linux/mm/memory-failure.c
<<
>>
Prefs
   1/*
   2 * Copyright (C) 2008, 2009 Intel Corporation
   3 * Authors: Andi Kleen, Fengguang Wu
   4 *
   5 * This software may be redistributed and/or modified under the terms of
   6 * the GNU General Public License ("GPL") version 2 only as published by the
   7 * Free Software Foundation.
   8 *
   9 * High level machine check handler. Handles pages reported by the
  10 * hardware as being corrupted usually due to a multi-bit ECC memory or cache
  11 * failure.
  12 * 
  13 * In addition there is a "soft offline" entry point that allows stop using
  14 * not-yet-corrupted-by-suspicious pages without killing anything.
  15 *
  16 * Handles page cache pages in various states.  The tricky part
  17 * here is that we can access any page asynchronously in respect to 
  18 * other VM users, because memory failures could happen anytime and 
  19 * anywhere. This could violate some of their assumptions. This is why 
  20 * this code has to be extremely careful. Generally it tries to use 
  21 * normal locking rules, as in get the standard locks, even if that means 
  22 * the error handling takes potentially a long time.
  23 * 
  24 * There are several operations here with exponential complexity because
  25 * of unsuitable VM data structures. For example the operation to map back 
  26 * from RMAP chains to processes has to walk the complete process list and 
  27 * has non linear complexity with the number. But since memory corruptions
  28 * are rare we hope to get away with this. This avoids impacting the core 
  29 * VM.
  30 */
  31
  32/*
  33 * Notebook:
  34 * - hugetlb needs more code
  35 * - kcore/oldmem/vmcore/mem/kmem check for hwpoison pages
  36 * - pass bad pages to kdump next kernel
  37 */
  38#include <linux/kernel.h>
  39#include <linux/mm.h>
  40#include <linux/page-flags.h>
  41#include <linux/kernel-page-flags.h>
  42#include <linux/sched.h>
  43#include <linux/ksm.h>
  44#include <linux/rmap.h>
  45#include <linux/export.h>
  46#include <linux/pagemap.h>
  47#include <linux/swap.h>
  48#include <linux/backing-dev.h>
  49#include <linux/migrate.h>
  50#include <linux/page-isolation.h>
  51#include <linux/suspend.h>
  52#include <linux/slab.h>
  53#include <linux/swapops.h>
  54#include <linux/hugetlb.h>
  55#include <linux/memory_hotplug.h>
  56#include <linux/mm_inline.h>
  57#include <linux/kfifo.h>
  58#include "internal.h"
  59
  60int sysctl_memory_failure_early_kill __read_mostly = 0;
  61
  62int sysctl_memory_failure_recovery __read_mostly = 1;
  63
  64atomic_long_t num_poisoned_pages __read_mostly = ATOMIC_LONG_INIT(0);
  65
  66#if defined(CONFIG_HWPOISON_INJECT) || defined(CONFIG_HWPOISON_INJECT_MODULE)
  67
  68u32 hwpoison_filter_enable = 0;
  69u32 hwpoison_filter_dev_major = ~0U;
  70u32 hwpoison_filter_dev_minor = ~0U;
  71u64 hwpoison_filter_flags_mask;
  72u64 hwpoison_filter_flags_value;
  73EXPORT_SYMBOL_GPL(hwpoison_filter_enable);
  74EXPORT_SYMBOL_GPL(hwpoison_filter_dev_major);
  75EXPORT_SYMBOL_GPL(hwpoison_filter_dev_minor);
  76EXPORT_SYMBOL_GPL(hwpoison_filter_flags_mask);
  77EXPORT_SYMBOL_GPL(hwpoison_filter_flags_value);
  78
  79static int hwpoison_filter_dev(struct page *p)
  80{
  81        struct address_space *mapping;
  82        dev_t dev;
  83
  84        if (hwpoison_filter_dev_major == ~0U &&
  85            hwpoison_filter_dev_minor == ~0U)
  86                return 0;
  87
  88        /*
  89         * page_mapping() does not accept slab pages.
  90         */
  91        if (PageSlab(p))
  92                return -EINVAL;
  93
  94        mapping = page_mapping(p);
  95        if (mapping == NULL || mapping->host == NULL)
  96                return -EINVAL;
  97
  98        dev = mapping->host->i_sb->s_dev;
  99        if (hwpoison_filter_dev_major != ~0U &&
 100            hwpoison_filter_dev_major != MAJOR(dev))
 101                return -EINVAL;
 102        if (hwpoison_filter_dev_minor != ~0U &&
 103            hwpoison_filter_dev_minor != MINOR(dev))
 104                return -EINVAL;
 105
 106        return 0;
 107}
 108
 109static int hwpoison_filter_flags(struct page *p)
 110{
 111        if (!hwpoison_filter_flags_mask)
 112                return 0;
 113
 114        if ((stable_page_flags(p) & hwpoison_filter_flags_mask) ==
 115                                    hwpoison_filter_flags_value)
 116                return 0;
 117        else
 118                return -EINVAL;
 119}
 120
 121/*
 122 * This allows stress tests to limit test scope to a collection of tasks
 123 * by putting them under some memcg. This prevents killing unrelated/important
 124 * processes such as /sbin/init. Note that the target task may share clean
 125 * pages with init (eg. libc text), which is harmless. If the target task
 126 * share _dirty_ pages with another task B, the test scheme must make sure B
 127 * is also included in the memcg. At last, due to race conditions this filter
 128 * can only guarantee that the page either belongs to the memcg tasks, or is
 129 * a freed page.
 130 */
 131#ifdef  CONFIG_MEMCG_SWAP
 132u64 hwpoison_filter_memcg;
 133EXPORT_SYMBOL_GPL(hwpoison_filter_memcg);
 134static int hwpoison_filter_task(struct page *p)
 135{
 136        struct mem_cgroup *mem;
 137        struct cgroup_subsys_state *css;
 138        unsigned long ino;
 139
 140        if (!hwpoison_filter_memcg)
 141                return 0;
 142
 143        mem = try_get_mem_cgroup_from_page(p);
 144        if (!mem)
 145                return -EINVAL;
 146
 147        css = mem_cgroup_css(mem);
 148        ino = cgroup_ino(css->cgroup);
 149        css_put(css);
 150
 151        if (ino != hwpoison_filter_memcg)
 152                return -EINVAL;
 153
 154        return 0;
 155}
 156#else
 157static int hwpoison_filter_task(struct page *p) { return 0; }
 158#endif
 159
 160int hwpoison_filter(struct page *p)
 161{
 162        if (!hwpoison_filter_enable)
 163                return 0;
 164
 165        if (hwpoison_filter_dev(p))
 166                return -EINVAL;
 167
 168        if (hwpoison_filter_flags(p))
 169                return -EINVAL;
 170
 171        if (hwpoison_filter_task(p))
 172                return -EINVAL;
 173
 174        return 0;
 175}
 176#else
 177int hwpoison_filter(struct page *p)
 178{
 179        return 0;
 180}
 181#endif
 182
 183EXPORT_SYMBOL_GPL(hwpoison_filter);
 184
 185/*
 186 * Send all the processes who have the page mapped a signal.
 187 * ``action optional'' if they are not immediately affected by the error
 188 * ``action required'' if error happened in current execution context
 189 */
 190static int kill_proc(struct task_struct *t, unsigned long addr, int trapno,
 191                        unsigned long pfn, struct page *page, int flags)
 192{
 193        struct siginfo si;
 194        int ret;
 195
 196        printk(KERN_ERR
 197                "MCE %#lx: Killing %s:%d due to hardware memory corruption\n",
 198                pfn, t->comm, t->pid);
 199        si.si_signo = SIGBUS;
 200        si.si_errno = 0;
 201        si.si_addr = (void *)addr;
 202#ifdef __ARCH_SI_TRAPNO
 203        si.si_trapno = trapno;
 204#endif
 205        si.si_addr_lsb = compound_order(compound_head(page)) + PAGE_SHIFT;
 206
 207        if ((flags & MF_ACTION_REQUIRED) && t->mm == current->mm) {
 208                si.si_code = BUS_MCEERR_AR;
 209                ret = force_sig_info(SIGBUS, &si, current);
 210        } else {
 211                /*
 212                 * Don't use force here, it's convenient if the signal
 213                 * can be temporarily blocked.
 214                 * This could cause a loop when the user sets SIGBUS
 215                 * to SIG_IGN, but hopefully no one will do that?
 216                 */
 217                si.si_code = BUS_MCEERR_AO;
 218                ret = send_sig_info(SIGBUS, &si, t);  /* synchronous? */
 219        }
 220        if (ret < 0)
 221                printk(KERN_INFO "MCE: Error sending signal to %s:%d: %d\n",
 222                       t->comm, t->pid, ret);
 223        return ret;
 224}
 225
 226/*
 227 * When a unknown page type is encountered drain as many buffers as possible
 228 * in the hope to turn the page into a LRU or free page, which we can handle.
 229 */
 230void shake_page(struct page *p, int access)
 231{
 232        if (!PageSlab(p)) {
 233                lru_add_drain_all();
 234                if (PageLRU(p))
 235                        return;
 236                drain_all_pages();
 237                if (PageLRU(p) || is_free_buddy_page(p))
 238                        return;
 239        }
 240
 241        /*
 242         * Only call shrink_slab here (which would also shrink other caches) if
 243         * access is not potentially fatal.
 244         */
 245        if (access) {
 246                int nr;
 247                int nid = page_to_nid(p);
 248                do {
 249                        struct shrink_control shrink = {
 250                                .gfp_mask = GFP_KERNEL,
 251                        };
 252                        node_set(nid, shrink.nodes_to_scan);
 253
 254                        nr = shrink_slab(&shrink, 1000, 1000);
 255                        if (page_count(p) == 1)
 256                                break;
 257                } while (nr > 10);
 258        }
 259}
 260EXPORT_SYMBOL_GPL(shake_page);
 261
 262/*
 263 * Kill all processes that have a poisoned page mapped and then isolate
 264 * the page.
 265 *
 266 * General strategy:
 267 * Find all processes having the page mapped and kill them.
 268 * But we keep a page reference around so that the page is not
 269 * actually freed yet.
 270 * Then stash the page away
 271 *
 272 * There's no convenient way to get back to mapped processes
 273 * from the VMAs. So do a brute-force search over all
 274 * running processes.
 275 *
 276 * Remember that machine checks are not common (or rather
 277 * if they are common you have other problems), so this shouldn't
 278 * be a performance issue.
 279 *
 280 * Also there are some races possible while we get from the
 281 * error detection to actually handle it.
 282 */
 283
 284struct to_kill {
 285        struct list_head nd;
 286        struct task_struct *tsk;
 287        unsigned long addr;
 288        char addr_valid;
 289};
 290
 291/*
 292 * Failure handling: if we can't find or can't kill a process there's
 293 * not much we can do.  We just print a message and ignore otherwise.
 294 */
 295
 296/*
 297 * Schedule a process for later kill.
 298 * Uses GFP_ATOMIC allocations to avoid potential recursions in the VM.
 299 * TBD would GFP_NOIO be enough?
 300 */
 301static void add_to_kill(struct task_struct *tsk, struct page *p,
 302                       struct vm_area_struct *vma,
 303                       struct list_head *to_kill,
 304                       struct to_kill **tkc)
 305{
 306        struct to_kill *tk;
 307
 308        if (*tkc) {
 309                tk = *tkc;
 310                *tkc = NULL;
 311        } else {
 312                tk = kmalloc(sizeof(struct to_kill), GFP_ATOMIC);
 313                if (!tk) {
 314                        printk(KERN_ERR
 315                "MCE: Out of memory while machine check handling\n");
 316                        return;
 317                }
 318        }
 319        tk->addr = page_address_in_vma(p, vma);
 320        tk->addr_valid = 1;
 321
 322        /*
 323         * In theory we don't have to kill when the page was
 324         * munmaped. But it could be also a mremap. Since that's
 325         * likely very rare kill anyways just out of paranoia, but use
 326         * a SIGKILL because the error is not contained anymore.
 327         */
 328        if (tk->addr == -EFAULT) {
 329                pr_info("MCE: Unable to find user space address %lx in %s\n",
 330                        page_to_pfn(p), tsk->comm);
 331                tk->addr_valid = 0;
 332        }
 333        get_task_struct(tsk);
 334        tk->tsk = tsk;
 335        list_add_tail(&tk->nd, to_kill);
 336}
 337
 338/*
 339 * Kill the processes that have been collected earlier.
 340 *
 341 * Only do anything when DOIT is set, otherwise just free the list
 342 * (this is used for clean pages which do not need killing)
 343 * Also when FAIL is set do a force kill because something went
 344 * wrong earlier.
 345 */
 346static void kill_procs(struct list_head *to_kill, int forcekill, int trapno,
 347                          int fail, struct page *page, unsigned long pfn,
 348                          int flags)
 349{
 350        struct to_kill *tk, *next;
 351
 352        list_for_each_entry_safe (tk, next, to_kill, nd) {
 353                if (forcekill) {
 354                        /*
 355                         * In case something went wrong with munmapping
 356                         * make sure the process doesn't catch the
 357                         * signal and then access the memory. Just kill it.
 358                         */
 359                        if (fail || tk->addr_valid == 0) {
 360                                printk(KERN_ERR
 361                "MCE %#lx: forcibly killing %s:%d because of failure to unmap corrupted page\n",
 362                                        pfn, tk->tsk->comm, tk->tsk->pid);
 363                                force_sig(SIGKILL, tk->tsk);
 364                        }
 365
 366                        /*
 367                         * In theory the process could have mapped
 368                         * something else on the address in-between. We could
 369                         * check for that, but we need to tell the
 370                         * process anyways.
 371                         */
 372                        else if (kill_proc(tk->tsk, tk->addr, trapno,
 373                                              pfn, page, flags) < 0)
 374                                printk(KERN_ERR
 375                "MCE %#lx: Cannot send advisory machine check signal to %s:%d\n",
 376                                        pfn, tk->tsk->comm, tk->tsk->pid);
 377                }
 378                put_task_struct(tk->tsk);
 379                kfree(tk);
 380        }
 381}
 382
 383/*
 384 * Find a dedicated thread which is supposed to handle SIGBUS(BUS_MCEERR_AO)
 385 * on behalf of the thread group. Return task_struct of the (first found)
 386 * dedicated thread if found, and return NULL otherwise.
 387 *
 388 * We already hold read_lock(&tasklist_lock) in the caller, so we don't
 389 * have to call rcu_read_lock/unlock() in this function.
 390 */
 391static struct task_struct *find_early_kill_thread(struct task_struct *tsk)
 392{
 393        struct task_struct *t;
 394
 395        for_each_thread(tsk, t)
 396                if ((t->flags & PF_MCE_PROCESS) && (t->flags & PF_MCE_EARLY))
 397                        return t;
 398        return NULL;
 399}
 400
 401/*
 402 * Determine whether a given process is "early kill" process which expects
 403 * to be signaled when some page under the process is hwpoisoned.
 404 * Return task_struct of the dedicated thread (main thread unless explicitly
 405 * specified) if the process is "early kill," and otherwise returns NULL.
 406 */
 407static struct task_struct *task_early_kill(struct task_struct *tsk,
 408                                           int force_early)
 409{
 410        struct task_struct *t;
 411        if (!tsk->mm)
 412                return NULL;
 413        if (force_early)
 414                return tsk;
 415        t = find_early_kill_thread(tsk);
 416        if (t)
 417                return t;
 418        if (sysctl_memory_failure_early_kill)
 419                return tsk;
 420        return NULL;
 421}
 422
 423/*
 424 * Collect processes when the error hit an anonymous page.
 425 */
 426static void collect_procs_anon(struct page *page, struct list_head *to_kill,
 427                              struct to_kill **tkc, int force_early)
 428{
 429        struct vm_area_struct *vma;
 430        struct task_struct *tsk;
 431        struct anon_vma *av;
 432        pgoff_t pgoff;
 433
 434        av = page_lock_anon_vma_read(page);
 435        if (av == NULL) /* Not actually mapped anymore */
 436                return;
 437
 438        pgoff = page_to_pgoff(page);
 439        read_lock(&tasklist_lock);
 440        for_each_process (tsk) {
 441                struct anon_vma_chain *vmac;
 442                struct task_struct *t = task_early_kill(tsk, force_early);
 443
 444                if (!t)
 445                        continue;
 446                anon_vma_interval_tree_foreach(vmac, &av->rb_root,
 447                                               pgoff, pgoff) {
 448                        vma = vmac->vma;
 449                        if (!page_mapped_in_vma(page, vma))
 450                                continue;
 451                        if (vma->vm_mm == t->mm)
 452                                add_to_kill(t, page, vma, to_kill, tkc);
 453                }
 454        }
 455        read_unlock(&tasklist_lock);
 456        page_unlock_anon_vma_read(av);
 457}
 458
 459/*
 460 * Collect processes when the error hit a file mapped page.
 461 */
 462static void collect_procs_file(struct page *page, struct list_head *to_kill,
 463                              struct to_kill **tkc, int force_early)
 464{
 465        struct vm_area_struct *vma;
 466        struct task_struct *tsk;
 467        struct address_space *mapping = page->mapping;
 468
 469        mutex_lock(&mapping->i_mmap_mutex);
 470        read_lock(&tasklist_lock);
 471        for_each_process(tsk) {
 472                pgoff_t pgoff = page_to_pgoff(page);
 473                struct task_struct *t = task_early_kill(tsk, force_early);
 474
 475                if (!t)
 476                        continue;
 477                vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff,
 478                                      pgoff) {
 479                        /*
 480                         * Send early kill signal to tasks where a vma covers
 481                         * the page but the corrupted page is not necessarily
 482                         * mapped it in its pte.
 483                         * Assume applications who requested early kill want
 484                         * to be informed of all such data corruptions.
 485                         */
 486                        if (vma->vm_mm == t->mm)
 487                                add_to_kill(t, page, vma, to_kill, tkc);
 488                }
 489        }
 490        read_unlock(&tasklist_lock);
 491        mutex_unlock(&mapping->i_mmap_mutex);
 492}
 493
 494/*
 495 * Collect the processes who have the corrupted page mapped to kill.
 496 * This is done in two steps for locking reasons.
 497 * First preallocate one tokill structure outside the spin locks,
 498 * so that we can kill at least one process reasonably reliable.
 499 */
 500static void collect_procs(struct page *page, struct list_head *tokill,
 501                                int force_early)
 502{
 503        struct to_kill *tk;
 504
 505        if (!page->mapping)
 506                return;
 507
 508        tk = kmalloc(sizeof(struct to_kill), GFP_NOIO);
 509        if (!tk)
 510                return;
 511        if (PageAnon(page))
 512                collect_procs_anon(page, tokill, &tk, force_early);
 513        else
 514                collect_procs_file(page, tokill, &tk, force_early);
 515        kfree(tk);
 516}
 517
 518/*
 519 * Error handlers for various types of pages.
 520 */
 521
 522enum outcome {
 523        IGNORED,        /* Error: cannot be handled */
 524        FAILED,         /* Error: handling failed */
 525        DELAYED,        /* Will be handled later */
 526        RECOVERED,      /* Successfully recovered */
 527};
 528
 529static const char *action_name[] = {
 530        [IGNORED] = "Ignored",
 531        [FAILED] = "Failed",
 532        [DELAYED] = "Delayed",
 533        [RECOVERED] = "Recovered",
 534};
 535
 536/*
 537 * XXX: It is possible that a page is isolated from LRU cache,
 538 * and then kept in swap cache or failed to remove from page cache.
 539 * The page count will stop it from being freed by unpoison.
 540 * Stress tests should be aware of this memory leak problem.
 541 */
 542static int delete_from_lru_cache(struct page *p)
 543{
 544        if (!isolate_lru_page(p)) {
 545                /*
 546                 * Clear sensible page flags, so that the buddy system won't
 547                 * complain when the page is unpoison-and-freed.
 548                 */
 549                ClearPageActive(p);
 550                ClearPageUnevictable(p);
 551                /*
 552                 * drop the page count elevated by isolate_lru_page()
 553                 */
 554                page_cache_release(p);
 555                return 0;
 556        }
 557        return -EIO;
 558}
 559
 560/*
 561 * Error hit kernel page.
 562 * Do nothing, try to be lucky and not touch this instead. For a few cases we
 563 * could be more sophisticated.
 564 */
 565static int me_kernel(struct page *p, unsigned long pfn)
 566{
 567        return IGNORED;
 568}
 569
 570/*
 571 * Page in unknown state. Do nothing.
 572 */
 573static int me_unknown(struct page *p, unsigned long pfn)
 574{
 575        printk(KERN_ERR "MCE %#lx: Unknown page state\n", pfn);
 576        return FAILED;
 577}
 578
 579/*
 580 * Clean (or cleaned) page cache page.
 581 */
 582static int me_pagecache_clean(struct page *p, unsigned long pfn)
 583{
 584        int err;
 585        int ret = FAILED;
 586        struct address_space *mapping;
 587
 588        delete_from_lru_cache(p);
 589
 590        /*
 591         * For anonymous pages we're done the only reference left
 592         * should be the one m_f() holds.
 593         */
 594        if (PageAnon(p))
 595                return RECOVERED;
 596
 597        /*
 598         * Now truncate the page in the page cache. This is really
 599         * more like a "temporary hole punch"
 600         * Don't do this for block devices when someone else
 601         * has a reference, because it could be file system metadata
 602         * and that's not safe to truncate.
 603         */
 604        mapping = page_mapping(p);
 605        if (!mapping) {
 606                /*
 607                 * Page has been teared down in the meanwhile
 608                 */
 609                return FAILED;
 610        }
 611
 612        /*
 613         * Truncation is a bit tricky. Enable it per file system for now.
 614         *
 615         * Open: to take i_mutex or not for this? Right now we don't.
 616         */
 617        if (mapping->a_ops->error_remove_page) {
 618                err = mapping->a_ops->error_remove_page(mapping, p);
 619                if (err != 0) {
 620                        printk(KERN_INFO "MCE %#lx: Failed to punch page: %d\n",
 621                                        pfn, err);
 622                } else if (page_has_private(p) &&
 623                                !try_to_release_page(p, GFP_NOIO)) {
 624                        pr_info("MCE %#lx: failed to release buffers\n", pfn);
 625                } else {
 626                        ret = RECOVERED;
 627                }
 628        } else {
 629                /*
 630                 * If the file system doesn't support it just invalidate
 631                 * This fails on dirty or anything with private pages
 632                 */
 633                if (invalidate_inode_page(p))
 634                        ret = RECOVERED;
 635                else
 636                        printk(KERN_INFO "MCE %#lx: Failed to invalidate\n",
 637                                pfn);
 638        }
 639        return ret;
 640}
 641
 642/*
 643 * Dirty pagecache page
 644 * Issues: when the error hit a hole page the error is not properly
 645 * propagated.
 646 */
 647static int me_pagecache_dirty(struct page *p, unsigned long pfn)
 648{
 649        struct address_space *mapping = page_mapping(p);
 650
 651        SetPageError(p);
 652        /* TBD: print more information about the file. */
 653        if (mapping) {
 654                /*
 655                 * IO error will be reported by write(), fsync(), etc.
 656                 * who check the mapping.
 657                 * This way the application knows that something went
 658                 * wrong with its dirty file data.
 659                 *
 660                 * There's one open issue:
 661                 *
 662                 * The EIO will be only reported on the next IO
 663                 * operation and then cleared through the IO map.
 664                 * Normally Linux has two mechanisms to pass IO error
 665                 * first through the AS_EIO flag in the address space
 666                 * and then through the PageError flag in the page.
 667                 * Since we drop pages on memory failure handling the
 668                 * only mechanism open to use is through AS_AIO.
 669                 *
 670                 * This has the disadvantage that it gets cleared on
 671                 * the first operation that returns an error, while
 672                 * the PageError bit is more sticky and only cleared
 673                 * when the page is reread or dropped.  If an
 674                 * application assumes it will always get error on
 675                 * fsync, but does other operations on the fd before
 676                 * and the page is dropped between then the error
 677                 * will not be properly reported.
 678                 *
 679                 * This can already happen even without hwpoisoned
 680                 * pages: first on metadata IO errors (which only
 681                 * report through AS_EIO) or when the page is dropped
 682                 * at the wrong time.
 683                 *
 684                 * So right now we assume that the application DTRT on
 685                 * the first EIO, but we're not worse than other parts
 686                 * of the kernel.
 687                 */
 688                mapping_set_error(mapping, EIO);
 689        }
 690
 691        return me_pagecache_clean(p, pfn);
 692}
 693
 694/*
 695 * Clean and dirty swap cache.
 696 *
 697 * Dirty swap cache page is tricky to handle. The page could live both in page
 698 * cache and swap cache(ie. page is freshly swapped in). So it could be
 699 * referenced concurrently by 2 types of PTEs:
 700 * normal PTEs and swap PTEs. We try to handle them consistently by calling
 701 * try_to_unmap(TTU_IGNORE_HWPOISON) to convert the normal PTEs to swap PTEs,
 702 * and then
 703 *      - clear dirty bit to prevent IO
 704 *      - remove from LRU
 705 *      - but keep in the swap cache, so that when we return to it on
 706 *        a later page fault, we know the application is accessing
 707 *        corrupted data and shall be killed (we installed simple
 708 *        interception code in do_swap_page to catch it).
 709 *
 710 * Clean swap cache pages can be directly isolated. A later page fault will
 711 * bring in the known good data from disk.
 712 */
 713static int me_swapcache_dirty(struct page *p, unsigned long pfn)
 714{
 715        ClearPageDirty(p);
 716        /* Trigger EIO in shmem: */
 717        ClearPageUptodate(p);
 718
 719        if (!delete_from_lru_cache(p))
 720                return DELAYED;
 721        else
 722                return FAILED;
 723}
 724
 725static int me_swapcache_clean(struct page *p, unsigned long pfn)
 726{
 727        delete_from_swap_cache(p);
 728
 729        if (!delete_from_lru_cache(p))
 730                return RECOVERED;
 731        else
 732                return FAILED;
 733}
 734
 735/*
 736 * Huge pages. Needs work.
 737 * Issues:
 738 * - Error on hugepage is contained in hugepage unit (not in raw page unit.)
 739 *   To narrow down kill region to one page, we need to break up pmd.
 740 */
 741static int me_huge_page(struct page *p, unsigned long pfn)
 742{
 743        int res = 0;
 744        struct page *hpage = compound_head(p);
 745        /*
 746         * We can safely recover from error on free or reserved (i.e.
 747         * not in-use) hugepage by dequeuing it from freelist.
 748         * To check whether a hugepage is in-use or not, we can't use
 749         * page->lru because it can be used in other hugepage operations,
 750         * such as __unmap_hugepage_range() and gather_surplus_pages().
 751         * So instead we use page_mapping() and PageAnon().
 752         * We assume that this function is called with page lock held,
 753         * so there is no race between isolation and mapping/unmapping.
 754         */
 755        if (!(page_mapping(hpage) || PageAnon(hpage))) {
 756                res = dequeue_hwpoisoned_huge_page(hpage);
 757                if (!res)
 758                        return RECOVERED;
 759        }
 760        return DELAYED;
 761}
 762
 763/*
 764 * Various page states we can handle.
 765 *
 766 * A page state is defined by its current page->flags bits.
 767 * The table matches them in order and calls the right handler.
 768 *
 769 * This is quite tricky because we can access page at any time
 770 * in its live cycle, so all accesses have to be extremely careful.
 771 *
 772 * This is not complete. More states could be added.
 773 * For any missing state don't attempt recovery.
 774 */
 775
 776#define dirty           (1UL << PG_dirty)
 777#define sc              (1UL << PG_swapcache)
 778#define unevict         (1UL << PG_unevictable)
 779#define mlock           (1UL << PG_mlocked)
 780#define writeback       (1UL << PG_writeback)
 781#define lru             (1UL << PG_lru)
 782#define swapbacked      (1UL << PG_swapbacked)
 783#define head            (1UL << PG_head)
 784#define tail            (1UL << PG_tail)
 785#define compound        (1UL << PG_compound)
 786#define slab            (1UL << PG_slab)
 787#define reserved        (1UL << PG_reserved)
 788
 789static struct page_state {
 790        unsigned long mask;
 791        unsigned long res;
 792        char *msg;
 793        int (*action)(struct page *p, unsigned long pfn);
 794} error_states[] = {
 795        { reserved,     reserved,       "reserved kernel",      me_kernel },
 796        /*
 797         * free pages are specially detected outside this table:
 798         * PG_buddy pages only make a small fraction of all free pages.
 799         */
 800
 801        /*
 802         * Could in theory check if slab page is free or if we can drop
 803         * currently unused objects without touching them. But just
 804         * treat it as standard kernel for now.
 805         */
 806        { slab,         slab,           "kernel slab",  me_kernel },
 807
 808#ifdef CONFIG_PAGEFLAGS_EXTENDED
 809        { head,         head,           "huge",         me_huge_page },
 810        { tail,         tail,           "huge",         me_huge_page },
 811#else
 812        { compound,     compound,       "huge",         me_huge_page },
 813#endif
 814
 815        { sc|dirty,     sc|dirty,       "dirty swapcache",      me_swapcache_dirty },
 816        { sc|dirty,     sc,             "clean swapcache",      me_swapcache_clean },
 817
 818        { mlock|dirty,  mlock|dirty,    "dirty mlocked LRU",    me_pagecache_dirty },
 819        { mlock|dirty,  mlock,          "clean mlocked LRU",    me_pagecache_clean },
 820
 821        { unevict|dirty, unevict|dirty, "dirty unevictable LRU", me_pagecache_dirty },
 822        { unevict|dirty, unevict,       "clean unevictable LRU", me_pagecache_clean },
 823
 824        { lru|dirty,    lru|dirty,      "dirty LRU",    me_pagecache_dirty },
 825        { lru|dirty,    lru,            "clean LRU",    me_pagecache_clean },
 826
 827        /*
 828         * Catchall entry: must be at end.
 829         */
 830        { 0,            0,              "unknown page state",   me_unknown },
 831};
 832
 833#undef dirty
 834#undef sc
 835#undef unevict
 836#undef mlock
 837#undef writeback
 838#undef lru
 839#undef swapbacked
 840#undef head
 841#undef tail
 842#undef compound
 843#undef slab
 844#undef reserved
 845
 846/*
 847 * "Dirty/Clean" indication is not 100% accurate due to the possibility of
 848 * setting PG_dirty outside page lock. See also comment above set_page_dirty().
 849 */
 850static void action_result(unsigned long pfn, char *msg, int result)
 851{
 852        pr_err("MCE %#lx: %s page recovery: %s\n",
 853                pfn, msg, action_name[result]);
 854}
 855
 856static int page_action(struct page_state *ps, struct page *p,
 857                        unsigned long pfn)
 858{
 859        int result;
 860        int count;
 861
 862        result = ps->action(p, pfn);
 863        action_result(pfn, ps->msg, result);
 864
 865        count = page_count(p) - 1;
 866        if (ps->action == me_swapcache_dirty && result == DELAYED)
 867                count--;
 868        if (count != 0) {
 869                printk(KERN_ERR
 870                       "MCE %#lx: %s page still referenced by %d users\n",
 871                       pfn, ps->msg, count);
 872                result = FAILED;
 873        }
 874
 875        /* Could do more checks here if page looks ok */
 876        /*
 877         * Could adjust zone counters here to correct for the missing page.
 878         */
 879
 880        return (result == RECOVERED || result == DELAYED) ? 0 : -EBUSY;
 881}
 882
 883/*
 884 * Do all that is necessary to remove user space mappings. Unmap
 885 * the pages and send SIGBUS to the processes if the data was dirty.
 886 */
 887static int hwpoison_user_mappings(struct page *p, unsigned long pfn,
 888                                  int trapno, int flags, struct page **hpagep)
 889{
 890        enum ttu_flags ttu = TTU_UNMAP | TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS;
 891        struct address_space *mapping;
 892        LIST_HEAD(tokill);
 893        int ret;
 894        int kill = 1, forcekill;
 895        struct page *hpage = *hpagep;
 896        struct page *ppage;
 897
 898        /*
 899         * Here we are interested only in user-mapped pages, so skip any
 900         * other types of pages.
 901         */
 902        if (PageReserved(p) || PageSlab(p))
 903                return SWAP_SUCCESS;
 904        if (!(PageLRU(hpage) || PageHuge(p)))
 905                return SWAP_SUCCESS;
 906
 907        /*
 908         * This check implies we don't kill processes if their pages
 909         * are in the swap cache early. Those are always late kills.
 910         */
 911        if (!page_mapped(hpage))
 912                return SWAP_SUCCESS;
 913
 914        if (PageKsm(p)) {
 915                pr_err("MCE %#lx: can't handle KSM pages.\n", pfn);
 916                return SWAP_FAIL;
 917        }
 918
 919        if (PageSwapCache(p)) {
 920                printk(KERN_ERR
 921                       "MCE %#lx: keeping poisoned page in swap cache\n", pfn);
 922                ttu |= TTU_IGNORE_HWPOISON;
 923        }
 924
 925        /*
 926         * Propagate the dirty bit from PTEs to struct page first, because we
 927         * need this to decide if we should kill or just drop the page.
 928         * XXX: the dirty test could be racy: set_page_dirty() may not always
 929         * be called inside page lock (it's recommended but not enforced).
 930         */
 931        mapping = page_mapping(hpage);
 932        if (!(flags & MF_MUST_KILL) && !PageDirty(hpage) && mapping &&
 933            mapping_cap_writeback_dirty(mapping)) {
 934                if (page_mkclean(hpage)) {
 935                        SetPageDirty(hpage);
 936                } else {
 937                        kill = 0;
 938                        ttu |= TTU_IGNORE_HWPOISON;
 939                        printk(KERN_INFO
 940        "MCE %#lx: corrupted page was clean: dropped without side effects\n",
 941                                pfn);
 942                }
 943        }
 944
 945        /*
 946         * ppage: poisoned page
 947         *   if p is regular page(4k page)
 948         *        ppage == real poisoned page;
 949         *   else p is hugetlb or THP, ppage == head page.
 950         */
 951        ppage = hpage;
 952
 953        if (PageTransHuge(hpage)) {
 954                /*
 955                 * Verify that this isn't a hugetlbfs head page, the check for
 956                 * PageAnon is just for avoid tripping a split_huge_page
 957                 * internal debug check, as split_huge_page refuses to deal with
 958                 * anything that isn't an anon page. PageAnon can't go away fro
 959                 * under us because we hold a refcount on the hpage, without a
 960                 * refcount on the hpage. split_huge_page can't be safely called
 961                 * in the first place, having a refcount on the tail isn't
 962                 * enough * to be safe.
 963                 */
 964                if (!PageHuge(hpage) && PageAnon(hpage)) {
 965                        if (unlikely(split_huge_page(hpage))) {
 966                                /*
 967                                 * FIXME: if splitting THP is failed, it is
 968                                 * better to stop the following operation rather
 969                                 * than causing panic by unmapping. System might
 970                                 * survive if the page is freed later.
 971                                 */
 972                                printk(KERN_INFO
 973                                        "MCE %#lx: failed to split THP\n", pfn);
 974
 975                                BUG_ON(!PageHWPoison(p));
 976                                return SWAP_FAIL;
 977                        }
 978                        /*
 979                         * We pinned the head page for hwpoison handling,
 980                         * now we split the thp and we are interested in
 981                         * the hwpoisoned raw page, so move the refcount
 982                         * to it. Similarly, page lock is shifted.
 983                         */
 984                        if (hpage != p) {
 985                                if (!(flags & MF_COUNT_INCREASED)) {
 986                                        put_page(hpage);
 987                                        get_page(p);
 988                                }
 989                                lock_page(p);
 990                                unlock_page(hpage);
 991                                *hpagep = p;
 992                        }
 993                        /* THP is split, so ppage should be the real poisoned page. */
 994                        ppage = p;
 995                }
 996        }
 997
 998        /*
 999         * First collect all the processes that have the page
1000         * mapped in dirty form.  This has to be done before try_to_unmap,
1001         * because ttu takes the rmap data structures down.
1002         *
1003         * Error handling: We ignore errors here because
1004         * there's nothing that can be done.
1005         */
1006        if (kill)
1007                collect_procs(ppage, &tokill, flags & MF_ACTION_REQUIRED);
1008
1009        ret = try_to_unmap(ppage, ttu);
1010        if (ret != SWAP_SUCCESS)
1011                printk(KERN_ERR "MCE %#lx: failed to unmap page (mapcount=%d)\n",
1012                                pfn, page_mapcount(ppage));
1013
1014        /*
1015         * Now that the dirty bit has been propagated to the
1016         * struct page and all unmaps done we can decide if
1017         * killing is needed or not.  Only kill when the page
1018         * was dirty or the process is not restartable,
1019         * otherwise the tokill list is merely
1020         * freed.  When there was a problem unmapping earlier
1021         * use a more force-full uncatchable kill to prevent
1022         * any accesses to the poisoned memory.
1023         */
1024        forcekill = PageDirty(ppage) || (flags & MF_MUST_KILL);
1025        kill_procs(&tokill, forcekill, trapno,
1026                      ret != SWAP_SUCCESS, p, pfn, flags);
1027
1028        return ret;
1029}
1030
1031static void set_page_hwpoison_huge_page(struct page *hpage)
1032{
1033        int i;
1034        int nr_pages = 1 << compound_order(hpage);
1035        for (i = 0; i < nr_pages; i++)
1036                SetPageHWPoison(hpage + i);
1037}
1038
1039static void clear_page_hwpoison_huge_page(struct page *hpage)
1040{
1041        int i;
1042        int nr_pages = 1 << compound_order(hpage);
1043        for (i = 0; i < nr_pages; i++)
1044                ClearPageHWPoison(hpage + i);
1045}
1046
1047/**
1048 * memory_failure - Handle memory failure of a page.
1049 * @pfn: Page Number of the corrupted page
1050 * @trapno: Trap number reported in the signal to user space.
1051 * @flags: fine tune action taken
1052 *
1053 * This function is called by the low level machine check code
1054 * of an architecture when it detects hardware memory corruption
1055 * of a page. It tries its best to recover, which includes
1056 * dropping pages, killing processes etc.
1057 *
1058 * The function is primarily of use for corruptions that
1059 * happen outside the current execution context (e.g. when
1060 * detected by a background scrubber)
1061 *
1062 * Must run in process context (e.g. a work queue) with interrupts
1063 * enabled and no spinlocks hold.
1064 */
1065int memory_failure(unsigned long pfn, int trapno, int flags)
1066{
1067        struct page_state *ps;
1068        struct page *p;
1069        struct page *hpage;
1070        int res;
1071        unsigned int nr_pages;
1072        unsigned long page_flags;
1073
1074        if (!sysctl_memory_failure_recovery)
1075                panic("Memory failure from trap %d on page %lx", trapno, pfn);
1076
1077        if (!pfn_valid(pfn)) {
1078                printk(KERN_ERR
1079                       "MCE %#lx: memory outside kernel control\n",
1080                       pfn);
1081                return -ENXIO;
1082        }
1083
1084        p = pfn_to_page(pfn);
1085        hpage = compound_head(p);
1086        if (TestSetPageHWPoison(p)) {
1087                printk(KERN_ERR "MCE %#lx: already hardware poisoned\n", pfn);
1088                return 0;
1089        }
1090
1091        /*
1092         * Currently errors on hugetlbfs pages are measured in hugepage units,
1093         * so nr_pages should be 1 << compound_order.  OTOH when errors are on
1094         * transparent hugepages, they are supposed to be split and error
1095         * measurement is done in normal page units.  So nr_pages should be one
1096         * in this case.
1097         */
1098        if (PageHuge(p))
1099                nr_pages = 1 << compound_order(hpage);
1100        else /* normal page or thp */
1101                nr_pages = 1;
1102        atomic_long_add(nr_pages, &num_poisoned_pages);
1103
1104        /*
1105         * We need/can do nothing about count=0 pages.
1106         * 1) it's a free page, and therefore in safe hand:
1107         *    prep_new_page() will be the gate keeper.
1108         * 2) it's a free hugepage, which is also safe:
1109         *    an affected hugepage will be dequeued from hugepage freelist,
1110         *    so there's no concern about reusing it ever after.
1111         * 3) it's part of a non-compound high order page.
1112         *    Implies some kernel user: cannot stop them from
1113         *    R/W the page; let's pray that the page has been
1114         *    used and will be freed some time later.
1115         * In fact it's dangerous to directly bump up page count from 0,
1116         * that may make page_freeze_refs()/page_unfreeze_refs() mismatch.
1117         */
1118        if (!(flags & MF_COUNT_INCREASED) &&
1119                !get_page_unless_zero(hpage)) {
1120                if (is_free_buddy_page(p)) {
1121                        action_result(pfn, "free buddy", DELAYED);
1122                        return 0;
1123                } else if (PageHuge(hpage)) {
1124                        /*
1125                         * Check "filter hit" and "race with other subpage."
1126                         */
1127                        lock_page(hpage);
1128                        if (PageHWPoison(hpage)) {
1129                                if ((hwpoison_filter(p) && TestClearPageHWPoison(p))
1130                                    || (p != hpage && TestSetPageHWPoison(hpage))) {
1131                                        atomic_long_sub(nr_pages, &num_poisoned_pages);
1132                                        unlock_page(hpage);
1133                                        return 0;
1134                                }
1135                        }
1136                        set_page_hwpoison_huge_page(hpage);
1137                        res = dequeue_hwpoisoned_huge_page(hpage);
1138                        action_result(pfn, "free huge",
1139                                      res ? IGNORED : DELAYED);
1140                        unlock_page(hpage);
1141                        return res;
1142                } else {
1143                        action_result(pfn, "high order kernel", IGNORED);
1144                        return -EBUSY;
1145                }
1146        }
1147
1148        /*
1149         * We ignore non-LRU pages for good reasons.
1150         * - PG_locked is only well defined for LRU pages and a few others
1151         * - to avoid races with __set_page_locked()
1152         * - to avoid races with __SetPageSlab*() (and more non-atomic ops)
1153         * The check (unnecessarily) ignores LRU pages being isolated and
1154         * walked by the page reclaim code, however that's not a big loss.
1155         */
1156        if (!PageHuge(p) && !PageTransTail(p)) {
1157                if (!PageLRU(p))
1158                        shake_page(p, 0);
1159                if (!PageLRU(p)) {
1160                        /*
1161                         * shake_page could have turned it free.
1162                         */
1163                        if (is_free_buddy_page(p)) {
1164                                if (flags & MF_COUNT_INCREASED)
1165                                        action_result(pfn, "free buddy", DELAYED);
1166                                else
1167                                        action_result(pfn, "free buddy, 2nd try", DELAYED);
1168                                return 0;
1169                        }
1170                }
1171        }
1172
1173        lock_page(hpage);
1174
1175        /*
1176         * The page could have changed compound pages during the locking.
1177         * If this happens just bail out.
1178         */
1179        if (compound_head(p) != hpage) {
1180                action_result(pfn, "different compound page after locking", IGNORED);
1181                res = -EBUSY;
1182                goto out;
1183        }
1184
1185        /*
1186         * We use page flags to determine what action should be taken, but
1187         * the flags can be modified by the error containment action.  One
1188         * example is an mlocked page, where PG_mlocked is cleared by
1189         * page_remove_rmap() in try_to_unmap_one(). So to determine page status
1190         * correctly, we save a copy of the page flags at this time.
1191         */
1192        page_flags = p->flags;
1193
1194        /*
1195         * unpoison always clear PG_hwpoison inside page lock
1196         */
1197        if (!PageHWPoison(p)) {
1198                printk(KERN_ERR "MCE %#lx: just unpoisoned\n", pfn);
1199                atomic_long_sub(nr_pages, &num_poisoned_pages);
1200                put_page(hpage);
1201                res = 0;
1202                goto out;
1203        }
1204        if (hwpoison_filter(p)) {
1205                if (TestClearPageHWPoison(p))
1206                        atomic_long_sub(nr_pages, &num_poisoned_pages);
1207                unlock_page(hpage);
1208                put_page(hpage);
1209                return 0;
1210        }
1211
1212        if (!PageHuge(p) && !PageTransTail(p) && !PageLRU(p))
1213                goto identify_page_state;
1214
1215        /*
1216         * For error on the tail page, we should set PG_hwpoison
1217         * on the head page to show that the hugepage is hwpoisoned
1218         */
1219        if (PageHuge(p) && PageTail(p) && TestSetPageHWPoison(hpage)) {
1220                action_result(pfn, "hugepage already hardware poisoned",
1221                                IGNORED);
1222                unlock_page(hpage);
1223                put_page(hpage);
1224                return 0;
1225        }
1226        /*
1227         * Set PG_hwpoison on all pages in an error hugepage,
1228         * because containment is done in hugepage unit for now.
1229         * Since we have done TestSetPageHWPoison() for the head page with
1230         * page lock held, we can safely set PG_hwpoison bits on tail pages.
1231         */
1232        if (PageHuge(p))
1233                set_page_hwpoison_huge_page(hpage);
1234
1235        /*
1236         * It's very difficult to mess with pages currently under IO
1237         * and in many cases impossible, so we just avoid it here.
1238         */
1239        wait_on_page_writeback(p);
1240
1241        /*
1242         * Now take care of user space mappings.
1243         * Abort on fail: __delete_from_page_cache() assumes unmapped page.
1244         *
1245         * When the raw error page is thp tail page, hpage points to the raw
1246         * page after thp split.
1247         */
1248        if (hwpoison_user_mappings(p, pfn, trapno, flags, &hpage)
1249            != SWAP_SUCCESS) {
1250                action_result(pfn, "unmapping failed", IGNORED);
1251                res = -EBUSY;
1252                goto out;
1253        }
1254
1255        /*
1256         * Torn down by someone else?
1257         */
1258        if (PageLRU(p) && !PageSwapCache(p) && p->mapping == NULL) {
1259                action_result(pfn, "already truncated LRU", IGNORED);
1260                res = -EBUSY;
1261                goto out;
1262        }
1263
1264identify_page_state:
1265        res = -EBUSY;
1266        /*
1267         * The first check uses the current page flags which may not have any
1268         * relevant information. The second check with the saved page flagss is
1269         * carried out only if the first check can't determine the page status.
1270         */
1271        for (ps = error_states;; ps++)
1272                if ((p->flags & ps->mask) == ps->res)
1273                        break;
1274
1275        page_flags |= (p->flags & (1UL << PG_dirty));
1276
1277        if (!ps->mask)
1278                for (ps = error_states;; ps++)
1279                        if ((page_flags & ps->mask) == ps->res)
1280                                break;
1281        res = page_action(ps, p, pfn);
1282out:
1283        unlock_page(hpage);
1284        return res;
1285}
1286EXPORT_SYMBOL_GPL(memory_failure);
1287
1288#define MEMORY_FAILURE_FIFO_ORDER       4
1289#define MEMORY_FAILURE_FIFO_SIZE        (1 << MEMORY_FAILURE_FIFO_ORDER)
1290
1291struct memory_failure_entry {
1292        unsigned long pfn;
1293        int trapno;
1294        int flags;
1295};
1296
1297struct memory_failure_cpu {
1298        DECLARE_KFIFO(fifo, struct memory_failure_entry,
1299                      MEMORY_FAILURE_FIFO_SIZE);
1300        spinlock_t lock;
1301        struct work_struct work;
1302};
1303
1304static DEFINE_PER_CPU(struct memory_failure_cpu, memory_failure_cpu);
1305
1306/**
1307 * memory_failure_queue - Schedule handling memory failure of a page.
1308 * @pfn: Page Number of the corrupted page
1309 * @trapno: Trap number reported in the signal to user space.
1310 * @flags: Flags for memory failure handling
1311 *
1312 * This function is called by the low level hardware error handler
1313 * when it detects hardware memory corruption of a page. It schedules
1314 * the recovering of error page, including dropping pages, killing
1315 * processes etc.
1316 *
1317 * The function is primarily of use for corruptions that
1318 * happen outside the current execution context (e.g. when
1319 * detected by a background scrubber)
1320 *
1321 * Can run in IRQ context.
1322 */
1323void memory_failure_queue(unsigned long pfn, int trapno, int flags)
1324{
1325        struct memory_failure_cpu *mf_cpu;
1326        unsigned long proc_flags;
1327        struct memory_failure_entry entry = {
1328                .pfn =          pfn,
1329                .trapno =       trapno,
1330                .flags =        flags,
1331        };
1332
1333        mf_cpu = &get_cpu_var(memory_failure_cpu);
1334        spin_lock_irqsave(&mf_cpu->lock, proc_flags);
1335        if (kfifo_put(&mf_cpu->fifo, entry))
1336                schedule_work_on(smp_processor_id(), &mf_cpu->work);
1337        else
1338                pr_err("Memory failure: buffer overflow when queuing memory failure at %#lx\n",
1339                       pfn);
1340        spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
1341        put_cpu_var(memory_failure_cpu);
1342}
1343EXPORT_SYMBOL_GPL(memory_failure_queue);
1344
1345static void memory_failure_work_func(struct work_struct *work)
1346{
1347        struct memory_failure_cpu *mf_cpu;
1348        struct memory_failure_entry entry = { 0, };
1349        unsigned long proc_flags;
1350        int gotten;
1351
1352        mf_cpu = this_cpu_ptr(&memory_failure_cpu);
1353        for (;;) {
1354                spin_lock_irqsave(&mf_cpu->lock, proc_flags);
1355                gotten = kfifo_get(&mf_cpu->fifo, &entry);
1356                spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
1357                if (!gotten)
1358                        break;
1359                if (entry.flags & MF_SOFT_OFFLINE)
1360                        soft_offline_page(pfn_to_page(entry.pfn), entry.flags);
1361                else
1362                        memory_failure(entry.pfn, entry.trapno, entry.flags);
1363        }
1364}
1365
1366static int __init memory_failure_init(void)
1367{
1368        struct memory_failure_cpu *mf_cpu;
1369        int cpu;
1370
1371        for_each_possible_cpu(cpu) {
1372                mf_cpu = &per_cpu(memory_failure_cpu, cpu);
1373                spin_lock_init(&mf_cpu->lock);
1374                INIT_KFIFO(mf_cpu->fifo);
1375                INIT_WORK(&mf_cpu->work, memory_failure_work_func);
1376        }
1377
1378        return 0;
1379}
1380core_initcall(memory_failure_init);
1381
1382/**
1383 * unpoison_memory - Unpoison a previously poisoned page
1384 * @pfn: Page number of the to be unpoisoned page
1385 *
1386 * Software-unpoison a page that has been poisoned by
1387 * memory_failure() earlier.
1388 *
1389 * This is only done on the software-level, so it only works
1390 * for linux injected failures, not real hardware failures
1391 *
1392 * Returns 0 for success, otherwise -errno.
1393 */
1394int unpoison_memory(unsigned long pfn)
1395{
1396        struct page *page;
1397        struct page *p;
1398        int freeit = 0;
1399        unsigned int nr_pages;
1400
1401        if (!pfn_valid(pfn))
1402                return -ENXIO;
1403
1404        p = pfn_to_page(pfn);
1405        page = compound_head(p);
1406
1407        if (!PageHWPoison(p)) {
1408                pr_info("MCE: Page was already unpoisoned %#lx\n", pfn);
1409                return 0;
1410        }
1411
1412        /*
1413         * unpoison_memory() can encounter thp only when the thp is being
1414         * worked by memory_failure() and the page lock is not held yet.
1415         * In such case, we yield to memory_failure() and make unpoison fail.
1416         */
1417        if (!PageHuge(page) && PageTransHuge(page)) {
1418                pr_info("MCE: Memory failure is now running on %#lx\n", pfn);
1419                        return 0;
1420        }
1421
1422        nr_pages = 1 << compound_order(page);
1423
1424        if (!get_page_unless_zero(page)) {
1425                /*
1426                 * Since HWPoisoned hugepage should have non-zero refcount,
1427                 * race between memory failure and unpoison seems to happen.
1428                 * In such case unpoison fails and memory failure runs
1429                 * to the end.
1430                 */
1431                if (PageHuge(page)) {
1432                        pr_info("MCE: Memory failure is now running on free hugepage %#lx\n", pfn);
1433                        return 0;
1434                }
1435                if (TestClearPageHWPoison(p))
1436                        atomic_long_dec(&num_poisoned_pages);
1437                pr_info("MCE: Software-unpoisoned free page %#lx\n", pfn);
1438                return 0;
1439        }
1440
1441        lock_page(page);
1442        /*
1443         * This test is racy because PG_hwpoison is set outside of page lock.
1444         * That's acceptable because that won't trigger kernel panic. Instead,
1445         * the PG_hwpoison page will be caught and isolated on the entrance to
1446         * the free buddy page pool.
1447         */
1448        if (TestClearPageHWPoison(page)) {
1449                pr_info("MCE: Software-unpoisoned page %#lx\n", pfn);
1450                atomic_long_sub(nr_pages, &num_poisoned_pages);
1451                freeit = 1;
1452                if (PageHuge(page))
1453                        clear_page_hwpoison_huge_page(page);
1454        }
1455        unlock_page(page);
1456
1457        put_page(page);
1458        if (freeit && !(pfn == my_zero_pfn(0) && page_count(p) == 1))
1459                put_page(page);
1460
1461        return 0;
1462}
1463EXPORT_SYMBOL(unpoison_memory);
1464
1465static struct page *new_page(struct page *p, unsigned long private, int **x)
1466{
1467        int nid = page_to_nid(p);
1468        if (PageHuge(p))
1469                return alloc_huge_page_node(page_hstate(compound_head(p)),
1470                                                   nid);
1471        else
1472                return alloc_pages_exact_node(nid, GFP_HIGHUSER_MOVABLE, 0);
1473}
1474
1475/*
1476 * Safely get reference count of an arbitrary page.
1477 * Returns 0 for a free page, -EIO for a zero refcount page
1478 * that is not free, and 1 for any other page type.
1479 * For 1 the page is returned with increased page count, otherwise not.
1480 */
1481static int __get_any_page(struct page *p, unsigned long pfn, int flags)
1482{
1483        int ret;
1484
1485        if (flags & MF_COUNT_INCREASED)
1486                return 1;
1487
1488        /*
1489         * When the target page is a free hugepage, just remove it
1490         * from free hugepage list.
1491         */
1492        if (!get_page_unless_zero(compound_head(p))) {
1493                if (PageHuge(p)) {
1494                        pr_info("%s: %#lx free huge page\n", __func__, pfn);
1495                        ret = 0;
1496                } else if (is_free_buddy_page(p)) {
1497                        pr_info("%s: %#lx free buddy page\n", __func__, pfn);
1498                        ret = 0;
1499                } else {
1500                        pr_info("%s: %#lx: unknown zero refcount page type %lx\n",
1501                                __func__, pfn, p->flags);
1502                        ret = -EIO;
1503                }
1504        } else {
1505                /* Not a free page */
1506                ret = 1;
1507        }
1508        return ret;
1509}
1510
1511static int get_any_page(struct page *page, unsigned long pfn, int flags)
1512{
1513        int ret = __get_any_page(page, pfn, flags);
1514
1515        if (ret == 1 && !PageHuge(page) && !PageLRU(page)) {
1516                /*
1517                 * Try to free it.
1518                 */
1519                put_page(page);
1520                shake_page(page, 1);
1521
1522                /*
1523                 * Did it turn free?
1524                 */
1525                ret = __get_any_page(page, pfn, 0);
1526                if (!PageLRU(page)) {
1527                        pr_info("soft_offline: %#lx: unknown non LRU page type %lx\n",
1528                                pfn, page->flags);
1529                        return -EIO;
1530                }
1531        }
1532        return ret;
1533}
1534
1535static int soft_offline_huge_page(struct page *page, int flags)
1536{
1537        int ret;
1538        unsigned long pfn = page_to_pfn(page);
1539        struct page *hpage = compound_head(page);
1540        LIST_HEAD(pagelist);
1541
1542        /*
1543         * This double-check of PageHWPoison is to avoid the race with
1544         * memory_failure(). See also comment in __soft_offline_page().
1545         */
1546        lock_page(hpage);
1547        if (PageHWPoison(hpage)) {
1548                unlock_page(hpage);
1549                put_page(hpage);
1550                pr_info("soft offline: %#lx hugepage already poisoned\n", pfn);
1551                return -EBUSY;
1552        }
1553        unlock_page(hpage);
1554
1555        /* Keep page count to indicate a given hugepage is isolated. */
1556        list_move(&hpage->lru, &pagelist);
1557        ret = migrate_pages(&pagelist, new_page, NULL, MPOL_MF_MOVE_ALL,
1558                                MIGRATE_SYNC, MR_MEMORY_FAILURE);
1559        if (ret) {
1560                pr_info("soft offline: %#lx: migration failed %d, type %lx\n",
1561                        pfn, ret, page->flags);
1562                /*
1563                 * We know that soft_offline_huge_page() tries to migrate
1564                 * only one hugepage pointed to by hpage, so we need not
1565                 * run through the pagelist here.
1566                 */
1567                putback_active_hugepage(hpage);
1568                if (ret > 0)
1569                        ret = -EIO;
1570        } else {
1571                /* overcommit hugetlb page will be freed to buddy */
1572                if (PageHuge(page)) {
1573                        set_page_hwpoison_huge_page(hpage);
1574                        dequeue_hwpoisoned_huge_page(hpage);
1575                        atomic_long_add(1 << compound_order(hpage),
1576                                        &num_poisoned_pages);
1577                } else {
1578                        SetPageHWPoison(page);
1579                        atomic_long_inc(&num_poisoned_pages);
1580                }
1581        }
1582        return ret;
1583}
1584
1585static int __soft_offline_page(struct page *page, int flags)
1586{
1587        int ret;
1588        unsigned long pfn = page_to_pfn(page);
1589
1590        /*
1591         * Check PageHWPoison again inside page lock because PageHWPoison
1592         * is set by memory_failure() outside page lock. Note that
1593         * memory_failure() also double-checks PageHWPoison inside page lock,
1594         * so there's no race between soft_offline_page() and memory_failure().
1595         */
1596        lock_page(page);
1597        wait_on_page_writeback(page);
1598        if (PageHWPoison(page)) {
1599                unlock_page(page);
1600                put_page(page);
1601                pr_info("soft offline: %#lx page already poisoned\n", pfn);
1602                return -EBUSY;
1603        }
1604        /*
1605         * Try to invalidate first. This should work for
1606         * non dirty unmapped page cache pages.
1607         */
1608        ret = invalidate_inode_page(page);
1609        unlock_page(page);
1610        /*
1611         * RED-PEN would be better to keep it isolated here, but we
1612         * would need to fix isolation locking first.
1613         */
1614        if (ret == 1) {
1615                put_page(page);
1616                pr_info("soft_offline: %#lx: invalidated\n", pfn);
1617                SetPageHWPoison(page);
1618                atomic_long_inc(&num_poisoned_pages);
1619                return 0;
1620        }
1621
1622        /*
1623         * Simple invalidation didn't work.
1624         * Try to migrate to a new page instead. migrate.c
1625         * handles a large number of cases for us.
1626         */
1627        ret = isolate_lru_page(page);
1628        /*
1629         * Drop page reference which is came from get_any_page()
1630         * successful isolate_lru_page() already took another one.
1631         */
1632        put_page(page);
1633        if (!ret) {
1634                LIST_HEAD(pagelist);
1635                inc_zone_page_state(page, NR_ISOLATED_ANON +
1636                                        page_is_file_cache(page));
1637                list_add(&page->lru, &pagelist);
1638                ret = migrate_pages(&pagelist, new_page, NULL, MPOL_MF_MOVE_ALL,
1639                                        MIGRATE_SYNC, MR_MEMORY_FAILURE);
1640                if (ret) {
1641                        if (!list_empty(&pagelist)) {
1642                                list_del(&page->lru);
1643                                dec_zone_page_state(page, NR_ISOLATED_ANON +
1644                                                page_is_file_cache(page));
1645                                putback_lru_page(page);
1646                        }
1647
1648                        pr_info("soft offline: %#lx: migration failed %d, type %lx\n",
1649                                pfn, ret, page->flags);
1650                        if (ret > 0)
1651                                ret = -EIO;
1652                } else {
1653                        /*
1654                         * After page migration succeeds, the source page can
1655                         * be trapped in pagevec and actual freeing is delayed.
1656                         * Freeing code works differently based on PG_hwpoison,
1657                         * so there's a race. We need to make sure that the
1658                         * source page should be freed back to buddy before
1659                         * setting PG_hwpoison.
1660                         */
1661                        if (!is_free_buddy_page(page))
1662                                lru_add_drain_all();
1663                        if (!is_free_buddy_page(page))
1664                                drain_all_pages();
1665                        SetPageHWPoison(page);
1666                        if (!is_free_buddy_page(page))
1667                                pr_info("soft offline: %#lx: page leaked\n",
1668                                        pfn);
1669                        atomic_long_inc(&num_poisoned_pages);
1670                }
1671        } else {
1672                pr_info("soft offline: %#lx: isolation failed: %d, page count %d, type %lx\n",
1673                        pfn, ret, page_count(page), page->flags);
1674        }
1675        return ret;
1676}
1677
1678/**
1679 * soft_offline_page - Soft offline a page.
1680 * @page: page to offline
1681 * @flags: flags. Same as memory_failure().
1682 *
1683 * Returns 0 on success, otherwise negated errno.
1684 *
1685 * Soft offline a page, by migration or invalidation,
1686 * without killing anything. This is for the case when
1687 * a page is not corrupted yet (so it's still valid to access),
1688 * but has had a number of corrected errors and is better taken
1689 * out.
1690 *
1691 * The actual policy on when to do that is maintained by
1692 * user space.
1693 *
1694 * This should never impact any application or cause data loss,
1695 * however it might take some time.
1696 *
1697 * This is not a 100% solution for all memory, but tries to be
1698 * ``good enough'' for the majority of memory.
1699 */
1700int soft_offline_page(struct page *page, int flags)
1701{
1702        int ret;
1703        unsigned long pfn = page_to_pfn(page);
1704        struct page *hpage = compound_head(page);
1705
1706        if (PageHWPoison(page)) {
1707                pr_info("soft offline: %#lx page already poisoned\n", pfn);
1708                return -EBUSY;
1709        }
1710        if (!PageHuge(page) && PageTransHuge(hpage)) {
1711                if (PageAnon(hpage) && unlikely(split_huge_page(hpage))) {
1712                        pr_info("soft offline: %#lx: failed to split THP\n",
1713                                pfn);
1714                        return -EBUSY;
1715                }
1716        }
1717
1718        get_online_mems();
1719
1720        /*
1721         * Isolate the page, so that it doesn't get reallocated if it
1722         * was free. This flag should be kept set until the source page
1723         * is freed and PG_hwpoison on it is set.
1724         */
1725        if (get_pageblock_migratetype(page) != MIGRATE_ISOLATE)
1726                set_migratetype_isolate(page, true);
1727
1728        ret = get_any_page(page, pfn, flags);
1729        put_online_mems();
1730        if (ret > 0) { /* for in-use pages */
1731                if (PageHuge(page))
1732                        ret = soft_offline_huge_page(page, flags);
1733                else
1734                        ret = __soft_offline_page(page, flags);
1735        } else if (ret == 0) { /* for free pages */
1736                if (PageHuge(page)) {
1737                        set_page_hwpoison_huge_page(hpage);
1738                        dequeue_hwpoisoned_huge_page(hpage);
1739                        atomic_long_add(1 << compound_order(hpage),
1740                                        &num_poisoned_pages);
1741                } else {
1742                        SetPageHWPoison(page);
1743                        atomic_long_inc(&num_poisoned_pages);
1744                }
1745        }
1746        unset_migratetype_isolate(page, MIGRATE_MOVABLE);
1747        return ret;
1748}
1749