linux/kernel/cgroup.c
<<
>>
Prefs
   1/*
   2 *  Generic process-grouping system.
   3 *
   4 *  Based originally on the cpuset system, extracted by Paul Menage
   5 *  Copyright (C) 2006 Google, Inc
   6 *
   7 *  Notifications support
   8 *  Copyright (C) 2009 Nokia Corporation
   9 *  Author: Kirill A. Shutemov
  10 *
  11 *  Copyright notices from the original cpuset code:
  12 *  --------------------------------------------------
  13 *  Copyright (C) 2003 BULL SA.
  14 *  Copyright (C) 2004-2006 Silicon Graphics, Inc.
  15 *
  16 *  Portions derived from Patrick Mochel's sysfs code.
  17 *  sysfs is Copyright (c) 2001-3 Patrick Mochel
  18 *
  19 *  2003-10-10 Written by Simon Derr.
  20 *  2003-10-22 Updates by Stephen Hemminger.
  21 *  2004 May-July Rework by Paul Jackson.
  22 *  ---------------------------------------------------
  23 *
  24 *  This file is subject to the terms and conditions of the GNU General Public
  25 *  License.  See the file COPYING in the main directory of the Linux
  26 *  distribution for more details.
  27 */
  28
  29#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  30
  31#include <linux/cgroup.h>
  32#include <linux/cred.h>
  33#include <linux/ctype.h>
  34#include <linux/errno.h>
  35#include <linux/init_task.h>
  36#include <linux/kernel.h>
  37#include <linux/list.h>
  38#include <linux/magic.h>
  39#include <linux/mm.h>
  40#include <linux/mutex.h>
  41#include <linux/mount.h>
  42#include <linux/pagemap.h>
  43#include <linux/proc_fs.h>
  44#include <linux/rcupdate.h>
  45#include <linux/sched.h>
  46#include <linux/slab.h>
  47#include <linux/spinlock.h>
  48#include <linux/rwsem.h>
  49#include <linux/string.h>
  50#include <linux/sort.h>
  51#include <linux/kmod.h>
  52#include <linux/delayacct.h>
  53#include <linux/cgroupstats.h>
  54#include <linux/hashtable.h>
  55#include <linux/pid_namespace.h>
  56#include <linux/idr.h>
  57#include <linux/vmalloc.h> /* TODO: replace with more sophisticated array */
  58#include <linux/kthread.h>
  59#include <linux/delay.h>
  60
  61#include <linux/atomic.h>
  62
  63/*
  64 * pidlists linger the following amount before being destroyed.  The goal
  65 * is avoiding frequent destruction in the middle of consecutive read calls
  66 * Expiring in the middle is a performance problem not a correctness one.
  67 * 1 sec should be enough.
  68 */
  69#define CGROUP_PIDLIST_DESTROY_DELAY    HZ
  70
  71#define CGROUP_FILE_NAME_MAX            (MAX_CGROUP_TYPE_NAMELEN +      \
  72                                         MAX_CFTYPE_NAME + 2)
  73
  74/*
  75 * cgroup_mutex is the master lock.  Any modification to cgroup or its
  76 * hierarchy must be performed while holding it.
  77 *
  78 * css_set_rwsem protects task->cgroups pointer, the list of css_set
  79 * objects, and the chain of tasks off each css_set.
  80 *
  81 * These locks are exported if CONFIG_PROVE_RCU so that accessors in
  82 * cgroup.h can use them for lockdep annotations.
  83 */
  84#ifdef CONFIG_PROVE_RCU
  85DEFINE_MUTEX(cgroup_mutex);
  86DECLARE_RWSEM(css_set_rwsem);
  87EXPORT_SYMBOL_GPL(cgroup_mutex);
  88EXPORT_SYMBOL_GPL(css_set_rwsem);
  89#else
  90static DEFINE_MUTEX(cgroup_mutex);
  91static DECLARE_RWSEM(css_set_rwsem);
  92#endif
  93
  94/*
  95 * Protects cgroup_idr and css_idr so that IDs can be released without
  96 * grabbing cgroup_mutex.
  97 */
  98static DEFINE_SPINLOCK(cgroup_idr_lock);
  99
 100/*
 101 * Protects cgroup_subsys->release_agent_path.  Modifying it also requires
 102 * cgroup_mutex.  Reading requires either cgroup_mutex or this spinlock.
 103 */
 104static DEFINE_SPINLOCK(release_agent_path_lock);
 105
 106#define cgroup_assert_mutex_or_rcu_locked()                             \
 107        rcu_lockdep_assert(rcu_read_lock_held() ||                      \
 108                           lockdep_is_held(&cgroup_mutex),              \
 109                           "cgroup_mutex or RCU read lock required");
 110
 111/*
 112 * cgroup destruction makes heavy use of work items and there can be a lot
 113 * of concurrent destructions.  Use a separate workqueue so that cgroup
 114 * destruction work items don't end up filling up max_active of system_wq
 115 * which may lead to deadlock.
 116 */
 117static struct workqueue_struct *cgroup_destroy_wq;
 118
 119/*
 120 * pidlist destructions need to be flushed on cgroup destruction.  Use a
 121 * separate workqueue as flush domain.
 122 */
 123static struct workqueue_struct *cgroup_pidlist_destroy_wq;
 124
 125/* generate an array of cgroup subsystem pointers */
 126#define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys,
 127static struct cgroup_subsys *cgroup_subsys[] = {
 128#include <linux/cgroup_subsys.h>
 129};
 130#undef SUBSYS
 131
 132/* array of cgroup subsystem names */
 133#define SUBSYS(_x) [_x ## _cgrp_id] = #_x,
 134static const char *cgroup_subsys_name[] = {
 135#include <linux/cgroup_subsys.h>
 136};
 137#undef SUBSYS
 138
 139/*
 140 * The default hierarchy, reserved for the subsystems that are otherwise
 141 * unattached - it never has more than a single cgroup, and all tasks are
 142 * part of that cgroup.
 143 */
 144struct cgroup_root cgrp_dfl_root;
 145
 146/*
 147 * The default hierarchy always exists but is hidden until mounted for the
 148 * first time.  This is for backward compatibility.
 149 */
 150static bool cgrp_dfl_root_visible;
 151
 152/*
 153 * Set by the boot param of the same name and makes subsystems with NULL
 154 * ->dfl_files to use ->legacy_files on the default hierarchy.
 155 */
 156static bool cgroup_legacy_files_on_dfl;
 157
 158/* some controllers are not supported in the default hierarchy */
 159static unsigned int cgrp_dfl_root_inhibit_ss_mask;
 160
 161/* The list of hierarchy roots */
 162
 163static LIST_HEAD(cgroup_roots);
 164static int cgroup_root_count;
 165
 166/* hierarchy ID allocation and mapping, protected by cgroup_mutex */
 167static DEFINE_IDR(cgroup_hierarchy_idr);
 168
 169/*
 170 * Assign a monotonically increasing serial number to csses.  It guarantees
 171 * cgroups with bigger numbers are newer than those with smaller numbers.
 172 * Also, as csses are always appended to the parent's ->children list, it
 173 * guarantees that sibling csses are always sorted in the ascending serial
 174 * number order on the list.  Protected by cgroup_mutex.
 175 */
 176static u64 css_serial_nr_next = 1;
 177
 178/* This flag indicates whether tasks in the fork and exit paths should
 179 * check for fork/exit handlers to call. This avoids us having to do
 180 * extra work in the fork/exit path if none of the subsystems need to
 181 * be called.
 182 */
 183static int need_forkexit_callback __read_mostly;
 184
 185static struct cftype cgroup_dfl_base_files[];
 186static struct cftype cgroup_legacy_base_files[];
 187
 188static int rebind_subsystems(struct cgroup_root *dst_root,
 189                             unsigned int ss_mask);
 190static int cgroup_destroy_locked(struct cgroup *cgrp);
 191static int create_css(struct cgroup *cgrp, struct cgroup_subsys *ss,
 192                      bool visible);
 193static void css_release(struct percpu_ref *ref);
 194static void kill_css(struct cgroup_subsys_state *css);
 195static int cgroup_addrm_files(struct cgroup *cgrp, struct cftype cfts[],
 196                              bool is_add);
 197
 198/* IDR wrappers which synchronize using cgroup_idr_lock */
 199static int cgroup_idr_alloc(struct idr *idr, void *ptr, int start, int end,
 200                            gfp_t gfp_mask)
 201{
 202        int ret;
 203
 204        idr_preload(gfp_mask);
 205        spin_lock_bh(&cgroup_idr_lock);
 206        ret = idr_alloc(idr, ptr, start, end, gfp_mask);
 207        spin_unlock_bh(&cgroup_idr_lock);
 208        idr_preload_end();
 209        return ret;
 210}
 211
 212static void *cgroup_idr_replace(struct idr *idr, void *ptr, int id)
 213{
 214        void *ret;
 215
 216        spin_lock_bh(&cgroup_idr_lock);
 217        ret = idr_replace(idr, ptr, id);
 218        spin_unlock_bh(&cgroup_idr_lock);
 219        return ret;
 220}
 221
 222static void cgroup_idr_remove(struct idr *idr, int id)
 223{
 224        spin_lock_bh(&cgroup_idr_lock);
 225        idr_remove(idr, id);
 226        spin_unlock_bh(&cgroup_idr_lock);
 227}
 228
 229static struct cgroup *cgroup_parent(struct cgroup *cgrp)
 230{
 231        struct cgroup_subsys_state *parent_css = cgrp->self.parent;
 232
 233        if (parent_css)
 234                return container_of(parent_css, struct cgroup, self);
 235        return NULL;
 236}
 237
 238/**
 239 * cgroup_css - obtain a cgroup's css for the specified subsystem
 240 * @cgrp: the cgroup of interest
 241 * @ss: the subsystem of interest (%NULL returns @cgrp->self)
 242 *
 243 * Return @cgrp's css (cgroup_subsys_state) associated with @ss.  This
 244 * function must be called either under cgroup_mutex or rcu_read_lock() and
 245 * the caller is responsible for pinning the returned css if it wants to
 246 * keep accessing it outside the said locks.  This function may return
 247 * %NULL if @cgrp doesn't have @subsys_id enabled.
 248 */
 249static struct cgroup_subsys_state *cgroup_css(struct cgroup *cgrp,
 250                                              struct cgroup_subsys *ss)
 251{
 252        if (ss)
 253                return rcu_dereference_check(cgrp->subsys[ss->id],
 254                                        lockdep_is_held(&cgroup_mutex));
 255        else
 256                return &cgrp->self;
 257}
 258
 259/**
 260 * cgroup_e_css - obtain a cgroup's effective css for the specified subsystem
 261 * @cgrp: the cgroup of interest
 262 * @ss: the subsystem of interest (%NULL returns @cgrp->self)
 263 *
 264 * Similar to cgroup_css() but returns the effctive css, which is defined
 265 * as the matching css of the nearest ancestor including self which has @ss
 266 * enabled.  If @ss is associated with the hierarchy @cgrp is on, this
 267 * function is guaranteed to return non-NULL css.
 268 */
 269static struct cgroup_subsys_state *cgroup_e_css(struct cgroup *cgrp,
 270                                                struct cgroup_subsys *ss)
 271{
 272        lockdep_assert_held(&cgroup_mutex);
 273
 274        if (!ss)
 275                return &cgrp->self;
 276
 277        if (!(cgrp->root->subsys_mask & (1 << ss->id)))
 278                return NULL;
 279
 280        while (cgroup_parent(cgrp) &&
 281               !(cgroup_parent(cgrp)->child_subsys_mask & (1 << ss->id)))
 282                cgrp = cgroup_parent(cgrp);
 283
 284        return cgroup_css(cgrp, ss);
 285}
 286
 287/* convenient tests for these bits */
 288static inline bool cgroup_is_dead(const struct cgroup *cgrp)
 289{
 290        return !(cgrp->self.flags & CSS_ONLINE);
 291}
 292
 293struct cgroup_subsys_state *of_css(struct kernfs_open_file *of)
 294{
 295        struct cgroup *cgrp = of->kn->parent->priv;
 296        struct cftype *cft = of_cft(of);
 297
 298        /*
 299         * This is open and unprotected implementation of cgroup_css().
 300         * seq_css() is only called from a kernfs file operation which has
 301         * an active reference on the file.  Because all the subsystem
 302         * files are drained before a css is disassociated with a cgroup,
 303         * the matching css from the cgroup's subsys table is guaranteed to
 304         * be and stay valid until the enclosing operation is complete.
 305         */
 306        if (cft->ss)
 307                return rcu_dereference_raw(cgrp->subsys[cft->ss->id]);
 308        else
 309                return &cgrp->self;
 310}
 311EXPORT_SYMBOL_GPL(of_css);
 312
 313/**
 314 * cgroup_is_descendant - test ancestry
 315 * @cgrp: the cgroup to be tested
 316 * @ancestor: possible ancestor of @cgrp
 317 *
 318 * Test whether @cgrp is a descendant of @ancestor.  It also returns %true
 319 * if @cgrp == @ancestor.  This function is safe to call as long as @cgrp
 320 * and @ancestor are accessible.
 321 */
 322bool cgroup_is_descendant(struct cgroup *cgrp, struct cgroup *ancestor)
 323{
 324        while (cgrp) {
 325                if (cgrp == ancestor)
 326                        return true;
 327                cgrp = cgroup_parent(cgrp);
 328        }
 329        return false;
 330}
 331
 332static int notify_on_release(const struct cgroup *cgrp)
 333{
 334        return test_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
 335}
 336
 337/**
 338 * for_each_css - iterate all css's of a cgroup
 339 * @css: the iteration cursor
 340 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
 341 * @cgrp: the target cgroup to iterate css's of
 342 *
 343 * Should be called under cgroup_[tree_]mutex.
 344 */
 345#define for_each_css(css, ssid, cgrp)                                   \
 346        for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++)        \
 347                if (!((css) = rcu_dereference_check(                    \
 348                                (cgrp)->subsys[(ssid)],                 \
 349                                lockdep_is_held(&cgroup_mutex)))) { }   \
 350                else
 351
 352/**
 353 * for_each_e_css - iterate all effective css's of a cgroup
 354 * @css: the iteration cursor
 355 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
 356 * @cgrp: the target cgroup to iterate css's of
 357 *
 358 * Should be called under cgroup_[tree_]mutex.
 359 */
 360#define for_each_e_css(css, ssid, cgrp)                                 \
 361        for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++)        \
 362                if (!((css) = cgroup_e_css(cgrp, cgroup_subsys[(ssid)]))) \
 363                        ;                                               \
 364                else
 365
 366/**
 367 * for_each_subsys - iterate all enabled cgroup subsystems
 368 * @ss: the iteration cursor
 369 * @ssid: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end
 370 */
 371#define for_each_subsys(ss, ssid)                                       \
 372        for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT &&                \
 373             (((ss) = cgroup_subsys[ssid]) || true); (ssid)++)
 374
 375/* iterate across the hierarchies */
 376#define for_each_root(root)                                             \
 377        list_for_each_entry((root), &cgroup_roots, root_list)
 378
 379/* iterate over child cgrps, lock should be held throughout iteration */
 380#define cgroup_for_each_live_child(child, cgrp)                         \
 381        list_for_each_entry((child), &(cgrp)->self.children, self.sibling) \
 382                if (({ lockdep_assert_held(&cgroup_mutex);              \
 383                       cgroup_is_dead(child); }))                       \
 384                        ;                                               \
 385                else
 386
 387static void cgroup_release_agent(struct work_struct *work);
 388static void check_for_release(struct cgroup *cgrp);
 389
 390/*
 391 * A cgroup can be associated with multiple css_sets as different tasks may
 392 * belong to different cgroups on different hierarchies.  In the other
 393 * direction, a css_set is naturally associated with multiple cgroups.
 394 * This M:N relationship is represented by the following link structure
 395 * which exists for each association and allows traversing the associations
 396 * from both sides.
 397 */
 398struct cgrp_cset_link {
 399        /* the cgroup and css_set this link associates */
 400        struct cgroup           *cgrp;
 401        struct css_set          *cset;
 402
 403        /* list of cgrp_cset_links anchored at cgrp->cset_links */
 404        struct list_head        cset_link;
 405
 406        /* list of cgrp_cset_links anchored at css_set->cgrp_links */
 407        struct list_head        cgrp_link;
 408};
 409
 410/*
 411 * The default css_set - used by init and its children prior to any
 412 * hierarchies being mounted. It contains a pointer to the root state
 413 * for each subsystem. Also used to anchor the list of css_sets. Not
 414 * reference-counted, to improve performance when child cgroups
 415 * haven't been created.
 416 */
 417struct css_set init_css_set = {
 418        .refcount               = ATOMIC_INIT(1),
 419        .cgrp_links             = LIST_HEAD_INIT(init_css_set.cgrp_links),
 420        .tasks                  = LIST_HEAD_INIT(init_css_set.tasks),
 421        .mg_tasks               = LIST_HEAD_INIT(init_css_set.mg_tasks),
 422        .mg_preload_node        = LIST_HEAD_INIT(init_css_set.mg_preload_node),
 423        .mg_node                = LIST_HEAD_INIT(init_css_set.mg_node),
 424};
 425
 426static int css_set_count        = 1;    /* 1 for init_css_set */
 427
 428/**
 429 * cgroup_update_populated - updated populated count of a cgroup
 430 * @cgrp: the target cgroup
 431 * @populated: inc or dec populated count
 432 *
 433 * @cgrp is either getting the first task (css_set) or losing the last.
 434 * Update @cgrp->populated_cnt accordingly.  The count is propagated
 435 * towards root so that a given cgroup's populated_cnt is zero iff the
 436 * cgroup and all its descendants are empty.
 437 *
 438 * @cgrp's interface file "cgroup.populated" is zero if
 439 * @cgrp->populated_cnt is zero and 1 otherwise.  When @cgrp->populated_cnt
 440 * changes from or to zero, userland is notified that the content of the
 441 * interface file has changed.  This can be used to detect when @cgrp and
 442 * its descendants become populated or empty.
 443 */
 444static void cgroup_update_populated(struct cgroup *cgrp, bool populated)
 445{
 446        lockdep_assert_held(&css_set_rwsem);
 447
 448        do {
 449                bool trigger;
 450
 451                if (populated)
 452                        trigger = !cgrp->populated_cnt++;
 453                else
 454                        trigger = !--cgrp->populated_cnt;
 455
 456                if (!trigger)
 457                        break;
 458
 459                if (cgrp->populated_kn)
 460                        kernfs_notify(cgrp->populated_kn);
 461                cgrp = cgroup_parent(cgrp);
 462        } while (cgrp);
 463}
 464
 465/*
 466 * hash table for cgroup groups. This improves the performance to find
 467 * an existing css_set. This hash doesn't (currently) take into
 468 * account cgroups in empty hierarchies.
 469 */
 470#define CSS_SET_HASH_BITS       7
 471static DEFINE_HASHTABLE(css_set_table, CSS_SET_HASH_BITS);
 472
 473static unsigned long css_set_hash(struct cgroup_subsys_state *css[])
 474{
 475        unsigned long key = 0UL;
 476        struct cgroup_subsys *ss;
 477        int i;
 478
 479        for_each_subsys(ss, i)
 480                key += (unsigned long)css[i];
 481        key = (key >> 16) ^ key;
 482
 483        return key;
 484}
 485
 486static void put_css_set_locked(struct css_set *cset)
 487{
 488        struct cgrp_cset_link *link, *tmp_link;
 489        struct cgroup_subsys *ss;
 490        int ssid;
 491
 492        lockdep_assert_held(&css_set_rwsem);
 493
 494        if (!atomic_dec_and_test(&cset->refcount))
 495                return;
 496
 497        /* This css_set is dead. unlink it and release cgroup refcounts */
 498        for_each_subsys(ss, ssid)
 499                list_del(&cset->e_cset_node[ssid]);
 500        hash_del(&cset->hlist);
 501        css_set_count--;
 502
 503        list_for_each_entry_safe(link, tmp_link, &cset->cgrp_links, cgrp_link) {
 504                struct cgroup *cgrp = link->cgrp;
 505
 506                list_del(&link->cset_link);
 507                list_del(&link->cgrp_link);
 508
 509                /* @cgrp can't go away while we're holding css_set_rwsem */
 510                if (list_empty(&cgrp->cset_links)) {
 511                        cgroup_update_populated(cgrp, false);
 512                        check_for_release(cgrp);
 513                }
 514
 515                kfree(link);
 516        }
 517
 518        kfree_rcu(cset, rcu_head);
 519}
 520
 521static void put_css_set(struct css_set *cset)
 522{
 523        /*
 524         * Ensure that the refcount doesn't hit zero while any readers
 525         * can see it. Similar to atomic_dec_and_lock(), but for an
 526         * rwlock
 527         */
 528        if (atomic_add_unless(&cset->refcount, -1, 1))
 529                return;
 530
 531        down_write(&css_set_rwsem);
 532        put_css_set_locked(cset);
 533        up_write(&css_set_rwsem);
 534}
 535
 536/*
 537 * refcounted get/put for css_set objects
 538 */
 539static inline void get_css_set(struct css_set *cset)
 540{
 541        atomic_inc(&cset->refcount);
 542}
 543
 544/**
 545 * compare_css_sets - helper function for find_existing_css_set().
 546 * @cset: candidate css_set being tested
 547 * @old_cset: existing css_set for a task
 548 * @new_cgrp: cgroup that's being entered by the task
 549 * @template: desired set of css pointers in css_set (pre-calculated)
 550 *
 551 * Returns true if "cset" matches "old_cset" except for the hierarchy
 552 * which "new_cgrp" belongs to, for which it should match "new_cgrp".
 553 */
 554static bool compare_css_sets(struct css_set *cset,
 555                             struct css_set *old_cset,
 556                             struct cgroup *new_cgrp,
 557                             struct cgroup_subsys_state *template[])
 558{
 559        struct list_head *l1, *l2;
 560
 561        /*
 562         * On the default hierarchy, there can be csets which are
 563         * associated with the same set of cgroups but different csses.
 564         * Let's first ensure that csses match.
 565         */
 566        if (memcmp(template, cset->subsys, sizeof(cset->subsys)))
 567                return false;
 568
 569        /*
 570         * Compare cgroup pointers in order to distinguish between
 571         * different cgroups in hierarchies.  As different cgroups may
 572         * share the same effective css, this comparison is always
 573         * necessary.
 574         */
 575        l1 = &cset->cgrp_links;
 576        l2 = &old_cset->cgrp_links;
 577        while (1) {
 578                struct cgrp_cset_link *link1, *link2;
 579                struct cgroup *cgrp1, *cgrp2;
 580
 581                l1 = l1->next;
 582                l2 = l2->next;
 583                /* See if we reached the end - both lists are equal length. */
 584                if (l1 == &cset->cgrp_links) {
 585                        BUG_ON(l2 != &old_cset->cgrp_links);
 586                        break;
 587                } else {
 588                        BUG_ON(l2 == &old_cset->cgrp_links);
 589                }
 590                /* Locate the cgroups associated with these links. */
 591                link1 = list_entry(l1, struct cgrp_cset_link, cgrp_link);
 592                link2 = list_entry(l2, struct cgrp_cset_link, cgrp_link);
 593                cgrp1 = link1->cgrp;
 594                cgrp2 = link2->cgrp;
 595                /* Hierarchies should be linked in the same order. */
 596                BUG_ON(cgrp1->root != cgrp2->root);
 597
 598                /*
 599                 * If this hierarchy is the hierarchy of the cgroup
 600                 * that's changing, then we need to check that this
 601                 * css_set points to the new cgroup; if it's any other
 602                 * hierarchy, then this css_set should point to the
 603                 * same cgroup as the old css_set.
 604                 */
 605                if (cgrp1->root == new_cgrp->root) {
 606                        if (cgrp1 != new_cgrp)
 607                                return false;
 608                } else {
 609                        if (cgrp1 != cgrp2)
 610                                return false;
 611                }
 612        }
 613        return true;
 614}
 615
 616/**
 617 * find_existing_css_set - init css array and find the matching css_set
 618 * @old_cset: the css_set that we're using before the cgroup transition
 619 * @cgrp: the cgroup that we're moving into
 620 * @template: out param for the new set of csses, should be clear on entry
 621 */
 622static struct css_set *find_existing_css_set(struct css_set *old_cset,
 623                                        struct cgroup *cgrp,
 624                                        struct cgroup_subsys_state *template[])
 625{
 626        struct cgroup_root *root = cgrp->root;
 627        struct cgroup_subsys *ss;
 628        struct css_set *cset;
 629        unsigned long key;
 630        int i;
 631
 632        /*
 633         * Build the set of subsystem state objects that we want to see in the
 634         * new css_set. while subsystems can change globally, the entries here
 635         * won't change, so no need for locking.
 636         */
 637        for_each_subsys(ss, i) {
 638                if (root->subsys_mask & (1UL << i)) {
 639                        /*
 640                         * @ss is in this hierarchy, so we want the
 641                         * effective css from @cgrp.
 642                         */
 643                        template[i] = cgroup_e_css(cgrp, ss);
 644                } else {
 645                        /*
 646                         * @ss is not in this hierarchy, so we don't want
 647                         * to change the css.
 648                         */
 649                        template[i] = old_cset->subsys[i];
 650                }
 651        }
 652
 653        key = css_set_hash(template);
 654        hash_for_each_possible(css_set_table, cset, hlist, key) {
 655                if (!compare_css_sets(cset, old_cset, cgrp, template))
 656                        continue;
 657
 658                /* This css_set matches what we need */
 659                return cset;
 660        }
 661
 662        /* No existing cgroup group matched */
 663        return NULL;
 664}
 665
 666static void free_cgrp_cset_links(struct list_head *links_to_free)
 667{
 668        struct cgrp_cset_link *link, *tmp_link;
 669
 670        list_for_each_entry_safe(link, tmp_link, links_to_free, cset_link) {
 671                list_del(&link->cset_link);
 672                kfree(link);
 673        }
 674}
 675
 676/**
 677 * allocate_cgrp_cset_links - allocate cgrp_cset_links
 678 * @count: the number of links to allocate
 679 * @tmp_links: list_head the allocated links are put on
 680 *
 681 * Allocate @count cgrp_cset_link structures and chain them on @tmp_links
 682 * through ->cset_link.  Returns 0 on success or -errno.
 683 */
 684static int allocate_cgrp_cset_links(int count, struct list_head *tmp_links)
 685{
 686        struct cgrp_cset_link *link;
 687        int i;
 688
 689        INIT_LIST_HEAD(tmp_links);
 690
 691        for (i = 0; i < count; i++) {
 692                link = kzalloc(sizeof(*link), GFP_KERNEL);
 693                if (!link) {
 694                        free_cgrp_cset_links(tmp_links);
 695                        return -ENOMEM;
 696                }
 697                list_add(&link->cset_link, tmp_links);
 698        }
 699        return 0;
 700}
 701
 702/**
 703 * link_css_set - a helper function to link a css_set to a cgroup
 704 * @tmp_links: cgrp_cset_link objects allocated by allocate_cgrp_cset_links()
 705 * @cset: the css_set to be linked
 706 * @cgrp: the destination cgroup
 707 */
 708static void link_css_set(struct list_head *tmp_links, struct css_set *cset,
 709                         struct cgroup *cgrp)
 710{
 711        struct cgrp_cset_link *link;
 712
 713        BUG_ON(list_empty(tmp_links));
 714
 715        if (cgroup_on_dfl(cgrp))
 716                cset->dfl_cgrp = cgrp;
 717
 718        link = list_first_entry(tmp_links, struct cgrp_cset_link, cset_link);
 719        link->cset = cset;
 720        link->cgrp = cgrp;
 721
 722        if (list_empty(&cgrp->cset_links))
 723                cgroup_update_populated(cgrp, true);
 724        list_move(&link->cset_link, &cgrp->cset_links);
 725
 726        /*
 727         * Always add links to the tail of the list so that the list
 728         * is sorted by order of hierarchy creation
 729         */
 730        list_add_tail(&link->cgrp_link, &cset->cgrp_links);
 731}
 732
 733/**
 734 * find_css_set - return a new css_set with one cgroup updated
 735 * @old_cset: the baseline css_set
 736 * @cgrp: the cgroup to be updated
 737 *
 738 * Return a new css_set that's equivalent to @old_cset, but with @cgrp
 739 * substituted into the appropriate hierarchy.
 740 */
 741static struct css_set *find_css_set(struct css_set *old_cset,
 742                                    struct cgroup *cgrp)
 743{
 744        struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT] = { };
 745        struct css_set *cset;
 746        struct list_head tmp_links;
 747        struct cgrp_cset_link *link;
 748        struct cgroup_subsys *ss;
 749        unsigned long key;
 750        int ssid;
 751
 752        lockdep_assert_held(&cgroup_mutex);
 753
 754        /* First see if we already have a cgroup group that matches
 755         * the desired set */
 756        down_read(&css_set_rwsem);
 757        cset = find_existing_css_set(old_cset, cgrp, template);
 758        if (cset)
 759                get_css_set(cset);
 760        up_read(&css_set_rwsem);
 761
 762        if (cset)
 763                return cset;
 764
 765        cset = kzalloc(sizeof(*cset), GFP_KERNEL);
 766        if (!cset)
 767                return NULL;
 768
 769        /* Allocate all the cgrp_cset_link objects that we'll need */
 770        if (allocate_cgrp_cset_links(cgroup_root_count, &tmp_links) < 0) {
 771                kfree(cset);
 772                return NULL;
 773        }
 774
 775        atomic_set(&cset->refcount, 1);
 776        INIT_LIST_HEAD(&cset->cgrp_links);
 777        INIT_LIST_HEAD(&cset->tasks);
 778        INIT_LIST_HEAD(&cset->mg_tasks);
 779        INIT_LIST_HEAD(&cset->mg_preload_node);
 780        INIT_LIST_HEAD(&cset->mg_node);
 781        INIT_HLIST_NODE(&cset->hlist);
 782
 783        /* Copy the set of subsystem state objects generated in
 784         * find_existing_css_set() */
 785        memcpy(cset->subsys, template, sizeof(cset->subsys));
 786
 787        down_write(&css_set_rwsem);
 788        /* Add reference counts and links from the new css_set. */
 789        list_for_each_entry(link, &old_cset->cgrp_links, cgrp_link) {
 790                struct cgroup *c = link->cgrp;
 791
 792                if (c->root == cgrp->root)
 793                        c = cgrp;
 794                link_css_set(&tmp_links, cset, c);
 795        }
 796
 797        BUG_ON(!list_empty(&tmp_links));
 798
 799        css_set_count++;
 800
 801        /* Add @cset to the hash table */
 802        key = css_set_hash(cset->subsys);
 803        hash_add(css_set_table, &cset->hlist, key);
 804
 805        for_each_subsys(ss, ssid)
 806                list_add_tail(&cset->e_cset_node[ssid],
 807                              &cset->subsys[ssid]->cgroup->e_csets[ssid]);
 808
 809        up_write(&css_set_rwsem);
 810
 811        return cset;
 812}
 813
 814static struct cgroup_root *cgroup_root_from_kf(struct kernfs_root *kf_root)
 815{
 816        struct cgroup *root_cgrp = kf_root->kn->priv;
 817
 818        return root_cgrp->root;
 819}
 820
 821static int cgroup_init_root_id(struct cgroup_root *root)
 822{
 823        int id;
 824
 825        lockdep_assert_held(&cgroup_mutex);
 826
 827        id = idr_alloc_cyclic(&cgroup_hierarchy_idr, root, 0, 0, GFP_KERNEL);
 828        if (id < 0)
 829                return id;
 830
 831        root->hierarchy_id = id;
 832        return 0;
 833}
 834
 835static void cgroup_exit_root_id(struct cgroup_root *root)
 836{
 837        lockdep_assert_held(&cgroup_mutex);
 838
 839        if (root->hierarchy_id) {
 840                idr_remove(&cgroup_hierarchy_idr, root->hierarchy_id);
 841                root->hierarchy_id = 0;
 842        }
 843}
 844
 845static void cgroup_free_root(struct cgroup_root *root)
 846{
 847        if (root) {
 848                /* hierarhcy ID shoulid already have been released */
 849                WARN_ON_ONCE(root->hierarchy_id);
 850
 851                idr_destroy(&root->cgroup_idr);
 852                kfree(root);
 853        }
 854}
 855
 856static void cgroup_destroy_root(struct cgroup_root *root)
 857{
 858        struct cgroup *cgrp = &root->cgrp;
 859        struct cgrp_cset_link *link, *tmp_link;
 860
 861        mutex_lock(&cgroup_mutex);
 862
 863        BUG_ON(atomic_read(&root->nr_cgrps));
 864        BUG_ON(!list_empty(&cgrp->self.children));
 865
 866        /* Rebind all subsystems back to the default hierarchy */
 867        rebind_subsystems(&cgrp_dfl_root, root->subsys_mask);
 868
 869        /*
 870         * Release all the links from cset_links to this hierarchy's
 871         * root cgroup
 872         */
 873        down_write(&css_set_rwsem);
 874
 875        list_for_each_entry_safe(link, tmp_link, &cgrp->cset_links, cset_link) {
 876                list_del(&link->cset_link);
 877                list_del(&link->cgrp_link);
 878                kfree(link);
 879        }
 880        up_write(&css_set_rwsem);
 881
 882        if (!list_empty(&root->root_list)) {
 883                list_del(&root->root_list);
 884                cgroup_root_count--;
 885        }
 886
 887        cgroup_exit_root_id(root);
 888
 889        mutex_unlock(&cgroup_mutex);
 890
 891        kernfs_destroy_root(root->kf_root);
 892        cgroup_free_root(root);
 893}
 894
 895/* look up cgroup associated with given css_set on the specified hierarchy */
 896static struct cgroup *cset_cgroup_from_root(struct css_set *cset,
 897                                            struct cgroup_root *root)
 898{
 899        struct cgroup *res = NULL;
 900
 901        lockdep_assert_held(&cgroup_mutex);
 902        lockdep_assert_held(&css_set_rwsem);
 903
 904        if (cset == &init_css_set) {
 905                res = &root->cgrp;
 906        } else {
 907                struct cgrp_cset_link *link;
 908
 909                list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
 910                        struct cgroup *c = link->cgrp;
 911
 912                        if (c->root == root) {
 913                                res = c;
 914                                break;
 915                        }
 916                }
 917        }
 918
 919        BUG_ON(!res);
 920        return res;
 921}
 922
 923/*
 924 * Return the cgroup for "task" from the given hierarchy. Must be
 925 * called with cgroup_mutex and css_set_rwsem held.
 926 */
 927static struct cgroup *task_cgroup_from_root(struct task_struct *task,
 928                                            struct cgroup_root *root)
 929{
 930        /*
 931         * No need to lock the task - since we hold cgroup_mutex the
 932         * task can't change groups, so the only thing that can happen
 933         * is that it exits and its css is set back to init_css_set.
 934         */
 935        return cset_cgroup_from_root(task_css_set(task), root);
 936}
 937
 938/*
 939 * A task must hold cgroup_mutex to modify cgroups.
 940 *
 941 * Any task can increment and decrement the count field without lock.
 942 * So in general, code holding cgroup_mutex can't rely on the count
 943 * field not changing.  However, if the count goes to zero, then only
 944 * cgroup_attach_task() can increment it again.  Because a count of zero
 945 * means that no tasks are currently attached, therefore there is no
 946 * way a task attached to that cgroup can fork (the other way to
 947 * increment the count).  So code holding cgroup_mutex can safely
 948 * assume that if the count is zero, it will stay zero. Similarly, if
 949 * a task holds cgroup_mutex on a cgroup with zero count, it
 950 * knows that the cgroup won't be removed, as cgroup_rmdir()
 951 * needs that mutex.
 952 *
 953 * A cgroup can only be deleted if both its 'count' of using tasks
 954 * is zero, and its list of 'children' cgroups is empty.  Since all
 955 * tasks in the system use _some_ cgroup, and since there is always at
 956 * least one task in the system (init, pid == 1), therefore, root cgroup
 957 * always has either children cgroups and/or using tasks.  So we don't
 958 * need a special hack to ensure that root cgroup cannot be deleted.
 959 *
 960 * P.S.  One more locking exception.  RCU is used to guard the
 961 * update of a tasks cgroup pointer by cgroup_attach_task()
 962 */
 963
 964static int cgroup_populate_dir(struct cgroup *cgrp, unsigned int subsys_mask);
 965static struct kernfs_syscall_ops cgroup_kf_syscall_ops;
 966static const struct file_operations proc_cgroupstats_operations;
 967
 968static char *cgroup_file_name(struct cgroup *cgrp, const struct cftype *cft,
 969                              char *buf)
 970{
 971        if (cft->ss && !(cft->flags & CFTYPE_NO_PREFIX) &&
 972            !(cgrp->root->flags & CGRP_ROOT_NOPREFIX))
 973                snprintf(buf, CGROUP_FILE_NAME_MAX, "%s.%s",
 974                         cft->ss->name, cft->name);
 975        else
 976                strncpy(buf, cft->name, CGROUP_FILE_NAME_MAX);
 977        return buf;
 978}
 979
 980/**
 981 * cgroup_file_mode - deduce file mode of a control file
 982 * @cft: the control file in question
 983 *
 984 * returns cft->mode if ->mode is not 0
 985 * returns S_IRUGO|S_IWUSR if it has both a read and a write handler
 986 * returns S_IRUGO if it has only a read handler
 987 * returns S_IWUSR if it has only a write hander
 988 */
 989static umode_t cgroup_file_mode(const struct cftype *cft)
 990{
 991        umode_t mode = 0;
 992
 993        if (cft->mode)
 994                return cft->mode;
 995
 996        if (cft->read_u64 || cft->read_s64 || cft->seq_show)
 997                mode |= S_IRUGO;
 998
 999        if (cft->write_u64 || cft->write_s64 || cft->write)
1000                mode |= S_IWUSR;
1001
1002        return mode;
1003}
1004
1005static void cgroup_get(struct cgroup *cgrp)
1006{
1007        WARN_ON_ONCE(cgroup_is_dead(cgrp));
1008        css_get(&cgrp->self);
1009}
1010
1011static bool cgroup_tryget(struct cgroup *cgrp)
1012{
1013        return css_tryget(&cgrp->self);
1014}
1015
1016static void cgroup_put(struct cgroup *cgrp)
1017{
1018        css_put(&cgrp->self);
1019}
1020
1021/**
1022 * cgroup_refresh_child_subsys_mask - update child_subsys_mask
1023 * @cgrp: the target cgroup
1024 *
1025 * On the default hierarchy, a subsystem may request other subsystems to be
1026 * enabled together through its ->depends_on mask.  In such cases, more
1027 * subsystems than specified in "cgroup.subtree_control" may be enabled.
1028 *
1029 * This function determines which subsystems need to be enabled given the
1030 * current @cgrp->subtree_control and records it in
1031 * @cgrp->child_subsys_mask.  The resulting mask is always a superset of
1032 * @cgrp->subtree_control and follows the usual hierarchy rules.
1033 */
1034static void cgroup_refresh_child_subsys_mask(struct cgroup *cgrp)
1035{
1036        struct cgroup *parent = cgroup_parent(cgrp);
1037        unsigned int cur_ss_mask = cgrp->subtree_control;
1038        struct cgroup_subsys *ss;
1039        int ssid;
1040
1041        lockdep_assert_held(&cgroup_mutex);
1042
1043        if (!cgroup_on_dfl(cgrp)) {
1044                cgrp->child_subsys_mask = cur_ss_mask;
1045                return;
1046        }
1047
1048        while (true) {
1049                unsigned int new_ss_mask = cur_ss_mask;
1050
1051                for_each_subsys(ss, ssid)
1052                        if (cur_ss_mask & (1 << ssid))
1053                                new_ss_mask |= ss->depends_on;
1054
1055                /*
1056                 * Mask out subsystems which aren't available.  This can
1057                 * happen only if some depended-upon subsystems were bound
1058                 * to non-default hierarchies.
1059                 */
1060                if (parent)
1061                        new_ss_mask &= parent->child_subsys_mask;
1062                else
1063                        new_ss_mask &= cgrp->root->subsys_mask;
1064
1065                if (new_ss_mask == cur_ss_mask)
1066                        break;
1067                cur_ss_mask = new_ss_mask;
1068        }
1069
1070        cgrp->child_subsys_mask = cur_ss_mask;
1071}
1072
1073/**
1074 * cgroup_kn_unlock - unlocking helper for cgroup kernfs methods
1075 * @kn: the kernfs_node being serviced
1076 *
1077 * This helper undoes cgroup_kn_lock_live() and should be invoked before
1078 * the method finishes if locking succeeded.  Note that once this function
1079 * returns the cgroup returned by cgroup_kn_lock_live() may become
1080 * inaccessible any time.  If the caller intends to continue to access the
1081 * cgroup, it should pin it before invoking this function.
1082 */
1083static void cgroup_kn_unlock(struct kernfs_node *kn)
1084{
1085        struct cgroup *cgrp;
1086
1087        if (kernfs_type(kn) == KERNFS_DIR)
1088                cgrp = kn->priv;
1089        else
1090                cgrp = kn->parent->priv;
1091
1092        mutex_unlock(&cgroup_mutex);
1093
1094        kernfs_unbreak_active_protection(kn);
1095        cgroup_put(cgrp);
1096}
1097
1098/**
1099 * cgroup_kn_lock_live - locking helper for cgroup kernfs methods
1100 * @kn: the kernfs_node being serviced
1101 *
1102 * This helper is to be used by a cgroup kernfs method currently servicing
1103 * @kn.  It breaks the active protection, performs cgroup locking and
1104 * verifies that the associated cgroup is alive.  Returns the cgroup if
1105 * alive; otherwise, %NULL.  A successful return should be undone by a
1106 * matching cgroup_kn_unlock() invocation.
1107 *
1108 * Any cgroup kernfs method implementation which requires locking the
1109 * associated cgroup should use this helper.  It avoids nesting cgroup
1110 * locking under kernfs active protection and allows all kernfs operations
1111 * including self-removal.
1112 */
1113static struct cgroup *cgroup_kn_lock_live(struct kernfs_node *kn)
1114{
1115        struct cgroup *cgrp;
1116
1117        if (kernfs_type(kn) == KERNFS_DIR)
1118                cgrp = kn->priv;
1119        else
1120                cgrp = kn->parent->priv;
1121
1122        /*
1123         * We're gonna grab cgroup_mutex which nests outside kernfs
1124         * active_ref.  cgroup liveliness check alone provides enough
1125         * protection against removal.  Ensure @cgrp stays accessible and
1126         * break the active_ref protection.
1127         */
1128        if (!cgroup_tryget(cgrp))
1129                return NULL;
1130        kernfs_break_active_protection(kn);
1131
1132        mutex_lock(&cgroup_mutex);
1133
1134        if (!cgroup_is_dead(cgrp))
1135                return cgrp;
1136
1137        cgroup_kn_unlock(kn);
1138        return NULL;
1139}
1140
1141static void cgroup_rm_file(struct cgroup *cgrp, const struct cftype *cft)
1142{
1143        char name[CGROUP_FILE_NAME_MAX];
1144
1145        lockdep_assert_held(&cgroup_mutex);
1146        kernfs_remove_by_name(cgrp->kn, cgroup_file_name(cgrp, cft, name));
1147}
1148
1149/**
1150 * cgroup_clear_dir - remove subsys files in a cgroup directory
1151 * @cgrp: target cgroup
1152 * @subsys_mask: mask of the subsystem ids whose files should be removed
1153 */
1154static void cgroup_clear_dir(struct cgroup *cgrp, unsigned int subsys_mask)
1155{
1156        struct cgroup_subsys *ss;
1157        int i;
1158
1159        for_each_subsys(ss, i) {
1160                struct cftype *cfts;
1161
1162                if (!(subsys_mask & (1 << i)))
1163                        continue;
1164                list_for_each_entry(cfts, &ss->cfts, node)
1165                        cgroup_addrm_files(cgrp, cfts, false);
1166        }
1167}
1168
1169static int rebind_subsystems(struct cgroup_root *dst_root, unsigned int ss_mask)
1170{
1171        struct cgroup_subsys *ss;
1172        unsigned int tmp_ss_mask;
1173        int ssid, i, ret;
1174
1175        lockdep_assert_held(&cgroup_mutex);
1176
1177        for_each_subsys(ss, ssid) {
1178                if (!(ss_mask & (1 << ssid)))
1179                        continue;
1180
1181                /* if @ss has non-root csses attached to it, can't move */
1182                if (css_next_child(NULL, cgroup_css(&ss->root->cgrp, ss)))
1183                        return -EBUSY;
1184
1185                /* can't move between two non-dummy roots either */
1186                if (ss->root != &cgrp_dfl_root && dst_root != &cgrp_dfl_root)
1187                        return -EBUSY;
1188        }
1189
1190        /* skip creating root files on dfl_root for inhibited subsystems */
1191        tmp_ss_mask = ss_mask;
1192        if (dst_root == &cgrp_dfl_root)
1193                tmp_ss_mask &= ~cgrp_dfl_root_inhibit_ss_mask;
1194
1195        ret = cgroup_populate_dir(&dst_root->cgrp, tmp_ss_mask);
1196        if (ret) {
1197                if (dst_root != &cgrp_dfl_root)
1198                        return ret;
1199
1200                /*
1201                 * Rebinding back to the default root is not allowed to
1202                 * fail.  Using both default and non-default roots should
1203                 * be rare.  Moving subsystems back and forth even more so.
1204                 * Just warn about it and continue.
1205                 */
1206                if (cgrp_dfl_root_visible) {
1207                        pr_warn("failed to create files (%d) while rebinding 0x%x to default root\n",
1208                                ret, ss_mask);
1209                        pr_warn("you may retry by moving them to a different hierarchy and unbinding\n");
1210                }
1211        }
1212
1213        /*
1214         * Nothing can fail from this point on.  Remove files for the
1215         * removed subsystems and rebind each subsystem.
1216         */
1217        for_each_subsys(ss, ssid)
1218                if (ss_mask & (1 << ssid))
1219                        cgroup_clear_dir(&ss->root->cgrp, 1 << ssid);
1220
1221        for_each_subsys(ss, ssid) {
1222                struct cgroup_root *src_root;
1223                struct cgroup_subsys_state *css;
1224                struct css_set *cset;
1225
1226                if (!(ss_mask & (1 << ssid)))
1227                        continue;
1228
1229                src_root = ss->root;
1230                css = cgroup_css(&src_root->cgrp, ss);
1231
1232                WARN_ON(!css || cgroup_css(&dst_root->cgrp, ss));
1233
1234                RCU_INIT_POINTER(src_root->cgrp.subsys[ssid], NULL);
1235                rcu_assign_pointer(dst_root->cgrp.subsys[ssid], css);
1236                ss->root = dst_root;
1237                css->cgroup = &dst_root->cgrp;
1238
1239                down_write(&css_set_rwsem);
1240                hash_for_each(css_set_table, i, cset, hlist)
1241                        list_move_tail(&cset->e_cset_node[ss->id],
1242                                       &dst_root->cgrp.e_csets[ss->id]);
1243                up_write(&css_set_rwsem);
1244
1245                src_root->subsys_mask &= ~(1 << ssid);
1246                src_root->cgrp.subtree_control &= ~(1 << ssid);
1247                cgroup_refresh_child_subsys_mask(&src_root->cgrp);
1248
1249                /* default hierarchy doesn't enable controllers by default */
1250                dst_root->subsys_mask |= 1 << ssid;
1251                if (dst_root != &cgrp_dfl_root) {
1252                        dst_root->cgrp.subtree_control |= 1 << ssid;
1253                        cgroup_refresh_child_subsys_mask(&dst_root->cgrp);
1254                }
1255
1256                if (ss->bind)
1257                        ss->bind(css);
1258        }
1259
1260        kernfs_activate(dst_root->cgrp.kn);
1261        return 0;
1262}
1263
1264static int cgroup_show_options(struct seq_file *seq,
1265                               struct kernfs_root *kf_root)
1266{
1267        struct cgroup_root *root = cgroup_root_from_kf(kf_root);
1268        struct cgroup_subsys *ss;
1269        int ssid;
1270
1271        for_each_subsys(ss, ssid)
1272                if (root->subsys_mask & (1 << ssid))
1273                        seq_printf(seq, ",%s", ss->name);
1274        if (root->flags & CGRP_ROOT_NOPREFIX)
1275                seq_puts(seq, ",noprefix");
1276        if (root->flags & CGRP_ROOT_XATTR)
1277                seq_puts(seq, ",xattr");
1278
1279        spin_lock(&release_agent_path_lock);
1280        if (strlen(root->release_agent_path))
1281                seq_printf(seq, ",release_agent=%s", root->release_agent_path);
1282        spin_unlock(&release_agent_path_lock);
1283
1284        if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags))
1285                seq_puts(seq, ",clone_children");
1286        if (strlen(root->name))
1287                seq_printf(seq, ",name=%s", root->name);
1288        return 0;
1289}
1290
1291struct cgroup_sb_opts {
1292        unsigned int subsys_mask;
1293        unsigned int flags;
1294        char *release_agent;
1295        bool cpuset_clone_children;
1296        char *name;
1297        /* User explicitly requested empty subsystem */
1298        bool none;
1299};
1300
1301static int parse_cgroupfs_options(char *data, struct cgroup_sb_opts *opts)
1302{
1303        char *token, *o = data;
1304        bool all_ss = false, one_ss = false;
1305        unsigned int mask = -1U;
1306        struct cgroup_subsys *ss;
1307        int nr_opts = 0;
1308        int i;
1309
1310#ifdef CONFIG_CPUSETS
1311        mask = ~(1U << cpuset_cgrp_id);
1312#endif
1313
1314        memset(opts, 0, sizeof(*opts));
1315
1316        while ((token = strsep(&o, ",")) != NULL) {
1317                nr_opts++;
1318
1319                if (!*token)
1320                        return -EINVAL;
1321                if (!strcmp(token, "none")) {
1322                        /* Explicitly have no subsystems */
1323                        opts->none = true;
1324                        continue;
1325                }
1326                if (!strcmp(token, "all")) {
1327                        /* Mutually exclusive option 'all' + subsystem name */
1328                        if (one_ss)
1329                                return -EINVAL;
1330                        all_ss = true;
1331                        continue;
1332                }
1333                if (!strcmp(token, "__DEVEL__sane_behavior")) {
1334                        opts->flags |= CGRP_ROOT_SANE_BEHAVIOR;
1335                        continue;
1336                }
1337                if (!strcmp(token, "noprefix")) {
1338                        opts->flags |= CGRP_ROOT_NOPREFIX;
1339                        continue;
1340                }
1341                if (!strcmp(token, "clone_children")) {
1342                        opts->cpuset_clone_children = true;
1343                        continue;
1344                }
1345                if (!strcmp(token, "xattr")) {
1346                        opts->flags |= CGRP_ROOT_XATTR;
1347                        continue;
1348                }
1349                if (!strncmp(token, "release_agent=", 14)) {
1350                        /* Specifying two release agents is forbidden */
1351                        if (opts->release_agent)
1352                                return -EINVAL;
1353                        opts->release_agent =
1354                                kstrndup(token + 14, PATH_MAX - 1, GFP_KERNEL);
1355                        if (!opts->release_agent)
1356                                return -ENOMEM;
1357                        continue;
1358                }
1359                if (!strncmp(token, "name=", 5)) {
1360                        const char *name = token + 5;
1361                        /* Can't specify an empty name */
1362                        if (!strlen(name))
1363                                return -EINVAL;
1364                        /* Must match [\w.-]+ */
1365                        for (i = 0; i < strlen(name); i++) {
1366                                char c = name[i];
1367                                if (isalnum(c))
1368                                        continue;
1369                                if ((c == '.') || (c == '-') || (c == '_'))
1370                                        continue;
1371                                return -EINVAL;
1372                        }
1373                        /* Specifying two names is forbidden */
1374                        if (opts->name)
1375                                return -EINVAL;
1376                        opts->name = kstrndup(name,
1377                                              MAX_CGROUP_ROOT_NAMELEN - 1,
1378                                              GFP_KERNEL);
1379                        if (!opts->name)
1380                                return -ENOMEM;
1381
1382                        continue;
1383                }
1384
1385                for_each_subsys(ss, i) {
1386                        if (strcmp(token, ss->name))
1387                                continue;
1388                        if (ss->disabled)
1389                                continue;
1390
1391                        /* Mutually exclusive option 'all' + subsystem name */
1392                        if (all_ss)
1393                                return -EINVAL;
1394                        opts->subsys_mask |= (1 << i);
1395                        one_ss = true;
1396
1397                        break;
1398                }
1399                if (i == CGROUP_SUBSYS_COUNT)
1400                        return -ENOENT;
1401        }
1402
1403        if (opts->flags & CGRP_ROOT_SANE_BEHAVIOR) {
1404                pr_warn("sane_behavior: this is still under development and its behaviors will change, proceed at your own risk\n");
1405                if (nr_opts != 1) {
1406                        pr_err("sane_behavior: no other mount options allowed\n");
1407                        return -EINVAL;
1408                }
1409                return 0;
1410        }
1411
1412        /*
1413         * If the 'all' option was specified select all the subsystems,
1414         * otherwise if 'none', 'name=' and a subsystem name options were
1415         * not specified, let's default to 'all'
1416         */
1417        if (all_ss || (!one_ss && !opts->none && !opts->name))
1418                for_each_subsys(ss, i)
1419                        if (!ss->disabled)
1420                                opts->subsys_mask |= (1 << i);
1421
1422        /*
1423         * We either have to specify by name or by subsystems. (So all
1424         * empty hierarchies must have a name).
1425         */
1426        if (!opts->subsys_mask && !opts->name)
1427                return -EINVAL;
1428
1429        /*
1430         * Option noprefix was introduced just for backward compatibility
1431         * with the old cpuset, so we allow noprefix only if mounting just
1432         * the cpuset subsystem.
1433         */
1434        if ((opts->flags & CGRP_ROOT_NOPREFIX) && (opts->subsys_mask & mask))
1435                return -EINVAL;
1436
1437        /* Can't specify "none" and some subsystems */
1438        if (opts->subsys_mask && opts->none)
1439                return -EINVAL;
1440
1441        return 0;
1442}
1443
1444static int cgroup_remount(struct kernfs_root *kf_root, int *flags, char *data)
1445{
1446        int ret = 0;
1447        struct cgroup_root *root = cgroup_root_from_kf(kf_root);
1448        struct cgroup_sb_opts opts;
1449        unsigned int added_mask, removed_mask;
1450
1451        if (root == &cgrp_dfl_root) {
1452                pr_err("remount is not allowed\n");
1453                return -EINVAL;
1454        }
1455
1456        mutex_lock(&cgroup_mutex);
1457
1458        /* See what subsystems are wanted */
1459        ret = parse_cgroupfs_options(data, &opts);
1460        if (ret)
1461                goto out_unlock;
1462
1463        if (opts.subsys_mask != root->subsys_mask || opts.release_agent)
1464                pr_warn("option changes via remount are deprecated (pid=%d comm=%s)\n",
1465                        task_tgid_nr(current), current->comm);
1466
1467        added_mask = opts.subsys_mask & ~root->subsys_mask;
1468        removed_mask = root->subsys_mask & ~opts.subsys_mask;
1469
1470        /* Don't allow flags or name to change at remount */
1471        if ((opts.flags ^ root->flags) ||
1472            (opts.name && strcmp(opts.name, root->name))) {
1473                pr_err("option or name mismatch, new: 0x%x \"%s\", old: 0x%x \"%s\"\n",
1474                       opts.flags, opts.name ?: "", root->flags, root->name);
1475                ret = -EINVAL;
1476                goto out_unlock;
1477        }
1478
1479        /* remounting is not allowed for populated hierarchies */
1480        if (!list_empty(&root->cgrp.self.children)) {
1481                ret = -EBUSY;
1482                goto out_unlock;
1483        }
1484
1485        ret = rebind_subsystems(root, added_mask);
1486        if (ret)
1487                goto out_unlock;
1488
1489        rebind_subsystems(&cgrp_dfl_root, removed_mask);
1490
1491        if (opts.release_agent) {
1492                spin_lock(&release_agent_path_lock);
1493                strcpy(root->release_agent_path, opts.release_agent);
1494                spin_unlock(&release_agent_path_lock);
1495        }
1496 out_unlock:
1497        kfree(opts.release_agent);
1498        kfree(opts.name);
1499        mutex_unlock(&cgroup_mutex);
1500        return ret;
1501}
1502
1503/*
1504 * To reduce the fork() overhead for systems that are not actually using
1505 * their cgroups capability, we don't maintain the lists running through
1506 * each css_set to its tasks until we see the list actually used - in other
1507 * words after the first mount.
1508 */
1509static bool use_task_css_set_links __read_mostly;
1510
1511static void cgroup_enable_task_cg_lists(void)
1512{
1513        struct task_struct *p, *g;
1514
1515        down_write(&css_set_rwsem);
1516
1517        if (use_task_css_set_links)
1518                goto out_unlock;
1519
1520        use_task_css_set_links = true;
1521
1522        /*
1523         * We need tasklist_lock because RCU is not safe against
1524         * while_each_thread(). Besides, a forking task that has passed
1525         * cgroup_post_fork() without seeing use_task_css_set_links = 1
1526         * is not guaranteed to have its child immediately visible in the
1527         * tasklist if we walk through it with RCU.
1528         */
1529        read_lock(&tasklist_lock);
1530        do_each_thread(g, p) {
1531                WARN_ON_ONCE(!list_empty(&p->cg_list) ||
1532                             task_css_set(p) != &init_css_set);
1533
1534                /*
1535                 * We should check if the process is exiting, otherwise
1536                 * it will race with cgroup_exit() in that the list
1537                 * entry won't be deleted though the process has exited.
1538                 * Do it while holding siglock so that we don't end up
1539                 * racing against cgroup_exit().
1540                 */
1541                spin_lock_irq(&p->sighand->siglock);
1542                if (!(p->flags & PF_EXITING)) {
1543                        struct css_set *cset = task_css_set(p);
1544
1545                        list_add(&p->cg_list, &cset->tasks);
1546                        get_css_set(cset);
1547                }
1548                spin_unlock_irq(&p->sighand->siglock);
1549        } while_each_thread(g, p);
1550        read_unlock(&tasklist_lock);
1551out_unlock:
1552        up_write(&css_set_rwsem);
1553}
1554
1555static void init_cgroup_housekeeping(struct cgroup *cgrp)
1556{
1557        struct cgroup_subsys *ss;
1558        int ssid;
1559
1560        INIT_LIST_HEAD(&cgrp->self.sibling);
1561        INIT_LIST_HEAD(&cgrp->self.children);
1562        INIT_LIST_HEAD(&cgrp->cset_links);
1563        INIT_LIST_HEAD(&cgrp->pidlists);
1564        mutex_init(&cgrp->pidlist_mutex);
1565        cgrp->self.cgroup = cgrp;
1566        cgrp->self.flags |= CSS_ONLINE;
1567
1568        for_each_subsys(ss, ssid)
1569                INIT_LIST_HEAD(&cgrp->e_csets[ssid]);
1570
1571        init_waitqueue_head(&cgrp->offline_waitq);
1572        INIT_WORK(&cgrp->release_agent_work, cgroup_release_agent);
1573}
1574
1575static void init_cgroup_root(struct cgroup_root *root,
1576                             struct cgroup_sb_opts *opts)
1577{
1578        struct cgroup *cgrp = &root->cgrp;
1579
1580        INIT_LIST_HEAD(&root->root_list);
1581        atomic_set(&root->nr_cgrps, 1);
1582        cgrp->root = root;
1583        init_cgroup_housekeeping(cgrp);
1584        idr_init(&root->cgroup_idr);
1585
1586        root->flags = opts->flags;
1587        if (opts->release_agent)
1588                strcpy(root->release_agent_path, opts->release_agent);
1589        if (opts->name)
1590                strcpy(root->name, opts->name);
1591        if (opts->cpuset_clone_children)
1592                set_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags);
1593}
1594
1595static int cgroup_setup_root(struct cgroup_root *root, unsigned int ss_mask)
1596{
1597        LIST_HEAD(tmp_links);
1598        struct cgroup *root_cgrp = &root->cgrp;
1599        struct cftype *base_files;
1600        struct css_set *cset;
1601        int i, ret;
1602
1603        lockdep_assert_held(&cgroup_mutex);
1604
1605        ret = cgroup_idr_alloc(&root->cgroup_idr, root_cgrp, 1, 2, GFP_NOWAIT);
1606        if (ret < 0)
1607                goto out;
1608        root_cgrp->id = ret;
1609
1610        ret = percpu_ref_init(&root_cgrp->self.refcnt, css_release, 0,
1611                              GFP_KERNEL);
1612        if (ret)
1613                goto out;
1614
1615        /*
1616         * We're accessing css_set_count without locking css_set_rwsem here,
1617         * but that's OK - it can only be increased by someone holding
1618         * cgroup_lock, and that's us. The worst that can happen is that we
1619         * have some link structures left over
1620         */
1621        ret = allocate_cgrp_cset_links(css_set_count, &tmp_links);
1622        if (ret)
1623                goto cancel_ref;
1624
1625        ret = cgroup_init_root_id(root);
1626        if (ret)
1627                goto cancel_ref;
1628
1629        root->kf_root = kernfs_create_root(&cgroup_kf_syscall_ops,
1630                                           KERNFS_ROOT_CREATE_DEACTIVATED,
1631                                           root_cgrp);
1632        if (IS_ERR(root->kf_root)) {
1633                ret = PTR_ERR(root->kf_root);
1634                goto exit_root_id;
1635        }
1636        root_cgrp->kn = root->kf_root->kn;
1637
1638        if (root == &cgrp_dfl_root)
1639                base_files = cgroup_dfl_base_files;
1640        else
1641                base_files = cgroup_legacy_base_files;
1642
1643        ret = cgroup_addrm_files(root_cgrp, base_files, true);
1644        if (ret)
1645                goto destroy_root;
1646
1647        ret = rebind_subsystems(root, ss_mask);
1648        if (ret)
1649                goto destroy_root;
1650
1651        /*
1652         * There must be no failure case after here, since rebinding takes
1653         * care of subsystems' refcounts, which are explicitly dropped in
1654         * the failure exit path.
1655         */
1656        list_add(&root->root_list, &cgroup_roots);
1657        cgroup_root_count++;
1658
1659        /*
1660         * Link the root cgroup in this hierarchy into all the css_set
1661         * objects.
1662         */
1663        down_write(&css_set_rwsem);
1664        hash_for_each(css_set_table, i, cset, hlist)
1665                link_css_set(&tmp_links, cset, root_cgrp);
1666        up_write(&css_set_rwsem);
1667
1668        BUG_ON(!list_empty(&root_cgrp->self.children));
1669        BUG_ON(atomic_read(&root->nr_cgrps) != 1);
1670
1671        kernfs_activate(root_cgrp->kn);
1672        ret = 0;
1673        goto out;
1674
1675destroy_root:
1676        kernfs_destroy_root(root->kf_root);
1677        root->kf_root = NULL;
1678exit_root_id:
1679        cgroup_exit_root_id(root);
1680cancel_ref:
1681        percpu_ref_exit(&root_cgrp->self.refcnt);
1682out:
1683        free_cgrp_cset_links(&tmp_links);
1684        return ret;
1685}
1686
1687static struct dentry *cgroup_mount(struct file_system_type *fs_type,
1688                         int flags, const char *unused_dev_name,
1689                         void *data)
1690{
1691        struct super_block *pinned_sb = NULL;
1692        struct cgroup_subsys *ss;
1693        struct cgroup_root *root;
1694        struct cgroup_sb_opts opts;
1695        struct dentry *dentry;
1696        int ret;
1697        int i;
1698        bool new_sb;
1699
1700        /*
1701         * The first time anyone tries to mount a cgroup, enable the list
1702         * linking each css_set to its tasks and fix up all existing tasks.
1703         */
1704        if (!use_task_css_set_links)
1705                cgroup_enable_task_cg_lists();
1706
1707        mutex_lock(&cgroup_mutex);
1708
1709        /* First find the desired set of subsystems */
1710        ret = parse_cgroupfs_options(data, &opts);
1711        if (ret)
1712                goto out_unlock;
1713
1714        /* look for a matching existing root */
1715        if (opts.flags & CGRP_ROOT_SANE_BEHAVIOR) {
1716                cgrp_dfl_root_visible = true;
1717                root = &cgrp_dfl_root;
1718                cgroup_get(&root->cgrp);
1719                ret = 0;
1720                goto out_unlock;
1721        }
1722
1723        /*
1724         * Destruction of cgroup root is asynchronous, so subsystems may
1725         * still be dying after the previous unmount.  Let's drain the
1726         * dying subsystems.  We just need to ensure that the ones
1727         * unmounted previously finish dying and don't care about new ones
1728         * starting.  Testing ref liveliness is good enough.
1729         */
1730        for_each_subsys(ss, i) {
1731                if (!(opts.subsys_mask & (1 << i)) ||
1732                    ss->root == &cgrp_dfl_root)
1733                        continue;
1734
1735                if (!percpu_ref_tryget_live(&ss->root->cgrp.self.refcnt)) {
1736                        mutex_unlock(&cgroup_mutex);
1737                        msleep(10);
1738                        ret = restart_syscall();
1739                        goto out_free;
1740                }
1741                cgroup_put(&ss->root->cgrp);
1742        }
1743
1744        for_each_root(root) {
1745                bool name_match = false;
1746
1747                if (root == &cgrp_dfl_root)
1748                        continue;
1749
1750                /*
1751                 * If we asked for a name then it must match.  Also, if
1752                 * name matches but sybsys_mask doesn't, we should fail.
1753                 * Remember whether name matched.
1754                 */
1755                if (opts.name) {
1756                        if (strcmp(opts.name, root->name))
1757                                continue;
1758                        name_match = true;
1759                }
1760
1761                /*
1762                 * If we asked for subsystems (or explicitly for no
1763                 * subsystems) then they must match.
1764                 */
1765                if ((opts.subsys_mask || opts.none) &&
1766                    (opts.subsys_mask != root->subsys_mask)) {
1767                        if (!name_match)
1768                                continue;
1769                        ret = -EBUSY;
1770                        goto out_unlock;
1771                }
1772
1773                if (root->flags ^ opts.flags)
1774                        pr_warn("new mount options do not match the existing superblock, will be ignored\n");
1775
1776                /*
1777                 * We want to reuse @root whose lifetime is governed by its
1778                 * ->cgrp.  Let's check whether @root is alive and keep it
1779                 * that way.  As cgroup_kill_sb() can happen anytime, we
1780                 * want to block it by pinning the sb so that @root doesn't
1781                 * get killed before mount is complete.
1782                 *
1783                 * With the sb pinned, tryget_live can reliably indicate
1784                 * whether @root can be reused.  If it's being killed,
1785                 * drain it.  We can use wait_queue for the wait but this
1786                 * path is super cold.  Let's just sleep a bit and retry.
1787                 */
1788                pinned_sb = kernfs_pin_sb(root->kf_root, NULL);
1789                if (IS_ERR(pinned_sb) ||
1790                    !percpu_ref_tryget_live(&root->cgrp.self.refcnt)) {
1791                        mutex_unlock(&cgroup_mutex);
1792                        if (!IS_ERR_OR_NULL(pinned_sb))
1793                                deactivate_super(pinned_sb);
1794                        msleep(10);
1795                        ret = restart_syscall();
1796                        goto out_free;
1797                }
1798
1799                ret = 0;
1800                goto out_unlock;
1801        }
1802
1803        /*
1804         * No such thing, create a new one.  name= matching without subsys
1805         * specification is allowed for already existing hierarchies but we
1806         * can't create new one without subsys specification.
1807         */
1808        if (!opts.subsys_mask && !opts.none) {
1809                ret = -EINVAL;
1810                goto out_unlock;
1811        }
1812
1813        root = kzalloc(sizeof(*root), GFP_KERNEL);
1814        if (!root) {
1815                ret = -ENOMEM;
1816                goto out_unlock;
1817        }
1818
1819        init_cgroup_root(root, &opts);
1820
1821        ret = cgroup_setup_root(root, opts.subsys_mask);
1822        if (ret)
1823                cgroup_free_root(root);
1824
1825out_unlock:
1826        mutex_unlock(&cgroup_mutex);
1827out_free:
1828        kfree(opts.release_agent);
1829        kfree(opts.name);
1830
1831        if (ret)
1832                return ERR_PTR(ret);
1833
1834        dentry = kernfs_mount(fs_type, flags, root->kf_root,
1835                                CGROUP_SUPER_MAGIC, &new_sb);
1836        if (IS_ERR(dentry) || !new_sb)
1837                cgroup_put(&root->cgrp);
1838
1839        /*
1840         * If @pinned_sb, we're reusing an existing root and holding an
1841         * extra ref on its sb.  Mount is complete.  Put the extra ref.
1842         */
1843        if (pinned_sb) {
1844                WARN_ON(new_sb);
1845                deactivate_super(pinned_sb);
1846        }
1847
1848        return dentry;
1849}
1850
1851static void cgroup_kill_sb(struct super_block *sb)
1852{
1853        struct kernfs_root *kf_root = kernfs_root_from_sb(sb);
1854        struct cgroup_root *root = cgroup_root_from_kf(kf_root);
1855
1856        /*
1857         * If @root doesn't have any mounts or children, start killing it.
1858         * This prevents new mounts by disabling percpu_ref_tryget_live().
1859         * cgroup_mount() may wait for @root's release.
1860         *
1861         * And don't kill the default root.
1862         */
1863        if (css_has_online_children(&root->cgrp.self) ||
1864            root == &cgrp_dfl_root)
1865                cgroup_put(&root->cgrp);
1866        else
1867                percpu_ref_kill(&root->cgrp.self.refcnt);
1868
1869        kernfs_kill_sb(sb);
1870}
1871
1872static struct file_system_type cgroup_fs_type = {
1873        .name = "cgroup",
1874        .mount = cgroup_mount,
1875        .kill_sb = cgroup_kill_sb,
1876};
1877
1878static struct kobject *cgroup_kobj;
1879
1880/**
1881 * task_cgroup_path - cgroup path of a task in the first cgroup hierarchy
1882 * @task: target task
1883 * @buf: the buffer to write the path into
1884 * @buflen: the length of the buffer
1885 *
1886 * Determine @task's cgroup on the first (the one with the lowest non-zero
1887 * hierarchy_id) cgroup hierarchy and copy its path into @buf.  This
1888 * function grabs cgroup_mutex and shouldn't be used inside locks used by
1889 * cgroup controller callbacks.
1890 *
1891 * Return value is the same as kernfs_path().
1892 */
1893char *task_cgroup_path(struct task_struct *task, char *buf, size_t buflen)
1894{
1895        struct cgroup_root *root;
1896        struct cgroup *cgrp;
1897        int hierarchy_id = 1;
1898        char *path = NULL;
1899
1900        mutex_lock(&cgroup_mutex);
1901        down_read(&css_set_rwsem);
1902
1903        root = idr_get_next(&cgroup_hierarchy_idr, &hierarchy_id);
1904
1905        if (root) {
1906                cgrp = task_cgroup_from_root(task, root);
1907                path = cgroup_path(cgrp, buf, buflen);
1908        } else {
1909                /* if no hierarchy exists, everyone is in "/" */
1910                if (strlcpy(buf, "/", buflen) < buflen)
1911                        path = buf;
1912        }
1913
1914        up_read(&css_set_rwsem);
1915        mutex_unlock(&cgroup_mutex);
1916        return path;
1917}
1918EXPORT_SYMBOL_GPL(task_cgroup_path);
1919
1920/* used to track tasks and other necessary states during migration */
1921struct cgroup_taskset {
1922        /* the src and dst cset list running through cset->mg_node */
1923        struct list_head        src_csets;
1924        struct list_head        dst_csets;
1925
1926        /*
1927         * Fields for cgroup_taskset_*() iteration.
1928         *
1929         * Before migration is committed, the target migration tasks are on
1930         * ->mg_tasks of the csets on ->src_csets.  After, on ->mg_tasks of
1931         * the csets on ->dst_csets.  ->csets point to either ->src_csets
1932         * or ->dst_csets depending on whether migration is committed.
1933         *
1934         * ->cur_csets and ->cur_task point to the current task position
1935         * during iteration.
1936         */
1937        struct list_head        *csets;
1938        struct css_set          *cur_cset;
1939        struct task_struct      *cur_task;
1940};
1941
1942/**
1943 * cgroup_taskset_first - reset taskset and return the first task
1944 * @tset: taskset of interest
1945 *
1946 * @tset iteration is initialized and the first task is returned.
1947 */
1948struct task_struct *cgroup_taskset_first(struct cgroup_taskset *tset)
1949{
1950        tset->cur_cset = list_first_entry(tset->csets, struct css_set, mg_node);
1951        tset->cur_task = NULL;
1952
1953        return cgroup_taskset_next(tset);
1954}
1955
1956/**
1957 * cgroup_taskset_next - iterate to the next task in taskset
1958 * @tset: taskset of interest
1959 *
1960 * Return the next task in @tset.  Iteration must have been initialized
1961 * with cgroup_taskset_first().
1962 */
1963struct task_struct *cgroup_taskset_next(struct cgroup_taskset *tset)
1964{
1965        struct css_set *cset = tset->cur_cset;
1966        struct task_struct *task = tset->cur_task;
1967
1968        while (&cset->mg_node != tset->csets) {
1969                if (!task)
1970                        task = list_first_entry(&cset->mg_tasks,
1971                                                struct task_struct, cg_list);
1972                else
1973                        task = list_next_entry(task, cg_list);
1974
1975                if (&task->cg_list != &cset->mg_tasks) {
1976                        tset->cur_cset = cset;
1977                        tset->cur_task = task;
1978                        return task;
1979                }
1980
1981                cset = list_next_entry(cset, mg_node);
1982                task = NULL;
1983        }
1984
1985        return NULL;
1986}
1987
1988/**
1989 * cgroup_task_migrate - move a task from one cgroup to another.
1990 * @old_cgrp: the cgroup @tsk is being migrated from
1991 * @tsk: the task being migrated
1992 * @new_cset: the new css_set @tsk is being attached to
1993 *
1994 * Must be called with cgroup_mutex, threadgroup and css_set_rwsem locked.
1995 */
1996static void cgroup_task_migrate(struct cgroup *old_cgrp,
1997                                struct task_struct *tsk,
1998                                struct css_set *new_cset)
1999{
2000        struct css_set *old_cset;
2001
2002        lockdep_assert_held(&cgroup_mutex);
2003        lockdep_assert_held(&css_set_rwsem);
2004
2005        /*
2006         * We are synchronized through threadgroup_lock() against PF_EXITING
2007         * setting such that we can't race against cgroup_exit() changing the
2008         * css_set to init_css_set and dropping the old one.
2009         */
2010        WARN_ON_ONCE(tsk->flags & PF_EXITING);
2011        old_cset = task_css_set(tsk);
2012
2013        get_css_set(new_cset);
2014        rcu_assign_pointer(tsk->cgroups, new_cset);
2015
2016        /*
2017         * Use move_tail so that cgroup_taskset_first() still returns the
2018         * leader after migration.  This works because cgroup_migrate()
2019         * ensures that the dst_cset of the leader is the first on the
2020         * tset's dst_csets list.
2021         */
2022        list_move_tail(&tsk->cg_list, &new_cset->mg_tasks);
2023
2024        /*
2025         * We just gained a reference on old_cset by taking it from the
2026         * task. As trading it for new_cset is protected by cgroup_mutex,
2027         * we're safe to drop it here; it will be freed under RCU.
2028         */
2029        put_css_set_locked(old_cset);
2030}
2031
2032/**
2033 * cgroup_migrate_finish - cleanup after attach
2034 * @preloaded_csets: list of preloaded css_sets
2035 *
2036 * Undo cgroup_migrate_add_src() and cgroup_migrate_prepare_dst().  See
2037 * those functions for details.
2038 */
2039static void cgroup_migrate_finish(struct list_head *preloaded_csets)
2040{
2041        struct css_set *cset, *tmp_cset;
2042
2043        lockdep_assert_held(&cgroup_mutex);
2044
2045        down_write(&css_set_rwsem);
2046        list_for_each_entry_safe(cset, tmp_cset, preloaded_csets, mg_preload_node) {
2047                cset->mg_src_cgrp = NULL;
2048                cset->mg_dst_cset = NULL;
2049                list_del_init(&cset->mg_preload_node);
2050                put_css_set_locked(cset);
2051        }
2052        up_write(&css_set_rwsem);
2053}
2054
2055/**
2056 * cgroup_migrate_add_src - add a migration source css_set
2057 * @src_cset: the source css_set to add
2058 * @dst_cgrp: the destination cgroup
2059 * @preloaded_csets: list of preloaded css_sets
2060 *
2061 * Tasks belonging to @src_cset are about to be migrated to @dst_cgrp.  Pin
2062 * @src_cset and add it to @preloaded_csets, which should later be cleaned
2063 * up by cgroup_migrate_finish().
2064 *
2065 * This function may be called without holding threadgroup_lock even if the
2066 * target is a process.  Threads may be created and destroyed but as long
2067 * as cgroup_mutex is not dropped, no new css_set can be put into play and
2068 * the preloaded css_sets are guaranteed to cover all migrations.
2069 */
2070static void cgroup_migrate_add_src(struct css_set *src_cset,
2071                                   struct cgroup *dst_cgrp,
2072                                   struct list_head *preloaded_csets)
2073{
2074        struct cgroup *src_cgrp;
2075
2076        lockdep_assert_held(&cgroup_mutex);
2077        lockdep_assert_held(&css_set_rwsem);
2078
2079        src_cgrp = cset_cgroup_from_root(src_cset, dst_cgrp->root);
2080
2081        if (!list_empty(&src_cset->mg_preload_node))
2082                return;
2083
2084        WARN_ON(src_cset->mg_src_cgrp);
2085        WARN_ON(!list_empty(&src_cset->mg_tasks));
2086        WARN_ON(!list_empty(&src_cset->mg_node));
2087
2088        src_cset->mg_src_cgrp = src_cgrp;
2089        get_css_set(src_cset);
2090        list_add(&src_cset->mg_preload_node, preloaded_csets);
2091}
2092
2093/**
2094 * cgroup_migrate_prepare_dst - prepare destination css_sets for migration
2095 * @dst_cgrp: the destination cgroup (may be %NULL)
2096 * @preloaded_csets: list of preloaded source css_sets
2097 *
2098 * Tasks are about to be moved to @dst_cgrp and all the source css_sets
2099 * have been preloaded to @preloaded_csets.  This function looks up and
2100 * pins all destination css_sets, links each to its source, and append them
2101 * to @preloaded_csets.  If @dst_cgrp is %NULL, the destination of each
2102 * source css_set is assumed to be its cgroup on the default hierarchy.
2103 *
2104 * This function must be called after cgroup_migrate_add_src() has been
2105 * called on each migration source css_set.  After migration is performed
2106 * using cgroup_migrate(), cgroup_migrate_finish() must be called on
2107 * @preloaded_csets.
2108 */
2109static int cgroup_migrate_prepare_dst(struct cgroup *dst_cgrp,
2110                                      struct list_head *preloaded_csets)
2111{
2112        LIST_HEAD(csets);
2113        struct css_set *src_cset, *tmp_cset;
2114
2115        lockdep_assert_held(&cgroup_mutex);
2116
2117        /*
2118         * Except for the root, child_subsys_mask must be zero for a cgroup
2119         * with tasks so that child cgroups don't compete against tasks.
2120         */
2121        if (dst_cgrp && cgroup_on_dfl(dst_cgrp) && cgroup_parent(dst_cgrp) &&
2122            dst_cgrp->child_subsys_mask)
2123                return -EBUSY;
2124
2125        /* look up the dst cset for each src cset and link it to src */
2126        list_for_each_entry_safe(src_cset, tmp_cset, preloaded_csets, mg_preload_node) {
2127                struct css_set *dst_cset;
2128
2129                dst_cset = find_css_set(src_cset,
2130                                        dst_cgrp ?: src_cset->dfl_cgrp);
2131                if (!dst_cset)
2132                        goto err;
2133
2134                WARN_ON_ONCE(src_cset->mg_dst_cset || dst_cset->mg_dst_cset);
2135
2136                /*
2137                 * If src cset equals dst, it's noop.  Drop the src.
2138                 * cgroup_migrate() will skip the cset too.  Note that we
2139                 * can't handle src == dst as some nodes are used by both.
2140                 */
2141                if (src_cset == dst_cset) {
2142                        src_cset->mg_src_cgrp = NULL;
2143                        list_del_init(&src_cset->mg_preload_node);
2144                        put_css_set(src_cset);
2145                        put_css_set(dst_cset);
2146                        continue;
2147                }
2148
2149                src_cset->mg_dst_cset = dst_cset;
2150
2151                if (list_empty(&dst_cset->mg_preload_node))
2152                        list_add(&dst_cset->mg_preload_node, &csets);
2153                else
2154                        put_css_set(dst_cset);
2155        }
2156
2157        list_splice_tail(&csets, preloaded_csets);
2158        return 0;
2159err:
2160        cgroup_migrate_finish(&csets);
2161        return -ENOMEM;
2162}
2163
2164/**
2165 * cgroup_migrate - migrate a process or task to a cgroup
2166 * @cgrp: the destination cgroup
2167 * @leader: the leader of the process or the task to migrate
2168 * @threadgroup: whether @leader points to the whole process or a single task
2169 *
2170 * Migrate a process or task denoted by @leader to @cgrp.  If migrating a
2171 * process, the caller must be holding threadgroup_lock of @leader.  The
2172 * caller is also responsible for invoking cgroup_migrate_add_src() and
2173 * cgroup_migrate_prepare_dst() on the targets before invoking this
2174 * function and following up with cgroup_migrate_finish().
2175 *
2176 * As long as a controller's ->can_attach() doesn't fail, this function is
2177 * guaranteed to succeed.  This means that, excluding ->can_attach()
2178 * failure, when migrating multiple targets, the success or failure can be
2179 * decided for all targets by invoking group_migrate_prepare_dst() before
2180 * actually starting migrating.
2181 */
2182static int cgroup_migrate(struct cgroup *cgrp, struct task_struct *leader,
2183                          bool threadgroup)
2184{
2185        struct cgroup_taskset tset = {
2186                .src_csets      = LIST_HEAD_INIT(tset.src_csets),
2187                .dst_csets      = LIST_HEAD_INIT(tset.dst_csets),
2188                .csets          = &tset.src_csets,
2189        };
2190        struct cgroup_subsys_state *css, *failed_css = NULL;
2191        struct css_set *cset, *tmp_cset;
2192        struct task_struct *task, *tmp_task;
2193        int i, ret;
2194
2195        /*
2196         * Prevent freeing of tasks while we take a snapshot. Tasks that are
2197         * already PF_EXITING could be freed from underneath us unless we
2198         * take an rcu_read_lock.
2199         */
2200        down_write(&css_set_rwsem);
2201        rcu_read_lock();
2202        task = leader;
2203        do {
2204                /* @task either already exited or can't exit until the end */
2205                if (task->flags & PF_EXITING)
2206                        goto next;
2207
2208                /* leave @task alone if post_fork() hasn't linked it yet */
2209                if (list_empty(&task->cg_list))
2210                        goto next;
2211
2212                cset = task_css_set(task);
2213                if (!cset->mg_src_cgrp)
2214                        goto next;
2215
2216                /*
2217                 * cgroup_taskset_first() must always return the leader.
2218                 * Take care to avoid disturbing the ordering.
2219                 */
2220                list_move_tail(&task->cg_list, &cset->mg_tasks);
2221                if (list_empty(&cset->mg_node))
2222                        list_add_tail(&cset->mg_node, &tset.src_csets);
2223                if (list_empty(&cset->mg_dst_cset->mg_node))
2224                        list_move_tail(&cset->mg_dst_cset->mg_node,
2225                                       &tset.dst_csets);
2226        next:
2227                if (!threadgroup)
2228                        break;
2229        } while_each_thread(leader, task);
2230        rcu_read_unlock();
2231        up_write(&css_set_rwsem);
2232
2233        /* methods shouldn't be called if no task is actually migrating */
2234        if (list_empty(&tset.src_csets))
2235                return 0;
2236
2237        /* check that we can legitimately attach to the cgroup */
2238        for_each_e_css(css, i, cgrp) {
2239                if (css->ss->can_attach) {
2240                        ret = css->ss->can_attach(css, &tset);
2241                        if (ret) {
2242                                failed_css = css;
2243                                goto out_cancel_attach;
2244                        }
2245                }
2246        }
2247
2248        /*
2249         * Now that we're guaranteed success, proceed to move all tasks to
2250         * the new cgroup.  There are no failure cases after here, so this
2251         * is the commit point.
2252         */
2253        down_write(&css_set_rwsem);
2254        list_for_each_entry(cset, &tset.src_csets, mg_node) {
2255                list_for_each_entry_safe(task, tmp_task, &cset->mg_tasks, cg_list)
2256                        cgroup_task_migrate(cset->mg_src_cgrp, task,
2257                                            cset->mg_dst_cset);
2258        }
2259        up_write(&css_set_rwsem);
2260
2261        /*
2262         * Migration is committed, all target tasks are now on dst_csets.
2263         * Nothing is sensitive to fork() after this point.  Notify
2264         * controllers that migration is complete.
2265         */
2266        tset.csets = &tset.dst_csets;
2267
2268        for_each_e_css(css, i, cgrp)
2269                if (css->ss->attach)
2270                        css->ss->attach(css, &tset);
2271
2272        ret = 0;
2273        goto out_release_tset;
2274
2275out_cancel_attach:
2276        for_each_e_css(css, i, cgrp) {
2277                if (css == failed_css)
2278                        break;
2279                if (css->ss->cancel_attach)
2280                        css->ss->cancel_attach(css, &tset);
2281        }
2282out_release_tset:
2283        down_write(&css_set_rwsem);
2284        list_splice_init(&tset.dst_csets, &tset.src_csets);
2285        list_for_each_entry_safe(cset, tmp_cset, &tset.src_csets, mg_node) {
2286                list_splice_tail_init(&cset->mg_tasks, &cset->tasks);
2287                list_del_init(&cset->mg_node);
2288        }
2289        up_write(&css_set_rwsem);
2290        return ret;
2291}
2292
2293/**
2294 * cgroup_attach_task - attach a task or a whole threadgroup to a cgroup
2295 * @dst_cgrp: the cgroup to attach to
2296 * @leader: the task or the leader of the threadgroup to be attached
2297 * @threadgroup: attach the whole threadgroup?
2298 *
2299 * Call holding cgroup_mutex and threadgroup_lock of @leader.
2300 */
2301static int cgroup_attach_task(struct cgroup *dst_cgrp,
2302                              struct task_struct *leader, bool threadgroup)
2303{
2304        LIST_HEAD(preloaded_csets);
2305        struct task_struct *task;
2306        int ret;
2307
2308        /* look up all src csets */
2309        down_read(&css_set_rwsem);
2310        rcu_read_lock();
2311        task = leader;
2312        do {
2313                cgroup_migrate_add_src(task_css_set(task), dst_cgrp,
2314                                       &preloaded_csets);
2315                if (!threadgroup)
2316                        break;
2317        } while_each_thread(leader, task);
2318        rcu_read_unlock();
2319        up_read(&css_set_rwsem);
2320
2321        /* prepare dst csets and commit */
2322        ret = cgroup_migrate_prepare_dst(dst_cgrp, &preloaded_csets);
2323        if (!ret)
2324                ret = cgroup_migrate(dst_cgrp, leader, threadgroup);
2325
2326        cgroup_migrate_finish(&preloaded_csets);
2327        return ret;
2328}
2329
2330/*
2331 * Find the task_struct of the task to attach by vpid and pass it along to the
2332 * function to attach either it or all tasks in its threadgroup. Will lock
2333 * cgroup_mutex and threadgroup.
2334 */
2335static ssize_t __cgroup_procs_write(struct kernfs_open_file *of, char *buf,
2336                                    size_t nbytes, loff_t off, bool threadgroup)
2337{
2338        struct task_struct *tsk;
2339        const struct cred *cred = current_cred(), *tcred;
2340        struct cgroup *cgrp;
2341        pid_t pid;
2342        int ret;
2343
2344        if (kstrtoint(strstrip(buf), 0, &pid) || pid < 0)
2345                return -EINVAL;
2346
2347        cgrp = cgroup_kn_lock_live(of->kn);
2348        if (!cgrp)
2349                return -ENODEV;
2350
2351retry_find_task:
2352        rcu_read_lock();
2353        if (pid) {
2354                tsk = find_task_by_vpid(pid);
2355                if (!tsk) {
2356                        rcu_read_unlock();
2357                        ret = -ESRCH;
2358                        goto out_unlock_cgroup;
2359                }
2360                /*
2361                 * even if we're attaching all tasks in the thread group, we
2362                 * only need to check permissions on one of them.
2363                 */
2364                tcred = __task_cred(tsk);
2365                if (!uid_eq(cred->euid, GLOBAL_ROOT_UID) &&
2366                    !uid_eq(cred->euid, tcred->uid) &&
2367                    !uid_eq(cred->euid, tcred->suid)) {
2368                        rcu_read_unlock();
2369                        ret = -EACCES;
2370                        goto out_unlock_cgroup;
2371                }
2372        } else
2373                tsk = current;
2374
2375        if (threadgroup)
2376                tsk = tsk->group_leader;
2377
2378        /*
2379         * Workqueue threads may acquire PF_NO_SETAFFINITY and become
2380         * trapped in a cpuset, or RT worker may be born in a cgroup
2381         * with no rt_runtime allocated.  Just say no.
2382         */
2383        if (tsk == kthreadd_task || (tsk->flags & PF_NO_SETAFFINITY)) {
2384                ret = -EINVAL;
2385                rcu_read_unlock();
2386                goto out_unlock_cgroup;
2387        }
2388
2389        get_task_struct(tsk);
2390        rcu_read_unlock();
2391
2392        threadgroup_lock(tsk);
2393        if (threadgroup) {
2394                if (!thread_group_leader(tsk)) {
2395                        /*
2396                         * a race with de_thread from another thread's exec()
2397                         * may strip us of our leadership, if this happens,
2398                         * there is no choice but to throw this task away and
2399                         * try again; this is
2400                         * "double-double-toil-and-trouble-check locking".
2401                         */
2402                        threadgroup_unlock(tsk);
2403                        put_task_struct(tsk);
2404                        goto retry_find_task;
2405                }
2406        }
2407
2408        ret = cgroup_attach_task(cgrp, tsk, threadgroup);
2409
2410        threadgroup_unlock(tsk);
2411
2412        put_task_struct(tsk);
2413out_unlock_cgroup:
2414        cgroup_kn_unlock(of->kn);
2415        return ret ?: nbytes;
2416}
2417
2418/**
2419 * cgroup_attach_task_all - attach task 'tsk' to all cgroups of task 'from'
2420 * @from: attach to all cgroups of a given task
2421 * @tsk: the task to be attached
2422 */
2423int cgroup_attach_task_all(struct task_struct *from, struct task_struct *tsk)
2424{
2425        struct cgroup_root *root;
2426        int retval = 0;
2427
2428        mutex_lock(&cgroup_mutex);
2429        for_each_root(root) {
2430                struct cgroup *from_cgrp;
2431
2432                if (root == &cgrp_dfl_root)
2433                        continue;
2434
2435                down_read(&css_set_rwsem);
2436                from_cgrp = task_cgroup_from_root(from, root);
2437                up_read(&css_set_rwsem);
2438
2439                retval = cgroup_attach_task(from_cgrp, tsk, false);
2440                if (retval)
2441                        break;
2442        }
2443        mutex_unlock(&cgroup_mutex);
2444
2445        return retval;
2446}
2447EXPORT_SYMBOL_GPL(cgroup_attach_task_all);
2448
2449static ssize_t cgroup_tasks_write(struct kernfs_open_file *of,
2450                                  char *buf, size_t nbytes, loff_t off)
2451{
2452        return __cgroup_procs_write(of, buf, nbytes, off, false);
2453}
2454
2455static ssize_t cgroup_procs_write(struct kernfs_open_file *of,
2456                                  char *buf, size_t nbytes, loff_t off)
2457{
2458        return __cgroup_procs_write(of, buf, nbytes, off, true);
2459}
2460
2461static ssize_t cgroup_release_agent_write(struct kernfs_open_file *of,
2462                                          char *buf, size_t nbytes, loff_t off)
2463{
2464        struct cgroup *cgrp;
2465
2466        BUILD_BUG_ON(sizeof(cgrp->root->release_agent_path) < PATH_MAX);
2467
2468        cgrp = cgroup_kn_lock_live(of->kn);
2469        if (!cgrp)
2470                return -ENODEV;
2471        spin_lock(&release_agent_path_lock);
2472        strlcpy(cgrp->root->release_agent_path, strstrip(buf),
2473                sizeof(cgrp->root->release_agent_path));
2474        spin_unlock(&release_agent_path_lock);
2475        cgroup_kn_unlock(of->kn);
2476        return nbytes;
2477}
2478
2479static int cgroup_release_agent_show(struct seq_file *seq, void *v)
2480{
2481        struct cgroup *cgrp = seq_css(seq)->cgroup;
2482
2483        spin_lock(&release_agent_path_lock);
2484        seq_puts(seq, cgrp->root->release_agent_path);
2485        spin_unlock(&release_agent_path_lock);
2486        seq_putc(seq, '\n');
2487        return 0;
2488}
2489
2490static int cgroup_sane_behavior_show(struct seq_file *seq, void *v)
2491{
2492        seq_puts(seq, "0\n");
2493        return 0;
2494}
2495
2496static void cgroup_print_ss_mask(struct seq_file *seq, unsigned int ss_mask)
2497{
2498        struct cgroup_subsys *ss;
2499        bool printed = false;
2500        int ssid;
2501
2502        for_each_subsys(ss, ssid) {
2503                if (ss_mask & (1 << ssid)) {
2504                        if (printed)
2505                                seq_putc(seq, ' ');
2506                        seq_printf(seq, "%s", ss->name);
2507                        printed = true;
2508                }
2509        }
2510        if (printed)
2511                seq_putc(seq, '\n');
2512}
2513
2514/* show controllers which are currently attached to the default hierarchy */
2515static int cgroup_root_controllers_show(struct seq_file *seq, void *v)
2516{
2517        struct cgroup *cgrp = seq_css(seq)->cgroup;
2518
2519        cgroup_print_ss_mask(seq, cgrp->root->subsys_mask &
2520                             ~cgrp_dfl_root_inhibit_ss_mask);
2521        return 0;
2522}
2523
2524/* show controllers which are enabled from the parent */
2525static int cgroup_controllers_show(struct seq_file *seq, void *v)
2526{
2527        struct cgroup *cgrp = seq_css(seq)->cgroup;
2528
2529        cgroup_print_ss_mask(seq, cgroup_parent(cgrp)->subtree_control);
2530        return 0;
2531}
2532
2533/* show controllers which are enabled for a given cgroup's children */
2534static int cgroup_subtree_control_show(struct seq_file *seq, void *v)
2535{
2536        struct cgroup *cgrp = seq_css(seq)->cgroup;
2537
2538        cgroup_print_ss_mask(seq, cgrp->subtree_control);
2539        return 0;
2540}
2541
2542/**
2543 * cgroup_update_dfl_csses - update css assoc of a subtree in default hierarchy
2544 * @cgrp: root of the subtree to update csses for
2545 *
2546 * @cgrp's child_subsys_mask has changed and its subtree's (self excluded)
2547 * css associations need to be updated accordingly.  This function looks up
2548 * all css_sets which are attached to the subtree, creates the matching
2549 * updated css_sets and migrates the tasks to the new ones.
2550 */
2551static int cgroup_update_dfl_csses(struct cgroup *cgrp)
2552{
2553        LIST_HEAD(preloaded_csets);
2554        struct cgroup_subsys_state *css;
2555        struct css_set *src_cset;
2556        int ret;
2557
2558        lockdep_assert_held(&cgroup_mutex);
2559
2560        /* look up all csses currently attached to @cgrp's subtree */
2561        down_read(&css_set_rwsem);
2562        css_for_each_descendant_pre(css, cgroup_css(cgrp, NULL)) {
2563                struct cgrp_cset_link *link;
2564
2565                /* self is not affected by child_subsys_mask change */
2566                if (css->cgroup == cgrp)
2567                        continue;
2568
2569                list_for_each_entry(link, &css->cgroup->cset_links, cset_link)
2570                        cgroup_migrate_add_src(link->cset, cgrp,
2571                                               &preloaded_csets);
2572        }
2573        up_read(&css_set_rwsem);
2574
2575        /* NULL dst indicates self on default hierarchy */
2576        ret = cgroup_migrate_prepare_dst(NULL, &preloaded_csets);
2577        if (ret)
2578                goto out_finish;
2579
2580        list_for_each_entry(src_cset, &preloaded_csets, mg_preload_node) {
2581                struct task_struct *last_task = NULL, *task;
2582
2583                /* src_csets precede dst_csets, break on the first dst_cset */
2584                if (!src_cset->mg_src_cgrp)
2585                        break;
2586
2587                /*
2588                 * All tasks in src_cset need to be migrated to the
2589                 * matching dst_cset.  Empty it process by process.  We
2590                 * walk tasks but migrate processes.  The leader might even
2591                 * belong to a different cset but such src_cset would also
2592                 * be among the target src_csets because the default
2593                 * hierarchy enforces per-process membership.
2594                 */
2595                while (true) {
2596                        down_read(&css_set_rwsem);
2597                        task = list_first_entry_or_null(&src_cset->tasks,
2598                                                struct task_struct, cg_list);
2599                        if (task) {
2600                                task = task->group_leader;
2601                                WARN_ON_ONCE(!task_css_set(task)->mg_src_cgrp);
2602                                get_task_struct(task);
2603                        }
2604                        up_read(&css_set_rwsem);
2605
2606                        if (!task)
2607                                break;
2608
2609                        /* guard against possible infinite loop */
2610                        if (WARN(last_task == task,
2611                                 "cgroup: update_dfl_csses failed to make progress, aborting in inconsistent state\n"))
2612                                goto out_finish;
2613                        last_task = task;
2614
2615                        threadgroup_lock(task);
2616                        /* raced against de_thread() from another thread? */
2617                        if (!thread_group_leader(task)) {
2618                                threadgroup_unlock(task);
2619                                put_task_struct(task);
2620                                continue;
2621                        }
2622
2623                        ret = cgroup_migrate(src_cset->dfl_cgrp, task, true);
2624
2625                        threadgroup_unlock(task);
2626                        put_task_struct(task);
2627
2628                        if (WARN(ret, "cgroup: failed to update controllers for the default hierarchy (%d), further operations may crash or hang\n", ret))
2629                                goto out_finish;
2630                }
2631        }
2632
2633out_finish:
2634        cgroup_migrate_finish(&preloaded_csets);
2635        return ret;
2636}
2637
2638/* change the enabled child controllers for a cgroup in the default hierarchy */
2639static ssize_t cgroup_subtree_control_write(struct kernfs_open_file *of,
2640                                            char *buf, size_t nbytes,
2641                                            loff_t off)
2642{
2643        unsigned int enable = 0, disable = 0;
2644        unsigned int css_enable, css_disable, old_ctrl, new_ctrl;
2645        struct cgroup *cgrp, *child;
2646        struct cgroup_subsys *ss;
2647        char *tok;
2648        int ssid, ret;
2649
2650        /*
2651         * Parse input - space separated list of subsystem names prefixed
2652         * with either + or -.
2653         */
2654        buf = strstrip(buf);
2655        while ((tok = strsep(&buf, " "))) {
2656                if (tok[0] == '\0')
2657                        continue;
2658                for_each_subsys(ss, ssid) {
2659                        if (ss->disabled || strcmp(tok + 1, ss->name) ||
2660                            ((1 << ss->id) & cgrp_dfl_root_inhibit_ss_mask))
2661                                continue;
2662
2663                        if (*tok == '+') {
2664                                enable |= 1 << ssid;
2665                                disable &= ~(1 << ssid);
2666                        } else if (*tok == '-') {
2667                                disable |= 1 << ssid;
2668                                enable &= ~(1 << ssid);
2669                        } else {
2670                                return -EINVAL;
2671                        }
2672                        break;
2673                }
2674                if (ssid == CGROUP_SUBSYS_COUNT)
2675                        return -EINVAL;
2676        }
2677
2678        cgrp = cgroup_kn_lock_live(of->kn);
2679        if (!cgrp)
2680                return -ENODEV;
2681
2682        for_each_subsys(ss, ssid) {
2683                if (enable & (1 << ssid)) {
2684                        if (cgrp->subtree_control & (1 << ssid)) {
2685                                enable &= ~(1 << ssid);
2686                                continue;
2687                        }
2688
2689                        /* unavailable or not enabled on the parent? */
2690                        if (!(cgrp_dfl_root.subsys_mask & (1 << ssid)) ||
2691                            (cgroup_parent(cgrp) &&
2692                             !(cgroup_parent(cgrp)->subtree_control & (1 << ssid)))) {
2693                                ret = -ENOENT;
2694                                goto out_unlock;
2695                        }
2696
2697                        /*
2698                         * @ss is already enabled through dependency and
2699                         * we'll just make it visible.  Skip draining.
2700                         */
2701                        if (cgrp->child_subsys_mask & (1 << ssid))
2702                                continue;
2703
2704                        /*
2705                         * Because css offlining is asynchronous, userland
2706                         * might try to re-enable the same controller while
2707                         * the previous instance is still around.  In such
2708                         * cases, wait till it's gone using offline_waitq.
2709                         */
2710                        cgroup_for_each_live_child(child, cgrp) {
2711                                DEFINE_WAIT(wait);
2712
2713                                if (!cgroup_css(child, ss))
2714                                        continue;
2715
2716                                cgroup_get(child);
2717                                prepare_to_wait(&child->offline_waitq, &wait,
2718                                                TASK_UNINTERRUPTIBLE);
2719                                cgroup_kn_unlock(of->kn);
2720                                schedule();
2721                                finish_wait(&child->offline_waitq, &wait);
2722                                cgroup_put(child);
2723
2724                                return restart_syscall();
2725                        }
2726                } else if (disable & (1 << ssid)) {
2727                        if (!(cgrp->subtree_control & (1 << ssid))) {
2728                                disable &= ~(1 << ssid);
2729                                continue;
2730                        }
2731
2732                        /* a child has it enabled? */
2733                        cgroup_for_each_live_child(child, cgrp) {
2734                                if (child->subtree_control & (1 << ssid)) {
2735                                        ret = -EBUSY;
2736                                        goto out_unlock;
2737                                }
2738                        }
2739                }
2740        }
2741
2742        if (!enable && !disable) {
2743                ret = 0;
2744                goto out_unlock;
2745        }
2746
2747        /*
2748         * Except for the root, subtree_control must be zero for a cgroup
2749         * with tasks so that child cgroups don't compete against tasks.
2750         */
2751        if (enable && cgroup_parent(cgrp) && !list_empty(&cgrp->cset_links)) {
2752                ret = -EBUSY;
2753                goto out_unlock;
2754        }
2755
2756        /*
2757         * Update subsys masks and calculate what needs to be done.  More
2758         * subsystems than specified may need to be enabled or disabled
2759         * depending on subsystem dependencies.
2760         */
2761        cgrp->subtree_control |= enable;
2762        cgrp->subtree_control &= ~disable;
2763
2764        old_ctrl = cgrp->child_subsys_mask;
2765        cgroup_refresh_child_subsys_mask(cgrp);
2766        new_ctrl = cgrp->child_subsys_mask;
2767
2768        css_enable = ~old_ctrl & new_ctrl;
2769        css_disable = old_ctrl & ~new_ctrl;
2770        enable |= css_enable;
2771        disable |= css_disable;
2772
2773        /*
2774         * Create new csses or make the existing ones visible.  A css is
2775         * created invisible if it's being implicitly enabled through
2776         * dependency.  An invisible css is made visible when the userland
2777         * explicitly enables it.
2778         */
2779        for_each_subsys(ss, ssid) {
2780                if (!(enable & (1 << ssid)))
2781                        continue;
2782
2783                cgroup_for_each_live_child(child, cgrp) {
2784                        if (css_enable & (1 << ssid))
2785                                ret = create_css(child, ss,
2786                                        cgrp->subtree_control & (1 << ssid));
2787                        else
2788                                ret = cgroup_populate_dir(child, 1 << ssid);
2789                        if (ret)
2790                                goto err_undo_css;
2791                }
2792        }
2793
2794        /*
2795         * At this point, cgroup_e_css() results reflect the new csses
2796         * making the following cgroup_update_dfl_csses() properly update
2797         * css associations of all tasks in the subtree.
2798         */
2799        ret = cgroup_update_dfl_csses(cgrp);
2800        if (ret)
2801                goto err_undo_css;
2802
2803        /*
2804         * All tasks are migrated out of disabled csses.  Kill or hide
2805         * them.  A css is hidden when the userland requests it to be
2806         * disabled while other subsystems are still depending on it.  The
2807         * css must not actively control resources and be in the vanilla
2808         * state if it's made visible again later.  Controllers which may
2809         * be depended upon should provide ->css_reset() for this purpose.
2810         */
2811        for_each_subsys(ss, ssid) {
2812                if (!(disable & (1 << ssid)))
2813                        continue;
2814
2815                cgroup_for_each_live_child(child, cgrp) {
2816                        struct cgroup_subsys_state *css = cgroup_css(child, ss);
2817
2818                        if (css_disable & (1 << ssid)) {
2819                                kill_css(css);
2820                        } else {
2821                                cgroup_clear_dir(child, 1 << ssid);
2822                                if (ss->css_reset)
2823                                        ss->css_reset(css);
2824                        }
2825                }
2826        }
2827
2828        kernfs_activate(cgrp->kn);
2829        ret = 0;
2830out_unlock:
2831        cgroup_kn_unlock(of->kn);
2832        return ret ?: nbytes;
2833
2834err_undo_css:
2835        cgrp->subtree_control &= ~enable;
2836        cgrp->subtree_control |= disable;
2837        cgroup_refresh_child_subsys_mask(cgrp);
2838
2839        for_each_subsys(ss, ssid) {
2840                if (!(enable & (1 << ssid)))
2841                        continue;
2842
2843                cgroup_for_each_live_child(child, cgrp) {
2844                        struct cgroup_subsys_state *css = cgroup_css(child, ss);
2845
2846                        if (!css)
2847                                continue;
2848
2849                        if (css_enable & (1 << ssid))
2850                                kill_css(css);
2851                        else
2852                                cgroup_clear_dir(child, 1 << ssid);
2853                }
2854        }
2855        goto out_unlock;
2856}
2857
2858static int cgroup_populated_show(struct seq_file *seq, void *v)
2859{
2860        seq_printf(seq, "%d\n", (bool)seq_css(seq)->cgroup->populated_cnt);
2861        return 0;
2862}
2863
2864static ssize_t cgroup_file_write(struct kernfs_open_file *of, char *buf,
2865                                 size_t nbytes, loff_t off)
2866{
2867        struct cgroup *cgrp = of->kn->parent->priv;
2868        struct cftype *cft = of->kn->priv;
2869        struct cgroup_subsys_state *css;
2870        int ret;
2871
2872        if (cft->write)
2873                return cft->write(of, buf, nbytes, off);
2874
2875        /*
2876         * kernfs guarantees that a file isn't deleted with operations in
2877         * flight, which means that the matching css is and stays alive and
2878         * doesn't need to be pinned.  The RCU locking is not necessary
2879         * either.  It's just for the convenience of using cgroup_css().
2880         */
2881        rcu_read_lock();
2882        css = cgroup_css(cgrp, cft->ss);
2883        rcu_read_unlock();
2884
2885        if (cft->write_u64) {
2886                unsigned long long v;
2887                ret = kstrtoull(buf, 0, &v);
2888                if (!ret)
2889                        ret = cft->write_u64(css, cft, v);
2890        } else if (cft->write_s64) {
2891                long long v;
2892                ret = kstrtoll(buf, 0, &v);
2893                if (!ret)
2894                        ret = cft->write_s64(css, cft, v);
2895        } else {
2896                ret = -EINVAL;
2897        }
2898
2899        return ret ?: nbytes;
2900}
2901
2902static void *cgroup_seqfile_start(struct seq_file *seq, loff_t *ppos)
2903{
2904        return seq_cft(seq)->seq_start(seq, ppos);
2905}
2906
2907static void *cgroup_seqfile_next(struct seq_file *seq, void *v, loff_t *ppos)
2908{
2909        return seq_cft(seq)->seq_next(seq, v, ppos);
2910}
2911
2912static void cgroup_seqfile_stop(struct seq_file *seq, void *v)
2913{
2914        seq_cft(seq)->seq_stop(seq, v);
2915}
2916
2917static int cgroup_seqfile_show(struct seq_file *m, void *arg)
2918{
2919        struct cftype *cft = seq_cft(m);
2920        struct cgroup_subsys_state *css = seq_css(m);
2921
2922        if (cft->seq_show)
2923                return cft->seq_show(m, arg);
2924
2925        if (cft->read_u64)
2926                seq_printf(m, "%llu\n", cft->read_u64(css, cft));
2927        else if (cft->read_s64)
2928                seq_printf(m, "%lld\n", cft->read_s64(css, cft));
2929        else
2930                return -EINVAL;
2931        return 0;
2932}
2933
2934static struct kernfs_ops cgroup_kf_single_ops = {
2935        .atomic_write_len       = PAGE_SIZE,
2936        .write                  = cgroup_file_write,
2937        .seq_show               = cgroup_seqfile_show,
2938};
2939
2940static struct kernfs_ops cgroup_kf_ops = {
2941        .atomic_write_len       = PAGE_SIZE,
2942        .write                  = cgroup_file_write,
2943        .seq_start              = cgroup_seqfile_start,
2944        .seq_next               = cgroup_seqfile_next,
2945        .seq_stop               = cgroup_seqfile_stop,
2946        .seq_show               = cgroup_seqfile_show,
2947};
2948
2949/*
2950 * cgroup_rename - Only allow simple rename of directories in place.
2951 */
2952static int cgroup_rename(struct kernfs_node *kn, struct kernfs_node *new_parent,
2953                         const char *new_name_str)
2954{
2955        struct cgroup *cgrp = kn->priv;
2956        int ret;
2957
2958        if (kernfs_type(kn) != KERNFS_DIR)
2959                return -ENOTDIR;
2960        if (kn->parent != new_parent)
2961                return -EIO;
2962
2963        /*
2964         * This isn't a proper migration and its usefulness is very
2965         * limited.  Disallow on the default hierarchy.
2966         */
2967        if (cgroup_on_dfl(cgrp))
2968                return -EPERM;
2969
2970        /*
2971         * We're gonna grab cgroup_mutex which nests outside kernfs
2972         * active_ref.  kernfs_rename() doesn't require active_ref
2973         * protection.  Break them before grabbing cgroup_mutex.
2974         */
2975        kernfs_break_active_protection(new_parent);
2976        kernfs_break_active_protection(kn);
2977
2978        mutex_lock(&cgroup_mutex);
2979
2980        ret = kernfs_rename(kn, new_parent, new_name_str);
2981
2982        mutex_unlock(&cgroup_mutex);
2983
2984        kernfs_unbreak_active_protection(kn);
2985        kernfs_unbreak_active_protection(new_parent);
2986        return ret;
2987}
2988
2989/* set uid and gid of cgroup dirs and files to that of the creator */
2990static int cgroup_kn_set_ugid(struct kernfs_node *kn)
2991{
2992        struct iattr iattr = { .ia_valid = ATTR_UID | ATTR_GID,
2993                               .ia_uid = current_fsuid(),
2994                               .ia_gid = current_fsgid(), };
2995
2996        if (uid_eq(iattr.ia_uid, GLOBAL_ROOT_UID) &&
2997            gid_eq(iattr.ia_gid, GLOBAL_ROOT_GID))
2998                return 0;
2999
3000        return kernfs_setattr(kn, &iattr);
3001}
3002
3003static int cgroup_add_file(struct cgroup *cgrp, struct cftype *cft)
3004{
3005        char name[CGROUP_FILE_NAME_MAX];
3006        struct kernfs_node *kn;
3007        struct lock_class_key *key = NULL;
3008        int ret;
3009
3010#ifdef CONFIG_DEBUG_LOCK_ALLOC
3011        key = &cft->lockdep_key;
3012#endif
3013        kn = __kernfs_create_file(cgrp->kn, cgroup_file_name(cgrp, cft, name),
3014                                  cgroup_file_mode(cft), 0, cft->kf_ops, cft,
3015                                  NULL, false, key);
3016        if (IS_ERR(kn))
3017                return PTR_ERR(kn);
3018
3019        ret = cgroup_kn_set_ugid(kn);
3020        if (ret) {
3021                kernfs_remove(kn);
3022                return ret;
3023        }
3024
3025        if (cft->seq_show == cgroup_populated_show)
3026                cgrp->populated_kn = kn;
3027        return 0;
3028}
3029
3030/**
3031 * cgroup_addrm_files - add or remove files to a cgroup directory
3032 * @cgrp: the target cgroup
3033 * @cfts: array of cftypes to be added
3034 * @is_add: whether to add or remove
3035 *
3036 * Depending on @is_add, add or remove files defined by @cfts on @cgrp.
3037 * For removals, this function never fails.  If addition fails, this
3038 * function doesn't remove files already added.  The caller is responsible
3039 * for cleaning up.
3040 */
3041static int cgroup_addrm_files(struct cgroup *cgrp, struct cftype cfts[],
3042                              bool is_add)
3043{
3044        struct cftype *cft;
3045        int ret;
3046
3047        lockdep_assert_held(&cgroup_mutex);
3048
3049        for (cft = cfts; cft->name[0] != '\0'; cft++) {
3050                /* does cft->flags tell us to skip this file on @cgrp? */
3051                if ((cft->flags & __CFTYPE_ONLY_ON_DFL) && !cgroup_on_dfl(cgrp))
3052                        continue;
3053                if ((cft->flags & __CFTYPE_NOT_ON_DFL) && cgroup_on_dfl(cgrp))
3054                        continue;
3055                if ((cft->flags & CFTYPE_NOT_ON_ROOT) && !cgroup_parent(cgrp))
3056                        continue;
3057                if ((cft->flags & CFTYPE_ONLY_ON_ROOT) && cgroup_parent(cgrp))
3058                        continue;
3059
3060                if (is_add) {
3061                        ret = cgroup_add_file(cgrp, cft);
3062                        if (ret) {
3063                                pr_warn("%s: failed to add %s, err=%d\n",
3064                                        __func__, cft->name, ret);
3065                                return ret;
3066                        }
3067                } else {
3068                        cgroup_rm_file(cgrp, cft);
3069                }
3070        }
3071        return 0;
3072}
3073
3074static int cgroup_apply_cftypes(struct cftype *cfts, bool is_add)
3075{
3076        LIST_HEAD(pending);
3077        struct cgroup_subsys *ss = cfts[0].ss;
3078        struct cgroup *root = &ss->root->cgrp;
3079        struct cgroup_subsys_state *css;
3080        int ret = 0;
3081
3082        lockdep_assert_held(&cgroup_mutex);
3083
3084        /* add/rm files for all cgroups created before */
3085        css_for_each_descendant_pre(css, cgroup_css(root, ss)) {
3086                struct cgroup *cgrp = css->cgroup;
3087
3088                if (cgroup_is_dead(cgrp))
3089                        continue;
3090
3091                ret = cgroup_addrm_files(cgrp, cfts, is_add);
3092                if (ret)
3093                        break;
3094        }
3095
3096        if (is_add && !ret)
3097                kernfs_activate(root->kn);
3098        return ret;
3099}
3100
3101static void cgroup_exit_cftypes(struct cftype *cfts)
3102{
3103        struct cftype *cft;
3104
3105        for (cft = cfts; cft->name[0] != '\0'; cft++) {
3106                /* free copy for custom atomic_write_len, see init_cftypes() */
3107                if (cft->max_write_len && cft->max_write_len != PAGE_SIZE)
3108                        kfree(cft->kf_ops);
3109                cft->kf_ops = NULL;
3110                cft->ss = NULL;
3111
3112                /* revert flags set by cgroup core while adding @cfts */
3113                cft->flags &= ~(__CFTYPE_ONLY_ON_DFL | __CFTYPE_NOT_ON_DFL);
3114        }
3115}
3116
3117static int cgroup_init_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
3118{
3119        struct cftype *cft;
3120
3121        for (cft = cfts; cft->name[0] != '\0'; cft++) {
3122                struct kernfs_ops *kf_ops;
3123
3124                WARN_ON(cft->ss || cft->kf_ops);
3125
3126                if (cft->seq_start)
3127                        kf_ops = &cgroup_kf_ops;
3128                else
3129                        kf_ops = &cgroup_kf_single_ops;
3130
3131                /*
3132                 * Ugh... if @cft wants a custom max_write_len, we need to
3133                 * make a copy of kf_ops to set its atomic_write_len.
3134                 */
3135                if (cft->max_write_len && cft->max_write_len != PAGE_SIZE) {
3136                        kf_ops = kmemdup(kf_ops, sizeof(*kf_ops), GFP_KERNEL);
3137                        if (!kf_ops) {
3138                                cgroup_exit_cftypes(cfts);
3139                                return -ENOMEM;
3140                        }
3141                        kf_ops->atomic_write_len = cft->max_write_len;
3142                }
3143
3144                cft->kf_ops = kf_ops;
3145                cft->ss = ss;
3146        }
3147
3148        return 0;
3149}
3150
3151static int cgroup_rm_cftypes_locked(struct cftype *cfts)
3152{
3153        lockdep_assert_held(&cgroup_mutex);
3154
3155        if (!cfts || !cfts[0].ss)
3156                return -ENOENT;
3157
3158        list_del(&cfts->node);
3159        cgroup_apply_cftypes(cfts, false);
3160        cgroup_exit_cftypes(cfts);
3161        return 0;
3162}
3163
3164/**
3165 * cgroup_rm_cftypes - remove an array of cftypes from a subsystem
3166 * @cfts: zero-length name terminated array of cftypes
3167 *
3168 * Unregister @cfts.  Files described by @cfts are removed from all
3169 * existing cgroups and all future cgroups won't have them either.  This
3170 * function can be called anytime whether @cfts' subsys is attached or not.
3171 *
3172 * Returns 0 on successful unregistration, -ENOENT if @cfts is not
3173 * registered.
3174 */
3175int cgroup_rm_cftypes(struct cftype *cfts)
3176{
3177        int ret;
3178
3179        mutex_lock(&cgroup_mutex);
3180        ret = cgroup_rm_cftypes_locked(cfts);
3181        mutex_unlock(&cgroup_mutex);
3182        return ret;
3183}
3184
3185/**
3186 * cgroup_add_cftypes - add an array of cftypes to a subsystem
3187 * @ss: target cgroup subsystem
3188 * @cfts: zero-length name terminated array of cftypes
3189 *
3190 * Register @cfts to @ss.  Files described by @cfts are created for all
3191 * existing cgroups to which @ss is attached and all future cgroups will
3192 * have them too.  This function can be called anytime whether @ss is
3193 * attached or not.
3194 *
3195 * Returns 0 on successful registration, -errno on failure.  Note that this
3196 * function currently returns 0 as long as @cfts registration is successful
3197 * even if some file creation attempts on existing cgroups fail.
3198 */
3199static int cgroup_add_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
3200{
3201        int ret;
3202
3203        if (ss->disabled)
3204                return 0;
3205
3206        if (!cfts || cfts[0].name[0] == '\0')
3207                return 0;
3208
3209        ret = cgroup_init_cftypes(ss, cfts);
3210        if (ret)
3211                return ret;
3212
3213        mutex_lock(&cgroup_mutex);
3214
3215        list_add_tail(&cfts->node, &ss->cfts);
3216        ret = cgroup_apply_cftypes(cfts, true);
3217        if (ret)
3218                cgroup_rm_cftypes_locked(cfts);
3219
3220        mutex_unlock(&cgroup_mutex);
3221        return ret;
3222}
3223
3224/**
3225 * cgroup_add_dfl_cftypes - add an array of cftypes for default hierarchy
3226 * @ss: target cgroup subsystem
3227 * @cfts: zero-length name terminated array of cftypes
3228 *
3229 * Similar to cgroup_add_cftypes() but the added files are only used for
3230 * the default hierarchy.
3231 */
3232int cgroup_add_dfl_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
3233{
3234        struct cftype *cft;
3235
3236        for (cft = cfts; cft && cft->name[0] != '\0'; cft++)
3237                cft->flags |= __CFTYPE_ONLY_ON_DFL;
3238        return cgroup_add_cftypes(ss, cfts);
3239}
3240
3241/**
3242 * cgroup_add_legacy_cftypes - add an array of cftypes for legacy hierarchies
3243 * @ss: target cgroup subsystem
3244 * @cfts: zero-length name terminated array of cftypes
3245 *
3246 * Similar to cgroup_add_cftypes() but the added files are only used for
3247 * the legacy hierarchies.
3248 */
3249int cgroup_add_legacy_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
3250{
3251        struct cftype *cft;
3252
3253        /*
3254         * If legacy_flies_on_dfl, we want to show the legacy files on the
3255         * dfl hierarchy but iff the target subsystem hasn't been updated
3256         * for the dfl hierarchy yet.
3257         */
3258        if (!cgroup_legacy_files_on_dfl ||
3259            ss->dfl_cftypes != ss->legacy_cftypes) {
3260                for (cft = cfts; cft && cft->name[0] != '\0'; cft++)
3261                        cft->flags |= __CFTYPE_NOT_ON_DFL;
3262        }
3263
3264        return cgroup_add_cftypes(ss, cfts);
3265}
3266
3267/**
3268 * cgroup_task_count - count the number of tasks in a cgroup.
3269 * @cgrp: the cgroup in question
3270 *
3271 * Return the number of tasks in the cgroup.
3272 */
3273static int cgroup_task_count(const struct cgroup *cgrp)
3274{
3275        int count = 0;
3276        struct cgrp_cset_link *link;
3277
3278        down_read(&css_set_rwsem);
3279        list_for_each_entry(link, &cgrp->cset_links, cset_link)
3280                count += atomic_read(&link->cset->refcount);
3281        up_read(&css_set_rwsem);
3282        return count;
3283}
3284
3285/**
3286 * css_next_child - find the next child of a given css
3287 * @pos: the current position (%NULL to initiate traversal)
3288 * @parent: css whose children to walk
3289 *
3290 * This function returns the next child of @parent and should be called
3291 * under either cgroup_mutex or RCU read lock.  The only requirement is
3292 * that @parent and @pos are accessible.  The next sibling is guaranteed to
3293 * be returned regardless of their states.
3294 *
3295 * If a subsystem synchronizes ->css_online() and the start of iteration, a
3296 * css which finished ->css_online() is guaranteed to be visible in the
3297 * future iterations and will stay visible until the last reference is put.
3298 * A css which hasn't finished ->css_online() or already finished
3299 * ->css_offline() may show up during traversal.  It's each subsystem's
3300 * responsibility to synchronize against on/offlining.
3301 */
3302struct cgroup_subsys_state *css_next_child(struct cgroup_subsys_state *pos,
3303                                           struct cgroup_subsys_state *parent)
3304{
3305        struct cgroup_subsys_state *next;
3306
3307        cgroup_assert_mutex_or_rcu_locked();
3308
3309        /*
3310         * @pos could already have been unlinked from the sibling list.
3311         * Once a cgroup is removed, its ->sibling.next is no longer
3312         * updated when its next sibling changes.  CSS_RELEASED is set when
3313         * @pos is taken off list, at which time its next pointer is valid,
3314         * and, as releases are serialized, the one pointed to by the next
3315         * pointer is guaranteed to not have started release yet.  This
3316         * implies that if we observe !CSS_RELEASED on @pos in this RCU
3317         * critical section, the one pointed to by its next pointer is
3318         * guaranteed to not have finished its RCU grace period even if we
3319         * have dropped rcu_read_lock() inbetween iterations.
3320         *
3321         * If @pos has CSS_RELEASED set, its next pointer can't be
3322         * dereferenced; however, as each css is given a monotonically
3323         * increasing unique serial number and always appended to the
3324         * sibling list, the next one can be found by walking the parent's
3325         * children until the first css with higher serial number than
3326         * @pos's.  While this path can be slower, it happens iff iteration
3327         * races against release and the race window is very small.
3328         */
3329        if (!pos) {
3330                next = list_entry_rcu(parent->children.next, struct cgroup_subsys_state, sibling);
3331        } else if (likely(!(pos->flags & CSS_RELEASED))) {
3332                next = list_entry_rcu(pos->sibling.next, struct cgroup_subsys_state, sibling);
3333        } else {
3334                list_for_each_entry_rcu(next, &parent->children, sibling)
3335                        if (next->serial_nr > pos->serial_nr)
3336                                break;
3337        }
3338
3339        /*
3340         * @next, if not pointing to the head, can be dereferenced and is
3341         * the next sibling.
3342         */
3343        if (&next->sibling != &parent->children)
3344                return next;
3345        return NULL;
3346}
3347
3348/**
3349 * css_next_descendant_pre - find the next descendant for pre-order walk
3350 * @pos: the current position (%NULL to initiate traversal)
3351 * @root: css whose descendants to walk
3352 *
3353 * To be used by css_for_each_descendant_pre().  Find the next descendant
3354 * to visit for pre-order traversal of @root's descendants.  @root is
3355 * included in the iteration and the first node to be visited.
3356 *
3357 * While this function requires cgroup_mutex or RCU read locking, it
3358 * doesn't require the whole traversal to be contained in a single critical
3359 * section.  This function will return the correct next descendant as long
3360 * as both @pos and @root are accessible and @pos is a descendant of @root.
3361 *
3362 * If a subsystem synchronizes ->css_online() and the start of iteration, a
3363 * css which finished ->css_online() is guaranteed to be visible in the
3364 * future iterations and will stay visible until the last reference is put.
3365 * A css which hasn't finished ->css_online() or already finished
3366 * ->css_offline() may show up during traversal.  It's each subsystem's
3367 * responsibility to synchronize against on/offlining.
3368 */
3369struct cgroup_subsys_state *
3370css_next_descendant_pre(struct cgroup_subsys_state *pos,
3371                        struct cgroup_subsys_state *root)
3372{
3373        struct cgroup_subsys_state *next;
3374
3375        cgroup_assert_mutex_or_rcu_locked();
3376
3377        /* if first iteration, visit @root */
3378        if (!pos)
3379                return root;
3380
3381        /* visit the first child if exists */
3382        next = css_next_child(NULL, pos);
3383        if (next)
3384                return next;
3385
3386        /* no child, visit my or the closest ancestor's next sibling */
3387        while (pos != root) {
3388                next = css_next_child(pos, pos->parent);
3389                if (next)
3390                        return next;
3391                pos = pos->parent;
3392        }
3393
3394        return NULL;
3395}
3396
3397/**
3398 * css_rightmost_descendant - return the rightmost descendant of a css
3399 * @pos: css of interest
3400 *
3401 * Return the rightmost descendant of @pos.  If there's no descendant, @pos
3402 * is returned.  This can be used during pre-order traversal to skip
3403 * subtree of @pos.
3404 *
3405 * While this function requires cgroup_mutex or RCU read locking, it
3406 * doesn't require the whole traversal to be contained in a single critical
3407 * section.  This function will return the correct rightmost descendant as
3408 * long as @pos is accessible.
3409 */
3410struct cgroup_subsys_state *
3411css_rightmost_descendant(struct cgroup_subsys_state *pos)
3412{
3413        struct cgroup_subsys_state *last, *tmp;
3414
3415        cgroup_assert_mutex_or_rcu_locked();
3416
3417        do {
3418                last = pos;
3419                /* ->prev isn't RCU safe, walk ->next till the end */
3420                pos = NULL;
3421                css_for_each_child(tmp, last)
3422                        pos = tmp;
3423        } while (pos);
3424
3425        return last;
3426}
3427
3428static struct cgroup_subsys_state *
3429css_leftmost_descendant(struct cgroup_subsys_state *pos)
3430{
3431        struct cgroup_subsys_state *last;
3432
3433        do {
3434                last = pos;
3435                pos = css_next_child(NULL, pos);
3436        } while (pos);
3437
3438        return last;
3439}
3440
3441/**
3442 * css_next_descendant_post - find the next descendant for post-order walk
3443 * @pos: the current position (%NULL to initiate traversal)
3444 * @root: css whose descendants to walk
3445 *
3446 * To be used by css_for_each_descendant_post().  Find the next descendant
3447 * to visit for post-order traversal of @root's descendants.  @root is
3448 * included in the iteration and the last node to be visited.
3449 *
3450 * While this function requires cgroup_mutex or RCU read locking, it
3451 * doesn't require the whole traversal to be contained in a single critical
3452 * section.  This function will return the correct next descendant as long
3453 * as both @pos and @cgroup are accessible and @pos is a descendant of
3454 * @cgroup.
3455 *
3456 * If a subsystem synchronizes ->css_online() and the start of iteration, a
3457 * css which finished ->css_online() is guaranteed to be visible in the
3458 * future iterations and will stay visible until the last reference is put.
3459 * A css which hasn't finished ->css_online() or already finished
3460 * ->css_offline() may show up during traversal.  It's each subsystem's
3461 * responsibility to synchronize against on/offlining.
3462 */
3463struct cgroup_subsys_state *
3464css_next_descendant_post(struct cgroup_subsys_state *pos,
3465                         struct cgroup_subsys_state *root)
3466{
3467        struct cgroup_subsys_state *next;
3468
3469        cgroup_assert_mutex_or_rcu_locked();
3470
3471        /* if first iteration, visit leftmost descendant which may be @root */
3472        if (!pos)
3473                return css_leftmost_descendant(root);
3474
3475        /* if we visited @root, we're done */
3476        if (pos == root)
3477                return NULL;
3478
3479        /* if there's an unvisited sibling, visit its leftmost descendant */
3480        next = css_next_child(pos, pos->parent);
3481        if (next)
3482                return css_leftmost_descendant(next);
3483
3484        /* no sibling left, visit parent */
3485        return pos->parent;
3486}
3487
3488/**
3489 * css_has_online_children - does a css have online children
3490 * @css: the target css
3491 *
3492 * Returns %true if @css has any online children; otherwise, %false.  This
3493 * function can be called from any context but the caller is responsible
3494 * for synchronizing against on/offlining as necessary.
3495 */
3496bool css_has_online_children(struct cgroup_subsys_state *css)
3497{
3498        struct cgroup_subsys_state *child;
3499        bool ret = false;
3500
3501        rcu_read_lock();
3502        css_for_each_child(child, css) {
3503                if (child->flags & CSS_ONLINE) {
3504                        ret = true;
3505                        break;
3506                }
3507        }
3508        rcu_read_unlock();
3509        return ret;
3510}
3511
3512/**
3513 * css_advance_task_iter - advance a task itererator to the next css_set
3514 * @it: the iterator to advance
3515 *
3516 * Advance @it to the next css_set to walk.
3517 */
3518static void css_advance_task_iter(struct css_task_iter *it)
3519{
3520        struct list_head *l = it->cset_pos;
3521        struct cgrp_cset_link *link;
3522        struct css_set *cset;
3523
3524        /* Advance to the next non-empty css_set */
3525        do {
3526                l = l->next;
3527                if (l == it->cset_head) {
3528                        it->cset_pos = NULL;
3529                        return;
3530                }
3531
3532                if (it->ss) {
3533                        cset = container_of(l, struct css_set,
3534                                            e_cset_node[it->ss->id]);
3535                } else {
3536                        link = list_entry(l, struct cgrp_cset_link, cset_link);
3537                        cset = link->cset;
3538                }
3539        } while (list_empty(&cset->tasks) && list_empty(&cset->mg_tasks));
3540
3541        it->cset_pos = l;
3542
3543        if (!list_empty(&cset->tasks))
3544                it->task_pos = cset->tasks.next;
3545        else
3546                it->task_pos = cset->mg_tasks.next;
3547
3548        it->tasks_head = &cset->tasks;
3549        it->mg_tasks_head = &cset->mg_tasks;
3550}
3551
3552/**
3553 * css_task_iter_start - initiate task iteration
3554 * @css: the css to walk tasks of
3555 * @it: the task iterator to use
3556 *
3557 * Initiate iteration through the tasks of @css.  The caller can call
3558 * css_task_iter_next() to walk through the tasks until the function
3559 * returns NULL.  On completion of iteration, css_task_iter_end() must be
3560 * called.
3561 *
3562 * Note that this function acquires a lock which is released when the
3563 * iteration finishes.  The caller can't sleep while iteration is in
3564 * progress.
3565 */
3566void css_task_iter_start(struct cgroup_subsys_state *css,
3567                         struct css_task_iter *it)
3568        __acquires(css_set_rwsem)
3569{
3570        /* no one should try to iterate before mounting cgroups */
3571        WARN_ON_ONCE(!use_task_css_set_links);
3572
3573        down_read(&css_set_rwsem);
3574
3575        it->ss = css->ss;
3576
3577        if (it->ss)
3578                it->cset_pos = &css->cgroup->e_csets[css->ss->id];
3579        else
3580                it->cset_pos = &css->cgroup->cset_links;
3581
3582        it->cset_head = it->cset_pos;
3583
3584        css_advance_task_iter(it);
3585}
3586
3587/**
3588 * css_task_iter_next - return the next task for the iterator
3589 * @it: the task iterator being iterated
3590 *
3591 * The "next" function for task iteration.  @it should have been
3592 * initialized via css_task_iter_start().  Returns NULL when the iteration
3593 * reaches the end.
3594 */
3595struct task_struct *css_task_iter_next(struct css_task_iter *it)
3596{
3597        struct task_struct *res;
3598        struct list_head *l = it->task_pos;
3599
3600        /* If the iterator cg is NULL, we have no tasks */
3601        if (!it->cset_pos)
3602                return NULL;
3603        res = list_entry(l, struct task_struct, cg_list);
3604
3605        /*
3606         * Advance iterator to find next entry.  cset->tasks is consumed
3607         * first and then ->mg_tasks.  After ->mg_tasks, we move onto the
3608         * next cset.
3609         */
3610        l = l->next;
3611
3612        if (l == it->tasks_head)
3613                l = it->mg_tasks_head->next;
3614
3615        if (l == it->mg_tasks_head)
3616                css_advance_task_iter(it);
3617        else
3618                it->task_pos = l;
3619
3620        return res;
3621}
3622
3623/**
3624 * css_task_iter_end - finish task iteration
3625 * @it: the task iterator to finish
3626 *
3627 * Finish task iteration started by css_task_iter_start().
3628 */
3629void css_task_iter_end(struct css_task_iter *it)
3630        __releases(css_set_rwsem)
3631{
3632        up_read(&css_set_rwsem);
3633}
3634
3635/**
3636 * cgroup_trasnsfer_tasks - move tasks from one cgroup to another
3637 * @to: cgroup to which the tasks will be moved
3638 * @from: cgroup in which the tasks currently reside
3639 *
3640 * Locking rules between cgroup_post_fork() and the migration path
3641 * guarantee that, if a task is forking while being migrated, the new child
3642 * is guaranteed to be either visible in the source cgroup after the
3643 * parent's migration is complete or put into the target cgroup.  No task
3644 * can slip out of migration through forking.
3645 */
3646int cgroup_transfer_tasks(struct cgroup *to, struct cgroup *from)
3647{
3648        LIST_HEAD(preloaded_csets);
3649        struct cgrp_cset_link *link;
3650        struct css_task_iter it;
3651        struct task_struct *task;
3652        int ret;
3653
3654        mutex_lock(&cgroup_mutex);
3655
3656        /* all tasks in @from are being moved, all csets are source */
3657        down_read(&css_set_rwsem);
3658        list_for_each_entry(link, &from->cset_links, cset_link)
3659                cgroup_migrate_add_src(link->cset, to, &preloaded_csets);
3660        up_read(&css_set_rwsem);
3661
3662        ret = cgroup_migrate_prepare_dst(to, &preloaded_csets);
3663        if (ret)
3664                goto out_err;
3665
3666        /*
3667         * Migrate tasks one-by-one until @form is empty.  This fails iff
3668         * ->can_attach() fails.
3669         */
3670        do {
3671                css_task_iter_start(&from->self, &it);
3672                task = css_task_iter_next(&it);
3673                if (task)
3674                        get_task_struct(task);
3675                css_task_iter_end(&it);
3676
3677                if (task) {
3678                        ret = cgroup_migrate(to, task, false);
3679                        put_task_struct(task);
3680                }
3681        } while (task && !ret);
3682out_err:
3683        cgroup_migrate_finish(&preloaded_csets);
3684        mutex_unlock(&cgroup_mutex);
3685        return ret;
3686}
3687
3688/*
3689 * Stuff for reading the 'tasks'/'procs' files.
3690 *
3691 * Reading this file can return large amounts of data if a cgroup has
3692 * *lots* of attached tasks. So it may need several calls to read(),
3693 * but we cannot guarantee that the information we produce is correct
3694 * unless we produce it entirely atomically.
3695 *
3696 */
3697
3698/* which pidlist file are we talking about? */
3699enum cgroup_filetype {
3700        CGROUP_FILE_PROCS,
3701        CGROUP_FILE_TASKS,
3702};
3703
3704/*
3705 * A pidlist is a list of pids that virtually represents the contents of one
3706 * of the cgroup files ("procs" or "tasks"). We keep a list of such pidlists,
3707 * a pair (one each for procs, tasks) for each pid namespace that's relevant
3708 * to the cgroup.
3709 */
3710struct cgroup_pidlist {
3711        /*
3712         * used to find which pidlist is wanted. doesn't change as long as
3713         * this particular list stays in the list.
3714        */
3715        struct { enum cgroup_filetype type; struct pid_namespace *ns; } key;
3716        /* array of xids */
3717        pid_t *list;
3718        /* how many elements the above list has */
3719        int length;
3720        /* each of these stored in a list by its cgroup */
3721        struct list_head links;
3722        /* pointer to the cgroup we belong to, for list removal purposes */
3723        struct cgroup *owner;
3724        /* for delayed destruction */
3725        struct delayed_work destroy_dwork;
3726};
3727
3728/*
3729 * The following two functions "fix" the issue where there are more pids
3730 * than kmalloc will give memory for; in such cases, we use vmalloc/vfree.
3731 * TODO: replace with a kernel-wide solution to this problem
3732 */
3733#define PIDLIST_TOO_LARGE(c) ((c) * sizeof(pid_t) > (PAGE_SIZE * 2))
3734static void *pidlist_allocate(int count)
3735{
3736        if (PIDLIST_TOO_LARGE(count))
3737                return vmalloc(count * sizeof(pid_t));
3738        else
3739                return kmalloc(count * sizeof(pid_t), GFP_KERNEL);
3740}
3741
3742static void pidlist_free(void *p)
3743{
3744        if (is_vmalloc_addr(p))
3745                vfree(p);
3746        else
3747                kfree(p);
3748}
3749
3750/*
3751 * Used to destroy all pidlists lingering waiting for destroy timer.  None
3752 * should be left afterwards.
3753 */
3754static void cgroup_pidlist_destroy_all(struct cgroup *cgrp)
3755{
3756        struct cgroup_pidlist *l, *tmp_l;
3757
3758        mutex_lock(&cgrp->pidlist_mutex);
3759        list_for_each_entry_safe(l, tmp_l, &cgrp->pidlists, links)
3760                mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork, 0);
3761        mutex_unlock(&cgrp->pidlist_mutex);
3762
3763        flush_workqueue(cgroup_pidlist_destroy_wq);
3764        BUG_ON(!list_empty(&cgrp->pidlists));
3765}
3766
3767static void cgroup_pidlist_destroy_work_fn(struct work_struct *work)
3768{
3769        struct delayed_work *dwork = to_delayed_work(work);
3770        struct cgroup_pidlist *l = container_of(dwork, struct cgroup_pidlist,
3771                                                destroy_dwork);
3772        struct cgroup_pidlist *tofree = NULL;
3773
3774        mutex_lock(&l->owner->pidlist_mutex);
3775
3776        /*
3777         * Destroy iff we didn't get queued again.  The state won't change
3778         * as destroy_dwork can only be queued while locked.
3779         */
3780        if (!delayed_work_pending(dwork)) {
3781                list_del(&l->links);
3782                pidlist_free(l->list);
3783                put_pid_ns(l->key.ns);
3784                tofree = l;
3785        }
3786
3787        mutex_unlock(&l->owner->pidlist_mutex);
3788        kfree(tofree);
3789}
3790
3791/*
3792 * pidlist_uniq - given a kmalloc()ed list, strip out all duplicate entries
3793 * Returns the number of unique elements.
3794 */
3795static int pidlist_uniq(pid_t *list, int length)
3796{
3797        int src, dest = 1;
3798
3799        /*
3800         * we presume the 0th element is unique, so i starts at 1. trivial
3801         * edge cases first; no work needs to be done for either
3802         */
3803        if (length == 0 || length == 1)
3804                return length;
3805        /* src and dest walk down the list; dest counts unique elements */
3806        for (src = 1; src < length; src++) {
3807                /* find next unique element */
3808                while (list[src] == list[src-1]) {
3809                        src++;
3810                        if (src == length)
3811                                goto after;
3812                }
3813                /* dest always points to where the next unique element goes */
3814                list[dest] = list[src];
3815                dest++;
3816        }
3817after:
3818        return dest;
3819}
3820
3821/*
3822 * The two pid files - task and cgroup.procs - guaranteed that the result
3823 * is sorted, which forced this whole pidlist fiasco.  As pid order is
3824 * different per namespace, each namespace needs differently sorted list,
3825 * making it impossible to use, for example, single rbtree of member tasks
3826 * sorted by task pointer.  As pidlists can be fairly large, allocating one
3827 * per open file is dangerous, so cgroup had to implement shared pool of
3828 * pidlists keyed by cgroup and namespace.
3829 *
3830 * All this extra complexity was caused by the original implementation
3831 * committing to an entirely unnecessary property.  In the long term, we
3832 * want to do away with it.  Explicitly scramble sort order if on the
3833 * default hierarchy so that no such expectation exists in the new
3834 * interface.
3835 *
3836 * Scrambling is done by swapping every two consecutive bits, which is
3837 * non-identity one-to-one mapping which disturbs sort order sufficiently.
3838 */
3839static pid_t pid_fry(pid_t pid)
3840{
3841        unsigned a = pid & 0x55555555;
3842        unsigned b = pid & 0xAAAAAAAA;
3843
3844        return (a << 1) | (b >> 1);
3845}
3846
3847static pid_t cgroup_pid_fry(struct cgroup *cgrp, pid_t pid)
3848{
3849        if (cgroup_on_dfl(cgrp))
3850                return pid_fry(pid);
3851        else
3852                return pid;
3853}
3854
3855static int cmppid(const void *a, const void *b)
3856{
3857        return *(pid_t *)a - *(pid_t *)b;
3858}
3859
3860static int fried_cmppid(const void *a, const void *b)
3861{
3862        return pid_fry(*(pid_t *)a) - pid_fry(*(pid_t *)b);
3863}
3864
3865static struct cgroup_pidlist *cgroup_pidlist_find(struct cgroup *cgrp,
3866                                                  enum cgroup_filetype type)
3867{
3868        struct cgroup_pidlist *l;
3869        /* don't need task_nsproxy() if we're looking at ourself */
3870        struct pid_namespace *ns = task_active_pid_ns(current);
3871
3872        lockdep_assert_held(&cgrp->pidlist_mutex);
3873
3874        list_for_each_entry(l, &cgrp->pidlists, links)
3875                if (l->key.type == type && l->key.ns == ns)
3876                        return l;
3877        return NULL;
3878}
3879
3880/*
3881 * find the appropriate pidlist for our purpose (given procs vs tasks)
3882 * returns with the lock on that pidlist already held, and takes care
3883 * of the use count, or returns NULL with no locks held if we're out of
3884 * memory.
3885 */
3886static struct cgroup_pidlist *cgroup_pidlist_find_create(struct cgroup *cgrp,
3887                                                enum cgroup_filetype type)
3888{
3889        struct cgroup_pidlist *l;
3890
3891        lockdep_assert_held(&cgrp->pidlist_mutex);
3892
3893        l = cgroup_pidlist_find(cgrp, type);
3894        if (l)
3895                return l;
3896
3897        /* entry not found; create a new one */
3898        l = kzalloc(sizeof(struct cgroup_pidlist), GFP_KERNEL);
3899        if (!l)
3900                return l;
3901
3902        INIT_DELAYED_WORK(&l->destroy_dwork, cgroup_pidlist_destroy_work_fn);
3903        l->key.type = type;
3904        /* don't need task_nsproxy() if we're looking at ourself */
3905        l->key.ns = get_pid_ns(task_active_pid_ns(current));
3906        l->owner = cgrp;
3907        list_add(&l->links, &cgrp->pidlists);
3908        return l;
3909}
3910
3911/*
3912 * Load a cgroup's pidarray with either procs' tgids or tasks' pids
3913 */
3914static int pidlist_array_load(struct cgroup *cgrp, enum cgroup_filetype type,
3915                              struct cgroup_pidlist **lp)
3916{
3917        pid_t *array;
3918        int length;
3919        int pid, n = 0; /* used for populating the array */
3920        struct css_task_iter it;
3921        struct task_struct *tsk;
3922        struct cgroup_pidlist *l;
3923
3924        lockdep_assert_held(&cgrp->pidlist_mutex);
3925
3926        /*
3927         * If cgroup gets more users after we read count, we won't have
3928         * enough space - tough.  This race is indistinguishable to the
3929         * caller from the case that the additional cgroup users didn't
3930         * show up until sometime later on.
3931         */
3932        length = cgroup_task_count(cgrp);
3933        array = pidlist_allocate(length);
3934        if (!array)
3935                return -ENOMEM;
3936        /* now, populate the array */
3937        css_task_iter_start(&cgrp->self, &it);
3938        while ((tsk = css_task_iter_next(&it))) {
3939                if (unlikely(n == length))
3940                        break;
3941                /* get tgid or pid for procs or tasks file respectively */
3942                if (type == CGROUP_FILE_PROCS)
3943                        pid = task_tgid_vnr(tsk);
3944                else
3945                        pid = task_pid_vnr(tsk);
3946                if (pid > 0) /* make sure to only use valid results */
3947                        array[n++] = pid;
3948        }
3949        css_task_iter_end(&it);
3950        length = n;
3951        /* now sort & (if procs) strip out duplicates */
3952        if (cgroup_on_dfl(cgrp))
3953                sort(array, length, sizeof(pid_t), fried_cmppid, NULL);
3954        else
3955                sort(array, length, sizeof(pid_t), cmppid, NULL);
3956        if (type == CGROUP_FILE_PROCS)
3957                length = pidlist_uniq(array, length);
3958
3959        l = cgroup_pidlist_find_create(cgrp, type);
3960        if (!l) {
3961                pidlist_free(array);
3962                return -ENOMEM;
3963        }
3964
3965        /* store array, freeing old if necessary */
3966        pidlist_free(l->list);
3967        l->list = array;
3968        l->length = length;
3969        *lp = l;
3970        return 0;
3971}
3972
3973/**
3974 * cgroupstats_build - build and fill cgroupstats
3975 * @stats: cgroupstats to fill information into
3976 * @dentry: A dentry entry belonging to the cgroup for which stats have
3977 * been requested.
3978 *
3979 * Build and fill cgroupstats so that taskstats can export it to user
3980 * space.
3981 */
3982int cgroupstats_build(struct cgroupstats *stats, struct dentry *dentry)
3983{
3984        struct kernfs_node *kn = kernfs_node_from_dentry(dentry);
3985        struct cgroup *cgrp;
3986        struct css_task_iter it;
3987        struct task_struct *tsk;
3988
3989        /* it should be kernfs_node belonging to cgroupfs and is a directory */
3990        if (dentry->d_sb->s_type != &cgroup_fs_type || !kn ||
3991            kernfs_type(kn) != KERNFS_DIR)
3992                return -EINVAL;
3993
3994        mutex_lock(&cgroup_mutex);
3995
3996        /*
3997         * We aren't being called from kernfs and there's no guarantee on
3998         * @kn->priv's validity.  For this and css_tryget_online_from_dir(),
3999         * @kn->priv is RCU safe.  Let's do the RCU dancing.
4000         */
4001        rcu_read_lock();
4002        cgrp = rcu_dereference(kn->priv);
4003        if (!cgrp || cgroup_is_dead(cgrp)) {
4004                rcu_read_unlock();
4005                mutex_unlock(&cgroup_mutex);
4006                return -ENOENT;
4007        }
4008        rcu_read_unlock();
4009
4010        css_task_iter_start(&cgrp->self, &it);
4011        while ((tsk = css_task_iter_next(&it))) {
4012                switch (tsk->state) {
4013                case TASK_RUNNING:
4014                        stats->nr_running++;
4015                        break;
4016                case TASK_INTERRUPTIBLE:
4017                        stats->nr_sleeping++;
4018                        break;
4019                case TASK_UNINTERRUPTIBLE:
4020                        stats->nr_uninterruptible++;
4021                        break;
4022                case TASK_STOPPED:
4023                        stats->nr_stopped++;
4024                        break;
4025                default:
4026                        if (delayacct_is_task_waiting_on_io(tsk))
4027                                stats->nr_io_wait++;
4028                        break;
4029                }
4030        }
4031        css_task_iter_end(&it);
4032
4033        mutex_unlock(&cgroup_mutex);
4034        return 0;
4035}
4036
4037
4038/*
4039 * seq_file methods for the tasks/procs files. The seq_file position is the
4040 * next pid to display; the seq_file iterator is a pointer to the pid
4041 * in the cgroup->l->list array.
4042 */
4043
4044static void *cgroup_pidlist_start(struct seq_file *s, loff_t *pos)
4045{
4046        /*
4047         * Initially we receive a position value that corresponds to
4048         * one more than the last pid shown (or 0 on the first call or
4049         * after a seek to the start). Use a binary-search to find the
4050         * next pid to display, if any
4051         */
4052        struct kernfs_open_file *of = s->private;
4053        struct cgroup *cgrp = seq_css(s)->cgroup;
4054        struct cgroup_pidlist *l;
4055        enum cgroup_filetype type = seq_cft(s)->private;
4056        int index = 0, pid = *pos;
4057        int *iter, ret;
4058
4059        mutex_lock(&cgrp->pidlist_mutex);
4060
4061        /*
4062         * !NULL @of->priv indicates that this isn't the first start()
4063         * after open.  If the matching pidlist is around, we can use that.
4064         * Look for it.  Note that @of->priv can't be used directly.  It
4065         * could already have been destroyed.
4066         */
4067        if (of->priv)
4068                of->priv = cgroup_pidlist_find(cgrp, type);
4069
4070        /*
4071         * Either this is the first start() after open or the matching
4072         * pidlist has been destroyed inbetween.  Create a new one.
4073         */
4074        if (!of->priv) {
4075                ret = pidlist_array_load(cgrp, type,
4076                                         (struct cgroup_pidlist **)&of->priv);
4077                if (ret)
4078                        return ERR_PTR(ret);
4079        }
4080        l = of->priv;
4081
4082        if (pid) {
4083                int end = l->length;
4084
4085                while (index < end) {
4086                        int mid = (index + end) / 2;
4087                        if (cgroup_pid_fry(cgrp, l->list[mid]) == pid) {
4088                                index = mid;
4089                                break;
4090                        } else if (cgroup_pid_fry(cgrp, l->list[mid]) <= pid)
4091                                index = mid + 1;
4092                        else
4093                                end = mid;
4094                }
4095        }
4096        /* If we're off the end of the array, we're done */
4097        if (index >= l->length)
4098                return NULL;
4099        /* Update the abstract position to be the actual pid that we found */
4100        iter = l->list + index;
4101        *pos = cgroup_pid_fry(cgrp, *iter);
4102        return iter;
4103}
4104
4105static void cgroup_pidlist_stop(struct seq_file *s, void *v)
4106{
4107        struct kernfs_open_file *of = s->private;
4108        struct cgroup_pidlist *l = of->priv;
4109
4110        if (l)
4111                mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork,
4112                                 CGROUP_PIDLIST_DESTROY_DELAY);
4113        mutex_unlock(&seq_css(s)->cgroup->pidlist_mutex);
4114}
4115
4116static void *cgroup_pidlist_next(struct seq_file *s, void *v, loff_t *pos)
4117{
4118        struct kernfs_open_file *of = s->private;
4119        struct cgroup_pidlist *l = of->priv;
4120        pid_t *p = v;
4121        pid_t *end = l->list + l->length;
4122        /*
4123         * Advance to the next pid in the array. If this goes off the
4124         * end, we're done
4125         */
4126        p++;
4127        if (p >= end) {
4128                return NULL;
4129        } else {
4130                *pos = cgroup_pid_fry(seq_css(s)->cgroup, *p);
4131                return p;
4132        }
4133}
4134
4135static int cgroup_pidlist_show(struct seq_file *s, void *v)
4136{
4137        return seq_printf(s, "%d\n", *(int *)v);
4138}
4139
4140static u64 cgroup_read_notify_on_release(struct cgroup_subsys_state *css,
4141                                         struct cftype *cft)
4142{
4143        return notify_on_release(css->cgroup);
4144}
4145
4146static int cgroup_write_notify_on_release(struct cgroup_subsys_state *css,
4147                                          struct cftype *cft, u64 val)
4148{
4149        if (val)
4150                set_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags);
4151        else
4152                clear_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags);
4153        return 0;
4154}
4155
4156static u64 cgroup_clone_children_read(struct cgroup_subsys_state *css,
4157                                      struct cftype *cft)
4158{
4159        return test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
4160}
4161
4162static int cgroup_clone_children_write(struct cgroup_subsys_state *css,
4163                                       struct cftype *cft, u64 val)
4164{
4165        if (val)
4166                set_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
4167        else
4168                clear_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
4169        return 0;
4170}
4171
4172/* cgroup core interface files for the default hierarchy */
4173static struct cftype cgroup_dfl_base_files[] = {
4174        {
4175                .name = "cgroup.procs",
4176                .seq_start = cgroup_pidlist_start,
4177                .seq_next = cgroup_pidlist_next,
4178                .seq_stop = cgroup_pidlist_stop,
4179                .seq_show = cgroup_pidlist_show,
4180                .private = CGROUP_FILE_PROCS,
4181                .write = cgroup_procs_write,
4182                .mode = S_IRUGO | S_IWUSR,
4183        },
4184        {
4185                .name = "cgroup.controllers",
4186                .flags = CFTYPE_ONLY_ON_ROOT,
4187                .seq_show = cgroup_root_controllers_show,
4188        },
4189        {
4190                .name = "cgroup.controllers",
4191                .flags = CFTYPE_NOT_ON_ROOT,
4192                .seq_show = cgroup_controllers_show,
4193        },
4194        {
4195                .name = "cgroup.subtree_control",
4196                .seq_show = cgroup_subtree_control_show,
4197                .write = cgroup_subtree_control_write,
4198        },
4199        {
4200                .name = "cgroup.populated",
4201                .flags = CFTYPE_NOT_ON_ROOT,
4202                .seq_show = cgroup_populated_show,
4203        },
4204        { }     /* terminate */
4205};
4206
4207/* cgroup core interface files for the legacy hierarchies */
4208static struct cftype cgroup_legacy_base_files[] = {
4209        {
4210                .name = "cgroup.procs",
4211                .seq_start = cgroup_pidlist_start,
4212                .seq_next = cgroup_pidlist_next,
4213                .seq_stop = cgroup_pidlist_stop,
4214                .seq_show = cgroup_pidlist_show,
4215                .private = CGROUP_FILE_PROCS,
4216                .write = cgroup_procs_write,
4217                .mode = S_IRUGO | S_IWUSR,
4218        },
4219        {
4220                .name = "cgroup.clone_children",
4221                .read_u64 = cgroup_clone_children_read,
4222                .write_u64 = cgroup_clone_children_write,
4223        },
4224        {
4225                .name = "cgroup.sane_behavior",
4226                .flags = CFTYPE_ONLY_ON_ROOT,
4227                .seq_show = cgroup_sane_behavior_show,
4228        },
4229        {
4230                .name = "tasks",
4231                .seq_start = cgroup_pidlist_start,
4232                .seq_next = cgroup_pidlist_next,
4233                .seq_stop = cgroup_pidlist_stop,
4234                .seq_show = cgroup_pidlist_show,
4235                .private = CGROUP_FILE_TASKS,
4236                .write = cgroup_tasks_write,
4237                .mode = S_IRUGO | S_IWUSR,
4238        },
4239        {
4240                .name = "notify_on_release",
4241                .read_u64 = cgroup_read_notify_on_release,
4242                .write_u64 = cgroup_write_notify_on_release,
4243        },
4244        {
4245                .name = "release_agent",
4246                .flags = CFTYPE_ONLY_ON_ROOT,
4247                .seq_show = cgroup_release_agent_show,
4248                .write = cgroup_release_agent_write,
4249                .max_write_len = PATH_MAX - 1,
4250        },
4251        { }     /* terminate */
4252};
4253
4254/**
4255 * cgroup_populate_dir - create subsys files in a cgroup directory
4256 * @cgrp: target cgroup
4257 * @subsys_mask: mask of the subsystem ids whose files should be added
4258 *
4259 * On failure, no file is added.
4260 */
4261static int cgroup_populate_dir(struct cgroup *cgrp, unsigned int subsys_mask)
4262{
4263        struct cgroup_subsys *ss;
4264        int i, ret = 0;
4265
4266        /* process cftsets of each subsystem */
4267        for_each_subsys(ss, i) {
4268                struct cftype *cfts;
4269
4270                if (!(subsys_mask & (1 << i)))
4271                        continue;
4272
4273                list_for_each_entry(cfts, &ss->cfts, node) {
4274                        ret = cgroup_addrm_files(cgrp, cfts, true);
4275                        if (ret < 0)
4276                                goto err;
4277                }
4278        }
4279        return 0;
4280err:
4281        cgroup_clear_dir(cgrp, subsys_mask);
4282        return ret;
4283}
4284
4285/*
4286 * css destruction is four-stage process.
4287 *
4288 * 1. Destruction starts.  Killing of the percpu_ref is initiated.
4289 *    Implemented in kill_css().
4290 *
4291 * 2. When the percpu_ref is confirmed to be visible as killed on all CPUs
4292 *    and thus css_tryget_online() is guaranteed to fail, the css can be
4293 *    offlined by invoking offline_css().  After offlining, the base ref is
4294 *    put.  Implemented in css_killed_work_fn().
4295 *
4296 * 3. When the percpu_ref reaches zero, the only possible remaining
4297 *    accessors are inside RCU read sections.  css_release() schedules the
4298 *    RCU callback.
4299 *
4300 * 4. After the grace period, the css can be freed.  Implemented in
4301 *    css_free_work_fn().
4302 *
4303 * It is actually hairier because both step 2 and 4 require process context
4304 * and thus involve punting to css->destroy_work adding two additional
4305 * steps to the already complex sequence.
4306 */
4307static void css_free_work_fn(struct work_struct *work)
4308{
4309        struct cgroup_subsys_state *css =
4310                container_of(work, struct cgroup_subsys_state, destroy_work);
4311        struct cgroup *cgrp = css->cgroup;
4312
4313        percpu_ref_exit(&css->refcnt);
4314
4315        if (css->ss) {
4316                /* css free path */
4317                if (css->parent)
4318                        css_put(css->parent);
4319
4320                css->ss->css_free(css);
4321                cgroup_put(cgrp);
4322        } else {
4323                /* cgroup free path */
4324                atomic_dec(&cgrp->root->nr_cgrps);
4325                cgroup_pidlist_destroy_all(cgrp);
4326                cancel_work_sync(&cgrp->release_agent_work);
4327
4328                if (cgroup_parent(cgrp)) {
4329                        /*
4330                         * We get a ref to the parent, and put the ref when
4331                         * this cgroup is being freed, so it's guaranteed
4332                         * that the parent won't be destroyed before its
4333                         * children.
4334                         */
4335                        cgroup_put(cgroup_parent(cgrp));
4336                        kernfs_put(cgrp->kn);
4337                        kfree(cgrp);
4338                } else {
4339                        /*
4340                         * This is root cgroup's refcnt reaching zero,
4341                         * which indicates that the root should be
4342                         * released.
4343                         */
4344                        cgroup_destroy_root(cgrp->root);
4345                }
4346        }
4347}
4348
4349static void css_free_rcu_fn(struct rcu_head *rcu_head)
4350{
4351        struct cgroup_subsys_state *css =
4352                container_of(rcu_head, struct cgroup_subsys_state, rcu_head);
4353
4354        INIT_WORK(&css->destroy_work, css_free_work_fn);
4355        queue_work(cgroup_destroy_wq, &css->destroy_work);
4356}
4357
4358static void css_release_work_fn(struct work_struct *work)
4359{
4360        struct cgroup_subsys_state *css =
4361                container_of(work, struct cgroup_subsys_state, destroy_work);
4362        struct cgroup_subsys *ss = css->ss;
4363        struct cgroup *cgrp = css->cgroup;
4364
4365        mutex_lock(&cgroup_mutex);
4366
4367        css->flags |= CSS_RELEASED;
4368        list_del_rcu(&css->sibling);
4369
4370        if (ss) {
4371                /* css release path */
4372                cgroup_idr_remove(&ss->css_idr, css->id);
4373        } else {
4374                /* cgroup release path */
4375                cgroup_idr_remove(&cgrp->root->cgroup_idr, cgrp->id);
4376                cgrp->id = -1;
4377
4378                /*
4379                 * There are two control paths which try to determine
4380                 * cgroup from dentry without going through kernfs -
4381                 * cgroupstats_build() and css_tryget_online_from_dir().
4382                 * Those are supported by RCU protecting clearing of
4383                 * cgrp->kn->priv backpointer.
4384                 */
4385                RCU_INIT_POINTER(*(void __rcu __force **)&cgrp->kn->priv, NULL);
4386        }
4387
4388        mutex_unlock(&cgroup_mutex);
4389
4390        call_rcu(&css->rcu_head, css_free_rcu_fn);
4391}
4392
4393static void css_release(struct percpu_ref *ref)
4394{
4395        struct cgroup_subsys_state *css =
4396                container_of(ref, struct cgroup_subsys_state, refcnt);
4397
4398        INIT_WORK(&css->destroy_work, css_release_work_fn);
4399        queue_work(cgroup_destroy_wq, &css->destroy_work);
4400}
4401
4402static void init_and_link_css(struct cgroup_subsys_state *css,
4403                              struct cgroup_subsys *ss, struct cgroup *cgrp)
4404{
4405        lockdep_assert_held(&cgroup_mutex);
4406
4407        cgroup_get(cgrp);
4408
4409        memset(css, 0, sizeof(*css));
4410        css->cgroup = cgrp;
4411        css->ss = ss;
4412        INIT_LIST_HEAD(&css->sibling);
4413        INIT_LIST_HEAD(&css->children);
4414        css->serial_nr = css_serial_nr_next++;
4415
4416        if (cgroup_parent(cgrp)) {
4417                css->parent = cgroup_css(cgroup_parent(cgrp), ss);
4418                css_get(css->parent);
4419        }
4420
4421        BUG_ON(cgroup_css(cgrp, ss));
4422}
4423
4424/* invoke ->css_online() on a new CSS and mark it online if successful */
4425static int online_css(struct cgroup_subsys_state *css)
4426{
4427        struct cgroup_subsys *ss = css->ss;
4428        int ret = 0;
4429
4430        lockdep_assert_held(&cgroup_mutex);
4431
4432        if (ss->css_online)
4433                ret = ss->css_online(css);
4434        if (!ret) {
4435                css->flags |= CSS_ONLINE;
4436                rcu_assign_pointer(css->cgroup->subsys[ss->id], css);
4437        }
4438        return ret;
4439}
4440
4441/* if the CSS is online, invoke ->css_offline() on it and mark it offline */
4442static void offline_css(struct cgroup_subsys_state *css)
4443{
4444        struct cgroup_subsys *ss = css->ss;
4445
4446        lockdep_assert_held(&cgroup_mutex);
4447
4448        if (!(css->flags & CSS_ONLINE))
4449                return;
4450
4451        if (ss->css_offline)
4452                ss->css_offline(css);
4453
4454        css->flags &= ~CSS_ONLINE;
4455        RCU_INIT_POINTER(css->cgroup->subsys[ss->id], NULL);
4456
4457        wake_up_all(&css->cgroup->offline_waitq);
4458}
4459
4460/**
4461 * create_css - create a cgroup_subsys_state
4462 * @cgrp: the cgroup new css will be associated with
4463 * @ss: the subsys of new css
4464 * @visible: whether to create control knobs for the new css or not
4465 *
4466 * Create a new css associated with @cgrp - @ss pair.  On success, the new
4467 * css is online and installed in @cgrp with all interface files created if
4468 * @visible.  Returns 0 on success, -errno on failure.
4469 */
4470static int create_css(struct cgroup *cgrp, struct cgroup_subsys *ss,
4471                      bool visible)
4472{
4473        struct cgroup *parent = cgroup_parent(cgrp);
4474        struct cgroup_subsys_state *parent_css = cgroup_css(parent, ss);
4475        struct cgroup_subsys_state *css;
4476        int err;
4477
4478        lockdep_assert_held(&cgroup_mutex);
4479
4480        css = ss->css_alloc(parent_css);
4481        if (IS_ERR(css))
4482                return PTR_ERR(css);
4483
4484        init_and_link_css(css, ss, cgrp);
4485
4486        err = percpu_ref_init(&css->refcnt, css_release, 0, GFP_KERNEL);
4487        if (err)
4488                goto err_free_css;
4489
4490        err = cgroup_idr_alloc(&ss->css_idr, NULL, 2, 0, GFP_NOWAIT);
4491        if (err < 0)
4492                goto err_free_percpu_ref;
4493        css->id = err;
4494
4495        if (visible) {
4496                err = cgroup_populate_dir(cgrp, 1 << ss->id);
4497                if (err)
4498                        goto err_free_id;
4499        }
4500
4501        /* @css is ready to be brought online now, make it visible */
4502        list_add_tail_rcu(&css->sibling, &parent_css->children);
4503        cgroup_idr_replace(&ss->css_idr, css, css->id);
4504
4505        err = online_css(css);
4506        if (err)
4507                goto err_list_del;
4508
4509        if (ss->broken_hierarchy && !ss->warned_broken_hierarchy &&
4510            cgroup_parent(parent)) {
4511                pr_warn("%s (%d) created nested cgroup for controller \"%s\" which has incomplete hierarchy support. Nested cgroups may change behavior in the future.\n",
4512                        current->comm, current->pid, ss->name);
4513                if (!strcmp(ss->name, "memory"))
4514                        pr_warn("\"memory\" requires setting use_hierarchy to 1 on the root\n");
4515                ss->warned_broken_hierarchy = true;
4516        }
4517
4518        return 0;
4519
4520err_list_del:
4521        list_del_rcu(&css->sibling);
4522        cgroup_clear_dir(css->cgroup, 1 << css->ss->id);
4523err_free_id:
4524        cgroup_idr_remove(&ss->css_idr, css->id);
4525err_free_percpu_ref:
4526        percpu_ref_exit(&css->refcnt);
4527err_free_css:
4528        call_rcu(&css->rcu_head, css_free_rcu_fn);
4529        return err;
4530}
4531
4532static int cgroup_mkdir(struct kernfs_node *parent_kn, const char *name,
4533                        umode_t mode)
4534{
4535        struct cgroup *parent, *cgrp;
4536        struct cgroup_root *root;
4537        struct cgroup_subsys *ss;
4538        struct kernfs_node *kn;
4539        struct cftype *base_files;
4540        int ssid, ret;
4541
4542        /* Do not accept '\n' to prevent making /proc/<pid>/cgroup unparsable.
4543         */
4544        if (strchr(name, '\n'))
4545                return -EINVAL;
4546
4547        parent = cgroup_kn_lock_live(parent_kn);
4548        if (!parent)
4549                return -ENODEV;
4550        root = parent->root;
4551
4552        /* allocate the cgroup and its ID, 0 is reserved for the root */
4553        cgrp = kzalloc(sizeof(*cgrp), GFP_KERNEL);
4554        if (!cgrp) {
4555                ret = -ENOMEM;
4556                goto out_unlock;
4557        }
4558
4559        ret = percpu_ref_init(&cgrp->self.refcnt, css_release, 0, GFP_KERNEL);
4560        if (ret)
4561                goto out_free_cgrp;
4562
4563        /*
4564         * Temporarily set the pointer to NULL, so idr_find() won't return
4565         * a half-baked cgroup.
4566         */
4567        cgrp->id = cgroup_idr_alloc(&root->cgroup_idr, NULL, 2, 0, GFP_NOWAIT);
4568        if (cgrp->id < 0) {
4569                ret = -ENOMEM;
4570                goto out_cancel_ref;
4571        }
4572
4573        init_cgroup_housekeeping(cgrp);
4574
4575        cgrp->self.parent = &parent->self;
4576        cgrp->root = root;
4577
4578        if (notify_on_release(parent))
4579                set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
4580
4581        if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &parent->flags))
4582                set_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags);
4583
4584        /* create the directory */
4585        kn = kernfs_create_dir(parent->kn, name, mode, cgrp);
4586        if (IS_ERR(kn)) {
4587                ret = PTR_ERR(kn);
4588                goto out_free_id;
4589        }
4590        cgrp->kn = kn;
4591
4592        /*
4593         * This extra ref will be put in cgroup_free_fn() and guarantees
4594         * that @cgrp->kn is always accessible.
4595         */
4596        kernfs_get(kn);
4597
4598        cgrp->self.serial_nr = css_serial_nr_next++;
4599
4600        /* allocation complete, commit to creation */
4601        list_add_tail_rcu(&cgrp->self.sibling, &cgroup_parent(cgrp)->self.children);
4602        atomic_inc(&root->nr_cgrps);
4603        cgroup_get(parent);
4604
4605        /*
4606         * @cgrp is now fully operational.  If something fails after this
4607         * point, it'll be released via the normal destruction path.
4608         */
4609        cgroup_idr_replace(&root->cgroup_idr, cgrp, cgrp->id);
4610
4611        ret = cgroup_kn_set_ugid(kn);
4612        if (ret)
4613                goto out_destroy;
4614
4615        if (cgroup_on_dfl(cgrp))
4616                base_files = cgroup_dfl_base_files;
4617        else
4618                base_files = cgroup_legacy_base_files;
4619
4620        ret = cgroup_addrm_files(cgrp, base_files, true);
4621        if (ret)
4622                goto out_destroy;
4623
4624        /* let's create and online css's */
4625        for_each_subsys(ss, ssid) {
4626                if (parent->child_subsys_mask & (1 << ssid)) {
4627                        ret = create_css(cgrp, ss,
4628                                         parent->subtree_control & (1 << ssid));
4629                        if (ret)
4630                                goto out_destroy;
4631                }
4632        }
4633
4634        /*
4635         * On the default hierarchy, a child doesn't automatically inherit
4636         * subtree_control from the parent.  Each is configured manually.
4637         */
4638        if (!cgroup_on_dfl(cgrp)) {
4639                cgrp->subtree_control = parent->subtree_control;
4640                cgroup_refresh_child_subsys_mask(cgrp);
4641        }
4642
4643        kernfs_activate(kn);
4644
4645        ret = 0;
4646        goto out_unlock;
4647
4648out_free_id:
4649        cgroup_idr_remove(&root->cgroup_idr, cgrp->id);
4650out_cancel_ref:
4651        percpu_ref_exit(&cgrp->self.refcnt);
4652out_free_cgrp:
4653        kfree(cgrp);
4654out_unlock:
4655        cgroup_kn_unlock(parent_kn);
4656        return ret;
4657
4658out_destroy:
4659        cgroup_destroy_locked(cgrp);
4660        goto out_unlock;
4661}
4662
4663/*
4664 * This is called when the refcnt of a css is confirmed to be killed.
4665 * css_tryget_online() is now guaranteed to fail.  Tell the subsystem to
4666 * initate destruction and put the css ref from kill_css().
4667 */
4668static void css_killed_work_fn(struct work_struct *work)
4669{
4670        struct cgroup_subsys_state *css =
4671                container_of(work, struct cgroup_subsys_state, destroy_work);
4672
4673        mutex_lock(&cgroup_mutex);
4674        offline_css(css);
4675        mutex_unlock(&cgroup_mutex);
4676
4677        css_put(css);
4678}
4679
4680/* css kill confirmation processing requires process context, bounce */
4681static void css_killed_ref_fn(struct percpu_ref *ref)
4682{
4683        struct cgroup_subsys_state *css =
4684                container_of(ref, struct cgroup_subsys_state, refcnt);
4685
4686        INIT_WORK(&css->destroy_work, css_killed_work_fn);
4687        queue_work(cgroup_destroy_wq, &css->destroy_work);
4688}
4689
4690/**
4691 * kill_css - destroy a css
4692 * @css: css to destroy
4693 *
4694 * This function initiates destruction of @css by removing cgroup interface
4695 * files and putting its base reference.  ->css_offline() will be invoked
4696 * asynchronously once css_tryget_online() is guaranteed to fail and when
4697 * the reference count reaches zero, @css will be released.
4698 */
4699static void kill_css(struct cgroup_subsys_state *css)
4700{
4701        lockdep_assert_held(&cgroup_mutex);
4702
4703        /*
4704         * This must happen before css is disassociated with its cgroup.
4705         * See seq_css() for details.
4706         */
4707        cgroup_clear_dir(css->cgroup, 1 << css->ss->id);
4708
4709        /*
4710         * Killing would put the base ref, but we need to keep it alive
4711         * until after ->css_offline().
4712         */
4713        css_get(css);
4714
4715        /*
4716         * cgroup core guarantees that, by the time ->css_offline() is
4717         * invoked, no new css reference will be given out via
4718         * css_tryget_online().  We can't simply call percpu_ref_kill() and
4719         * proceed to offlining css's because percpu_ref_kill() doesn't
4720         * guarantee that the ref is seen as killed on all CPUs on return.
4721         *
4722         * Use percpu_ref_kill_and_confirm() to get notifications as each
4723         * css is confirmed to be seen as killed on all CPUs.
4724         */
4725        percpu_ref_kill_and_confirm(&css->refcnt, css_killed_ref_fn);
4726}
4727
4728/**
4729 * cgroup_destroy_locked - the first stage of cgroup destruction
4730 * @cgrp: cgroup to be destroyed
4731 *
4732 * css's make use of percpu refcnts whose killing latency shouldn't be
4733 * exposed to userland and are RCU protected.  Also, cgroup core needs to
4734 * guarantee that css_tryget_online() won't succeed by the time
4735 * ->css_offline() is invoked.  To satisfy all the requirements,
4736 * destruction is implemented in the following two steps.
4737 *
4738 * s1. Verify @cgrp can be destroyed and mark it dying.  Remove all
4739 *     userland visible parts and start killing the percpu refcnts of
4740 *     css's.  Set up so that the next stage will be kicked off once all
4741 *     the percpu refcnts are confirmed to be killed.
4742 *
4743 * s2. Invoke ->css_offline(), mark the cgroup dead and proceed with the
4744 *     rest of destruction.  Once all cgroup references are gone, the
4745 *     cgroup is RCU-freed.
4746 *
4747 * This function implements s1.  After this step, @cgrp is gone as far as
4748 * the userland is concerned and a new cgroup with the same name may be
4749 * created.  As cgroup doesn't care about the names internally, this
4750 * doesn't cause any problem.
4751 */
4752static int cgroup_destroy_locked(struct cgroup *cgrp)
4753        __releases(&cgroup_mutex) __acquires(&cgroup_mutex)
4754{
4755        struct cgroup_subsys_state *css;
4756        bool empty;
4757        int ssid;
4758
4759        lockdep_assert_held(&cgroup_mutex);
4760
4761        /*
4762         * css_set_rwsem synchronizes access to ->cset_links and prevents
4763         * @cgrp from being removed while put_css_set() is in progress.
4764         */
4765        down_read(&css_set_rwsem);
4766        empty = list_empty(&cgrp->cset_links);
4767        up_read(&css_set_rwsem);
4768        if (!empty)
4769                return -EBUSY;
4770
4771        /*
4772         * Make sure there's no live children.  We can't test emptiness of
4773         * ->self.children as dead children linger on it while being
4774         * drained; otherwise, "rmdir parent/child parent" may fail.
4775         */
4776        if (css_has_online_children(&cgrp->self))
4777                return -EBUSY;
4778
4779        /*
4780         * Mark @cgrp dead.  This prevents further task migration and child
4781         * creation by disabling cgroup_lock_live_group().
4782         */
4783        cgrp->self.flags &= ~CSS_ONLINE;
4784
4785        /* initiate massacre of all css's */
4786        for_each_css(css, ssid, cgrp)
4787                kill_css(css);
4788
4789        /*
4790         * Remove @cgrp directory along with the base files.  @cgrp has an
4791         * extra ref on its kn.
4792         */
4793        kernfs_remove(cgrp->kn);
4794
4795        check_for_release(cgroup_parent(cgrp));
4796
4797        /* put the base reference */
4798        percpu_ref_kill(&cgrp->self.refcnt);
4799
4800        return 0;
4801};
4802
4803static int cgroup_rmdir(struct kernfs_node *kn)
4804{
4805        struct cgroup *cgrp;
4806        int ret = 0;
4807
4808        cgrp = cgroup_kn_lock_live(kn);
4809        if (!cgrp)
4810                return 0;
4811
4812        ret = cgroup_destroy_locked(cgrp);
4813
4814        cgroup_kn_unlock(kn);
4815        return ret;
4816}
4817
4818static struct kernfs_syscall_ops cgroup_kf_syscall_ops = {
4819        .remount_fs             = cgroup_remount,
4820        .show_options           = cgroup_show_options,
4821        .mkdir                  = cgroup_mkdir,
4822        .rmdir                  = cgroup_rmdir,
4823        .rename                 = cgroup_rename,
4824};
4825
4826static void __init cgroup_init_subsys(struct cgroup_subsys *ss, bool early)
4827{
4828        struct cgroup_subsys_state *css;
4829
4830        printk(KERN_INFO "Initializing cgroup subsys %s\n", ss->name);
4831
4832        mutex_lock(&cgroup_mutex);
4833
4834        idr_init(&ss->css_idr);
4835        INIT_LIST_HEAD(&ss->cfts);
4836
4837        /* Create the root cgroup state for this subsystem */
4838        ss->root = &cgrp_dfl_root;
4839        css = ss->css_alloc(cgroup_css(&cgrp_dfl_root.cgrp, ss));
4840        /* We don't handle early failures gracefully */
4841        BUG_ON(IS_ERR(css));
4842        init_and_link_css(css, ss, &cgrp_dfl_root.cgrp);
4843
4844        /*
4845         * Root csses are never destroyed and we can't initialize
4846         * percpu_ref during early init.  Disable refcnting.
4847         */
4848        css->flags |= CSS_NO_REF;
4849
4850        if (early) {
4851                /* allocation can't be done safely during early init */
4852                css->id = 1;
4853        } else {
4854                css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2, GFP_KERNEL);
4855                BUG_ON(css->id < 0);
4856        }
4857
4858        /* Update the init_css_set to contain a subsys
4859         * pointer to this state - since the subsystem is
4860         * newly registered, all tasks and hence the
4861         * init_css_set is in the subsystem's root cgroup. */
4862        init_css_set.subsys[ss->id] = css;
4863
4864        need_forkexit_callback |= ss->fork || ss->exit;
4865
4866        /* At system boot, before all subsystems have been
4867         * registered, no tasks have been forked, so we don't
4868         * need to invoke fork callbacks here. */
4869        BUG_ON(!list_empty(&init_task.tasks));
4870
4871        BUG_ON(online_css(css));
4872
4873        mutex_unlock(&cgroup_mutex);
4874}
4875
4876/**
4877 * cgroup_init_early - cgroup initialization at system boot
4878 *
4879 * Initialize cgroups at system boot, and initialize any
4880 * subsystems that request early init.
4881 */
4882int __init cgroup_init_early(void)
4883{
4884        static struct cgroup_sb_opts __initdata opts;
4885        struct cgroup_subsys *ss;
4886        int i;
4887
4888        init_cgroup_root(&cgrp_dfl_root, &opts);
4889        cgrp_dfl_root.cgrp.self.flags |= CSS_NO_REF;
4890
4891        RCU_INIT_POINTER(init_task.cgroups, &init_css_set);
4892
4893        for_each_subsys(ss, i) {
4894                WARN(!ss->css_alloc || !ss->css_free || ss->name || ss->id,
4895                     "invalid cgroup_subsys %d:%s css_alloc=%p css_free=%p name:id=%d:%s\n",
4896                     i, cgroup_subsys_name[i], ss->css_alloc, ss->css_free,
4897                     ss->id, ss->name);
4898                WARN(strlen(cgroup_subsys_name[i]) > MAX_CGROUP_TYPE_NAMELEN,
4899                     "cgroup_subsys_name %s too long\n", cgroup_subsys_name[i]);
4900
4901                ss->id = i;
4902                ss->name = cgroup_subsys_name[i];
4903
4904                if (ss->early_init)
4905                        cgroup_init_subsys(ss, true);
4906        }
4907        return 0;
4908}
4909
4910/**
4911 * cgroup_init - cgroup initialization
4912 *
4913 * Register cgroup filesystem and /proc file, and initialize
4914 * any subsystems that didn't request early init.
4915 */
4916int __init cgroup_init(void)
4917{
4918        struct cgroup_subsys *ss;
4919        unsigned long key;
4920        int ssid, err;
4921
4922        BUG_ON(cgroup_init_cftypes(NULL, cgroup_dfl_base_files));
4923        BUG_ON(cgroup_init_cftypes(NULL, cgroup_legacy_base_files));
4924
4925        mutex_lock(&cgroup_mutex);
4926
4927        /* Add init_css_set to the hash table */
4928        key = css_set_hash(init_css_set.subsys);
4929        hash_add(css_set_table, &init_css_set.hlist, key);
4930
4931        BUG_ON(cgroup_setup_root(&cgrp_dfl_root, 0));
4932
4933        mutex_unlock(&cgroup_mutex);
4934
4935        for_each_subsys(ss, ssid) {
4936                if (ss->early_init) {
4937                        struct cgroup_subsys_state *css =
4938                                init_css_set.subsys[ss->id];
4939
4940                        css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2,
4941                                                   GFP_KERNEL);
4942                        BUG_ON(css->id < 0);
4943                } else {
4944                        cgroup_init_subsys(ss, false);
4945                }
4946
4947                list_add_tail(&init_css_set.e_cset_node[ssid],
4948                              &cgrp_dfl_root.cgrp.e_csets[ssid]);
4949
4950                /*
4951                 * Setting dfl_root subsys_mask needs to consider the
4952                 * disabled flag and cftype registration needs kmalloc,
4953                 * both of which aren't available during early_init.
4954                 */
4955                if (ss->disabled)
4956                        continue;
4957
4958                cgrp_dfl_root.subsys_mask |= 1 << ss->id;
4959
4960                if (cgroup_legacy_files_on_dfl && !ss->dfl_cftypes)
4961                        ss->dfl_cftypes = ss->legacy_cftypes;
4962
4963                if (!ss->dfl_cftypes)
4964                        cgrp_dfl_root_inhibit_ss_mask |= 1 << ss->id;
4965
4966                if (ss->dfl_cftypes == ss->legacy_cftypes) {
4967                        WARN_ON(cgroup_add_cftypes(ss, ss->dfl_cftypes));
4968                } else {
4969                        WARN_ON(cgroup_add_dfl_cftypes(ss, ss->dfl_cftypes));
4970                        WARN_ON(cgroup_add_legacy_cftypes(ss, ss->legacy_cftypes));
4971                }
4972        }
4973
4974        cgroup_kobj = kobject_create_and_add("cgroup", fs_kobj);
4975        if (!cgroup_kobj)
4976                return -ENOMEM;
4977
4978        err = register_filesystem(&cgroup_fs_type);
4979        if (err < 0) {
4980                kobject_put(cgroup_kobj);
4981                return err;
4982        }
4983
4984        proc_create("cgroups", 0, NULL, &proc_cgroupstats_operations);
4985        return 0;
4986}
4987
4988static int __init cgroup_wq_init(void)
4989{
4990        /*
4991         * There isn't much point in executing destruction path in
4992         * parallel.  Good chunk is serialized with cgroup_mutex anyway.
4993         * Use 1 for @max_active.
4994         *
4995         * We would prefer to do this in cgroup_init() above, but that
4996         * is called before init_workqueues(): so leave this until after.
4997         */
4998        cgroup_destroy_wq = alloc_workqueue("cgroup_destroy", 0, 1);
4999        BUG_ON(!cgroup_destroy_wq);
5000
5001        /*
5002         * Used to destroy pidlists and separate to serve as flush domain.
5003         * Cap @max_active to 1 too.
5004         */
5005        cgroup_pidlist_destroy_wq = alloc_workqueue("cgroup_pidlist_destroy",
5006                                                    0, 1);
5007        BUG_ON(!cgroup_pidlist_destroy_wq);
5008
5009        return 0;
5010}
5011core_initcall(cgroup_wq_init);
5012
5013/*
5014 * proc_cgroup_show()
5015 *  - Print task's cgroup paths into seq_file, one line for each hierarchy
5016 *  - Used for /proc/<pid>/cgroup.
5017 */
5018int proc_cgroup_show(struct seq_file *m, struct pid_namespace *ns,
5019                     struct pid *pid, struct task_struct *tsk)
5020{
5021        char *buf, *path;
5022        int retval;
5023        struct cgroup_root *root;
5024
5025        retval = -ENOMEM;
5026        buf = kmalloc(PATH_MAX, GFP_KERNEL);
5027        if (!buf)
5028                goto out;
5029
5030        mutex_lock(&cgroup_mutex);
5031        down_read(&css_set_rwsem);
5032
5033        for_each_root(root) {
5034                struct cgroup_subsys *ss;
5035                struct cgroup *cgrp;
5036                int ssid, count = 0;
5037
5038                if (root == &cgrp_dfl_root && !cgrp_dfl_root_visible)
5039                        continue;
5040
5041                seq_printf(m, "%d:", root->hierarchy_id);
5042                for_each_subsys(ss, ssid)
5043                        if (root->subsys_mask & (1 << ssid))
5044                                seq_printf(m, "%s%s", count++ ? "," : "", ss->name);
5045                if (strlen(root->name))
5046                        seq_printf(m, "%sname=%s", count ? "," : "",
5047                                   root->name);
5048                seq_putc(m, ':');
5049                cgrp = task_cgroup_from_root(tsk, root);
5050                path = cgroup_path(cgrp, buf, PATH_MAX);
5051                if (!path) {
5052                        retval = -ENAMETOOLONG;
5053                        goto out_unlock;
5054                }
5055                seq_puts(m, path);
5056                seq_putc(m, '\n');
5057        }
5058
5059        retval = 0;
5060out_unlock:
5061        up_read(&css_set_rwsem);
5062        mutex_unlock(&cgroup_mutex);
5063        kfree(buf);
5064out:
5065        return retval;
5066}
5067
5068/* Display information about each subsystem and each hierarchy */
5069static int proc_cgroupstats_show(struct seq_file *m, void *v)
5070{
5071        struct cgroup_subsys *ss;
5072        int i;
5073
5074        seq_puts(m, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n");
5075        /*
5076         * ideally we don't want subsystems moving around while we do this.
5077         * cgroup_mutex is also necessary to guarantee an atomic snapshot of
5078         * subsys/hierarchy state.
5079         */
5080        mutex_lock(&cgroup_mutex);
5081
5082        for_each_subsys(ss, i)
5083                seq_printf(m, "%s\t%d\t%d\t%d\n",
5084                           ss->name, ss->root->hierarchy_id,
5085                           atomic_read(&ss->root->nr_cgrps), !ss->disabled);
5086
5087        mutex_unlock(&cgroup_mutex);
5088        return 0;
5089}
5090
5091static int cgroupstats_open(struct inode *inode, struct file *file)
5092{
5093        return single_open(file, proc_cgroupstats_show, NULL);
5094}
5095
5096static const struct file_operations proc_cgroupstats_operations = {
5097        .open = cgroupstats_open,
5098        .read = seq_read,
5099        .llseek = seq_lseek,
5100        .release = single_release,
5101};
5102
5103/**
5104 * cgroup_fork - initialize cgroup related fields during copy_process()
5105 * @child: pointer to task_struct of forking parent process.
5106 *
5107 * A task is associated with the init_css_set until cgroup_post_fork()
5108 * attaches it to the parent's css_set.  Empty cg_list indicates that
5109 * @child isn't holding reference to its css_set.
5110 */
5111void cgroup_fork(struct task_struct *child)
5112{
5113        RCU_INIT_POINTER(child->cgroups, &init_css_set);
5114        INIT_LIST_HEAD(&child->cg_list);
5115}
5116
5117/**
5118 * cgroup_post_fork - called on a new task after adding it to the task list
5119 * @child: the task in question
5120 *
5121 * Adds the task to the list running through its css_set if necessary and
5122 * call the subsystem fork() callbacks.  Has to be after the task is
5123 * visible on the task list in case we race with the first call to
5124 * cgroup_task_iter_start() - to guarantee that the new task ends up on its
5125 * list.
5126 */
5127void cgroup_post_fork(struct task_struct *child)
5128{
5129        struct cgroup_subsys *ss;
5130        int i;
5131
5132        /*
5133         * This may race against cgroup_enable_task_cg_lists().  As that
5134         * function sets use_task_css_set_links before grabbing
5135         * tasklist_lock and we just went through tasklist_lock to add
5136         * @child, it's guaranteed that either we see the set
5137         * use_task_css_set_links or cgroup_enable_task_cg_lists() sees
5138         * @child during its iteration.
5139         *
5140         * If we won the race, @child is associated with %current's
5141         * css_set.  Grabbing css_set_rwsem guarantees both that the
5142         * association is stable, and, on completion of the parent's
5143         * migration, @child is visible in the source of migration or
5144         * already in the destination cgroup.  This guarantee is necessary
5145         * when implementing operations which need to migrate all tasks of
5146         * a cgroup to another.
5147         *
5148         * Note that if we lose to cgroup_enable_task_cg_lists(), @child
5149         * will remain in init_css_set.  This is safe because all tasks are
5150         * in the init_css_set before cg_links is enabled and there's no
5151         * operation which transfers all tasks out of init_css_set.
5152         */
5153        if (use_task_css_set_links) {
5154                struct css_set *cset;
5155
5156                down_write(&css_set_rwsem);
5157                cset = task_css_set(current);
5158                if (list_empty(&child->cg_list)) {
5159                        rcu_assign_pointer(child->cgroups, cset);
5160                        list_add(&child->cg_list, &cset->tasks);
5161                        get_css_set(cset);
5162                }
5163                up_write(&css_set_rwsem);
5164        }
5165
5166        /*
5167         * Call ss->fork().  This must happen after @child is linked on
5168         * css_set; otherwise, @child might change state between ->fork()
5169         * and addition to css_set.
5170         */
5171        if (need_forkexit_callback) {
5172                for_each_subsys(ss, i)
5173                        if (ss->fork)
5174                                ss->fork(child);
5175        }
5176}
5177
5178/**
5179 * cgroup_exit - detach cgroup from exiting task
5180 * @tsk: pointer to task_struct of exiting process
5181 *
5182 * Description: Detach cgroup from @tsk and release it.
5183 *
5184 * Note that cgroups marked notify_on_release force every task in
5185 * them to take the global cgroup_mutex mutex when exiting.
5186 * This could impact scaling on very large systems.  Be reluctant to
5187 * use notify_on_release cgroups where very high task exit scaling
5188 * is required on large systems.
5189 *
5190 * We set the exiting tasks cgroup to the root cgroup (top_cgroup).  We
5191 * call cgroup_exit() while the task is still competent to handle
5192 * notify_on_release(), then leave the task attached to the root cgroup in
5193 * each hierarchy for the remainder of its exit.  No need to bother with
5194 * init_css_set refcnting.  init_css_set never goes away and we can't race
5195 * with migration path - PF_EXITING is visible to migration path.
5196 */
5197void cgroup_exit(struct task_struct *tsk)
5198{
5199        struct cgroup_subsys *ss;
5200        struct css_set *cset;
5201        bool put_cset = false;
5202        int i;
5203
5204        /*
5205         * Unlink from @tsk from its css_set.  As migration path can't race
5206         * with us, we can check cg_list without grabbing css_set_rwsem.
5207         */
5208        if (!list_empty(&tsk->cg_list)) {
5209                down_write(&css_set_rwsem);
5210                list_del_init(&tsk->cg_list);
5211                up_write(&css_set_rwsem);
5212                put_cset = true;
5213        }
5214
5215        /* Reassign the task to the init_css_set. */
5216        cset = task_css_set(tsk);
5217        RCU_INIT_POINTER(tsk->cgroups, &init_css_set);
5218
5219        if (need_forkexit_callback) {
5220                /* see cgroup_post_fork() for details */
5221                for_each_subsys(ss, i) {
5222                        if (ss->exit) {
5223                                struct cgroup_subsys_state *old_css = cset->subsys[i];
5224                                struct cgroup_subsys_state *css = task_css(tsk, i);
5225
5226                                ss->exit(css, old_css, tsk);
5227                        }
5228                }
5229        }
5230
5231        if (put_cset)
5232                put_css_set(cset);
5233}
5234
5235static void check_for_release(struct cgroup *cgrp)
5236{
5237        if (notify_on_release(cgrp) && !cgroup_has_tasks(cgrp) &&
5238            !css_has_online_children(&cgrp->self) && !cgroup_is_dead(cgrp))
5239                schedule_work(&cgrp->release_agent_work);
5240}
5241
5242/*
5243 * Notify userspace when a cgroup is released, by running the
5244 * configured release agent with the name of the cgroup (path
5245 * relative to the root of cgroup file system) as the argument.
5246 *
5247 * Most likely, this user command will try to rmdir this cgroup.
5248 *
5249 * This races with the possibility that some other task will be
5250 * attached to this cgroup before it is removed, or that some other
5251 * user task will 'mkdir' a child cgroup of this cgroup.  That's ok.
5252 * The presumed 'rmdir' will fail quietly if this cgroup is no longer
5253 * unused, and this cgroup will be reprieved from its death sentence,
5254 * to continue to serve a useful existence.  Next time it's released,
5255 * we will get notified again, if it still has 'notify_on_release' set.
5256 *
5257 * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which
5258 * means only wait until the task is successfully execve()'d.  The
5259 * separate release agent task is forked by call_usermodehelper(),
5260 * then control in this thread returns here, without waiting for the
5261 * release agent task.  We don't bother to wait because the caller of
5262 * this routine has no use for the exit status of the release agent
5263 * task, so no sense holding our caller up for that.
5264 */
5265static void cgroup_release_agent(struct work_struct *work)
5266{
5267        struct cgroup *cgrp =
5268                container_of(work, struct cgroup, release_agent_work);
5269        char *pathbuf = NULL, *agentbuf = NULL, *path;
5270        char *argv[3], *envp[3];
5271
5272        mutex_lock(&cgroup_mutex);
5273
5274        pathbuf = kmalloc(PATH_MAX, GFP_KERNEL);
5275        agentbuf = kstrdup(cgrp->root->release_agent_path, GFP_KERNEL);
5276        if (!pathbuf || !agentbuf)
5277                goto out;
5278
5279        path = cgroup_path(cgrp, pathbuf, PATH_MAX);
5280        if (!path)
5281                goto out;
5282
5283        argv[0] = agentbuf;
5284        argv[1] = path;
5285        argv[2] = NULL;
5286
5287        /* minimal command environment */
5288        envp[0] = "HOME=/";
5289        envp[1] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
5290        envp[2] = NULL;
5291
5292        mutex_unlock(&cgroup_mutex);
5293        call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC);
5294        goto out_free;
5295out:
5296        mutex_unlock(&cgroup_mutex);
5297out_free:
5298        kfree(agentbuf);
5299        kfree(pathbuf);
5300}
5301
5302static int __init cgroup_disable(char *str)
5303{
5304        struct cgroup_subsys *ss;
5305        char *token;
5306        int i;
5307
5308        while ((token = strsep(&str, ",")) != NULL) {
5309                if (!*token)
5310                        continue;
5311
5312                for_each_subsys(ss, i) {
5313                        if (!strcmp(token, ss->name)) {
5314                                ss->disabled = 1;
5315                                printk(KERN_INFO "Disabling %s control group"
5316                                        " subsystem\n", ss->name);
5317                                break;
5318                        }
5319                }
5320        }
5321        return 1;
5322}
5323__setup("cgroup_disable=", cgroup_disable);
5324
5325static int __init cgroup_set_legacy_files_on_dfl(char *str)
5326{
5327        printk("cgroup: using legacy files on the default hierarchy\n");
5328        cgroup_legacy_files_on_dfl = true;
5329        return 0;
5330}
5331__setup("cgroup__DEVEL__legacy_files_on_dfl", cgroup_set_legacy_files_on_dfl);
5332
5333/**
5334 * css_tryget_online_from_dir - get corresponding css from a cgroup dentry
5335 * @dentry: directory dentry of interest
5336 * @ss: subsystem of interest
5337 *
5338 * If @dentry is a directory for a cgroup which has @ss enabled on it, try
5339 * to get the corresponding css and return it.  If such css doesn't exist
5340 * or can't be pinned, an ERR_PTR value is returned.
5341 */
5342struct cgroup_subsys_state *css_tryget_online_from_dir(struct dentry *dentry,
5343                                                       struct cgroup_subsys *ss)
5344{
5345        struct kernfs_node *kn = kernfs_node_from_dentry(dentry);
5346        struct cgroup_subsys_state *css = NULL;
5347        struct cgroup *cgrp;
5348
5349        /* is @dentry a cgroup dir? */
5350        if (dentry->d_sb->s_type != &cgroup_fs_type || !kn ||
5351            kernfs_type(kn) != KERNFS_DIR)
5352                return ERR_PTR(-EBADF);
5353
5354        rcu_read_lock();
5355
5356        /*
5357         * This path doesn't originate from kernfs and @kn could already
5358         * have been or be removed at any point.  @kn->priv is RCU
5359         * protected for this access.  See css_release_work_fn() for details.
5360         */
5361        cgrp = rcu_dereference(kn->priv);
5362        if (cgrp)
5363                css = cgroup_css(cgrp, ss);
5364
5365        if (!css || !css_tryget_online(css))
5366                css = ERR_PTR(-ENOENT);
5367
5368        rcu_read_unlock();
5369        return css;
5370}
5371
5372/**
5373 * css_from_id - lookup css by id
5374 * @id: the cgroup id
5375 * @ss: cgroup subsys to be looked into
5376 *
5377 * Returns the css if there's valid one with @id, otherwise returns NULL.
5378 * Should be called under rcu_read_lock().
5379 */
5380struct cgroup_subsys_state *css_from_id(int id, struct cgroup_subsys *ss)
5381{
5382        WARN_ON_ONCE(!rcu_read_lock_held());
5383        return idr_find(&ss->css_idr, id);
5384}
5385
5386#ifdef CONFIG_CGROUP_DEBUG
5387static struct cgroup_subsys_state *
5388debug_css_alloc(struct cgroup_subsys_state *parent_css)
5389{
5390        struct cgroup_subsys_state *css = kzalloc(sizeof(*css), GFP_KERNEL);
5391
5392        if (!css)
5393                return ERR_PTR(-ENOMEM);
5394
5395        return css;
5396}
5397
5398static void debug_css_free(struct cgroup_subsys_state *css)
5399{
5400        kfree(css);
5401}
5402
5403static u64 debug_taskcount_read(struct cgroup_subsys_state *css,
5404                                struct cftype *cft)
5405{
5406        return cgroup_task_count(css->cgroup);
5407}
5408
5409static u64 current_css_set_read(struct cgroup_subsys_state *css,
5410                                struct cftype *cft)
5411{
5412        return (u64)(unsigned long)current->cgroups;
5413}
5414
5415static u64 current_css_set_refcount_read(struct cgroup_subsys_state *css,
5416                                         struct cftype *cft)
5417{
5418        u64 count;
5419
5420        rcu_read_lock();
5421        count = atomic_read(&task_css_set(current)->refcount);
5422        rcu_read_unlock();
5423        return count;
5424}
5425
5426static int current_css_set_cg_links_read(struct seq_file *seq, void *v)
5427{
5428        struct cgrp_cset_link *link;
5429        struct css_set *cset;
5430        char *name_buf;
5431
5432        name_buf = kmalloc(NAME_MAX + 1, GFP_KERNEL);
5433        if (!name_buf)
5434                return -ENOMEM;
5435
5436        down_read(&css_set_rwsem);
5437        rcu_read_lock();
5438        cset = rcu_dereference(current->cgroups);
5439        list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
5440                struct cgroup *c = link->cgrp;
5441
5442                cgroup_name(c, name_buf, NAME_MAX + 1);
5443                seq_printf(seq, "Root %d group %s\n",
5444                           c->root->hierarchy_id, name_buf);
5445        }
5446        rcu_read_unlock();
5447        up_read(&css_set_rwsem);
5448        kfree(name_buf);
5449        return 0;
5450}
5451
5452#define MAX_TASKS_SHOWN_PER_CSS 25
5453static int cgroup_css_links_read(struct seq_file *seq, void *v)
5454{
5455        struct cgroup_subsys_state *css = seq_css(seq);
5456        struct cgrp_cset_link *link;
5457
5458        down_read(&css_set_rwsem);
5459        list_for_each_entry(link, &css->cgroup->cset_links, cset_link) {
5460                struct css_set *cset = link->cset;
5461                struct task_struct *task;
5462                int count = 0;
5463
5464                seq_printf(seq, "css_set %p\n", cset);
5465
5466                list_for_each_entry(task, &cset->tasks, cg_list) {
5467                        if (count++ > MAX_TASKS_SHOWN_PER_CSS)
5468                                goto overflow;
5469                        seq_printf(seq, "  task %d\n", task_pid_vnr(task));
5470                }
5471
5472                list_for_each_entry(task, &cset->mg_tasks, cg_list) {
5473                        if (count++ > MAX_TASKS_SHOWN_PER_CSS)
5474                                goto overflow;
5475                        seq_printf(seq, "  task %d\n", task_pid_vnr(task));
5476                }
5477                continue;
5478        overflow:
5479                seq_puts(seq, "  ...\n");
5480        }
5481        up_read(&css_set_rwsem);
5482        return 0;
5483}
5484
5485static u64 releasable_read(struct cgroup_subsys_state *css, struct cftype *cft)
5486{
5487        return (!cgroup_has_tasks(css->cgroup) &&
5488                !css_has_online_children(&css->cgroup->self));
5489}
5490
5491static struct cftype debug_files[] =  {
5492        {
5493                .name = "taskcount",
5494                .read_u64 = debug_taskcount_read,
5495        },
5496
5497        {
5498                .name = "current_css_set",
5499                .read_u64 = current_css_set_read,
5500        },
5501
5502        {
5503                .name = "current_css_set_refcount",
5504                .read_u64 = current_css_set_refcount_read,
5505        },
5506
5507        {
5508                .name = "current_css_set_cg_links",
5509                .seq_show = current_css_set_cg_links_read,
5510        },
5511
5512        {
5513                .name = "cgroup_css_links",
5514                .seq_show = cgroup_css_links_read,
5515        },
5516
5517        {
5518                .name = "releasable",
5519                .read_u64 = releasable_read,
5520        },
5521
5522        { }     /* terminate */
5523};
5524
5525struct cgroup_subsys debug_cgrp_subsys = {
5526        .css_alloc = debug_css_alloc,
5527        .css_free = debug_css_free,
5528        .legacy_cftypes = debug_files,
5529};
5530#endif /* CONFIG_CGROUP_DEBUG */
5531