to clear a halt condition
1710 * on the endpoint.
1711 */
1712struct usb_sg_request {
1713        int                     status;
1714        size_t                  bytes;
1715
1716        /* private:
1717         * members below are private to usbcore,
1718         * and are not provided for driver access!
1719         */
1720        spinlock_t              lock;
1721
1722        struct usb_device       *dev;
1723        int                     pipe;
1724
1725        int                     entries;
1726        struct urb              **urbs;
1727
1728        int                     count;
1729        struct completion       complete;
1730};
1731
1732int usb_sg_init(
1733        struct usb_sg_request   *io,
1734        struct usb_device       *dev,
1735        unsigned                pipe,
1736        unsigned                period,
1737        struct scatterlist      *sg,
1738        int                     nents,
1739        size_t                  length,
1740        gfp_t                   mem_flags
1741);
1742void usb_sg_cancel(struct usb_sg_request *io);
1743void usb_sg_wait(struct usb_sg_request *io);
1744
1745
1746/* ----------------------------------------------------------------------- */
1747
1748/*
1749 * For various legacy reasons, Linux has a small cookie that's paired with
1750 * a struct usb_device to identify an endpoint queue.  Queue characteristics
1751 * are defined by the endpoint's descriptor.  This cookie is called a "pipe",
1752 * an unsigned int encoded as:
1753 *
1754 *  - direction:        bit 7           (0 = Host-to-Device [Out],
1755 *                                       1 = Device-to-Host [In] ...
1756 *                                      like endpoint bEndpointAddress)
1757 *  - device address:   bits 8-14       ... bit positions known to uhci-hcd
1758 *  - endpoint:         bits 15-18      ... bit positions known to uhci-hcd
1759 *  - pipe type:        bits 30-31      (00 = isochronous, 01 = interrupt,
1760 *                                       10 = control, 11 = bulk)
1761 *
1762 * Given the device address and endpoint descriptor, pipes are redundant.
1763 */
1764
1765/* NOTE:  these are not the standard USB_ENDPOINT_XFER_* values!! */
1766/* (yet ... they're the values used by usbfs) */
1767#define PIPE_ISOCHRONOUS                0
1768#define PIPE_INTERRUPT                  1
1769#define PIPE_CONTROL                    2
1770#define PIPE_BULK                       3
1771
1772#define usb_pipein(pipe)        ((pipe) & USB_DIR_IN)
1773#define usb_pipeout(pipe)       (!usb_pipein(pipe))
1774
1775#define usb_pipedevice(pipe)    (((pipe) >> 8) & 0x7f)
1776#define usb_pipeendpoint(pipe)  (((pipe) >> 15) & 0xf)
1777
1778#define usb_pipetype(pipe)      (((pipe) >> 30) & 3)
1779#define usb_pipeisoc(pipe)      (usb_pipetype((pipe)) == PIPE_ISOCHRONOUS)
1780#define usb_pipeint(pipe)       (usb_pipetype((pipe)) == PIPE_INTERRUPT)
1781#define usb_pipecontrol(pipe)   (usb_pipetype((pipe)) == PIPE_CONTROL)
1782#define usb_pipebulk(pipe)      (usb_pipetype((pipe)) == PIPE_BULK)
1783
1784static inline unsigned int __create_pipe(struct usb_device *dev,
1785                unsigned int endpoint)
1786{
1787        return (dev->devnum << 8) | (endpoint << 15);
1788}
1789
1790/* Create various pipes... */
1791#define usb_sndctrlpipe(dev, endpoint)  \
1792        ((PIPE_CONTROL << 30) | __create_pipe(dev, endpoint))
1793#define usb_rcvctrlpipe(dev, endpoint)  \
1794        ((PIPE_CONTROL << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN)
1795#define usb_sndisocpipe(dev, endpoint)  \
1796        ((PIPE_ISOCHRONOUS << 30) | __create_pipe(dev, endpoint))
1797#define usb_rcvisocpipe(dev, endpoint)  \
1798        ((PIPE_ISOCHRONOUS << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN)
1799#define usb_sndbulkpipe(dev, endpoint)  \
1800        ((PIPE_BULK << 30) | __create_pipe(dev, endpoint))
1801#define usb_rcvbulkpipe(dev, endpoint)  \
1802        ((PIPE_BULK << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN)
1803#define usb_sndintpipe(dev, endpoint)   \
1804        ((PIPE_INTERRUPT << 30) | __create_pipe(dev, endpoint))
1805#define usb_rcvintpipe(dev, endpoint)   \
1806        ((PIPE_INTERRUPT << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN)
1807
1808static inline struct usb_host_endpoint *
1809usb_pipe_endpoint(struct usb_device *dev, unsigned int pipe)
1810{
1811        struct usb_host_endpoint **eps;
1812        eps = usb_pipein(pipe) ? dev->ep_in : dev->ep_out;
1813        return eps[usb_pipeendpoint(pipe)];
1814}
1815
1816/*-------------------------------------------------------------------------*/
1817
1818static inline __u16
1819usb_maxpacket(struct usb_device *udev, int pipe, int is_out)
1820{
1821        struct usb_host_endpoint        *ep;
1822        unsigned                        epnum = usb_pipeendpoint(pipe);
1823
1824        if (is_out) {
1825                WARN_ON(usb_pipein(pipe));
1826                ep = udev->ep_out[epnum];
1827        } else {
1828                WARN_ON(usb_pipeout(pipe));
1829                ep = udev->ep_in[epnum];
1830        }
1831        if (!ep)
1832                return 0;
1833
1834        /* NOTE:  only 0x07ff bits are for packet size... */
1835        return usb_endpoint_maxp(&ep->desc);
1836}
1837
1838/* ----------------------------------------------------------------------- */
1839
1840/* translate USB error codes to codes user space understands */
1841static inline int usb_translate_errors(int error_code)
1842{
1843        switch (error_code) {
1844        case 0:
1845        case -ENOMEM:
1846        case -ENODEV:
1847        case -EOPNOTSUPP:
1848                return error_code;
1849        default:
1850                return -EIO;
1851        }
1852}
1853
1854/* Events from the usb core */
1855#define USB_DEVICE_ADD          0x0001
1856#define USB_DEVICE_REMOVE       0x0002
1857#define USB_BUS_ADD             0x0003
1858#define USB_BUS_REMOVE          0x0004
1859extern void usb_register_notify(struct notifier_block *nb);
1860extern void usb_unregister_notify(struct notifier_block *nb);
1861
1862/* debugfs stuff */
1863extern struct dentry *usb_debug_root;
1864
1865/* LED triggers */
1866enum usb_led_event {
1867        USB_LED_EVENT_HOST = 0,
1868        USB_LED_EVENT_GADGET = 1,
1869};
1870
1871#ifdef CONFIG_USB_LED_TRIG
1872extern void usb_led_activity(enum usb_led_event ev);
1873#else
1874static inline void usb_led_activity(enum usb_led_event ev) {}
1875#endif
1876
1877#endif  /* __KERNEL__ */
1878
1879#endif
1880