linux/kernel/exit.c
<<
>>
Prefs
   1/*
   2 *  linux/kernel/exit.c
   3 *
   4 *  Copyright (C) 1991, 1992  Linus Torvalds
   5 */
   6
   7#include <linux/mm.h>
   8#include <linux/slab.h>
   9#include <linux/interrupt.h>
  10#include <linux/module.h>
  11#include <linux/capability.h>
  12#include <linux/completion.h>
  13#include <linux/personality.h>
  14#include <linux/tty.h>
  15#include <linux/iocontext.h>
  16#include <linux/key.h>
  17#include <linux/security.h>
  18#include <linux/cpu.h>
  19#include <linux/acct.h>
  20#include <linux/tsacct_kern.h>
  21#include <linux/file.h>
  22#include <linux/fdtable.h>
  23#include <linux/freezer.h>
  24#include <linux/binfmts.h>
  25#include <linux/nsproxy.h>
  26#include <linux/pid_namespace.h>
  27#include <linux/ptrace.h>
  28#include <linux/profile.h>
  29#include <linux/mount.h>
  30#include <linux/proc_fs.h>
  31#include <linux/kthread.h>
  32#include <linux/mempolicy.h>
  33#include <linux/taskstats_kern.h>
  34#include <linux/delayacct.h>
  35#include <linux/cgroup.h>
  36#include <linux/syscalls.h>
  37#include <linux/signal.h>
  38#include <linux/posix-timers.h>
  39#include <linux/cn_proc.h>
  40#include <linux/mutex.h>
  41#include <linux/futex.h>
  42#include <linux/pipe_fs_i.h>
  43#include <linux/audit.h> /* for audit_free() */
  44#include <linux/resource.h>
  45#include <linux/blkdev.h>
  46#include <linux/task_io_accounting_ops.h>
  47#include <linux/tracehook.h>
  48#include <linux/fs_struct.h>
  49#include <linux/init_task.h>
  50#include <linux/perf_event.h>
  51#include <trace/events/sched.h>
  52#include <linux/hw_breakpoint.h>
  53#include <linux/oom.h>
  54#include <linux/writeback.h>
  55#include <linux/shm.h>
  56
  57#include <asm/uaccess.h>
  58#include <asm/unistd.h>
  59#include <asm/pgtable.h>
  60#include <asm/mmu_context.h>
  61
  62static void exit_mm(struct task_struct *tsk);
  63
  64static void __unhash_process(struct task_struct *p, bool group_dead)
  65{
  66        nr_threads--;
  67        detach_pid(p, PIDTYPE_PID);
  68        if (group_dead) {
  69                detach_pid(p, PIDTYPE_PGID);
  70                detach_pid(p, PIDTYPE_SID);
  71
  72                list_del_rcu(&p->tasks);
  73                list_del_init(&p->sibling);
  74                __this_cpu_dec(process_counts);
  75        }
  76        list_del_rcu(&p->thread_group);
  77        list_del_rcu(&p->thread_node);
  78}
  79
  80/*
  81 * This function expects the tasklist_lock write-locked.
  82 */
  83static void __exit_signal(struct task_struct *tsk)
  84{
  85        struct signal_struct *sig = tsk->signal;
  86        bool group_dead = thread_group_leader(tsk);
  87        struct sighand_struct *sighand;
  88        struct tty_struct *uninitialized_var(tty);
  89        cputime_t utime, stime;
  90
  91        sighand = rcu_dereference_check(tsk->sighand,
  92                                        lockdep_tasklist_lock_is_held());
  93        spin_lock(&sighand->siglock);
  94
  95        posix_cpu_timers_exit(tsk);
  96        if (group_dead) {
  97                posix_cpu_timers_exit_group(tsk);
  98                tty = sig->tty;
  99                sig->tty = NULL;
 100        } else {
 101                /*
 102                 * This can only happen if the caller is de_thread().
 103                 * FIXME: this is the temporary hack, we should teach
 104                 * posix-cpu-timers to handle this case correctly.
 105                 */
 106                if (unlikely(has_group_leader_pid(tsk)))
 107                        posix_cpu_timers_exit_group(tsk);
 108
 109                /*
 110                 * If there is any task waiting for the group exit
 111                 * then notify it:
 112                 */
 113                if (sig->notify_count > 0 && !--sig->notify_count)
 114                        wake_up_process(sig->group_exit_task);
 115
 116                if (tsk == sig->curr_target)
 117                        sig->curr_target = next_thread(tsk);
 118        }
 119
 120        /*
 121         * Accumulate here the counters for all threads but the group leader
 122         * as they die, so they can be added into the process-wide totals
 123         * when those are taken.  The group leader stays around as a zombie as
 124         * long as there are other threads.  When it gets reaped, the exit.c
 125         * code will add its counts into these totals.  We won't ever get here
 126         * for the group leader, since it will have been the last reference on
 127         * the signal_struct.
 128         */
 129        task_cputime(tsk, &utime, &stime);
 130        write_seqlock(&sig->stats_lock);
 131        sig->utime += utime;
 132        sig->stime += stime;
 133        sig->gtime += task_gtime(tsk);
 134        sig->min_flt += tsk->min_flt;
 135        sig->maj_flt += tsk->maj_flt;
 136        sig->nvcsw += tsk->nvcsw;
 137        sig->nivcsw += tsk->nivcsw;
 138        sig->inblock += task_io_get_inblock(tsk);
 139        sig->oublock += task_io_get_oublock(tsk);
 140        task_io_accounting_add(&sig->ioac, &tsk->ioac);
 141        sig->sum_sched_runtime += tsk->se.sum_exec_runtime;
 142        sig->nr_threads--;
 143        __unhash_process(tsk, group_dead);
 144        write_sequnlock(&sig->stats_lock);
 145
 146        /*
 147         * Do this under ->siglock, we can race with another thread
 148         * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals.
 149         */
 150        flush_sigqueue(&tsk->pending);
 151        tsk->sighand = NULL;
 152        spin_unlock(&sighand->siglock);
 153
 154        __cleanup_sighand(sighand);
 155        clear_tsk_thread_flag(tsk, TIF_SIGPENDING);
 156        if (group_dead) {
 157                flush_sigqueue(&sig->shared_pending);
 158                tty_kref_put(tty);
 159        }
 160}
 161
 162static void delayed_put_task_struct(struct rcu_head *rhp)
 163{
 164        struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
 165
 166        perf_event_delayed_put(tsk);
 167        trace_sched_process_free(tsk);
 168        put_task_struct(tsk);
 169}
 170
 171
 172void release_task(struct task_struct *p)
 173{
 174        struct task_struct *leader;
 175        int zap_leader;
 176repeat:
 177        /* don't need to get the RCU readlock here - the process is dead and
 178         * can't be modifying its own credentials. But shut RCU-lockdep up */
 179        rcu_read_lock();
 180        atomic_dec(&__task_cred(p)->user->processes);
 181        rcu_read_unlock();
 182
 183        proc_flush_task(p);
 184
 185        write_lock_irq(&tasklist_lock);
 186        ptrace_release_task(p);
 187        __exit_signal(p);
 188
 189        /*
 190         * If we are the last non-leader member of the thread
 191         * group, and the leader is zombie, then notify the
 192         * group leader's parent process. (if it wants notification.)
 193         */
 194        zap_leader = 0;
 195        leader = p->group_leader;
 196        if (leader != p && thread_group_empty(leader)
 197                        && leader->exit_state == EXIT_ZOMBIE) {
 198                /*
 199                 * If we were the last child thread and the leader has
 200                 * exited already, and the leader's parent ignores SIGCHLD,
 201                 * then we are the one who should release the leader.
 202                 */
 203                zap_leader = do_notify_parent(leader, leader->exit_signal);
 204                if (zap_leader)
 205                        leader->exit_state = EXIT_DEAD;
 206        }
 207
 208        write_unlock_irq(&tasklist_lock);
 209        release_thread(p);
 210        call_rcu(&p->rcu, delayed_put_task_struct);
 211
 212        p = leader;
 213        if (unlikely(zap_leader))
 214                goto repeat;
 215}
 216
 217/*
 218 * This checks not only the pgrp, but falls back on the pid if no
 219 * satisfactory pgrp is found. I dunno - gdb doesn't work correctly
 220 * without this...
 221 *
 222 * The caller must hold rcu lock or the tasklist lock.
 223 */
 224struct pid *session_of_pgrp(struct pid *pgrp)
 225{
 226        struct task_struct *p;
 227        struct pid *sid = NULL;
 228
 229        p = pid_task(pgrp, PIDTYPE_PGID);
 230        if (p == NULL)
 231                p = pid_task(pgrp, PIDTYPE_PID);
 232        if (p != NULL)
 233                sid = task_session(p);
 234
 235        return sid;
 236}
 237
 238/*
 239 * Determine if a process group is "orphaned", according to the POSIX
 240 * definition in 2.2.2.52.  Orphaned process groups are not to be affected
 241 * by terminal-generated stop signals.  Newly orphaned process groups are
 242 * to receive a SIGHUP and a SIGCONT.
 243 *
 244 * "I ask you, have you ever known what it is to be an orphan?"
 245 */
 246static int will_become_orphaned_pgrp(struct pid *pgrp,
 247                                        struct task_struct *ignored_task)
 248{
 249        struct task_struct *p;
 250
 251        do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
 252                if ((p == ignored_task) ||
 253                    (p->exit_state && thread_group_empty(p)) ||
 254                    is_global_init(p->real_parent))
 255                        continue;
 256
 257                if (task_pgrp(p->real_parent) != pgrp &&
 258                    task_session(p->real_parent) == task_session(p))
 259                        return 0;
 260        } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
 261
 262        return 1;
 263}
 264
 265int is_current_pgrp_orphaned(void)
 266{
 267        int retval;
 268
 269        read_lock(&tasklist_lock);
 270        retval = will_become_orphaned_pgrp(task_pgrp(current), NULL);
 271        read_unlock(&tasklist_lock);
 272
 273        return retval;
 274}
 275
 276static bool has_stopped_jobs(struct pid *pgrp)
 277{
 278        struct task_struct *p;
 279
 280        do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
 281                if (p->signal->flags & SIGNAL_STOP_STOPPED)
 282                        return true;
 283        } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
 284
 285        return false;
 286}
 287
 288/*
 289 * Check to see if any process groups have become orphaned as
 290 * a result of our exiting, and if they have any stopped jobs,
 291 * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
 292 */
 293static void
 294kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent)
 295{
 296        struct pid *pgrp = task_pgrp(tsk);
 297        struct task_struct *ignored_task = tsk;
 298
 299        if (!parent)
 300                /* exit: our father is in a different pgrp than
 301                 * we are and we were the only connection outside.
 302                 */
 303                parent = tsk->real_parent;
 304        else
 305                /* reparent: our child is in a different pgrp than
 306                 * we are, and it was the only connection outside.
 307                 */
 308                ignored_task = NULL;
 309
 310        if (task_pgrp(parent) != pgrp &&
 311            task_session(parent) == task_session(tsk) &&
 312            will_become_orphaned_pgrp(pgrp, ignored_task) &&
 313            has_stopped_jobs(pgrp)) {
 314                __kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp);
 315                __kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp);
 316        }
 317}
 318
 319#ifdef CONFIG_MEMCG
 320/*
 321 * A task is exiting.   If it owned this mm, find a new owner for the mm.
 322 */
 323void mm_update_next_owner(struct mm_struct *mm)
 324{
 325        struct task_struct *c, *g, *p = current;
 326
 327retry:
 328        /*
 329         * If the exiting or execing task is not the owner, it's
 330         * someone else's problem.
 331         */
 332        if (mm->owner != p)
 333                return;
 334        /*
 335         * The current owner is exiting/execing and there are no other
 336         * candidates.  Do not leave the mm pointing to a possibly
 337         * freed task structure.
 338         */
 339        if (atomic_read(&mm->mm_users) <= 1) {
 340                mm->owner = NULL;
 341                return;
 342        }
 343
 344        read_lock(&tasklist_lock);
 345        /*
 346         * Search in the children
 347         */
 348        list_for_each_entry(c, &p->children, sibling) {
 349                if (c->mm == mm)
 350                        goto assign_new_owner;
 351        }
 352
 353        /*
 354         * Search in the siblings
 355         */
 356        list_for_each_entry(c, &p->real_parent->children, sibling) {
 357                if (c->mm == mm)
 358                        goto assign_new_owner;
 359        }
 360
 361        /*
 362         * Search through everything else, we should not get here often.
 363         */
 364        for_each_process(g) {
 365                if (g->flags & PF_KTHREAD)
 366                        continue;
 367                for_each_thread(g, c) {
 368                        if (c->mm == mm)
 369                                goto assign_new_owner;
 370                        if (c->mm)
 371                                break;
 372                }
 373        }
 374        read_unlock(&tasklist_lock);
 375        /*
 376         * We found no owner yet mm_users > 1: this implies that we are
 377         * most likely racing with swapoff (try_to_unuse()) or /proc or
 378         * ptrace or page migration (get_task_mm()).  Mark owner as NULL.
 379         */
 380        mm->owner = NULL;
 381        return;
 382
 383assign_new_owner:
 384        BUG_ON(c == p);
 385        get_task_struct(c);
 386        /*
 387         * The task_lock protects c->mm from changing.
 388         * We always want mm->owner->mm == mm
 389         */
 390        task_lock(c);
 391        /*
 392         * Delay read_unlock() till we have the task_lock()
 393         * to ensure that c does not slip away underneath us
 394         */
 395        read_unlock(&tasklist_lock);
 396        if (c->mm != mm) {
 397                task_unlock(c);
 398                put_task_struct(c);
 399                goto retry;
 400        }
 401        mm->owner = c;
 402        task_unlock(c);
 403        put_task_struct(c);
 404}
 405#endif /* CONFIG_MEMCG */
 406
 407/*
 408 * Turn us into a lazy TLB process if we
 409 * aren't already..
 410 */
 411static void exit_mm(struct task_struct *tsk)
 412{
 413        struct mm_struct *mm = tsk->mm;
 414        struct core_state *core_state;
 415
 416        mm_release(tsk, mm);
 417        if (!mm)
 418                return;
 419        sync_mm_rss(mm);
 420        /*
 421         * Serialize with any possible pending coredump.
 422         * We must hold mmap_sem around checking core_state
 423         * and clearing tsk->mm.  The core-inducing thread
 424         * will increment ->nr_threads for each thread in the
 425         * group with ->mm != NULL.
 426         */
 427        down_read(&mm->mmap_sem);
 428        core_state = mm->core_state;
 429        if (core_state) {
 430                struct core_thread self;
 431
 432                up_read(&mm->mmap_sem);
 433
 434                self.task = tsk;
 435                self.next = xchg(&core_state->dumper.next, &self);
 436                /*
 437                 * Implies mb(), the result of xchg() must be visible
 438                 * to core_state->dumper.
 439                 */
 440                if (atomic_dec_and_test(&core_state->nr_threads))
 441                        complete(&core_state->startup);
 442
 443                for (;;) {
 444                        set_task_state(tsk, TASK_UNINTERRUPTIBLE);
 445                        if (!self.task) /* see coredump_finish() */
 446                                break;
 447                        freezable_schedule();
 448                }
 449                __set_task_state(tsk, TASK_RUNNING);
 450                down_read(&mm->mmap_sem);
 451        }
 452        atomic_inc(&mm->mm_count);
 453        BUG_ON(mm != tsk->active_mm);
 454        /* more a memory barrier than a real lock */
 455        task_lock(tsk);
 456        tsk->mm = NULL;
 457        up_read(&mm->mmap_sem);
 458        enter_lazy_tlb(mm, current);
 459        task_unlock(tsk);
 460        mm_update_next_owner(mm);
 461        mmput(mm);
 462        clear_thread_flag(TIF_MEMDIE);
 463}
 464
 465/*
 466 * When we die, we re-parent all our children, and try to:
 467 * 1. give them to another thread in our thread group, if such a member exists
 468 * 2. give it to the first ancestor process which prctl'd itself as a
 469 *    child_subreaper for its children (like a service manager)
 470 * 3. give it to the init process (PID 1) in our pid namespace
 471 */
 472static struct task_struct *find_new_reaper(struct task_struct *father)
 473        __releases(&tasklist_lock)
 474        __acquires(&tasklist_lock)
 475{
 476        struct pid_namespace *pid_ns = task_active_pid_ns(father);
 477        struct task_struct *thread;
 478
 479        thread = father;
 480        while_each_thread(father, thread) {
 481                if (thread->flags & PF_EXITING)
 482                        continue;
 483                if (unlikely(pid_ns->child_reaper == father))
 484                        pid_ns->child_reaper = thread;
 485                return thread;
 486        }
 487
 488        if (unlikely(pid_ns->child_reaper == father)) {
 489                write_unlock_irq(&tasklist_lock);
 490                if (unlikely(pid_ns == &init_pid_ns)) {
 491                        panic("Attempted to kill init! exitcode=0x%08x\n",
 492                                father->signal->group_exit_code ?:
 493                                        father->exit_code);
 494                }
 495
 496                zap_pid_ns_processes(pid_ns);
 497                write_lock_irq(&tasklist_lock);
 498        } else if (father->signal->has_child_subreaper) {
 499                struct task_struct *reaper;
 500
 501                /*
 502                 * Find the first ancestor marked as child_subreaper.
 503                 * Note that the code below checks same_thread_group(reaper,
 504                 * pid_ns->child_reaper).  This is what we need to DTRT in a
 505                 * PID namespace. However we still need the check above, see
 506                 * http://marc.info/?l=linux-kernel&m=131385460420380
 507                 */
 508                for (reaper = father->real_parent;
 509                     reaper != &init_task;
 510                     reaper = reaper->real_parent) {
 511                        if (same_thread_group(reaper, pid_ns->child_reaper))
 512                                break;
 513                        if (!reaper->signal->is_child_subreaper)
 514                                continue;
 515                        thread = reaper;
 516                        do {
 517                                if (!(thread->flags & PF_EXITING))
 518                                        return reaper;
 519                        } while_each_thread(reaper, thread);
 520                }
 521        }
 522
 523        return pid_ns->child_reaper;
 524}
 525
 526/*
 527* Any that need to be release_task'd are put on the @dead list.
 528 */
 529static void reparent_leader(struct task_struct *father, struct task_struct *p,
 530                                struct list_head *dead)
 531{
 532        list_move_tail(&p->sibling, &p->real_parent->children);
 533
 534        if (p->exit_state == EXIT_DEAD)
 535                return;
 536        /*
 537         * If this is a threaded reparent there is no need to
 538         * notify anyone anything has happened.
 539         */
 540        if (same_thread_group(p->real_parent, father))
 541                return;
 542
 543        /* We don't want people slaying init. */
 544        p->exit_signal = SIGCHLD;
 545
 546        /* If it has exited notify the new parent about this child's death. */
 547        if (!p->ptrace &&
 548            p->exit_state == EXIT_ZOMBIE && thread_group_empty(p)) {
 549                if (do_notify_parent(p, p->exit_signal)) {
 550                        p->exit_state = EXIT_DEAD;
 551                        list_move_tail(&p->sibling, dead);
 552                }
 553        }
 554
 555        kill_orphaned_pgrp(p, father);
 556}
 557
 558static void forget_original_parent(struct task_struct *father)
 559{
 560        struct task_struct *p, *n, *reaper;
 561        LIST_HEAD(dead_children);
 562
 563        write_lock_irq(&tasklist_lock);
 564        /*
 565         * Note that exit_ptrace() and find_new_reaper() might
 566         * drop tasklist_lock and reacquire it.
 567         */
 568        exit_ptrace(father);
 569        reaper = find_new_reaper(father);
 570
 571        list_for_each_entry_safe(p, n, &father->children, sibling) {
 572                struct task_struct *t = p;
 573
 574                do {
 575                        t->real_parent = reaper;
 576                        if (t->parent == father) {
 577                                BUG_ON(t->ptrace);
 578                                t->parent = t->real_parent;
 579                        }
 580                        if (t->pdeath_signal)
 581                                group_send_sig_info(t->pdeath_signal,
 582                                                    SEND_SIG_NOINFO, t);
 583                } while_each_thread(p, t);
 584                reparent_leader(father, p, &dead_children);
 585        }
 586        write_unlock_irq(&tasklist_lock);
 587
 588        BUG_ON(!list_empty(&father->children));
 589
 590        list_for_each_entry_safe(p, n, &dead_children, sibling) {
 591                list_del_init(&p->sibling);
 592                release_task(p);
 593        }
 594}
 595
 596/*
 597 * Send signals to all our closest relatives so that they know
 598 * to properly mourn us..
 599 */
 600static void exit_notify(struct task_struct *tsk, int group_dead)
 601{
 602        bool autoreap;
 603
 604        /*
 605         * This does two things:
 606         *
 607         * A.  Make init inherit all the child processes
 608         * B.  Check to see if any process groups have become orphaned
 609         *      as a result of our exiting, and if they have any stopped
 610         *      jobs, send them a SIGHUP and then a SIGCONT.  (POSIX 3.2.2.2)
 611         */
 612        forget_original_parent(tsk);
 613
 614        write_lock_irq(&tasklist_lock);
 615        if (group_dead)
 616                kill_orphaned_pgrp(tsk->group_leader, NULL);
 617
 618        if (unlikely(tsk->ptrace)) {
 619                int sig = thread_group_leader(tsk) &&
 620                                thread_group_empty(tsk) &&
 621                                !ptrace_reparented(tsk) ?
 622                        tsk->exit_signal : SIGCHLD;
 623                autoreap = do_notify_parent(tsk, sig);
 624        } else if (thread_group_leader(tsk)) {
 625                autoreap = thread_group_empty(tsk) &&
 626                        do_notify_parent(tsk, tsk->exit_signal);
 627        } else {
 628                autoreap = true;
 629        }
 630
 631        tsk->exit_state = autoreap ? EXIT_DEAD : EXIT_ZOMBIE;
 632
 633        /* mt-exec, de_thread() is waiting for group leader */
 634        if (unlikely(tsk->signal->notify_count < 0))
 635                wake_up_process(tsk->signal->group_exit_task);
 636        write_unlock_irq(&tasklist_lock);
 637
 638        /* If the process is dead, release it - nobody will wait for it */
 639        if (autoreap)
 640                release_task(tsk);
 641}
 642
 643#ifdef CONFIG_DEBUG_STACK_USAGE
 644static void check_stack_usage(void)
 645{
 646        static DEFINE_SPINLOCK(low_water_lock);
 647        static int lowest_to_date = THREAD_SIZE;
 648        unsigned long free;
 649
 650        free = stack_not_used(current);
 651
 652        if (free >= lowest_to_date)
 653                return;
 654
 655        spin_lock(&low_water_lock);
 656        if (free < lowest_to_date) {
 657                pr_warn("%s (%d) used greatest stack depth: %lu bytes left\n",
 658                        current->comm, task_pid_nr(current), free);
 659                lowest_to_date = free;
 660        }
 661        spin_unlock(&low_water_lock);
 662}
 663#else
 664static inline void check_stack_usage(void) {}
 665#endif
 666
 667void do_exit(long code)
 668{
 669        struct task_struct *tsk = current;
 670        int group_dead;
 671        TASKS_RCU(int tasks_rcu_i);
 672
 673        profile_task_exit(tsk);
 674
 675        WARN_ON(blk_needs_flush_plug(tsk));
 676
 677        if (unlikely(in_interrupt()))
 678                panic("Aiee, killing interrupt handler!");
 679        if (unlikely(!tsk->pid))
 680                panic("Attempted to kill the idle task!");
 681
 682        /*
 683         * If do_exit is called because this processes oopsed, it's possible
 684         * that get_fs() was left as KERNEL_DS, so reset it to USER_DS before
 685         * continuing. Amongst other possible reasons, this is to prevent
 686         * mm_release()->clear_child_tid() from writing to a user-controlled
 687         * kernel address.
 688         */
 689        set_fs(USER_DS);
 690
 691        ptrace_event(PTRACE_EVENT_EXIT, code);
 692
 693        validate_creds_for_do_exit(tsk);
 694
 695        /*
 696         * We're taking recursive faults here in do_exit. Safest is to just
 697         * leave this task alone and wait for reboot.
 698         */
 699        if (unlikely(tsk->flags & PF_EXITING)) {
 700                pr_alert("Fixing recursive fault but reboot is needed!\n");
 701                /*
 702                 * We can do this unlocked here. The futex code uses
 703                 * this flag just to verify whether the pi state
 704                 * cleanup has been done or not. In the worst case it
 705                 * loops once more. We pretend that the cleanup was
 706                 * done as there is no way to return. Either the
 707                 * OWNER_DIED bit is set by now or we push the blocked
 708                 * task into the wait for ever nirwana as well.
 709                 */
 710                tsk->flags |= PF_EXITPIDONE;
 711                set_current_state(TASK_UNINTERRUPTIBLE);
 712                schedule();
 713        }
 714
 715        exit_signals(tsk);  /* sets PF_EXITING */
 716        /*
 717         * tsk->flags are checked in the futex code to protect against
 718         * an exiting task cleaning up the robust pi futexes.
 719         */
 720        smp_mb();
 721        raw_spin_unlock_wait(&tsk->pi_lock);
 722
 723        if (unlikely(in_atomic()))
 724                pr_info("note: %s[%d] exited with preempt_count %d\n",
 725                        current->comm, task_pid_nr(current),
 726                        preempt_count());
 727
 728        acct_update_integrals(tsk);
 729        /* sync mm's RSS info before statistics gathering */
 730        if (tsk->mm)
 731                sync_mm_rss(tsk->mm);
 732        group_dead = atomic_dec_and_test(&tsk->signal->live);
 733        if (group_dead) {
 734                hrtimer_cancel(&tsk->signal->real_timer);
 735                exit_itimers(tsk->signal);
 736                if (tsk->mm)
 737                        setmax_mm_hiwater_rss(&tsk->signal->maxrss, tsk->mm);
 738        }
 739        acct_collect(code, group_dead);
 740        if (group_dead)
 741                tty_audit_exit();
 742        audit_free(tsk);
 743
 744        tsk->exit_code = code;
 745        taskstats_exit(tsk, group_dead);
 746
 747        exit_mm(tsk);
 748
 749        if (group_dead)
 750                acct_process();
 751        trace_sched_process_exit(tsk);
 752
 753        exit_sem(tsk);
 754        exit_shm(tsk);
 755        exit_files(tsk);
 756        exit_fs(tsk);
 757        if (group_dead)
 758                disassociate_ctty(1);
 759        exit_task_namespaces(tsk);
 760        exit_task_work(tsk);
 761        exit_thread();
 762
 763        /*
 764         * Flush inherited counters to the parent - before the parent
 765         * gets woken up by child-exit notifications.
 766         *
 767         * because of cgroup mode, must be called before cgroup_exit()
 768         */
 769        perf_event_exit_task(tsk);
 770
 771        cgroup_exit(tsk);
 772
 773        module_put(task_thread_info(tsk)->exec_domain->module);
 774
 775        /*
 776         * FIXME: do that only when needed, using sched_exit tracepoint
 777         */
 778        flush_ptrace_hw_breakpoint(tsk);
 779
 780        TASKS_RCU(tasks_rcu_i = __srcu_read_lock(&tasks_rcu_exit_srcu));
 781        exit_notify(tsk, group_dead);
 782        proc_exit_connector(tsk);
 783#ifdef CONFIG_NUMA
 784        task_lock(tsk);
 785        mpol_put(tsk->mempolicy);
 786        tsk->mempolicy = NULL;
 787        task_unlock(tsk);
 788#endif
 789#ifdef CONFIG_FUTEX
 790        if (unlikely(current->pi_state_cache))
 791                kfree(current->pi_state_cache);
 792#endif
 793        /*
 794         * Make sure we are holding no locks:
 795         */
 796        debug_check_no_locks_held();
 797        /*
 798         * We can do this unlocked here. The futex code uses this flag
 799         * just to verify whether the pi state cleanup has been done
 800         * or not. In the worst case it loops once more.
 801         */
 802        tsk->flags |= PF_EXITPIDONE;
 803
 804        if (tsk->io_context)
 805                exit_io_context(tsk);
 806
 807        if (tsk->splice_pipe)
 808                free_pipe_info(tsk->splice_pipe);
 809
 810        if (tsk->task_frag.page)
 811                put_page(tsk->task_frag.page);
 812
 813        validate_creds_for_do_exit(tsk);
 814
 815        check_stack_usage();
 816        preempt_disable();
 817        if (tsk->nr_dirtied)
 818                __this_cpu_add(dirty_throttle_leaks, tsk->nr_dirtied);
 819        exit_rcu();
 820        TASKS_RCU(__srcu_read_unlock(&tasks_rcu_exit_srcu, tasks_rcu_i));
 821
 822        /*
 823         * The setting of TASK_RUNNING by try_to_wake_up() may be delayed
 824         * when the following two conditions become true.
 825         *   - There is race condition of mmap_sem (It is acquired by
 826         *     exit_mm()), and
 827         *   - SMI occurs before setting TASK_RUNINNG.
 828         *     (or hypervisor of virtual machine switches to other guest)
 829         *  As a result, we may become TASK_RUNNING after becoming TASK_DEAD
 830         *
 831         * To avoid it, we have to wait for releasing tsk->pi_lock which
 832         * is held by try_to_wake_up()
 833         */
 834        smp_mb();
 835        raw_spin_unlock_wait(&tsk->pi_lock);
 836
 837        /* causes final put_task_struct in finish_task_switch(). */
 838        tsk->state = TASK_DEAD;
 839        tsk->flags |= PF_NOFREEZE;      /* tell freezer to ignore us */
 840        schedule();
 841        BUG();
 842        /* Avoid "noreturn function does return".  */
 843        for (;;)
 844                cpu_relax();    /* For when BUG is null */
 845}
 846EXPORT_SYMBOL_GPL(do_exit);
 847
 848void complete_and_exit(struct completion *comp, long code)
 849{
 850        if (comp)
 851                complete(comp);
 852
 853        do_exit(code);
 854}
 855EXPORT_SYMBOL(complete_and_exit);
 856
 857SYSCALL_DEFINE1(exit, int, error_code)
 858{
 859        do_exit((error_code&0xff)<<8);
 860}
 861
 862/*
 863 * Take down every thread in the group.  This is called by fatal signals
 864 * as well as by sys_exit_group (below).
 865 */
 866void
 867do_group_exit(int exit_code)
 868{
 869        struct signal_struct *sig = current->signal;
 870
 871        BUG_ON(exit_code & 0x80); /* core dumps don't get here */
 872
 873        if (signal_group_exit(sig))
 874                exit_code = sig->group_exit_code;
 875        else if (!thread_group_empty(current)) {
 876                struct sighand_struct *const sighand = current->sighand;
 877
 878                spin_lock_irq(&sighand->siglock);
 879                if (signal_group_exit(sig))
 880                        /* Another thread got here before we took the lock.  */
 881                        exit_code = sig->group_exit_code;
 882                else {
 883                        sig->group_exit_code = exit_code;
 884                        sig->flags = SIGNAL_GROUP_EXIT;
 885                        zap_other_threads(current);
 886                }
 887                spin_unlock_irq(&sighand->siglock);
 888        }
 889
 890        do_exit(exit_code);
 891        /* NOTREACHED */
 892}
 893
 894/*
 895 * this kills every thread in the thread group. Note that any externally
 896 * wait4()-ing process will get the correct exit code - even if this
 897 * thread is not the thread group leader.
 898 */
 899SYSCALL_DEFINE1(exit_group, int, error_code)
 900{
 901        do_group_exit((error_code & 0xff) << 8);
 902        /* NOTREACHED */
 903        return 0;
 904}
 905
 906struct wait_opts {
 907        enum pid_type           wo_type;
 908        int                     wo_flags;
 909        struct pid              *wo_pid;
 910
 911        struct siginfo __user   *wo_info;
 912        int __user              *wo_stat;
 913        struct rusage __user    *wo_rusage;
 914
 915        wait_queue_t            child_wait;
 916        int                     notask_error;
 917};
 918
 919static inline
 920struct pid *task_pid_type(struct task_struct *task, enum pid_type type)
 921{
 922        if (type != PIDTYPE_PID)
 923                task = task->group_leader;
 924        return task->pids[type].pid;
 925}
 926
 927static int eligible_pid(struct wait_opts *wo, struct task_struct *p)
 928{
 929        return  wo->wo_type == PIDTYPE_MAX ||
 930                task_pid_type(p, wo->wo_type) == wo->wo_pid;
 931}
 932
 933static int eligible_child(struct wait_opts *wo, struct task_struct *p)
 934{
 935        if (!eligible_pid(wo, p))
 936                return 0;
 937        /* Wait for all children (clone and not) if __WALL is set;
 938         * otherwise, wait for clone children *only* if __WCLONE is
 939         * set; otherwise, wait for non-clone children *only*.  (Note:
 940         * A "clone" child here is one that reports to its parent
 941         * using a signal other than SIGCHLD.) */
 942        if (((p->exit_signal != SIGCHLD) ^ !!(wo->wo_flags & __WCLONE))
 943            && !(wo->wo_flags & __WALL))
 944                return 0;
 945
 946        return 1;
 947}
 948
 949static int wait_noreap_copyout(struct wait_opts *wo, struct task_struct *p,
 950                                pid_t pid, uid_t uid, int why, int status)
 951{
 952        struct siginfo __user *infop;
 953        int retval = wo->wo_rusage
 954                ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
 955
 956        put_task_struct(p);
 957        infop = wo->wo_info;
 958        if (infop) {
 959                if (!retval)
 960                        retval = put_user(SIGCHLD, &infop->si_signo);
 961                if (!retval)
 962                        retval = put_user(0, &infop->si_errno);
 963                if (!retval)
 964                        retval = put_user((short)why, &infop->si_code);
 965                if (!retval)
 966                        retval = put_user(pid, &infop->si_pid);
 967                if (!retval)
 968                        retval = put_user(uid, &infop->si_uid);
 969                if (!retval)
 970                        retval = put_user(status, &infop->si_status);
 971        }
 972        if (!retval)
 973                retval = pid;
 974        return retval;
 975}
 976
 977/*
 978 * Handle sys_wait4 work for one task in state EXIT_ZOMBIE.  We hold
 979 * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
 980 * the lock and this task is uninteresting.  If we return nonzero, we have
 981 * released the lock and the system call should return.
 982 */
 983static int wait_task_zombie(struct wait_opts *wo, struct task_struct *p)
 984{
 985        unsigned long state;
 986        int retval, status, traced;
 987        pid_t pid = task_pid_vnr(p);
 988        uid_t uid = from_kuid_munged(current_user_ns(), task_uid(p));
 989        struct siginfo __user *infop;
 990
 991        if (!likely(wo->wo_flags & WEXITED))
 992                return 0;
 993
 994        if (unlikely(wo->wo_flags & WNOWAIT)) {
 995                int exit_code = p->exit_code;
 996                int why;
 997
 998                get_task_struct(p);
 999                read_unlock(&tasklist_lock);
1000                if ((exit_code & 0x7f) == 0) {
1001                        why = CLD_EXITED;
1002                        status = exit_code >> 8;
1003                } else {
1004                        why = (exit_code & 0x80) ? CLD_DUMPED : CLD_KILLED;
1005                        status = exit_code & 0x7f;
1006                }
1007                return wait_noreap_copyout(wo, p, pid, uid, why, status);
1008        }
1009
1010        traced = ptrace_reparented(p);
1011        /*
1012         * Move the task's state to DEAD/TRACE, only one thread can do this.
1013         */
1014        state = traced && thread_group_leader(p) ? EXIT_TRACE : EXIT_DEAD;
1015        if (cmpxchg(&p->exit_state, EXIT_ZOMBIE, state) != EXIT_ZOMBIE)
1016                return 0;
1017        /*
1018         * It can be ptraced but not reparented, check
1019         * thread_group_leader() to filter out sub-threads.
1020         */
1021        if (likely(!traced) && thread_group_leader(p)) {
1022                struct signal_struct *psig;
1023                struct signal_struct *sig;
1024                unsigned long maxrss;
1025                cputime_t tgutime, tgstime;
1026
1027                /*
1028                 * The resource counters for the group leader are in its
1029                 * own task_struct.  Those for dead threads in the group
1030                 * are in its signal_struct, as are those for the child
1031                 * processes it has previously reaped.  All these
1032                 * accumulate in the parent's signal_struct c* fields.
1033                 *
1034                 * We don't bother to take a lock here to protect these
1035                 * p->signal fields, because they are only touched by
1036                 * __exit_signal, which runs with tasklist_lock
1037                 * write-locked anyway, and so is excluded here.  We do
1038                 * need to protect the access to parent->signal fields,
1039                 * as other threads in the parent group can be right
1040                 * here reaping other children at the same time.
1041                 *
1042                 * We use thread_group_cputime_adjusted() to get times for
1043                 * the thread group, which consolidates times for all threads
1044                 * in the group including the group leader.
1045                 */
1046                thread_group_cputime_adjusted(p, &tgutime, &tgstime);
1047                spin_lock_irq(&p->real_parent->sighand->siglock);
1048                psig = p->real_parent->signal;
1049                sig = p->signal;
1050                write_seqlock(&psig->stats_lock);
1051                psig->cutime += tgutime + sig->cutime;
1052                psig->cstime += tgstime + sig->cstime;
1053                psig->cgtime += task_gtime(p) + sig->gtime + sig->cgtime;
1054                psig->cmin_flt +=
1055                        p->min_flt + sig->min_flt + sig->cmin_flt;
1056                psig->cmaj_flt +=
1057                        p->maj_flt + sig->maj_flt + sig->cmaj_flt;
1058                psig->cnvcsw +=
1059                        p->nvcsw + sig->nvcsw + sig->cnvcsw;
1060                psig->cnivcsw +=
1061                        p->nivcsw + sig->nivcsw + sig->cnivcsw;
1062                psig->cinblock +=
1063                        task_io_get_inblock(p) +
1064                        sig->inblock + sig->cinblock;
1065                psig->coublock +=
1066                        task_io_get_oublock(p) +
1067                        sig->oublock + sig->coublock;
1068                maxrss = max(sig->maxrss, sig->cmaxrss);
1069                if (psig->cmaxrss < maxrss)
1070                        psig->cmaxrss = maxrss;
1071                task_io_accounting_add(&psig->ioac, &p->ioac);
1072                task_io_accounting_add(&psig->ioac, &sig->ioac);
1073                write_sequnlock(&psig->stats_lock);
1074                spin_unlock_irq(&p->real_parent->sighand->siglock);
1075        }
1076
1077        /*
1078         * Now we are sure this task is interesting, and no other
1079         * thread can reap it because we its state == DEAD/TRACE.
1080         */
1081        read_unlock(&tasklist_lock);
1082
1083        retval = wo->wo_rusage
1084                ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1085        status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1086                ? p->signal->group_exit_code : p->exit_code;
1087        if (!retval && wo->wo_stat)
1088                retval = put_user(status, wo->wo_stat);
1089
1090        infop = wo->wo_info;
1091        if (!retval && infop)
1092                retval = put_user(SIGCHLD, &infop->si_signo);
1093        if (!retval && infop)
1094                retval = put_user(0, &infop->si_errno);
1095        if (!retval && infop) {
1096                int why;
1097
1098                if ((status & 0x7f) == 0) {
1099                        why = CLD_EXITED;
1100                        status >>= 8;
1101                } else {
1102                        why = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
1103                        status &= 0x7f;
1104                }
1105                retval = put_user((short)why, &infop->si_code);
1106                if (!retval)
1107                        retval = put_user(status, &infop->si_status);
1108        }
1109        if (!retval && infop)
1110                retval = put_user(pid, &infop->si_pid);
1111        if (!retval && infop)
1112                retval = put_user(uid, &infop->si_uid);
1113        if (!retval)
1114                retval = pid;
1115
1116        if (state == EXIT_TRACE) {
1117                write_lock_irq(&tasklist_lock);
1118                /* We dropped tasklist, ptracer could die and untrace */
1119                ptrace_unlink(p);
1120
1121                /* If parent wants a zombie, don't release it now */
1122                state = EXIT_ZOMBIE;
1123                if (do_notify_parent(p, p->exit_signal))
1124                        state = EXIT_DEAD;
1125                p->exit_state = state;
1126                write_unlock_irq(&tasklist_lock);
1127        }
1128        if (state == EXIT_DEAD)
1129                release_task(p);
1130
1131        return retval;
1132}
1133
1134static int *task_stopped_code(struct task_struct *p, bool ptrace)
1135{
1136        if (ptrace) {
1137                if (task_is_stopped_or_traced(p) &&
1138                    !(p->jobctl & JOBCTL_LISTENING))
1139                        return &p->exit_code;
1140        } else {
1141                if (p->signal->flags & SIGNAL_STOP_STOPPED)
1142                        return &p->signal->group_exit_code;
1143        }
1144        return NULL;
1145}
1146
1147/**
1148 * wait_task_stopped - Wait for %TASK_STOPPED or %TASK_TRACED
1149 * @wo: wait options
1150 * @ptrace: is the wait for ptrace
1151 * @p: task to wait for
1152 *
1153 * Handle sys_wait4() work for %p in state %TASK_STOPPED or %TASK_TRACED.
1154 *
1155 * CONTEXT:
1156 * read_lock(&tasklist_lock), which is released if return value is
1157 * non-zero.  Also, grabs and releases @p->sighand->siglock.
1158 *
1159 * RETURNS:
1160 * 0 if wait condition didn't exist and search for other wait conditions
1161 * should continue.  Non-zero return, -errno on failure and @p's pid on
1162 * success, implies that tasklist_lock is released and wait condition
1163 * search should terminate.
1164 */
1165static int wait_task_stopped(struct wait_opts *wo,
1166                                int ptrace, struct task_struct *p)
1167{
1168        struct siginfo __user *infop;
1169        int retval, exit_code, *p_code, why;
1170        uid_t uid = 0; /* unneeded, required by compiler */
1171        pid_t pid;
1172
1173        /*
1174         * Traditionally we see ptrace'd stopped tasks regardless of options.
1175         */
1176        if (!ptrace && !(wo->wo_flags & WUNTRACED))
1177                return 0;
1178
1179        if (!task_stopped_code(p, ptrace))
1180                return 0;
1181
1182        exit_code = 0;
1183        spin_lock_irq(&p->sighand->siglock);
1184
1185        p_code = task_stopped_code(p, ptrace);
1186        if (unlikely(!p_code))
1187                goto unlock_sig;
1188
1189        exit_code = *p_code;
1190        if (!exit_code)
1191                goto unlock_sig;
1192
1193        if (!unlikely(wo->wo_flags & WNOWAIT))
1194                *p_code = 0;
1195
1196        uid = from_kuid_munged(current_user_ns(), task_uid(p));
1197unlock_sig:
1198        spin_unlock_irq(&p->sighand->siglock);
1199        if (!exit_code)
1200                return 0;
1201
1202        /*
1203         * Now we are pretty sure this task is interesting.
1204         * Make sure it doesn't get reaped out from under us while we
1205         * give up the lock and then examine it below.  We don't want to
1206         * keep holding onto the tasklist_lock while we call getrusage and
1207         * possibly take page faults for user memory.
1208         */
1209        get_task_struct(p);
1210        pid = task_pid_vnr(p);
1211        why = ptrace ? CLD_TRAPPED : CLD_STOPPED;
1212        read_unlock(&tasklist_lock);
1213
1214        if (unlikely(wo->wo_flags & WNOWAIT))
1215                return wait_noreap_copyout(wo, p, pid, uid, why, exit_code);
1216
1217        retval = wo->wo_rusage
1218                ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1219        if (!retval && wo->wo_stat)
1220                retval = put_user((exit_code << 8) | 0x7f, wo->wo_stat);
1221
1222        infop = wo->wo_info;
1223        if (!retval && infop)
1224                retval = put_user(SIGCHLD, &infop->si_signo);
1225        if (!retval && infop)
1226                retval = put_user(0, &infop->si_errno);
1227        if (!retval && infop)
1228                retval = put_user((short)why, &infop->si_code);
1229        if (!retval && infop)
1230                retval = put_user(exit_code, &infop->si_status);
1231        if (!retval && infop)
1232                retval = put_user(pid, &infop->si_pid);
1233        if (!retval && infop)
1234                retval = put_user(uid, &infop->si_uid);
1235        if (!retval)
1236                retval = pid;
1237        put_task_struct(p);
1238
1239        BUG_ON(!retval);
1240        return retval;
1241}
1242
1243/*
1244 * Handle do_wait work for one task in a live, non-stopped state.
1245 * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1246 * the lock and this task is uninteresting.  If we return nonzero, we have
1247 * released the lock and the system call should return.
1248 */
1249static int wait_task_continued(struct wait_opts *wo, struct task_struct *p)
1250{
1251        int retval;
1252        pid_t pid;
1253        uid_t uid;
1254
1255        if (!unlikely(wo->wo_flags & WCONTINUED))
1256                return 0;
1257
1258        if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
1259                return 0;
1260
1261        spin_lock_irq(&p->sighand->siglock);
1262        /* Re-check with the lock held.  */
1263        if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
1264                spin_unlock_irq(&p->sighand->siglock);
1265                return 0;
1266        }
1267        if (!unlikely(wo->wo_flags & WNOWAIT))
1268                p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
1269        uid = from_kuid_munged(current_user_ns(), task_uid(p));
1270        spin_unlock_irq(&p->sighand->siglock);
1271
1272        pid = task_pid_vnr(p);
1273        get_task_struct(p);
1274        read_unlock(&tasklist_lock);
1275
1276        if (!wo->wo_info) {
1277                retval = wo->wo_rusage
1278                        ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1279                put_task_struct(p);
1280                if (!retval && wo->wo_stat)
1281                        retval = put_user(0xffff, wo->wo_stat);
1282                if (!retval)
1283                        retval = pid;
1284        } else {
1285                retval = wait_noreap_copyout(wo, p, pid, uid,
1286                                             CLD_CONTINUED, SIGCONT);
1287                BUG_ON(retval == 0);
1288        }
1289
1290        return retval;
1291}
1292
1293/*
1294 * Consider @p for a wait by @parent.
1295 *
1296 * -ECHILD should be in ->notask_error before the first call.
1297 * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1298 * Returns zero if the search for a child should continue;
1299 * then ->notask_error is 0 if @p is an eligible child,
1300 * or another error from security_task_wait(), or still -ECHILD.
1301 */
1302static int wait_consider_task(struct wait_opts *wo, int ptrace,
1303                                struct task_struct *p)
1304{
1305        int ret;
1306
1307        if (unlikely(p->exit_state == EXIT_DEAD))
1308                return 0;
1309
1310        ret = eligible_child(wo, p);
1311        if (!ret)
1312                return ret;
1313
1314        ret = security_task_wait(p);
1315        if (unlikely(ret < 0)) {
1316                /*
1317                 * If we have not yet seen any eligible child,
1318                 * then let this error code replace -ECHILD.
1319                 * A permission error will give the user a clue
1320                 * to look for security policy problems, rather
1321                 * than for mysterious wait bugs.
1322                 */
1323                if (wo->notask_error)
1324                        wo->notask_error = ret;
1325                return 0;
1326        }
1327
1328        if (unlikely(p->exit_state == EXIT_TRACE)) {
1329                /*
1330                 * ptrace == 0 means we are the natural parent. In this case
1331                 * we should clear notask_error, debugger will notify us.
1332                 */
1333                if (likely(!ptrace))
1334                        wo->notask_error = 0;
1335                return 0;
1336        }
1337
1338        if (likely(!ptrace) && unlikely(p->ptrace)) {
1339                /*
1340                 * If it is traced by its real parent's group, just pretend
1341                 * the caller is ptrace_do_wait() and reap this child if it
1342                 * is zombie.
1343                 *
1344                 * This also hides group stop state from real parent; otherwise
1345                 * a single stop can be reported twice as group and ptrace stop.
1346                 * If a ptracer wants to distinguish these two events for its
1347                 * own children it should create a separate process which takes
1348                 * the role of real parent.
1349                 */
1350                if (!ptrace_reparented(p))
1351                        ptrace = 1;
1352        }
1353
1354        /* slay zombie? */
1355        if (p->exit_state == EXIT_ZOMBIE) {
1356                /* we don't reap group leaders with subthreads */
1357                if (!delay_group_leader(p)) {
1358                        /*
1359                         * A zombie ptracee is only visible to its ptracer.
1360                         * Notification and reaping will be cascaded to the
1361                         * real parent when the ptracer detaches.
1362                         */
1363                        if (unlikely(ptrace) || likely(!p->ptrace))
1364                                return wait_task_zombie(wo, p);
1365                }
1366
1367                /*
1368                 * Allow access to stopped/continued state via zombie by
1369                 * falling through.  Clearing of notask_error is complex.
1370                 *
1371                 * When !@ptrace:
1372                 *
1373                 * If WEXITED is set, notask_error should naturally be
1374                 * cleared.  If not, subset of WSTOPPED|WCONTINUED is set,
1375                 * so, if there are live subthreads, there are events to
1376                 * wait for.  If all subthreads are dead, it's still safe
1377                 * to clear - this function will be called again in finite
1378                 * amount time once all the subthreads are released and
1379                 * will then return without clearing.
1380                 *
1381                 * When @ptrace:
1382                 *
1383                 * Stopped state is per-task and thus can't change once the
1384                 * target task dies.  Only continued and exited can happen.
1385                 * Clear notask_error if WCONTINUED | WEXITED.
1386                 */
1387                if (likely(!ptrace) || (wo->wo_flags & (WCONTINUED | WEXITED)))
1388                        wo->notask_error = 0;
1389        } else {
1390                /*
1391                 * @p is alive and it's gonna stop, continue or exit, so
1392                 * there always is something to wait for.
1393                 */
1394                wo->notask_error = 0;
1395        }
1396
1397        /*
1398         * Wait for stopped.  Depending on @ptrace, different stopped state
1399         * is used and the two don't interact with each other.
1400         */
1401        ret = wait_task_stopped(wo, ptrace, p);
1402        if (ret)
1403                return ret;
1404
1405        /*
1406         * Wait for continued.  There's only one continued state and the
1407         * ptracer can consume it which can confuse the real parent.  Don't
1408         * use WCONTINUED from ptracer.  You don't need or want it.
1409         */
1410        return wait_task_continued(wo, p);
1411}
1412
1413/*
1414 * Do the work of do_wait() for one thread in the group, @tsk.
1415 *
1416 * -ECHILD should be in ->notask_error before the first call.
1417 * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1418 * Returns zero if the search for a child should continue; then
1419 * ->notask_error is 0 if there were any eligible children,
1420 * or another error from security_task_wait(), or still -ECHILD.
1421 */
1422static int do_wait_thread(struct wait_opts *wo, struct task_struct *tsk)
1423{
1424        struct task_struct *p;
1425
1426        list_for_each_entry(p, &tsk->children, sibling) {
1427                int ret = wait_consider_task(wo, 0, p);
1428
1429                if (ret)
1430                        return ret;
1431        }
1432
1433        return 0;
1434}
1435
1436static int ptrace_do_wait(struct wait_opts *wo, struct task_struct *tsk)
1437{
1438        struct task_struct *p;
1439
1440        list_for_each_entry(p, &tsk->ptraced, ptrace_entry) {
1441                int ret = wait_consider_task(wo, 1, p);
1442
1443                if (ret)
1444                        return ret;
1445        }
1446
1447        return 0;
1448}
1449
1450static int child_wait_callback(wait_queue_t *wait, unsigned mode,
1451                                int sync, void *key)
1452{
1453        struct wait_opts *wo = container_of(wait, struct wait_opts,
1454                                                child_wait);
1455        struct task_struct *p = key;
1456
1457        if (!eligible_pid(wo, p))
1458                return 0;
1459
1460        if ((wo->wo_flags & __WNOTHREAD) && wait->private != p->parent)
1461                return 0;
1462
1463        return default_wake_function(wait, mode, sync, key);
1464}
1465
1466void __wake_up_parent(struct task_struct *p, struct task_struct *parent)
1467{
1468        __wake_up_sync_key(&parent->signal->wait_chldexit,
1469                                TASK_INTERRUPTIBLE, 1, p);
1470}
1471
1472static long do_wait(struct wait_opts *wo)
1473{
1474        struct task_struct *tsk;
1475        int retval;
1476
1477        trace_sched_process_wait(wo->wo_pid);
1478
1479        init_waitqueue_func_entry(&wo->child_wait, child_wait_callback);
1480        wo->child_wait.private = current;
1481        add_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1482repeat:
1483        /*
1484         * If there is nothing that can match our critiera just get out.
1485         * We will clear ->notask_error to zero if we see any child that
1486         * might later match our criteria, even if we are not able to reap
1487         * it yet.
1488         */
1489        wo->notask_error = -ECHILD;
1490        if ((wo->wo_type < PIDTYPE_MAX) &&
1491           (!wo->wo_pid || hlist_empty(&wo->wo_pid->tasks[wo->wo_type])))
1492                goto notask;
1493
1494        set_current_state(TASK_INTERRUPTIBLE);
1495        read_lock(&tasklist_lock);
1496        tsk = current;
1497        do {
1498                retval = do_wait_thread(wo, tsk);
1499                if (retval)
1500                        goto end;
1501
1502                retval = ptrace_do_wait(wo, tsk);
1503                if (retval)
1504                        goto end;
1505
1506                if (wo->wo_flags & __WNOTHREAD)
1507                        break;
1508        } while_each_thread(current, tsk);
1509        read_unlock(&tasklist_lock);
1510
1511notask:
1512        retval = wo->notask_error;
1513        if (!retval && !(wo->wo_flags & WNOHANG)) {
1514                retval = -ERESTARTSYS;
1515                if (!signal_pending(current)) {
1516                        schedule();
1517                        goto repeat;
1518                }
1519        }
1520end:
1521        __set_current_state(TASK_RUNNING);
1522        remove_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1523        return retval;
1524}
1525
1526SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *,
1527                infop, int, options, struct rusage __user *, ru)
1528{
1529        struct wait_opts wo;
1530        struct pid *pid = NULL;
1531        enum pid_type type;
1532        long ret;
1533
1534        if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED))
1535                return -EINVAL;
1536        if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
1537                return -EINVAL;
1538
1539        switch (which) {
1540        case P_ALL:
1541                type = PIDTYPE_MAX;
1542                break;
1543        case P_PID:
1544                type = PIDTYPE_PID;
1545                if (upid <= 0)
1546                        return -EINVAL;
1547                break;
1548        case P_PGID:
1549                type = PIDTYPE_PGID;
1550                if (upid <= 0)
1551                        return -EINVAL;
1552                break;
1553        default:
1554                return -EINVAL;
1555        }
1556
1557        if (type < PIDTYPE_MAX)
1558                pid = find_get_pid(upid);
1559
1560        wo.wo_type      = type;
1561        wo.wo_pid       = pid;
1562        wo.wo_flags     = options;
1563        wo.wo_info      = infop;
1564        wo.wo_stat      = NULL;
1565        wo.wo_rusage    = ru;
1566        ret = do_wait(&wo);
1567
1568        if (ret > 0) {
1569                ret = 0;
1570        } else if (infop) {
1571                /*
1572                 * For a WNOHANG return, clear out all the fields
1573                 * we would set so the user can easily tell the
1574                 * difference.
1575                 */
1576                if (!ret)
1577                        ret = put_user(0, &infop->si_signo);
1578                if (!ret)
1579                        ret = put_user(0, &infop->si_errno);
1580                if (!ret)
1581                        ret = put_user(0, &infop->si_code);
1582                if (!ret)
1583                        ret = put_user(0, &infop->si_pid);
1584                if (!ret)
1585                        ret = put_user(0, &infop->si_uid);
1586                if (!ret)
1587                        ret = put_user(0, &infop->si_status);
1588        }
1589
1590        put_pid(pid);
1591        return ret;
1592}
1593
1594SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr,
1595                int, options, struct rusage __user *, ru)
1596{
1597        struct wait_opts wo;
1598        struct pid *pid = NULL;
1599        enum pid_type type;
1600        long ret;
1601
1602        if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
1603                        __WNOTHREAD|__WCLONE|__WALL))
1604                return -EINVAL;
1605
1606        if (upid == -1)
1607                type = PIDTYPE_MAX;
1608        else if (upid < 0) {
1609                type = PIDTYPE_PGID;
1610                pid = find_get_pid(-upid);
1611        } else if (upid == 0) {
1612                type = PIDTYPE_PGID;
1613                pid = get_task_pid(current, PIDTYPE_PGID);
1614        } else /* upid > 0 */ {
1615                type = PIDTYPE_PID;
1616                pid = find_get_pid(upid);
1617        }
1618
1619        wo.wo_type      = type;
1620        wo.wo_pid       = pid;
1621        wo.wo_flags     = options | WEXITED;
1622        wo.wo_info      = NULL;
1623        wo.wo_stat      = stat_addr;
1624        wo.wo_rusage    = ru;
1625        ret = do_wait(&wo);
1626        put_pid(pid);
1627
1628        return ret;
1629}
1630
1631#ifdef __ARCH_WANT_SYS_WAITPID
1632
1633/*
1634 * sys_waitpid() remains for compatibility. waitpid() should be
1635 * implemented by calling sys_wait4() from libc.a.
1636 */
1637SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options)
1638{
1639        return sys_wait4(pid, stat_addr, options, NULL);
1640}
1641
1642#endif
1643