linux/kernel/auditsc.c
<<
>>
Prefs
   1/* auditsc.c -- System-call auditing support
   2 * Handles all system-call specific auditing features.
   3 *
   4 * Copyright 2003-2004 Red Hat Inc., Durham, North Carolina.
   5 * Copyright 2005 Hewlett-Packard Development Company, L.P.
   6 * Copyright (C) 2005, 2006 IBM Corporation
   7 * All Rights Reserved.
   8 *
   9 * This program is free software; you can redistribute it and/or modify
  10 * it under the terms of the GNU General Public License as published by
  11 * the Free Software Foundation; either version 2 of the License, or
  12 * (at your option) any later version.
  13 *
  14 * This program is distributed in the hope that it will be useful,
  15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  17 * GNU General Public License for more details.
  18 *
  19 * You should have received a copy of the GNU General Public License
  20 * along with this program; if not, write to the Free Software
  21 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
  22 *
  23 * Written by Rickard E. (Rik) Faith <faith@redhat.com>
  24 *
  25 * Many of the ideas implemented here are from Stephen C. Tweedie,
  26 * especially the idea of avoiding a copy by using getname.
  27 *
  28 * The method for actual interception of syscall entry and exit (not in
  29 * this file -- see entry.S) is based on a GPL'd patch written by
  30 * okir@suse.de and Copyright 2003 SuSE Linux AG.
  31 *
  32 * POSIX message queue support added by George Wilson <ltcgcw@us.ibm.com>,
  33 * 2006.
  34 *
  35 * The support of additional filter rules compares (>, <, >=, <=) was
  36 * added by Dustin Kirkland <dustin.kirkland@us.ibm.com>, 2005.
  37 *
  38 * Modified by Amy Griffis <amy.griffis@hp.com> to collect additional
  39 * filesystem information.
  40 *
  41 * Subject and object context labeling support added by <danjones@us.ibm.com>
  42 * and <dustin.kirkland@us.ibm.com> for LSPP certification compliance.
  43 */
  44
  45#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  46
  47#include <linux/init.h>
  48#include <asm/types.h>
  49#include <linux/atomic.h>
  50#include <linux/fs.h>
  51#include <linux/namei.h>
  52#include <linux/mm.h>
  53#include <linux/export.h>
  54#include <linux/slab.h>
  55#include <linux/mount.h>
  56#include <linux/socket.h>
  57#include <linux/mqueue.h>
  58#include <linux/audit.h>
  59#include <linux/personality.h>
  60#include <linux/time.h>
  61#include <linux/netlink.h>
  62#include <linux/compiler.h>
  63#include <asm/unistd.h>
  64#include <linux/security.h>
  65#include <linux/list.h>
  66#include <linux/tty.h>
  67#include <linux/binfmts.h>
  68#include <linux/highmem.h>
  69#include <linux/syscalls.h>
  70#include <asm/syscall.h>
  71#include <linux/capability.h>
  72#include <linux/fs_struct.h>
  73#include <linux/compat.h>
  74#include <linux/ctype.h>
  75
  76#include "audit.h"
  77
  78/* flags stating the success for a syscall */
  79#define AUDITSC_INVALID 0
  80#define AUDITSC_SUCCESS 1
  81#define AUDITSC_FAILURE 2
  82
  83/* no execve audit message should be longer than this (userspace limits) */
  84#define MAX_EXECVE_AUDIT_LEN 7500
  85
  86/* max length to print of cmdline/proctitle value during audit */
  87#define MAX_PROCTITLE_AUDIT_LEN 128
  88
  89/* number of audit rules */
  90int audit_n_rules;
  91
  92/* determines whether we collect data for signals sent */
  93int audit_signals;
  94
  95struct audit_aux_data {
  96        struct audit_aux_data   *next;
  97        int                     type;
  98};
  99
 100#define AUDIT_AUX_IPCPERM       0
 101
 102/* Number of target pids per aux struct. */
 103#define AUDIT_AUX_PIDS  16
 104
 105struct audit_aux_data_pids {
 106        struct audit_aux_data   d;
 107        pid_t                   target_pid[AUDIT_AUX_PIDS];
 108        kuid_t                  target_auid[AUDIT_AUX_PIDS];
 109        kuid_t                  target_uid[AUDIT_AUX_PIDS];
 110        unsigned int            target_sessionid[AUDIT_AUX_PIDS];
 111        u32                     target_sid[AUDIT_AUX_PIDS];
 112        char                    target_comm[AUDIT_AUX_PIDS][TASK_COMM_LEN];
 113        int                     pid_count;
 114};
 115
 116struct audit_aux_data_bprm_fcaps {
 117        struct audit_aux_data   d;
 118        struct audit_cap_data   fcap;
 119        unsigned int            fcap_ver;
 120        struct audit_cap_data   old_pcap;
 121        struct audit_cap_data   new_pcap;
 122};
 123
 124struct audit_tree_refs {
 125        struct audit_tree_refs *next;
 126        struct audit_chunk *c[31];
 127};
 128
 129static int audit_match_perm(struct audit_context *ctx, int mask)
 130{
 131        unsigned n;
 132        if (unlikely(!ctx))
 133                return 0;
 134        n = ctx->major;
 135
 136        switch (audit_classify_syscall(ctx->arch, n)) {
 137        case 0: /* native */
 138                if ((mask & AUDIT_PERM_WRITE) &&
 139                     audit_match_class(AUDIT_CLASS_WRITE, n))
 140                        return 1;
 141                if ((mask & AUDIT_PERM_READ) &&
 142                     audit_match_class(AUDIT_CLASS_READ, n))
 143                        return 1;
 144                if ((mask & AUDIT_PERM_ATTR) &&
 145                     audit_match_class(AUDIT_CLASS_CHATTR, n))
 146                        return 1;
 147                return 0;
 148        case 1: /* 32bit on biarch */
 149                if ((mask & AUDIT_PERM_WRITE) &&
 150                     audit_match_class(AUDIT_CLASS_WRITE_32, n))
 151                        return 1;
 152                if ((mask & AUDIT_PERM_READ) &&
 153                     audit_match_class(AUDIT_CLASS_READ_32, n))
 154                        return 1;
 155                if ((mask & AUDIT_PERM_ATTR) &&
 156                     audit_match_class(AUDIT_CLASS_CHATTR_32, n))
 157                        return 1;
 158                return 0;
 159        case 2: /* open */
 160                return mask & ACC_MODE(ctx->argv[1]);
 161        case 3: /* openat */
 162                return mask & ACC_MODE(ctx->argv[2]);
 163        case 4: /* socketcall */
 164                return ((mask & AUDIT_PERM_WRITE) && ctx->argv[0] == SYS_BIND);
 165        case 5: /* execve */
 166                return mask & AUDIT_PERM_EXEC;
 167        default:
 168                return 0;
 169        }
 170}
 171
 172static int audit_match_filetype(struct audit_context *ctx, int val)
 173{
 174        struct audit_names *n;
 175        umode_t mode = (umode_t)val;
 176
 177        if (unlikely(!ctx))
 178                return 0;
 179
 180        list_for_each_entry(n, &ctx->names_list, list) {
 181                if ((n->ino != -1) &&
 182                    ((n->mode & S_IFMT) == mode))
 183                        return 1;
 184        }
 185
 186        return 0;
 187}
 188
 189/*
 190 * We keep a linked list of fixed-sized (31 pointer) arrays of audit_chunk *;
 191 * ->first_trees points to its beginning, ->trees - to the current end of data.
 192 * ->tree_count is the number of free entries in array pointed to by ->trees.
 193 * Original condition is (NULL, NULL, 0); as soon as it grows we never revert to NULL,
 194 * "empty" becomes (p, p, 31) afterwards.  We don't shrink the list (and seriously,
 195 * it's going to remain 1-element for almost any setup) until we free context itself.
 196 * References in it _are_ dropped - at the same time we free/drop aux stuff.
 197 */
 198
 199#ifdef CONFIG_AUDIT_TREE
 200static void audit_set_auditable(struct audit_context *ctx)
 201{
 202        if (!ctx->prio) {
 203                ctx->prio = 1;
 204                ctx->current_state = AUDIT_RECORD_CONTEXT;
 205        }
 206}
 207
 208static int put_tree_ref(struct audit_context *ctx, struct audit_chunk *chunk)
 209{
 210        struct audit_tree_refs *p = ctx->trees;
 211        int left = ctx->tree_count;
 212        if (likely(left)) {
 213                p->c[--left] = chunk;
 214                ctx->tree_count = left;
 215                return 1;
 216        }
 217        if (!p)
 218                return 0;
 219        p = p->next;
 220        if (p) {
 221                p->c[30] = chunk;
 222                ctx->trees = p;
 223                ctx->tree_count = 30;
 224                return 1;
 225        }
 226        return 0;
 227}
 228
 229static int grow_tree_refs(struct audit_context *ctx)
 230{
 231        struct audit_tree_refs *p = ctx->trees;
 232        ctx->trees = kzalloc(sizeof(struct audit_tree_refs), GFP_KERNEL);
 233        if (!ctx->trees) {
 234                ctx->trees = p;
 235                return 0;
 236        }
 237        if (p)
 238                p->next = ctx->trees;
 239        else
 240                ctx->first_trees = ctx->trees;
 241        ctx->tree_count = 31;
 242        return 1;
 243}
 244#endif
 245
 246static void unroll_tree_refs(struct audit_context *ctx,
 247                      struct audit_tree_refs *p, int count)
 248{
 249#ifdef CONFIG_AUDIT_TREE
 250        struct audit_tree_refs *q;
 251        int n;
 252        if (!p) {
 253                /* we started with empty chain */
 254                p = ctx->first_trees;
 255                count = 31;
 256                /* if the very first allocation has failed, nothing to do */
 257                if (!p)
 258                        return;
 259        }
 260        n = count;
 261        for (q = p; q != ctx->trees; q = q->next, n = 31) {
 262                while (n--) {
 263                        audit_put_chunk(q->c[n]);
 264                        q->c[n] = NULL;
 265                }
 266        }
 267        while (n-- > ctx->tree_count) {
 268                audit_put_chunk(q->c[n]);
 269                q->c[n] = NULL;
 270        }
 271        ctx->trees = p;
 272        ctx->tree_count = count;
 273#endif
 274}
 275
 276static void free_tree_refs(struct audit_context *ctx)
 277{
 278        struct audit_tree_refs *p, *q;
 279        for (p = ctx->first_trees; p; p = q) {
 280                q = p->next;
 281                kfree(p);
 282        }
 283}
 284
 285static int match_tree_refs(struct audit_context *ctx, struct audit_tree *tree)
 286{
 287#ifdef CONFIG_AUDIT_TREE
 288        struct audit_tree_refs *p;
 289        int n;
 290        if (!tree)
 291                return 0;
 292        /* full ones */
 293        for (p = ctx->first_trees; p != ctx->trees; p = p->next) {
 294                for (n = 0; n < 31; n++)
 295                        if (audit_tree_match(p->c[n], tree))
 296                                return 1;
 297        }
 298        /* partial */
 299        if (p) {
 300                for (n = ctx->tree_count; n < 31; n++)
 301                        if (audit_tree_match(p->c[n], tree))
 302                                return 1;
 303        }
 304#endif
 305        return 0;
 306}
 307
 308static int audit_compare_uid(kuid_t uid,
 309                             struct audit_names *name,
 310                             struct audit_field *f,
 311                             struct audit_context *ctx)
 312{
 313        struct audit_names *n;
 314        int rc;
 315 
 316        if (name) {
 317                rc = audit_uid_comparator(uid, f->op, name->uid);
 318                if (rc)
 319                        return rc;
 320        }
 321 
 322        if (ctx) {
 323                list_for_each_entry(n, &ctx->names_list, list) {
 324                        rc = audit_uid_comparator(uid, f->op, n->uid);
 325                        if (rc)
 326                                return rc;
 327                }
 328        }
 329        return 0;
 330}
 331
 332static int audit_compare_gid(kgid_t gid,
 333                             struct audit_names *name,
 334                             struct audit_field *f,
 335                             struct audit_context *ctx)
 336{
 337        struct audit_names *n;
 338        int rc;
 339 
 340        if (name) {
 341                rc = audit_gid_comparator(gid, f->op, name->gid);
 342                if (rc)
 343                        return rc;
 344        }
 345 
 346        if (ctx) {
 347                list_for_each_entry(n, &ctx->names_list, list) {
 348                        rc = audit_gid_comparator(gid, f->op, n->gid);
 349                        if (rc)
 350                                return rc;
 351                }
 352        }
 353        return 0;
 354}
 355
 356static int audit_field_compare(struct task_struct *tsk,
 357                               const struct cred *cred,
 358                               struct audit_field *f,
 359                               struct audit_context *ctx,
 360                               struct audit_names *name)
 361{
 362        switch (f->val) {
 363        /* process to file object comparisons */
 364        case AUDIT_COMPARE_UID_TO_OBJ_UID:
 365                return audit_compare_uid(cred->uid, name, f, ctx);
 366        case AUDIT_COMPARE_GID_TO_OBJ_GID:
 367                return audit_compare_gid(cred->gid, name, f, ctx);
 368        case AUDIT_COMPARE_EUID_TO_OBJ_UID:
 369                return audit_compare_uid(cred->euid, name, f, ctx);
 370        case AUDIT_COMPARE_EGID_TO_OBJ_GID:
 371                return audit_compare_gid(cred->egid, name, f, ctx);
 372        case AUDIT_COMPARE_AUID_TO_OBJ_UID:
 373                return audit_compare_uid(tsk->loginuid, name, f, ctx);
 374        case AUDIT_COMPARE_SUID_TO_OBJ_UID:
 375                return audit_compare_uid(cred->suid, name, f, ctx);
 376        case AUDIT_COMPARE_SGID_TO_OBJ_GID:
 377                return audit_compare_gid(cred->sgid, name, f, ctx);
 378        case AUDIT_COMPARE_FSUID_TO_OBJ_UID:
 379                return audit_compare_uid(cred->fsuid, name, f, ctx);
 380        case AUDIT_COMPARE_FSGID_TO_OBJ_GID:
 381                return audit_compare_gid(cred->fsgid, name, f, ctx);
 382        /* uid comparisons */
 383        case AUDIT_COMPARE_UID_TO_AUID:
 384                return audit_uid_comparator(cred->uid, f->op, tsk->loginuid);
 385        case AUDIT_COMPARE_UID_TO_EUID:
 386                return audit_uid_comparator(cred->uid, f->op, cred->euid);
 387        case AUDIT_COMPARE_UID_TO_SUID:
 388                return audit_uid_comparator(cred->uid, f->op, cred->suid);
 389        case AUDIT_COMPARE_UID_TO_FSUID:
 390                return audit_uid_comparator(cred->uid, f->op, cred->fsuid);
 391        /* auid comparisons */
 392        case AUDIT_COMPARE_AUID_TO_EUID:
 393                return audit_uid_comparator(tsk->loginuid, f->op, cred->euid);
 394        case AUDIT_COMPARE_AUID_TO_SUID:
 395                return audit_uid_comparator(tsk->loginuid, f->op, cred->suid);
 396        case AUDIT_COMPARE_AUID_TO_FSUID:
 397                return audit_uid_comparator(tsk->loginuid, f->op, cred->fsuid);
 398        /* euid comparisons */
 399        case AUDIT_COMPARE_EUID_TO_SUID:
 400                return audit_uid_comparator(cred->euid, f->op, cred->suid);
 401        case AUDIT_COMPARE_EUID_TO_FSUID:
 402                return audit_uid_comparator(cred->euid, f->op, cred->fsuid);
 403        /* suid comparisons */
 404        case AUDIT_COMPARE_SUID_TO_FSUID:
 405                return audit_uid_comparator(cred->suid, f->op, cred->fsuid);
 406        /* gid comparisons */
 407        case AUDIT_COMPARE_GID_TO_EGID:
 408                return audit_gid_comparator(cred->gid, f->op, cred->egid);
 409        case AUDIT_COMPARE_GID_TO_SGID:
 410                return audit_gid_comparator(cred->gid, f->op, cred->sgid);
 411        case AUDIT_COMPARE_GID_TO_FSGID:
 412                return audit_gid_comparator(cred->gid, f->op, cred->fsgid);
 413        /* egid comparisons */
 414        case AUDIT_COMPARE_EGID_TO_SGID:
 415                return audit_gid_comparator(cred->egid, f->op, cred->sgid);
 416        case AUDIT_COMPARE_EGID_TO_FSGID:
 417                return audit_gid_comparator(cred->egid, f->op, cred->fsgid);
 418        /* sgid comparison */
 419        case AUDIT_COMPARE_SGID_TO_FSGID:
 420                return audit_gid_comparator(cred->sgid, f->op, cred->fsgid);
 421        default:
 422                WARN(1, "Missing AUDIT_COMPARE define.  Report as a bug\n");
 423                return 0;
 424        }
 425        return 0;
 426}
 427
 428/* Determine if any context name data matches a rule's watch data */
 429/* Compare a task_struct with an audit_rule.  Return 1 on match, 0
 430 * otherwise.
 431 *
 432 * If task_creation is true, this is an explicit indication that we are
 433 * filtering a task rule at task creation time.  This and tsk == current are
 434 * the only situations where tsk->cred may be accessed without an rcu read lock.
 435 */
 436static int audit_filter_rules(struct task_struct *tsk,
 437                              struct audit_krule *rule,
 438                              struct audit_context *ctx,
 439                              struct audit_names *name,
 440                              enum audit_state *state,
 441                              bool task_creation)
 442{
 443        const struct cred *cred;
 444        int i, need_sid = 1;
 445        u32 sid;
 446
 447        cred = rcu_dereference_check(tsk->cred, tsk == current || task_creation);
 448
 449        for (i = 0; i < rule->field_count; i++) {
 450                struct audit_field *f = &rule->fields[i];
 451                struct audit_names *n;
 452                int result = 0;
 453                pid_t pid;
 454
 455                switch (f->type) {
 456                case AUDIT_PID:
 457                        pid = task_pid_nr(tsk);
 458                        result = audit_comparator(pid, f->op, f->val);
 459                        break;
 460                case AUDIT_PPID:
 461                        if (ctx) {
 462                                if (!ctx->ppid)
 463                                        ctx->ppid = task_ppid_nr(tsk);
 464                                result = audit_comparator(ctx->ppid, f->op, f->val);
 465                        }
 466                        break;
 467                case AUDIT_UID:
 468                        result = audit_uid_comparator(cred->uid, f->op, f->uid);
 469                        break;
 470                case AUDIT_EUID:
 471                        result = audit_uid_comparator(cred->euid, f->op, f->uid);
 472                        break;
 473                case AUDIT_SUID:
 474                        result = audit_uid_comparator(cred->suid, f->op, f->uid);
 475                        break;
 476                case AUDIT_FSUID:
 477                        result = audit_uid_comparator(cred->fsuid, f->op, f->uid);
 478                        break;
 479                case AUDIT_GID:
 480                        result = audit_gid_comparator(cred->gid, f->op, f->gid);
 481                        if (f->op == Audit_equal) {
 482                                if (!result)
 483                                        result = in_group_p(f->gid);
 484                        } else if (f->op == Audit_not_equal) {
 485                                if (result)
 486                                        result = !in_group_p(f->gid);
 487                        }
 488                        break;
 489                case AUDIT_EGID:
 490                        result = audit_gid_comparator(cred->egid, f->op, f->gid);
 491                        if (f->op == Audit_equal) {
 492                                if (!result)
 493                                        result = in_egroup_p(f->gid);
 494                        } else if (f->op == Audit_not_equal) {
 495                                if (result)
 496                                        result = !in_egroup_p(f->gid);
 497                        }
 498                        break;
 499                case AUDIT_SGID:
 500                        result = audit_gid_comparator(cred->sgid, f->op, f->gid);
 501                        break;
 502                case AUDIT_FSGID:
 503                        result = audit_gid_comparator(cred->fsgid, f->op, f->gid);
 504                        break;
 505                case AUDIT_PERS:
 506                        result = audit_comparator(tsk->personality, f->op, f->val);
 507                        break;
 508                case AUDIT_ARCH:
 509                        if (ctx)
 510                                result = audit_comparator(ctx->arch, f->op, f->val);
 511                        break;
 512
 513                case AUDIT_EXIT:
 514                        if (ctx && ctx->return_valid)
 515                                result = audit_comparator(ctx->return_code, f->op, f->val);
 516                        break;
 517                case AUDIT_SUCCESS:
 518                        if (ctx && ctx->return_valid) {
 519                                if (f->val)
 520                                        result = audit_comparator(ctx->return_valid, f->op, AUDITSC_SUCCESS);
 521                                else
 522                                        result = audit_comparator(ctx->return_valid, f->op, AUDITSC_FAILURE);
 523                        }
 524                        break;
 525                case AUDIT_DEVMAJOR:
 526                        if (name) {
 527                                if (audit_comparator(MAJOR(name->dev), f->op, f->val) ||
 528                                    audit_comparator(MAJOR(name->rdev), f->op, f->val))
 529                                        ++result;
 530                        } else if (ctx) {
 531                                list_for_each_entry(n, &ctx->names_list, list) {
 532                                        if (audit_comparator(MAJOR(n->dev), f->op, f->val) ||
 533                                            audit_comparator(MAJOR(n->rdev), f->op, f->val)) {
 534                                                ++result;
 535                                                break;
 536                                        }
 537                                }
 538                        }
 539                        break;
 540                case AUDIT_DEVMINOR:
 541                        if (name) {
 542                                if (audit_comparator(MINOR(name->dev), f->op, f->val) ||
 543                                    audit_comparator(MINOR(name->rdev), f->op, f->val))
 544                                        ++result;
 545                        } else if (ctx) {
 546                                list_for_each_entry(n, &ctx->names_list, list) {
 547                                        if (audit_comparator(MINOR(n->dev), f->op, f->val) ||
 548                                            audit_comparator(MINOR(n->rdev), f->op, f->val)) {
 549                                                ++result;
 550                                                break;
 551                                        }
 552                                }
 553                        }
 554                        break;
 555                case AUDIT_INODE:
 556                        if (name)
 557                                result = audit_comparator(name->ino, f->op, f->val);
 558                        else if (ctx) {
 559                                list_for_each_entry(n, &ctx->names_list, list) {
 560                                        if (audit_comparator(n->ino, f->op, f->val)) {
 561                                                ++result;
 562                                                break;
 563                                        }
 564                                }
 565                        }
 566                        break;
 567                case AUDIT_OBJ_UID:
 568                        if (name) {
 569                                result = audit_uid_comparator(name->uid, f->op, f->uid);
 570                        } else if (ctx) {
 571                                list_for_each_entry(n, &ctx->names_list, list) {
 572                                        if (audit_uid_comparator(n->uid, f->op, f->uid)) {
 573                                                ++result;
 574                                                break;
 575                                        }
 576                                }
 577                        }
 578                        break;
 579                case AUDIT_OBJ_GID:
 580                        if (name) {
 581                                result = audit_gid_comparator(name->gid, f->op, f->gid);
 582                        } else if (ctx) {
 583                                list_for_each_entry(n, &ctx->names_list, list) {
 584                                        if (audit_gid_comparator(n->gid, f->op, f->gid)) {
 585                                                ++result;
 586                                                break;
 587                                        }
 588                                }
 589                        }
 590                        break;
 591                case AUDIT_WATCH:
 592                        if (name)
 593                                result = audit_watch_compare(rule->watch, name->ino, name->dev);
 594                        break;
 595                case AUDIT_DIR:
 596                        if (ctx)
 597                                result = match_tree_refs(ctx, rule->tree);
 598                        break;
 599                case AUDIT_LOGINUID:
 600                        result = 0;
 601                        if (ctx)
 602                                result = audit_uid_comparator(tsk->loginuid, f->op, f->uid);
 603                        break;
 604                case AUDIT_LOGINUID_SET:
 605                        result = audit_comparator(audit_loginuid_set(tsk), f->op, f->val);
 606                        break;
 607                case AUDIT_SUBJ_USER:
 608                case AUDIT_SUBJ_ROLE:
 609                case AUDIT_SUBJ_TYPE:
 610                case AUDIT_SUBJ_SEN:
 611                case AUDIT_SUBJ_CLR:
 612                        /* NOTE: this may return negative values indicating
 613                           a temporary error.  We simply treat this as a
 614                           match for now to avoid losing information that
 615                           may be wanted.   An error message will also be
 616                           logged upon error */
 617                        if (f->lsm_rule) {
 618                                if (need_sid) {
 619                                        security_task_getsecid(tsk, &sid);
 620                                        need_sid = 0;
 621                                }
 622                                result = security_audit_rule_match(sid, f->type,
 623                                                                  f->op,
 624                                                                  f->lsm_rule,
 625                                                                  ctx);
 626                        }
 627                        break;
 628                case AUDIT_OBJ_USER:
 629                case AUDIT_OBJ_ROLE:
 630                case AUDIT_OBJ_TYPE:
 631                case AUDIT_OBJ_LEV_LOW:
 632                case AUDIT_OBJ_LEV_HIGH:
 633                        /* The above note for AUDIT_SUBJ_USER...AUDIT_SUBJ_CLR
 634                           also applies here */
 635                        if (f->lsm_rule) {
 636                                /* Find files that match */
 637                                if (name) {
 638                                        result = security_audit_rule_match(
 639                                                   name->osid, f->type, f->op,
 640                                                   f->lsm_rule, ctx);
 641                                } else if (ctx) {
 642                                        list_for_each_entry(n, &ctx->names_list, list) {
 643                                                if (security_audit_rule_match(n->osid, f->type,
 644                                                                              f->op, f->lsm_rule,
 645                                                                              ctx)) {
 646                                                        ++result;
 647                                                        break;
 648                                                }
 649                                        }
 650                                }
 651                                /* Find ipc objects that match */
 652                                if (!ctx || ctx->type != AUDIT_IPC)
 653                                        break;
 654                                if (security_audit_rule_match(ctx->ipc.osid,
 655                                                              f->type, f->op,
 656                                                              f->lsm_rule, ctx))
 657                                        ++result;
 658                        }
 659                        break;
 660                case AUDIT_ARG0:
 661                case AUDIT_ARG1:
 662                case AUDIT_ARG2:
 663                case AUDIT_ARG3:
 664                        if (ctx)
 665                                result = audit_comparator(ctx->argv[f->type-AUDIT_ARG0], f->op, f->val);
 666                        break;
 667                case AUDIT_FILTERKEY:
 668                        /* ignore this field for filtering */
 669                        result = 1;
 670                        break;
 671                case AUDIT_PERM:
 672                        result = audit_match_perm(ctx, f->val);
 673                        break;
 674                case AUDIT_FILETYPE:
 675                        result = audit_match_filetype(ctx, f->val);
 676                        break;
 677                case AUDIT_FIELD_COMPARE:
 678                        result = audit_field_compare(tsk, cred, f, ctx, name);
 679                        break;
 680                }
 681                if (!result)
 682                        return 0;
 683        }
 684
 685        if (ctx) {
 686                if (rule->prio <= ctx->prio)
 687                        return 0;
 688                if (rule->filterkey) {
 689                        kfree(ctx->filterkey);
 690                        ctx->filterkey = kstrdup(rule->filterkey, GFP_ATOMIC);
 691                }
 692                ctx->prio = rule->prio;
 693        }
 694        switch (rule->action) {
 695        case AUDIT_NEVER:    *state = AUDIT_DISABLED;       break;
 696        case AUDIT_ALWAYS:   *state = AUDIT_RECORD_CONTEXT; break;
 697        }
 698        return 1;
 699}
 700
 701/* At process creation time, we can determine if system-call auditing is
 702 * completely disabled for this task.  Since we only have the task
 703 * structure at this point, we can only check uid and gid.
 704 */
 705static enum audit_state audit_filter_task(struct task_struct *tsk, char **key)
 706{
 707        struct audit_entry *e;
 708        enum audit_state   state;
 709
 710        rcu_read_lock();
 711        list_for_each_entry_rcu(e, &audit_filter_list[AUDIT_FILTER_TASK], list) {
 712                if (audit_filter_rules(tsk, &e->rule, NULL, NULL,
 713                                       &state, true)) {
 714                        if (state == AUDIT_RECORD_CONTEXT)
 715                                *key = kstrdup(e->rule.filterkey, GFP_ATOMIC);
 716                        rcu_read_unlock();
 717                        return state;
 718                }
 719        }
 720        rcu_read_unlock();
 721        return AUDIT_BUILD_CONTEXT;
 722}
 723
 724static int audit_in_mask(const struct audit_krule *rule, unsigned long val)
 725{
 726        int word, bit;
 727
 728        if (val > 0xffffffff)
 729                return false;
 730
 731        word = AUDIT_WORD(val);
 732        if (word >= AUDIT_BITMASK_SIZE)
 733                return false;
 734
 735        bit = AUDIT_BIT(val);
 736
 737        return rule->mask[word] & bit;
 738}
 739
 740/* At syscall entry and exit time, this filter is called if the
 741 * audit_state is not low enough that auditing cannot take place, but is
 742 * also not high enough that we already know we have to write an audit
 743 * record (i.e., the state is AUDIT_SETUP_CONTEXT or AUDIT_BUILD_CONTEXT).
 744 */
 745static enum audit_state audit_filter_syscall(struct task_struct *tsk,
 746                                             struct audit_context *ctx,
 747                                             struct list_head *list)
 748{
 749        struct audit_entry *e;
 750        enum audit_state state;
 751
 752        if (audit_pid && tsk->tgid == audit_pid)
 753                return AUDIT_DISABLED;
 754
 755        rcu_read_lock();
 756        if (!list_empty(list)) {
 757                list_for_each_entry_rcu(e, list, list) {
 758                        if (audit_in_mask(&e->rule, ctx->major) &&
 759                            audit_filter_rules(tsk, &e->rule, ctx, NULL,
 760                                               &state, false)) {
 761                                rcu_read_unlock();
 762                                ctx->current_state = state;
 763                                return state;
 764                        }
 765                }
 766        }
 767        rcu_read_unlock();
 768        return AUDIT_BUILD_CONTEXT;
 769}
 770
 771/*
 772 * Given an audit_name check the inode hash table to see if they match.
 773 * Called holding the rcu read lock to protect the use of audit_inode_hash
 774 */
 775static int audit_filter_inode_name(struct task_struct *tsk,
 776                                   struct audit_names *n,
 777                                   struct audit_context *ctx) {
 778        int h = audit_hash_ino((u32)n->ino);
 779        struct list_head *list = &audit_inode_hash[h];
 780        struct audit_entry *e;
 781        enum audit_state state;
 782
 783        if (list_empty(list))
 784                return 0;
 785
 786        list_for_each_entry_rcu(e, list, list) {
 787                if (audit_in_mask(&e->rule, ctx->major) &&
 788                    audit_filter_rules(tsk, &e->rule, ctx, n, &state, false)) {
 789                        ctx->current_state = state;
 790                        return 1;
 791                }
 792        }
 793
 794        return 0;
 795}
 796
 797/* At syscall exit time, this filter is called if any audit_names have been
 798 * collected during syscall processing.  We only check rules in sublists at hash
 799 * buckets applicable to the inode numbers in audit_names.
 800 * Regarding audit_state, same rules apply as for audit_filter_syscall().
 801 */
 802void audit_filter_inodes(struct task_struct *tsk, struct audit_context *ctx)
 803{
 804        struct audit_names *n;
 805
 806        if (audit_pid && tsk->tgid == audit_pid)
 807                return;
 808
 809        rcu_read_lock();
 810
 811        list_for_each_entry(n, &ctx->names_list, list) {
 812                if (audit_filter_inode_name(tsk, n, ctx))
 813                        break;
 814        }
 815        rcu_read_unlock();
 816}
 817
 818/* Transfer the audit context pointer to the caller, clearing it in the tsk's struct */
 819static inline struct audit_context *audit_take_context(struct task_struct *tsk,
 820                                                      int return_valid,
 821                                                      long return_code)
 822{
 823        struct audit_context *context = tsk->audit_context;
 824
 825        if (!context)
 826                return NULL;
 827        context->return_valid = return_valid;
 828
 829        /*
 830         * we need to fix up the return code in the audit logs if the actual
 831         * return codes are later going to be fixed up by the arch specific
 832         * signal handlers
 833         *
 834         * This is actually a test for:
 835         * (rc == ERESTARTSYS ) || (rc == ERESTARTNOINTR) ||
 836         * (rc == ERESTARTNOHAND) || (rc == ERESTART_RESTARTBLOCK)
 837         *
 838         * but is faster than a bunch of ||
 839         */
 840        if (unlikely(return_code <= -ERESTARTSYS) &&
 841            (return_code >= -ERESTART_RESTARTBLOCK) &&
 842            (return_code != -ENOIOCTLCMD))
 843                context->return_code = -EINTR;
 844        else
 845                context->return_code  = return_code;
 846
 847        if (context->in_syscall && !context->dummy) {
 848                audit_filter_syscall(tsk, context, &audit_filter_list[AUDIT_FILTER_EXIT]);
 849                audit_filter_inodes(tsk, context);
 850        }
 851
 852        tsk->audit_context = NULL;
 853        return context;
 854}
 855
 856static inline void audit_proctitle_free(struct audit_context *context)
 857{
 858        kfree(context->proctitle.value);
 859        context->proctitle.value = NULL;
 860        context->proctitle.len = 0;
 861}
 862
 863static inline void audit_free_names(struct audit_context *context)
 864{
 865        struct audit_names *n, *next;
 866
 867#if AUDIT_DEBUG == 2
 868        if (context->put_count + context->ino_count != context->name_count) {
 869                int i = 0;
 870
 871                pr_err("%s:%d(:%d): major=%d in_syscall=%d"
 872                       " name_count=%d put_count=%d ino_count=%d"
 873                       " [NOT freeing]\n", __FILE__, __LINE__,
 874                       context->serial, context->major, context->in_syscall,
 875                       context->name_count, context->put_count,
 876                       context->ino_count);
 877                list_for_each_entry(n, &context->names_list, list) {
 878                        pr_err("names[%d] = %p = %s\n", i++, n->name,
 879                               n->name->name ?: "(null)");
 880                }
 881                dump_stack();
 882                return;
 883        }
 884#endif
 885#if AUDIT_DEBUG
 886        context->put_count  = 0;
 887        context->ino_count  = 0;
 888#endif
 889
 890        list_for_each_entry_safe(n, next, &context->names_list, list) {
 891                list_del(&n->list);
 892                if (n->name && n->name_put)
 893                        final_putname(n->name);
 894                if (n->should_free)
 895                        kfree(n);
 896        }
 897        context->name_count = 0;
 898        path_put(&context->pwd);
 899        context->pwd.dentry = NULL;
 900        context->pwd.mnt = NULL;
 901}
 902
 903static inline void audit_free_aux(struct audit_context *context)
 904{
 905        struct audit_aux_data *aux;
 906
 907        while ((aux = context->aux)) {
 908                context->aux = aux->next;
 909                kfree(aux);
 910        }
 911        while ((aux = context->aux_pids)) {
 912                context->aux_pids = aux->next;
 913                kfree(aux);
 914        }
 915}
 916
 917static inline struct audit_context *audit_alloc_context(enum audit_state state)
 918{
 919        struct audit_context *context;
 920
 921        context = kzalloc(sizeof(*context), GFP_KERNEL);
 922        if (!context)
 923                return NULL;
 924        context->state = state;
 925        context->prio = state == AUDIT_RECORD_CONTEXT ? ~0ULL : 0;
 926        INIT_LIST_HEAD(&context->killed_trees);
 927        INIT_LIST_HEAD(&context->names_list);
 928        return context;
 929}
 930
 931/**
 932 * audit_alloc - allocate an audit context block for a task
 933 * @tsk: task
 934 *
 935 * Filter on the task information and allocate a per-task audit context
 936 * if necessary.  Doing so turns on system call auditing for the
 937 * specified task.  This is called from copy_process, so no lock is
 938 * needed.
 939 */
 940int audit_alloc(struct task_struct *tsk)
 941{
 942        struct audit_context *context;
 943        enum audit_state     state;
 944        char *key = NULL;
 945
 946        if (likely(!audit_ever_enabled))
 947                return 0; /* Return if not auditing. */
 948
 949        state = audit_filter_task(tsk, &key);
 950        if (state == AUDIT_DISABLED) {
 951                clear_tsk_thread_flag(tsk, TIF_SYSCALL_AUDIT);
 952                return 0;
 953        }
 954
 955        if (!(context = audit_alloc_context(state))) {
 956                kfree(key);
 957                audit_log_lost("out of memory in audit_alloc");
 958                return -ENOMEM;
 959        }
 960        context->filterkey = key;
 961
 962        tsk->audit_context  = context;
 963        set_tsk_thread_flag(tsk, TIF_SYSCALL_AUDIT);
 964        return 0;
 965}
 966
 967static inline void audit_free_context(struct audit_context *context)
 968{
 969        audit_free_names(context);
 970        unroll_tree_refs(context, NULL, 0);
 971        free_tree_refs(context);
 972        audit_free_aux(context);
 973        kfree(context->filterkey);
 974        kfree(context->sockaddr);
 975        audit_proctitle_free(context);
 976        kfree(context);
 977}
 978
 979static int audit_log_pid_context(struct audit_context *context, pid_t pid,
 980                                 kuid_t auid, kuid_t uid, unsigned int sessionid,
 981                                 u32 sid, char *comm)
 982{
 983        struct audit_buffer *ab;
 984        char *ctx = NULL;
 985        u32 len;
 986        int rc = 0;
 987
 988        ab = audit_log_start(context, GFP_KERNEL, AUDIT_OBJ_PID);
 989        if (!ab)
 990                return rc;
 991
 992        audit_log_format(ab, "opid=%d oauid=%d ouid=%d oses=%d", pid,
 993                         from_kuid(&init_user_ns, auid),
 994                         from_kuid(&init_user_ns, uid), sessionid);
 995        if (sid) {
 996                if (security_secid_to_secctx(sid, &ctx, &len)) {
 997                        audit_log_format(ab, " obj=(none)");
 998                        rc = 1;
 999                } else {
1000                        audit_log_format(ab, " obj=%s", ctx);
1001                        security_release_secctx(ctx, len);
1002                }
1003        }
1004        audit_log_format(ab, " ocomm=");
1005        audit_log_untrustedstring(ab, comm);
1006        audit_log_end(ab);
1007
1008        return rc;
1009}
1010
1011/*
1012 * to_send and len_sent accounting are very loose estimates.  We aren't
1013 * really worried about a hard cap to MAX_EXECVE_AUDIT_LEN so much as being
1014 * within about 500 bytes (next page boundary)
1015 *
1016 * why snprintf?  an int is up to 12 digits long.  if we just assumed when
1017 * logging that a[%d]= was going to be 16 characters long we would be wasting
1018 * space in every audit message.  In one 7500 byte message we can log up to
1019 * about 1000 min size arguments.  That comes down to about 50% waste of space
1020 * if we didn't do the snprintf to find out how long arg_num_len was.
1021 */
1022static int audit_log_single_execve_arg(struct audit_context *context,
1023                                        struct audit_buffer **ab,
1024                                        int arg_num,
1025                                        size_t *len_sent,
1026                                        const char __user *p,
1027                                        char *buf)
1028{
1029        char arg_num_len_buf[12];
1030        const char __user *tmp_p = p;
1031        /* how many digits are in arg_num? 5 is the length of ' a=""' */
1032        size_t arg_num_len = snprintf(arg_num_len_buf, 12, "%d", arg_num) + 5;
1033        size_t len, len_left, to_send;
1034        size_t max_execve_audit_len = MAX_EXECVE_AUDIT_LEN;
1035        unsigned int i, has_cntl = 0, too_long = 0;
1036        int ret;
1037
1038        /* strnlen_user includes the null we don't want to send */
1039        len_left = len = strnlen_user(p, MAX_ARG_STRLEN) - 1;
1040
1041        /*
1042         * We just created this mm, if we can't find the strings
1043         * we just copied into it something is _very_ wrong. Similar
1044         * for strings that are too long, we should not have created
1045         * any.
1046         */
1047        if (unlikely((len == -1) || len > MAX_ARG_STRLEN - 1)) {
1048                WARN_ON(1);
1049                send_sig(SIGKILL, current, 0);
1050                return -1;
1051        }
1052
1053        /* walk the whole argument looking for non-ascii chars */
1054        do {
1055                if (len_left > MAX_EXECVE_AUDIT_LEN)
1056                        to_send = MAX_EXECVE_AUDIT_LEN;
1057                else
1058                        to_send = len_left;
1059                ret = copy_from_user(buf, tmp_p, to_send);
1060                /*
1061                 * There is no reason for this copy to be short. We just
1062                 * copied them here, and the mm hasn't been exposed to user-
1063                 * space yet.
1064                 */
1065                if (ret) {
1066                        WARN_ON(1);
1067                        send_sig(SIGKILL, current, 0);
1068                        return -1;
1069                }
1070                buf[to_send] = '\0';
1071                has_cntl = audit_string_contains_control(buf, to_send);
1072                if (has_cntl) {
1073                        /*
1074                         * hex messages get logged as 2 bytes, so we can only
1075                         * send half as much in each message
1076                         */
1077                        max_execve_audit_len = MAX_EXECVE_AUDIT_LEN / 2;
1078                        break;
1079                }
1080                len_left -= to_send;
1081                tmp_p += to_send;
1082        } while (len_left > 0);
1083
1084        len_left = len;
1085
1086        if (len > max_execve_audit_len)
1087                too_long = 1;
1088
1089        /* rewalk the argument actually logging the message */
1090        for (i = 0; len_left > 0; i++) {
1091                int room_left;
1092
1093                if (len_left > max_execve_audit_len)
1094                        to_send = max_execve_audit_len;
1095                else
1096                        to_send = len_left;
1097
1098                /* do we have space left to send this argument in this ab? */
1099                room_left = MAX_EXECVE_AUDIT_LEN - arg_num_len - *len_sent;
1100                if (has_cntl)
1101                        room_left -= (to_send * 2);
1102                else
1103                        room_left -= to_send;
1104                if (room_left < 0) {
1105                        *len_sent = 0;
1106                        audit_log_end(*ab);
1107                        *ab = audit_log_start(context, GFP_KERNEL, AUDIT_EXECVE);
1108                        if (!*ab)
1109                                return 0;
1110                }
1111
1112                /*
1113                 * first record needs to say how long the original string was
1114                 * so we can be sure nothing was lost.
1115                 */
1116                if ((i == 0) && (too_long))
1117                        audit_log_format(*ab, " a%d_len=%zu", arg_num,
1118                                         has_cntl ? 2*len : len);
1119
1120                /*
1121                 * normally arguments are small enough to fit and we already
1122                 * filled buf above when we checked for control characters
1123                 * so don't bother with another copy_from_user
1124                 */
1125                if (len >= max_execve_audit_len)
1126                        ret = copy_from_user(buf, p, to_send);
1127                else
1128                        ret = 0;
1129                if (ret) {
1130                        WARN_ON(1);
1131                        send_sig(SIGKILL, current, 0);
1132                        return -1;
1133                }
1134                buf[to_send] = '\0';
1135
1136                /* actually log it */
1137                audit_log_format(*ab, " a%d", arg_num);
1138                if (too_long)
1139                        audit_log_format(*ab, "[%d]", i);
1140                audit_log_format(*ab, "=");
1141                if (has_cntl)
1142                        audit_log_n_hex(*ab, buf, to_send);
1143                else
1144                        audit_log_string(*ab, buf);
1145
1146                p += to_send;
1147                len_left -= to_send;
1148                *len_sent += arg_num_len;
1149                if (has_cntl)
1150                        *len_sent += to_send * 2;
1151                else
1152                        *len_sent += to_send;
1153        }
1154        /* include the null we didn't log */
1155        return len + 1;
1156}
1157
1158static void audit_log_execve_info(struct audit_context *context,
1159                                  struct audit_buffer **ab)
1160{
1161        int i, len;
1162        size_t len_sent = 0;
1163        const char __user *p;
1164        char *buf;
1165
1166        p = (const char __user *)current->mm->arg_start;
1167
1168        audit_log_format(*ab, "argc=%d", context->execve.argc);
1169
1170        /*
1171         * we need some kernel buffer to hold the userspace args.  Just
1172         * allocate one big one rather than allocating one of the right size
1173         * for every single argument inside audit_log_single_execve_arg()
1174         * should be <8k allocation so should be pretty safe.
1175         */
1176        buf = kmalloc(MAX_EXECVE_AUDIT_LEN + 1, GFP_KERNEL);
1177        if (!buf) {
1178                audit_panic("out of memory for argv string");
1179                return;
1180        }
1181
1182        for (i = 0; i < context->execve.argc; i++) {
1183                len = audit_log_single_execve_arg(context, ab, i,
1184                                                  &len_sent, p, buf);
1185                if (len <= 0)
1186                        break;
1187                p += len;
1188        }
1189        kfree(buf);
1190}
1191
1192static void show_special(struct audit_context *context, int *call_panic)
1193{
1194        struct audit_buffer *ab;
1195        int i;
1196
1197        ab = audit_log_start(context, GFP_KERNEL, context->type);
1198        if (!ab)
1199                return;
1200
1201        switch (context->type) {
1202        case AUDIT_SOCKETCALL: {
1203                int nargs = context->socketcall.nargs;
1204                audit_log_format(ab, "nargs=%d", nargs);
1205                for (i = 0; i < nargs; i++)
1206                        audit_log_format(ab, " a%d=%lx", i,
1207                                context->socketcall.args[i]);
1208                break; }
1209        case AUDIT_IPC: {
1210                u32 osid = context->ipc.osid;
1211
1212                audit_log_format(ab, "ouid=%u ogid=%u mode=%#ho",
1213                                 from_kuid(&init_user_ns, context->ipc.uid),
1214                                 from_kgid(&init_user_ns, context->ipc.gid),
1215                                 context->ipc.mode);
1216                if (osid) {
1217                        char *ctx = NULL;
1218                        u32 len;
1219                        if (security_secid_to_secctx(osid, &ctx, &len)) {
1220                                audit_log_format(ab, " osid=%u", osid);
1221                                *call_panic = 1;
1222                        } else {
1223                                audit_log_format(ab, " obj=%s", ctx);
1224                                security_release_secctx(ctx, len);
1225                        }
1226                }
1227                if (context->ipc.has_perm) {
1228                        audit_log_end(ab);
1229                        ab = audit_log_start(context, GFP_KERNEL,
1230                                             AUDIT_IPC_SET_PERM);
1231                        if (unlikely(!ab))
1232                                return;
1233                        audit_log_format(ab,
1234                                "qbytes=%lx ouid=%u ogid=%u mode=%#ho",
1235                                context->ipc.qbytes,
1236                                context->ipc.perm_uid,
1237                                context->ipc.perm_gid,
1238                                context->ipc.perm_mode);
1239                }
1240                break; }
1241        case AUDIT_MQ_OPEN: {
1242                audit_log_format(ab,
1243                        "oflag=0x%x mode=%#ho mq_flags=0x%lx mq_maxmsg=%ld "
1244                        "mq_msgsize=%ld mq_curmsgs=%ld",
1245                        context->mq_open.oflag, context->mq_open.mode,
1246                        context->mq_open.attr.mq_flags,
1247                        context->mq_open.attr.mq_maxmsg,
1248                        context->mq_open.attr.mq_msgsize,
1249                        context->mq_open.attr.mq_curmsgs);
1250                break; }
1251        case AUDIT_MQ_SENDRECV: {
1252                audit_log_format(ab,
1253                        "mqdes=%d msg_len=%zd msg_prio=%u "
1254                        "abs_timeout_sec=%ld abs_timeout_nsec=%ld",
1255                        context->mq_sendrecv.mqdes,
1256                        context->mq_sendrecv.msg_len,
1257                        context->mq_sendrecv.msg_prio,
1258                        context->mq_sendrecv.abs_timeout.tv_sec,
1259                        context->mq_sendrecv.abs_timeout.tv_nsec);
1260                break; }
1261        case AUDIT_MQ_NOTIFY: {
1262                audit_log_format(ab, "mqdes=%d sigev_signo=%d",
1263                                context->mq_notify.mqdes,
1264                                context->mq_notify.sigev_signo);
1265                break; }
1266        case AUDIT_MQ_GETSETATTR: {
1267                struct mq_attr *attr = &context->mq_getsetattr.mqstat;
1268                audit_log_format(ab,
1269                        "mqdes=%d mq_flags=0x%lx mq_maxmsg=%ld mq_msgsize=%ld "
1270                        "mq_curmsgs=%ld ",
1271                        context->mq_getsetattr.mqdes,
1272                        attr->mq_flags, attr->mq_maxmsg,
1273                        attr->mq_msgsize, attr->mq_curmsgs);
1274                break; }
1275        case AUDIT_CAPSET: {
1276                audit_log_format(ab, "pid=%d", context->capset.pid);
1277                audit_log_cap(ab, "cap_pi", &context->capset.cap.inheritable);
1278                audit_log_cap(ab, "cap_pp", &context->capset.cap.permitted);
1279                audit_log_cap(ab, "cap_pe", &context->capset.cap.effective);
1280                break; }
1281        case AUDIT_MMAP: {
1282                audit_log_format(ab, "fd=%d flags=0x%x", context->mmap.fd,
1283                                 context->mmap.flags);
1284                break; }
1285        case AUDIT_EXECVE: {
1286                audit_log_execve_info(context, &ab);
1287                break; }
1288        }
1289        audit_log_end(ab);
1290}
1291
1292static inline int audit_proctitle_rtrim(char *proctitle, int len)
1293{
1294        char *end = proctitle + len - 1;
1295        while (end > proctitle && !isprint(*end))
1296                end--;
1297
1298        /* catch the case where proctitle is only 1 non-print character */
1299        len = end - proctitle + 1;
1300        len -= isprint(proctitle[len-1]) == 0;
1301        return len;
1302}
1303
1304static void audit_log_proctitle(struct task_struct *tsk,
1305                         struct audit_context *context)
1306{
1307        int res;
1308        char *buf;
1309        char *msg = "(null)";
1310        int len = strlen(msg);
1311        struct audit_buffer *ab;
1312
1313        ab = audit_log_start(context, GFP_KERNEL, AUDIT_PROCTITLE);
1314        if (!ab)
1315                return; /* audit_panic or being filtered */
1316
1317        audit_log_format(ab, "proctitle=");
1318
1319        /* Not  cached */
1320        if (!context->proctitle.value) {
1321                buf = kmalloc(MAX_PROCTITLE_AUDIT_LEN, GFP_KERNEL);
1322                if (!buf)
1323                        goto out;
1324                /* Historically called this from procfs naming */
1325                res = get_cmdline(tsk, buf, MAX_PROCTITLE_AUDIT_LEN);
1326                if (res == 0) {
1327                        kfree(buf);
1328                        goto out;
1329                }
1330                res = audit_proctitle_rtrim(buf, res);
1331                if (res == 0) {
1332                        kfree(buf);
1333                        goto out;
1334                }
1335                context->proctitle.value = buf;
1336                context->proctitle.len = res;
1337        }
1338        msg = context->proctitle.value;
1339        len = context->proctitle.len;
1340out:
1341        audit_log_n_untrustedstring(ab, msg, len);
1342        audit_log_end(ab);
1343}
1344
1345static void audit_log_exit(struct audit_context *context, struct task_struct *tsk)
1346{
1347        int i, call_panic = 0;
1348        struct audit_buffer *ab;
1349        struct audit_aux_data *aux;
1350        struct audit_names *n;
1351
1352        /* tsk == current */
1353        context->personality = tsk->personality;
1354
1355        ab = audit_log_start(context, GFP_KERNEL, AUDIT_SYSCALL);
1356        if (!ab)
1357                return;         /* audit_panic has been called */
1358        audit_log_format(ab, "arch=%x syscall=%d",
1359                         context->arch, context->major);
1360        if (context->personality != PER_LINUX)
1361                audit_log_format(ab, " per=%lx", context->personality);
1362        if (context->return_valid)
1363                audit_log_format(ab, " success=%s exit=%ld",
1364                                 (context->return_valid==AUDITSC_SUCCESS)?"yes":"no",
1365                                 context->return_code);
1366
1367        audit_log_format(ab,
1368                         " a0=%lx a1=%lx a2=%lx a3=%lx items=%d",
1369                         context->argv[0],
1370                         context->argv[1],
1371                         context->argv[2],
1372                         context->argv[3],
1373                         context->name_count);
1374
1375        audit_log_task_info(ab, tsk);
1376        audit_log_key(ab, context->filterkey);
1377        audit_log_end(ab);
1378
1379        for (aux = context->aux; aux; aux = aux->next) {
1380
1381                ab = audit_log_start(context, GFP_KERNEL, aux->type);
1382                if (!ab)
1383                        continue; /* audit_panic has been called */
1384
1385                switch (aux->type) {
1386
1387                case AUDIT_BPRM_FCAPS: {
1388                        struct audit_aux_data_bprm_fcaps *axs = (void *)aux;
1389                        audit_log_format(ab, "fver=%x", axs->fcap_ver);
1390                        audit_log_cap(ab, "fp", &axs->fcap.permitted);
1391                        audit_log_cap(ab, "fi", &axs->fcap.inheritable);
1392                        audit_log_format(ab, " fe=%d", axs->fcap.fE);
1393                        audit_log_cap(ab, "old_pp", &axs->old_pcap.permitted);
1394                        audit_log_cap(ab, "old_pi", &axs->old_pcap.inheritable);
1395                        audit_log_cap(ab, "old_pe", &axs->old_pcap.effective);
1396                        audit_log_cap(ab, "new_pp", &axs->new_pcap.permitted);
1397                        audit_log_cap(ab, "new_pi", &axs->new_pcap.inheritable);
1398                        audit_log_cap(ab, "new_pe", &axs->new_pcap.effective);
1399                        break; }
1400
1401                }
1402                audit_log_end(ab);
1403        }
1404
1405        if (context->type)
1406                show_special(context, &call_panic);
1407
1408        if (context->fds[0] >= 0) {
1409                ab = audit_log_start(context, GFP_KERNEL, AUDIT_FD_PAIR);
1410                if (ab) {
1411                        audit_log_format(ab, "fd0=%d fd1=%d",
1412                                        context->fds[0], context->fds[1]);
1413                        audit_log_end(ab);
1414                }
1415        }
1416
1417        if (context->sockaddr_len) {
1418                ab = audit_log_start(context, GFP_KERNEL, AUDIT_SOCKADDR);
1419                if (ab) {
1420                        audit_log_format(ab, "saddr=");
1421                        audit_log_n_hex(ab, (void *)context->sockaddr,
1422                                        context->sockaddr_len);
1423                        audit_log_end(ab);
1424                }
1425        }
1426
1427        for (aux = context->aux_pids; aux; aux = aux->next) {
1428                struct audit_aux_data_pids *axs = (void *)aux;
1429
1430                for (i = 0; i < axs->pid_count; i++)
1431                        if (audit_log_pid_context(context, axs->target_pid[i],
1432                                                  axs->target_auid[i],
1433                                                  axs->target_uid[i],
1434                                                  axs->target_sessionid[i],
1435                                                  axs->target_sid[i],
1436                                                  axs->target_comm[i]))
1437                                call_panic = 1;
1438        }
1439
1440        if (context->target_pid &&
1441            audit_log_pid_context(context, context->target_pid,
1442                                  context->target_auid, context->target_uid,
1443                                  context->target_sessionid,
1444                                  context->target_sid, context->target_comm))
1445                        call_panic = 1;
1446
1447        if (context->pwd.dentry && context->pwd.mnt) {
1448                ab = audit_log_start(context, GFP_KERNEL, AUDIT_CWD);
1449                if (ab) {
1450                        audit_log_d_path(ab, " cwd=", &context->pwd);
1451                        audit_log_end(ab);
1452                }
1453        }
1454
1455        i = 0;
1456        list_for_each_entry(n, &context->names_list, list) {
1457                if (n->hidden)
1458                        continue;
1459                audit_log_name(context, n, NULL, i++, &call_panic);
1460        }
1461
1462        audit_log_proctitle(tsk, context);
1463
1464        /* Send end of event record to help user space know we are finished */
1465        ab = audit_log_start(context, GFP_KERNEL, AUDIT_EOE);
1466        if (ab)
1467                audit_log_end(ab);
1468        if (call_panic)
1469                audit_panic("error converting sid to string");
1470}
1471
1472/**
1473 * audit_free - free a per-task audit context
1474 * @tsk: task whose audit context block to free
1475 *
1476 * Called from copy_process and do_exit
1477 */
1478void __audit_free(struct task_struct *tsk)
1479{
1480        struct audit_context *context;
1481
1482        context = audit_take_context(tsk, 0, 0);
1483        if (!context)
1484                return;
1485
1486        /* Check for system calls that do not go through the exit
1487         * function (e.g., exit_group), then free context block.
1488         * We use GFP_ATOMIC here because we might be doing this
1489         * in the context of the idle thread */
1490        /* that can happen only if we are called from do_exit() */
1491        if (context->in_syscall && context->current_state == AUDIT_RECORD_CONTEXT)
1492                audit_log_exit(context, tsk);
1493        if (!list_empty(&context->killed_trees))
1494                audit_kill_trees(&context->killed_trees);
1495
1496        audit_free_context(context);
1497}
1498
1499/**
1500 * audit_syscall_entry - fill in an audit record at syscall entry
1501 * @major: major syscall type (function)
1502 * @a1: additional syscall register 1
1503 * @a2: additional syscall register 2
1504 * @a3: additional syscall register 3
1505 * @a4: additional syscall register 4
1506 *
1507 * Fill in audit context at syscall entry.  This only happens if the
1508 * audit context was created when the task was created and the state or
1509 * filters demand the audit context be built.  If the state from the
1510 * per-task filter or from the per-syscall filter is AUDIT_RECORD_CONTEXT,
1511 * then the record will be written at syscall exit time (otherwise, it
1512 * will only be written if another part of the kernel requests that it
1513 * be written).
1514 */
1515void __audit_syscall_entry(int major, unsigned long a1, unsigned long a2,
1516                           unsigned long a3, unsigned long a4)
1517{
1518        struct task_struct *tsk = current;
1519        struct audit_context *context = tsk->audit_context;
1520        enum audit_state     state;
1521
1522        if (!context)
1523                return;
1524
1525        BUG_ON(context->in_syscall || context->name_count);
1526
1527        if (!audit_enabled)
1528                return;
1529
1530        context->arch       = syscall_get_arch();
1531        context->major      = major;
1532        context->argv[0]    = a1;
1533        context->argv[1]    = a2;
1534        context->argv[2]    = a3;
1535        context->argv[3]    = a4;
1536
1537        state = context->state;
1538        context->dummy = !audit_n_rules;
1539        if (!context->dummy && state == AUDIT_BUILD_CONTEXT) {
1540                context->prio = 0;
1541                state = audit_filter_syscall(tsk, context, &audit_filter_list[AUDIT_FILTER_ENTRY]);
1542        }
1543        if (state == AUDIT_DISABLED)
1544                return;
1545
1546        context->serial     = 0;
1547        context->ctime      = CURRENT_TIME;
1548        context->in_syscall = 1;
1549        context->current_state  = state;
1550        context->ppid       = 0;
1551}
1552
1553/**
1554 * audit_syscall_exit - deallocate audit context after a system call
1555 * @success: success value of the syscall
1556 * @return_code: return value of the syscall
1557 *
1558 * Tear down after system call.  If the audit context has been marked as
1559 * auditable (either because of the AUDIT_RECORD_CONTEXT state from
1560 * filtering, or because some other part of the kernel wrote an audit
1561 * message), then write out the syscall information.  In call cases,
1562 * free the names stored from getname().
1563 */
1564void __audit_syscall_exit(int success, long return_code)
1565{
1566        struct task_struct *tsk = current;
1567        struct audit_context *context;
1568
1569        if (success)
1570                success = AUDITSC_SUCCESS;
1571        else
1572                success = AUDITSC_FAILURE;
1573
1574        context = audit_take_context(tsk, success, return_code);
1575        if (!context)
1576                return;
1577
1578        if (context->in_syscall && context->current_state == AUDIT_RECORD_CONTEXT)
1579                audit_log_exit(context, tsk);
1580
1581        context->in_syscall = 0;
1582        context->prio = context->state == AUDIT_RECORD_CONTEXT ? ~0ULL : 0;
1583
1584        if (!list_empty(&context->killed_trees))
1585                audit_kill_trees(&context->killed_trees);
1586
1587        audit_free_names(context);
1588        unroll_tree_refs(context, NULL, 0);
1589        audit_free_aux(context);
1590        context->aux = NULL;
1591        context->aux_pids = NULL;
1592        context->target_pid = 0;
1593        context->target_sid = 0;
1594        context->sockaddr_len = 0;
1595        context->type = 0;
1596        context->fds[0] = -1;
1597        if (context->state != AUDIT_RECORD_CONTEXT) {
1598                kfree(context->filterkey);
1599                context->filterkey = NULL;
1600        }
1601        tsk->audit_context = context;
1602}
1603
1604static inline void handle_one(const struct inode *inode)
1605{
1606#ifdef CONFIG_AUDIT_TREE
1607        struct audit_context *context;
1608        struct audit_tree_refs *p;
1609        struct audit_chunk *chunk;
1610        int count;
1611        if (likely(hlist_empty(&inode->i_fsnotify_marks)))
1612                return;
1613        context = current->audit_context;
1614        p = context->trees;
1615        count = context->tree_count;
1616        rcu_read_lock();
1617        chunk = audit_tree_lookup(inode);
1618        rcu_read_unlock();
1619        if (!chunk)
1620                return;
1621        if (likely(put_tree_ref(context, chunk)))
1622                return;
1623        if (unlikely(!grow_tree_refs(context))) {
1624                pr_warn("out of memory, audit has lost a tree reference\n");
1625                audit_set_auditable(context);
1626                audit_put_chunk(chunk);
1627                unroll_tree_refs(context, p, count);
1628                return;
1629        }
1630        put_tree_ref(context, chunk);
1631#endif
1632}
1633
1634static void handle_path(const struct dentry *dentry)
1635{
1636#ifdef CONFIG_AUDIT_TREE
1637        struct audit_context *context;
1638        struct audit_tree_refs *p;
1639        const struct dentry *d, *parent;
1640        struct audit_chunk *drop;
1641        unsigned long seq;
1642        int count;
1643
1644        context = current->audit_context;
1645        p = context->trees;
1646        count = context->tree_count;
1647retry:
1648        drop = NULL;
1649        d = dentry;
1650        rcu_read_lock();
1651        seq = read_seqbegin(&rename_lock);
1652        for(;;) {
1653                struct inode *inode = d->d_inode;
1654                if (inode && unlikely(!hlist_empty(&inode->i_fsnotify_marks))) {
1655                        struct audit_chunk *chunk;
1656                        chunk = audit_tree_lookup(inode);
1657                        if (chunk) {
1658                                if (unlikely(!put_tree_ref(context, chunk))) {
1659                                        drop = chunk;
1660                                        break;
1661                                }
1662                        }
1663                }
1664                parent = d->d_parent;
1665                if (parent == d)
1666                        break;
1667                d = parent;
1668        }
1669        if (unlikely(read_seqretry(&rename_lock, seq) || drop)) {  /* in this order */
1670                rcu_read_unlock();
1671                if (!drop) {
1672                        /* just a race with rename */
1673                        unroll_tree_refs(context, p, count);
1674                        goto retry;
1675                }
1676                audit_put_chunk(drop);
1677                if (grow_tree_refs(context)) {
1678                        /* OK, got more space */
1679                        unroll_tree_refs(context, p, count);
1680                        goto retry;
1681                }
1682                /* too bad */
1683                pr_warn("out of memory, audit has lost a tree reference\n");
1684                unroll_tree_refs(context, p, count);
1685                audit_set_auditable(context);
1686                return;
1687        }
1688        rcu_read_unlock();
1689#endif
1690}
1691
1692static struct audit_names *audit_alloc_name(struct audit_context *context,
1693                                                unsigned char type)
1694{
1695        struct audit_names *aname;
1696
1697        if (context->name_count < AUDIT_NAMES) {
1698                aname = &context->preallocated_names[context->name_count];
1699                memset(aname, 0, sizeof(*aname));
1700        } else {
1701                aname = kzalloc(sizeof(*aname), GFP_NOFS);
1702                if (!aname)
1703                        return NULL;
1704                aname->should_free = true;
1705        }
1706
1707        aname->ino = (unsigned long)-1;
1708        aname->type = type;
1709        list_add_tail(&aname->list, &context->names_list);
1710
1711        context->name_count++;
1712#if AUDIT_DEBUG
1713        context->ino_count++;
1714#endif
1715        return aname;
1716}
1717
1718/**
1719 * audit_reusename - fill out filename with info from existing entry
1720 * @uptr: userland ptr to pathname
1721 *
1722 * Search the audit_names list for the current audit context. If there is an
1723 * existing entry with a matching "uptr" then return the filename
1724 * associated with that audit_name. If not, return NULL.
1725 */
1726struct filename *
1727__audit_reusename(const __user char *uptr)
1728{
1729        struct audit_context *context = current->audit_context;
1730        struct audit_names *n;
1731
1732        list_for_each_entry(n, &context->names_list, list) {
1733                if (!n->name)
1734                        continue;
1735                if (n->name->uptr == uptr)
1736                        return n->name;
1737        }
1738        return NULL;
1739}
1740
1741/**
1742 * audit_getname - add a name to the list
1743 * @name: name to add
1744 *
1745 * Add a name to the list of audit names for this context.
1746 * Called from fs/namei.c:getname().
1747 */
1748void __audit_getname(struct filename *name)
1749{
1750        struct audit_context *context = current->audit_context;
1751        struct audit_names *n;
1752
1753        if (!context->in_syscall) {
1754#if AUDIT_DEBUG == 2
1755                pr_err("%s:%d(:%d): ignoring getname(%p)\n",
1756                       __FILE__, __LINE__, context->serial, name);
1757                dump_stack();
1758#endif
1759                return;
1760        }
1761
1762#if AUDIT_DEBUG
1763        /* The filename _must_ have a populated ->name */
1764        BUG_ON(!name->name);
1765#endif
1766
1767        n = audit_alloc_name(context, AUDIT_TYPE_UNKNOWN);
1768        if (!n)
1769                return;
1770
1771        n->name = name;
1772        n->name_len = AUDIT_NAME_FULL;
1773        n->name_put = true;
1774        name->aname = n;
1775
1776        if (!context->pwd.dentry)
1777                get_fs_pwd(current->fs, &context->pwd);
1778}
1779
1780/* audit_putname - intercept a putname request
1781 * @name: name to intercept and delay for putname
1782 *
1783 * If we have stored the name from getname in the audit context,
1784 * then we delay the putname until syscall exit.
1785 * Called from include/linux/fs.h:putname().
1786 */
1787void audit_putname(struct filename *name)
1788{
1789        struct audit_context *context = current->audit_context;
1790
1791        BUG_ON(!context);
1792        if (!name->aname || !context->in_syscall) {
1793#if AUDIT_DEBUG == 2
1794                pr_err("%s:%d(:%d): final_putname(%p)\n",
1795                       __FILE__, __LINE__, context->serial, name);
1796                if (context->name_count) {
1797                        struct audit_names *n;
1798                        int i = 0;
1799
1800                        list_for_each_entry(n, &context->names_list, list)
1801                                pr_err("name[%d] = %p = %s\n", i++, n->name,
1802                                       n->name->name ?: "(null)");
1803                        }
1804#endif
1805                final_putname(name);
1806        }
1807#if AUDIT_DEBUG
1808        else {
1809                ++context->put_count;
1810                if (context->put_count > context->name_count) {
1811                        pr_err("%s:%d(:%d): major=%d in_syscall=%d putname(%p)"
1812                               " name_count=%d put_count=%d\n",
1813                               __FILE__, __LINE__,
1814                               context->serial, context->major,
1815                               context->in_syscall, name->name,
1816                               context->name_count, context->put_count);
1817                        dump_stack();
1818                }
1819        }
1820#endif
1821}
1822
1823/**
1824 * __audit_inode - store the inode and device from a lookup
1825 * @name: name being audited
1826 * @dentry: dentry being audited
1827 * @flags: attributes for this particular entry
1828 */
1829void __audit_inode(struct filename *name, const struct dentry *dentry,
1830                   unsigned int flags)
1831{
1832        struct audit_context *context = current->audit_context;
1833        const struct inode *inode = dentry->d_inode;
1834        struct audit_names *n;
1835        bool parent = flags & AUDIT_INODE_PARENT;
1836
1837        if (!context->in_syscall)
1838                return;
1839
1840        if (!name)
1841                goto out_alloc;
1842
1843#if AUDIT_DEBUG
1844        /* The struct filename _must_ have a populated ->name */
1845        BUG_ON(!name->name);
1846#endif
1847        /*
1848         * If we have a pointer to an audit_names entry already, then we can
1849         * just use it directly if the type is correct.
1850         */
1851        n = name->aname;
1852        if (n) {
1853                if (parent) {
1854                        if (n->type == AUDIT_TYPE_PARENT ||
1855                            n->type == AUDIT_TYPE_UNKNOWN)
1856                                goto out;
1857                } else {
1858                        if (n->type != AUDIT_TYPE_PARENT)
1859                                goto out;
1860                }
1861        }
1862
1863        list_for_each_entry_reverse(n, &context->names_list, list) {
1864                /* does the name pointer match? */
1865                if (!n->name || n->name->name != name->name)
1866                        continue;
1867
1868                /* match the correct record type */
1869                if (parent) {
1870                        if (n->type == AUDIT_TYPE_PARENT ||
1871                            n->type == AUDIT_TYPE_UNKNOWN)
1872                                goto out;
1873                } else {
1874                        if (n->type != AUDIT_TYPE_PARENT)
1875                                goto out;
1876                }
1877        }
1878
1879out_alloc:
1880        /* unable to find the name from a previous getname(). Allocate a new
1881         * anonymous entry.
1882         */
1883        n = audit_alloc_name(context, AUDIT_TYPE_NORMAL);
1884        if (!n)
1885                return;
1886out:
1887        if (parent) {
1888                n->name_len = n->name ? parent_len(n->name->name) : AUDIT_NAME_FULL;
1889                n->type = AUDIT_TYPE_PARENT;
1890                if (flags & AUDIT_INODE_HIDDEN)
1891                        n->hidden = true;
1892        } else {
1893                n->name_len = AUDIT_NAME_FULL;
1894                n->type = AUDIT_TYPE_NORMAL;
1895        }
1896        handle_path(dentry);
1897        audit_copy_inode(n, dentry, inode);
1898}
1899
1900/**
1901 * __audit_inode_child - collect inode info for created/removed objects
1902 * @parent: inode of dentry parent
1903 * @dentry: dentry being audited
1904 * @type:   AUDIT_TYPE_* value that we're looking for
1905 *
1906 * For syscalls that create or remove filesystem objects, audit_inode
1907 * can only collect information for the filesystem object's parent.
1908 * This call updates the audit context with the child's information.
1909 * Syscalls that create a new filesystem object must be hooked after
1910 * the object is created.  Syscalls that remove a filesystem object
1911 * must be hooked prior, in order to capture the target inode during
1912 * unsuccessful attempts.
1913 */
1914void __audit_inode_child(const struct inode *parent,
1915                         const struct dentry *dentry,
1916                         const unsigned char type)
1917{
1918        struct audit_context *context = current->audit_context;
1919        const struct inode *inode = dentry->d_inode;
1920        const char *dname = dentry->d_name.name;
1921        struct audit_names *n, *found_parent = NULL, *found_child = NULL;
1922
1923        if (!context->in_syscall)
1924                return;
1925
1926        if (inode)
1927                handle_one(inode);
1928
1929        /* look for a parent entry first */
1930        list_for_each_entry(n, &context->names_list, list) {
1931                if (!n->name || n->type != AUDIT_TYPE_PARENT)
1932                        continue;
1933
1934                if (n->ino == parent->i_ino &&
1935                    !audit_compare_dname_path(dname, n->name->name, n->name_len)) {
1936                        found_parent = n;
1937                        break;
1938                }
1939        }
1940
1941        /* is there a matching child entry? */
1942        list_for_each_entry(n, &context->names_list, list) {
1943                /* can only match entries that have a name */
1944                if (!n->name || n->type != type)
1945                        continue;
1946
1947                /* if we found a parent, make sure this one is a child of it */
1948                if (found_parent && (n->name != found_parent->name))
1949                        continue;
1950
1951                if (!strcmp(dname, n->name->name) ||
1952                    !audit_compare_dname_path(dname, n->name->name,
1953                                                found_parent ?
1954                                                found_parent->name_len :
1955                                                AUDIT_NAME_FULL)) {
1956                        found_child = n;
1957                        break;
1958                }
1959        }
1960
1961        if (!found_parent) {
1962                /* create a new, "anonymous" parent record */
1963                n = audit_alloc_name(context, AUDIT_TYPE_PARENT);
1964                if (!n)
1965                        return;
1966                audit_copy_inode(n, NULL, parent);
1967        }
1968
1969        if (!found_child) {
1970                found_child = audit_alloc_name(context, type);
1971                if (!found_child)
1972                        return;
1973
1974                /* Re-use the name belonging to the slot for a matching parent
1975                 * directory. All names for this context are relinquished in
1976                 * audit_free_names() */
1977                if (found_parent) {
1978                        found_child->name = found_parent->name;
1979                        found_child->name_len = AUDIT_NAME_FULL;
1980                        /* don't call __putname() */
1981                        found_child->name_put = false;
1982                }
1983        }
1984        if (inode)
1985                audit_copy_inode(found_child, dentry, inode);
1986        else
1987                found_child->ino = (unsigned long)-1;
1988}
1989EXPORT_SYMBOL_GPL(__audit_inode_child);
1990
1991/**
1992 * auditsc_get_stamp - get local copies of audit_context values
1993 * @ctx: audit_context for the task
1994 * @t: timespec to store time recorded in the audit_context
1995 * @serial: serial value that is recorded in the audit_context
1996 *
1997 * Also sets the context as auditable.
1998 */
1999int auditsc_get_stamp(struct audit_context *ctx,
2000                       struct timespec *t, unsigned int *serial)
2001{
2002        if (!ctx->in_syscall)
2003                return 0;
2004        if (!ctx->serial)
2005                ctx->serial = audit_serial();
2006        t->tv_sec  = ctx->ctime.tv_sec;
2007        t->tv_nsec = ctx->ctime.tv_nsec;
2008        *serial    = ctx->serial;
2009        if (!ctx->prio) {
2010                ctx->prio = 1;
2011                ctx->current_state = AUDIT_RECORD_CONTEXT;
2012        }
2013        return 1;
2014}
2015
2016/* global counter which is incremented every time something logs in */
2017static atomic_t session_id = ATOMIC_INIT(0);
2018
2019static int audit_set_loginuid_perm(kuid_t loginuid)
2020{
2021        /* if we are unset, we don't need privs */
2022        if (!audit_loginuid_set(current))
2023                return 0;
2024        /* if AUDIT_FEATURE_LOGINUID_IMMUTABLE means never ever allow a change*/
2025        if (is_audit_feature_set(AUDIT_FEATURE_LOGINUID_IMMUTABLE))
2026                return -EPERM;
2027        /* it is set, you need permission */
2028        if (!capable(CAP_AUDIT_CONTROL))
2029                return -EPERM;
2030        /* reject if this is not an unset and we don't allow that */
2031        if (is_audit_feature_set(AUDIT_FEATURE_ONLY_UNSET_LOGINUID) && uid_valid(loginuid))
2032                return -EPERM;
2033        return 0;
2034}
2035
2036static void audit_log_set_loginuid(kuid_t koldloginuid, kuid_t kloginuid,
2037                                   unsigned int oldsessionid, unsigned int sessionid,
2038                                   int rc)
2039{
2040        struct audit_buffer *ab;
2041        uid_t uid, oldloginuid, loginuid;
2042
2043        if (!audit_enabled)
2044                return;
2045
2046        uid = from_kuid(&init_user_ns, task_uid(current));
2047        oldloginuid = from_kuid(&init_user_ns, koldloginuid);
2048        loginuid = from_kuid(&init_user_ns, kloginuid),
2049
2050        ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_LOGIN);
2051        if (!ab)
2052                return;
2053        audit_log_format(ab, "pid=%d uid=%u", task_pid_nr(current), uid);
2054        audit_log_task_context(ab);
2055        audit_log_format(ab, " old-auid=%u auid=%u old-ses=%u ses=%u res=%d",
2056                         oldloginuid, loginuid, oldsessionid, sessionid, !rc);
2057        audit_log_end(ab);
2058}
2059
2060/**
2061 * audit_set_loginuid - set current task's audit_context loginuid
2062 * @loginuid: loginuid value
2063 *
2064 * Returns 0.
2065 *
2066 * Called (set) from fs/proc/base.c::proc_loginuid_write().
2067 */
2068int audit_set_loginuid(kuid_t loginuid)
2069{
2070        struct task_struct *task = current;
2071        unsigned int oldsessionid, sessionid = (unsigned int)-1;
2072        kuid_t oldloginuid;
2073        int rc;
2074
2075        oldloginuid = audit_get_loginuid(current);
2076        oldsessionid = audit_get_sessionid(current);
2077
2078        rc = audit_set_loginuid_perm(loginuid);
2079        if (rc)
2080                goto out;
2081
2082        /* are we setting or clearing? */
2083        if (uid_valid(loginuid))
2084                sessionid = (unsigned int)atomic_inc_return(&session_id);
2085
2086        task->sessionid = sessionid;
2087        task->loginuid = loginuid;
2088out:
2089        audit_log_set_loginuid(oldloginuid, loginuid, oldsessionid, sessionid, rc);
2090        return rc;
2091}
2092
2093/**
2094 * __audit_mq_open - record audit data for a POSIX MQ open
2095 * @oflag: open flag
2096 * @mode: mode bits
2097 * @attr: queue attributes
2098 *
2099 */
2100void __audit_mq_open(int oflag, umode_t mode, struct mq_attr *attr)
2101{
2102        struct audit_context *context = current->audit_context;
2103
2104        if (attr)
2105                memcpy(&context->mq_open.attr, attr, sizeof(struct mq_attr));
2106        else
2107                memset(&context->mq_open.attr, 0, sizeof(struct mq_attr));
2108
2109        context->mq_open.oflag = oflag;
2110        context->mq_open.mode = mode;
2111
2112        context->type = AUDIT_MQ_OPEN;
2113}
2114
2115/**
2116 * __audit_mq_sendrecv - record audit data for a POSIX MQ timed send/receive
2117 * @mqdes: MQ descriptor
2118 * @msg_len: Message length
2119 * @msg_prio: Message priority
2120 * @abs_timeout: Message timeout in absolute time
2121 *
2122 */
2123void __audit_mq_sendrecv(mqd_t mqdes, size_t msg_len, unsigned int msg_prio,
2124                        const struct timespec *abs_timeout)
2125{
2126        struct audit_context *context = current->audit_context;
2127        struct timespec *p = &context->mq_sendrecv.abs_timeout;
2128
2129        if (abs_timeout)
2130                memcpy(p, abs_timeout, sizeof(struct timespec));
2131        else
2132                memset(p, 0, sizeof(struct timespec));
2133
2134        context->mq_sendrecv.mqdes = mqdes;
2135        context->mq_sendrecv.msg_len = msg_len;
2136        context->mq_sendrecv.msg_prio = msg_prio;
2137
2138        context->type = AUDIT_MQ_SENDRECV;
2139}
2140
2141/**
2142 * __audit_mq_notify - record audit data for a POSIX MQ notify
2143 * @mqdes: MQ descriptor
2144 * @notification: Notification event
2145 *
2146 */
2147
2148void __audit_mq_notify(mqd_t mqdes, const struct sigevent *notification)
2149{
2150        struct audit_context *context = current->audit_context;
2151
2152        if (notification)
2153                context->mq_notify.sigev_signo = notification->sigev_signo;
2154        else
2155                context->mq_notify.sigev_signo = 0;
2156
2157        context->mq_notify.mqdes = mqdes;
2158        context->type = AUDIT_MQ_NOTIFY;
2159}
2160
2161/**
2162 * __audit_mq_getsetattr - record audit data for a POSIX MQ get/set attribute
2163 * @mqdes: MQ descriptor
2164 * @mqstat: MQ flags
2165 *
2166 */
2167void __audit_mq_getsetattr(mqd_t mqdes, struct mq_attr *mqstat)
2168{
2169        struct audit_context *context = current->audit_context;
2170        context->mq_getsetattr.mqdes = mqdes;
2171        context->mq_getsetattr.mqstat = *mqstat;
2172        context->type = AUDIT_MQ_GETSETATTR;
2173}
2174
2175/**
2176 * audit_ipc_obj - record audit data for ipc object
2177 * @ipcp: ipc permissions
2178 *
2179 */
2180void __audit_ipc_obj(struct kern_ipc_perm *ipcp)
2181{
2182        struct audit_context *context = current->audit_context;
2183        context->ipc.uid = ipcp->uid;
2184        context->ipc.gid = ipcp->gid;
2185        context->ipc.mode = ipcp->mode;
2186        context->ipc.has_perm = 0;
2187        security_ipc_getsecid(ipcp, &context->ipc.osid);
2188        context->type = AUDIT_IPC;
2189}
2190
2191/**
2192 * audit_ipc_set_perm - record audit data for new ipc permissions
2193 * @qbytes: msgq bytes
2194 * @uid: msgq user id
2195 * @gid: msgq group id
2196 * @mode: msgq mode (permissions)
2197 *
2198 * Called only after audit_ipc_obj().
2199 */
2200void __audit_ipc_set_perm(unsigned long qbytes, uid_t uid, gid_t gid, umode_t mode)
2201{
2202        struct audit_context *context = current->audit_context;
2203
2204        context->ipc.qbytes = qbytes;
2205        context->ipc.perm_uid = uid;
2206        context->ipc.perm_gid = gid;
2207        context->ipc.perm_mode = mode;
2208        context->ipc.has_perm = 1;
2209}
2210
2211void __audit_bprm(struct linux_binprm *bprm)
2212{
2213        struct audit_context *context = current->audit_context;
2214
2215        context->type = AUDIT_EXECVE;
2216        context->execve.argc = bprm->argc;
2217}
2218
2219
2220/**
2221 * audit_socketcall - record audit data for sys_socketcall
2222 * @nargs: number of args, which should not be more than AUDITSC_ARGS.
2223 * @args: args array
2224 *
2225 */
2226int __audit_socketcall(int nargs, unsigned long *args)
2227{
2228        struct audit_context *context = current->audit_context;
2229
2230        if (nargs <= 0 || nargs > AUDITSC_ARGS || !args)
2231                return -EINVAL;
2232        context->type = AUDIT_SOCKETCALL;
2233        context->socketcall.nargs = nargs;
2234        memcpy(context->socketcall.args, args, nargs * sizeof(unsigned long));
2235        return 0;
2236}
2237
2238/**
2239 * __audit_fd_pair - record audit data for pipe and socketpair
2240 * @fd1: the first file descriptor
2241 * @fd2: the second file descriptor
2242 *
2243 */
2244void __audit_fd_pair(int fd1, int fd2)
2245{
2246        struct audit_context *context = current->audit_context;
2247        context->fds[0] = fd1;
2248        context->fds[1] = fd2;
2249}
2250
2251/**
2252 * audit_sockaddr - record audit data for sys_bind, sys_connect, sys_sendto
2253 * @len: data length in user space
2254 * @a: data address in kernel space
2255 *
2256 * Returns 0 for success or NULL context or < 0 on error.
2257 */
2258int __audit_sockaddr(int len, void *a)
2259{
2260        struct audit_context *context = current->audit_context;
2261
2262        if (!context->sockaddr) {
2263                void *p = kmalloc(sizeof(struct sockaddr_storage), GFP_KERNEL);
2264                if (!p)
2265                        return -ENOMEM;
2266                context->sockaddr = p;
2267        }
2268
2269        context->sockaddr_len = len;
2270        memcpy(context->sockaddr, a, len);
2271        return 0;
2272}
2273
2274void __audit_ptrace(struct task_struct *t)
2275{
2276        struct audit_context *context = current->audit_context;
2277
2278        context->target_pid = task_pid_nr(t);
2279        context->target_auid = audit_get_loginuid(t);
2280        context->target_uid = task_uid(t);
2281        context->target_sessionid = audit_get_sessionid(t);
2282        security_task_getsecid(t, &context->target_sid);
2283        memcpy(context->target_comm, t->comm, TASK_COMM_LEN);
2284}
2285
2286/**
2287 * audit_signal_info - record signal info for shutting down audit subsystem
2288 * @sig: signal value
2289 * @t: task being signaled
2290 *
2291 * If the audit subsystem is being terminated, record the task (pid)
2292 * and uid that is doing that.
2293 */
2294int __audit_signal_info(int sig, struct task_struct *t)
2295{
2296        struct audit_aux_data_pids *axp;
2297        struct task_struct *tsk = current;
2298        struct audit_context *ctx = tsk->audit_context;
2299        kuid_t uid = current_uid(), t_uid = task_uid(t);
2300
2301        if (audit_pid && t->tgid == audit_pid) {
2302                if (sig == SIGTERM || sig == SIGHUP || sig == SIGUSR1 || sig == SIGUSR2) {
2303                        audit_sig_pid = task_pid_nr(tsk);
2304                        if (uid_valid(tsk->loginuid))
2305                                audit_sig_uid = tsk->loginuid;
2306                        else
2307                                audit_sig_uid = uid;
2308                        security_task_getsecid(tsk, &audit_sig_sid);
2309                }
2310                if (!audit_signals || audit_dummy_context())
2311                        return 0;
2312        }
2313
2314        /* optimize the common case by putting first signal recipient directly
2315         * in audit_context */
2316        if (!ctx->target_pid) {
2317                ctx->target_pid = task_tgid_nr(t);
2318                ctx->target_auid = audit_get_loginuid(t);
2319                ctx->target_uid = t_uid;
2320                ctx->target_sessionid = audit_get_sessionid(t);
2321                security_task_getsecid(t, &ctx->target_sid);
2322                memcpy(ctx->target_comm, t->comm, TASK_COMM_LEN);
2323                return 0;
2324        }
2325
2326        axp = (void *)ctx->aux_pids;
2327        if (!axp || axp->pid_count == AUDIT_AUX_PIDS) {
2328                axp = kzalloc(sizeof(*axp), GFP_ATOMIC);
2329                if (!axp)
2330                        return -ENOMEM;
2331
2332                axp->d.type = AUDIT_OBJ_PID;
2333                axp->d.next = ctx->aux_pids;
2334                ctx->aux_pids = (void *)axp;
2335        }
2336        BUG_ON(axp->pid_count >= AUDIT_AUX_PIDS);
2337
2338        axp->target_pid[axp->pid_count] = task_tgid_nr(t);
2339        axp->target_auid[axp->pid_count] = audit_get_loginuid(t);
2340        axp->target_uid[axp->pid_count] = t_uid;
2341        axp->target_sessionid[axp->pid_count] = audit_get_sessionid(t);
2342        security_task_getsecid(t, &axp->target_sid[axp->pid_count]);
2343        memcpy(axp->target_comm[axp->pid_count], t->comm, TASK_COMM_LEN);
2344        axp->pid_count++;
2345
2346        return 0;
2347}
2348
2349/**
2350 * __audit_log_bprm_fcaps - store information about a loading bprm and relevant fcaps
2351 * @bprm: pointer to the bprm being processed
2352 * @new: the proposed new credentials
2353 * @old: the old credentials
2354 *
2355 * Simply check if the proc already has the caps given by the file and if not
2356 * store the priv escalation info for later auditing at the end of the syscall
2357 *
2358 * -Eric
2359 */
2360int __audit_log_bprm_fcaps(struct linux_binprm *bprm,
2361                           const struct cred *new, const struct cred *old)
2362{
2363        struct audit_aux_data_bprm_fcaps *ax;
2364        struct audit_context *context = current->audit_context;
2365        struct cpu_vfs_cap_data vcaps;
2366        struct dentry *dentry;
2367
2368        ax = kmalloc(sizeof(*ax), GFP_KERNEL);
2369        if (!ax)
2370                return -ENOMEM;
2371
2372        ax->d.type = AUDIT_BPRM_FCAPS;
2373        ax->d.next = context->aux;
2374        context->aux = (void *)ax;
2375
2376        dentry = dget(bprm->file->f_dentry);
2377        get_vfs_caps_from_disk(dentry, &vcaps);
2378        dput(dentry);
2379
2380        ax->fcap.permitted = vcaps.permitted;
2381        ax->fcap.inheritable = vcaps.inheritable;
2382        ax->fcap.fE = !!(vcaps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
2383        ax->fcap_ver = (vcaps.magic_etc & VFS_CAP_REVISION_MASK) >> VFS_CAP_REVISION_SHIFT;
2384
2385        ax->old_pcap.permitted   = old->cap_permitted;
2386        ax->old_pcap.inheritable = old->cap_inheritable;
2387        ax->old_pcap.effective   = old->cap_effective;
2388
2389        ax->new_pcap.permitted   = new->cap_permitted;
2390        ax->new_pcap.inheritable = new->cap_inheritable;
2391        ax->new_pcap.effective   = new->cap_effective;
2392        return 0;
2393}
2394
2395/**
2396 * __audit_log_capset - store information about the arguments to the capset syscall
2397 * @new: the new credentials
2398 * @old: the old (current) credentials
2399 *
2400 * Record the arguments userspace sent to sys_capset for later printing by the
2401 * audit system if applicable
2402 */
2403void __audit_log_capset(const struct cred *new, const struct cred *old)
2404{
2405        struct audit_context *context = current->audit_context;
2406        context->capset.pid = task_pid_nr(current);
2407        context->capset.cap.effective   = new->cap_effective;
2408        context->capset.cap.inheritable = new->cap_effective;
2409        context->capset.cap.permitted   = new->cap_permitted;
2410        context->type = AUDIT_CAPSET;
2411}
2412
2413void __audit_mmap_fd(int fd, int flags)
2414{
2415        struct audit_context *context = current->audit_context;
2416        context->mmap.fd = fd;
2417        context->mmap.flags = flags;
2418        context->type = AUDIT_MMAP;
2419}
2420
2421static void audit_log_task(struct audit_buffer *ab)
2422{
2423        kuid_t auid, uid;
2424        kgid_t gid;
2425        unsigned int sessionid;
2426        struct mm_struct *mm = current->mm;
2427        char comm[sizeof(current->comm)];
2428
2429        auid = audit_get_loginuid(current);
2430        sessionid = audit_get_sessionid(current);
2431        current_uid_gid(&uid, &gid);
2432
2433        audit_log_format(ab, "auid=%u uid=%u gid=%u ses=%u",
2434                         from_kuid(&init_user_ns, auid),
2435                         from_kuid(&init_user_ns, uid),
2436                         from_kgid(&init_user_ns, gid),
2437                         sessionid);
2438        audit_log_task_context(ab);
2439        audit_log_format(ab, " pid=%d comm=", task_pid_nr(current));
2440        audit_log_untrustedstring(ab, get_task_comm(comm, current));
2441        if (mm) {
2442                down_read(&mm->mmap_sem);
2443                if (mm->exe_file)
2444                        audit_log_d_path(ab, " exe=", &mm->exe_file->f_path);
2445                up_read(&mm->mmap_sem);
2446        } else
2447                audit_log_format(ab, " exe=(null)");
2448}
2449
2450/**
2451 * audit_core_dumps - record information about processes that end abnormally
2452 * @signr: signal value
2453 *
2454 * If a process ends with a core dump, something fishy is going on and we
2455 * should record the event for investigation.
2456 */
2457void audit_core_dumps(long signr)
2458{
2459        struct audit_buffer *ab;
2460
2461        if (!audit_enabled)
2462                return;
2463
2464        if (signr == SIGQUIT)   /* don't care for those */
2465                return;
2466
2467        ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_ANOM_ABEND);
2468        if (unlikely(!ab))
2469                return;
2470        audit_log_task(ab);
2471        audit_log_format(ab, " sig=%ld", signr);
2472        audit_log_end(ab);
2473}
2474
2475void __audit_seccomp(unsigned long syscall, long signr, int code)
2476{
2477        struct audit_buffer *ab;
2478
2479        ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_SECCOMP);
2480        if (unlikely(!ab))
2481                return;
2482        audit_log_task(ab);
2483        audit_log_format(ab, " sig=%ld arch=%x syscall=%ld compat=%d ip=0x%lx code=0x%x",
2484                         signr, syscall_get_arch(), syscall, is_compat_task(),
2485                         KSTK_EIP(current), code);
2486        audit_log_end(ab);
2487}
2488
2489struct list_head *audit_killed_trees(void)
2490{
2491        struct audit_context *ctx = current->audit_context;
2492        if (likely(!ctx || !ctx->in_syscall))
2493                return NULL;
2494        return &ctx->killed_trees;
2495}
2496