linux/lib/assoc_array.c
<<
>>
Prefs
   1/* Generic associative array implementation.
   2 *
   3 * See Documentation/assoc_array.txt for information.
   4 *
   5 * Copyright (C) 2013 Red Hat, Inc. All Rights Reserved.
   6 * Written by David Howells (dhowells@redhat.com)
   7 *
   8 * This program is free software; you can redistribute it and/or
   9 * modify it under the terms of the GNU General Public Licence
  10 * as published by the Free Software Foundation; either version
  11 * 2 of the Licence, or (at your option) any later version.
  12 */
  13//#define DEBUG
  14#include <linux/slab.h>
  15#include <linux/err.h>
  16#include <linux/assoc_array_priv.h>
  17
  18/*
  19 * Iterate over an associative array.  The caller must hold the RCU read lock
  20 * or better.
  21 */
  22static int assoc_array_subtree_iterate(const struct assoc_array_ptr *root,
  23                                       const struct assoc_array_ptr *stop,
  24                                       int (*iterator)(const void *leaf,
  25                                                       void *iterator_data),
  26                                       void *iterator_data)
  27{
  28        const struct assoc_array_shortcut *shortcut;
  29        const struct assoc_array_node *node;
  30        const struct assoc_array_ptr *cursor, *ptr, *parent;
  31        unsigned long has_meta;
  32        int slot, ret;
  33
  34        cursor = root;
  35
  36begin_node:
  37        if (assoc_array_ptr_is_shortcut(cursor)) {
  38                /* Descend through a shortcut */
  39                shortcut = assoc_array_ptr_to_shortcut(cursor);
  40                smp_read_barrier_depends();
  41                cursor = ACCESS_ONCE(shortcut->next_node);
  42        }
  43
  44        node = assoc_array_ptr_to_node(cursor);
  45        smp_read_barrier_depends();
  46        slot = 0;
  47
  48        /* We perform two passes of each node.
  49         *
  50         * The first pass does all the leaves in this node.  This means we
  51         * don't miss any leaves if the node is split up by insertion whilst
  52         * we're iterating over the branches rooted here (we may, however, see
  53         * some leaves twice).
  54         */
  55        has_meta = 0;
  56        for (; slot < ASSOC_ARRAY_FAN_OUT; slot++) {
  57                ptr = ACCESS_ONCE(node->slots[slot]);
  58                has_meta |= (unsigned long)ptr;
  59                if (ptr && assoc_array_ptr_is_leaf(ptr)) {
  60                        /* We need a barrier between the read of the pointer
  61                         * and dereferencing the pointer - but only if we are
  62                         * actually going to dereference it.
  63                         */
  64                        smp_read_barrier_depends();
  65
  66                        /* Invoke the callback */
  67                        ret = iterator(assoc_array_ptr_to_leaf(ptr),
  68                                       iterator_data);
  69                        if (ret)
  70                                return ret;
  71                }
  72        }
  73
  74        /* The second pass attends to all the metadata pointers.  If we follow
  75         * one of these we may find that we don't come back here, but rather go
  76         * back to a replacement node with the leaves in a different layout.
  77         *
  78         * We are guaranteed to make progress, however, as the slot number for
  79         * a particular portion of the key space cannot change - and we
  80         * continue at the back pointer + 1.
  81         */
  82        if (!(has_meta & ASSOC_ARRAY_PTR_META_TYPE))
  83                goto finished_node;
  84        slot = 0;
  85
  86continue_node:
  87        node = assoc_array_ptr_to_node(cursor);
  88        smp_read_barrier_depends();
  89
  90        for (; slot < ASSOC_ARRAY_FAN_OUT; slot++) {
  91                ptr = ACCESS_ONCE(node->slots[slot]);
  92                if (assoc_array_ptr_is_meta(ptr)) {
  93                        cursor = ptr;
  94                        goto begin_node;
  95                }
  96        }
  97
  98finished_node:
  99        /* Move up to the parent (may need to skip back over a shortcut) */
 100        parent = ACCESS_ONCE(node->back_pointer);
 101        slot = node->parent_slot;
 102        if (parent == stop)
 103                return 0;
 104
 105        if (assoc_array_ptr_is_shortcut(parent)) {
 106                shortcut = assoc_array_ptr_to_shortcut(parent);
 107                smp_read_barrier_depends();
 108                cursor = parent;
 109                parent = ACCESS_ONCE(shortcut->back_pointer);
 110                slot = shortcut->parent_slot;
 111                if (parent == stop)
 112                        return 0;
 113        }
 114
 115        /* Ascend to next slot in parent node */
 116        cursor = parent;
 117        slot++;
 118        goto continue_node;
 119}
 120
 121/**
 122 * assoc_array_iterate - Pass all objects in the array to a callback
 123 * @array: The array to iterate over.
 124 * @iterator: The callback function.
 125 * @iterator_data: Private data for the callback function.
 126 *
 127 * Iterate over all the objects in an associative array.  Each one will be
 128 * presented to the iterator function.
 129 *
 130 * If the array is being modified concurrently with the iteration then it is
 131 * possible that some objects in the array will be passed to the iterator
 132 * callback more than once - though every object should be passed at least
 133 * once.  If this is undesirable then the caller must lock against modification
 134 * for the duration of this function.
 135 *
 136 * The function will return 0 if no objects were in the array or else it will
 137 * return the result of the last iterator function called.  Iteration stops
 138 * immediately if any call to the iteration function results in a non-zero
 139 * return.
 140 *
 141 * The caller should hold the RCU read lock or better if concurrent
 142 * modification is possible.
 143 */
 144int assoc_array_iterate(const struct assoc_array *array,
 145                        int (*iterator)(const void *object,
 146                                        void *iterator_data),
 147                        void *iterator_data)
 148{
 149        struct assoc_array_ptr *root = ACCESS_ONCE(array->root);
 150
 151        if (!root)
 152                return 0;
 153        return assoc_array_subtree_iterate(root, NULL, iterator, iterator_data);
 154}
 155
 156enum assoc_array_walk_status {
 157        assoc_array_walk_tree_empty,
 158        assoc_array_walk_found_terminal_node,
 159        assoc_array_walk_found_wrong_shortcut,
 160};
 161
 162struct assoc_array_walk_result {
 163        struct {
 164                struct assoc_array_node *node;  /* Node in which leaf might be found */
 165                int             level;
 166                int             slot;
 167        } terminal_node;
 168        struct {
 169                struct assoc_array_shortcut *shortcut;
 170                int             level;
 171                int             sc_level;
 172                unsigned long   sc_segments;
 173                unsigned long   dissimilarity;
 174        } wrong_shortcut;
 175};
 176
 177/*
 178 * Navigate through the internal tree looking for the closest node to the key.
 179 */
 180static enum assoc_array_walk_status
 181assoc_array_walk(const struct assoc_array *array,
 182                 const struct assoc_array_ops *ops,
 183                 const void *index_key,
 184                 struct assoc_array_walk_result *result)
 185{
 186        struct assoc_array_shortcut *shortcut;
 187        struct assoc_array_node *node;
 188        struct assoc_array_ptr *cursor, *ptr;
 189        unsigned long sc_segments, dissimilarity;
 190        unsigned long segments;
 191        int level, sc_level, next_sc_level;
 192        int slot;
 193
 194        pr_devel("-->%s()\n", __func__);
 195
 196        cursor = ACCESS_ONCE(array->root);
 197        if (!cursor)
 198                return assoc_array_walk_tree_empty;
 199
 200        level = 0;
 201
 202        /* Use segments from the key for the new leaf to navigate through the
 203         * internal tree, skipping through nodes and shortcuts that are on
 204         * route to the destination.  Eventually we'll come to a slot that is
 205         * either empty or contains a leaf at which point we've found a node in
 206         * which the leaf we're looking for might be found or into which it
 207         * should be inserted.
 208         */
 209jumped:
 210        segments = ops->get_key_chunk(index_key, level);
 211        pr_devel("segments[%d]: %lx\n", level, segments);
 212
 213        if (assoc_array_ptr_is_shortcut(cursor))
 214                goto follow_shortcut;
 215
 216consider_node:
 217        node = assoc_array_ptr_to_node(cursor);
 218        smp_read_barrier_depends();
 219
 220        slot = segments >> (level & ASSOC_ARRAY_KEY_CHUNK_MASK);
 221        slot &= ASSOC_ARRAY_FAN_MASK;
 222        ptr = ACCESS_ONCE(node->slots[slot]);
 223
 224        pr_devel("consider slot %x [ix=%d type=%lu]\n",
 225                 slot, level, (unsigned long)ptr & 3);
 226
 227        if (!assoc_array_ptr_is_meta(ptr)) {
 228                /* The node doesn't have a node/shortcut pointer in the slot
 229                 * corresponding to the index key that we have to follow.
 230                 */
 231                result->terminal_node.node = node;
 232                result->terminal_node.level = level;
 233                result->terminal_node.slot = slot;
 234                pr_devel("<--%s() = terminal_node\n", __func__);
 235                return assoc_array_walk_found_terminal_node;
 236        }
 237
 238        if (assoc_array_ptr_is_node(ptr)) {
 239                /* There is a pointer to a node in the slot corresponding to
 240                 * this index key segment, so we need to follow it.
 241                 */
 242                cursor = ptr;
 243                level += ASSOC_ARRAY_LEVEL_STEP;
 244                if ((level & ASSOC_ARRAY_KEY_CHUNK_MASK) != 0)
 245                        goto consider_node;
 246                goto jumped;
 247        }
 248
 249        /* There is a shortcut in the slot corresponding to the index key
 250         * segment.  We follow the shortcut if its partial index key matches
 251         * this leaf's.  Otherwise we need to split the shortcut.
 252         */
 253        cursor = ptr;
 254follow_shortcut:
 255        shortcut = assoc_array_ptr_to_shortcut(cursor);
 256        smp_read_barrier_depends();
 257        pr_devel("shortcut to %d\n", shortcut->skip_to_level);
 258        sc_level = level + ASSOC_ARRAY_LEVEL_STEP;
 259        BUG_ON(sc_level > shortcut->skip_to_level);
 260
 261        do {
 262                /* Check the leaf against the shortcut's index key a word at a
 263                 * time, trimming the final word (the shortcut stores the index
 264                 * key completely from the root to the shortcut's target).
 265                 */
 266                if ((sc_level & ASSOC_ARRAY_KEY_CHUNK_MASK) == 0)
 267                        segments = ops->get_key_chunk(index_key, sc_level);
 268
 269                sc_segments = shortcut->index_key[sc_level >> ASSOC_ARRAY_KEY_CHUNK_SHIFT];
 270                dissimilarity = segments ^ sc_segments;
 271
 272                if (round_up(sc_level, ASSOC_ARRAY_KEY_CHUNK_SIZE) > shortcut->skip_to_level) {
 273                        /* Trim segments that are beyond the shortcut */
 274                        int shift = shortcut->skip_to_level & ASSOC_ARRAY_KEY_CHUNK_MASK;
 275                        dissimilarity &= ~(ULONG_MAX << shift);
 276                        next_sc_level = shortcut->skip_to_level;
 277                } else {
 278                        next_sc_level = sc_level + ASSOC_ARRAY_KEY_CHUNK_SIZE;
 279                        next_sc_level = round_down(next_sc_level, ASSOC_ARRAY_KEY_CHUNK_SIZE);
 280                }
 281
 282                if (dissimilarity != 0) {
 283                        /* This shortcut points elsewhere */
 284                        result->wrong_shortcut.shortcut = shortcut;
 285                        result->wrong_shortcut.level = level;
 286                        result->wrong_shortcut.sc_level = sc_level;
 287                        result->wrong_shortcut.sc_segments = sc_segments;
 288                        result->wrong_shortcut.dissimilarity = dissimilarity;
 289                        return assoc_array_walk_found_wrong_shortcut;
 290                }
 291
 292                sc_level = next_sc_level;
 293        } while (sc_level < shortcut->skip_to_level);
 294
 295        /* The shortcut matches the leaf's index to this point. */
 296        cursor = ACCESS_ONCE(shortcut->next_node);
 297        if (((level ^ sc_level) & ~ASSOC_ARRAY_KEY_CHUNK_MASK) != 0) {
 298                level = sc_level;
 299                goto jumped;
 300        } else {
 301                level = sc_level;
 302                goto consider_node;
 303        }
 304}
 305
 306/**
 307 * assoc_array_find - Find an object by index key
 308 * @array: The associative array to search.
 309 * @ops: The operations to use.
 310 * @index_key: The key to the object.
 311 *
 312 * Find an object in an associative array by walking through the internal tree
 313 * to the node that should contain the object and then searching the leaves
 314 * there.  NULL is returned if the requested object was not found in the array.
 315 *
 316 * The caller must hold the RCU read lock or better.
 317 */
 318void *assoc_array_find(const struct assoc_array *array,
 319                       const struct assoc_array_ops *ops,
 320                       const void *index_key)
 321{
 322        struct assoc_array_walk_result result;
 323        const struct assoc_array_node *node;
 324        const struct assoc_array_ptr *ptr;
 325        const void *leaf;
 326        int slot;
 327
 328        if (assoc_array_walk(array, ops, index_key, &result) !=
 329            assoc_array_walk_found_terminal_node)
 330                return NULL;
 331
 332        node = result.terminal_node.node;
 333        smp_read_barrier_depends();
 334
 335        /* If the target key is available to us, it's has to be pointed to by
 336         * the terminal node.
 337         */
 338        for (slot = 0; slot < ASSOC_ARRAY_FAN_OUT; slot++) {
 339                ptr = ACCESS_ONCE(node->slots[slot]);
 340                if (ptr && assoc_array_ptr_is_leaf(ptr)) {
 341                        /* We need a barrier between the read of the pointer
 342                         * and dereferencing the pointer - but only if we are
 343                         * actually going to dereference it.
 344                         */
 345                        leaf = assoc_array_ptr_to_leaf(ptr);
 346                        smp_read_barrier_depends();
 347                        if (ops->compare_object(leaf, index_key))
 348                                return (void *)leaf;
 349                }
 350        }
 351
 352        return NULL;
 353}
 354
 355/*
 356 * Destructively iterate over an associative array.  The caller must prevent
 357 * other simultaneous accesses.
 358 */
 359static void assoc_array_destroy_subtree(struct assoc_array_ptr *root,
 360                                        const struct assoc_array_ops *ops)
 361{
 362        struct assoc_array_shortcut *shortcut;
 363        struct assoc_array_node *node;
 364        struct assoc_array_ptr *cursor, *parent = NULL;
 365        int slot = -1;
 366
 367        pr_devel("-->%s()\n", __func__);
 368
 369        cursor = root;
 370        if (!cursor) {
 371                pr_devel("empty\n");
 372                return;
 373        }
 374
 375move_to_meta:
 376        if (assoc_array_ptr_is_shortcut(cursor)) {
 377                /* Descend through a shortcut */
 378                pr_devel("[%d] shortcut\n", slot);
 379                BUG_ON(!assoc_array_ptr_is_shortcut(cursor));
 380                shortcut = assoc_array_ptr_to_shortcut(cursor);
 381                BUG_ON(shortcut->back_pointer != parent);
 382                BUG_ON(slot != -1 && shortcut->parent_slot != slot);
 383                parent = cursor;
 384                cursor = shortcut->next_node;
 385                slot = -1;
 386                BUG_ON(!assoc_array_ptr_is_node(cursor));
 387        }
 388
 389        pr_devel("[%d] node\n", slot);
 390        node = assoc_array_ptr_to_node(cursor);
 391        BUG_ON(node->back_pointer != parent);
 392        BUG_ON(slot != -1 && node->parent_slot != slot);
 393        slot = 0;
 394
 395continue_node:
 396        pr_devel("Node %p [back=%p]\n", node, node->back_pointer);
 397        for (; slot < ASSOC_ARRAY_FAN_OUT; slot++) {
 398                struct assoc_array_ptr *ptr = node->slots[slot];
 399                if (!ptr)
 400                        continue;
 401                if (assoc_array_ptr_is_meta(ptr)) {
 402                        parent = cursor;
 403                        cursor = ptr;
 404                        goto move_to_meta;
 405                }
 406
 407                if (ops) {
 408                        pr_devel("[%d] free leaf\n", slot);
 409                        ops->free_object(assoc_array_ptr_to_leaf(ptr));
 410                }
 411        }
 412
 413        parent = node->back_pointer;
 414        slot = node->parent_slot;
 415        pr_devel("free node\n");
 416        kfree(node);
 417        if (!parent)
 418                return; /* Done */
 419
 420        /* Move back up to the parent (may need to free a shortcut on
 421         * the way up) */
 422        if (assoc_array_ptr_is_shortcut(parent)) {
 423                shortcut = assoc_array_ptr_to_shortcut(parent);
 424                BUG_ON(shortcut->next_node != cursor);
 425                cursor = parent;
 426                parent = shortcut->back_pointer;
 427                slot = shortcut->parent_slot;
 428                pr_devel("free shortcut\n");
 429                kfree(shortcut);
 430                if (!parent)
 431                        return;
 432
 433                BUG_ON(!assoc_array_ptr_is_node(parent));
 434        }
 435
 436        /* Ascend to next slot in parent node */
 437        pr_devel("ascend to %p[%d]\n", parent, slot);
 438        cursor = parent;
 439        node = assoc_array_ptr_to_node(cursor);
 440        slot++;
 441        goto continue_node;
 442}
 443
 444/**
 445 * assoc_array_destroy - Destroy an associative array
 446 * @array: The array to destroy.
 447 * @ops: The operations to use.
 448 *
 449 * Discard all metadata and free all objects in an associative array.  The
 450 * array will be empty and ready to use again upon completion.  This function
 451 * cannot fail.
 452 *
 453 * The caller must prevent all other accesses whilst this takes place as no
 454 * attempt is made to adjust pointers gracefully to permit RCU readlock-holding
 455 * accesses to continue.  On the other hand, no memory allocation is required.
 456 */
 457void assoc_array_destroy(struct assoc_array *array,
 458                         const struct assoc_array_ops *ops)
 459{
 460        assoc_array_destroy_subtree(array->root, ops);
 461        array->root = NULL;
 462}
 463
 464/*
 465 * Handle insertion into an empty tree.
 466 */
 467static bool assoc_array_insert_in_empty_tree(struct assoc_array_edit *edit)
 468{
 469        struct assoc_array_node *new_n0;
 470
 471        pr_devel("-->%s()\n", __func__);
 472
 473        new_n0 = kzalloc(sizeof(struct assoc_array_node), GFP_KERNEL);
 474        if (!new_n0)
 475                return false;
 476
 477        edit->new_meta[0] = assoc_array_node_to_ptr(new_n0);
 478        edit->leaf_p = &new_n0->slots[0];
 479        edit->adjust_count_on = new_n0;
 480        edit->set[0].ptr = &edit->array->root;
 481        edit->set[0].to = assoc_array_node_to_ptr(new_n0);
 482
 483        pr_devel("<--%s() = ok [no root]\n", __func__);
 484        return true;
 485}
 486
 487/*
 488 * Handle insertion into a terminal node.
 489 */
 490static bool assoc_array_insert_into_terminal_node(struct assoc_array_edit *edit,
 491                                                  const struct assoc_array_ops *ops,
 492                                                  const void *index_key,
 493                                                  struct assoc_array_walk_result *result)
 494{
 495        struct assoc_array_shortcut *shortcut, *new_s0;
 496        struct assoc_array_node *node, *new_n0, *new_n1, *side;
 497        struct assoc_array_ptr *ptr;
 498        unsigned long dissimilarity, base_seg, blank;
 499        size_t keylen;
 500        bool have_meta;
 501        int level, diff;
 502        int slot, next_slot, free_slot, i, j;
 503
 504        node    = result->terminal_node.node;
 505        level   = result->terminal_node.level;
 506        edit->segment_cache[ASSOC_ARRAY_FAN_OUT] = result->terminal_node.slot;
 507
 508        pr_devel("-->%s()\n", __func__);
 509
 510        /* We arrived at a node which doesn't have an onward node or shortcut
 511         * pointer that we have to follow.  This means that (a) the leaf we
 512         * want must go here (either by insertion or replacement) or (b) we
 513         * need to split this node and insert in one of the fragments.
 514         */
 515        free_slot = -1;
 516
 517        /* Firstly, we have to check the leaves in this node to see if there's
 518         * a matching one we should replace in place.
 519         */
 520        for (i = 0; i < ASSOC_ARRAY_FAN_OUT; i++) {
 521                ptr = node->slots[i];
 522                if (!ptr) {
 523                        free_slot = i;
 524                        continue;
 525                }
 526                if (ops->compare_object(assoc_array_ptr_to_leaf(ptr), index_key)) {
 527                        pr_devel("replace in slot %d\n", i);
 528                        edit->leaf_p = &node->slots[i];
 529                        edit->dead_leaf = node->slots[i];
 530                        pr_devel("<--%s() = ok [replace]\n", __func__);
 531                        return true;
 532                }
 533        }
 534
 535        /* If there is a free slot in this node then we can just insert the
 536         * leaf here.
 537         */
 538        if (free_slot >= 0) {
 539                pr_devel("insert in free slot %d\n", free_slot);
 540                edit->leaf_p = &node->slots[free_slot];
 541                edit->adjust_count_on = node;
 542                pr_devel("<--%s() = ok [insert]\n", __func__);
 543                return true;
 544        }
 545
 546        /* The node has no spare slots - so we're either going to have to split
 547         * it or insert another node before it.
 548         *
 549         * Whatever, we're going to need at least two new nodes - so allocate
 550         * those now.  We may also need a new shortcut, but we deal with that
 551         * when we need it.
 552         */
 553        new_n0 = kzalloc(sizeof(struct assoc_array_node), GFP_KERNEL);
 554        if (!new_n0)
 555                return false;
 556        edit->new_meta[0] = assoc_array_node_to_ptr(new_n0);
 557        new_n1 = kzalloc(sizeof(struct assoc_array_node), GFP_KERNEL);
 558        if (!new_n1)
 559                return false;
 560        edit->new_meta[1] = assoc_array_node_to_ptr(new_n1);
 561
 562        /* We need to find out how similar the leaves are. */
 563        pr_devel("no spare slots\n");
 564        have_meta = false;
 565        for (i = 0; i < ASSOC_ARRAY_FAN_OUT; i++) {
 566                ptr = node->slots[i];
 567                if (assoc_array_ptr_is_meta(ptr)) {
 568                        edit->segment_cache[i] = 0xff;
 569                        have_meta = true;
 570                        continue;
 571                }
 572                base_seg = ops->get_object_key_chunk(
 573                        assoc_array_ptr_to_leaf(ptr), level);
 574                base_seg >>= level & ASSOC_ARRAY_KEY_CHUNK_MASK;
 575                edit->segment_cache[i] = base_seg & ASSOC_ARRAY_FAN_MASK;
 576        }
 577
 578        if (have_meta) {
 579                pr_devel("have meta\n");
 580                goto split_node;
 581        }
 582
 583        /* The node contains only leaves */
 584        dissimilarity = 0;
 585        base_seg = edit->segment_cache[0];
 586        for (i = 1; i < ASSOC_ARRAY_FAN_OUT; i++)
 587                dissimilarity |= edit->segment_cache[i] ^ base_seg;
 588
 589        pr_devel("only leaves; dissimilarity=%lx\n", dissimilarity);
 590
 591        if ((dissimilarity & ASSOC_ARRAY_FAN_MASK) == 0) {
 592                /* The old leaves all cluster in the same slot.  We will need
 593                 * to insert a shortcut if the new node wants to cluster with them.
 594                 */
 595                if ((edit->segment_cache[ASSOC_ARRAY_FAN_OUT] ^ base_seg) == 0)
 596                        goto all_leaves_cluster_together;
 597
 598                /* Otherwise we can just insert a new node ahead of the old
 599                 * one.
 600                 */
 601                goto present_leaves_cluster_but_not_new_leaf;
 602        }
 603
 604split_node:
 605        pr_devel("split node\n");
 606
 607        /* We need to split the current node; we know that the node doesn't
 608         * simply contain a full set of leaves that cluster together (it
 609         * contains meta pointers and/or non-clustering leaves).
 610         *
 611         * We need to expel at least two leaves out of a set consisting of the
 612         * leaves in the node and the new leaf.
 613         *
 614         * We need a new node (n0) to replace the current one and a new node to
 615         * take the expelled nodes (n1).
 616         */
 617        edit->set[0].to = assoc_array_node_to_ptr(new_n0);
 618        new_n0->back_pointer = node->back_pointer;
 619        new_n0->parent_slot = node->parent_slot;
 620        new_n1->back_pointer = assoc_array_node_to_ptr(new_n0);
 621        new_n1->parent_slot = -1; /* Need to calculate this */
 622
 623do_split_node:
 624        pr_devel("do_split_node\n");
 625
 626        new_n0->nr_leaves_on_branch = node->nr_leaves_on_branch;
 627        new_n1->nr_leaves_on_branch = 0;
 628
 629        /* Begin by finding two matching leaves.  There have to be at least two
 630         * that match - even if there are meta pointers - because any leaf that
 631         * would match a slot with a meta pointer in it must be somewhere
 632         * behind that meta pointer and cannot be here.  Further, given N
 633         * remaining leaf slots, we now have N+1 leaves to go in them.
 634         */
 635        for (i = 0; i < ASSOC_ARRAY_FAN_OUT; i++) {
 636                slot = edit->segment_cache[i];
 637                if (slot != 0xff)
 638                        for (j = i + 1; j < ASSOC_ARRAY_FAN_OUT + 1; j++)
 639                                if (edit->segment_cache[j] == slot)
 640                                        goto found_slot_for_multiple_occupancy;
 641        }
 642found_slot_for_multiple_occupancy:
 643        pr_devel("same slot: %x %x [%02x]\n", i, j, slot);
 644        BUG_ON(i >= ASSOC_ARRAY_FAN_OUT);
 645        BUG_ON(j >= ASSOC_ARRAY_FAN_OUT + 1);
 646        BUG_ON(slot >= ASSOC_ARRAY_FAN_OUT);
 647
 648        new_n1->parent_slot = slot;
 649
 650        /* Metadata pointers cannot change slot */
 651        for (i = 0; i < ASSOC_ARRAY_FAN_OUT; i++)
 652                if (assoc_array_ptr_is_meta(node->slots[i]))
 653                        new_n0->slots[i] = node->slots[i];
 654                else
 655                        new_n0->slots[i] = NULL;
 656        BUG_ON(new_n0->slots[slot] != NULL);
 657        new_n0->slots[slot] = assoc_array_node_to_ptr(new_n1);
 658
 659        /* Filter the leaf pointers between the new nodes */
 660        free_slot = -1;
 661        next_slot = 0;
 662        for (i = 0; i < ASSOC_ARRAY_FAN_OUT; i++) {
 663                if (assoc_array_ptr_is_meta(node->slots[i]))
 664                        continue;
 665                if (edit->segment_cache[i] == slot) {
 666                        new_n1->slots[next_slot++] = node->slots[i];
 667                        new_n1->nr_leaves_on_branch++;
 668                } else {
 669                        do {
 670                                free_slot++;
 671                        } while (new_n0->slots[free_slot] != NULL);
 672                        new_n0->slots[free_slot] = node->slots[i];
 673                }
 674        }
 675
 676        pr_devel("filtered: f=%x n=%x\n", free_slot, next_slot);
 677
 678        if (edit->segment_cache[ASSOC_ARRAY_FAN_OUT] != slot) {
 679                do {
 680                        free_slot++;
 681                } while (new_n0->slots[free_slot] != NULL);
 682                edit->leaf_p = &new_n0->slots[free_slot];
 683                edit->adjust_count_on = new_n0;
 684        } else {
 685                edit->leaf_p = &new_n1->slots[next_slot++];
 686                edit->adjust_count_on = new_n1;
 687        }
 688
 689        BUG_ON(next_slot <= 1);
 690
 691        edit->set_backpointers_to = assoc_array_node_to_ptr(new_n0);
 692        for (i = 0; i < ASSOC_ARRAY_FAN_OUT; i++) {
 693                if (edit->segment_cache[i] == 0xff) {
 694                        ptr = node->slots[i];
 695                        BUG_ON(assoc_array_ptr_is_leaf(ptr));
 696                        if (assoc_array_ptr_is_node(ptr)) {
 697                                side = assoc_array_ptr_to_node(ptr);
 698                                edit->set_backpointers[i] = &side->back_pointer;
 699                        } else {
 700                                shortcut = assoc_array_ptr_to_shortcut(ptr);
 701                                edit->set_backpointers[i] = &shortcut->back_pointer;
 702                        }
 703                }
 704        }
 705
 706        ptr = node->back_pointer;
 707        if (!ptr)
 708                edit->set[0].ptr = &edit->array->root;
 709        else if (assoc_array_ptr_is_node(ptr))
 710                edit->set[0].ptr = &assoc_array_ptr_to_node(ptr)->slots[node->parent_slot];
 711        else
 712                edit->set[0].ptr = &assoc_array_ptr_to_shortcut(ptr)->next_node;
 713        edit->excised_meta[0] = assoc_array_node_to_ptr(node);
 714        pr_devel("<--%s() = ok [split node]\n", __func__);
 715        return true;
 716
 717present_leaves_cluster_but_not_new_leaf:
 718        /* All the old leaves cluster in the same slot, but the new leaf wants
 719         * to go into a different slot, so we create a new node to hold the new
 720         * leaf and a pointer to a new node holding all the old leaves.
 721         */
 722        pr_devel("present leaves cluster but not new leaf\n");
 723
 724        new_n0->back_pointer = node->back_pointer;
 725        new_n0->parent_slot = node->parent_slot;
 726        new_n0->nr_leaves_on_branch = node->nr_leaves_on_branch;
 727        new_n1->back_pointer = assoc_array_node_to_ptr(new_n0);
 728        new_n1->parent_slot = edit->segment_cache[0];
 729        new_n1->nr_leaves_on_branch = node->nr_leaves_on_branch;
 730        edit->adjust_count_on = new_n0;
 731
 732        for (i = 0; i < ASSOC_ARRAY_FAN_OUT; i++)
 733                new_n1->slots[i] = node->slots[i];
 734
 735        new_n0->slots[edit->segment_cache[0]] = assoc_array_node_to_ptr(new_n0);
 736        edit->leaf_p = &new_n0->slots[edit->segment_cache[ASSOC_ARRAY_FAN_OUT]];
 737
 738        edit->set[0].ptr = &assoc_array_ptr_to_node(node->back_pointer)->slots[node->parent_slot];
 739        edit->set[0].to = assoc_array_node_to_ptr(new_n0);
 740        edit->excised_meta[0] = assoc_array_node_to_ptr(node);
 741        pr_devel("<--%s() = ok [insert node before]\n", __func__);
 742        return true;
 743
 744all_leaves_cluster_together:
 745        /* All the leaves, new and old, want to cluster together in this node
 746         * in the same slot, so we have to replace this node with a shortcut to
 747         * skip over the identical parts of the key and then place a pair of
 748         * nodes, one inside the other, at the end of the shortcut and
 749         * distribute the keys between them.
 750         *
 751         * Firstly we need to work out where the leaves start diverging as a
 752         * bit position into their keys so that we know how big the shortcut
 753         * needs to be.
 754         *
 755         * We only need to make a single pass of N of the N+1 leaves because if
 756         * any keys differ between themselves at bit X then at least one of
 757         * them must also differ with the base key at bit X or before.
 758         */
 759        pr_devel("all leaves cluster together\n");
 760        diff = INT_MAX;
 761        for (i = 0; i < ASSOC_ARRAY_FAN_OUT; i++) {
 762                int x = ops->diff_objects(assoc_array_ptr_to_leaf(node->slots[i]),
 763                                          index_key);
 764                if (x < diff) {
 765                        BUG_ON(x < 0);
 766                        diff = x;
 767                }
 768        }
 769        BUG_ON(diff == INT_MAX);
 770        BUG_ON(diff < level + ASSOC_ARRAY_LEVEL_STEP);
 771
 772        keylen = round_up(diff, ASSOC_ARRAY_KEY_CHUNK_SIZE);
 773        keylen >>= ASSOC_ARRAY_KEY_CHUNK_SHIFT;
 774
 775        new_s0 = kzalloc(sizeof(struct assoc_array_shortcut) +
 776                         keylen * sizeof(unsigned long), GFP_KERNEL);
 777        if (!new_s0)
 778                return false;
 779        edit->new_meta[2] = assoc_array_shortcut_to_ptr(new_s0);
 780
 781        edit->set[0].to = assoc_array_shortcut_to_ptr(new_s0);
 782        new_s0->back_pointer = node->back_pointer;
 783        new_s0->parent_slot = node->parent_slot;
 784        new_s0->next_node = assoc_array_node_to_ptr(new_n0);
 785        new_n0->back_pointer = assoc_array_shortcut_to_ptr(new_s0);
 786        new_n0->parent_slot = 0;
 787        new_n1->back_pointer = assoc_array_node_to_ptr(new_n0);
 788        new_n1->parent_slot = -1; /* Need to calculate this */
 789
 790        new_s0->skip_to_level = level = diff & ~ASSOC_ARRAY_LEVEL_STEP_MASK;
 791        pr_devel("skip_to_level = %d [diff %d]\n", level, diff);
 792        BUG_ON(level <= 0);
 793
 794        for (i = 0; i < keylen; i++)
 795                new_s0->index_key[i] =
 796                        ops->get_key_chunk(index_key, i * ASSOC_ARRAY_KEY_CHUNK_SIZE);
 797
 798        blank = ULONG_MAX << (level & ASSOC_ARRAY_KEY_CHUNK_MASK);
 799        pr_devel("blank off [%zu] %d: %lx\n", keylen - 1, level, blank);
 800        new_s0->index_key[keylen - 1] &= ~blank;
 801
 802        /* This now reduces to a node splitting exercise for which we'll need
 803         * to regenerate the disparity table.
 804         */
 805        for (i = 0; i < ASSOC_ARRAY_FAN_OUT; i++) {
 806                ptr = node->slots[i];
 807                base_seg = ops->get_object_key_chunk(assoc_array_ptr_to_leaf(ptr),
 808                                                     level);
 809                base_seg >>= level & ASSOC_ARRAY_KEY_CHUNK_MASK;
 810                edit->segment_cache[i] = base_seg & ASSOC_ARRAY_FAN_MASK;
 811        }
 812
 813        base_seg = ops->get_key_chunk(index_key, level);
 814        base_seg >>= level & ASSOC_ARRAY_KEY_CHUNK_MASK;
 815        edit->segment_cache[ASSOC_ARRAY_FAN_OUT] = base_seg & ASSOC_ARRAY_FAN_MASK;
 816        goto do_split_node;
 817}
 818
 819/*
 820 * Handle insertion into the middle of a shortcut.
 821 */
 822static bool assoc_array_insert_mid_shortcut(struct assoc_array_edit *edit,
 823                                            const struct assoc_array_ops *ops,
 824                                            struct assoc_array_walk_result *result)
 825{
 826        struct assoc_array_shortcut *shortcut, *new_s0, *new_s1;
 827        struct assoc_array_node *node, *new_n0, *side;
 828        unsigned long sc_segments, dissimilarity, blank;
 829        size_t keylen;
 830        int level, sc_level, diff;
 831        int sc_slot;
 832
 833        shortcut        = result->wrong_shortcut.shortcut;
 834        level           = result->wrong_shortcut.level;
 835        sc_level        = result->wrong_shortcut.sc_level;
 836        sc_segments     = result->wrong_shortcut.sc_segments;
 837        dissimilarity   = result->wrong_shortcut.dissimilarity;
 838
 839        pr_devel("-->%s(ix=%d dis=%lx scix=%d)\n",
 840                 __func__, level, dissimilarity, sc_level);
 841
 842        /* We need to split a shortcut and insert a node between the two
 843         * pieces.  Zero-length pieces will be dispensed with entirely.
 844         *
 845         * First of all, we need to find out in which level the first
 846         * difference was.
 847         */
 848        diff = __ffs(dissimilarity);
 849        diff &= ~ASSOC_ARRAY_LEVEL_STEP_MASK;
 850        diff += sc_level & ~ASSOC_ARRAY_KEY_CHUNK_MASK;
 851        pr_devel("diff=%d\n", diff);
 852
 853        if (!shortcut->back_pointer) {
 854                edit->set[0].ptr = &edit->array->root;
 855        } else if (assoc_array_ptr_is_node(shortcut->back_pointer)) {
 856                node = assoc_array_ptr_to_node(shortcut->back_pointer);
 857                edit->set[0].ptr = &node->slots[shortcut->parent_slot];
 858        } else {
 859                BUG();
 860        }
 861
 862        edit->excised_meta[0] = assoc_array_shortcut_to_ptr(shortcut);
 863
 864        /* Create a new node now since we're going to need it anyway */
 865        new_n0 = kzalloc(sizeof(struct assoc_array_node), GFP_KERNEL);
 866        if (!new_n0)
 867                return false;
 868        edit->new_meta[0] = assoc_array_node_to_ptr(new_n0);
 869        edit->adjust_count_on = new_n0;
 870
 871        /* Insert a new shortcut before the new node if this segment isn't of
 872         * zero length - otherwise we just connect the new node directly to the
 873         * parent.
 874         */
 875        level += ASSOC_ARRAY_LEVEL_STEP;
 876        if (diff > level) {
 877                pr_devel("pre-shortcut %d...%d\n", level, diff);
 878                keylen = round_up(diff, ASSOC_ARRAY_KEY_CHUNK_SIZE);
 879                keylen >>= ASSOC_ARRAY_KEY_CHUNK_SHIFT;
 880
 881                new_s0 = kzalloc(sizeof(struct assoc_array_shortcut) +
 882                                 keylen * sizeof(unsigned long), GFP_KERNEL);
 883                if (!new_s0)
 884                        return false;
 885                edit->new_meta[1] = assoc_array_shortcut_to_ptr(new_s0);
 886                edit->set[0].to = assoc_array_shortcut_to_ptr(new_s0);
 887                new_s0->back_pointer = shortcut->back_pointer;
 888                new_s0->parent_slot = shortcut->parent_slot;
 889                new_s0->next_node = assoc_array_node_to_ptr(new_n0);
 890                new_s0->skip_to_level = diff;
 891
 892                new_n0->back_pointer = assoc_array_shortcut_to_ptr(new_s0);
 893                new_n0->parent_slot = 0;
 894
 895                memcpy(new_s0->index_key, shortcut->index_key,
 896                       keylen * sizeof(unsigned long));
 897
 898                blank = ULONG_MAX << (diff & ASSOC_ARRAY_KEY_CHUNK_MASK);
 899                pr_devel("blank off [%zu] %d: %lx\n", keylen - 1, diff, blank);
 900                new_s0->index_key[keylen - 1] &= ~blank;
 901        } else {
 902                pr_devel("no pre-shortcut\n");
 903                edit->set[0].to = assoc_array_node_to_ptr(new_n0);
 904                new_n0->back_pointer = shortcut->back_pointer;
 905                new_n0->parent_slot = shortcut->parent_slot;
 906        }
 907
 908        side = assoc_array_ptr_to_node(shortcut->next_node);
 909        new_n0->nr_leaves_on_branch = side->nr_leaves_on_branch;
 910
 911        /* We need to know which slot in the new node is going to take a
 912         * metadata pointer.
 913         */
 914        sc_slot = sc_segments >> (diff & ASSOC_ARRAY_KEY_CHUNK_MASK);
 915        sc_slot &= ASSOC_ARRAY_FAN_MASK;
 916
 917        pr_devel("new slot %lx >> %d -> %d\n",
 918                 sc_segments, diff & ASSOC_ARRAY_KEY_CHUNK_MASK, sc_slot);
 919
 920        /* Determine whether we need to follow the new node with a replacement
 921         * for the current shortcut.  We could in theory reuse the current
 922         * shortcut if its parent slot number doesn't change - but that's a
 923         * 1-in-16 chance so not worth expending the code upon.
 924         */
 925        level = diff + ASSOC_ARRAY_LEVEL_STEP;
 926        if (level < shortcut->skip_to_level) {
 927                pr_devel("post-shortcut %d...%d\n", level, shortcut->skip_to_level);
 928                keylen = round_up(shortcut->skip_to_level, ASSOC_ARRAY_KEY_CHUNK_SIZE);
 929                keylen >>= ASSOC_ARRAY_KEY_CHUNK_SHIFT;
 930
 931                new_s1 = kzalloc(sizeof(struct assoc_array_shortcut) +
 932                                 keylen * sizeof(unsigned long), GFP_KERNEL);
 933                if (!new_s1)
 934                        return false;
 935                edit->new_meta[2] = assoc_array_shortcut_to_ptr(new_s1);
 936
 937                new_s1->back_pointer = assoc_array_node_to_ptr(new_n0);
 938                new_s1->parent_slot = sc_slot;
 939                new_s1->next_node = shortcut->next_node;
 940                new_s1->skip_to_level = shortcut->skip_to_level;
 941
 942                new_n0->slots[sc_slot] = assoc_array_shortcut_to_ptr(new_s1);
 943
 944                memcpy(new_s1->index_key, shortcut->index_key,
 945                       keylen * sizeof(unsigned long));
 946
 947                edit->set[1].ptr = &side->back_pointer;
 948                edit->set[1].to = assoc_array_shortcut_to_ptr(new_s1);
 949        } else {
 950                pr_devel("no post-shortcut\n");
 951
 952                /* We don't have to replace the pointed-to node as long as we
 953                 * use memory barriers to make sure the parent slot number is
 954                 * changed before the back pointer (the parent slot number is
 955                 * irrelevant to the old parent shortcut).
 956                 */
 957                new_n0->slots[sc_slot] = shortcut->next_node;
 958                edit->set_parent_slot[0].p = &side->parent_slot;
 959                edit->set_parent_slot[0].to = sc_slot;
 960                edit->set[1].ptr = &side->back_pointer;
 961                edit->set[1].to = assoc_array_node_to_ptr(new_n0);
 962        }
 963
 964        /* Install the new leaf in a spare slot in the new node. */
 965        if (sc_slot == 0)
 966                edit->leaf_p = &new_n0->slots[1];
 967        else
 968                edit->leaf_p = &new_n0->slots[0];
 969
 970        pr_devel("<--%s() = ok [split shortcut]\n", __func__);
 971        return edit;
 972}
 973
 974/**
 975 * assoc_array_insert - Script insertion of an object into an associative array
 976 * @array: The array to insert into.
 977 * @ops: The operations to use.
 978 * @index_key: The key to insert at.
 979 * @object: The object to insert.
 980 *
 981 * Precalculate and preallocate a script for the insertion or replacement of an
 982 * object in an associative array.  This results in an edit script that can
 983 * either be applied or cancelled.
 984 *
 985 * The function returns a pointer to an edit script or -ENOMEM.
 986 *
 987 * The caller should lock against other modifications and must continue to hold
 988 * the lock until assoc_array_apply_edit() has been called.
 989 *
 990 * Accesses to the tree may take place concurrently with this function,
 991 * provided they hold the RCU read lock.
 992 */
 993struct assoc_array_edit *assoc_array_insert(struct assoc_array *array,
 994                                            const struct assoc_array_ops *ops,
 995                                            const void *index_key,
 996                                            void *object)
 997{
 998        struct assoc_array_walk_result result;
 999        struct assoc_array_edit *edit;
1000
1001        pr_devel("-->%s()\n", __func__);
1002
1003        /* The leaf pointer we're given must not have the bottom bit set as we
1004         * use those for type-marking the pointer.  NULL pointers are also not
1005         * allowed as they indicate an empty slot but we have to allow them
1006         * here as they can be updated later.
1007         */
1008        BUG_ON(assoc_array_ptr_is_meta(object));
1009
1010        edit = kzalloc(sizeof(struct assoc_array_edit), GFP_KERNEL);
1011        if (!edit)
1012                return ERR_PTR(-ENOMEM);
1013        edit->array = array;
1014        edit->ops = ops;
1015        edit->leaf = assoc_array_leaf_to_ptr(object);
1016        edit->adjust_count_by = 1;
1017
1018        switch (assoc_array_walk(array, ops, index_key, &result)) {
1019        case assoc_array_walk_tree_empty:
1020                /* Allocate a root node if there isn't one yet */
1021                if (!assoc_array_insert_in_empty_tree(edit))
1022                        goto enomem;
1023                return edit;
1024
1025        case assoc_array_walk_found_terminal_node:
1026                /* We found a node that doesn't have a node/shortcut pointer in
1027                 * the slot corresponding to the index key that we have to
1028                 * follow.
1029                 */
1030                if (!assoc_array_insert_into_terminal_node(edit, ops, index_key,
1031                                                           &result))
1032                        goto enomem;
1033                return edit;
1034
1035        case assoc_array_walk_found_wrong_shortcut:
1036                /* We found a shortcut that didn't match our key in a slot we
1037                 * needed to follow.
1038                 */
1039                if (!assoc_array_insert_mid_shortcut(edit, ops, &result))
1040                        goto enomem;
1041                return edit;
1042        }
1043
1044enomem:
1045        /* Clean up after an out of memory error */
1046        pr_devel("enomem\n");
1047        assoc_array_cancel_edit(edit);
1048        return ERR_PTR(-ENOMEM);
1049}
1050
1051/**
1052 * assoc_array_insert_set_object - Set the new object pointer in an edit script
1053 * @edit: The edit script to modify.
1054 * @object: The object pointer to set.
1055 *
1056 * Change the object to be inserted in an edit script.  The object pointed to
1057 * by the old object is not freed.  This must be done prior to applying the
1058 * script.
1059 */
1060void assoc_array_insert_set_object(struct assoc_array_edit *edit, void *object)
1061{
1062        BUG_ON(!object);
1063        edit->leaf = assoc_array_leaf_to_ptr(object);
1064}
1065
1066struct assoc_array_delete_collapse_context {
1067        struct assoc_array_node *node;
1068        const void              *skip_leaf;
1069        int                     slot;
1070};
1071
1072/*
1073 * Subtree collapse to node iterator.
1074 */
1075static int assoc_array_delete_collapse_iterator(const void *leaf,
1076                                                void *iterator_data)
1077{
1078        struct assoc_array_delete_collapse_context *collapse = iterator_data;
1079
1080        if (leaf == collapse->skip_leaf)
1081                return 0;
1082
1083        BUG_ON(collapse->slot >= ASSOC_ARRAY_FAN_OUT);
1084
1085        collapse->node->slots[collapse->slot++] = assoc_array_leaf_to_ptr(leaf);
1086        return 0;
1087}
1088
1089/**
1090 * assoc_array_delete - Script deletion of an object from an associative array
1091 * @array: The array to search.
1092 * @ops: The operations to use.
1093 * @index_key: The key to the object.
1094 *
1095 * Precalculate and preallocate a script for the deletion of an object from an
1096 * associative array.  This results in an edit script that can either be
1097 * applied or cancelled.
1098 *
1099 * The function returns a pointer to an edit script if the object was found,
1100 * NULL if the object was not found or -ENOMEM.
1101 *
1102 * The caller should lock against other modifications and must continue to hold
1103 * the lock until assoc_array_apply_edit() has been called.
1104 *
1105 * Accesses to the tree may take place concurrently with this function,
1106 * provided they hold the RCU read lock.
1107 */
1108struct assoc_array_edit *assoc_array_delete(struct assoc_array *array,
1109                                            const struct assoc_array_ops *ops,
1110                                            const void *index_key)
1111{
1112        struct assoc_array_delete_collapse_context collapse;
1113        struct assoc_array_walk_result result;
1114        struct assoc_array_node *node, *new_n0;
1115        struct assoc_array_edit *edit;
1116        struct assoc_array_ptr *ptr;
1117        bool has_meta;
1118        int slot, i;
1119
1120        pr_devel("-->%s()\n", __func__);
1121
1122        edit = kzalloc(sizeof(struct assoc_array_edit), GFP_KERNEL);
1123        if (!edit)
1124                return ERR_PTR(-ENOMEM);
1125        edit->array = array;
1126        edit->ops = ops;
1127        edit->adjust_count_by = -1;
1128
1129        switch (assoc_array_walk(array, ops, index_key, &result)) {
1130        case assoc_array_walk_found_terminal_node:
1131                /* We found a node that should contain the leaf we've been
1132                 * asked to remove - *if* it's in the tree.
1133                 */
1134                pr_devel("terminal_node\n");
1135                node = result.terminal_node.node;
1136
1137                for (slot = 0; slot < ASSOC_ARRAY_FAN_OUT; slot++) {
1138                        ptr = node->slots[slot];
1139                        if (ptr &&
1140                            assoc_array_ptr_is_leaf(ptr) &&
1141                            ops->compare_object(assoc_array_ptr_to_leaf(ptr),
1142                                                index_key))
1143                                goto found_leaf;
1144                }
1145        case assoc_array_walk_tree_empty:
1146        case assoc_array_walk_found_wrong_shortcut:
1147        default:
1148                assoc_array_cancel_edit(edit);
1149                pr_devel("not found\n");
1150                return NULL;
1151        }
1152
1153found_leaf:
1154        BUG_ON(array->nr_leaves_on_tree <= 0);
1155
1156        /* In the simplest form of deletion we just clear the slot and release
1157         * the leaf after a suitable interval.
1158         */
1159        edit->dead_leaf = node->slots[slot];
1160        edit->set[0].ptr = &node->slots[slot];
1161        edit->set[0].to = NULL;
1162        edit->adjust_count_on = node;
1163
1164        /* If that concludes erasure of the last leaf, then delete the entire
1165         * internal array.
1166         */
1167        if (array->nr_leaves_on_tree == 1) {
1168                edit->set[1].ptr = &array->root;
1169                edit->set[1].to = NULL;
1170                edit->adjust_count_on = NULL;
1171                edit->excised_subtree = array->root;
1172                pr_devel("all gone\n");
1173                return edit;
1174        }
1175
1176        /* However, we'd also like to clear up some metadata blocks if we
1177         * possibly can.
1178         *
1179         * We go for a simple algorithm of: if this node has FAN_OUT or fewer
1180         * leaves in it, then attempt to collapse it - and attempt to
1181         * recursively collapse up the tree.
1182         *
1183         * We could also try and collapse in partially filled subtrees to take
1184         * up space in this node.
1185         */
1186        if (node->nr_leaves_on_branch <= ASSOC_ARRAY_FAN_OUT + 1) {
1187                struct assoc_array_node *parent, *grandparent;
1188                struct assoc_array_ptr *ptr;
1189
1190                /* First of all, we need to know if this node has metadata so
1191                 * that we don't try collapsing if all the leaves are already
1192                 * here.
1193                 */
1194                has_meta = false;
1195                for (i = 0; i < ASSOC_ARRAY_FAN_OUT; i++) {
1196                        ptr = node->slots[i];
1197                        if (assoc_array_ptr_is_meta(ptr)) {
1198                                has_meta = true;
1199                                break;
1200                        }
1201                }
1202
1203                pr_devel("leaves: %ld [m=%d]\n",
1204                         node->nr_leaves_on_branch - 1, has_meta);
1205
1206                /* Look further up the tree to see if we can collapse this node
1207                 * into a more proximal node too.
1208                 */
1209                parent = node;
1210        collapse_up:
1211                pr_devel("collapse subtree: %ld\n", parent->nr_leaves_on_branch);
1212
1213                ptr = parent->back_pointer;
1214                if (!ptr)
1215                        goto do_collapse;
1216                if (assoc_array_ptr_is_shortcut(ptr)) {
1217                        struct assoc_array_shortcut *s = assoc_array_ptr_to_shortcut(ptr);
1218                        ptr = s->back_pointer;
1219                        if (!ptr)
1220                                goto do_collapse;
1221                }
1222
1223                grandparent = assoc_array_ptr_to_node(ptr);
1224                if (grandparent->nr_leaves_on_branch <= ASSOC_ARRAY_FAN_OUT + 1) {
1225                        parent = grandparent;
1226                        goto collapse_up;
1227                }
1228
1229        do_collapse:
1230                /* There's no point collapsing if the original node has no meta
1231                 * pointers to discard and if we didn't merge into one of that
1232                 * node's ancestry.
1233                 */
1234                if (has_meta || parent != node) {
1235                        node = parent;
1236
1237                        /* Create a new node to collapse into */
1238                        new_n0 = kzalloc(sizeof(struct assoc_array_node), GFP_KERNEL);
1239                        if (!new_n0)
1240                                goto enomem;
1241                        edit->new_meta[0] = assoc_array_node_to_ptr(new_n0);
1242
1243                        new_n0->back_pointer = node->back_pointer;
1244                        new_n0->parent_slot = node->parent_slot;
1245                        new_n0->nr_leaves_on_branch = node->nr_leaves_on_branch;
1246                        edit->adjust_count_on = new_n0;
1247
1248                        collapse.node = new_n0;
1249                        collapse.skip_leaf = assoc_array_ptr_to_leaf(edit->dead_leaf);
1250                        collapse.slot = 0;
1251                        assoc_array_subtree_iterate(assoc_array_node_to_ptr(node),
1252                                                    node->back_pointer,
1253                                                    assoc_array_delete_collapse_iterator,
1254                                                    &collapse);
1255                        pr_devel("collapsed %d,%lu\n", collapse.slot, new_n0->nr_leaves_on_branch);
1256                        BUG_ON(collapse.slot != new_n0->nr_leaves_on_branch - 1);
1257
1258                        if (!node->back_pointer) {
1259                                edit->set[1].ptr = &array->root;
1260                        } else if (assoc_array_ptr_is_leaf(node->back_pointer)) {
1261                                BUG();
1262                        } else if (assoc_array_ptr_is_node(node->back_pointer)) {
1263                                struct assoc_array_node *p =
1264                                        assoc_array_ptr_to_node(node->back_pointer);
1265                                edit->set[1].ptr = &p->slots[node->parent_slot];
1266                        } else if (assoc_array_ptr_is_shortcut(node->back_pointer)) {
1267                                struct assoc_array_shortcut *s =
1268                                        assoc_array_ptr_to_shortcut(node->back_pointer);
1269                                edit->set[1].ptr = &s->next_node;
1270                        }
1271                        edit->set[1].to = assoc_array_node_to_ptr(new_n0);
1272                        edit->excised_subtree = assoc_array_node_to_ptr(node);
1273                }
1274        }
1275
1276        return edit;
1277
1278enomem:
1279        /* Clean up after an out of memory error */
1280        pr_devel("enomem\n");
1281        assoc_array_cancel_edit(edit);
1282        return ERR_PTR(-ENOMEM);
1283}
1284
1285/**
1286 * assoc_array_clear - Script deletion of all objects from an associative array
1287 * @array: The array to clear.
1288 * @ops: The operations to use.
1289 *
1290 * Precalculate and preallocate a script for the deletion of all the objects
1291 * from an associative array.  This results in an edit script that can either
1292 * be applied or cancelled.
1293 *
1294 * The function returns a pointer to an edit script if there are objects to be
1295 * deleted, NULL if there are no objects in the array or -ENOMEM.
1296 *
1297 * The caller should lock against other modifications and must continue to hold
1298 * the lock until assoc_array_apply_edit() has been called.
1299 *
1300 * Accesses to the tree may take place concurrently with this function,
1301 * provided they hold the RCU read lock.
1302 */
1303struct assoc_array_edit *assoc_array_clear(struct assoc_array *array,
1304                                           const struct assoc_array_ops *ops)
1305{
1306        struct assoc_array_edit *edit;
1307
1308        pr_devel("-->%s()\n", __func__);
1309
1310        if (!array->root)
1311                return NULL;
1312
1313        edit = kzalloc(sizeof(struct assoc_array_edit), GFP_KERNEL);
1314        if (!edit)
1315                return ERR_PTR(-ENOMEM);
1316        edit->array = array;
1317        edit->ops = ops;
1318        edit->set[1].ptr = &array->root;
1319        edit->set[1].to = NULL;
1320        edit->excised_subtree = array->root;
1321        edit->ops_for_excised_subtree = ops;
1322        pr_devel("all gone\n");
1323        return edit;
1324}
1325
1326/*
1327 * Handle the deferred destruction after an applied edit.
1328 */
1329static void assoc_array_rcu_cleanup(struct rcu_head *head)
1330{
1331        struct assoc_array_edit *edit =
1332                container_of(head, struct assoc_array_edit, rcu);
1333        int i;
1334
1335        pr_devel("-->%s()\n", __func__);
1336
1337        if (edit->dead_leaf)
1338                edit->ops->free_object(assoc_array_ptr_to_leaf(edit->dead_leaf));
1339        for (i = 0; i < ARRAY_SIZE(edit->excised_meta); i++)
1340                if (edit->excised_meta[i])
1341                        kfree(assoc_array_ptr_to_node(edit->excised_meta[i]));
1342
1343        if (edit->excised_subtree) {
1344                BUG_ON(assoc_array_ptr_is_leaf(edit->excised_subtree));
1345                if (assoc_array_ptr_is_node(edit->excised_subtree)) {
1346                        struct assoc_array_node *n =
1347                                assoc_array_ptr_to_node(edit->excised_subtree);
1348                        n->back_pointer = NULL;
1349                } else {
1350                        struct assoc_array_shortcut *s =
1351                                assoc_array_ptr_to_shortcut(edit->excised_subtree);
1352                        s->back_pointer = NULL;
1353                }
1354                assoc_array_destroy_subtree(edit->excised_subtree,
1355                                            edit->ops_for_excised_subtree);
1356        }
1357
1358        kfree(edit);
1359}
1360
1361/**
1362 * assoc_array_apply_edit - Apply an edit script to an associative array
1363 * @edit: The script to apply.
1364 *
1365 * Apply an edit script to an associative array to effect an insertion,
1366 * deletion or clearance.  As the edit script includes preallocated memory,
1367 * this is guaranteed not to fail.
1368 *
1369 * The edit script, dead objects and dead metadata will be scheduled for
1370 * destruction after an RCU grace period to permit those doing read-only
1371 * accesses on the array to continue to do so under the RCU read lock whilst
1372 * the edit is taking place.
1373 */
1374void assoc_array_apply_edit(struct assoc_array_edit *edit)
1375{
1376        struct assoc_array_shortcut *shortcut;
1377        struct assoc_array_node *node;
1378        struct assoc_array_ptr *ptr;
1379        int i;
1380
1381        pr_devel("-->%s()\n", __func__);
1382
1383        smp_wmb();
1384        if (edit->leaf_p)
1385                *edit->leaf_p = edit->leaf;
1386
1387        smp_wmb();
1388        for (i = 0; i < ARRAY_SIZE(edit->set_parent_slot); i++)
1389                if (edit->set_parent_slot[i].p)
1390                        *edit->set_parent_slot[i].p = edit->set_parent_slot[i].to;
1391
1392        smp_wmb();
1393        for (i = 0; i < ARRAY_SIZE(edit->set_backpointers); i++)
1394                if (edit->set_backpointers[i])
1395                        *edit->set_backpointers[i] = edit->set_backpointers_to;
1396
1397        smp_wmb();
1398        for (i = 0; i < ARRAY_SIZE(edit->set); i++)
1399                if (edit->set[i].ptr)
1400                        *edit->set[i].ptr = edit->set[i].to;
1401
1402        if (edit->array->root == NULL) {
1403                edit->array->nr_leaves_on_tree = 0;
1404        } else if (edit->adjust_count_on) {
1405                node = edit->adjust_count_on;
1406                for (;;) {
1407                        node->nr_leaves_on_branch += edit->adjust_count_by;
1408
1409                        ptr = node->back_pointer;
1410                        if (!ptr)
1411                                break;
1412                        if (assoc_array_ptr_is_shortcut(ptr)) {
1413                                shortcut = assoc_array_ptr_to_shortcut(ptr);
1414                                ptr = shortcut->back_pointer;
1415                                if (!ptr)
1416                                        break;
1417                        }
1418                        BUG_ON(!assoc_array_ptr_is_node(ptr));
1419                        node = assoc_array_ptr_to_node(ptr);
1420                }
1421
1422                edit->array->nr_leaves_on_tree += edit->adjust_count_by;
1423        }
1424
1425        call_rcu(&edit->rcu, assoc_array_rcu_cleanup);
1426}
1427
1428/**
1429 * assoc_array_cancel_edit - Discard an edit script.
1430 * @edit: The script to discard.
1431 *
1432 * Free an edit script and all the preallocated data it holds without making
1433 * any changes to the associative array it was intended for.
1434 *
1435 * NOTE!  In the case of an insertion script, this does _not_ release the leaf
1436 * that was to be inserted.  That is left to the caller.
1437 */
1438void assoc_array_cancel_edit(struct assoc_array_edit *edit)
1439{
1440        struct assoc_array_ptr *ptr;
1441        int i;
1442
1443        pr_devel("-->%s()\n", __func__);
1444
1445        /* Clean up after an out of memory error */
1446        for (i = 0; i < ARRAY_SIZE(edit->new_meta); i++) {
1447                ptr = edit->new_meta[i];
1448                if (ptr) {
1449                        if (assoc_array_ptr_is_node(ptr))
1450                                kfree(assoc_array_ptr_to_node(ptr));
1451                        else
1452                                kfree(assoc_array_ptr_to_shortcut(ptr));
1453                }
1454        }
1455        kfree(edit);
1456}
1457
1458/**
1459 * assoc_array_gc - Garbage collect an associative array.
1460 * @array: The array to clean.
1461 * @ops: The operations to use.
1462 * @iterator: A callback function to pass judgement on each object.
1463 * @iterator_data: Private data for the callback function.
1464 *
1465 * Collect garbage from an associative array and pack down the internal tree to
1466 * save memory.
1467 *
1468 * The iterator function is asked to pass judgement upon each object in the
1469 * array.  If it returns false, the object is discard and if it returns true,
1470 * the object is kept.  If it returns true, it must increment the object's
1471 * usage count (or whatever it needs to do to retain it) before returning.
1472 *
1473 * This function returns 0 if successful or -ENOMEM if out of memory.  In the
1474 * latter case, the array is not changed.
1475 *
1476 * The caller should lock against other modifications and must continue to hold
1477 * the lock until assoc_array_apply_edit() has been called.
1478 *
1479 * Accesses to the tree may take place concurrently with this function,
1480 * provided they hold the RCU read lock.
1481 */
1482int assoc_array_gc(struct assoc_array *array,
1483                   const struct assoc_array_ops *ops,
1484                   bool (*iterator)(void *object, void *iterator_data),
1485                   void *iterator_data)
1486{
1487        struct assoc_array_shortcut *shortcut, *new_s;
1488        struct assoc_array_node *node, *new_n;
1489        struct assoc_array_edit *edit;
1490        struct assoc_array_ptr *cursor, *ptr;
1491        struct assoc_array_ptr *new_root, *new_parent, **new_ptr_pp;
1492        unsigned long nr_leaves_on_tree;
1493        int keylen, slot, nr_free, next_slot, i;
1494
1495        pr_devel("-->%s()\n", __func__);
1496
1497        if (!array->root)
1498                return 0;
1499
1500        edit = kzalloc(sizeof(struct assoc_array_edit), GFP_KERNEL);
1501        if (!edit)
1502                return -ENOMEM;
1503        edit->array = array;
1504        edit->ops = ops;
1505        edit->ops_for_excised_subtree = ops;
1506        edit->set[0].ptr = &array->root;
1507        edit->excised_subtree = array->root;
1508
1509        new_root = new_parent = NULL;
1510        new_ptr_pp = &new_root;
1511        cursor = array->root;
1512
1513descend:
1514        /* If this point is a shortcut, then we need to duplicate it and
1515         * advance the target cursor.
1516         */
1517        if (assoc_array_ptr_is_shortcut(cursor)) {
1518                shortcut = assoc_array_ptr_to_shortcut(cursor);
1519                keylen = round_up(shortcut->skip_to_level, ASSOC_ARRAY_KEY_CHUNK_SIZE);
1520                keylen >>= ASSOC_ARRAY_KEY_CHUNK_SHIFT;
1521                new_s = kmalloc(sizeof(struct assoc_array_shortcut) +
1522                                keylen * sizeof(unsigned long), GFP_KERNEL);
1523                if (!new_s)
1524                        goto enomem;
1525                pr_devel("dup shortcut %p -> %p\n", shortcut, new_s);
1526                memcpy(new_s, shortcut, (sizeof(struct assoc_array_shortcut) +
1527                                         keylen * sizeof(unsigned long)));
1528                new_s->back_pointer = new_parent;
1529                new_s->parent_slot = shortcut->parent_slot;
1530                *new_ptr_pp = new_parent = assoc_array_shortcut_to_ptr(new_s);
1531                new_ptr_pp = &new_s->next_node;
1532                cursor = shortcut->next_node;
1533        }
1534
1535        /* Duplicate the node at this position */
1536        node = assoc_array_ptr_to_node(cursor);
1537        new_n = kzalloc(sizeof(struct assoc_array_node), GFP_KERNEL);
1538        if (!new_n)
1539                goto enomem;
1540        pr_devel("dup node %p -> %p\n", node, new_n);
1541        new_n->back_pointer = new_parent;
1542        new_n->parent_slot = node->parent_slot;
1543        *new_ptr_pp = new_parent = assoc_array_node_to_ptr(new_n);
1544        new_ptr_pp = NULL;
1545        slot = 0;
1546
1547continue_node:
1548        /* Filter across any leaves and gc any subtrees */
1549        for (; slot < ASSOC_ARRAY_FAN_OUT; slot++) {
1550                ptr = node->slots[slot];
1551                if (!ptr)
1552                        continue;
1553
1554                if (assoc_array_ptr_is_leaf(ptr)) {
1555                        if (iterator(assoc_array_ptr_to_leaf(ptr),
1556                                     iterator_data))
1557                                /* The iterator will have done any reference
1558                                 * counting on the object for us.
1559                                 */
1560                                new_n->slots[slot] = ptr;
1561                        continue;
1562                }
1563
1564                new_ptr_pp = &new_n->slots[slot];
1565                cursor = ptr;
1566                goto descend;
1567        }
1568
1569        pr_devel("-- compress node %p --\n", new_n);
1570
1571        /* Count up the number of empty slots in this node and work out the
1572         * subtree leaf count.
1573         */
1574        new_n->nr_leaves_on_branch = 0;
1575        nr_free = 0;
1576        for (slot = 0; slot < ASSOC_ARRAY_FAN_OUT; slot++) {
1577                ptr = new_n->slots[slot];
1578                if (!ptr)
1579                        nr_free++;
1580                else if (assoc_array_ptr_is_leaf(ptr))
1581                        new_n->nr_leaves_on_branch++;
1582        }
1583        pr_devel("free=%d, leaves=%lu\n", nr_free, new_n->nr_leaves_on_branch);
1584
1585        /* See what we can fold in */
1586        next_slot = 0;
1587        for (slot = 0; slot < ASSOC_ARRAY_FAN_OUT; slot++) {
1588                struct assoc_array_shortcut *s;
1589                struct assoc_array_node *child;
1590
1591                ptr = new_n->slots[slot];
1592                if (!ptr || assoc_array_ptr_is_leaf(ptr))
1593                        continue;
1594
1595                s = NULL;
1596                if (assoc_array_ptr_is_shortcut(ptr)) {
1597                        s = assoc_array_ptr_to_shortcut(ptr);
1598                        ptr = s->next_node;
1599                }
1600
1601                child = assoc_array_ptr_to_node(ptr);
1602                new_n->nr_leaves_on_branch += child->nr_leaves_on_branch;
1603
1604                if (child->nr_leaves_on_branch <= nr_free + 1) {
1605                        /* Fold the child node into this one */
1606                        pr_devel("[%d] fold node %lu/%d [nx %d]\n",
1607                                 slot, child->nr_leaves_on_branch, nr_free + 1,
1608                                 next_slot);
1609
1610                        /* We would already have reaped an intervening shortcut
1611                         * on the way back up the tree.
1612                         */
1613                        BUG_ON(s);
1614
1615                        new_n->slots[slot] = NULL;
1616                        nr_free++;
1617                        if (slot < next_slot)
1618                                next_slot = slot;
1619                        for (i = 0; i < ASSOC_ARRAY_FAN_OUT; i++) {
1620                                struct assoc_array_ptr *p = child->slots[i];
1621                                if (!p)
1622                                        continue;
1623                                BUG_ON(assoc_array_ptr_is_meta(p));
1624                                while (new_n->slots[next_slot])
1625                                        next_slot++;
1626                                BUG_ON(next_slot >= ASSOC_ARRAY_FAN_OUT);
1627                                new_n->slots[next_slot++] = p;
1628                                nr_free--;
1629                        }
1630                        kfree(child);
1631                } else {
1632                        pr_devel("[%d] retain node %lu/%d [nx %d]\n",
1633                                 slot, child->nr_leaves_on_branch, nr_free + 1,
1634                                 next_slot);
1635                }
1636        }
1637
1638        pr_devel("after: %lu\n", new_n->nr_leaves_on_branch);
1639
1640        nr_leaves_on_tree = new_n->nr_leaves_on_branch;
1641
1642        /* Excise this node if it is singly occupied by a shortcut */
1643        if (nr_free == ASSOC_ARRAY_FAN_OUT - 1) {
1644                for (slot = 0; slot < ASSOC_ARRAY_FAN_OUT; slot++)
1645                        if ((ptr = new_n->slots[slot]))
1646                                break;
1647
1648                if (assoc_array_ptr_is_meta(ptr) &&
1649                    assoc_array_ptr_is_shortcut(ptr)) {
1650                        pr_devel("excise node %p with 1 shortcut\n", new_n);
1651                        new_s = assoc_array_ptr_to_shortcut(ptr);
1652                        new_parent = new_n->back_pointer;
1653                        slot = new_n->parent_slot;
1654                        kfree(new_n);
1655                        if (!new_parent) {
1656                                new_s->back_pointer = NULL;
1657                                new_s->parent_slot = 0;
1658                                new_root = ptr;
1659                                goto gc_complete;
1660                        }
1661
1662                        if (assoc_array_ptr_is_shortcut(new_parent)) {
1663                                /* We can discard any preceding shortcut also */
1664                                struct assoc_array_shortcut *s =
1665                                        assoc_array_ptr_to_shortcut(new_parent);
1666
1667                                pr_devel("excise preceding shortcut\n");
1668
1669                                new_parent = new_s->back_pointer = s->back_pointer;
1670                                slot = new_s->parent_slot = s->parent_slot;
1671                                kfree(s);
1672                                if (!new_parent) {
1673                                        new_s->back_pointer = NULL;
1674                                        new_s->parent_slot = 0;
1675                                        new_root = ptr;
1676                                        goto gc_complete;
1677                                }
1678                        }
1679
1680                        new_s->back_pointer = new_parent;
1681                        new_s->parent_slot = slot;
1682                        new_n = assoc_array_ptr_to_node(new_parent);
1683                        new_n->slots[slot] = ptr;
1684                        goto ascend_old_tree;
1685                }
1686        }
1687
1688        /* Excise any shortcuts we might encounter that point to nodes that
1689         * only contain leaves.
1690         */
1691        ptr = new_n->back_pointer;
1692        if (!ptr)
1693                goto gc_complete;
1694
1695        if (assoc_array_ptr_is_shortcut(ptr)) {
1696                new_s = assoc_array_ptr_to_shortcut(ptr);
1697                new_parent = new_s->back_pointer;
1698                slot = new_s->parent_slot;
1699
1700                if (new_n->nr_leaves_on_branch <= ASSOC_ARRAY_FAN_OUT) {
1701                        struct assoc_array_node *n;
1702
1703                        pr_devel("excise shortcut\n");
1704                        new_n->back_pointer = new_parent;
1705                        new_n->parent_slot = slot;
1706                        kfree(new_s);
1707                        if (!new_parent) {
1708                                new_root = assoc_array_node_to_ptr(new_n);
1709                                goto gc_complete;
1710                        }
1711
1712                        n = assoc_array_ptr_to_node(new_parent);
1713                        n->slots[slot] = assoc_array_node_to_ptr(new_n);
1714                }
1715        } else {
1716                new_parent = ptr;
1717        }
1718        new_n = assoc_array_ptr_to_node(new_parent);
1719
1720ascend_old_tree:
1721        ptr = node->back_pointer;
1722        if (assoc_array_ptr_is_shortcut(ptr)) {
1723                shortcut = assoc_array_ptr_to_shortcut(ptr);
1724                slot = shortcut->parent_slot;
1725                cursor = shortcut->back_pointer;
1726                if (!cursor)
1727                        goto gc_complete;
1728        } else {
1729                slot = node->parent_slot;
1730                cursor = ptr;
1731        }
1732        BUG_ON(!cursor);
1733        node = assoc_array_ptr_to_node(cursor);
1734        slot++;
1735        goto continue_node;
1736
1737gc_complete:
1738        edit->set[0].to = new_root;
1739        assoc_array_apply_edit(edit);
1740        array->nr_leaves_on_tree = nr_leaves_on_tree;
1741        return 0;
1742
1743enomem:
1744        pr_devel("enomem\n");
1745        assoc_array_destroy_subtree(new_root, edit->ops);
1746        kfree(edit);
1747        return -ENOMEM;
1748}
1749