linux/mm/compaction.c
<<
>>
Prefs
   1/*
   2 * linux/mm/compaction.c
   3 *
   4 * Memory compaction for the reduction of external fragmentation. Note that
   5 * this heavily depends upon page migration to do all the real heavy
   6 * lifting
   7 *
   8 * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie>
   9 */
  10#include <linux/swap.h>
  11#include <linux/migrate.h>
  12#include <linux/compaction.h>
  13#include <linux/mm_inline.h>
  14#include <linux/backing-dev.h>
  15#include <linux/sysctl.h>
  16#include <linux/sysfs.h>
  17#include <linux/balloon_compaction.h>
  18#include <linux/page-isolation.h>
  19#include "internal.h"
  20
  21#ifdef CONFIG_COMPACTION
  22static inline void count_compact_event(enum vm_event_item item)
  23{
  24        count_vm_event(item);
  25}
  26
  27static inline void count_compact_events(enum vm_event_item item, long delta)
  28{
  29        count_vm_events(item, delta);
  30}
  31#else
  32#define count_compact_event(item) do { } while (0)
  33#define count_compact_events(item, delta) do { } while (0)
  34#endif
  35
  36#if defined CONFIG_COMPACTION || defined CONFIG_CMA
  37
  38#define CREATE_TRACE_POINTS
  39#include <trace/events/compaction.h>
  40
  41static unsigned long release_freepages(struct list_head *freelist)
  42{
  43        struct page *page, *next;
  44        unsigned long count = 0;
  45
  46        list_for_each_entry_safe(page, next, freelist, lru) {
  47                list_del(&page->lru);
  48                __free_page(page);
  49                count++;
  50        }
  51
  52        return count;
  53}
  54
  55static void map_pages(struct list_head *list)
  56{
  57        struct page *page;
  58
  59        list_for_each_entry(page, list, lru) {
  60                arch_alloc_page(page, 0);
  61                kernel_map_pages(page, 1, 1);
  62        }
  63}
  64
  65static inline bool migrate_async_suitable(int migratetype)
  66{
  67        return is_migrate_cma(migratetype) || migratetype == MIGRATE_MOVABLE;
  68}
  69
  70/*
  71 * Check that the whole (or subset of) a pageblock given by the interval of
  72 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
  73 * with the migration of free compaction scanner. The scanners then need to
  74 * use only pfn_valid_within() check for arches that allow holes within
  75 * pageblocks.
  76 *
  77 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
  78 *
  79 * It's possible on some configurations to have a setup like node0 node1 node0
  80 * i.e. it's possible that all pages within a zones range of pages do not
  81 * belong to a single zone. We assume that a border between node0 and node1
  82 * can occur within a single pageblock, but not a node0 node1 node0
  83 * interleaving within a single pageblock. It is therefore sufficient to check
  84 * the first and last page of a pageblock and avoid checking each individual
  85 * page in a pageblock.
  86 */
  87static struct page *pageblock_pfn_to_page(unsigned long start_pfn,
  88                                unsigned long end_pfn, struct zone *zone)
  89{
  90        struct page *start_page;
  91        struct page *end_page;
  92
  93        /* end_pfn is one past the range we are checking */
  94        end_pfn--;
  95
  96        if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
  97                return NULL;
  98
  99        start_page = pfn_to_page(start_pfn);
 100
 101        if (page_zone(start_page) != zone)
 102                return NULL;
 103
 104        end_page = pfn_to_page(end_pfn);
 105
 106        /* This gives a shorter code than deriving page_zone(end_page) */
 107        if (page_zone_id(start_page) != page_zone_id(end_page))
 108                return NULL;
 109
 110        return start_page;
 111}
 112
 113#ifdef CONFIG_COMPACTION
 114/* Returns true if the pageblock should be scanned for pages to isolate. */
 115static inline bool isolation_suitable(struct compact_control *cc,
 116                                        struct page *page)
 117{
 118        if (cc->ignore_skip_hint)
 119                return true;
 120
 121        return !get_pageblock_skip(page);
 122}
 123
 124/*
 125 * This function is called to clear all cached information on pageblocks that
 126 * should be skipped for page isolation when the migrate and free page scanner
 127 * meet.
 128 */
 129static void __reset_isolation_suitable(struct zone *zone)
 130{
 131        unsigned long start_pfn = zone->zone_start_pfn;
 132        unsigned long end_pfn = zone_end_pfn(zone);
 133        unsigned long pfn;
 134
 135        zone->compact_cached_migrate_pfn[0] = start_pfn;
 136        zone->compact_cached_migrate_pfn[1] = start_pfn;
 137        zone->compact_cached_free_pfn = end_pfn;
 138        zone->compact_blockskip_flush = false;
 139
 140        /* Walk the zone and mark every pageblock as suitable for isolation */
 141        for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
 142                struct page *page;
 143
 144                cond_resched();
 145
 146                if (!pfn_valid(pfn))
 147                        continue;
 148
 149                page = pfn_to_page(pfn);
 150                if (zone != page_zone(page))
 151                        continue;
 152
 153                clear_pageblock_skip(page);
 154        }
 155}
 156
 157void reset_isolation_suitable(pg_data_t *pgdat)
 158{
 159        int zoneid;
 160
 161        for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
 162                struct zone *zone = &pgdat->node_zones[zoneid];
 163                if (!populated_zone(zone))
 164                        continue;
 165
 166                /* Only flush if a full compaction finished recently */
 167                if (zone->compact_blockskip_flush)
 168                        __reset_isolation_suitable(zone);
 169        }
 170}
 171
 172/*
 173 * If no pages were isolated then mark this pageblock to be skipped in the
 174 * future. The information is later cleared by __reset_isolation_suitable().
 175 */
 176static void update_pageblock_skip(struct compact_control *cc,
 177                        struct page *page, unsigned long nr_isolated,
 178                        bool migrate_scanner)
 179{
 180        struct zone *zone = cc->zone;
 181        unsigned long pfn;
 182
 183        if (cc->ignore_skip_hint)
 184                return;
 185
 186        if (!page)
 187                return;
 188
 189        if (nr_isolated)
 190                return;
 191
 192        set_pageblock_skip(page);
 193
 194        pfn = page_to_pfn(page);
 195
 196        /* Update where async and sync compaction should restart */
 197        if (migrate_scanner) {
 198                if (cc->finished_update_migrate)
 199                        return;
 200                if (pfn > zone->compact_cached_migrate_pfn[0])
 201                        zone->compact_cached_migrate_pfn[0] = pfn;
 202                if (cc->mode != MIGRATE_ASYNC &&
 203                    pfn > zone->compact_cached_migrate_pfn[1])
 204                        zone->compact_cached_migrate_pfn[1] = pfn;
 205        } else {
 206                if (cc->finished_update_free)
 207                        return;
 208                if (pfn < zone->compact_cached_free_pfn)
 209                        zone->compact_cached_free_pfn = pfn;
 210        }
 211}
 212#else
 213static inline bool isolation_suitable(struct compact_control *cc,
 214                                        struct page *page)
 215{
 216        return true;
 217}
 218
 219static void update_pageblock_skip(struct compact_control *cc,
 220                        struct page *page, unsigned long nr_isolated,
 221                        bool migrate_scanner)
 222{
 223}
 224#endif /* CONFIG_COMPACTION */
 225
 226/*
 227 * Compaction requires the taking of some coarse locks that are potentially
 228 * very heavily contended. For async compaction, back out if the lock cannot
 229 * be taken immediately. For sync compaction, spin on the lock if needed.
 230 *
 231 * Returns true if the lock is held
 232 * Returns false if the lock is not held and compaction should abort
 233 */
 234static bool compact_trylock_irqsave(spinlock_t *lock, unsigned long *flags,
 235                                                struct compact_control *cc)
 236{
 237        if (cc->mode == MIGRATE_ASYNC) {
 238                if (!spin_trylock_irqsave(lock, *flags)) {
 239                        cc->contended = COMPACT_CONTENDED_LOCK;
 240                        return false;
 241                }
 242        } else {
 243                spin_lock_irqsave(lock, *flags);
 244        }
 245
 246        return true;
 247}
 248
 249/*
 250 * Compaction requires the taking of some coarse locks that are potentially
 251 * very heavily contended. The lock should be periodically unlocked to avoid
 252 * having disabled IRQs for a long time, even when there is nobody waiting on
 253 * the lock. It might also be that allowing the IRQs will result in
 254 * need_resched() becoming true. If scheduling is needed, async compaction
 255 * aborts. Sync compaction schedules.
 256 * Either compaction type will also abort if a fatal signal is pending.
 257 * In either case if the lock was locked, it is dropped and not regained.
 258 *
 259 * Returns true if compaction should abort due to fatal signal pending, or
 260 *              async compaction due to need_resched()
 261 * Returns false when compaction can continue (sync compaction might have
 262 *              scheduled)
 263 */
 264static bool compact_unlock_should_abort(spinlock_t *lock,
 265                unsigned long flags, bool *locked, struct compact_control *cc)
 266{
 267        if (*locked) {
 268                spin_unlock_irqrestore(lock, flags);
 269                *locked = false;
 270        }
 271
 272        if (fatal_signal_pending(current)) {
 273                cc->contended = COMPACT_CONTENDED_SCHED;
 274                return true;
 275        }
 276
 277        if (need_resched()) {
 278                if (cc->mode == MIGRATE_ASYNC) {
 279                        cc->contended = COMPACT_CONTENDED_SCHED;
 280                        return true;
 281                }
 282                cond_resched();
 283        }
 284
 285        return false;
 286}
 287
 288/*
 289 * Aside from avoiding lock contention, compaction also periodically checks
 290 * need_resched() and either schedules in sync compaction or aborts async
 291 * compaction. This is similar to what compact_unlock_should_abort() does, but
 292 * is used where no lock is concerned.
 293 *
 294 * Returns false when no scheduling was needed, or sync compaction scheduled.
 295 * Returns true when async compaction should abort.
 296 */
 297static inline bool compact_should_abort(struct compact_control *cc)
 298{
 299        /* async compaction aborts if contended */
 300        if (need_resched()) {
 301                if (cc->mode == MIGRATE_ASYNC) {
 302                        cc->contended = COMPACT_CONTENDED_SCHED;
 303                        return true;
 304                }
 305
 306                cond_resched();
 307        }
 308
 309        return false;
 310}
 311
 312/* Returns true if the page is within a block suitable for migration to */
 313static bool suitable_migration_target(struct page *page)
 314{
 315        /* If the page is a large free page, then disallow migration */
 316        if (PageBuddy(page)) {
 317                /*
 318                 * We are checking page_order without zone->lock taken. But
 319                 * the only small danger is that we skip a potentially suitable
 320                 * pageblock, so it's not worth to check order for valid range.
 321                 */
 322                if (page_order_unsafe(page) >= pageblock_order)
 323                        return false;
 324        }
 325
 326        /* If the block is MIGRATE_MOVABLE or MIGRATE_CMA, allow migration */
 327        if (migrate_async_suitable(get_pageblock_migratetype(page)))
 328                return true;
 329
 330        /* Otherwise skip the block */
 331        return false;
 332}
 333
 334/*
 335 * Isolate free pages onto a private freelist. If @strict is true, will abort
 336 * returning 0 on any invalid PFNs or non-free pages inside of the pageblock
 337 * (even though it may still end up isolating some pages).
 338 */
 339static unsigned long isolate_freepages_block(struct compact_control *cc,
 340                                unsigned long *start_pfn,
 341                                unsigned long end_pfn,
 342                                struct list_head *freelist,
 343                                bool strict)
 344{
 345        int nr_scanned = 0, total_isolated = 0;
 346        struct page *cursor, *valid_page = NULL;
 347        unsigned long flags = 0;
 348        bool locked = false;
 349        unsigned long blockpfn = *start_pfn;
 350
 351        cursor = pfn_to_page(blockpfn);
 352
 353        /* Isolate free pages. */
 354        for (; blockpfn < end_pfn; blockpfn++, cursor++) {
 355                int isolated, i;
 356                struct page *page = cursor;
 357
 358                /*
 359                 * Periodically drop the lock (if held) regardless of its
 360                 * contention, to give chance to IRQs. Abort if fatal signal
 361                 * pending or async compaction detects need_resched()
 362                 */
 363                if (!(blockpfn % SWAP_CLUSTER_MAX)
 364                    && compact_unlock_should_abort(&cc->zone->lock, flags,
 365                                                                &locked, cc))
 366                        break;
 367
 368                nr_scanned++;
 369                if (!pfn_valid_within(blockpfn))
 370                        goto isolate_fail;
 371
 372                if (!valid_page)
 373                        valid_page = page;
 374                if (!PageBuddy(page))
 375                        goto isolate_fail;
 376
 377                /*
 378                 * If we already hold the lock, we can skip some rechecking.
 379                 * Note that if we hold the lock now, checked_pageblock was
 380                 * already set in some previous iteration (or strict is true),
 381                 * so it is correct to skip the suitable migration target
 382                 * recheck as well.
 383                 */
 384                if (!locked) {
 385                        /*
 386                         * The zone lock must be held to isolate freepages.
 387                         * Unfortunately this is a very coarse lock and can be
 388                         * heavily contended if there are parallel allocations
 389                         * or parallel compactions. For async compaction do not
 390                         * spin on the lock and we acquire the lock as late as
 391                         * possible.
 392                         */
 393                        locked = compact_trylock_irqsave(&cc->zone->lock,
 394                                                                &flags, cc);
 395                        if (!locked)
 396                                break;
 397
 398                        /* Recheck this is a buddy page under lock */
 399                        if (!PageBuddy(page))
 400                                goto isolate_fail;
 401                }
 402
 403                /* Found a free page, break it into order-0 pages */
 404                isolated = split_free_page(page);
 405                total_isolated += isolated;
 406                for (i = 0; i < isolated; i++) {
 407                        list_add(&page->lru, freelist);
 408                        page++;
 409                }
 410
 411                /* If a page was split, advance to the end of it */
 412                if (isolated) {
 413                        blockpfn += isolated - 1;
 414                        cursor += isolated - 1;
 415                        continue;
 416                }
 417
 418isolate_fail:
 419                if (strict)
 420                        break;
 421                else
 422                        continue;
 423
 424        }
 425
 426        /* Record how far we have got within the block */
 427        *start_pfn = blockpfn;
 428
 429        trace_mm_compaction_isolate_freepages(nr_scanned, total_isolated);
 430
 431        /*
 432         * If strict isolation is requested by CMA then check that all the
 433         * pages requested were isolated. If there were any failures, 0 is
 434         * returned and CMA will fail.
 435         */
 436        if (strict && blockpfn < end_pfn)
 437                total_isolated = 0;
 438
 439        if (locked)
 440                spin_unlock_irqrestore(&cc->zone->lock, flags);
 441
 442        /* Update the pageblock-skip if the whole pageblock was scanned */
 443        if (blockpfn == end_pfn)
 444                update_pageblock_skip(cc, valid_page, total_isolated, false);
 445
 446        count_compact_events(COMPACTFREE_SCANNED, nr_scanned);
 447        if (total_isolated)
 448                count_compact_events(COMPACTISOLATED, total_isolated);
 449        return total_isolated;
 450}
 451
 452/**
 453 * isolate_freepages_range() - isolate free pages.
 454 * @start_pfn: The first PFN to start isolating.
 455 * @end_pfn:   The one-past-last PFN.
 456 *
 457 * Non-free pages, invalid PFNs, or zone boundaries within the
 458 * [start_pfn, end_pfn) range are considered errors, cause function to
 459 * undo its actions and return zero.
 460 *
 461 * Otherwise, function returns one-past-the-last PFN of isolated page
 462 * (which may be greater then end_pfn if end fell in a middle of
 463 * a free page).
 464 */
 465unsigned long
 466isolate_freepages_range(struct compact_control *cc,
 467                        unsigned long start_pfn, unsigned long end_pfn)
 468{
 469        unsigned long isolated, pfn, block_end_pfn;
 470        LIST_HEAD(freelist);
 471
 472        pfn = start_pfn;
 473        block_end_pfn = ALIGN(pfn + 1, pageblock_nr_pages);
 474
 475        for (; pfn < end_pfn; pfn += isolated,
 476                                block_end_pfn += pageblock_nr_pages) {
 477                /* Protect pfn from changing by isolate_freepages_block */
 478                unsigned long isolate_start_pfn = pfn;
 479
 480                block_end_pfn = min(block_end_pfn, end_pfn);
 481
 482                /*
 483                 * pfn could pass the block_end_pfn if isolated freepage
 484                 * is more than pageblock order. In this case, we adjust
 485                 * scanning range to right one.
 486                 */
 487                if (pfn >= block_end_pfn) {
 488                        block_end_pfn = ALIGN(pfn + 1, pageblock_nr_pages);
 489                        block_end_pfn = min(block_end_pfn, end_pfn);
 490                }
 491
 492                if (!pageblock_pfn_to_page(pfn, block_end_pfn, cc->zone))
 493                        break;
 494
 495                isolated = isolate_freepages_block(cc, &isolate_start_pfn,
 496                                                block_end_pfn, &freelist, true);
 497
 498                /*
 499                 * In strict mode, isolate_freepages_block() returns 0 if
 500                 * there are any holes in the block (ie. invalid PFNs or
 501                 * non-free pages).
 502                 */
 503                if (!isolated)
 504                        break;
 505
 506                /*
 507                 * If we managed to isolate pages, it is always (1 << n) *
 508                 * pageblock_nr_pages for some non-negative n.  (Max order
 509                 * page may span two pageblocks).
 510                 */
 511        }
 512
 513        /* split_free_page does not map the pages */
 514        map_pages(&freelist);
 515
 516        if (pfn < end_pfn) {
 517                /* Loop terminated early, cleanup. */
 518                release_freepages(&freelist);
 519                return 0;
 520        }
 521
 522        /* We don't use freelists for anything. */
 523        return pfn;
 524}
 525
 526/* Update the number of anon and file isolated pages in the zone */
 527static void acct_isolated(struct zone *zone, struct compact_control *cc)
 528{
 529        struct page *page;
 530        unsigned int count[2] = { 0, };
 531
 532        if (list_empty(&cc->migratepages))
 533                return;
 534
 535        list_for_each_entry(page, &cc->migratepages, lru)
 536                count[!!page_is_file_cache(page)]++;
 537
 538        mod_zone_page_state(zone, NR_ISOLATED_ANON, count[0]);
 539        mod_zone_page_state(zone, NR_ISOLATED_FILE, count[1]);
 540}
 541
 542/* Similar to reclaim, but different enough that they don't share logic */
 543static bool too_many_isolated(struct zone *zone)
 544{
 545        unsigned long active, inactive, isolated;
 546
 547        inactive = zone_page_state(zone, NR_INACTIVE_FILE) +
 548                                        zone_page_state(zone, NR_INACTIVE_ANON);
 549        active = zone_page_state(zone, NR_ACTIVE_FILE) +
 550                                        zone_page_state(zone, NR_ACTIVE_ANON);
 551        isolated = zone_page_state(zone, NR_ISOLATED_FILE) +
 552                                        zone_page_state(zone, NR_ISOLATED_ANON);
 553
 554        return isolated > (inactive + active) / 2;
 555}
 556
 557/**
 558 * isolate_migratepages_block() - isolate all migrate-able pages within
 559 *                                a single pageblock
 560 * @cc:         Compaction control structure.
 561 * @low_pfn:    The first PFN to isolate
 562 * @end_pfn:    The one-past-the-last PFN to isolate, within same pageblock
 563 * @isolate_mode: Isolation mode to be used.
 564 *
 565 * Isolate all pages that can be migrated from the range specified by
 566 * [low_pfn, end_pfn). The range is expected to be within same pageblock.
 567 * Returns zero if there is a fatal signal pending, otherwise PFN of the
 568 * first page that was not scanned (which may be both less, equal to or more
 569 * than end_pfn).
 570 *
 571 * The pages are isolated on cc->migratepages list (not required to be empty),
 572 * and cc->nr_migratepages is updated accordingly. The cc->migrate_pfn field
 573 * is neither read nor updated.
 574 */
 575static unsigned long
 576isolate_migratepages_block(struct compact_control *cc, unsigned long low_pfn,
 577                        unsigned long end_pfn, isolate_mode_t isolate_mode)
 578{
 579        struct zone *zone = cc->zone;
 580        unsigned long nr_scanned = 0, nr_isolated = 0;
 581        struct list_head *migratelist = &cc->migratepages;
 582        struct lruvec *lruvec;
 583        unsigned long flags = 0;
 584        bool locked = false;
 585        struct page *page = NULL, *valid_page = NULL;
 586
 587        /*
 588         * Ensure that there are not too many pages isolated from the LRU
 589         * list by either parallel reclaimers or compaction. If there are,
 590         * delay for some time until fewer pages are isolated
 591         */
 592        while (unlikely(too_many_isolated(zone))) {
 593                /* async migration should just abort */
 594                if (cc->mode == MIGRATE_ASYNC)
 595                        return 0;
 596
 597                congestion_wait(BLK_RW_ASYNC, HZ/10);
 598
 599                if (fatal_signal_pending(current))
 600                        return 0;
 601        }
 602
 603        if (compact_should_abort(cc))
 604                return 0;
 605
 606        /* Time to isolate some pages for migration */
 607        for (; low_pfn < end_pfn; low_pfn++) {
 608                /*
 609                 * Periodically drop the lock (if held) regardless of its
 610                 * contention, to give chance to IRQs. Abort async compaction
 611                 * if contended.
 612                 */
 613                if (!(low_pfn % SWAP_CLUSTER_MAX)
 614                    && compact_unlock_should_abort(&zone->lru_lock, flags,
 615                                                                &locked, cc))
 616                        break;
 617
 618                if (!pfn_valid_within(low_pfn))
 619                        continue;
 620                nr_scanned++;
 621
 622                page = pfn_to_page(low_pfn);
 623
 624                if (!valid_page)
 625                        valid_page = page;
 626
 627                /*
 628                 * Skip if free. We read page order here without zone lock
 629                 * which is generally unsafe, but the race window is small and
 630                 * the worst thing that can happen is that we skip some
 631                 * potential isolation targets.
 632                 */
 633                if (PageBuddy(page)) {
 634                        unsigned long freepage_order = page_order_unsafe(page);
 635
 636                        /*
 637                         * Without lock, we cannot be sure that what we got is
 638                         * a valid page order. Consider only values in the
 639                         * valid order range to prevent low_pfn overflow.
 640                         */
 641                        if (freepage_order > 0 && freepage_order < MAX_ORDER)
 642                                low_pfn += (1UL << freepage_order) - 1;
 643                        continue;
 644                }
 645
 646                /*
 647                 * Check may be lockless but that's ok as we recheck later.
 648                 * It's possible to migrate LRU pages and balloon pages
 649                 * Skip any other type of page
 650                 */
 651                if (!PageLRU(page)) {
 652                        if (unlikely(balloon_page_movable(page))) {
 653                                if (balloon_page_isolate(page)) {
 654                                        /* Successfully isolated */
 655                                        goto isolate_success;
 656                                }
 657                        }
 658                        continue;
 659                }
 660
 661                /*
 662                 * PageLRU is set. lru_lock normally excludes isolation
 663                 * splitting and collapsing (collapsing has already happened
 664                 * if PageLRU is set) but the lock is not necessarily taken
 665                 * here and it is wasteful to take it just to check transhuge.
 666                 * Check TransHuge without lock and skip the whole pageblock if
 667                 * it's either a transhuge or hugetlbfs page, as calling
 668                 * compound_order() without preventing THP from splitting the
 669                 * page underneath us may return surprising results.
 670                 */
 671                if (PageTransHuge(page)) {
 672                        if (!locked)
 673                                low_pfn = ALIGN(low_pfn + 1,
 674                                                pageblock_nr_pages) - 1;
 675                        else
 676                                low_pfn += (1 << compound_order(page)) - 1;
 677
 678                        continue;
 679                }
 680
 681                /*
 682                 * Migration will fail if an anonymous page is pinned in memory,
 683                 * so avoid taking lru_lock and isolating it unnecessarily in an
 684                 * admittedly racy check.
 685                 */
 686                if (!page_mapping(page) &&
 687                    page_count(page) > page_mapcount(page))
 688                        continue;
 689
 690                /* If we already hold the lock, we can skip some rechecking */
 691                if (!locked) {
 692                        locked = compact_trylock_irqsave(&zone->lru_lock,
 693                                                                &flags, cc);
 694                        if (!locked)
 695                                break;
 696
 697                        /* Recheck PageLRU and PageTransHuge under lock */
 698                        if (!PageLRU(page))
 699                                continue;
 700                        if (PageTransHuge(page)) {
 701                                low_pfn += (1 << compound_order(page)) - 1;
 702                                continue;
 703                        }
 704                }
 705
 706                lruvec = mem_cgroup_page_lruvec(page, zone);
 707
 708                /* Try isolate the page */
 709                if (__isolate_lru_page(page, isolate_mode) != 0)
 710                        continue;
 711
 712                VM_BUG_ON_PAGE(PageTransCompound(page), page);
 713
 714                /* Successfully isolated */
 715                del_page_from_lru_list(page, lruvec, page_lru(page));
 716
 717isolate_success:
 718                cc->finished_update_migrate = true;
 719                list_add(&page->lru, migratelist);
 720                cc->nr_migratepages++;
 721                nr_isolated++;
 722
 723                /* Avoid isolating too much */
 724                if (cc->nr_migratepages == COMPACT_CLUSTER_MAX) {
 725                        ++low_pfn;
 726                        break;
 727                }
 728        }
 729
 730        /*
 731         * The PageBuddy() check could have potentially brought us outside
 732         * the range to be scanned.
 733         */
 734        if (unlikely(low_pfn > end_pfn))
 735                low_pfn = end_pfn;
 736
 737        if (locked)
 738                spin_unlock_irqrestore(&zone->lru_lock, flags);
 739
 740        /*
 741         * Update the pageblock-skip information and cached scanner pfn,
 742         * if the whole pageblock was scanned without isolating any page.
 743         */
 744        if (low_pfn == end_pfn)
 745                update_pageblock_skip(cc, valid_page, nr_isolated, true);
 746
 747        trace_mm_compaction_isolate_migratepages(nr_scanned, nr_isolated);
 748
 749        count_compact_events(COMPACTMIGRATE_SCANNED, nr_scanned);
 750        if (nr_isolated)
 751                count_compact_events(COMPACTISOLATED, nr_isolated);
 752
 753        return low_pfn;
 754}
 755
 756/**
 757 * isolate_migratepages_range() - isolate migrate-able pages in a PFN range
 758 * @cc:        Compaction control structure.
 759 * @start_pfn: The first PFN to start isolating.
 760 * @end_pfn:   The one-past-last PFN.
 761 *
 762 * Returns zero if isolation fails fatally due to e.g. pending signal.
 763 * Otherwise, function returns one-past-the-last PFN of isolated page
 764 * (which may be greater than end_pfn if end fell in a middle of a THP page).
 765 */
 766unsigned long
 767isolate_migratepages_range(struct compact_control *cc, unsigned long start_pfn,
 768                                                        unsigned long end_pfn)
 769{
 770        unsigned long pfn, block_end_pfn;
 771
 772        /* Scan block by block. First and last block may be incomplete */
 773        pfn = start_pfn;
 774        block_end_pfn = ALIGN(pfn + 1, pageblock_nr_pages);
 775
 776        for (; pfn < end_pfn; pfn = block_end_pfn,
 777                                block_end_pfn += pageblock_nr_pages) {
 778
 779                block_end_pfn = min(block_end_pfn, end_pfn);
 780
 781                if (!pageblock_pfn_to_page(pfn, block_end_pfn, cc->zone))
 782                        continue;
 783
 784                pfn = isolate_migratepages_block(cc, pfn, block_end_pfn,
 785                                                        ISOLATE_UNEVICTABLE);
 786
 787                /*
 788                 * In case of fatal failure, release everything that might
 789                 * have been isolated in the previous iteration, and signal
 790                 * the failure back to caller.
 791                 */
 792                if (!pfn) {
 793                        putback_movable_pages(&cc->migratepages);
 794                        cc->nr_migratepages = 0;
 795                        break;
 796                }
 797
 798                if (cc->nr_migratepages == COMPACT_CLUSTER_MAX)
 799                        break;
 800        }
 801        acct_isolated(cc->zone, cc);
 802
 803        return pfn;
 804}
 805
 806#endif /* CONFIG_COMPACTION || CONFIG_CMA */
 807#ifdef CONFIG_COMPACTION
 808/*
 809 * Based on information in the current compact_control, find blocks
 810 * suitable for isolating free pages from and then isolate them.
 811 */
 812static void isolate_freepages(struct compact_control *cc)
 813{
 814        struct zone *zone = cc->zone;
 815        struct page *page;
 816        unsigned long block_start_pfn;  /* start of current pageblock */
 817        unsigned long isolate_start_pfn; /* exact pfn we start at */
 818        unsigned long block_end_pfn;    /* end of current pageblock */
 819        unsigned long low_pfn;       /* lowest pfn scanner is able to scan */
 820        int nr_freepages = cc->nr_freepages;
 821        struct list_head *freelist = &cc->freepages;
 822
 823        /*
 824         * Initialise the free scanner. The starting point is where we last
 825         * successfully isolated from, zone-cached value, or the end of the
 826         * zone when isolating for the first time. For looping we also need
 827         * this pfn aligned down to the pageblock boundary, because we do
 828         * block_start_pfn -= pageblock_nr_pages in the for loop.
 829         * For ending point, take care when isolating in last pageblock of a
 830         * a zone which ends in the middle of a pageblock.
 831         * The low boundary is the end of the pageblock the migration scanner
 832         * is using.
 833         */
 834        isolate_start_pfn = cc->free_pfn;
 835        block_start_pfn = cc->free_pfn & ~(pageblock_nr_pages-1);
 836        block_end_pfn = min(block_start_pfn + pageblock_nr_pages,
 837                                                zone_end_pfn(zone));
 838        low_pfn = ALIGN(cc->migrate_pfn + 1, pageblock_nr_pages);
 839
 840        /*
 841         * Isolate free pages until enough are available to migrate the
 842         * pages on cc->migratepages. We stop searching if the migrate
 843         * and free page scanners meet or enough free pages are isolated.
 844         */
 845        for (; block_start_pfn >= low_pfn && cc->nr_migratepages > nr_freepages;
 846                                block_end_pfn = block_start_pfn,
 847                                block_start_pfn -= pageblock_nr_pages,
 848                                isolate_start_pfn = block_start_pfn) {
 849                unsigned long isolated;
 850
 851                /*
 852                 * This can iterate a massively long zone without finding any
 853                 * suitable migration targets, so periodically check if we need
 854                 * to schedule, or even abort async compaction.
 855                 */
 856                if (!(block_start_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages))
 857                                                && compact_should_abort(cc))
 858                        break;
 859
 860                page = pageblock_pfn_to_page(block_start_pfn, block_end_pfn,
 861                                                                        zone);
 862                if (!page)
 863                        continue;
 864
 865                /* Check the block is suitable for migration */
 866                if (!suitable_migration_target(page))
 867                        continue;
 868
 869                /* If isolation recently failed, do not retry */
 870                if (!isolation_suitable(cc, page))
 871                        continue;
 872
 873                /* Found a block suitable for isolating free pages from. */
 874                isolated = isolate_freepages_block(cc, &isolate_start_pfn,
 875                                        block_end_pfn, freelist, false);
 876                nr_freepages += isolated;
 877
 878                /*
 879                 * Remember where the free scanner should restart next time,
 880                 * which is where isolate_freepages_block() left off.
 881                 * But if it scanned the whole pageblock, isolate_start_pfn
 882                 * now points at block_end_pfn, which is the start of the next
 883                 * pageblock.
 884                 * In that case we will however want to restart at the start
 885                 * of the previous pageblock.
 886                 */
 887                cc->free_pfn = (isolate_start_pfn < block_end_pfn) ?
 888                                isolate_start_pfn :
 889                                block_start_pfn - pageblock_nr_pages;
 890
 891                /*
 892                 * Set a flag that we successfully isolated in this pageblock.
 893                 * In the next loop iteration, zone->compact_cached_free_pfn
 894                 * will not be updated and thus it will effectively contain the
 895                 * highest pageblock we isolated pages from.
 896                 */
 897                if (isolated)
 898                        cc->finished_update_free = true;
 899
 900                /*
 901                 * isolate_freepages_block() might have aborted due to async
 902                 * compaction being contended
 903                 */
 904                if (cc->contended)
 905                        break;
 906        }
 907
 908        /* split_free_page does not map the pages */
 909        map_pages(freelist);
 910
 911        /*
 912         * If we crossed the migrate scanner, we want to keep it that way
 913         * so that compact_finished() may detect this
 914         */
 915        if (block_start_pfn < low_pfn)
 916                cc->free_pfn = cc->migrate_pfn;
 917
 918        cc->nr_freepages = nr_freepages;
 919}
 920
 921/*
 922 * This is a migrate-callback that "allocates" freepages by taking pages
 923 * from the isolated freelists in the block we are migrating to.
 924 */
 925static struct page *compaction_alloc(struct page *migratepage,
 926                                        unsigned long data,
 927                                        int **result)
 928{
 929        struct compact_control *cc = (struct compact_control *)data;
 930        struct page *freepage;
 931
 932        /*
 933         * Isolate free pages if necessary, and if we are not aborting due to
 934         * contention.
 935         */
 936        if (list_empty(&cc->freepages)) {
 937                if (!cc->contended)
 938                        isolate_freepages(cc);
 939
 940                if (list_empty(&cc->freepages))
 941                        return NULL;
 942        }
 943
 944        freepage = list_entry(cc->freepages.next, struct page, lru);
 945        list_del(&freepage->lru);
 946        cc->nr_freepages--;
 947
 948        return freepage;
 949}
 950
 951/*
 952 * This is a migrate-callback that "frees" freepages back to the isolated
 953 * freelist.  All pages on the freelist are from the same zone, so there is no
 954 * special handling needed for NUMA.
 955 */
 956static void compaction_free(struct page *page, unsigned long data)
 957{
 958        struct compact_control *cc = (struct compact_control *)data;
 959
 960        list_add(&page->lru, &cc->freepages);
 961        cc->nr_freepages++;
 962}
 963
 964/* possible outcome of isolate_migratepages */
 965typedef enum {
 966        ISOLATE_ABORT,          /* Abort compaction now */
 967        ISOLATE_NONE,           /* No pages isolated, continue scanning */
 968        ISOLATE_SUCCESS,        /* Pages isolated, migrate */
 969} isolate_migrate_t;
 970
 971/*
 972 * Isolate all pages that can be migrated from the first suitable block,
 973 * starting at the block pointed to by the migrate scanner pfn within
 974 * compact_control.
 975 */
 976static isolate_migrate_t isolate_migratepages(struct zone *zone,
 977                                        struct compact_control *cc)
 978{
 979        unsigned long low_pfn, end_pfn;
 980        struct page *page;
 981        const isolate_mode_t isolate_mode =
 982                (cc->mode == MIGRATE_ASYNC ? ISOLATE_ASYNC_MIGRATE : 0);
 983
 984        /*
 985         * Start at where we last stopped, or beginning of the zone as
 986         * initialized by compact_zone()
 987         */
 988        low_pfn = cc->migrate_pfn;
 989
 990        /* Only scan within a pageblock boundary */
 991        end_pfn = ALIGN(low_pfn + 1, pageblock_nr_pages);
 992
 993        /*
 994         * Iterate over whole pageblocks until we find the first suitable.
 995         * Do not cross the free scanner.
 996         */
 997        for (; end_pfn <= cc->free_pfn;
 998                        low_pfn = end_pfn, end_pfn += pageblock_nr_pages) {
 999
1000                /*
1001                 * This can potentially iterate a massively long zone with
1002                 * many pageblocks unsuitable, so periodically check if we
1003                 * need to schedule, or even abort async compaction.
1004                 */
1005                if (!(low_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages))
1006                                                && compact_should_abort(cc))
1007                        break;
1008
1009                page = pageblock_pfn_to_page(low_pfn, end_pfn, zone);
1010                if (!page)
1011                        continue;
1012
1013                /* If isolation recently failed, do not retry */
1014                if (!isolation_suitable(cc, page))
1015                        continue;
1016
1017                /*
1018                 * For async compaction, also only scan in MOVABLE blocks.
1019                 * Async compaction is optimistic to see if the minimum amount
1020                 * of work satisfies the allocation.
1021                 */
1022                if (cc->mode == MIGRATE_ASYNC &&
1023                    !migrate_async_suitable(get_pageblock_migratetype(page)))
1024                        continue;
1025
1026                /* Perform the isolation */
1027                low_pfn = isolate_migratepages_block(cc, low_pfn, end_pfn,
1028                                                                isolate_mode);
1029
1030                if (!low_pfn || cc->contended)
1031                        return ISOLATE_ABORT;
1032
1033                /*
1034                 * Either we isolated something and proceed with migration. Or
1035                 * we failed and compact_zone should decide if we should
1036                 * continue or not.
1037                 */
1038                break;
1039        }
1040
1041        acct_isolated(zone, cc);
1042        /*
1043         * Record where migration scanner will be restarted. If we end up in
1044         * the same pageblock as the free scanner, make the scanners fully
1045         * meet so that compact_finished() terminates compaction.
1046         */
1047        cc->migrate_pfn = (end_pfn <= cc->free_pfn) ? low_pfn : cc->free_pfn;
1048
1049        return cc->nr_migratepages ? ISOLATE_SUCCESS : ISOLATE_NONE;
1050}
1051
1052static int compact_finished(struct zone *zone, struct compact_control *cc,
1053                            const int migratetype)
1054{
1055        unsigned int order;
1056        unsigned long watermark;
1057
1058        if (cc->contended || fatal_signal_pending(current))
1059                return COMPACT_PARTIAL;
1060
1061        /* Compaction run completes if the migrate and free scanner meet */
1062        if (cc->free_pfn <= cc->migrate_pfn) {
1063                /* Let the next compaction start anew. */
1064                zone->compact_cached_migrate_pfn[0] = zone->zone_start_pfn;
1065                zone->compact_cached_migrate_pfn[1] = zone->zone_start_pfn;
1066                zone->compact_cached_free_pfn = zone_end_pfn(zone);
1067
1068                /*
1069                 * Mark that the PG_migrate_skip information should be cleared
1070                 * by kswapd when it goes to sleep. kswapd does not set the
1071                 * flag itself as the decision to be clear should be directly
1072                 * based on an allocation request.
1073                 */
1074                if (!current_is_kswapd())
1075                        zone->compact_blockskip_flush = true;
1076
1077                return COMPACT_COMPLETE;
1078        }
1079
1080        /*
1081         * order == -1 is expected when compacting via
1082         * /proc/sys/vm/compact_memory
1083         */
1084        if (cc->order == -1)
1085                return COMPACT_CONTINUE;
1086
1087        /* Compaction run is not finished if the watermark is not met */
1088        watermark = low_wmark_pages(zone);
1089        watermark += (1 << cc->order);
1090
1091        if (!zone_watermark_ok(zone, cc->order, watermark, 0, 0))
1092                return COMPACT_CONTINUE;
1093
1094        /* Direct compactor: Is a suitable page free? */
1095        for (order = cc->order; order < MAX_ORDER; order++) {
1096                struct free_area *area = &zone->free_area[order];
1097
1098                /* Job done if page is free of the right migratetype */
1099                if (!list_empty(&area->free_list[migratetype]))
1100                        return COMPACT_PARTIAL;
1101
1102                /* Job done if allocation would set block type */
1103                if (cc->order >= pageblock_order && area->nr_free)
1104                        return COMPACT_PARTIAL;
1105        }
1106
1107        return COMPACT_CONTINUE;
1108}
1109
1110/*
1111 * compaction_suitable: Is this suitable to run compaction on this zone now?
1112 * Returns
1113 *   COMPACT_SKIPPED  - If there are too few free pages for compaction
1114 *   COMPACT_PARTIAL  - If the allocation would succeed without compaction
1115 *   COMPACT_CONTINUE - If compaction should run now
1116 */
1117unsigned long compaction_suitable(struct zone *zone, int order)
1118{
1119        int fragindex;
1120        unsigned long watermark;
1121
1122        /*
1123         * order == -1 is expected when compacting via
1124         * /proc/sys/vm/compact_memory
1125         */
1126        if (order == -1)
1127                return COMPACT_CONTINUE;
1128
1129        /*
1130         * Watermarks for order-0 must be met for compaction. Note the 2UL.
1131         * This is because during migration, copies of pages need to be
1132         * allocated and for a short time, the footprint is higher
1133         */
1134        watermark = low_wmark_pages(zone) + (2UL << order);
1135        if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
1136                return COMPACT_SKIPPED;
1137
1138        /*
1139         * fragmentation index determines if allocation failures are due to
1140         * low memory or external fragmentation
1141         *
1142         * index of -1000 implies allocations might succeed depending on
1143         * watermarks
1144         * index towards 0 implies failure is due to lack of memory
1145         * index towards 1000 implies failure is due to fragmentation
1146         *
1147         * Only compact if a failure would be due to fragmentation.
1148         */
1149        fragindex = fragmentation_index(zone, order);
1150        if (fragindex >= 0 && fragindex <= sysctl_extfrag_threshold)
1151                return COMPACT_SKIPPED;
1152
1153        if (fragindex == -1000 && zone_watermark_ok(zone, order, watermark,
1154            0, 0))
1155                return COMPACT_PARTIAL;
1156
1157        return COMPACT_CONTINUE;
1158}
1159
1160static int compact_zone(struct zone *zone, struct compact_control *cc)
1161{
1162        int ret;
1163        unsigned long start_pfn = zone->zone_start_pfn;
1164        unsigned long end_pfn = zone_end_pfn(zone);
1165        const int migratetype = gfpflags_to_migratetype(cc->gfp_mask);
1166        const bool sync = cc->mode != MIGRATE_ASYNC;
1167
1168        ret = compaction_suitable(zone, cc->order);
1169        switch (ret) {
1170        case COMPACT_PARTIAL:
1171        case COMPACT_SKIPPED:
1172                /* Compaction is likely to fail */
1173                return ret;
1174        case COMPACT_CONTINUE:
1175                /* Fall through to compaction */
1176                ;
1177        }
1178
1179        /*
1180         * Clear pageblock skip if there were failures recently and compaction
1181         * is about to be retried after being deferred. kswapd does not do
1182         * this reset as it'll reset the cached information when going to sleep.
1183         */
1184        if (compaction_restarting(zone, cc->order) && !current_is_kswapd())
1185                __reset_isolation_suitable(zone);
1186
1187        /*
1188         * Setup to move all movable pages to the end of the zone. Used cached
1189         * information on where the scanners should start but check that it
1190         * is initialised by ensuring the values are within zone boundaries.
1191         */
1192        cc->migrate_pfn = zone->compact_cached_migrate_pfn[sync];
1193        cc->free_pfn = zone->compact_cached_free_pfn;
1194        if (cc->free_pfn < start_pfn || cc->free_pfn > end_pfn) {
1195                cc->free_pfn = end_pfn & ~(pageblock_nr_pages-1);
1196                zone->compact_cached_free_pfn = cc->free_pfn;
1197        }
1198        if (cc->migrate_pfn < start_pfn || cc->migrate_pfn > end_pfn) {
1199                cc->migrate_pfn = start_pfn;
1200                zone->compact_cached_migrate_pfn[0] = cc->migrate_pfn;
1201                zone->compact_cached_migrate_pfn[1] = cc->migrate_pfn;
1202        }
1203
1204        trace_mm_compaction_begin(start_pfn, cc->migrate_pfn, cc->free_pfn, end_pfn);
1205
1206        migrate_prep_local();
1207
1208        while ((ret = compact_finished(zone, cc, migratetype)) ==
1209                                                COMPACT_CONTINUE) {
1210                int err;
1211
1212                switch (isolate_migratepages(zone, cc)) {
1213                case ISOLATE_ABORT:
1214                        ret = COMPACT_PARTIAL;
1215                        putback_movable_pages(&cc->migratepages);
1216                        cc->nr_migratepages = 0;
1217                        goto out;
1218                case ISOLATE_NONE:
1219                        continue;
1220                case ISOLATE_SUCCESS:
1221                        ;
1222                }
1223
1224                err = migrate_pages(&cc->migratepages, compaction_alloc,
1225                                compaction_free, (unsigned long)cc, cc->mode,
1226                                MR_COMPACTION);
1227
1228                trace_mm_compaction_migratepages(cc->nr_migratepages, err,
1229                                                        &cc->migratepages);
1230
1231                /* All pages were either migrated or will be released */
1232                cc->nr_migratepages = 0;
1233                if (err) {
1234                        putback_movable_pages(&cc->migratepages);
1235                        /*
1236                         * migrate_pages() may return -ENOMEM when scanners meet
1237                         * and we want compact_finished() to detect it
1238                         */
1239                        if (err == -ENOMEM && cc->free_pfn > cc->migrate_pfn) {
1240                                ret = COMPACT_PARTIAL;
1241                                goto out;
1242                        }
1243                }
1244        }
1245
1246out:
1247        /* Release free pages and check accounting */
1248        cc->nr_freepages -= release_freepages(&cc->freepages);
1249        VM_BUG_ON(cc->nr_freepages != 0);
1250
1251        trace_mm_compaction_end(ret);
1252
1253        return ret;
1254}
1255
1256static unsigned long compact_zone_order(struct zone *zone, int order,
1257                gfp_t gfp_mask, enum migrate_mode mode, int *contended)
1258{
1259        unsigned long ret;
1260        struct compact_control cc = {
1261                .nr_freepages = 0,
1262                .nr_migratepages = 0,
1263                .order = order,
1264                .gfp_mask = gfp_mask,
1265                .zone = zone,
1266                .mode = mode,
1267        };
1268        INIT_LIST_HEAD(&cc.freepages);
1269        INIT_LIST_HEAD(&cc.migratepages);
1270
1271        ret = compact_zone(zone, &cc);
1272
1273        VM_BUG_ON(!list_empty(&cc.freepages));
1274        VM_BUG_ON(!list_empty(&cc.migratepages));
1275
1276        *contended = cc.contended;
1277        return ret;
1278}
1279
1280int sysctl_extfrag_threshold = 500;
1281
1282/**
1283 * try_to_compact_pages - Direct compact to satisfy a high-order allocation
1284 * @zonelist: The zonelist used for the current allocation
1285 * @order: The order of the current allocation
1286 * @gfp_mask: The GFP mask of the current allocation
1287 * @nodemask: The allowed nodes to allocate from
1288 * @mode: The migration mode for async, sync light, or sync migration
1289 * @contended: Return value that determines if compaction was aborted due to
1290 *             need_resched() or lock contention
1291 * @candidate_zone: Return the zone where we think allocation should succeed
1292 *
1293 * This is the main entry point for direct page compaction.
1294 */
1295unsigned long try_to_compact_pages(struct zonelist *zonelist,
1296                        int order, gfp_t gfp_mask, nodemask_t *nodemask,
1297                        enum migrate_mode mode, int *contended,
1298                        struct zone **candidate_zone)
1299{
1300        enum zone_type high_zoneidx = gfp_zone(gfp_mask);
1301        int may_enter_fs = gfp_mask & __GFP_FS;
1302        int may_perform_io = gfp_mask & __GFP_IO;
1303        struct zoneref *z;
1304        struct zone *zone;
1305        int rc = COMPACT_DEFERRED;
1306        int alloc_flags = 0;
1307        int all_zones_contended = COMPACT_CONTENDED_LOCK; /* init for &= op */
1308
1309        *contended = COMPACT_CONTENDED_NONE;
1310
1311        /* Check if the GFP flags allow compaction */
1312        if (!order || !may_enter_fs || !may_perform_io)
1313                return COMPACT_SKIPPED;
1314
1315#ifdef CONFIG_CMA
1316        if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
1317                alloc_flags |= ALLOC_CMA;
1318#endif
1319        /* Compact each zone in the list */
1320        for_each_zone_zonelist_nodemask(zone, z, zonelist, high_zoneidx,
1321                                                                nodemask) {
1322                int status;
1323                int zone_contended;
1324
1325                if (compaction_deferred(zone, order))
1326                        continue;
1327
1328                status = compact_zone_order(zone, order, gfp_mask, mode,
1329                                                        &zone_contended);
1330                rc = max(status, rc);
1331                /*
1332                 * It takes at least one zone that wasn't lock contended
1333                 * to clear all_zones_contended.
1334                 */
1335                all_zones_contended &= zone_contended;
1336
1337                /* If a normal allocation would succeed, stop compacting */
1338                if (zone_watermark_ok(zone, order, low_wmark_pages(zone), 0,
1339                                      alloc_flags)) {
1340                        *candidate_zone = zone;
1341                        /*
1342                         * We think the allocation will succeed in this zone,
1343                         * but it is not certain, hence the false. The caller
1344                         * will repeat this with true if allocation indeed
1345                         * succeeds in this zone.
1346                         */
1347                        compaction_defer_reset(zone, order, false);
1348                        /*
1349                         * It is possible that async compaction aborted due to
1350                         * need_resched() and the watermarks were ok thanks to
1351                         * somebody else freeing memory. The allocation can
1352                         * however still fail so we better signal the
1353                         * need_resched() contention anyway (this will not
1354                         * prevent the allocation attempt).
1355                         */
1356                        if (zone_contended == COMPACT_CONTENDED_SCHED)
1357                                *contended = COMPACT_CONTENDED_SCHED;
1358
1359                        goto break_loop;
1360                }
1361
1362                if (mode != MIGRATE_ASYNC) {
1363                        /*
1364                         * We think that allocation won't succeed in this zone
1365                         * so we defer compaction there. If it ends up
1366                         * succeeding after all, it will be reset.
1367                         */
1368                        defer_compaction(zone, order);
1369                }
1370
1371                /*
1372                 * We might have stopped compacting due to need_resched() in
1373                 * async compaction, or due to a fatal signal detected. In that
1374                 * case do not try further zones and signal need_resched()
1375                 * contention.
1376                 */
1377                if ((zone_contended == COMPACT_CONTENDED_SCHED)
1378                                        || fatal_signal_pending(current)) {
1379                        *contended = COMPACT_CONTENDED_SCHED;
1380                        goto break_loop;
1381                }
1382
1383                continue;
1384break_loop:
1385                /*
1386                 * We might not have tried all the zones, so  be conservative
1387                 * and assume they are not all lock contended.
1388                 */
1389                all_zones_contended = 0;
1390                break;
1391        }
1392
1393        /*
1394         * If at least one zone wasn't deferred or skipped, we report if all
1395         * zones that were tried were lock contended.
1396         */
1397        if (rc > COMPACT_SKIPPED && all_zones_contended)
1398                *contended = COMPACT_CONTENDED_LOCK;
1399
1400        return rc;
1401}
1402
1403
1404/* Compact all zones within a node */
1405static void __compact_pgdat(pg_data_t *pgdat, struct compact_control *cc)
1406{
1407        int zoneid;
1408        struct zone *zone;
1409
1410        for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
1411
1412                zone = &pgdat->node_zones[zoneid];
1413                if (!populated_zone(zone))
1414                        continue;
1415
1416                cc->nr_freepages = 0;
1417                cc->nr_migratepages = 0;
1418                cc->zone = zone;
1419                INIT_LIST_HEAD(&cc->freepages);
1420                INIT_LIST_HEAD(&cc->migratepages);
1421
1422                if (cc->order == -1 || !compaction_deferred(zone, cc->order))
1423                        compact_zone(zone, cc);
1424
1425                if (cc->order > 0) {
1426                        if (zone_watermark_ok(zone, cc->order,
1427                                                low_wmark_pages(zone), 0, 0))
1428                                compaction_defer_reset(zone, cc->order, false);
1429                }
1430
1431                VM_BUG_ON(!list_empty(&cc->freepages));
1432                VM_BUG_ON(!list_empty(&cc->migratepages));
1433        }
1434}
1435
1436void compact_pgdat(pg_data_t *pgdat, int order)
1437{
1438        struct compact_control cc = {
1439                .order = order,
1440                .mode = MIGRATE_ASYNC,
1441        };
1442
1443        if (!order)
1444                return;
1445
1446        __compact_pgdat(pgdat, &cc);
1447}
1448
1449static void compact_node(int nid)
1450{
1451        struct compact_control cc = {
1452                .order = -1,
1453                .mode = MIGRATE_SYNC,
1454                .ignore_skip_hint = true,
1455        };
1456
1457        __compact_pgdat(NODE_DATA(nid), &cc);
1458}
1459
1460/* Compact all nodes in the system */
1461static void compact_nodes(void)
1462{
1463        int nid;
1464
1465        /* Flush pending updates to the LRU lists */
1466        lru_add_drain_all();
1467
1468        for_each_online_node(nid)
1469                compact_node(nid);
1470}
1471
1472/* The written value is actually unused, all memory is compacted */
1473int sysctl_compact_memory;
1474
1475/* This is the entry point for compacting all nodes via /proc/sys/vm */
1476int sysctl_compaction_handler(struct ctl_table *table, int write,
1477                        void __user *buffer, size_t *length, loff_t *ppos)
1478{
1479        if (write)
1480                compact_nodes();
1481
1482        return 0;
1483}
1484
1485int sysctl_extfrag_handler(struct ctl_table *table, int write,
1486                        void __user *buffer, size_t *length, loff_t *ppos)
1487{
1488        proc_dointvec_minmax(table, write, buffer, length, ppos);
1489
1490        return 0;
1491}
1492
1493#if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA)
1494static ssize_t sysfs_compact_node(struct device *dev,
1495                        struct device_attribute *attr,
1496                        const char *buf, size_t count)
1497{
1498        int nid = dev->id;
1499
1500        if (nid >= 0 && nid < nr_node_ids && node_online(nid)) {
1501                /* Flush pending updates to the LRU lists */
1502                lru_add_drain_all();
1503
1504                compact_node(nid);
1505        }
1506
1507        return count;
1508}
1509static DEVICE_ATTR(compact, S_IWUSR, NULL, sysfs_compact_node);
1510
1511int compaction_register_node(struct node *node)
1512{
1513        return device_create_file(&node->dev, &dev_attr_compact);
1514}
1515
1516void compaction_unregister_node(struct node *node)
1517{
1518        return device_remove_file(&node->dev, &dev_attr_compact);
1519}
1520#endif /* CONFIG_SYSFS && CONFIG_NUMA */
1521
1522#endif /* CONFIG_COMPACTION */
1523