linux/kernel/sched/wait.c
<<
>>
Prefs
   1/*
   2 * Generic waiting primitives.
   3 *
   4 * (C) 2004 Nadia Yvette Chambers, Oracle
   5 */
   6#include <linux/init.h>
   7#include <linux/export.h>
   8#include <linux/sched.h>
   9#include <linux/mm.h>
  10#include <linux/wait.h>
  11#include <linux/hash.h>
  12
  13void __init_waitqueue_head(wait_queue_head_t *q, const char *name, struct lock_class_key *key)
  14{
  15        spin_lock_init(&q->lock);
  16        lockdep_set_class_and_name(&q->lock, key, name);
  17        INIT_LIST_HEAD(&q->task_list);
  18}
  19
  20EXPORT_SYMBOL(__init_waitqueue_head);
  21
  22void add_wait_queue(wait_queue_head_t *q, wait_queue_t *wait)
  23{
  24        unsigned long flags;
  25
  26        wait->flags &= ~WQ_FLAG_EXCLUSIVE;
  27        spin_lock_irqsave(&q->lock, flags);
  28        __add_wait_queue(q, wait);
  29        spin_unlock_irqrestore(&q->lock, flags);
  30}
  31EXPORT_SYMBOL(add_wait_queue);
  32
  33void add_wait_queue_exclusive(wait_queue_head_t *q, wait_queue_t *wait)
  34{
  35        unsigned long flags;
  36
  37        wait->flags |= WQ_FLAG_EXCLUSIVE;
  38        spin_lock_irqsave(&q->lock, flags);
  39        __add_wait_queue_tail(q, wait);
  40        spin_unlock_irqrestore(&q->lock, flags);
  41}
  42EXPORT_SYMBOL(add_wait_queue_exclusive);
  43
  44void remove_wait_queue(wait_queue_head_t *q, wait_queue_t *wait)
  45{
  46        unsigned long flags;
  47
  48        spin_lock_irqsave(&q->lock, flags);
  49        __remove_wait_queue(q, wait);
  50        spin_unlock_irqrestore(&q->lock, flags);
  51}
  52EXPORT_SYMBOL(remove_wait_queue);
  53
  54
  55/*
  56 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
  57 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
  58 * number) then we wake all the non-exclusive tasks and one exclusive task.
  59 *
  60 * There are circumstances in which we can try to wake a task which has already
  61 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
  62 * zero in this (rare) case, and we handle it by continuing to scan the queue.
  63 */
  64static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
  65                        int nr_exclusive, int wake_flags, void *key)
  66{
  67        wait_queue_t *curr, *next;
  68
  69        list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
  70                unsigned flags = curr->flags;
  71
  72                if (curr->func(curr, mode, wake_flags, key) &&
  73                                (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
  74                        break;
  75        }
  76}
  77
  78/**
  79 * __wake_up - wake up threads blocked on a waitqueue.
  80 * @q: the waitqueue
  81 * @mode: which threads
  82 * @nr_exclusive: how many wake-one or wake-many threads to wake up
  83 * @key: is directly passed to the wakeup function
  84 *
  85 * It may be assumed that this function implies a write memory barrier before
  86 * changing the task state if and only if any tasks are woken up.
  87 */
  88void __wake_up(wait_queue_head_t *q, unsigned int mode,
  89                        int nr_exclusive, void *key)
  90{
  91        unsigned long flags;
  92
  93        spin_lock_irqsave(&q->lock, flags);
  94        __wake_up_common(q, mode, nr_exclusive, 0, key);
  95        spin_unlock_irqrestore(&q->lock, flags);
  96}
  97EXPORT_SYMBOL(__wake_up);
  98
  99/*
 100 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
 101 */
 102void __wake_up_locked(wait_queue_head_t *q, unsigned int mode, int nr)
 103{
 104        __wake_up_common(q, mode, nr, 0, NULL);
 105}
 106EXPORT_SYMBOL_GPL(__wake_up_locked);
 107
 108void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
 109{
 110        __wake_up_common(q, mode, 1, 0, key);
 111}
 112EXPORT_SYMBOL_GPL(__wake_up_locked_key);
 113
 114/**
 115 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
 116 * @q: the waitqueue
 117 * @mode: which threads
 118 * @nr_exclusive: how many wake-one or wake-many threads to wake up
 119 * @key: opaque value to be passed to wakeup targets
 120 *
 121 * The sync wakeup differs that the waker knows that it will schedule
 122 * away soon, so while the target thread will be woken up, it will not
 123 * be migrated to another CPU - ie. the two threads are 'synchronized'
 124 * with each other. This can prevent needless bouncing between CPUs.
 125 *
 126 * On UP it can prevent extra preemption.
 127 *
 128 * It may be assumed that this function implies a write memory barrier before
 129 * changing the task state if and only if any tasks are woken up.
 130 */
 131void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
 132                        int nr_exclusive, void *key)
 133{
 134        unsigned long flags;
 135        int wake_flags = 1; /* XXX WF_SYNC */
 136
 137        if (unlikely(!q))
 138                return;
 139
 140        if (unlikely(nr_exclusive != 1))
 141                wake_flags = 0;
 142
 143        spin_lock_irqsave(&q->lock, flags);
 144        __wake_up_common(q, mode, nr_exclusive, wake_flags, key);
 145        spin_unlock_irqrestore(&q->lock, flags);
 146}
 147EXPORT_SYMBOL_GPL(__wake_up_sync_key);
 148
 149/*
 150 * __wake_up_sync - see __wake_up_sync_key()
 151 */
 152void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
 153{
 154        __wake_up_sync_key(q, mode, nr_exclusive, NULL);
 155}
 156EXPORT_SYMBOL_GPL(__wake_up_sync);      /* For internal use only */
 157
 158/*
 159 * Note: we use "set_current_state()" _after_ the wait-queue add,
 160 * because we need a memory barrier there on SMP, so that any
 161 * wake-function that tests for the wait-queue being active
 162 * will be guaranteed to see waitqueue addition _or_ subsequent
 163 * tests in this thread will see the wakeup having taken place.
 164 *
 165 * The spin_unlock() itself is semi-permeable and only protects
 166 * one way (it only protects stuff inside the critical region and
 167 * stops them from bleeding out - it would still allow subsequent
 168 * loads to move into the critical region).
 169 */
 170void
 171prepare_to_wait(wait_queue_head_t *q, wait_queue_t *wait, int state)
 172{
 173        unsigned long flags;
 174
 175        wait->flags &= ~WQ_FLAG_EXCLUSIVE;
 176        spin_lock_irqsave(&q->lock, flags);
 177        if (list_empty(&wait->task_list))
 178                __add_wait_queue(q, wait);
 179        set_current_state(state);
 180        spin_unlock_irqrestore(&q->lock, flags);
 181}
 182EXPORT_SYMBOL(prepare_to_wait);
 183
 184void
 185prepare_to_wait_exclusive(wait_queue_head_t *q, wait_queue_t *wait, int state)
 186{
 187        unsigned long flags;
 188
 189        wait->flags |= WQ_FLAG_EXCLUSIVE;
 190        spin_lock_irqsave(&q->lock, flags);
 191        if (list_empty(&wait->task_list))
 192                __add_wait_queue_tail(q, wait);
 193        set_current_state(state);
 194        spin_unlock_irqrestore(&q->lock, flags);
 195}
 196EXPORT_SYMBOL(prepare_to_wait_exclusive);
 197
 198long prepare_to_wait_event(wait_queue_head_t *q, wait_queue_t *wait, int state)
 199{
 200        unsigned long flags;
 201
 202        if (signal_pending_state(state, current))
 203                return -ERESTARTSYS;
 204
 205        wait->private = current;
 206        wait->func = autoremove_wake_function;
 207
 208        spin_lock_irqsave(&q->lock, flags);
 209        if (list_empty(&wait->task_list)) {
 210                if (wait->flags & WQ_FLAG_EXCLUSIVE)
 211                        __add_wait_queue_tail(q, wait);
 212                else
 213                        __add_wait_queue(q, wait);
 214        }
 215        set_current_state(state);
 216        spin_unlock_irqrestore(&q->lock, flags);
 217
 218        return 0;
 219}
 220EXPORT_SYMBOL(prepare_to_wait_event);
 221
 222/**
 223 * finish_wait - clean up after waiting in a queue
 224 * @q: waitqueue waited on
 225 * @wait: wait descriptor
 226 *
 227 * Sets current thread back to running state and removes
 228 * the wait descriptor from the given waitqueue if still
 229 * queued.
 230 */
 231void finish_wait(wait_queue_head_t *q, wait_queue_t *wait)
 232{
 233        unsigned long flags;
 234
 235        __set_current_state(TASK_RUNNING);
 236        /*
 237         * We can check for list emptiness outside the lock
 238         * IFF:
 239         *  - we use the "careful" check that verifies both
 240         *    the next and prev pointers, so that there cannot
 241         *    be any half-pending updates in progress on other
 242         *    CPU's that we haven't seen yet (and that might
 243         *    still change the stack area.
 244         * and
 245         *  - all other users take the lock (ie we can only
 246         *    have _one_ other CPU that looks at or modifies
 247         *    the list).
 248         */
 249        if (!list_empty_careful(&wait->task_list)) {
 250                spin_lock_irqsave(&q->lock, flags);
 251                list_del_init(&wait->task_list);
 252                spin_unlock_irqrestore(&q->lock, flags);
 253        }
 254}
 255EXPORT_SYMBOL(finish_wait);
 256
 257/**
 258 * abort_exclusive_wait - abort exclusive waiting in a queue
 259 * @q: waitqueue waited on
 260 * @wait: wait descriptor
 261 * @mode: runstate of the waiter to be woken
 262 * @key: key to identify a wait bit queue or %NULL
 263 *
 264 * Sets current thread back to running state and removes
 265 * the wait descriptor from the given waitqueue if still
 266 * queued.
 267 *
 268 * Wakes up the next waiter if the caller is concurrently
 269 * woken up through the queue.
 270 *
 271 * This prevents waiter starvation where an exclusive waiter
 272 * aborts and is woken up concurrently and no one wakes up
 273 * the next waiter.
 274 */
 275void abort_exclusive_wait(wait_queue_head_t *q, wait_queue_t *wait,
 276                        unsigned int mode, void *key)
 277{
 278        unsigned long flags;
 279
 280        __set_current_state(TASK_RUNNING);
 281        spin_lock_irqsave(&q->lock, flags);
 282        if (!list_empty(&wait->task_list))
 283                list_del_init(&wait->task_list);
 284        else if (waitqueue_active(q))
 285                __wake_up_locked_key(q, mode, key);
 286        spin_unlock_irqrestore(&q->lock, flags);
 287}
 288EXPORT_SYMBOL(abort_exclusive_wait);
 289
 290int autoremove_wake_function(wait_queue_t *wait, unsigned mode, int sync, void *key)
 291{
 292        int ret = default_wake_function(wait, mode, sync, key);
 293
 294        if (ret)
 295                list_del_init(&wait->task_list);
 296        return ret;
 297}
 298EXPORT_SYMBOL(autoremove_wake_function);
 299
 300int wake_bit_function(wait_queue_t *wait, unsigned mode, int sync, void *arg)
 301{
 302        struct wait_bit_key *key = arg;
 303        struct wait_bit_queue *wait_bit
 304                = container_of(wait, struct wait_bit_queue, wait);
 305
 306        if (wait_bit->key.flags != key->flags ||
 307                        wait_bit->key.bit_nr != key->bit_nr ||
 308                        test_bit(key->bit_nr, key->flags))
 309                return 0;
 310        else
 311                return autoremove_wake_function(wait, mode, sync, key);
 312}
 313EXPORT_SYMBOL(wake_bit_function);
 314
 315/*
 316 * To allow interruptible waiting and asynchronous (i.e. nonblocking)
 317 * waiting, the actions of __wait_on_bit() and __wait_on_bit_lock() are
 318 * permitted return codes. Nonzero return codes halt waiting and return.
 319 */
 320int __sched
 321__wait_on_bit(wait_queue_head_t *wq, struct wait_bit_queue *q,
 322              wait_bit_action_f *action, unsigned mode)
 323{
 324        int ret = 0;
 325
 326        do {
 327                prepare_to_wait(wq, &q->wait, mode);
 328                if (test_bit(q->key.bit_nr, q->key.flags))
 329                        ret = (*action)(&q->key);
 330        } while (test_bit(q->key.bit_nr, q->key.flags) && !ret);
 331        finish_wait(wq, &q->wait);
 332        return ret;
 333}
 334EXPORT_SYMBOL(__wait_on_bit);
 335
 336int __sched out_of_line_wait_on_bit(void *word, int bit,
 337                                    wait_bit_action_f *action, unsigned mode)
 338{
 339        wait_queue_head_t *wq = bit_waitqueue(word, bit);
 340        DEFINE_WAIT_BIT(wait, word, bit);
 341
 342        return __wait_on_bit(wq, &wait, action, mode);
 343}
 344EXPORT_SYMBOL(out_of_line_wait_on_bit);
 345
 346int __sched out_of_line_wait_on_bit_timeout(
 347        void *word, int bit, wait_bit_action_f *action,
 348        unsigned mode, unsigned long timeout)
 349{
 350        wait_queue_head_t *wq = bit_waitqueue(word, bit);
 351        DEFINE_WAIT_BIT(wait, word, bit);
 352
 353        wait.key.timeout = jiffies + timeout;
 354        return __wait_on_bit(wq, &wait, action, mode);
 355}
 356EXPORT_SYMBOL_GPL(out_of_line_wait_on_bit_timeout);
 357
 358int __sched
 359__wait_on_bit_lock(wait_queue_head_t *wq, struct wait_bit_queue *q,
 360                        wait_bit_action_f *action, unsigned mode)
 361{
 362        do {
 363                int ret;
 364
 365                prepare_to_wait_exclusive(wq, &q->wait, mode);
 366                if (!test_bit(q->key.bit_nr, q->key.flags))
 367                        continue;
 368                ret = action(&q->key);
 369                if (!ret)
 370                        continue;
 371                abort_exclusive_wait(wq, &q->wait, mode, &q->key);
 372                return ret;
 373        } while (test_and_set_bit(q->key.bit_nr, q->key.flags));
 374        finish_wait(wq, &q->wait);
 375        return 0;
 376}
 377EXPORT_SYMBOL(__wait_on_bit_lock);
 378
 379int __sched out_of_line_wait_on_bit_lock(void *word, int bit,
 380                                         wait_bit_action_f *action, unsigned mode)
 381{
 382        wait_queue_head_t *wq = bit_waitqueue(word, bit);
 383        DEFINE_WAIT_BIT(wait, word, bit);
 384
 385        return __wait_on_bit_lock(wq, &wait, action, mode);
 386}
 387EXPORT_SYMBOL(out_of_line_wait_on_bit_lock);
 388
 389void __wake_up_bit(wait_queue_head_t *wq, void *word, int bit)
 390{
 391        struct wait_bit_key key = __WAIT_BIT_KEY_INITIALIZER(word, bit);
 392        if (waitqueue_active(wq))
 393                __wake_up(wq, TASK_NORMAL, 1, &key);
 394}
 395EXPORT_SYMBOL(__wake_up_bit);
 396
 397/**
 398 * wake_up_bit - wake up a waiter on a bit
 399 * @word: the word being waited on, a kernel virtual address
 400 * @bit: the bit of the word being waited on
 401 *
 402 * There is a standard hashed waitqueue table for generic use. This
 403 * is the part of the hashtable's accessor API that wakes up waiters
 404 * on a bit. For instance, if one were to have waiters on a bitflag,
 405 * one would call wake_up_bit() after clearing the bit.
 406 *
 407 * In order for this to function properly, as it uses waitqueue_active()
 408 * internally, some kind of memory barrier must be done prior to calling
 409 * this. Typically, this will be smp_mb__after_atomic(), but in some
 410 * cases where bitflags are manipulated non-atomically under a lock, one
 411 * may need to use a less regular barrier, such fs/inode.c's smp_mb(),
 412 * because spin_unlock() does not guarantee a memory barrier.
 413 */
 414void wake_up_bit(void *word, int bit)
 415{
 416        __wake_up_bit(bit_waitqueue(word, bit), word, bit);
 417}
 418EXPORT_SYMBOL(wake_up_bit);
 419
 420wait_queue_head_t *bit_waitqueue(void *word, int bit)
 421{
 422        const int shift = BITS_PER_LONG == 32 ? 5 : 6;
 423        const struct zone *zone = page_zone(virt_to_page(word));
 424        unsigned long val = (unsigned long)word << shift | bit;
 425
 426        return &zone->wait_table[hash_long(val, zone->wait_table_bits)];
 427}
 428EXPORT_SYMBOL(bit_waitqueue);
 429
 430/*
 431 * Manipulate the atomic_t address to produce a better bit waitqueue table hash
 432 * index (we're keying off bit -1, but that would produce a horrible hash
 433 * value).
 434 */
 435static inline wait_queue_head_t *atomic_t_waitqueue(atomic_t *p)
 436{
 437        if (BITS_PER_LONG == 64) {
 438                unsigned long q = (unsigned long)p;
 439                return bit_waitqueue((void *)(q & ~1), q & 1);
 440        }
 441        return bit_waitqueue(p, 0);
 442}
 443
 444static int wake_atomic_t_function(wait_queue_t *wait, unsigned mode, int sync,
 445                                  void *arg)
 446{
 447        struct wait_bit_key *key = arg;
 448        struct wait_bit_queue *wait_bit
 449                = container_of(wait, struct wait_bit_queue, wait);
 450        atomic_t *val = key->flags;
 451
 452        if (wait_bit->key.flags != key->flags ||
 453            wait_bit->key.bit_nr != key->bit_nr ||
 454            atomic_read(val) != 0)
 455                return 0;
 456        return autoremove_wake_function(wait, mode, sync, key);
 457}
 458
 459/*
 460 * To allow interruptible waiting and asynchronous (i.e. nonblocking) waiting,
 461 * the actions of __wait_on_atomic_t() are permitted return codes.  Nonzero
 462 * return codes halt waiting and return.
 463 */
 464static __sched
 465int __wait_on_atomic_t(wait_queue_head_t *wq, struct wait_bit_queue *q,
 466                       int (*action)(atomic_t *), unsigned mode)
 467{
 468        atomic_t *val;
 469        int ret = 0;
 470
 471        do {
 472                prepare_to_wait(wq, &q->wait, mode);
 473                val = q->key.flags;
 474                if (atomic_read(val) == 0)
 475                        break;
 476                ret = (*action)(val);
 477        } while (!ret && atomic_read(val) != 0);
 478        finish_wait(wq, &q->wait);
 479        return ret;
 480}
 481
 482#define DEFINE_WAIT_ATOMIC_T(name, p)                                   \
 483        struct wait_bit_queue name = {                                  \
 484                .key = __WAIT_ATOMIC_T_KEY_INITIALIZER(p),              \
 485                .wait   = {                                             \
 486                        .private        = current,                      \
 487                        .func           = wake_atomic_t_function,       \
 488                        .task_list      =                               \
 489                                LIST_HEAD_INIT((name).wait.task_list),  \
 490                },                                                      \
 491        }
 492
 493__sched int out_of_line_wait_on_atomic_t(atomic_t *p, int (*action)(atomic_t *),
 494                                         unsigned mode)
 495{
 496        wait_queue_head_t *wq = atomic_t_waitqueue(p);
 497        DEFINE_WAIT_ATOMIC_T(wait, p);
 498
 499        return __wait_on_atomic_t(wq, &wait, action, mode);
 500}
 501EXPORT_SYMBOL(out_of_line_wait_on_atomic_t);
 502
 503/**
 504 * wake_up_atomic_t - Wake up a waiter on a atomic_t
 505 * @p: The atomic_t being waited on, a kernel virtual address
 506 *
 507 * Wake up anyone waiting for the atomic_t to go to zero.
 508 *
 509 * Abuse the bit-waker function and its waitqueue hash table set (the atomic_t
 510 * check is done by the waiter's wake function, not the by the waker itself).
 511 */
 512void wake_up_atomic_t(atomic_t *p)
 513{
 514        __wake_up_bit(atomic_t_waitqueue(p), p, WAIT_ATOMIC_T_BIT_NR);
 515}
 516EXPORT_SYMBOL(wake_up_atomic_t);
 517
 518__sched int bit_wait(struct wait_bit_key *word)
 519{
 520        if (signal_pending_state(current->state, current))
 521                return 1;
 522        schedule();
 523        return 0;
 524}
 525EXPORT_SYMBOL(bit_wait);
 526
 527__sched int bit_wait_io(struct wait_bit_key *word)
 528{
 529        if (signal_pending_state(current->state, current))
 530                return 1;
 531        io_schedule();
 532        return 0;
 533}
 534EXPORT_SYMBOL(bit_wait_io);
 535
 536__sched int bit_wait_timeout(struct wait_bit_key *word)
 537{
 538        unsigned long now = ACCESS_ONCE(jiffies);
 539        if (signal_pending_state(current->state, current))
 540                return 1;
 541        if (time_after_eq(now, word->timeout))
 542                return -EAGAIN;
 543        schedule_timeout(word->timeout - now);
 544        return 0;
 545}
 546EXPORT_SYMBOL_GPL(bit_wait_timeout);
 547
 548__sched int bit_wait_io_timeout(struct wait_bit_key *word)
 549{
 550        unsigned long now = ACCESS_ONCE(jiffies);
 551        if (signal_pending_state(current->state, current))
 552                return 1;
 553        if (time_after_eq(now, word->timeout))
 554                return -EAGAIN;
 555        io_schedule_timeout(word->timeout - now);
 556        return 0;
 557}
 558EXPORT_SYMBOL_GPL(bit_wait_io_timeout);
 559