linux/kernel/sched/clock.c
<<
>>
Prefs
   1/*
   2 * sched_clock for unstable cpu clocks
   3 *
   4 *  Copyright (C) 2008 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
   5 *
   6 *  Updates and enhancements:
   7 *    Copyright (C) 2008 Red Hat, Inc. Steven Rostedt <srostedt@redhat.com>
   8 *
   9 * Based on code by:
  10 *   Ingo Molnar <mingo@redhat.com>
  11 *   Guillaume Chazarain <guichaz@gmail.com>
  12 *
  13 *
  14 * What:
  15 *
  16 * cpu_clock(i) provides a fast (execution time) high resolution
  17 * clock with bounded drift between CPUs. The value of cpu_clock(i)
  18 * is monotonic for constant i. The timestamp returned is in nanoseconds.
  19 *
  20 * ######################### BIG FAT WARNING ##########################
  21 * # when comparing cpu_clock(i) to cpu_clock(j) for i != j, time can #
  22 * # go backwards !!                                                  #
  23 * ####################################################################
  24 *
  25 * There is no strict promise about the base, although it tends to start
  26 * at 0 on boot (but people really shouldn't rely on that).
  27 *
  28 * cpu_clock(i)       -- can be used from any context, including NMI.
  29 * local_clock()      -- is cpu_clock() on the current cpu.
  30 *
  31 * sched_clock_cpu(i)
  32 *
  33 * How:
  34 *
  35 * The implementation either uses sched_clock() when
  36 * !CONFIG_HAVE_UNSTABLE_SCHED_CLOCK, which means in that case the
  37 * sched_clock() is assumed to provide these properties (mostly it means
  38 * the architecture provides a globally synchronized highres time source).
  39 *
  40 * Otherwise it tries to create a semi stable clock from a mixture of other
  41 * clocks, including:
  42 *
  43 *  - GTOD (clock monotomic)
  44 *  - sched_clock()
  45 *  - explicit idle events
  46 *
  47 * We use GTOD as base and use sched_clock() deltas to improve resolution. The
  48 * deltas are filtered to provide monotonicity and keeping it within an
  49 * expected window.
  50 *
  51 * Furthermore, explicit sleep and wakeup hooks allow us to account for time
  52 * that is otherwise invisible (TSC gets stopped).
  53 *
  54 */
  55#include <linux/spinlock.h>
  56#include <linux/hardirq.h>
  57#include <linux/export.h>
  58#include <linux/percpu.h>
  59#include <linux/ktime.h>
  60#include <linux/sched.h>
  61#include <linux/static_key.h>
  62#include <linux/workqueue.h>
  63#include <linux/compiler.h>
  64
  65/*
  66 * Scheduler clock - returns current time in nanosec units.
  67 * This is default implementation.
  68 * Architectures and sub-architectures can override this.
  69 */
  70unsigned long long __weak sched_clock(void)
  71{
  72        return (unsigned long long)(jiffies - INITIAL_JIFFIES)
  73                                        * (NSEC_PER_SEC / HZ);
  74}
  75EXPORT_SYMBOL_GPL(sched_clock);
  76
  77__read_mostly int sched_clock_running;
  78
  79#ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
  80static struct static_key __sched_clock_stable = STATIC_KEY_INIT;
  81static int __sched_clock_stable_early;
  82
  83int sched_clock_stable(void)
  84{
  85        return static_key_false(&__sched_clock_stable);
  86}
  87
  88static void __set_sched_clock_stable(void)
  89{
  90        if (!sched_clock_stable())
  91                static_key_slow_inc(&__sched_clock_stable);
  92}
  93
  94void set_sched_clock_stable(void)
  95{
  96        __sched_clock_stable_early = 1;
  97
  98        smp_mb(); /* matches sched_clock_init() */
  99
 100        if (!sched_clock_running)
 101                return;
 102
 103        __set_sched_clock_stable();
 104}
 105
 106static void __clear_sched_clock_stable(struct work_struct *work)
 107{
 108        /* XXX worry about clock continuity */
 109        if (sched_clock_stable())
 110                static_key_slow_dec(&__sched_clock_stable);
 111}
 112
 113static DECLARE_WORK(sched_clock_work, __clear_sched_clock_stable);
 114
 115void clear_sched_clock_stable(void)
 116{
 117        __sched_clock_stable_early = 0;
 118
 119        smp_mb(); /* matches sched_clock_init() */
 120
 121        if (!sched_clock_running)
 122                return;
 123
 124        schedule_work(&sched_clock_work);
 125}
 126
 127struct sched_clock_data {
 128        u64                     tick_raw;
 129        u64                     tick_gtod;
 130        u64                     clock;
 131};
 132
 133static DEFINE_PER_CPU_SHARED_ALIGNED(struct sched_clock_data, sched_clock_data);
 134
 135static inline struct sched_clock_data *this_scd(void)
 136{
 137        return this_cpu_ptr(&sched_clock_data);
 138}
 139
 140static inline struct sched_clock_data *cpu_sdc(int cpu)
 141{
 142        return &per_cpu(sched_clock_data, cpu);
 143}
 144
 145void sched_clock_init(void)
 146{
 147        u64 ktime_now = ktime_to_ns(ktime_get());
 148        int cpu;
 149
 150        for_each_possible_cpu(cpu) {
 151                struct sched_clock_data *scd = cpu_sdc(cpu);
 152
 153                scd->tick_raw = 0;
 154                scd->tick_gtod = ktime_now;
 155                scd->clock = ktime_now;
 156        }
 157
 158        sched_clock_running = 1;
 159
 160        /*
 161         * Ensure that it is impossible to not do a static_key update.
 162         *
 163         * Either {set,clear}_sched_clock_stable() must see sched_clock_running
 164         * and do the update, or we must see their __sched_clock_stable_early
 165         * and do the update, or both.
 166         */
 167        smp_mb(); /* matches {set,clear}_sched_clock_stable() */
 168
 169        if (__sched_clock_stable_early)
 170                __set_sched_clock_stable();
 171        else
 172                __clear_sched_clock_stable(NULL);
 173}
 174
 175/*
 176 * min, max except they take wrapping into account
 177 */
 178
 179static inline u64 wrap_min(u64 x, u64 y)
 180{
 181        return (s64)(x - y) < 0 ? x : y;
 182}
 183
 184static inline u64 wrap_max(u64 x, u64 y)
 185{
 186        return (s64)(x - y) > 0 ? x : y;
 187}
 188
 189/*
 190 * update the percpu scd from the raw @now value
 191 *
 192 *  - filter out backward motion
 193 *  - use the GTOD tick value to create a window to filter crazy TSC values
 194 */
 195static u64 sched_clock_local(struct sched_clock_data *scd)
 196{
 197        u64 now, clock, old_clock, min_clock, max_clock;
 198        s64 delta;
 199
 200again:
 201        now = sched_clock();
 202        delta = now - scd->tick_raw;
 203        if (unlikely(delta < 0))
 204                delta = 0;
 205
 206        old_clock = scd->clock;
 207
 208        /*
 209         * scd->clock = clamp(scd->tick_gtod + delta,
 210         *                    max(scd->tick_gtod, scd->clock),
 211         *                    scd->tick_gtod + TICK_NSEC);
 212         */
 213
 214        clock = scd->tick_gtod + delta;
 215        min_clock = wrap_max(scd->tick_gtod, old_clock);
 216        max_clock = wrap_max(old_clock, scd->tick_gtod + TICK_NSEC);
 217
 218        clock = wrap_max(clock, min_clock);
 219        clock = wrap_min(clock, max_clock);
 220
 221        if (cmpxchg64(&scd->clock, old_clock, clock) != old_clock)
 222                goto again;
 223
 224        return clock;
 225}
 226
 227static u64 sched_clock_remote(struct sched_clock_data *scd)
 228{
 229        struct sched_clock_data *my_scd = this_scd();
 230        u64 this_clock, remote_clock;
 231        u64 *ptr, old_val, val;
 232
 233#if BITS_PER_LONG != 64
 234again:
 235        /*
 236         * Careful here: The local and the remote clock values need to
 237         * be read out atomic as we need to compare the values and
 238         * then update either the local or the remote side. So the
 239         * cmpxchg64 below only protects one readout.
 240         *
 241         * We must reread via sched_clock_local() in the retry case on
 242         * 32bit as an NMI could use sched_clock_local() via the
 243         * tracer and hit between the readout of
 244         * the low32bit and the high 32bit portion.
 245         */
 246        this_clock = sched_clock_local(my_scd);
 247        /*
 248         * We must enforce atomic readout on 32bit, otherwise the
 249         * update on the remote cpu can hit inbetween the readout of
 250         * the low32bit and the high 32bit portion.
 251         */
 252        remote_clock = cmpxchg64(&scd->clock, 0, 0);
 253#else
 254        /*
 255         * On 64bit the read of [my]scd->clock is atomic versus the
 256         * update, so we can avoid the above 32bit dance.
 257         */
 258        sched_clock_local(my_scd);
 259again:
 260        this_clock = my_scd->clock;
 261        remote_clock = scd->clock;
 262#endif
 263
 264        /*
 265         * Use the opportunity that we have both locks
 266         * taken to couple the two clocks: we take the
 267         * larger time as the latest time for both
 268         * runqueues. (this creates monotonic movement)
 269         */
 270        if (likely((s64)(remote_clock - this_clock) < 0)) {
 271                ptr = &scd->clock;
 272                old_val = remote_clock;
 273                val = this_clock;
 274        } else {
 275                /*
 276                 * Should be rare, but possible:
 277                 */
 278                ptr = &my_scd->clock;
 279                old_val = this_clock;
 280                val = remote_clock;
 281        }
 282
 283        if (cmpxchg64(ptr, old_val, val) != old_val)
 284                goto again;
 285
 286        return val;
 287}
 288
 289/*
 290 * Similar to cpu_clock(), but requires local IRQs to be disabled.
 291 *
 292 * See cpu_clock().
 293 */
 294u64 sched_clock_cpu(int cpu)
 295{
 296        struct sched_clock_data *scd;
 297        u64 clock;
 298
 299        if (sched_clock_stable())
 300                return sched_clock();
 301
 302        if (unlikely(!sched_clock_running))
 303                return 0ull;
 304
 305        preempt_disable_notrace();
 306        scd = cpu_sdc(cpu);
 307
 308        if (cpu != smp_processor_id())
 309                clock = sched_clock_remote(scd);
 310        else
 311                clock = sched_clock_local(scd);
 312        preempt_enable_notrace();
 313
 314        return clock;
 315}
 316
 317void sched_clock_tick(void)
 318{
 319        struct sched_clock_data *scd;
 320        u64 now, now_gtod;
 321
 322        if (sched_clock_stable())
 323                return;
 324
 325        if (unlikely(!sched_clock_running))
 326                return;
 327
 328        WARN_ON_ONCE(!irqs_disabled());
 329
 330        scd = this_scd();
 331        now_gtod = ktime_to_ns(ktime_get());
 332        now = sched_clock();
 333
 334        scd->tick_raw = now;
 335        scd->tick_gtod = now_gtod;
 336        sched_clock_local(scd);
 337}
 338
 339/*
 340 * We are going deep-idle (irqs are disabled):
 341 */
 342void sched_clock_idle_sleep_event(void)
 343{
 344        sched_clock_cpu(smp_processor_id());
 345}
 346EXPORT_SYMBOL_GPL(sched_clock_idle_sleep_event);
 347
 348/*
 349 * We just idled delta nanoseconds (called with irqs disabled):
 350 */
 351void sched_clock_idle_wakeup_event(u64 delta_ns)
 352{
 353        if (timekeeping_suspended)
 354                return;
 355
 356        sched_clock_tick();
 357        touch_softlockup_watchdog();
 358}
 359EXPORT_SYMBOL_GPL(sched_clock_idle_wakeup_event);
 360
 361/*
 362 * As outlined at the top, provides a fast, high resolution, nanosecond
 363 * time source that is monotonic per cpu argument and has bounded drift
 364 * between cpus.
 365 *
 366 * ######################### BIG FAT WARNING ##########################
 367 * # when comparing cpu_clock(i) to cpu_clock(j) for i != j, time can #
 368 * # go backwards !!                                                  #
 369 * ####################################################################
 370 */
 371u64 cpu_clock(int cpu)
 372{
 373        if (!sched_clock_stable())
 374                return sched_clock_cpu(cpu);
 375
 376        return sched_clock();
 377}
 378
 379/*
 380 * Similar to cpu_clock() for the current cpu. Time will only be observed
 381 * to be monotonic if care is taken to only compare timestampt taken on the
 382 * same CPU.
 383 *
 384 * See cpu_clock().
 385 */
 386u64 local_clock(void)
 387{
 388        if (!sched_clock_stable())
 389                return sched_clock_cpu(raw_smp_processor_id());
 390
 391        return sched_clock();
 392}
 393
 394#else /* CONFIG_HAVE_UNSTABLE_SCHED_CLOCK */
 395
 396void sched_clock_init(void)
 397{
 398        sched_clock_running = 1;
 399}
 400
 401u64 sched_clock_cpu(int cpu)
 402{
 403        if (unlikely(!sched_clock_running))
 404                return 0;
 405
 406        return sched_clock();
 407}
 408
 409u64 cpu_clock(int cpu)
 410{
 411        return sched_clock();
 412}
 413
 414u64 local_clock(void)
 415{
 416        return sched_clock();
 417}
 418
 419#endif /* CONFIG_HAVE_UNSTABLE_SCHED_CLOCK */
 420
 421EXPORT_SYMBOL_GPL(cpu_clock);
 422EXPORT_SYMBOL_GPL(local_clock);
 423