linux/kernel/time/timekeeping.c
<<
>>
Prefs
   1/*
   2 *  linux/kernel/time/timekeeping.c
   3 *
   4 *  Kernel timekeeping code and accessor functions
   5 *
   6 *  This code was moved from linux/kernel/timer.c.
   7 *  Please see that file for copyright and history logs.
   8 *
   9 */
  10
  11#include <linux/timekeeper_internal.h>
  12#include <linux/module.h>
  13#include <linux/interrupt.h>
  14#include <linux/percpu.h>
  15#include <linux/init.h>
  16#include <linux/mm.h>
  17#include <linux/sched.h>
  18#include <linux/syscore_ops.h>
  19#include <linux/clocksource.h>
  20#include <linux/jiffies.h>
  21#include <linux/time.h>
  22#include <linux/tick.h>
  23#include <linux/stop_machine.h>
  24#include <linux/pvclock_gtod.h>
  25#include <linux/compiler.h>
  26
  27#include "tick-internal.h"
  28#include "ntp_internal.h"
  29#include "timekeeping_internal.h"
  30
  31#define TK_CLEAR_NTP            (1 << 0)
  32#define TK_MIRROR               (1 << 1)
  33#define TK_CLOCK_WAS_SET        (1 << 2)
  34
  35/*
  36 * The most important data for readout fits into a single 64 byte
  37 * cache line.
  38 */
  39static struct {
  40        seqcount_t              seq;
  41        struct timekeeper       timekeeper;
  42} tk_core ____cacheline_aligned;
  43
  44static DEFINE_RAW_SPINLOCK(timekeeper_lock);
  45static struct timekeeper shadow_timekeeper;
  46
  47/**
  48 * struct tk_fast - NMI safe timekeeper
  49 * @seq:        Sequence counter for protecting updates. The lowest bit
  50 *              is the index for the tk_read_base array
  51 * @base:       tk_read_base array. Access is indexed by the lowest bit of
  52 *              @seq.
  53 *
  54 * See @update_fast_timekeeper() below.
  55 */
  56struct tk_fast {
  57        seqcount_t              seq;
  58        struct tk_read_base     base[2];
  59};
  60
  61static struct tk_fast tk_fast_mono ____cacheline_aligned;
  62
  63/* flag for if timekeeping is suspended */
  64int __read_mostly timekeeping_suspended;
  65
  66/* Flag for if there is a persistent clock on this platform */
  67bool __read_mostly persistent_clock_exist = false;
  68
  69static inline void tk_normalize_xtime(struct timekeeper *tk)
  70{
  71        while (tk->tkr.xtime_nsec >= ((u64)NSEC_PER_SEC << tk->tkr.shift)) {
  72                tk->tkr.xtime_nsec -= (u64)NSEC_PER_SEC << tk->tkr.shift;
  73                tk->xtime_sec++;
  74        }
  75}
  76
  77static inline struct timespec64 tk_xtime(struct timekeeper *tk)
  78{
  79        struct timespec64 ts;
  80
  81        ts.tv_sec = tk->xtime_sec;
  82        ts.tv_nsec = (long)(tk->tkr.xtime_nsec >> tk->tkr.shift);
  83        return ts;
  84}
  85
  86static void tk_set_xtime(struct timekeeper *tk, const struct timespec64 *ts)
  87{
  88        tk->xtime_sec = ts->tv_sec;
  89        tk->tkr.xtime_nsec = (u64)ts->tv_nsec << tk->tkr.shift;
  90}
  91
  92static void tk_xtime_add(struct timekeeper *tk, const struct timespec64 *ts)
  93{
  94        tk->xtime_sec += ts->tv_sec;
  95        tk->tkr.xtime_nsec += (u64)ts->tv_nsec << tk->tkr.shift;
  96        tk_normalize_xtime(tk);
  97}
  98
  99static void tk_set_wall_to_mono(struct timekeeper *tk, struct timespec64 wtm)
 100{
 101        struct timespec64 tmp;
 102
 103        /*
 104         * Verify consistency of: offset_real = -wall_to_monotonic
 105         * before modifying anything
 106         */
 107        set_normalized_timespec64(&tmp, -tk->wall_to_monotonic.tv_sec,
 108                                        -tk->wall_to_monotonic.tv_nsec);
 109        WARN_ON_ONCE(tk->offs_real.tv64 != timespec64_to_ktime(tmp).tv64);
 110        tk->wall_to_monotonic = wtm;
 111        set_normalized_timespec64(&tmp, -wtm.tv_sec, -wtm.tv_nsec);
 112        tk->offs_real = timespec64_to_ktime(tmp);
 113        tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tk->tai_offset, 0));
 114}
 115
 116static inline void tk_update_sleep_time(struct timekeeper *tk, ktime_t delta)
 117{
 118        tk->offs_boot = ktime_add(tk->offs_boot, delta);
 119}
 120
 121/**
 122 * tk_setup_internals - Set up internals to use clocksource clock.
 123 *
 124 * @tk:         The target timekeeper to setup.
 125 * @clock:              Pointer to clocksource.
 126 *
 127 * Calculates a fixed cycle/nsec interval for a given clocksource/adjustment
 128 * pair and interval request.
 129 *
 130 * Unless you're the timekeeping code, you should not be using this!
 131 */
 132static void tk_setup_internals(struct timekeeper *tk, struct clocksource *clock)
 133{
 134        cycle_t interval;
 135        u64 tmp, ntpinterval;
 136        struct clocksource *old_clock;
 137
 138        old_clock = tk->tkr.clock;
 139        tk->tkr.clock = clock;
 140        tk->tkr.read = clock->read;
 141        tk->tkr.mask = clock->mask;
 142        tk->tkr.cycle_last = tk->tkr.read(clock);
 143
 144        /* Do the ns -> cycle conversion first, using original mult */
 145        tmp = NTP_INTERVAL_LENGTH;
 146        tmp <<= clock->shift;
 147        ntpinterval = tmp;
 148        tmp += clock->mult/2;
 149        do_div(tmp, clock->mult);
 150        if (tmp == 0)
 151                tmp = 1;
 152
 153        interval = (cycle_t) tmp;
 154        tk->cycle_interval = interval;
 155
 156        /* Go back from cycles -> shifted ns */
 157        tk->xtime_interval = (u64) interval * clock->mult;
 158        tk->xtime_remainder = ntpinterval - tk->xtime_interval;
 159        tk->raw_interval =
 160                ((u64) interval * clock->mult) >> clock->shift;
 161
 162         /* if changing clocks, convert xtime_nsec shift units */
 163        if (old_clock) {
 164                int shift_change = clock->shift - old_clock->shift;
 165                if (shift_change < 0)
 166                        tk->tkr.xtime_nsec >>= -shift_change;
 167                else
 168                        tk->tkr.xtime_nsec <<= shift_change;
 169        }
 170        tk->tkr.shift = clock->shift;
 171
 172        tk->ntp_error = 0;
 173        tk->ntp_error_shift = NTP_SCALE_SHIFT - clock->shift;
 174        tk->ntp_tick = ntpinterval << tk->ntp_error_shift;
 175
 176        /*
 177         * The timekeeper keeps its own mult values for the currently
 178         * active clocksource. These value will be adjusted via NTP
 179         * to counteract clock drifting.
 180         */
 181        tk->tkr.mult = clock->mult;
 182        tk->ntp_err_mult = 0;
 183}
 184
 185/* Timekeeper helper functions. */
 186
 187#ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
 188static u32 default_arch_gettimeoffset(void) { return 0; }
 189u32 (*arch_gettimeoffset)(void) = default_arch_gettimeoffset;
 190#else
 191static inline u32 arch_gettimeoffset(void) { return 0; }
 192#endif
 193
 194static inline s64 timekeeping_get_ns(struct tk_read_base *tkr)
 195{
 196        cycle_t cycle_now, delta;
 197        s64 nsec;
 198
 199        /* read clocksource: */
 200        cycle_now = tkr->read(tkr->clock);
 201
 202        /* calculate the delta since the last update_wall_time: */
 203        delta = clocksource_delta(cycle_now, tkr->cycle_last, tkr->mask);
 204
 205        nsec = delta * tkr->mult + tkr->xtime_nsec;
 206        nsec >>= tkr->shift;
 207
 208        /* If arch requires, add in get_arch_timeoffset() */
 209        return nsec + arch_gettimeoffset();
 210}
 211
 212static inline s64 timekeeping_get_ns_raw(struct timekeeper *tk)
 213{
 214        struct clocksource *clock = tk->tkr.clock;
 215        cycle_t cycle_now, delta;
 216        s64 nsec;
 217
 218        /* read clocksource: */
 219        cycle_now = tk->tkr.read(clock);
 220
 221        /* calculate the delta since the last update_wall_time: */
 222        delta = clocksource_delta(cycle_now, tk->tkr.cycle_last, tk->tkr.mask);
 223
 224        /* convert delta to nanoseconds. */
 225        nsec = clocksource_cyc2ns(delta, clock->mult, clock->shift);
 226
 227        /* If arch requires, add in get_arch_timeoffset() */
 228        return nsec + arch_gettimeoffset();
 229}
 230
 231/**
 232 * update_fast_timekeeper - Update the fast and NMI safe monotonic timekeeper.
 233 * @tk:         The timekeeper from which we take the update
 234 * @tkf:        The fast timekeeper to update
 235 * @tbase:      The time base for the fast timekeeper (mono/raw)
 236 *
 237 * We want to use this from any context including NMI and tracing /
 238 * instrumenting the timekeeping code itself.
 239 *
 240 * So we handle this differently than the other timekeeping accessor
 241 * functions which retry when the sequence count has changed. The
 242 * update side does:
 243 *
 244 * smp_wmb();   <- Ensure that the last base[1] update is visible
 245 * tkf->seq++;
 246 * smp_wmb();   <- Ensure that the seqcount update is visible
 247 * update(tkf->base[0], tk);
 248 * smp_wmb();   <- Ensure that the base[0] update is visible
 249 * tkf->seq++;
 250 * smp_wmb();   <- Ensure that the seqcount update is visible
 251 * update(tkf->base[1], tk);
 252 *
 253 * The reader side does:
 254 *
 255 * do {
 256 *      seq = tkf->seq;
 257 *      smp_rmb();
 258 *      idx = seq & 0x01;
 259 *      now = now(tkf->base[idx]);
 260 *      smp_rmb();
 261 * } while (seq != tkf->seq)
 262 *
 263 * As long as we update base[0] readers are forced off to
 264 * base[1]. Once base[0] is updated readers are redirected to base[0]
 265 * and the base[1] update takes place.
 266 *
 267 * So if a NMI hits the update of base[0] then it will use base[1]
 268 * which is still consistent. In the worst case this can result is a
 269 * slightly wrong timestamp (a few nanoseconds). See
 270 * @ktime_get_mono_fast_ns.
 271 */
 272static void update_fast_timekeeper(struct timekeeper *tk)
 273{
 274        struct tk_read_base *base = tk_fast_mono.base;
 275
 276        /* Force readers off to base[1] */
 277        raw_write_seqcount_latch(&tk_fast_mono.seq);
 278
 279        /* Update base[0] */
 280        memcpy(base, &tk->tkr, sizeof(*base));
 281
 282        /* Force readers back to base[0] */
 283        raw_write_seqcount_latch(&tk_fast_mono.seq);
 284
 285        /* Update base[1] */
 286        memcpy(base + 1, base, sizeof(*base));
 287}
 288
 289/**
 290 * ktime_get_mono_fast_ns - Fast NMI safe access to clock monotonic
 291 *
 292 * This timestamp is not guaranteed to be monotonic across an update.
 293 * The timestamp is calculated by:
 294 *
 295 *      now = base_mono + clock_delta * slope
 296 *
 297 * So if the update lowers the slope, readers who are forced to the
 298 * not yet updated second array are still using the old steeper slope.
 299 *
 300 * tmono
 301 * ^
 302 * |    o  n
 303 * |   o n
 304 * |  u
 305 * | o
 306 * |o
 307 * |12345678---> reader order
 308 *
 309 * o = old slope
 310 * u = update
 311 * n = new slope
 312 *
 313 * So reader 6 will observe time going backwards versus reader 5.
 314 *
 315 * While other CPUs are likely to be able observe that, the only way
 316 * for a CPU local observation is when an NMI hits in the middle of
 317 * the update. Timestamps taken from that NMI context might be ahead
 318 * of the following timestamps. Callers need to be aware of that and
 319 * deal with it.
 320 */
 321u64 notrace ktime_get_mono_fast_ns(void)
 322{
 323        struct tk_read_base *tkr;
 324        unsigned int seq;
 325        u64 now;
 326
 327        do {
 328                seq = raw_read_seqcount(&tk_fast_mono.seq);
 329                tkr = tk_fast_mono.base + (seq & 0x01);
 330                now = ktime_to_ns(tkr->base_mono) + timekeeping_get_ns(tkr);
 331
 332        } while (read_seqcount_retry(&tk_fast_mono.seq, seq));
 333        return now;
 334}
 335EXPORT_SYMBOL_GPL(ktime_get_mono_fast_ns);
 336
 337#ifdef CONFIG_GENERIC_TIME_VSYSCALL_OLD
 338
 339static inline void update_vsyscall(struct timekeeper *tk)
 340{
 341        struct timespec xt, wm;
 342
 343        xt = timespec64_to_timespec(tk_xtime(tk));
 344        wm = timespec64_to_timespec(tk->wall_to_monotonic);
 345        update_vsyscall_old(&xt, &wm, tk->tkr.clock, tk->tkr.mult,
 346                            tk->tkr.cycle_last);
 347}
 348
 349static inline void old_vsyscall_fixup(struct timekeeper *tk)
 350{
 351        s64 remainder;
 352
 353        /*
 354        * Store only full nanoseconds into xtime_nsec after rounding
 355        * it up and add the remainder to the error difference.
 356        * XXX - This is necessary to avoid small 1ns inconsistnecies caused
 357        * by truncating the remainder in vsyscalls. However, it causes
 358        * additional work to be done in timekeeping_adjust(). Once
 359        * the vsyscall implementations are converted to use xtime_nsec
 360        * (shifted nanoseconds), and CONFIG_GENERIC_TIME_VSYSCALL_OLD
 361        * users are removed, this can be killed.
 362        */
 363        remainder = tk->tkr.xtime_nsec & ((1ULL << tk->tkr.shift) - 1);
 364        tk->tkr.xtime_nsec -= remainder;
 365        tk->tkr.xtime_nsec += 1ULL << tk->tkr.shift;
 366        tk->ntp_error += remainder << tk->ntp_error_shift;
 367        tk->ntp_error -= (1ULL << tk->tkr.shift) << tk->ntp_error_shift;
 368}
 369#else
 370#define old_vsyscall_fixup(tk)
 371#endif
 372
 373static RAW_NOTIFIER_HEAD(pvclock_gtod_chain);
 374
 375static void update_pvclock_gtod(struct timekeeper *tk, bool was_set)
 376{
 377        raw_notifier_call_chain(&pvclock_gtod_chain, was_set, tk);
 378}
 379
 380/**
 381 * pvclock_gtod_register_notifier - register a pvclock timedata update listener
 382 */
 383int pvclock_gtod_register_notifier(struct notifier_block *nb)
 384{
 385        struct timekeeper *tk = &tk_core.timekeeper;
 386        unsigned long flags;
 387        int ret;
 388
 389        raw_spin_lock_irqsave(&timekeeper_lock, flags);
 390        ret = raw_notifier_chain_register(&pvclock_gtod_chain, nb);
 391        update_pvclock_gtod(tk, true);
 392        raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
 393
 394        return ret;
 395}
 396EXPORT_SYMBOL_GPL(pvclock_gtod_register_notifier);
 397
 398/**
 399 * pvclock_gtod_unregister_notifier - unregister a pvclock
 400 * timedata update listener
 401 */
 402int pvclock_gtod_unregister_notifier(struct notifier_block *nb)
 403{
 404        unsigned long flags;
 405        int ret;
 406
 407        raw_spin_lock_irqsave(&timekeeper_lock, flags);
 408        ret = raw_notifier_chain_unregister(&pvclock_gtod_chain, nb);
 409        raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
 410
 411        return ret;
 412}
 413EXPORT_SYMBOL_GPL(pvclock_gtod_unregister_notifier);
 414
 415/*
 416 * Update the ktime_t based scalar nsec members of the timekeeper
 417 */
 418static inline void tk_update_ktime_data(struct timekeeper *tk)
 419{
 420        s64 nsec;
 421
 422        /*
 423         * The xtime based monotonic readout is:
 424         *      nsec = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec + now();
 425         * The ktime based monotonic readout is:
 426         *      nsec = base_mono + now();
 427         * ==> base_mono = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec
 428         */
 429        nsec = (s64)(tk->xtime_sec + tk->wall_to_monotonic.tv_sec);
 430        nsec *= NSEC_PER_SEC;
 431        nsec += tk->wall_to_monotonic.tv_nsec;
 432        tk->tkr.base_mono = ns_to_ktime(nsec);
 433
 434        /* Update the monotonic raw base */
 435        tk->base_raw = timespec64_to_ktime(tk->raw_time);
 436}
 437
 438/* must hold timekeeper_lock */
 439static void timekeeping_update(struct timekeeper *tk, unsigned int action)
 440{
 441        if (action & TK_CLEAR_NTP) {
 442                tk->ntp_error = 0;
 443                ntp_clear();
 444        }
 445
 446        tk_update_ktime_data(tk);
 447
 448        update_vsyscall(tk);
 449        update_pvclock_gtod(tk, action & TK_CLOCK_WAS_SET);
 450
 451        if (action & TK_MIRROR)
 452                memcpy(&shadow_timekeeper, &tk_core.timekeeper,
 453                       sizeof(tk_core.timekeeper));
 454
 455        update_fast_timekeeper(tk);
 456}
 457
 458/**
 459 * timekeeping_forward_now - update clock to the current time
 460 *
 461 * Forward the current clock to update its state since the last call to
 462 * update_wall_time(). This is useful before significant clock changes,
 463 * as it avoids having to deal with this time offset explicitly.
 464 */
 465static void timekeeping_forward_now(struct timekeeper *tk)
 466{
 467        struct clocksource *clock = tk->tkr.clock;
 468        cycle_t cycle_now, delta;
 469        s64 nsec;
 470
 471        cycle_now = tk->tkr.read(clock);
 472        delta = clocksource_delta(cycle_now, tk->tkr.cycle_last, tk->tkr.mask);
 473        tk->tkr.cycle_last = cycle_now;
 474
 475        tk->tkr.xtime_nsec += delta * tk->tkr.mult;
 476
 477        /* If arch requires, add in get_arch_timeoffset() */
 478        tk->tkr.xtime_nsec += (u64)arch_gettimeoffset() << tk->tkr.shift;
 479
 480        tk_normalize_xtime(tk);
 481
 482        nsec = clocksource_cyc2ns(delta, clock->mult, clock->shift);
 483        timespec64_add_ns(&tk->raw_time, nsec);
 484}
 485
 486/**
 487 * __getnstimeofday64 - Returns the time of day in a timespec64.
 488 * @ts:         pointer to the timespec to be set
 489 *
 490 * Updates the time of day in the timespec.
 491 * Returns 0 on success, or -ve when suspended (timespec will be undefined).
 492 */
 493int __getnstimeofday64(struct timespec64 *ts)
 494{
 495        struct timekeeper *tk = &tk_core.timekeeper;
 496        unsigned long seq;
 497        s64 nsecs = 0;
 498
 499        do {
 500                seq = read_seqcount_begin(&tk_core.seq);
 501
 502                ts->tv_sec = tk->xtime_sec;
 503                nsecs = timekeeping_get_ns(&tk->tkr);
 504
 505        } while (read_seqcount_retry(&tk_core.seq, seq));
 506
 507        ts->tv_nsec = 0;
 508        timespec64_add_ns(ts, nsecs);
 509
 510        /*
 511         * Do not bail out early, in case there were callers still using
 512         * the value, even in the face of the WARN_ON.
 513         */
 514        if (unlikely(timekeeping_suspended))
 515                return -EAGAIN;
 516        return 0;
 517}
 518EXPORT_SYMBOL(__getnstimeofday64);
 519
 520/**
 521 * getnstimeofday64 - Returns the time of day in a timespec64.
 522 * @ts:         pointer to the timespec to be set
 523 *
 524 * Returns the time of day in a timespec (WARN if suspended).
 525 */
 526void getnstimeofday64(struct timespec64 *ts)
 527{
 528        WARN_ON(__getnstimeofday64(ts));
 529}
 530EXPORT_SYMBOL(getnstimeofday64);
 531
 532ktime_t ktime_get(void)
 533{
 534        struct timekeeper *tk = &tk_core.timekeeper;
 535        unsigned int seq;
 536        ktime_t base;
 537        s64 nsecs;
 538
 539        WARN_ON(timekeeping_suspended);
 540
 541        do {
 542                seq = read_seqcount_begin(&tk_core.seq);
 543                base = tk->tkr.base_mono;
 544                nsecs = timekeeping_get_ns(&tk->tkr);
 545
 546        } while (read_seqcount_retry(&tk_core.seq, seq));
 547
 548        return ktime_add_ns(base, nsecs);
 549}
 550EXPORT_SYMBOL_GPL(ktime_get);
 551
 552static ktime_t *offsets[TK_OFFS_MAX] = {
 553        [TK_OFFS_REAL]  = &tk_core.timekeeper.offs_real,
 554        [TK_OFFS_BOOT]  = &tk_core.timekeeper.offs_boot,
 555        [TK_OFFS_TAI]   = &tk_core.timekeeper.offs_tai,
 556};
 557
 558ktime_t ktime_get_with_offset(enum tk_offsets offs)
 559{
 560        struct timekeeper *tk = &tk_core.timekeeper;
 561        unsigned int seq;
 562        ktime_t base, *offset = offsets[offs];
 563        s64 nsecs;
 564
 565        WARN_ON(timekeeping_suspended);
 566
 567        do {
 568                seq = read_seqcount_begin(&tk_core.seq);
 569                base = ktime_add(tk->tkr.base_mono, *offset);
 570                nsecs = timekeeping_get_ns(&tk->tkr);
 571
 572        } while (read_seqcount_retry(&tk_core.seq, seq));
 573
 574        return ktime_add_ns(base, nsecs);
 575
 576}
 577EXPORT_SYMBOL_GPL(ktime_get_with_offset);
 578
 579/**
 580 * ktime_mono_to_any() - convert mononotic time to any other time
 581 * @tmono:      time to convert.
 582 * @offs:       which offset to use
 583 */
 584ktime_t ktime_mono_to_any(ktime_t tmono, enum tk_offsets offs)
 585{
 586        ktime_t *offset = offsets[offs];
 587        unsigned long seq;
 588        ktime_t tconv;
 589
 590        do {
 591                seq = read_seqcount_begin(&tk_core.seq);
 592                tconv = ktime_add(tmono, *offset);
 593        } while (read_seqcount_retry(&tk_core.seq, seq));
 594
 595        return tconv;
 596}
 597EXPORT_SYMBOL_GPL(ktime_mono_to_any);
 598
 599/**
 600 * ktime_get_raw - Returns the raw monotonic time in ktime_t format
 601 */
 602ktime_t ktime_get_raw(void)
 603{
 604        struct timekeeper *tk = &tk_core.timekeeper;
 605        unsigned int seq;
 606        ktime_t base;
 607        s64 nsecs;
 608
 609        do {
 610                seq = read_seqcount_begin(&tk_core.seq);
 611                base = tk->base_raw;
 612                nsecs = timekeeping_get_ns_raw(tk);
 613
 614        } while (read_seqcount_retry(&tk_core.seq, seq));
 615
 616        return ktime_add_ns(base, nsecs);
 617}
 618EXPORT_SYMBOL_GPL(ktime_get_raw);
 619
 620/**
 621 * ktime_get_ts64 - get the monotonic clock in timespec64 format
 622 * @ts:         pointer to timespec variable
 623 *
 624 * The function calculates the monotonic clock from the realtime
 625 * clock and the wall_to_monotonic offset and stores the result
 626 * in normalized timespec format in the variable pointed to by @ts.
 627 */
 628void ktime_get_ts64(struct timespec64 *ts)
 629{
 630        struct timekeeper *tk = &tk_core.timekeeper;
 631        struct timespec64 tomono;
 632        s64 nsec;
 633        unsigned int seq;
 634
 635        WARN_ON(timekeeping_suspended);
 636
 637        do {
 638                seq = read_seqcount_begin(&tk_core.seq);
 639                ts->tv_sec = tk->xtime_sec;
 640                nsec = timekeeping_get_ns(&tk->tkr);
 641                tomono = tk->wall_to_monotonic;
 642
 643        } while (read_seqcount_retry(&tk_core.seq, seq));
 644
 645        ts->tv_sec += tomono.tv_sec;
 646        ts->tv_nsec = 0;
 647        timespec64_add_ns(ts, nsec + tomono.tv_nsec);
 648}
 649EXPORT_SYMBOL_GPL(ktime_get_ts64);
 650
 651#ifdef CONFIG_NTP_PPS
 652
 653/**
 654 * getnstime_raw_and_real - get day and raw monotonic time in timespec format
 655 * @ts_raw:     pointer to the timespec to be set to raw monotonic time
 656 * @ts_real:    pointer to the timespec to be set to the time of day
 657 *
 658 * This function reads both the time of day and raw monotonic time at the
 659 * same time atomically and stores the resulting timestamps in timespec
 660 * format.
 661 */
 662void getnstime_raw_and_real(struct timespec *ts_raw, struct timespec *ts_real)
 663{
 664        struct timekeeper *tk = &tk_core.timekeeper;
 665        unsigned long seq;
 666        s64 nsecs_raw, nsecs_real;
 667
 668        WARN_ON_ONCE(timekeeping_suspended);
 669
 670        do {
 671                seq = read_seqcount_begin(&tk_core.seq);
 672
 673                *ts_raw = timespec64_to_timespec(tk->raw_time);
 674                ts_real->tv_sec = tk->xtime_sec;
 675                ts_real->tv_nsec = 0;
 676
 677                nsecs_raw = timekeeping_get_ns_raw(tk);
 678                nsecs_real = timekeeping_get_ns(&tk->tkr);
 679
 680        } while (read_seqcount_retry(&tk_core.seq, seq));
 681
 682        timespec_add_ns(ts_raw, nsecs_raw);
 683        timespec_add_ns(ts_real, nsecs_real);
 684}
 685EXPORT_SYMBOL(getnstime_raw_and_real);
 686
 687#endif /* CONFIG_NTP_PPS */
 688
 689/**
 690 * do_gettimeofday - Returns the time of day in a timeval
 691 * @tv:         pointer to the timeval to be set
 692 *
 693 * NOTE: Users should be converted to using getnstimeofday()
 694 */
 695void do_gettimeofday(struct timeval *tv)
 696{
 697        struct timespec64 now;
 698
 699        getnstimeofday64(&now);
 700        tv->tv_sec = now.tv_sec;
 701        tv->tv_usec = now.tv_nsec/1000;
 702}
 703EXPORT_SYMBOL(do_gettimeofday);
 704
 705/**
 706 * do_settimeofday - Sets the time of day
 707 * @tv:         pointer to the timespec variable containing the new time
 708 *
 709 * Sets the time of day to the new time and update NTP and notify hrtimers
 710 */
 711int do_settimeofday(const struct timespec *tv)
 712{
 713        struct timekeeper *tk = &tk_core.timekeeper;
 714        struct timespec64 ts_delta, xt, tmp;
 715        unsigned long flags;
 716
 717        if (!timespec_valid_strict(tv))
 718                return -EINVAL;
 719
 720        raw_spin_lock_irqsave(&timekeeper_lock, flags);
 721        write_seqcount_begin(&tk_core.seq);
 722
 723        timekeeping_forward_now(tk);
 724
 725        xt = tk_xtime(tk);
 726        ts_delta.tv_sec = tv->tv_sec - xt.tv_sec;
 727        ts_delta.tv_nsec = tv->tv_nsec - xt.tv_nsec;
 728
 729        tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts_delta));
 730
 731        tmp = timespec_to_timespec64(*tv);
 732        tk_set_xtime(tk, &tmp);
 733
 734        timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
 735
 736        write_seqcount_end(&tk_core.seq);
 737        raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
 738
 739        /* signal hrtimers about time change */
 740        clock_was_set();
 741
 742        return 0;
 743}
 744EXPORT_SYMBOL(do_settimeofday);
 745
 746/**
 747 * timekeeping_inject_offset - Adds or subtracts from the current time.
 748 * @tv:         pointer to the timespec variable containing the offset
 749 *
 750 * Adds or subtracts an offset value from the current time.
 751 */
 752int timekeeping_inject_offset(struct timespec *ts)
 753{
 754        struct timekeeper *tk = &tk_core.timekeeper;
 755        unsigned long flags;
 756        struct timespec64 ts64, tmp;
 757        int ret = 0;
 758
 759        if ((unsigned long)ts->tv_nsec >= NSEC_PER_SEC)
 760                return -EINVAL;
 761
 762        ts64 = timespec_to_timespec64(*ts);
 763
 764        raw_spin_lock_irqsave(&timekeeper_lock, flags);
 765        write_seqcount_begin(&tk_core.seq);
 766
 767        timekeeping_forward_now(tk);
 768
 769        /* Make sure the proposed value is valid */
 770        tmp = timespec64_add(tk_xtime(tk),  ts64);
 771        if (!timespec64_valid_strict(&tmp)) {
 772                ret = -EINVAL;
 773                goto error;
 774        }
 775
 776        tk_xtime_add(tk, &ts64);
 777        tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts64));
 778
 779error: /* even if we error out, we forwarded the time, so call update */
 780        timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
 781
 782        write_seqcount_end(&tk_core.seq);
 783        raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
 784
 785        /* signal hrtimers about time change */
 786        clock_was_set();
 787
 788        return ret;
 789}
 790EXPORT_SYMBOL(timekeeping_inject_offset);
 791
 792
 793/**
 794 * timekeeping_get_tai_offset - Returns current TAI offset from UTC
 795 *
 796 */
 797s32 timekeeping_get_tai_offset(void)
 798{
 799        struct timekeeper *tk = &tk_core.timekeeper;
 800        unsigned int seq;
 801        s32 ret;
 802
 803        do {
 804                seq = read_seqcount_begin(&tk_core.seq);
 805                ret = tk->tai_offset;
 806        } while (read_seqcount_retry(&tk_core.seq, seq));
 807
 808        return ret;
 809}
 810
 811/**
 812 * __timekeeping_set_tai_offset - Lock free worker function
 813 *
 814 */
 815static void __timekeeping_set_tai_offset(struct timekeeper *tk, s32 tai_offset)
 816{
 817        tk->tai_offset = tai_offset;
 818        tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tai_offset, 0));
 819}
 820
 821/**
 822 * timekeeping_set_tai_offset - Sets the current TAI offset from UTC
 823 *
 824 */
 825void timekeeping_set_tai_offset(s32 tai_offset)
 826{
 827        struct timekeeper *tk = &tk_core.timekeeper;
 828        unsigned long flags;
 829
 830        raw_spin_lock_irqsave(&timekeeper_lock, flags);
 831        write_seqcount_begin(&tk_core.seq);
 832        __timekeeping_set_tai_offset(tk, tai_offset);
 833        timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
 834        write_seqcount_end(&tk_core.seq);
 835        raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
 836        clock_was_set();
 837}
 838
 839/**
 840 * change_clocksource - Swaps clocksources if a new one is available
 841 *
 842 * Accumulates current time interval and initializes new clocksource
 843 */
 844static int change_clocksource(void *data)
 845{
 846        struct timekeeper *tk = &tk_core.timekeeper;
 847        struct clocksource *new, *old;
 848        unsigned long flags;
 849
 850        new = (struct clocksource *) data;
 851
 852        raw_spin_lock_irqsave(&timekeeper_lock, flags);
 853        write_seqcount_begin(&tk_core.seq);
 854
 855        timekeeping_forward_now(tk);
 856        /*
 857         * If the cs is in module, get a module reference. Succeeds
 858         * for built-in code (owner == NULL) as well.
 859         */
 860        if (try_module_get(new->owner)) {
 861                if (!new->enable || new->enable(new) == 0) {
 862                        old = tk->tkr.clock;
 863                        tk_setup_internals(tk, new);
 864                        if (old->disable)
 865                                old->disable(old);
 866                        module_put(old->owner);
 867                } else {
 868                        module_put(new->owner);
 869                }
 870        }
 871        timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
 872
 873        write_seqcount_end(&tk_core.seq);
 874        raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
 875
 876        return 0;
 877}
 878
 879/**
 880 * timekeeping_notify - Install a new clock source
 881 * @clock:              pointer to the clock source
 882 *
 883 * This function is called from clocksource.c after a new, better clock
 884 * source has been registered. The caller holds the clocksource_mutex.
 885 */
 886int timekeeping_notify(struct clocksource *clock)
 887{
 888        struct timekeeper *tk = &tk_core.timekeeper;
 889
 890        if (tk->tkr.clock == clock)
 891                return 0;
 892        stop_machine(change_clocksource, clock, NULL);
 893        tick_clock_notify();
 894        return tk->tkr.clock == clock ? 0 : -1;
 895}
 896
 897/**
 898 * getrawmonotonic - Returns the raw monotonic time in a timespec
 899 * @ts:         pointer to the timespec to be set
 900 *
 901 * Returns the raw monotonic time (completely un-modified by ntp)
 902 */
 903void getrawmonotonic(struct timespec *ts)
 904{
 905        struct timekeeper *tk = &tk_core.timekeeper;
 906        struct timespec64 ts64;
 907        unsigned long seq;
 908        s64 nsecs;
 909
 910        do {
 911                seq = read_seqcount_begin(&tk_core.seq);
 912                nsecs = timekeeping_get_ns_raw(tk);
 913                ts64 = tk->raw_time;
 914
 915        } while (read_seqcount_retry(&tk_core.seq, seq));
 916
 917        timespec64_add_ns(&ts64, nsecs);
 918        *ts = timespec64_to_timespec(ts64);
 919}
 920EXPORT_SYMBOL(getrawmonotonic);
 921
 922/**
 923 * timekeeping_valid_for_hres - Check if timekeeping is suitable for hres
 924 */
 925int timekeeping_valid_for_hres(void)
 926{
 927        struct timekeeper *tk = &tk_core.timekeeper;
 928        unsigned long seq;
 929        int ret;
 930
 931        do {
 932                seq = read_seqcount_begin(&tk_core.seq);
 933
 934                ret = tk->tkr.clock->flags & CLOCK_SOURCE_VALID_FOR_HRES;
 935
 936        } while (read_seqcount_retry(&tk_core.seq, seq));
 937
 938        return ret;
 939}
 940
 941/**
 942 * timekeeping_max_deferment - Returns max time the clocksource can be deferred
 943 */
 944u64 timekeeping_max_deferment(void)
 945{
 946        struct timekeeper *tk = &tk_core.timekeeper;
 947        unsigned long seq;
 948        u64 ret;
 949
 950        do {
 951                seq = read_seqcount_begin(&tk_core.seq);
 952
 953                ret = tk->tkr.clock->max_idle_ns;
 954
 955        } while (read_seqcount_retry(&tk_core.seq, seq));
 956
 957        return ret;
 958}
 959
 960/**
 961 * read_persistent_clock -  Return time from the persistent clock.
 962 *
 963 * Weak dummy function for arches that do not yet support it.
 964 * Reads the time from the battery backed persistent clock.
 965 * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
 966 *
 967 *  XXX - Do be sure to remove it once all arches implement it.
 968 */
 969void __weak read_persistent_clock(struct timespec *ts)
 970{
 971        ts->tv_sec = 0;
 972        ts->tv_nsec = 0;
 973}
 974
 975/**
 976 * read_boot_clock -  Return time of the system start.
 977 *
 978 * Weak dummy function for arches that do not yet support it.
 979 * Function to read the exact time the system has been started.
 980 * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
 981 *
 982 *  XXX - Do be sure to remove it once all arches implement it.
 983 */
 984void __weak read_boot_clock(struct timespec *ts)
 985{
 986        ts->tv_sec = 0;
 987        ts->tv_nsec = 0;
 988}
 989
 990/*
 991 * timekeeping_init - Initializes the clocksource and common timekeeping values
 992 */
 993void __init timekeeping_init(void)
 994{
 995        struct timekeeper *tk = &tk_core.timekeeper;
 996        struct clocksource *clock;
 997        unsigned long flags;
 998        struct timespec64 now, boot, tmp;
 999        struct timespec ts;
1000
1001        read_persistent_clock(&ts);
1002        now = timespec_to_timespec64(ts);
1003        if (!timespec64_valid_strict(&now)) {
1004                pr_warn("WARNING: Persistent clock returned invalid value!\n"
1005                        "         Check your CMOS/BIOS settings.\n");
1006                now.tv_sec = 0;
1007                now.tv_nsec = 0;
1008        } else if (now.tv_sec || now.tv_nsec)
1009                persistent_clock_exist = true;
1010
1011        read_boot_clock(&ts);
1012        boot = timespec_to_timespec64(ts);
1013        if (!timespec64_valid_strict(&boot)) {
1014                pr_warn("WARNING: Boot clock returned invalid value!\n"
1015                        "         Check your CMOS/BIOS settings.\n");
1016                boot.tv_sec = 0;
1017                boot.tv_nsec = 0;
1018        }
1019
1020        raw_spin_lock_irqsave(&timekeeper_lock, flags);
1021        write_seqcount_begin(&tk_core.seq);
1022        ntp_init();
1023
1024        clock = clocksource_default_clock();
1025        if (clock->enable)
1026                clock->enable(clock);
1027        tk_setup_internals(tk, clock);
1028
1029        tk_set_xtime(tk, &now);
1030        tk->raw_time.tv_sec = 0;
1031        tk->raw_time.tv_nsec = 0;
1032        tk->base_raw.tv64 = 0;
1033        if (boot.tv_sec == 0 && boot.tv_nsec == 0)
1034                boot = tk_xtime(tk);
1035
1036        set_normalized_timespec64(&tmp, -boot.tv_sec, -boot.tv_nsec);
1037        tk_set_wall_to_mono(tk, tmp);
1038
1039        timekeeping_update(tk, TK_MIRROR);
1040
1041        write_seqcount_end(&tk_core.seq);
1042        raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1043}
1044
1045/* time in seconds when suspend began */
1046static struct timespec64 timekeeping_suspend_time;
1047
1048/**
1049 * __timekeeping_inject_sleeptime - Internal function to add sleep interval
1050 * @delta: pointer to a timespec delta value
1051 *
1052 * Takes a timespec offset measuring a suspend interval and properly
1053 * adds the sleep offset to the timekeeping variables.
1054 */
1055static void __timekeeping_inject_sleeptime(struct timekeeper *tk,
1056                                           struct timespec64 *delta)
1057{
1058        if (!timespec64_valid_strict(delta)) {
1059                printk_deferred(KERN_WARNING
1060                                "__timekeeping_inject_sleeptime: Invalid "
1061                                "sleep delta value!\n");
1062                return;
1063        }
1064        tk_xtime_add(tk, delta);
1065        tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, *delta));
1066        tk_update_sleep_time(tk, timespec64_to_ktime(*delta));
1067        tk_debug_account_sleep_time(delta);
1068}
1069
1070/**
1071 * timekeeping_inject_sleeptime - Adds suspend interval to timeekeeping values
1072 * @delta: pointer to a timespec delta value
1073 *
1074 * This hook is for architectures that cannot support read_persistent_clock
1075 * because their RTC/persistent clock is only accessible when irqs are enabled.
1076 *
1077 * This function should only be called by rtc_resume(), and allows
1078 * a suspend offset to be injected into the timekeeping values.
1079 */
1080void timekeeping_inject_sleeptime(struct timespec *delta)
1081{
1082        struct timekeeper *tk = &tk_core.timekeeper;
1083        struct timespec64 tmp;
1084        unsigned long flags;
1085
1086        /*
1087         * Make sure we don't set the clock twice, as timekeeping_resume()
1088         * already did it
1089         */
1090        if (has_persistent_clock())
1091                return;
1092
1093        raw_spin_lock_irqsave(&timekeeper_lock, flags);
1094        write_seqcount_begin(&tk_core.seq);
1095
1096        timekeeping_forward_now(tk);
1097
1098        tmp = timespec_to_timespec64(*delta);
1099        __timekeeping_inject_sleeptime(tk, &tmp);
1100
1101        timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1102
1103        write_seqcount_end(&tk_core.seq);
1104        raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1105
1106        /* signal hrtimers about time change */
1107        clock_was_set();
1108}
1109
1110/**
1111 * timekeeping_resume - Resumes the generic timekeeping subsystem.
1112 *
1113 * This is for the generic clocksource timekeeping.
1114 * xtime/wall_to_monotonic/jiffies/etc are
1115 * still managed by arch specific suspend/resume code.
1116 */
1117static void timekeeping_resume(void)
1118{
1119        struct timekeeper *tk = &tk_core.timekeeper;
1120        struct clocksource *clock = tk->tkr.clock;
1121        unsigned long flags;
1122        struct timespec64 ts_new, ts_delta;
1123        struct timespec tmp;
1124        cycle_t cycle_now, cycle_delta;
1125        bool suspendtime_found = false;
1126
1127        read_persistent_clock(&tmp);
1128        ts_new = timespec_to_timespec64(tmp);
1129
1130        clockevents_resume();
1131        clocksource_resume();
1132
1133        raw_spin_lock_irqsave(&timekeeper_lock, flags);
1134        write_seqcount_begin(&tk_core.seq);
1135
1136        /*
1137         * After system resumes, we need to calculate the suspended time and
1138         * compensate it for the OS time. There are 3 sources that could be
1139         * used: Nonstop clocksource during suspend, persistent clock and rtc
1140         * device.
1141         *
1142         * One specific platform may have 1 or 2 or all of them, and the
1143         * preference will be:
1144         *      suspend-nonstop clocksource -> persistent clock -> rtc
1145         * The less preferred source will only be tried if there is no better
1146         * usable source. The rtc part is handled separately in rtc core code.
1147         */
1148        cycle_now = tk->tkr.read(clock);
1149        if ((clock->flags & CLOCK_SOURCE_SUSPEND_NONSTOP) &&
1150                cycle_now > tk->tkr.cycle_last) {
1151                u64 num, max = ULLONG_MAX;
1152                u32 mult = clock->mult;
1153                u32 shift = clock->shift;
1154                s64 nsec = 0;
1155
1156                cycle_delta = clocksource_delta(cycle_now, tk->tkr.cycle_last,
1157                                                tk->tkr.mask);
1158
1159                /*
1160                 * "cycle_delta * mutl" may cause 64 bits overflow, if the
1161                 * suspended time is too long. In that case we need do the
1162                 * 64 bits math carefully
1163                 */
1164                do_div(max, mult);
1165                if (cycle_delta > max) {
1166                        num = div64_u64(cycle_delta, max);
1167                        nsec = (((u64) max * mult) >> shift) * num;
1168                        cycle_delta -= num * max;
1169                }
1170                nsec += ((u64) cycle_delta * mult) >> shift;
1171
1172                ts_delta = ns_to_timespec64(nsec);
1173                suspendtime_found = true;
1174        } else if (timespec64_compare(&ts_new, &timekeeping_suspend_time) > 0) {
1175                ts_delta = timespec64_sub(ts_new, timekeeping_suspend_time);
1176                suspendtime_found = true;
1177        }
1178
1179        if (suspendtime_found)
1180                __timekeeping_inject_sleeptime(tk, &ts_delta);
1181
1182        /* Re-base the last cycle value */
1183        tk->tkr.cycle_last = cycle_now;
1184        tk->ntp_error = 0;
1185        timekeeping_suspended = 0;
1186        timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
1187        write_seqcount_end(&tk_core.seq);
1188        raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1189
1190        touch_softlockup_watchdog();
1191
1192        clockevents_notify(CLOCK_EVT_NOTIFY_RESUME, NULL);
1193
1194        /* Resume hrtimers */
1195        hrtimers_resume();
1196}
1197
1198static int timekeeping_suspend(void)
1199{
1200        struct timekeeper *tk = &tk_core.timekeeper;
1201        unsigned long flags;
1202        struct timespec64               delta, delta_delta;
1203        static struct timespec64        old_delta;
1204        struct timespec tmp;
1205
1206        read_persistent_clock(&tmp);
1207        timekeeping_suspend_time = timespec_to_timespec64(tmp);
1208
1209        /*
1210         * On some systems the persistent_clock can not be detected at
1211         * timekeeping_init by its return value, so if we see a valid
1212         * value returned, update the persistent_clock_exists flag.
1213         */
1214        if (timekeeping_suspend_time.tv_sec || timekeeping_suspend_time.tv_nsec)
1215                persistent_clock_exist = true;
1216
1217        raw_spin_lock_irqsave(&timekeeper_lock, flags);
1218        write_seqcount_begin(&tk_core.seq);
1219        timekeeping_forward_now(tk);
1220        timekeeping_suspended = 1;
1221
1222        /*
1223         * To avoid drift caused by repeated suspend/resumes,
1224         * which each can add ~1 second drift error,
1225         * try to compensate so the difference in system time
1226         * and persistent_clock time stays close to constant.
1227         */
1228        delta = timespec64_sub(tk_xtime(tk), timekeeping_suspend_time);
1229        delta_delta = timespec64_sub(delta, old_delta);
1230        if (abs(delta_delta.tv_sec)  >= 2) {
1231                /*
1232                 * if delta_delta is too large, assume time correction
1233                 * has occured and set old_delta to the current delta.
1234                 */
1235                old_delta = delta;
1236        } else {
1237                /* Otherwise try to adjust old_system to compensate */
1238                timekeeping_suspend_time =
1239                        timespec64_add(timekeeping_suspend_time, delta_delta);
1240        }
1241
1242        timekeeping_update(tk, TK_MIRROR);
1243        write_seqcount_end(&tk_core.seq);
1244        raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1245
1246        clockevents_notify(CLOCK_EVT_NOTIFY_SUSPEND, NULL);
1247        clocksource_suspend();
1248        clockevents_suspend();
1249
1250        return 0;
1251}
1252
1253/* sysfs resume/suspend bits for timekeeping */
1254static struct syscore_ops timekeeping_syscore_ops = {
1255        .resume         = timekeeping_resume,
1256        .suspend        = timekeeping_suspend,
1257};
1258
1259static int __init timekeeping_init_ops(void)
1260{
1261        register_syscore_ops(&timekeeping_syscore_ops);
1262        return 0;
1263}
1264device_initcall(timekeeping_init_ops);
1265
1266/*
1267 * Apply a multiplier adjustment to the timekeeper
1268 */
1269static __always_inline void timekeeping_apply_adjustment(struct timekeeper *tk,
1270                                                         s64 offset,
1271                                                         bool negative,
1272                                                         int adj_scale)
1273{
1274        s64 interval = tk->cycle_interval;
1275        s32 mult_adj = 1;
1276
1277        if (negative) {
1278                mult_adj = -mult_adj;
1279                interval = -interval;
1280                offset  = -offset;
1281        }
1282        mult_adj <<= adj_scale;
1283        interval <<= adj_scale;
1284        offset <<= adj_scale;
1285
1286        /*
1287         * So the following can be confusing.
1288         *
1289         * To keep things simple, lets assume mult_adj == 1 for now.
1290         *
1291         * When mult_adj != 1, remember that the interval and offset values
1292         * have been appropriately scaled so the math is the same.
1293         *
1294         * The basic idea here is that we're increasing the multiplier
1295         * by one, this causes the xtime_interval to be incremented by
1296         * one cycle_interval. This is because:
1297         *      xtime_interval = cycle_interval * mult
1298         * So if mult is being incremented by one:
1299         *      xtime_interval = cycle_interval * (mult + 1)
1300         * Its the same as:
1301         *      xtime_interval = (cycle_interval * mult) + cycle_interval
1302         * Which can be shortened to:
1303         *      xtime_interval += cycle_interval
1304         *
1305         * So offset stores the non-accumulated cycles. Thus the current
1306         * time (in shifted nanoseconds) is:
1307         *      now = (offset * adj) + xtime_nsec
1308         * Now, even though we're adjusting the clock frequency, we have
1309         * to keep time consistent. In other words, we can't jump back
1310         * in time, and we also want to avoid jumping forward in time.
1311         *
1312         * So given the same offset value, we need the time to be the same
1313         * both before and after the freq adjustment.
1314         *      now = (offset * adj_1) + xtime_nsec_1
1315         *      now = (offset * adj_2) + xtime_nsec_2
1316         * So:
1317         *      (offset * adj_1) + xtime_nsec_1 =
1318         *              (offset * adj_2) + xtime_nsec_2
1319         * And we know:
1320         *      adj_2 = adj_1 + 1
1321         * So:
1322         *      (offset * adj_1) + xtime_nsec_1 =
1323         *              (offset * (adj_1+1)) + xtime_nsec_2
1324         *      (offset * adj_1) + xtime_nsec_1 =
1325         *              (offset * adj_1) + offset + xtime_nsec_2
1326         * Canceling the sides:
1327         *      xtime_nsec_1 = offset + xtime_nsec_2
1328         * Which gives us:
1329         *      xtime_nsec_2 = xtime_nsec_1 - offset
1330         * Which simplfies to:
1331         *      xtime_nsec -= offset
1332         *
1333         * XXX - TODO: Doc ntp_error calculation.
1334         */
1335        tk->tkr.mult += mult_adj;
1336        tk->xtime_interval += interval;
1337        tk->tkr.xtime_nsec -= offset;
1338        tk->ntp_error -= (interval - offset) << tk->ntp_error_shift;
1339}
1340
1341/*
1342 * Calculate the multiplier adjustment needed to match the frequency
1343 * specified by NTP
1344 */
1345static __always_inline void timekeeping_freqadjust(struct timekeeper *tk,
1346                                                        s64 offset)
1347{
1348        s64 interval = tk->cycle_interval;
1349        s64 xinterval = tk->xtime_interval;
1350        s64 tick_error;
1351        bool negative;
1352        u32 adj;
1353
1354        /* Remove any current error adj from freq calculation */
1355        if (tk->ntp_err_mult)
1356                xinterval -= tk->cycle_interval;
1357
1358        tk->ntp_tick = ntp_tick_length();
1359
1360        /* Calculate current error per tick */
1361        tick_error = ntp_tick_length() >> tk->ntp_error_shift;
1362        tick_error -= (xinterval + tk->xtime_remainder);
1363
1364        /* Don't worry about correcting it if its small */
1365        if (likely((tick_error >= 0) && (tick_error <= interval)))
1366                return;
1367
1368        /* preserve the direction of correction */
1369        negative = (tick_error < 0);
1370
1371        /* Sort out the magnitude of the correction */
1372        tick_error = abs(tick_error);
1373        for (adj = 0; tick_error > interval; adj++)
1374                tick_error >>= 1;
1375
1376        /* scale the corrections */
1377        timekeeping_apply_adjustment(tk, offset, negative, adj);
1378}
1379
1380/*
1381 * Adjust the timekeeper's multiplier to the correct frequency
1382 * and also to reduce the accumulated error value.
1383 */
1384static void timekeeping_adjust(struct timekeeper *tk, s64 offset)
1385{
1386        /* Correct for the current frequency error */
1387        timekeeping_freqadjust(tk, offset);
1388
1389        /* Next make a small adjustment to fix any cumulative error */
1390        if (!tk->ntp_err_mult && (tk->ntp_error > 0)) {
1391                tk->ntp_err_mult = 1;
1392                timekeeping_apply_adjustment(tk, offset, 0, 0);
1393        } else if (tk->ntp_err_mult && (tk->ntp_error <= 0)) {
1394                /* Undo any existing error adjustment */
1395                timekeeping_apply_adjustment(tk, offset, 1, 0);
1396                tk->ntp_err_mult = 0;
1397        }
1398
1399        if (unlikely(tk->tkr.clock->maxadj &&
1400                (tk->tkr.mult > tk->tkr.clock->mult + tk->tkr.clock->maxadj))) {
1401                printk_once(KERN_WARNING
1402                        "Adjusting %s more than 11%% (%ld vs %ld)\n",
1403                        tk->tkr.clock->name, (long)tk->tkr.mult,
1404                        (long)tk->tkr.clock->mult + tk->tkr.clock->maxadj);
1405        }
1406
1407        /*
1408         * It may be possible that when we entered this function, xtime_nsec
1409         * was very small.  Further, if we're slightly speeding the clocksource
1410         * in the code above, its possible the required corrective factor to
1411         * xtime_nsec could cause it to underflow.
1412         *
1413         * Now, since we already accumulated the second, cannot simply roll
1414         * the accumulated second back, since the NTP subsystem has been
1415         * notified via second_overflow. So instead we push xtime_nsec forward
1416         * by the amount we underflowed, and add that amount into the error.
1417         *
1418         * We'll correct this error next time through this function, when
1419         * xtime_nsec is not as small.
1420         */
1421        if (unlikely((s64)tk->tkr.xtime_nsec < 0)) {
1422                s64 neg = -(s64)tk->tkr.xtime_nsec;
1423                tk->tkr.xtime_nsec = 0;
1424                tk->ntp_error += neg << tk->ntp_error_shift;
1425        }
1426}
1427
1428/**
1429 * accumulate_nsecs_to_secs - Accumulates nsecs into secs
1430 *
1431 * Helper function that accumulates a the nsecs greater then a second
1432 * from the xtime_nsec field to the xtime_secs field.
1433 * It also calls into the NTP code to handle leapsecond processing.
1434 *
1435 */
1436static inline unsigned int accumulate_nsecs_to_secs(struct timekeeper *tk)
1437{
1438        u64 nsecps = (u64)NSEC_PER_SEC << tk->tkr.shift;
1439        unsigned int clock_set = 0;
1440
1441        while (tk->tkr.xtime_nsec >= nsecps) {
1442                int leap;
1443
1444                tk->tkr.xtime_nsec -= nsecps;
1445                tk->xtime_sec++;
1446
1447                /* Figure out if its a leap sec and apply if needed */
1448                leap = second_overflow(tk->xtime_sec);
1449                if (unlikely(leap)) {
1450                        struct timespec64 ts;
1451
1452                        tk->xtime_sec += leap;
1453
1454                        ts.tv_sec = leap;
1455                        ts.tv_nsec = 0;
1456                        tk_set_wall_to_mono(tk,
1457                                timespec64_sub(tk->wall_to_monotonic, ts));
1458
1459                        __timekeeping_set_tai_offset(tk, tk->tai_offset - leap);
1460
1461                        clock_set = TK_CLOCK_WAS_SET;
1462                }
1463        }
1464        return clock_set;
1465}
1466
1467/**
1468 * logarithmic_accumulation - shifted accumulation of cycles
1469 *
1470 * This functions accumulates a shifted interval of cycles into
1471 * into a shifted interval nanoseconds. Allows for O(log) accumulation
1472 * loop.
1473 *
1474 * Returns the unconsumed cycles.
1475 */
1476static cycle_t logarithmic_accumulation(struct timekeeper *tk, cycle_t offset,
1477                                                u32 shift,
1478                                                unsigned int *clock_set)
1479{
1480        cycle_t interval = tk->cycle_interval << shift;
1481        u64 raw_nsecs;
1482
1483        /* If the offset is smaller then a shifted interval, do nothing */
1484        if (offset < interval)
1485                return offset;
1486
1487        /* Accumulate one shifted interval */
1488        offset -= interval;
1489        tk->tkr.cycle_last += interval;
1490
1491        tk->tkr.xtime_nsec += tk->xtime_interval << shift;
1492        *clock_set |= accumulate_nsecs_to_secs(tk);
1493
1494        /* Accumulate raw time */
1495        raw_nsecs = (u64)tk->raw_interval << shift;
1496        raw_nsecs += tk->raw_time.tv_nsec;
1497        if (raw_nsecs >= NSEC_PER_SEC) {
1498                u64 raw_secs = raw_nsecs;
1499                raw_nsecs = do_div(raw_secs, NSEC_PER_SEC);
1500                tk->raw_time.tv_sec += raw_secs;
1501        }
1502        tk->raw_time.tv_nsec = raw_nsecs;
1503
1504        /* Accumulate error between NTP and clock interval */
1505        tk->ntp_error += tk->ntp_tick << shift;
1506        tk->ntp_error -= (tk->xtime_interval + tk->xtime_remainder) <<
1507                                                (tk->ntp_error_shift + shift);
1508
1509        return offset;
1510}
1511
1512/**
1513 * update_wall_time - Uses the current clocksource to increment the wall time
1514 *
1515 */
1516void update_wall_time(void)
1517{
1518        struct timekeeper *real_tk = &tk_core.timekeeper;
1519        struct timekeeper *tk = &shadow_timekeeper;
1520        cycle_t offset;
1521        int shift = 0, maxshift;
1522        unsigned int clock_set = 0;
1523        unsigned long flags;
1524
1525        raw_spin_lock_irqsave(&timekeeper_lock, flags);
1526
1527        /* Make sure we're fully resumed: */
1528        if (unlikely(timekeeping_suspended))
1529                goto out;
1530
1531#ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
1532        offset = real_tk->cycle_interval;
1533#else
1534        offset = clocksource_delta(tk->tkr.read(tk->tkr.clock),
1535                                   tk->tkr.cycle_last, tk->tkr.mask);
1536#endif
1537
1538        /* Check if there's really nothing to do */
1539        if (offset < real_tk->cycle_interval)
1540                goto out;
1541
1542        /*
1543         * With NO_HZ we may have to accumulate many cycle_intervals
1544         * (think "ticks") worth of time at once. To do this efficiently,
1545         * we calculate the largest doubling multiple of cycle_intervals
1546         * that is smaller than the offset.  We then accumulate that
1547         * chunk in one go, and then try to consume the next smaller
1548         * doubled multiple.
1549         */
1550        shift = ilog2(offset) - ilog2(tk->cycle_interval);
1551        shift = max(0, shift);
1552        /* Bound shift to one less than what overflows tick_length */
1553        maxshift = (64 - (ilog2(ntp_tick_length())+1)) - 1;
1554        shift = min(shift, maxshift);
1555        while (offset >= tk->cycle_interval) {
1556                offset = logarithmic_accumulation(tk, offset, shift,
1557                                                        &clock_set);
1558                if (offset < tk->cycle_interval<<shift)
1559                        shift--;
1560        }
1561
1562        /* correct the clock when NTP error is too big */
1563        timekeeping_adjust(tk, offset);
1564
1565        /*
1566         * XXX This can be killed once everyone converts
1567         * to the new update_vsyscall.
1568         */
1569        old_vsyscall_fixup(tk);
1570
1571        /*
1572         * Finally, make sure that after the rounding
1573         * xtime_nsec isn't larger than NSEC_PER_SEC
1574         */
1575        clock_set |= accumulate_nsecs_to_secs(tk);
1576
1577        write_seqcount_begin(&tk_core.seq);
1578        /*
1579         * Update the real timekeeper.
1580         *
1581         * We could avoid this memcpy by switching pointers, but that
1582         * requires changes to all other timekeeper usage sites as
1583         * well, i.e. move the timekeeper pointer getter into the
1584         * spinlocked/seqcount protected sections. And we trade this
1585         * memcpy under the tk_core.seq against one before we start
1586         * updating.
1587         */
1588        memcpy(real_tk, tk, sizeof(*tk));
1589        timekeeping_update(real_tk, clock_set);
1590        write_seqcount_end(&tk_core.seq);
1591out:
1592        raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1593        if (clock_set)
1594                /* Have to call _delayed version, since in irq context*/
1595                clock_was_set_delayed();
1596}
1597
1598/**
1599 * getboottime - Return the real time of system boot.
1600 * @ts:         pointer to the timespec to be set
1601 *
1602 * Returns the wall-time of boot in a timespec.
1603 *
1604 * This is based on the wall_to_monotonic offset and the total suspend
1605 * time. Calls to settimeofday will affect the value returned (which
1606 * basically means that however wrong your real time clock is at boot time,
1607 * you get the right time here).
1608 */
1609void getboottime(struct timespec *ts)
1610{
1611        struct timekeeper *tk = &tk_core.timekeeper;
1612        ktime_t t = ktime_sub(tk->offs_real, tk->offs_boot);
1613
1614        *ts = ktime_to_timespec(t);
1615}
1616EXPORT_SYMBOL_GPL(getboottime);
1617
1618unsigned long get_seconds(void)
1619{
1620        struct timekeeper *tk = &tk_core.timekeeper;
1621
1622        return tk->xtime_sec;
1623}
1624EXPORT_SYMBOL(get_seconds);
1625
1626struct timespec __current_kernel_time(void)
1627{
1628        struct timekeeper *tk = &tk_core.timekeeper;
1629
1630        return timespec64_to_timespec(tk_xtime(tk));
1631}
1632
1633struct timespec current_kernel_time(void)
1634{
1635        struct timekeeper *tk = &tk_core.timekeeper;
1636        struct timespec64 now;
1637        unsigned long seq;
1638
1639        do {
1640                seq = read_seqcount_begin(&tk_core.seq);
1641
1642                now = tk_xtime(tk);
1643        } while (read_seqcount_retry(&tk_core.seq, seq));
1644
1645        return timespec64_to_timespec(now);
1646}
1647EXPORT_SYMBOL(current_kernel_time);
1648
1649struct timespec get_monotonic_coarse(void)
1650{
1651        struct timekeeper *tk = &tk_core.timekeeper;
1652        struct timespec64 now, mono;
1653        unsigned long seq;
1654
1655        do {
1656                seq = read_seqcount_begin(&tk_core.seq);
1657
1658                now = tk_xtime(tk);
1659                mono = tk->wall_to_monotonic;
1660        } while (read_seqcount_retry(&tk_core.seq, seq));
1661
1662        set_normalized_timespec64(&now, now.tv_sec + mono.tv_sec,
1663                                now.tv_nsec + mono.tv_nsec);
1664
1665        return timespec64_to_timespec(now);
1666}
1667
1668/*
1669 * Must hold jiffies_lock
1670 */
1671void do_timer(unsigned long ticks)
1672{
1673        jiffies_64 += ticks;
1674        calc_global_load(ticks);
1675}
1676
1677/**
1678 * ktime_get_update_offsets_tick - hrtimer helper
1679 * @offs_real:  pointer to storage for monotonic -> realtime offset
1680 * @offs_boot:  pointer to storage for monotonic -> boottime offset
1681 * @offs_tai:   pointer to storage for monotonic -> clock tai offset
1682 *
1683 * Returns monotonic time at last tick and various offsets
1684 */
1685ktime_t ktime_get_update_offsets_tick(ktime_t *offs_real, ktime_t *offs_boot,
1686                                                        ktime_t *offs_tai)
1687{
1688        struct timekeeper *tk = &tk_core.timekeeper;
1689        unsigned int seq;
1690        ktime_t base;
1691        u64 nsecs;
1692
1693        do {
1694                seq = read_seqcount_begin(&tk_core.seq);
1695
1696                base = tk->tkr.base_mono;
1697                nsecs = tk->tkr.xtime_nsec >> tk->tkr.shift;
1698
1699                *offs_real = tk->offs_real;
1700                *offs_boot = tk->offs_boot;
1701                *offs_tai = tk->offs_tai;
1702        } while (read_seqcount_retry(&tk_core.seq, seq));
1703
1704        return ktime_add_ns(base, nsecs);
1705}
1706
1707#ifdef CONFIG_HIGH_RES_TIMERS
1708/**
1709 * ktime_get_update_offsets_now - hrtimer helper
1710 * @offs_real:  pointer to storage for monotonic -> realtime offset
1711 * @offs_boot:  pointer to storage for monotonic -> boottime offset
1712 * @offs_tai:   pointer to storage for monotonic -> clock tai offset
1713 *
1714 * Returns current monotonic time and updates the offsets
1715 * Called from hrtimer_interrupt() or retrigger_next_event()
1716 */
1717ktime_t ktime_get_update_offsets_now(ktime_t *offs_real, ktime_t *offs_boot,
1718                                                        ktime_t *offs_tai)
1719{
1720        struct timekeeper *tk = &tk_core.timekeeper;
1721        unsigned int seq;
1722        ktime_t base;
1723        u64 nsecs;
1724
1725        do {
1726                seq = read_seqcount_begin(&tk_core.seq);
1727
1728                base = tk->tkr.base_mono;
1729                nsecs = timekeeping_get_ns(&tk->tkr);
1730
1731                *offs_real = tk->offs_real;
1732                *offs_boot = tk->offs_boot;
1733                *offs_tai = tk->offs_tai;
1734        } while (read_seqcount_retry(&tk_core.seq, seq));
1735
1736        return ktime_add_ns(base, nsecs);
1737}
1738#endif
1739
1740/**
1741 * do_adjtimex() - Accessor function to NTP __do_adjtimex function
1742 */
1743int do_adjtimex(struct timex *txc)
1744{
1745        struct timekeeper *tk = &tk_core.timekeeper;
1746        unsigned long flags;
1747        struct timespec64 ts;
1748        s32 orig_tai, tai;
1749        int ret;
1750
1751        /* Validate the data before disabling interrupts */
1752        ret = ntp_validate_timex(txc);
1753        if (ret)
1754                return ret;
1755
1756        if (txc->modes & ADJ_SETOFFSET) {
1757                struct timespec delta;
1758                delta.tv_sec  = txc->time.tv_sec;
1759                delta.tv_nsec = txc->time.tv_usec;
1760                if (!(txc->modes & ADJ_NANO))
1761                        delta.tv_nsec *= 1000;
1762                ret = timekeeping_inject_offset(&delta);
1763                if (ret)
1764                        return ret;
1765        }
1766
1767        getnstimeofday64(&ts);
1768
1769        raw_spin_lock_irqsave(&timekeeper_lock, flags);
1770        write_seqcount_begin(&tk_core.seq);
1771
1772        orig_tai = tai = tk->tai_offset;
1773        ret = __do_adjtimex(txc, &ts, &tai);
1774
1775        if (tai != orig_tai) {
1776                __timekeeping_set_tai_offset(tk, tai);
1777                timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
1778        }
1779        write_seqcount_end(&tk_core.seq);
1780        raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1781
1782        if (tai != orig_tai)
1783                clock_was_set();
1784
1785        ntp_notify_cmos_timer();
1786
1787        return ret;
1788}
1789
1790#ifdef CONFIG_NTP_PPS
1791/**
1792 * hardpps() - Accessor function to NTP __hardpps function
1793 */
1794void hardpps(const struct timespec *phase_ts, const struct timespec *raw_ts)
1795{
1796        unsigned long flags;
1797
1798        raw_spin_lock_irqsave(&timekeeper_lock, flags);
1799        write_seqcount_begin(&tk_core.seq);
1800
1801        __hardpps(phase_ts, raw_ts);
1802
1803        write_seqcount_end(&tk_core.seq);
1804        raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1805}
1806EXPORT_SYMBOL(hardpps);
1807#endif
1808
1809/**
1810 * xtime_update() - advances the timekeeping infrastructure
1811 * @ticks:      number of ticks, that have elapsed since the last call.
1812 *
1813 * Must be called with interrupts disabled.
1814 */
1815void xtime_update(unsigned long ticks)
1816{
1817        write_seqlock(&jiffies_lock);
1818        do_timer(ticks);
1819        write_sequnlock(&jiffies_lock);
1820        update_wall_time();
1821}
1822