linux/mm/memory_hotplug.c
<<
>>
Prefs
   1/*
   2 *  linux/mm/memory_hotplug.c
   3 *
   4 *  Copyright (C)
   5 */
   6
   7#include <linux/stddef.h>
   8#include <linux/mm.h>
   9#include <linux/swap.h>
  10#include <linux/interrupt.h>
  11#include <linux/pagemap.h>
  12#include <linux/compiler.h>
  13#include <linux/export.h>
  14#include <linux/pagevec.h>
  15#include <linux/writeback.h>
  16#include <linux/slab.h>
  17#include <linux/sysctl.h>
  18#include <linux/cpu.h>
  19#include <linux/memory.h>
  20#include <linux/memory_hotplug.h>
  21#include <linux/highmem.h>
  22#include <linux/vmalloc.h>
  23#include <linux/ioport.h>
  24#include <linux/delay.h>
  25#include <linux/migrate.h>
  26#include <linux/page-isolation.h>
  27#include <linux/pfn.h>
  28#include <linux/suspend.h>
  29#include <linux/mm_inline.h>
  30#include <linux/firmware-map.h>
  31#include <linux/stop_machine.h>
  32#include <linux/hugetlb.h>
  33#include <linux/memblock.h>
  34#include <linux/bootmem.h>
  35
  36#include <asm/tlbflush.h>
  37
  38#include "internal.h"
  39
  40/*
  41 * online_page_callback contains pointer to current page onlining function.
  42 * Initially it is generic_online_page(). If it is required it could be
  43 * changed by calling set_online_page_callback() for callback registration
  44 * and restore_online_page_callback() for generic callback restore.
  45 */
  46
  47static void generic_online_page(struct page *page);
  48
  49static online_page_callback_t online_page_callback = generic_online_page;
  50static DEFINE_MUTEX(online_page_callback_lock);
  51
  52/* The same as the cpu_hotplug lock, but for memory hotplug. */
  53static struct {
  54        struct task_struct *active_writer;
  55        struct mutex lock; /* Synchronizes accesses to refcount, */
  56        /*
  57         * Also blocks the new readers during
  58         * an ongoing mem hotplug operation.
  59         */
  60        int refcount;
  61
  62#ifdef CONFIG_DEBUG_LOCK_ALLOC
  63        struct lockdep_map dep_map;
  64#endif
  65} mem_hotplug = {
  66        .active_writer = NULL,
  67        .lock = __MUTEX_INITIALIZER(mem_hotplug.lock),
  68        .refcount = 0,
  69#ifdef CONFIG_DEBUG_LOCK_ALLOC
  70        .dep_map = {.name = "mem_hotplug.lock" },
  71#endif
  72};
  73
  74/* Lockdep annotations for get/put_online_mems() and mem_hotplug_begin/end() */
  75#define memhp_lock_acquire_read() lock_map_acquire_read(&mem_hotplug.dep_map)
  76#define memhp_lock_acquire()      lock_map_acquire(&mem_hotplug.dep_map)
  77#define memhp_lock_release()      lock_map_release(&mem_hotplug.dep_map)
  78
  79void get_online_mems(void)
  80{
  81        might_sleep();
  82        if (mem_hotplug.active_writer == current)
  83                return;
  84        memhp_lock_acquire_read();
  85        mutex_lock(&mem_hotplug.lock);
  86        mem_hotplug.refcount++;
  87        mutex_unlock(&mem_hotplug.lock);
  88
  89}
  90
  91void put_online_mems(void)
  92{
  93        if (mem_hotplug.active_writer == current)
  94                return;
  95        mutex_lock(&mem_hotplug.lock);
  96
  97        if (WARN_ON(!mem_hotplug.refcount))
  98                mem_hotplug.refcount++; /* try to fix things up */
  99
 100        if (!--mem_hotplug.refcount && unlikely(mem_hotplug.active_writer))
 101                wake_up_process(mem_hotplug.active_writer);
 102        mutex_unlock(&mem_hotplug.lock);
 103        memhp_lock_release();
 104
 105}
 106
 107static void mem_hotplug_begin(void)
 108{
 109        mem_hotplug.active_writer = current;
 110
 111        memhp_lock_acquire();
 112        for (;;) {
 113                mutex_lock(&mem_hotplug.lock);
 114                if (likely(!mem_hotplug.refcount))
 115                        break;
 116                __set_current_state(TASK_UNINTERRUPTIBLE);
 117                mutex_unlock(&mem_hotplug.lock);
 118                schedule();
 119        }
 120}
 121
 122static void mem_hotplug_done(void)
 123{
 124        mem_hotplug.active_writer = NULL;
 125        mutex_unlock(&mem_hotplug.lock);
 126        memhp_lock_release();
 127}
 128
 129/* add this memory to iomem resource */
 130static struct resource *register_memory_resource(u64 start, u64 size)
 131{
 132        struct resource *res;
 133        res = kzalloc(sizeof(struct resource), GFP_KERNEL);
 134        BUG_ON(!res);
 135
 136        res->name = "System RAM";
 137        res->start = start;
 138        res->end = start + size - 1;
 139        res->flags = IORESOURCE_MEM | IORESOURCE_BUSY;
 140        if (request_resource(&iomem_resource, res) < 0) {
 141                pr_debug("System RAM resource %pR cannot be added\n", res);
 142                kfree(res);
 143                res = NULL;
 144        }
 145        return res;
 146}
 147
 148static void release_memory_resource(struct resource *res)
 149{
 150        if (!res)
 151                return;
 152        release_resource(res);
 153        kfree(res);
 154        return;
 155}
 156
 157#ifdef CONFIG_MEMORY_HOTPLUG_SPARSE
 158void get_page_bootmem(unsigned long info,  struct page *page,
 159                      unsigned long type)
 160{
 161        page->lru.next = (struct list_head *) type;
 162        SetPagePrivate(page);
 163        set_page_private(page, info);
 164        atomic_inc(&page->_count);
 165}
 166
 167void put_page_bootmem(struct page *page)
 168{
 169        unsigned long type;
 170
 171        type = (unsigned long) page->lru.next;
 172        BUG_ON(type < MEMORY_HOTPLUG_MIN_BOOTMEM_TYPE ||
 173               type > MEMORY_HOTPLUG_MAX_BOOTMEM_TYPE);
 174
 175        if (atomic_dec_return(&page->_count) == 1) {
 176                ClearPagePrivate(page);
 177                set_page_private(page, 0);
 178                INIT_LIST_HEAD(&page->lru);
 179                free_reserved_page(page);
 180        }
 181}
 182
 183#ifdef CONFIG_HAVE_BOOTMEM_INFO_NODE
 184#ifndef CONFIG_SPARSEMEM_VMEMMAP
 185static void register_page_bootmem_info_section(unsigned long start_pfn)
 186{
 187        unsigned long *usemap, mapsize, section_nr, i;
 188        struct mem_section *ms;
 189        struct page *page, *memmap;
 190
 191        section_nr = pfn_to_section_nr(start_pfn);
 192        ms = __nr_to_section(section_nr);
 193
 194        /* Get section's memmap address */
 195        memmap = sparse_decode_mem_map(ms->section_mem_map, section_nr);
 196
 197        /*
 198         * Get page for the memmap's phys address
 199         * XXX: need more consideration for sparse_vmemmap...
 200         */
 201        page = virt_to_page(memmap);
 202        mapsize = sizeof(struct page) * PAGES_PER_SECTION;
 203        mapsize = PAGE_ALIGN(mapsize) >> PAGE_SHIFT;
 204
 205        /* remember memmap's page */
 206        for (i = 0; i < mapsize; i++, page++)
 207                get_page_bootmem(section_nr, page, SECTION_INFO);
 208
 209        usemap = __nr_to_section(section_nr)->pageblock_flags;
 210        page = virt_to_page(usemap);
 211
 212        mapsize = PAGE_ALIGN(usemap_size()) >> PAGE_SHIFT;
 213
 214        for (i = 0; i < mapsize; i++, page++)
 215                get_page_bootmem(section_nr, page, MIX_SECTION_INFO);
 216
 217}
 218#else /* CONFIG_SPARSEMEM_VMEMMAP */
 219static void register_page_bootmem_info_section(unsigned long start_pfn)
 220{
 221        unsigned long *usemap, mapsize, section_nr, i;
 222        struct mem_section *ms;
 223        struct page *page, *memmap;
 224
 225        if (!pfn_valid(start_pfn))
 226                return;
 227
 228        section_nr = pfn_to_section_nr(start_pfn);
 229        ms = __nr_to_section(section_nr);
 230
 231        memmap = sparse_decode_mem_map(ms->section_mem_map, section_nr);
 232
 233        register_page_bootmem_memmap(section_nr, memmap, PAGES_PER_SECTION);
 234
 235        usemap = __nr_to_section(section_nr)->pageblock_flags;
 236        page = virt_to_page(usemap);
 237
 238        mapsize = PAGE_ALIGN(usemap_size()) >> PAGE_SHIFT;
 239
 240        for (i = 0; i < mapsize; i++, page++)
 241                get_page_bootmem(section_nr, page, MIX_SECTION_INFO);
 242}
 243#endif /* !CONFIG_SPARSEMEM_VMEMMAP */
 244
 245void register_page_bootmem_info_node(struct pglist_data *pgdat)
 246{
 247        unsigned long i, pfn, end_pfn, nr_pages;
 248        int node = pgdat->node_id;
 249        struct page *page;
 250        struct zone *zone;
 251
 252        nr_pages = PAGE_ALIGN(sizeof(struct pglist_data)) >> PAGE_SHIFT;
 253        page = virt_to_page(pgdat);
 254
 255        for (i = 0; i < nr_pages; i++, page++)
 256                get_page_bootmem(node, page, NODE_INFO);
 257
 258        zone = &pgdat->node_zones[0];
 259        for (; zone < pgdat->node_zones + MAX_NR_ZONES - 1; zone++) {
 260                if (zone_is_initialized(zone)) {
 261                        nr_pages = zone->wait_table_hash_nr_entries
 262                                * sizeof(wait_queue_head_t);
 263                        nr_pages = PAGE_ALIGN(nr_pages) >> PAGE_SHIFT;
 264                        page = virt_to_page(zone->wait_table);
 265
 266                        for (i = 0; i < nr_pages; i++, page++)
 267                                get_page_bootmem(node, page, NODE_INFO);
 268                }
 269        }
 270
 271        pfn = pgdat->node_start_pfn;
 272        end_pfn = pgdat_end_pfn(pgdat);
 273
 274        /* register section info */
 275        for (; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
 276                /*
 277                 * Some platforms can assign the same pfn to multiple nodes - on
 278                 * node0 as well as nodeN.  To avoid registering a pfn against
 279                 * multiple nodes we check that this pfn does not already
 280                 * reside in some other nodes.
 281                 */
 282                if (pfn_valid(pfn) && (pfn_to_nid(pfn) == node))
 283                        register_page_bootmem_info_section(pfn);
 284        }
 285}
 286#endif /* CONFIG_HAVE_BOOTMEM_INFO_NODE */
 287
 288static void __meminit grow_zone_span(struct zone *zone, unsigned long start_pfn,
 289                                     unsigned long end_pfn)
 290{
 291        unsigned long old_zone_end_pfn;
 292
 293        zone_span_writelock(zone);
 294
 295        old_zone_end_pfn = zone_end_pfn(zone);
 296        if (zone_is_empty(zone) || start_pfn < zone->zone_start_pfn)
 297                zone->zone_start_pfn = start_pfn;
 298
 299        zone->spanned_pages = max(old_zone_end_pfn, end_pfn) -
 300                                zone->zone_start_pfn;
 301
 302        zone_span_writeunlock(zone);
 303}
 304
 305static void resize_zone(struct zone *zone, unsigned long start_pfn,
 306                unsigned long end_pfn)
 307{
 308        zone_span_writelock(zone);
 309
 310        if (end_pfn - start_pfn) {
 311                zone->zone_start_pfn = start_pfn;
 312                zone->spanned_pages = end_pfn - start_pfn;
 313        } else {
 314                /*
 315                 * make it consist as free_area_init_core(),
 316                 * if spanned_pages = 0, then keep start_pfn = 0
 317                 */
 318                zone->zone_start_pfn = 0;
 319                zone->spanned_pages = 0;
 320        }
 321
 322        zone_span_writeunlock(zone);
 323}
 324
 325static void fix_zone_id(struct zone *zone, unsigned long start_pfn,
 326                unsigned long end_pfn)
 327{
 328        enum zone_type zid = zone_idx(zone);
 329        int nid = zone->zone_pgdat->node_id;
 330        unsigned long pfn;
 331
 332        for (pfn = start_pfn; pfn < end_pfn; pfn++)
 333                set_page_links(pfn_to_page(pfn), zid, nid, pfn);
 334}
 335
 336/* Can fail with -ENOMEM from allocating a wait table with vmalloc() or
 337 * alloc_bootmem_node_nopanic()/memblock_virt_alloc_node_nopanic() */
 338static int __ref ensure_zone_is_initialized(struct zone *zone,
 339                        unsigned long start_pfn, unsigned long num_pages)
 340{
 341        if (!zone_is_initialized(zone))
 342                return init_currently_empty_zone(zone, start_pfn, num_pages,
 343                                                 MEMMAP_HOTPLUG);
 344        return 0;
 345}
 346
 347static int __meminit move_pfn_range_left(struct zone *z1, struct zone *z2,
 348                unsigned long start_pfn, unsigned long end_pfn)
 349{
 350        int ret;
 351        unsigned long flags;
 352        unsigned long z1_start_pfn;
 353
 354        ret = ensure_zone_is_initialized(z1, start_pfn, end_pfn - start_pfn);
 355        if (ret)
 356                return ret;
 357
 358        pgdat_resize_lock(z1->zone_pgdat, &flags);
 359
 360        /* can't move pfns which are higher than @z2 */
 361        if (end_pfn > zone_end_pfn(z2))
 362                goto out_fail;
 363        /* the move out part must be at the left most of @z2 */
 364        if (start_pfn > z2->zone_start_pfn)
 365                goto out_fail;
 366        /* must included/overlap */
 367        if (end_pfn <= z2->zone_start_pfn)
 368                goto out_fail;
 369
 370        /* use start_pfn for z1's start_pfn if z1 is empty */
 371        if (!zone_is_empty(z1))
 372                z1_start_pfn = z1->zone_start_pfn;
 373        else
 374                z1_start_pfn = start_pfn;
 375
 376        resize_zone(z1, z1_start_pfn, end_pfn);
 377        resize_zone(z2, end_pfn, zone_end_pfn(z2));
 378
 379        pgdat_resize_unlock(z1->zone_pgdat, &flags);
 380
 381        fix_zone_id(z1, start_pfn, end_pfn);
 382
 383        return 0;
 384out_fail:
 385        pgdat_resize_unlock(z1->zone_pgdat, &flags);
 386        return -1;
 387}
 388
 389static int __meminit move_pfn_range_right(struct zone *z1, struct zone *z2,
 390                unsigned long start_pfn, unsigned long end_pfn)
 391{
 392        int ret;
 393        unsigned long flags;
 394        unsigned long z2_end_pfn;
 395
 396        ret = ensure_zone_is_initialized(z2, start_pfn, end_pfn - start_pfn);
 397        if (ret)
 398                return ret;
 399
 400        pgdat_resize_lock(z1->zone_pgdat, &flags);
 401
 402        /* can't move pfns which are lower than @z1 */
 403        if (z1->zone_start_pfn > start_pfn)
 404                goto out_fail;
 405        /* the move out part mast at the right most of @z1 */
 406        if (zone_end_pfn(z1) >  end_pfn)
 407                goto out_fail;
 408        /* must included/overlap */
 409        if (start_pfn >= zone_end_pfn(z1))
 410                goto out_fail;
 411
 412        /* use end_pfn for z2's end_pfn if z2 is empty */
 413        if (!zone_is_empty(z2))
 414                z2_end_pfn = zone_end_pfn(z2);
 415        else
 416                z2_end_pfn = end_pfn;
 417
 418        resize_zone(z1, z1->zone_start_pfn, start_pfn);
 419        resize_zone(z2, start_pfn, z2_end_pfn);
 420
 421        pgdat_resize_unlock(z1->zone_pgdat, &flags);
 422
 423        fix_zone_id(z2, start_pfn, end_pfn);
 424
 425        return 0;
 426out_fail:
 427        pgdat_resize_unlock(z1->zone_pgdat, &flags);
 428        return -1;
 429}
 430
 431static void __meminit grow_pgdat_span(struct pglist_data *pgdat, unsigned long start_pfn,
 432                                      unsigned long end_pfn)
 433{
 434        unsigned long old_pgdat_end_pfn = pgdat_end_pfn(pgdat);
 435
 436        if (!pgdat->node_spanned_pages || start_pfn < pgdat->node_start_pfn)
 437                pgdat->node_start_pfn = start_pfn;
 438
 439        pgdat->node_spanned_pages = max(old_pgdat_end_pfn, end_pfn) -
 440                                        pgdat->node_start_pfn;
 441}
 442
 443static int __meminit __add_zone(struct zone *zone, unsigned long phys_start_pfn)
 444{
 445        struct pglist_data *pgdat = zone->zone_pgdat;
 446        int nr_pages = PAGES_PER_SECTION;
 447        int nid = pgdat->node_id;
 448        int zone_type;
 449        unsigned long flags;
 450        int ret;
 451
 452        zone_type = zone - pgdat->node_zones;
 453        ret = ensure_zone_is_initialized(zone, phys_start_pfn, nr_pages);
 454        if (ret)
 455                return ret;
 456
 457        pgdat_resize_lock(zone->zone_pgdat, &flags);
 458        grow_zone_span(zone, phys_start_pfn, phys_start_pfn + nr_pages);
 459        grow_pgdat_span(zone->zone_pgdat, phys_start_pfn,
 460                        phys_start_pfn + nr_pages);
 461        pgdat_resize_unlock(zone->zone_pgdat, &flags);
 462        memmap_init_zone(nr_pages, nid, zone_type,
 463                         phys_start_pfn, MEMMAP_HOTPLUG);
 464        return 0;
 465}
 466
 467static int __meminit __add_section(int nid, struct zone *zone,
 468                                        unsigned long phys_start_pfn)
 469{
 470        int ret;
 471
 472        if (pfn_valid(phys_start_pfn))
 473                return -EEXIST;
 474
 475        ret = sparse_add_one_section(zone, phys_start_pfn);
 476
 477        if (ret < 0)
 478                return ret;
 479
 480        ret = __add_zone(zone, phys_start_pfn);
 481
 482        if (ret < 0)
 483                return ret;
 484
 485        return register_new_memory(nid, __pfn_to_section(phys_start_pfn));
 486}
 487
 488/*
 489 * Reasonably generic function for adding memory.  It is
 490 * expected that archs that support memory hotplug will
 491 * call this function after deciding the zone to which to
 492 * add the new pages.
 493 */
 494int __ref __add_pages(int nid, struct zone *zone, unsigned long phys_start_pfn,
 495                        unsigned long nr_pages)
 496{
 497        unsigned long i;
 498        int err = 0;
 499        int start_sec, end_sec;
 500        /* during initialize mem_map, align hot-added range to section */
 501        start_sec = pfn_to_section_nr(phys_start_pfn);
 502        end_sec = pfn_to_section_nr(phys_start_pfn + nr_pages - 1);
 503
 504        for (i = start_sec; i <= end_sec; i++) {
 505                err = __add_section(nid, zone, i << PFN_SECTION_SHIFT);
 506
 507                /*
 508                 * EEXIST is finally dealt with by ioresource collision
 509                 * check. see add_memory() => register_memory_resource()
 510                 * Warning will be printed if there is collision.
 511                 */
 512                if (err && (err != -EEXIST))
 513                        break;
 514                err = 0;
 515        }
 516
 517        return err;
 518}
 519EXPORT_SYMBOL_GPL(__add_pages);
 520
 521#ifdef CONFIG_MEMORY_HOTREMOVE
 522/* find the smallest valid pfn in the range [start_pfn, end_pfn) */
 523static int find_smallest_section_pfn(int nid, struct zone *zone,
 524                                     unsigned long start_pfn,
 525                                     unsigned long end_pfn)
 526{
 527        struct mem_section *ms;
 528
 529        for (; start_pfn < end_pfn; start_pfn += PAGES_PER_SECTION) {
 530                ms = __pfn_to_section(start_pfn);
 531
 532                if (unlikely(!valid_section(ms)))
 533                        continue;
 534
 535                if (unlikely(pfn_to_nid(start_pfn) != nid))
 536                        continue;
 537
 538                if (zone && zone != page_zone(pfn_to_page(start_pfn)))
 539                        continue;
 540
 541                return start_pfn;
 542        }
 543
 544        return 0;
 545}
 546
 547/* find the biggest valid pfn in the range [start_pfn, end_pfn). */
 548static int find_biggest_section_pfn(int nid, struct zone *zone,
 549                                    unsigned long start_pfn,
 550                                    unsigned long end_pfn)
 551{
 552        struct mem_section *ms;
 553        unsigned long pfn;
 554
 555        /* pfn is the end pfn of a memory section. */
 556        pfn = end_pfn - 1;
 557        for (; pfn >= start_pfn; pfn -= PAGES_PER_SECTION) {
 558                ms = __pfn_to_section(pfn);
 559
 560                if (unlikely(!valid_section(ms)))
 561                        continue;
 562
 563                if (unlikely(pfn_to_nid(pfn) != nid))
 564                        continue;
 565
 566                if (zone && zone != page_zone(pfn_to_page(pfn)))
 567                        continue;
 568
 569                return pfn;
 570        }
 571
 572        return 0;
 573}
 574
 575static void shrink_zone_span(struct zone *zone, unsigned long start_pfn,
 576                             unsigned long end_pfn)
 577{
 578        unsigned long zone_start_pfn = zone->zone_start_pfn;
 579        unsigned long z = zone_end_pfn(zone); /* zone_end_pfn namespace clash */
 580        unsigned long zone_end_pfn = z;
 581        unsigned long pfn;
 582        struct mem_section *ms;
 583        int nid = zone_to_nid(zone);
 584
 585        zone_span_writelock(zone);
 586        if (zone_start_pfn == start_pfn) {
 587                /*
 588                 * If the section is smallest section in the zone, it need
 589                 * shrink zone->zone_start_pfn and zone->zone_spanned_pages.
 590                 * In this case, we find second smallest valid mem_section
 591                 * for shrinking zone.
 592                 */
 593                pfn = find_smallest_section_pfn(nid, zone, end_pfn,
 594                                                zone_end_pfn);
 595                if (pfn) {
 596                        zone->zone_start_pfn = pfn;
 597                        zone->spanned_pages = zone_end_pfn - pfn;
 598                }
 599        } else if (zone_end_pfn == end_pfn) {
 600                /*
 601                 * If the section is biggest section in the zone, it need
 602                 * shrink zone->spanned_pages.
 603                 * In this case, we find second biggest valid mem_section for
 604                 * shrinking zone.
 605                 */
 606                pfn = find_biggest_section_pfn(nid, zone, zone_start_pfn,
 607                                               start_pfn);
 608                if (pfn)
 609                        zone->spanned_pages = pfn - zone_start_pfn + 1;
 610        }
 611
 612        /*
 613         * The section is not biggest or smallest mem_section in the zone, it
 614         * only creates a hole in the zone. So in this case, we need not
 615         * change the zone. But perhaps, the zone has only hole data. Thus
 616         * it check the zone has only hole or not.
 617         */
 618        pfn = zone_start_pfn;
 619        for (; pfn < zone_end_pfn; pfn += PAGES_PER_SECTION) {
 620                ms = __pfn_to_section(pfn);
 621
 622                if (unlikely(!valid_section(ms)))
 623                        continue;
 624
 625                if (page_zone(pfn_to_page(pfn)) != zone)
 626                        continue;
 627
 628                 /* If the section is current section, it continues the loop */
 629                if (start_pfn == pfn)
 630                        continue;
 631
 632                /* If we find valid section, we have nothing to do */
 633                zone_span_writeunlock(zone);
 634                return;
 635        }
 636
 637        /* The zone has no valid section */
 638        zone->zone_start_pfn = 0;
 639        zone->spanned_pages = 0;
 640        zone_span_writeunlock(zone);
 641}
 642
 643static void shrink_pgdat_span(struct pglist_data *pgdat,
 644                              unsigned long start_pfn, unsigned long end_pfn)
 645{
 646        unsigned long pgdat_start_pfn = pgdat->node_start_pfn;
 647        unsigned long p = pgdat_end_pfn(pgdat); /* pgdat_end_pfn namespace clash */
 648        unsigned long pgdat_end_pfn = p;
 649        unsigned long pfn;
 650        struct mem_section *ms;
 651        int nid = pgdat->node_id;
 652
 653        if (pgdat_start_pfn == start_pfn) {
 654                /*
 655                 * If the section is smallest section in the pgdat, it need
 656                 * shrink pgdat->node_start_pfn and pgdat->node_spanned_pages.
 657                 * In this case, we find second smallest valid mem_section
 658                 * for shrinking zone.
 659                 */
 660                pfn = find_smallest_section_pfn(nid, NULL, end_pfn,
 661                                                pgdat_end_pfn);
 662                if (pfn) {
 663                        pgdat->node_start_pfn = pfn;
 664                        pgdat->node_spanned_pages = pgdat_end_pfn - pfn;
 665                }
 666        } else if (pgdat_end_pfn == end_pfn) {
 667                /*
 668                 * If the section is biggest section in the pgdat, it need
 669                 * shrink pgdat->node_spanned_pages.
 670                 * In this case, we find second biggest valid mem_section for
 671                 * shrinking zone.
 672                 */
 673                pfn = find_biggest_section_pfn(nid, NULL, pgdat_start_pfn,
 674                                               start_pfn);
 675                if (pfn)
 676                        pgdat->node_spanned_pages = pfn - pgdat_start_pfn + 1;
 677        }
 678
 679        /*
 680         * If the section is not biggest or smallest mem_section in the pgdat,
 681         * it only creates a hole in the pgdat. So in this case, we need not
 682         * change the pgdat.
 683         * But perhaps, the pgdat has only hole data. Thus it check the pgdat
 684         * has only hole or not.
 685         */
 686        pfn = pgdat_start_pfn;
 687        for (; pfn < pgdat_end_pfn; pfn += PAGES_PER_SECTION) {
 688                ms = __pfn_to_section(pfn);
 689
 690                if (unlikely(!valid_section(ms)))
 691                        continue;
 692
 693                if (pfn_to_nid(pfn) != nid)
 694                        continue;
 695
 696                 /* If the section is current section, it continues the loop */
 697                if (start_pfn == pfn)
 698                        continue;
 699
 700                /* If we find valid section, we have nothing to do */
 701                return;
 702        }
 703
 704        /* The pgdat has no valid section */
 705        pgdat->node_start_pfn = 0;
 706        pgdat->node_spanned_pages = 0;
 707}
 708
 709static void __remove_zone(struct zone *zone, unsigned long start_pfn)
 710{
 711        struct pglist_data *pgdat = zone->zone_pgdat;
 712        int nr_pages = PAGES_PER_SECTION;
 713        int zone_type;
 714        unsigned long flags;
 715
 716        zone_type = zone - pgdat->node_zones;
 717
 718        pgdat_resize_lock(zone->zone_pgdat, &flags);
 719        shrink_zone_span(zone, start_pfn, start_pfn + nr_pages);
 720        shrink_pgdat_span(pgdat, start_pfn, start_pfn + nr_pages);
 721        pgdat_resize_unlock(zone->zone_pgdat, &flags);
 722}
 723
 724static int __remove_section(struct zone *zone, struct mem_section *ms)
 725{
 726        unsigned long start_pfn;
 727        int scn_nr;
 728        int ret = -EINVAL;
 729
 730        if (!valid_section(ms))
 731                return ret;
 732
 733        ret = unregister_memory_section(ms);
 734        if (ret)
 735                return ret;
 736
 737        scn_nr = __section_nr(ms);
 738        start_pfn = section_nr_to_pfn(scn_nr);
 739        __remove_zone(zone, start_pfn);
 740
 741        sparse_remove_one_section(zone, ms);
 742        return 0;
 743}
 744
 745/**
 746 * __remove_pages() - remove sections of pages from a zone
 747 * @zone: zone from which pages need to be removed
 748 * @phys_start_pfn: starting pageframe (must be aligned to start of a section)
 749 * @nr_pages: number of pages to remove (must be multiple of section size)
 750 *
 751 * Generic helper function to remove section mappings and sysfs entries
 752 * for the section of the memory we are removing. Caller needs to make
 753 * sure that pages are marked reserved and zones are adjust properly by
 754 * calling offline_pages().
 755 */
 756int __remove_pages(struct zone *zone, unsigned long phys_start_pfn,
 757                 unsigned long nr_pages)
 758{
 759        unsigned long i;
 760        int sections_to_remove;
 761        resource_size_t start, size;
 762        int ret = 0;
 763
 764        /*
 765         * We can only remove entire sections
 766         */
 767        BUG_ON(phys_start_pfn & ~PAGE_SECTION_MASK);
 768        BUG_ON(nr_pages % PAGES_PER_SECTION);
 769
 770        start = phys_start_pfn << PAGE_SHIFT;
 771        size = nr_pages * PAGE_SIZE;
 772        ret = release_mem_region_adjustable(&iomem_resource, start, size);
 773        if (ret) {
 774                resource_size_t endres = start + size - 1;
 775
 776                pr_warn("Unable to release resource <%pa-%pa> (%d)\n",
 777                                &start, &endres, ret);
 778        }
 779
 780        sections_to_remove = nr_pages / PAGES_PER_SECTION;
 781        for (i = 0; i < sections_to_remove; i++) {
 782                unsigned long pfn = phys_start_pfn + i*PAGES_PER_SECTION;
 783                ret = __remove_section(zone, __pfn_to_section(pfn));
 784                if (ret)
 785                        break;
 786        }
 787        return ret;
 788}
 789EXPORT_SYMBOL_GPL(__remove_pages);
 790#endif /* CONFIG_MEMORY_HOTREMOVE */
 791
 792int set_online_page_callback(online_page_callback_t callback)
 793{
 794        int rc = -EINVAL;
 795
 796        get_online_mems();
 797        mutex_lock(&online_page_callback_lock);
 798
 799        if (online_page_callback == generic_online_page) {
 800                online_page_callback = callback;
 801                rc = 0;
 802        }
 803
 804        mutex_unlock(&online_page_callback_lock);
 805        put_online_mems();
 806
 807        return rc;
 808}
 809EXPORT_SYMBOL_GPL(set_online_page_callback);
 810
 811int restore_online_page_callback(online_page_callback_t callback)
 812{
 813        int rc = -EINVAL;
 814
 815        get_online_mems();
 816        mutex_lock(&online_page_callback_lock);
 817
 818        if (online_page_callback == callback) {
 819                online_page_callback = generic_online_page;
 820                rc = 0;
 821        }
 822
 823        mutex_unlock(&online_page_callback_lock);
 824        put_online_mems();
 825
 826        return rc;
 827}
 828EXPORT_SYMBOL_GPL(restore_online_page_callback);
 829
 830void __online_page_set_limits(struct page *page)
 831{
 832}
 833EXPORT_SYMBOL_GPL(__online_page_set_limits);
 834
 835void __online_page_increment_counters(struct page *page)
 836{
 837        adjust_managed_page_count(page, 1);
 838}
 839EXPORT_SYMBOL_GPL(__online_page_increment_counters);
 840
 841void __online_page_free(struct page *page)
 842{
 843        __free_reserved_page(page);
 844}
 845EXPORT_SYMBOL_GPL(__online_page_free);
 846
 847static void generic_online_page(struct page *page)
 848{
 849        __online_page_set_limits(page);
 850        __online_page_increment_counters(page);
 851        __online_page_free(page);
 852}
 853
 854static int online_pages_range(unsigned long start_pfn, unsigned long nr_pages,
 855                        void *arg)
 856{
 857        unsigned long i;
 858        unsigned long onlined_pages = *(unsigned long *)arg;
 859        struct page *page;
 860        if (PageReserved(pfn_to_page(start_pfn)))
 861                for (i = 0; i < nr_pages; i++) {
 862                        page = pfn_to_page(start_pfn + i);
 863                        (*online_page_callback)(page);
 864                        onlined_pages++;
 865                }
 866        *(unsigned long *)arg = onlined_pages;
 867        return 0;
 868}
 869
 870#ifdef CONFIG_MOVABLE_NODE
 871/*
 872 * When CONFIG_MOVABLE_NODE, we permit onlining of a node which doesn't have
 873 * normal memory.
 874 */
 875static bool can_online_high_movable(struct zone *zone)
 876{
 877        return true;
 878}
 879#else /* CONFIG_MOVABLE_NODE */
 880/* ensure every online node has NORMAL memory */
 881static bool can_online_high_movable(struct zone *zone)
 882{
 883        return node_state(zone_to_nid(zone), N_NORMAL_MEMORY);
 884}
 885#endif /* CONFIG_MOVABLE_NODE */
 886
 887/* check which state of node_states will be changed when online memory */
 888static void node_states_check_changes_online(unsigned long nr_pages,
 889        struct zone *zone, struct memory_notify *arg)
 890{
 891        int nid = zone_to_nid(zone);
 892        enum zone_type zone_last = ZONE_NORMAL;
 893
 894        /*
 895         * If we have HIGHMEM or movable node, node_states[N_NORMAL_MEMORY]
 896         * contains nodes which have zones of 0...ZONE_NORMAL,
 897         * set zone_last to ZONE_NORMAL.
 898         *
 899         * If we don't have HIGHMEM nor movable node,
 900         * node_states[N_NORMAL_MEMORY] contains nodes which have zones of
 901         * 0...ZONE_MOVABLE, set zone_last to ZONE_MOVABLE.
 902         */
 903        if (N_MEMORY == N_NORMAL_MEMORY)
 904                zone_last = ZONE_MOVABLE;
 905
 906        /*
 907         * if the memory to be online is in a zone of 0...zone_last, and
 908         * the zones of 0...zone_last don't have memory before online, we will
 909         * need to set the node to node_states[N_NORMAL_MEMORY] after
 910         * the memory is online.
 911         */
 912        if (zone_idx(zone) <= zone_last && !node_state(nid, N_NORMAL_MEMORY))
 913                arg->status_change_nid_normal = nid;
 914        else
 915                arg->status_change_nid_normal = -1;
 916
 917#ifdef CONFIG_HIGHMEM
 918        /*
 919         * If we have movable node, node_states[N_HIGH_MEMORY]
 920         * contains nodes which have zones of 0...ZONE_HIGHMEM,
 921         * set zone_last to ZONE_HIGHMEM.
 922         *
 923         * If we don't have movable node, node_states[N_NORMAL_MEMORY]
 924         * contains nodes which have zones of 0...ZONE_MOVABLE,
 925         * set zone_last to ZONE_MOVABLE.
 926         */
 927        zone_last = ZONE_HIGHMEM;
 928        if (N_MEMORY == N_HIGH_MEMORY)
 929                zone_last = ZONE_MOVABLE;
 930
 931        if (zone_idx(zone) <= zone_last && !node_state(nid, N_HIGH_MEMORY))
 932                arg->status_change_nid_high = nid;
 933        else
 934                arg->status_change_nid_high = -1;
 935#else
 936        arg->status_change_nid_high = arg->status_change_nid_normal;
 937#endif
 938
 939        /*
 940         * if the node don't have memory befor online, we will need to
 941         * set the node to node_states[N_MEMORY] after the memory
 942         * is online.
 943         */
 944        if (!node_state(nid, N_MEMORY))
 945                arg->status_change_nid = nid;
 946        else
 947                arg->status_change_nid = -1;
 948}
 949
 950static void node_states_set_node(int node, struct memory_notify *arg)
 951{
 952        if (arg->status_change_nid_normal >= 0)
 953                node_set_state(node, N_NORMAL_MEMORY);
 954
 955        if (arg->status_change_nid_high >= 0)
 956                node_set_state(node, N_HIGH_MEMORY);
 957
 958        node_set_state(node, N_MEMORY);
 959}
 960
 961
 962int __ref online_pages(unsigned long pfn, unsigned long nr_pages, int online_type)
 963{
 964        unsigned long flags;
 965        unsigned long onlined_pages = 0;
 966        struct zone *zone;
 967        int need_zonelists_rebuild = 0;
 968        int nid;
 969        int ret;
 970        struct memory_notify arg;
 971
 972        mem_hotplug_begin();
 973        /*
 974         * This doesn't need a lock to do pfn_to_page().
 975         * The section can't be removed here because of the
 976         * memory_block->state_mutex.
 977         */
 978        zone = page_zone(pfn_to_page(pfn));
 979
 980        ret = -EINVAL;
 981        if ((zone_idx(zone) > ZONE_NORMAL ||
 982            online_type == MMOP_ONLINE_MOVABLE) &&
 983            !can_online_high_movable(zone))
 984                goto out;
 985
 986        if (online_type == MMOP_ONLINE_KERNEL &&
 987            zone_idx(zone) == ZONE_MOVABLE) {
 988                if (move_pfn_range_left(zone - 1, zone, pfn, pfn + nr_pages))
 989                        goto out;
 990        }
 991        if (online_type == MMOP_ONLINE_MOVABLE &&
 992            zone_idx(zone) == ZONE_MOVABLE - 1) {
 993                if (move_pfn_range_right(zone, zone + 1, pfn, pfn + nr_pages))
 994                        goto out;
 995        }
 996
 997        /* Previous code may changed the zone of the pfn range */
 998        zone = page_zone(pfn_to_page(pfn));
 999
1000        arg.start_pfn = pfn;
1001        arg.nr_pages = nr_pages;
1002        node_states_check_changes_online(nr_pages, zone, &arg);
1003
1004        nid = pfn_to_nid(pfn);
1005
1006        ret = memory_notify(MEM_GOING_ONLINE, &arg);
1007        ret = notifier_to_errno(ret);
1008        if (ret) {
1009                memory_notify(MEM_CANCEL_ONLINE, &arg);
1010                goto out;
1011        }
1012        /*
1013         * If this zone is not populated, then it is not in zonelist.
1014         * This means the page allocator ignores this zone.
1015         * So, zonelist must be updated after online.
1016         */
1017        mutex_lock(&zonelists_mutex);
1018        if (!populated_zone(zone)) {
1019                need_zonelists_rebuild = 1;
1020                build_all_zonelists(NULL, zone);
1021        }
1022
1023        ret = walk_system_ram_range(pfn, nr_pages, &onlined_pages,
1024                online_pages_range);
1025        if (ret) {
1026                if (need_zonelists_rebuild)
1027                        zone_pcp_reset(zone);
1028                mutex_unlock(&zonelists_mutex);
1029                printk(KERN_DEBUG "online_pages [mem %#010llx-%#010llx] failed\n",
1030                       (unsigned long long) pfn << PAGE_SHIFT,
1031                       (((unsigned long long) pfn + nr_pages)
1032                            << PAGE_SHIFT) - 1);
1033                memory_notify(MEM_CANCEL_ONLINE, &arg);
1034                goto out;
1035        }
1036
1037        zone->present_pages += onlined_pages;
1038
1039        pgdat_resize_lock(zone->zone_pgdat, &flags);
1040        zone->zone_pgdat->node_present_pages += onlined_pages;
1041        pgdat_resize_unlock(zone->zone_pgdat, &flags);
1042
1043        if (onlined_pages) {
1044                node_states_set_node(zone_to_nid(zone), &arg);
1045                if (need_zonelists_rebuild)
1046                        build_all_zonelists(NULL, NULL);
1047                else
1048                        zone_pcp_update(zone);
1049        }
1050
1051        mutex_unlock(&zonelists_mutex);
1052
1053        init_per_zone_wmark_min();
1054
1055        if (onlined_pages)
1056                kswapd_run(zone_to_nid(zone));
1057
1058        vm_total_pages = nr_free_pagecache_pages();
1059
1060        writeback_set_ratelimit();
1061
1062        if (onlined_pages)
1063                memory_notify(MEM_ONLINE, &arg);
1064out:
1065        mem_hotplug_done();
1066        return ret;
1067}
1068#endif /* CONFIG_MEMORY_HOTPLUG_SPARSE */
1069
1070static void reset_node_present_pages(pg_data_t *pgdat)
1071{
1072        struct zone *z;
1073
1074        for (z = pgdat->node_zones; z < pgdat->node_zones + MAX_NR_ZONES; z++)
1075                z->present_pages = 0;
1076
1077        pgdat->node_present_pages = 0;
1078}
1079
1080/* we are OK calling __meminit stuff here - we have CONFIG_MEMORY_HOTPLUG */
1081static pg_data_t __ref *hotadd_new_pgdat(int nid, u64 start)
1082{
1083        struct pglist_data *pgdat;
1084        unsigned long zones_size[MAX_NR_ZONES] = {0};
1085        unsigned long zholes_size[MAX_NR_ZONES] = {0};
1086        unsigned long start_pfn = PFN_DOWN(start);
1087
1088        pgdat = NODE_DATA(nid);
1089        if (!pgdat) {
1090                pgdat = arch_alloc_nodedata(nid);
1091                if (!pgdat)
1092                        return NULL;
1093
1094                arch_refresh_nodedata(nid, pgdat);
1095        }
1096
1097        /* we can use NODE_DATA(nid) from here */
1098
1099        /* init node's zones as empty zones, we don't have any present pages.*/
1100        free_area_init_node(nid, zones_size, start_pfn, zholes_size);
1101
1102        /*
1103         * The node we allocated has no zone fallback lists. For avoiding
1104         * to access not-initialized zonelist, build here.
1105         */
1106        mutex_lock(&zonelists_mutex);
1107        build_all_zonelists(pgdat, NULL);
1108        mutex_unlock(&zonelists_mutex);
1109
1110        /*
1111         * zone->managed_pages is set to an approximate value in
1112         * free_area_init_core(), which will cause
1113         * /sys/device/system/node/nodeX/meminfo has wrong data.
1114         * So reset it to 0 before any memory is onlined.
1115         */
1116        reset_node_managed_pages(pgdat);
1117
1118        /*
1119         * When memory is hot-added, all the memory is in offline state. So
1120         * clear all zones' present_pages because they will be updated in
1121         * online_pages() and offline_pages().
1122         */
1123        reset_node_present_pages(pgdat);
1124
1125        return pgdat;
1126}
1127
1128static void rollback_node_hotadd(int nid, pg_data_t *pgdat)
1129{
1130        arch_refresh_nodedata(nid, NULL);
1131        arch_free_nodedata(pgdat);
1132        return;
1133}
1134
1135
1136/**
1137 * try_online_node - online a node if offlined
1138 *
1139 * called by cpu_up() to online a node without onlined memory.
1140 */
1141int try_online_node(int nid)
1142{
1143        pg_data_t       *pgdat;
1144        int     ret;
1145
1146        if (node_online(nid))
1147                return 0;
1148
1149        mem_hotplug_begin();
1150        pgdat = hotadd_new_pgdat(nid, 0);
1151        if (!pgdat) {
1152                pr_err("Cannot online node %d due to NULL pgdat\n", nid);
1153                ret = -ENOMEM;
1154                goto out;
1155        }
1156        node_set_online(nid);
1157        ret = register_one_node(nid);
1158        BUG_ON(ret);
1159
1160        if (pgdat->node_zonelists->_zonerefs->zone == NULL) {
1161                mutex_lock(&zonelists_mutex);
1162                build_all_zonelists(NULL, NULL);
1163                mutex_unlock(&zonelists_mutex);
1164        }
1165
1166out:
1167        mem_hotplug_done();
1168        return ret;
1169}
1170
1171static int check_hotplug_memory_range(u64 start, u64 size)
1172{
1173        u64 start_pfn = PFN_DOWN(start);
1174        u64 nr_pages = size >> PAGE_SHIFT;
1175
1176        /* Memory range must be aligned with section */
1177        if ((start_pfn & ~PAGE_SECTION_MASK) ||
1178            (nr_pages % PAGES_PER_SECTION) || (!nr_pages)) {
1179                pr_err("Section-unaligned hotplug range: start 0x%llx, size 0x%llx\n",
1180                                (unsigned long long)start,
1181                                (unsigned long long)size);
1182                return -EINVAL;
1183        }
1184
1185        return 0;
1186}
1187
1188/*
1189 * If movable zone has already been setup, newly added memory should be check.
1190 * If its address is higher than movable zone, it should be added as movable.
1191 * Without this check, movable zone may overlap with other zone.
1192 */
1193static int should_add_memory_movable(int nid, u64 start, u64 size)
1194{
1195        unsigned long start_pfn = start >> PAGE_SHIFT;
1196        pg_data_t *pgdat = NODE_DATA(nid);
1197        struct zone *movable_zone = pgdat->node_zones + ZONE_MOVABLE;
1198
1199        if (zone_is_empty(movable_zone))
1200                return 0;
1201
1202        if (movable_zone->zone_start_pfn <= start_pfn)
1203                return 1;
1204
1205        return 0;
1206}
1207
1208int zone_for_memory(int nid, u64 start, u64 size, int zone_default)
1209{
1210        if (should_add_memory_movable(nid, start, size))
1211                return ZONE_MOVABLE;
1212
1213        return zone_default;
1214}
1215
1216/* we are OK calling __meminit stuff here - we have CONFIG_MEMORY_HOTPLUG */
1217int __ref add_memory(int nid, u64 start, u64 size)
1218{
1219        pg_data_t *pgdat = NULL;
1220        bool new_pgdat;
1221        bool new_node;
1222        struct resource *res;
1223        int ret;
1224
1225        ret = check_hotplug_memory_range(start, size);
1226        if (ret)
1227                return ret;
1228
1229        res = register_memory_resource(start, size);
1230        ret = -EEXIST;
1231        if (!res)
1232                return ret;
1233
1234        {       /* Stupid hack to suppress address-never-null warning */
1235                void *p = NODE_DATA(nid);
1236                new_pgdat = !p;
1237        }
1238
1239        mem_hotplug_begin();
1240
1241        new_node = !node_online(nid);
1242        if (new_node) {
1243                pgdat = hotadd_new_pgdat(nid, start);
1244                ret = -ENOMEM;
1245                if (!pgdat)
1246                        goto error;
1247        }
1248
1249        /* call arch's memory hotadd */
1250        ret = arch_add_memory(nid, start, size);
1251
1252        if (ret < 0)
1253                goto error;
1254
1255        /* we online node here. we can't roll back from here. */
1256        node_set_online(nid);
1257
1258        if (new_node) {
1259                ret = register_one_node(nid);
1260                /*
1261                 * If sysfs file of new node can't create, cpu on the node
1262                 * can't be hot-added. There is no rollback way now.
1263                 * So, check by BUG_ON() to catch it reluctantly..
1264                 */
1265                BUG_ON(ret);
1266        }
1267
1268        /* create new memmap entry */
1269        firmware_map_add_hotplug(start, start + size, "System RAM");
1270
1271        goto out;
1272
1273error:
1274        /* rollback pgdat allocation and others */
1275        if (new_pgdat)
1276                rollback_node_hotadd(nid, pgdat);
1277        release_memory_resource(res);
1278
1279out:
1280        mem_hotplug_done();
1281        return ret;
1282}
1283EXPORT_SYMBOL_GPL(add_memory);
1284
1285#ifdef CONFIG_MEMORY_HOTREMOVE
1286/*
1287 * A free page on the buddy free lists (not the per-cpu lists) has PageBuddy
1288 * set and the size of the free page is given by page_order(). Using this,
1289 * the function determines if the pageblock contains only free pages.
1290 * Due to buddy contraints, a free page at least the size of a pageblock will
1291 * be located at the start of the pageblock
1292 */
1293static inline int pageblock_free(struct page *page)
1294{
1295        return PageBuddy(page) && page_order(page) >= pageblock_order;
1296}
1297
1298/* Return the start of the next active pageblock after a given page */
1299static struct page *next_active_pageblock(struct page *page)
1300{
1301        /* Ensure the starting page is pageblock-aligned */
1302        BUG_ON(page_to_pfn(page) & (pageblock_nr_pages - 1));
1303
1304        /* If the entire pageblock is free, move to the end of free page */
1305        if (pageblock_free(page)) {
1306                int order;
1307                /* be careful. we don't have locks, page_order can be changed.*/
1308                order = page_order(page);
1309                if ((order < MAX_ORDER) && (order >= pageblock_order))
1310                        return page + (1 << order);
1311        }
1312
1313        return page + pageblock_nr_pages;
1314}
1315
1316/* Checks if this range of memory is likely to be hot-removable. */
1317int is_mem_section_removable(unsigned long start_pfn, unsigned long nr_pages)
1318{
1319        struct page *page = pfn_to_page(start_pfn);
1320        struct page *end_page = page + nr_pages;
1321
1322        /* Check the starting page of each pageblock within the range */
1323        for (; page < end_page; page = next_active_pageblock(page)) {
1324                if (!is_pageblock_removable_nolock(page))
1325                        return 0;
1326                cond_resched();
1327        }
1328
1329        /* All pageblocks in the memory block are likely to be hot-removable */
1330        return 1;
1331}
1332
1333/*
1334 * Confirm all pages in a range [start, end) is belongs to the same zone.
1335 */
1336int test_pages_in_a_zone(unsigned long start_pfn, unsigned long end_pfn)
1337{
1338        unsigned long pfn;
1339        struct zone *zone = NULL;
1340        struct page *page;
1341        int i;
1342        for (pfn = start_pfn;
1343             pfn < end_pfn;
1344             pfn += MAX_ORDER_NR_PAGES) {
1345                i = 0;
1346                /* This is just a CONFIG_HOLES_IN_ZONE check.*/
1347                while ((i < MAX_ORDER_NR_PAGES) && !pfn_valid_within(pfn + i))
1348                        i++;
1349                if (i == MAX_ORDER_NR_PAGES)
1350                        continue;
1351                page = pfn_to_page(pfn + i);
1352                if (zone && page_zone(page) != zone)
1353                        return 0;
1354                zone = page_zone(page);
1355        }
1356        return 1;
1357}
1358
1359/*
1360 * Scan pfn range [start,end) to find movable/migratable pages (LRU pages
1361 * and hugepages). We scan pfn because it's much easier than scanning over
1362 * linked list. This function returns the pfn of the first found movable
1363 * page if it's found, otherwise 0.
1364 */
1365static unsigned long scan_movable_pages(unsigned long start, unsigned long end)
1366{
1367        unsigned long pfn;
1368        struct page *page;
1369        for (pfn = start; pfn < end; pfn++) {
1370                if (pfn_valid(pfn)) {
1371                        page = pfn_to_page(pfn);
1372                        if (PageLRU(page))
1373                                return pfn;
1374                        if (PageHuge(page)) {
1375                                if (is_hugepage_active(page))
1376                                        return pfn;
1377                                else
1378                                        pfn = round_up(pfn + 1,
1379                                                1 << compound_order(page)) - 1;
1380                        }
1381                }
1382        }
1383        return 0;
1384}
1385
1386#define NR_OFFLINE_AT_ONCE_PAGES        (256)
1387static int
1388do_migrate_range(unsigned long start_pfn, unsigned long end_pfn)
1389{
1390        unsigned long pfn;
1391        struct page *page;
1392        int move_pages = NR_OFFLINE_AT_ONCE_PAGES;
1393        int not_managed = 0;
1394        int ret = 0;
1395        LIST_HEAD(source);
1396
1397        for (pfn = start_pfn; pfn < end_pfn && move_pages > 0; pfn++) {
1398                if (!pfn_valid(pfn))
1399                        continue;
1400                page = pfn_to_page(pfn);
1401
1402                if (PageHuge(page)) {
1403                        struct page *head = compound_head(page);
1404                        pfn = page_to_pfn(head) + (1<<compound_order(head)) - 1;
1405                        if (compound_order(head) > PFN_SECTION_SHIFT) {
1406                                ret = -EBUSY;
1407                                break;
1408                        }
1409                        if (isolate_huge_page(page, &source))
1410                                move_pages -= 1 << compound_order(head);
1411                        continue;
1412                }
1413
1414                if (!get_page_unless_zero(page))
1415                        continue;
1416                /*
1417                 * We can skip free pages. And we can only deal with pages on
1418                 * LRU.
1419                 */
1420                ret = isolate_lru_page(page);
1421                if (!ret) { /* Success */
1422                        put_page(page);
1423                        list_add_tail(&page->lru, &source);
1424                        move_pages--;
1425                        inc_zone_page_state(page, NR_ISOLATED_ANON +
1426                                            page_is_file_cache(page));
1427
1428                } else {
1429#ifdef CONFIG_DEBUG_VM
1430                        printk(KERN_ALERT "removing pfn %lx from LRU failed\n",
1431                               pfn);
1432                        dump_page(page, "failed to remove from LRU");
1433#endif
1434                        put_page(page);
1435                        /* Because we don't have big zone->lock. we should
1436                           check this again here. */
1437                        if (page_count(page)) {
1438                                not_managed++;
1439                                ret = -EBUSY;
1440                                break;
1441                        }
1442                }
1443        }
1444        if (!list_empty(&source)) {
1445                if (not_managed) {
1446                        putback_movable_pages(&source);
1447                        goto out;
1448                }
1449
1450                /*
1451                 * alloc_migrate_target should be improooooved!!
1452                 * migrate_pages returns # of failed pages.
1453                 */
1454                ret = migrate_pages(&source, alloc_migrate_target, NULL, 0,
1455                                        MIGRATE_SYNC, MR_MEMORY_HOTPLUG);
1456                if (ret)
1457                        putback_movable_pages(&source);
1458        }
1459out:
1460        return ret;
1461}
1462
1463/*
1464 * remove from free_area[] and mark all as Reserved.
1465 */
1466static int
1467offline_isolated_pages_cb(unsigned long start, unsigned long nr_pages,
1468                        void *data)
1469{
1470        __offline_isolated_pages(start, start + nr_pages);
1471        return 0;
1472}
1473
1474static void
1475offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
1476{
1477        walk_system_ram_range(start_pfn, end_pfn - start_pfn, NULL,
1478                                offline_isolated_pages_cb);
1479}
1480
1481/*
1482 * Check all pages in range, recoreded as memory resource, are isolated.
1483 */
1484static int
1485check_pages_isolated_cb(unsigned long start_pfn, unsigned long nr_pages,
1486                        void *data)
1487{
1488        int ret;
1489        long offlined = *(long *)data;
1490        ret = test_pages_isolated(start_pfn, start_pfn + nr_pages, true);
1491        offlined = nr_pages;
1492        if (!ret)
1493                *(long *)data += offlined;
1494        return ret;
1495}
1496
1497static long
1498check_pages_isolated(unsigned long start_pfn, unsigned long end_pfn)
1499{
1500        long offlined = 0;
1501        int ret;
1502
1503        ret = walk_system_ram_range(start_pfn, end_pfn - start_pfn, &offlined,
1504                        check_pages_isolated_cb);
1505        if (ret < 0)
1506                offlined = (long)ret;
1507        return offlined;
1508}
1509
1510#ifdef CONFIG_MOVABLE_NODE
1511/*
1512 * When CONFIG_MOVABLE_NODE, we permit offlining of a node which doesn't have
1513 * normal memory.
1514 */
1515static bool can_offline_normal(struct zone *zone, unsigned long nr_pages)
1516{
1517        return true;
1518}
1519#else /* CONFIG_MOVABLE_NODE */
1520/* ensure the node has NORMAL memory if it is still online */
1521static bool can_offline_normal(struct zone *zone, unsigned long nr_pages)
1522{
1523        struct pglist_data *pgdat = zone->zone_pgdat;
1524        unsigned long present_pages = 0;
1525        enum zone_type zt;
1526
1527        for (zt = 0; zt <= ZONE_NORMAL; zt++)
1528                present_pages += pgdat->node_zones[zt].present_pages;
1529
1530        if (present_pages > nr_pages)
1531                return true;
1532
1533        present_pages = 0;
1534        for (; zt <= ZONE_MOVABLE; zt++)
1535                present_pages += pgdat->node_zones[zt].present_pages;
1536
1537        /*
1538         * we can't offline the last normal memory until all
1539         * higher memory is offlined.
1540         */
1541        return present_pages == 0;
1542}
1543#endif /* CONFIG_MOVABLE_NODE */
1544
1545static int __init cmdline_parse_movable_node(char *p)
1546{
1547#ifdef CONFIG_MOVABLE_NODE
1548        /*
1549         * Memory used by the kernel cannot be hot-removed because Linux
1550         * cannot migrate the kernel pages. When memory hotplug is
1551         * enabled, we should prevent memblock from allocating memory
1552         * for the kernel.
1553         *
1554         * ACPI SRAT records all hotpluggable memory ranges. But before
1555         * SRAT is parsed, we don't know about it.
1556         *
1557         * The kernel image is loaded into memory at very early time. We
1558         * cannot prevent this anyway. So on NUMA system, we set any
1559         * node the kernel resides in as un-hotpluggable.
1560         *
1561         * Since on modern servers, one node could have double-digit
1562         * gigabytes memory, we can assume the memory around the kernel
1563         * image is also un-hotpluggable. So before SRAT is parsed, just
1564         * allocate memory near the kernel image to try the best to keep
1565         * the kernel away from hotpluggable memory.
1566         */
1567        memblock_set_bottom_up(true);
1568        movable_node_enabled = true;
1569#else
1570        pr_warn("movable_node option not supported\n");
1571#endif
1572        return 0;
1573}
1574early_param("movable_node", cmdline_parse_movable_node);
1575
1576/* check which state of node_states will be changed when offline memory */
1577static void node_states_check_changes_offline(unsigned long nr_pages,
1578                struct zone *zone, struct memory_notify *arg)
1579{
1580        struct pglist_data *pgdat = zone->zone_pgdat;
1581        unsigned long present_pages = 0;
1582        enum zone_type zt, zone_last = ZONE_NORMAL;
1583
1584        /*
1585         * If we have HIGHMEM or movable node, node_states[N_NORMAL_MEMORY]
1586         * contains nodes which have zones of 0...ZONE_NORMAL,
1587         * set zone_last to ZONE_NORMAL.
1588         *
1589         * If we don't have HIGHMEM nor movable node,
1590         * node_states[N_NORMAL_MEMORY] contains nodes which have zones of
1591         * 0...ZONE_MOVABLE, set zone_last to ZONE_MOVABLE.
1592         */
1593        if (N_MEMORY == N_NORMAL_MEMORY)
1594                zone_last = ZONE_MOVABLE;
1595
1596        /*
1597         * check whether node_states[N_NORMAL_MEMORY] will be changed.
1598         * If the memory to be offline is in a zone of 0...zone_last,
1599         * and it is the last present memory, 0...zone_last will
1600         * become empty after offline , thus we can determind we will
1601         * need to clear the node from node_states[N_NORMAL_MEMORY].
1602         */
1603        for (zt = 0; zt <= zone_last; zt++)
1604                present_pages += pgdat->node_zones[zt].present_pages;
1605        if (zone_idx(zone) <= zone_last && nr_pages >= present_pages)
1606                arg->status_change_nid_normal = zone_to_nid(zone);
1607        else
1608                arg->status_change_nid_normal = -1;
1609
1610#ifdef CONFIG_HIGHMEM
1611        /*
1612         * If we have movable node, node_states[N_HIGH_MEMORY]
1613         * contains nodes which have zones of 0...ZONE_HIGHMEM,
1614         * set zone_last to ZONE_HIGHMEM.
1615         *
1616         * If we don't have movable node, node_states[N_NORMAL_MEMORY]
1617         * contains nodes which have zones of 0...ZONE_MOVABLE,
1618         * set zone_last to ZONE_MOVABLE.
1619         */
1620        zone_last = ZONE_HIGHMEM;
1621        if (N_MEMORY == N_HIGH_MEMORY)
1622                zone_last = ZONE_MOVABLE;
1623
1624        for (; zt <= zone_last; zt++)
1625                present_pages += pgdat->node_zones[zt].present_pages;
1626        if (zone_idx(zone) <= zone_last && nr_pages >= present_pages)
1627                arg->status_change_nid_high = zone_to_nid(zone);
1628        else
1629                arg->status_change_nid_high = -1;
1630#else
1631        arg->status_change_nid_high = arg->status_change_nid_normal;
1632#endif
1633
1634        /*
1635         * node_states[N_HIGH_MEMORY] contains nodes which have 0...ZONE_MOVABLE
1636         */
1637        zone_last = ZONE_MOVABLE;
1638
1639        /*
1640         * check whether node_states[N_HIGH_MEMORY] will be changed
1641         * If we try to offline the last present @nr_pages from the node,
1642         * we can determind we will need to clear the node from
1643         * node_states[N_HIGH_MEMORY].
1644         */
1645        for (; zt <= zone_last; zt++)
1646                present_pages += pgdat->node_zones[zt].present_pages;
1647        if (nr_pages >= present_pages)
1648                arg->status_change_nid = zone_to_nid(zone);
1649        else
1650                arg->status_change_nid = -1;
1651}
1652
1653static void node_states_clear_node(int node, struct memory_notify *arg)
1654{
1655        if (arg->status_change_nid_normal >= 0)
1656                node_clear_state(node, N_NORMAL_MEMORY);
1657
1658        if ((N_MEMORY != N_NORMAL_MEMORY) &&
1659            (arg->status_change_nid_high >= 0))
1660                node_clear_state(node, N_HIGH_MEMORY);
1661
1662        if ((N_MEMORY != N_HIGH_MEMORY) &&
1663            (arg->status_change_nid >= 0))
1664                node_clear_state(node, N_MEMORY);
1665}
1666
1667static int __ref __offline_pages(unsigned long start_pfn,
1668                  unsigned long end_pfn, unsigned long timeout)
1669{
1670        unsigned long pfn, nr_pages, expire;
1671        long offlined_pages;
1672        int ret, drain, retry_max, node;
1673        unsigned long flags;
1674        struct zone *zone;
1675        struct memory_notify arg;
1676
1677        /* at least, alignment against pageblock is necessary */
1678        if (!IS_ALIGNED(start_pfn, pageblock_nr_pages))
1679                return -EINVAL;
1680        if (!IS_ALIGNED(end_pfn, pageblock_nr_pages))
1681                return -EINVAL;
1682        /* This makes hotplug much easier...and readable.
1683           we assume this for now. .*/
1684        if (!test_pages_in_a_zone(start_pfn, end_pfn))
1685                return -EINVAL;
1686
1687        mem_hotplug_begin();
1688
1689        zone = page_zone(pfn_to_page(start_pfn));
1690        node = zone_to_nid(zone);
1691        nr_pages = end_pfn - start_pfn;
1692
1693        ret = -EINVAL;
1694        if (zone_idx(zone) <= ZONE_NORMAL && !can_offline_normal(zone, nr_pages))
1695                goto out;
1696
1697        /* set above range as isolated */
1698        ret = start_isolate_page_range(start_pfn, end_pfn,
1699                                       MIGRATE_MOVABLE, true);
1700        if (ret)
1701                goto out;
1702
1703        arg.start_pfn = start_pfn;
1704        arg.nr_pages = nr_pages;
1705        node_states_check_changes_offline(nr_pages, zone, &arg);
1706
1707        ret = memory_notify(MEM_GOING_OFFLINE, &arg);
1708        ret = notifier_to_errno(ret);
1709        if (ret)
1710                goto failed_removal;
1711
1712        pfn = start_pfn;
1713        expire = jiffies + timeout;
1714        drain = 0;
1715        retry_max = 5;
1716repeat:
1717        /* start memory hot removal */
1718        ret = -EAGAIN;
1719        if (time_after(jiffies, expire))
1720                goto failed_removal;
1721        ret = -EINTR;
1722        if (signal_pending(current))
1723                goto failed_removal;
1724        ret = 0;
1725        if (drain) {
1726                lru_add_drain_all();
1727                cond_resched();
1728                drain_all_pages();
1729        }
1730
1731        pfn = scan_movable_pages(start_pfn, end_pfn);
1732        if (pfn) { /* We have movable pages */
1733                ret = do_migrate_range(pfn, end_pfn);
1734                if (!ret) {
1735                        drain = 1;
1736                        goto repeat;
1737                } else {
1738                        if (ret < 0)
1739                                if (--retry_max == 0)
1740                                        goto failed_removal;
1741                        yield();
1742                        drain = 1;
1743                        goto repeat;
1744                }
1745        }
1746        /* drain all zone's lru pagevec, this is asynchronous... */
1747        lru_add_drain_all();
1748        yield();
1749        /* drain pcp pages, this is synchronous. */
1750        drain_all_pages();
1751        /*
1752         * dissolve free hugepages in the memory block before doing offlining
1753         * actually in order to make hugetlbfs's object counting consistent.
1754         */
1755        dissolve_free_huge_pages(start_pfn, end_pfn);
1756        /* check again */
1757        offlined_pages = check_pages_isolated(start_pfn, end_pfn);
1758        if (offlined_pages < 0) {
1759                ret = -EBUSY;
1760                goto failed_removal;
1761        }
1762        printk(KERN_INFO "Offlined Pages %ld\n", offlined_pages);
1763        /* Ok, all of our target is isolated.
1764           We cannot do rollback at this point. */
1765        offline_isolated_pages(start_pfn, end_pfn);
1766        /* reset pagetype flags and makes migrate type to be MOVABLE */
1767        undo_isolate_page_range(start_pfn, end_pfn, MIGRATE_MOVABLE);
1768        /* removal success */
1769        adjust_managed_page_count(pfn_to_page(start_pfn), -offlined_pages);
1770        zone->present_pages -= offlined_pages;
1771
1772        pgdat_resize_lock(zone->zone_pgdat, &flags);
1773        zone->zone_pgdat->node_present_pages -= offlined_pages;
1774        pgdat_resize_unlock(zone->zone_pgdat, &flags);
1775
1776        init_per_zone_wmark_min();
1777
1778        if (!populated_zone(zone)) {
1779                zone_pcp_reset(zone);
1780                mutex_lock(&zonelists_mutex);
1781                build_all_zonelists(NULL, NULL);
1782                mutex_unlock(&zonelists_mutex);
1783        } else
1784                zone_pcp_update(zone);
1785
1786        node_states_clear_node(node, &arg);
1787        if (arg.status_change_nid >= 0)
1788                kswapd_stop(node);
1789
1790        vm_total_pages = nr_free_pagecache_pages();
1791        writeback_set_ratelimit();
1792
1793        memory_notify(MEM_OFFLINE, &arg);
1794        mem_hotplug_done();
1795        return 0;
1796
1797failed_removal:
1798        printk(KERN_INFO "memory offlining [mem %#010llx-%#010llx] failed\n",
1799               (unsigned long long) start_pfn << PAGE_SHIFT,
1800               ((unsigned long long) end_pfn << PAGE_SHIFT) - 1);
1801        memory_notify(MEM_CANCEL_OFFLINE, &arg);
1802        /* pushback to free area */
1803        undo_isolate_page_range(start_pfn, end_pfn, MIGRATE_MOVABLE);
1804
1805out:
1806        mem_hotplug_done();
1807        return ret;
1808}
1809
1810int offline_pages(unsigned long start_pfn, unsigned long nr_pages)
1811{
1812        return __offline_pages(start_pfn, start_pfn + nr_pages, 120 * HZ);
1813}
1814#endif /* CONFIG_MEMORY_HOTREMOVE */
1815
1816/**
1817 * walk_memory_range - walks through all mem sections in [start_pfn, end_pfn)
1818 * @start_pfn: start pfn of the memory range
1819 * @end_pfn: end pfn of the memory range
1820 * @arg: argument passed to func
1821 * @func: callback for each memory section walked
1822 *
1823 * This function walks through all present mem sections in range
1824 * [start_pfn, end_pfn) and call func on each mem section.
1825 *
1826 * Returns the return value of func.
1827 */
1828int walk_memory_range(unsigned long start_pfn, unsigned long end_pfn,
1829                void *arg, int (*func)(struct memory_block *, void *))
1830{
1831        struct memory_block *mem = NULL;
1832        struct mem_section *section;
1833        unsigned long pfn, section_nr;
1834        int ret;
1835
1836        for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
1837                section_nr = pfn_to_section_nr(pfn);
1838                if (!present_section_nr(section_nr))
1839                        continue;
1840
1841                section = __nr_to_section(section_nr);
1842                /* same memblock? */
1843                if (mem)
1844                        if ((section_nr >= mem->start_section_nr) &&
1845                            (section_nr <= mem->end_section_nr))
1846                                continue;
1847
1848                mem = find_memory_block_hinted(section, mem);
1849                if (!mem)
1850                        continue;
1851
1852                ret = func(mem, arg);
1853                if (ret) {
1854                        kobject_put(&mem->dev.kobj);
1855                        return ret;
1856                }
1857        }
1858
1859        if (mem)
1860                kobject_put(&mem->dev.kobj);
1861
1862        return 0;
1863}
1864
1865#ifdef CONFIG_MEMORY_HOTREMOVE
1866static int check_memblock_offlined_cb(struct memory_block *mem, void *arg)
1867{
1868        int ret = !is_memblock_offlined(mem);
1869
1870        if (unlikely(ret)) {
1871                phys_addr_t beginpa, endpa;
1872
1873                beginpa = PFN_PHYS(section_nr_to_pfn(mem->start_section_nr));
1874                endpa = PFN_PHYS(section_nr_to_pfn(mem->end_section_nr + 1))-1;
1875                pr_warn("removing memory fails, because memory "
1876                        "[%pa-%pa] is onlined\n",
1877                        &beginpa, &endpa);
1878        }
1879
1880        return ret;
1881}
1882
1883static int check_cpu_on_node(pg_data_t *pgdat)
1884{
1885        int cpu;
1886
1887        for_each_present_cpu(cpu) {
1888                if (cpu_to_node(cpu) == pgdat->node_id)
1889                        /*
1890                         * the cpu on this node isn't removed, and we can't
1891                         * offline this node.
1892                         */
1893                        return -EBUSY;
1894        }
1895
1896        return 0;
1897}
1898
1899static void unmap_cpu_on_node(pg_data_t *pgdat)
1900{
1901#ifdef CONFIG_ACPI_NUMA
1902        int cpu;
1903
1904        for_each_possible_cpu(cpu)
1905                if (cpu_to_node(cpu) == pgdat->node_id)
1906                        numa_clear_node(cpu);
1907#endif
1908}
1909
1910static int check_and_unmap_cpu_on_node(pg_data_t *pgdat)
1911{
1912        int ret;
1913
1914        ret = check_cpu_on_node(pgdat);
1915        if (ret)
1916                return ret;
1917
1918        /*
1919         * the node will be offlined when we come here, so we can clear
1920         * the cpu_to_node() now.
1921         */
1922
1923        unmap_cpu_on_node(pgdat);
1924        return 0;
1925}
1926
1927/**
1928 * try_offline_node
1929 *
1930 * Offline a node if all memory sections and cpus of the node are removed.
1931 *
1932 * NOTE: The caller must call lock_device_hotplug() to serialize hotplug
1933 * and online/offline operations before this call.
1934 */
1935void try_offline_node(int nid)
1936{
1937        pg_data_t *pgdat = NODE_DATA(nid);
1938        unsigned long start_pfn = pgdat->node_start_pfn;
1939        unsigned long end_pfn = start_pfn + pgdat->node_spanned_pages;
1940        unsigned long pfn;
1941        int i;
1942
1943        for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
1944                unsigned long section_nr = pfn_to_section_nr(pfn);
1945
1946                if (!present_section_nr(section_nr))
1947                        continue;
1948
1949                if (pfn_to_nid(pfn) != nid)
1950                        continue;
1951
1952                /*
1953                 * some memory sections of this node are not removed, and we
1954                 * can't offline node now.
1955                 */
1956                return;
1957        }
1958
1959        if (check_and_unmap_cpu_on_node(pgdat))
1960                return;
1961
1962        /*
1963         * all memory/cpu of this node are removed, we can offline this
1964         * node now.
1965         */
1966        node_set_offline(nid);
1967        unregister_one_node(nid);
1968
1969        /* free waittable in each zone */
1970        for (i = 0; i < MAX_NR_ZONES; i++) {
1971                struct zone *zone = pgdat->node_zones + i;
1972
1973                /*
1974                 * wait_table may be allocated from boot memory,
1975                 * here only free if it's allocated by vmalloc.
1976                 */
1977                if (is_vmalloc_addr(zone->wait_table))
1978                        vfree(zone->wait_table);
1979        }
1980
1981        /*
1982         * Since there is no way to guarentee the address of pgdat/zone is not
1983         * on stack of any kernel threads or used by other kernel objects
1984         * without reference counting or other symchronizing method, do not
1985         * reset node_data and free pgdat here. Just reset it to 0 and reuse
1986         * the memory when the node is online again.
1987         */
1988        memset(pgdat, 0, sizeof(*pgdat));
1989}
1990EXPORT_SYMBOL(try_offline_node);
1991
1992/**
1993 * remove_memory
1994 *
1995 * NOTE: The caller must call lock_device_hotplug() to serialize hotplug
1996 * and online/offline operations before this call, as required by
1997 * try_offline_node().
1998 */
1999void __ref remove_memory(int nid, u64 start, u64 size)
2000{
2001        int ret;
2002
2003        BUG_ON(check_hotplug_memory_range(start, size));
2004
2005        mem_hotplug_begin();
2006
2007        /*
2008         * All memory blocks must be offlined before removing memory.  Check
2009         * whether all memory blocks in question are offline and trigger a BUG()
2010         * if this is not the case.
2011         */
2012        ret = walk_memory_range(PFN_DOWN(start), PFN_UP(start + size - 1), NULL,
2013                                check_memblock_offlined_cb);
2014        if (ret)
2015                BUG();
2016
2017        /* remove memmap entry */
2018        firmware_map_remove(start, start + size, "System RAM");
2019
2020        arch_remove_memory(start, size);
2021
2022        try_offline_node(nid);
2023
2024        mem_hotplug_done();
2025}
2026EXPORT_SYMBOL_GPL(remove_memory);
2027#endif /* CONFIG_MEMORY_HOTREMOVE */
2028