linux/mm/page_alloc.c
<<
>>
Prefs
   1/*
   2 *  linux/mm/page_alloc.c
   3 *
   4 *  Manages the free list, the system allocates free pages here.
   5 *  Note that kmalloc() lives in slab.c
   6 *
   7 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
   8 *  Swap reorganised 29.12.95, Stephen Tweedie
   9 *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
  10 *  Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
  11 *  Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
  12 *  Zone balancing, Kanoj Sarcar, SGI, Jan 2000
  13 *  Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
  14 *          (lots of bits borrowed from Ingo Molnar & Andrew Morton)
  15 */
  16
  17#include <linux/stddef.h>
  18#include <linux/mm.h>
  19#include <linux/swap.h>
  20#include <linux/interrupt.h>
  21#include <linux/pagemap.h>
  22#include <linux/jiffies.h>
  23#include <linux/bootmem.h>
  24#include <linux/memblock.h>
  25#include <linux/compiler.h>
  26#include <linux/kernel.h>
  27#include <linux/kmemcheck.h>
  28#include <linux/module.h>
  29#include <linux/suspend.h>
  30#include <linux/pagevec.h>
  31#include <linux/blkdev.h>
  32#include <linux/slab.h>
  33#include <linux/ratelimit.h>
  34#include <linux/oom.h>
  35#include <linux/notifier.h>
  36#include <linux/topology.h>
  37#include <linux/sysctl.h>
  38#include <linux/cpu.h>
  39#include <linux/cpuset.h>
  40#include <linux/memory_hotplug.h>
  41#include <linux/nodemask.h>
  42#include <linux/vmalloc.h>
  43#include <linux/vmstat.h>
  44#include <linux/mempolicy.h>
  45#include <linux/stop_machine.h>
  46#include <linux/sort.h>
  47#include <linux/pfn.h>
  48#include <linux/backing-dev.h>
  49#include <linux/fault-inject.h>
  50#include <linux/page-isolation.h>
  51#include <linux/page_cgroup.h>
  52#include <linux/debugobjects.h>
  53#include <linux/kmemleak.h>
  54#include <linux/compaction.h>
  55#include <trace/events/kmem.h>
  56#include <linux/prefetch.h>
  57#include <linux/mm_inline.h>
  58#include <linux/migrate.h>
  59#include <linux/page-debug-flags.h>
  60#include <linux/hugetlb.h>
  61#include <linux/sched/rt.h>
  62
  63#include <asm/sections.h>
  64#include <asm/tlbflush.h>
  65#include <asm/div64.h>
  66#include "internal.h"
  67
  68/* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
  69static DEFINE_MUTEX(pcp_batch_high_lock);
  70#define MIN_PERCPU_PAGELIST_FRACTION    (8)
  71
  72#ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
  73DEFINE_PER_CPU(int, numa_node);
  74EXPORT_PER_CPU_SYMBOL(numa_node);
  75#endif
  76
  77#ifdef CONFIG_HAVE_MEMORYLESS_NODES
  78/*
  79 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
  80 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
  81 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
  82 * defined in <linux/topology.h>.
  83 */
  84DEFINE_PER_CPU(int, _numa_mem_);                /* Kernel "local memory" node */
  85EXPORT_PER_CPU_SYMBOL(_numa_mem_);
  86int _node_numa_mem_[MAX_NUMNODES];
  87#endif
  88
  89/*
  90 * Array of node states.
  91 */
  92nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
  93        [N_POSSIBLE] = NODE_MASK_ALL,
  94        [N_ONLINE] = { { [0] = 1UL } },
  95#ifndef CONFIG_NUMA
  96        [N_NORMAL_MEMORY] = { { [0] = 1UL } },
  97#ifdef CONFIG_HIGHMEM
  98        [N_HIGH_MEMORY] = { { [0] = 1UL } },
  99#endif
 100#ifdef CONFIG_MOVABLE_NODE
 101        [N_MEMORY] = { { [0] = 1UL } },
 102#endif
 103        [N_CPU] = { { [0] = 1UL } },
 104#endif  /* NUMA */
 105};
 106EXPORT_SYMBOL(node_states);
 107
 108/* Protect totalram_pages and zone->managed_pages */
 109static DEFINE_SPINLOCK(managed_page_count_lock);
 110
 111unsigned long totalram_pages __read_mostly;
 112unsigned long totalreserve_pages __read_mostly;
 113/*
 114 * When calculating the number of globally allowed dirty pages, there
 115 * is a certain number of per-zone reserves that should not be
 116 * considered dirtyable memory.  This is the sum of those reserves
 117 * over all existing zones that contribute dirtyable memory.
 118 */
 119unsigned long dirty_balance_reserve __read_mostly;
 120
 121int percpu_pagelist_fraction;
 122gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
 123
 124#ifdef CONFIG_PM_SLEEP
 125/*
 126 * The following functions are used by the suspend/hibernate code to temporarily
 127 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
 128 * while devices are suspended.  To avoid races with the suspend/hibernate code,
 129 * they should always be called with pm_mutex held (gfp_allowed_mask also should
 130 * only be modified with pm_mutex held, unless the suspend/hibernate code is
 131 * guaranteed not to run in parallel with that modification).
 132 */
 133
 134static gfp_t saved_gfp_mask;
 135
 136void pm_restore_gfp_mask(void)
 137{
 138        WARN_ON(!mutex_is_locked(&pm_mutex));
 139        if (saved_gfp_mask) {
 140                gfp_allowed_mask = saved_gfp_mask;
 141                saved_gfp_mask = 0;
 142        }
 143}
 144
 145void pm_restrict_gfp_mask(void)
 146{
 147        WARN_ON(!mutex_is_locked(&pm_mutex));
 148        WARN_ON(saved_gfp_mask);
 149        saved_gfp_mask = gfp_allowed_mask;
 150        gfp_allowed_mask &= ~GFP_IOFS;
 151}
 152
 153bool pm_suspended_storage(void)
 154{
 155        if ((gfp_allowed_mask & GFP_IOFS) == GFP_IOFS)
 156                return false;
 157        return true;
 158}
 159#endif /* CONFIG_PM_SLEEP */
 160
 161#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
 162int pageblock_order __read_mostly;
 163#endif
 164
 165static void __free_pages_ok(struct page *page, unsigned int order);
 166
 167/*
 168 * results with 256, 32 in the lowmem_reserve sysctl:
 169 *      1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
 170 *      1G machine -> (16M dma, 784M normal, 224M high)
 171 *      NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
 172 *      HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
 173 *      HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
 174 *
 175 * TBD: should special case ZONE_DMA32 machines here - in those we normally
 176 * don't need any ZONE_NORMAL reservation
 177 */
 178int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
 179#ifdef CONFIG_ZONE_DMA
 180         256,
 181#endif
 182#ifdef CONFIG_ZONE_DMA32
 183         256,
 184#endif
 185#ifdef CONFIG_HIGHMEM
 186         32,
 187#endif
 188         32,
 189};
 190
 191EXPORT_SYMBOL(totalram_pages);
 192
 193static char * const zone_names[MAX_NR_ZONES] = {
 194#ifdef CONFIG_ZONE_DMA
 195         "DMA",
 196#endif
 197#ifdef CONFIG_ZONE_DMA32
 198         "DMA32",
 199#endif
 200         "Normal",
 201#ifdef CONFIG_HIGHMEM
 202         "HighMem",
 203#endif
 204         "Movable",
 205};
 206
 207int min_free_kbytes = 1024;
 208int user_min_free_kbytes = -1;
 209
 210static unsigned long __meminitdata nr_kernel_pages;
 211static unsigned long __meminitdata nr_all_pages;
 212static unsigned long __meminitdata dma_reserve;
 213
 214#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
 215static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
 216static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
 217static unsigned long __initdata required_kernelcore;
 218static unsigned long __initdata required_movablecore;
 219static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
 220
 221/* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
 222int movable_zone;
 223EXPORT_SYMBOL(movable_zone);
 224#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
 225
 226#if MAX_NUMNODES > 1
 227int nr_node_ids __read_mostly = MAX_NUMNODES;
 228int nr_online_nodes __read_mostly = 1;
 229EXPORT_SYMBOL(nr_node_ids);
 230EXPORT_SYMBOL(nr_online_nodes);
 231#endif
 232
 233int page_group_by_mobility_disabled __read_mostly;
 234
 235void set_pageblock_migratetype(struct page *page, int migratetype)
 236{
 237        if (unlikely(page_group_by_mobility_disabled &&
 238                     migratetype < MIGRATE_PCPTYPES))
 239                migratetype = MIGRATE_UNMOVABLE;
 240
 241        set_pageblock_flags_group(page, (unsigned long)migratetype,
 242                                        PB_migrate, PB_migrate_end);
 243}
 244
 245bool oom_killer_disabled __read_mostly;
 246
 247#ifdef CONFIG_DEBUG_VM
 248static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
 249{
 250        int ret = 0;
 251        unsigned seq;
 252        unsigned long pfn = page_to_pfn(page);
 253        unsigned long sp, start_pfn;
 254
 255        do {
 256                seq = zone_span_seqbegin(zone);
 257                start_pfn = zone->zone_start_pfn;
 258                sp = zone->spanned_pages;
 259                if (!zone_spans_pfn(zone, pfn))
 260                        ret = 1;
 261        } while (zone_span_seqretry(zone, seq));
 262
 263        if (ret)
 264                pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
 265                        pfn, zone_to_nid(zone), zone->name,
 266                        start_pfn, start_pfn + sp);
 267
 268        return ret;
 269}
 270
 271static int page_is_consistent(struct zone *zone, struct page *page)
 272{
 273        if (!pfn_valid_within(page_to_pfn(page)))
 274                return 0;
 275        if (zone != page_zone(page))
 276                return 0;
 277
 278        return 1;
 279}
 280/*
 281 * Temporary debugging check for pages not lying within a given zone.
 282 */
 283static int bad_range(struct zone *zone, struct page *page)
 284{
 285        if (page_outside_zone_boundaries(zone, page))
 286                return 1;
 287        if (!page_is_consistent(zone, page))
 288                return 1;
 289
 290        return 0;
 291}
 292#else
 293static inline int bad_range(struct zone *zone, struct page *page)
 294{
 295        return 0;
 296}
 297#endif
 298
 299static void bad_page(struct page *page, const char *reason,
 300                unsigned long bad_flags)
 301{
 302        static unsigned long resume;
 303        static unsigned long nr_shown;
 304        static unsigned long nr_unshown;
 305
 306        /* Don't complain about poisoned pages */
 307        if (PageHWPoison(page)) {
 308                page_mapcount_reset(page); /* remove PageBuddy */
 309                return;
 310        }
 311
 312        /*
 313         * Allow a burst of 60 reports, then keep quiet for that minute;
 314         * or allow a steady drip of one report per second.
 315         */
 316        if (nr_shown == 60) {
 317                if (time_before(jiffies, resume)) {
 318                        nr_unshown++;
 319                        goto out;
 320                }
 321                if (nr_unshown) {
 322                        printk(KERN_ALERT
 323                              "BUG: Bad page state: %lu messages suppressed\n",
 324                                nr_unshown);
 325                        nr_unshown = 0;
 326                }
 327                nr_shown = 0;
 328        }
 329        if (nr_shown++ == 0)
 330                resume = jiffies + 60 * HZ;
 331
 332        printk(KERN_ALERT "BUG: Bad page state in process %s  pfn:%05lx\n",
 333                current->comm, page_to_pfn(page));
 334        dump_page_badflags(page, reason, bad_flags);
 335
 336        print_modules();
 337        dump_stack();
 338out:
 339        /* Leave bad fields for debug, except PageBuddy could make trouble */
 340        page_mapcount_reset(page); /* remove PageBuddy */
 341        add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
 342}
 343
 344/*
 345 * Higher-order pages are called "compound pages".  They are structured thusly:
 346 *
 347 * The first PAGE_SIZE page is called the "head page".
 348 *
 349 * The remaining PAGE_SIZE pages are called "tail pages".
 350 *
 351 * All pages have PG_compound set.  All tail pages have their ->first_page
 352 * pointing at the head page.
 353 *
 354 * The first tail page's ->lru.next holds the address of the compound page's
 355 * put_page() function.  Its ->lru.prev holds the order of allocation.
 356 * This usage means that zero-order pages may not be compound.
 357 */
 358
 359static void free_compound_page(struct page *page)
 360{
 361        __free_pages_ok(page, compound_order(page));
 362}
 363
 364void prep_compound_page(struct page *page, unsigned long order)
 365{
 366        int i;
 367        int nr_pages = 1 << order;
 368
 369        set_compound_page_dtor(page, free_compound_page);
 370        set_compound_order(page, order);
 371        __SetPageHead(page);
 372        for (i = 1; i < nr_pages; i++) {
 373                struct page *p = page + i;
 374                set_page_count(p, 0);
 375                p->first_page = page;
 376                /* Make sure p->first_page is always valid for PageTail() */
 377                smp_wmb();
 378                __SetPageTail(p);
 379        }
 380}
 381
 382/* update __split_huge_page_refcount if you change this function */
 383static int destroy_compound_page(struct page *page, unsigned long order)
 384{
 385        int i;
 386        int nr_pages = 1 << order;
 387        int bad = 0;
 388
 389        if (unlikely(compound_order(page) != order)) {
 390                bad_page(page, "wrong compound order", 0);
 391                bad++;
 392        }
 393
 394        __ClearPageHead(page);
 395
 396        for (i = 1; i < nr_pages; i++) {
 397                struct page *p = page + i;
 398
 399                if (unlikely(!PageTail(p))) {
 400                        bad_page(page, "PageTail not set", 0);
 401                        bad++;
 402                } else if (unlikely(p->first_page != page)) {
 403                        bad_page(page, "first_page not consistent", 0);
 404                        bad++;
 405                }
 406                __ClearPageTail(p);
 407        }
 408
 409        return bad;
 410}
 411
 412static inline void prep_zero_page(struct page *page, unsigned int order,
 413                                                        gfp_t gfp_flags)
 414{
 415        int i;
 416
 417        /*
 418         * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
 419         * and __GFP_HIGHMEM from hard or soft interrupt context.
 420         */
 421        VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
 422        for (i = 0; i < (1 << order); i++)
 423                clear_highpage(page + i);
 424}
 425
 426#ifdef CONFIG_DEBUG_PAGEALLOC
 427unsigned int _debug_guardpage_minorder;
 428
 429static int __init debug_guardpage_minorder_setup(char *buf)
 430{
 431        unsigned long res;
 432
 433        if (kstrtoul(buf, 10, &res) < 0 ||  res > MAX_ORDER / 2) {
 434                printk(KERN_ERR "Bad debug_guardpage_minorder value\n");
 435                return 0;
 436        }
 437        _debug_guardpage_minorder = res;
 438        printk(KERN_INFO "Setting debug_guardpage_minorder to %lu\n", res);
 439        return 0;
 440}
 441__setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup);
 442
 443static inline void set_page_guard_flag(struct page *page)
 444{
 445        __set_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
 446}
 447
 448static inline void clear_page_guard_flag(struct page *page)
 449{
 450        __clear_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
 451}
 452#else
 453static inline void set_page_guard_flag(struct page *page) { }
 454static inline void clear_page_guard_flag(struct page *page) { }
 455#endif
 456
 457static inline void set_page_order(struct page *page, unsigned int order)
 458{
 459        set_page_private(page, order);
 460        __SetPageBuddy(page);
 461}
 462
 463static inline void rmv_page_order(struct page *page)
 464{
 465        __ClearPageBuddy(page);
 466        set_page_private(page, 0);
 467}
 468
 469/*
 470 * This function checks whether a page is free && is the buddy
 471 * we can do coalesce a page and its buddy if
 472 * (a) the buddy is not in a hole &&
 473 * (b) the buddy is in the buddy system &&
 474 * (c) a page and its buddy have the same order &&
 475 * (d) a page and its buddy are in the same zone.
 476 *
 477 * For recording whether a page is in the buddy system, we set ->_mapcount
 478 * PAGE_BUDDY_MAPCOUNT_VALUE.
 479 * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is
 480 * serialized by zone->lock.
 481 *
 482 * For recording page's order, we use page_private(page).
 483 */
 484static inline int page_is_buddy(struct page *page, struct page *buddy,
 485                                                        unsigned int order)
 486{
 487        if (!pfn_valid_within(page_to_pfn(buddy)))
 488                return 0;
 489
 490        if (page_is_guard(buddy) && page_order(buddy) == order) {
 491                VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
 492
 493                if (page_zone_id(page) != page_zone_id(buddy))
 494                        return 0;
 495
 496                return 1;
 497        }
 498
 499        if (PageBuddy(buddy) && page_order(buddy) == order) {
 500                VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
 501
 502                /*
 503                 * zone check is done late to avoid uselessly
 504                 * calculating zone/node ids for pages that could
 505                 * never merge.
 506                 */
 507                if (page_zone_id(page) != page_zone_id(buddy))
 508                        return 0;
 509
 510                return 1;
 511        }
 512        return 0;
 513}
 514
 515/*
 516 * Freeing function for a buddy system allocator.
 517 *
 518 * The concept of a buddy system is to maintain direct-mapped table
 519 * (containing bit values) for memory blocks of various "orders".
 520 * The bottom level table contains the map for the smallest allocatable
 521 * units of memory (here, pages), and each level above it describes
 522 * pairs of units from the levels below, hence, "buddies".
 523 * At a high level, all that happens here is marking the table entry
 524 * at the bottom level available, and propagating the changes upward
 525 * as necessary, plus some accounting needed to play nicely with other
 526 * parts of the VM system.
 527 * At each level, we keep a list of pages, which are heads of continuous
 528 * free pages of length of (1 << order) and marked with _mapcount
 529 * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page)
 530 * field.
 531 * So when we are allocating or freeing one, we can derive the state of the
 532 * other.  That is, if we allocate a small block, and both were
 533 * free, the remainder of the region must be split into blocks.
 534 * If a block is freed, and its buddy is also free, then this
 535 * triggers coalescing into a block of larger size.
 536 *
 537 * -- nyc
 538 */
 539
 540static inline void __free_one_page(struct page *page,
 541                unsigned long pfn,
 542                struct zone *zone, unsigned int order,
 543                int migratetype)
 544{
 545        unsigned long page_idx;
 546        unsigned long combined_idx;
 547        unsigned long uninitialized_var(buddy_idx);
 548        struct page *buddy;
 549        int max_order = MAX_ORDER;
 550
 551        VM_BUG_ON(!zone_is_initialized(zone));
 552
 553        if (unlikely(PageCompound(page)))
 554                if (unlikely(destroy_compound_page(page, order)))
 555                        return;
 556
 557        VM_BUG_ON(migratetype == -1);
 558        if (is_migrate_isolate(migratetype)) {
 559                /*
 560                 * We restrict max order of merging to prevent merge
 561                 * between freepages on isolate pageblock and normal
 562                 * pageblock. Without this, pageblock isolation
 563                 * could cause incorrect freepage accounting.
 564                 */
 565                max_order = min(MAX_ORDER, pageblock_order + 1);
 566        } else {
 567                __mod_zone_freepage_state(zone, 1 << order, migratetype);
 568        }
 569
 570        page_idx = pfn & ((1 << max_order) - 1);
 571
 572        VM_BUG_ON_PAGE(page_idx & ((1 << order) - 1), page);
 573        VM_BUG_ON_PAGE(bad_range(zone, page), page);
 574
 575        while (order < max_order - 1) {
 576                buddy_idx = __find_buddy_index(page_idx, order);
 577                buddy = page + (buddy_idx - page_idx);
 578                if (!page_is_buddy(page, buddy, order))
 579                        break;
 580                /*
 581                 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
 582                 * merge with it and move up one order.
 583                 */
 584                if (page_is_guard(buddy)) {
 585                        clear_page_guard_flag(buddy);
 586                        set_page_private(buddy, 0);
 587                        if (!is_migrate_isolate(migratetype)) {
 588                                __mod_zone_freepage_state(zone, 1 << order,
 589                                                          migratetype);
 590                        }
 591                } else {
 592                        list_del(&buddy->lru);
 593                        zone->free_area[order].nr_free--;
 594                        rmv_page_order(buddy);
 595                }
 596                combined_idx = buddy_idx & page_idx;
 597                page = page + (combined_idx - page_idx);
 598                page_idx = combined_idx;
 599                order++;
 600        }
 601        set_page_order(page, order);
 602
 603        /*
 604         * If this is not the largest possible page, check if the buddy
 605         * of the next-highest order is free. If it is, it's possible
 606         * that pages are being freed that will coalesce soon. In case,
 607         * that is happening, add the free page to the tail of the list
 608         * so it's less likely to be used soon and more likely to be merged
 609         * as a higher order page
 610         */
 611        if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
 612                struct page *higher_page, *higher_buddy;
 613                combined_idx = buddy_idx & page_idx;
 614                higher_page = page + (combined_idx - page_idx);
 615                buddy_idx = __find_buddy_index(combined_idx, order + 1);
 616                higher_buddy = higher_page + (buddy_idx - combined_idx);
 617                if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
 618                        list_add_tail(&page->lru,
 619                                &zone->free_area[order].free_list[migratetype]);
 620                        goto out;
 621                }
 622        }
 623
 624        list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
 625out:
 626        zone->free_area[order].nr_free++;
 627}
 628
 629static inline int free_pages_check(struct page *page)
 630{
 631        const char *bad_reason = NULL;
 632        unsigned long bad_flags = 0;
 633
 634        if (unlikely(page_mapcount(page)))
 635                bad_reason = "nonzero mapcount";
 636        if (unlikely(page->mapping != NULL))
 637                bad_reason = "non-NULL mapping";
 638        if (unlikely(atomic_read(&page->_count) != 0))
 639                bad_reason = "nonzero _count";
 640        if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
 641                bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
 642                bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
 643        }
 644        if (unlikely(mem_cgroup_bad_page_check(page)))
 645                bad_reason = "cgroup check failed";
 646        if (unlikely(bad_reason)) {
 647                bad_page(page, bad_reason, bad_flags);
 648                return 1;
 649        }
 650        page_cpupid_reset_last(page);
 651        if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
 652                page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
 653        return 0;
 654}
 655
 656/*
 657 * Frees a number of pages from the PCP lists
 658 * Assumes all pages on list are in same zone, and of same order.
 659 * count is the number of pages to free.
 660 *
 661 * If the zone was previously in an "all pages pinned" state then look to
 662 * see if this freeing clears that state.
 663 *
 664 * And clear the zone's pages_scanned counter, to hold off the "all pages are
 665 * pinned" detection logic.
 666 */
 667static void free_pcppages_bulk(struct zone *zone, int count,
 668                                        struct per_cpu_pages *pcp)
 669{
 670        int migratetype = 0;
 671        int batch_free = 0;
 672        int to_free = count;
 673        unsigned long nr_scanned;
 674
 675        spin_lock(&zone->lock);
 676        nr_scanned = zone_page_state(zone, NR_PAGES_SCANNED);
 677        if (nr_scanned)
 678                __mod_zone_page_state(zone, NR_PAGES_SCANNED, -nr_scanned);
 679
 680        while (to_free) {
 681                struct page *page;
 682                struct list_head *list;
 683
 684                /*
 685                 * Remove pages from lists in a round-robin fashion. A
 686                 * batch_free count is maintained that is incremented when an
 687                 * empty list is encountered.  This is so more pages are freed
 688                 * off fuller lists instead of spinning excessively around empty
 689                 * lists
 690                 */
 691                do {
 692                        batch_free++;
 693                        if (++migratetype == MIGRATE_PCPTYPES)
 694                                migratetype = 0;
 695                        list = &pcp->lists[migratetype];
 696                } while (list_empty(list));
 697
 698                /* This is the only non-empty list. Free them all. */
 699                if (batch_free == MIGRATE_PCPTYPES)
 700                        batch_free = to_free;
 701
 702                do {
 703                        int mt; /* migratetype of the to-be-freed page */
 704
 705                        page = list_entry(list->prev, struct page, lru);
 706                        /* must delete as __free_one_page list manipulates */
 707                        list_del(&page->lru);
 708                        mt = get_freepage_migratetype(page);
 709                        if (unlikely(has_isolate_pageblock(zone)))
 710                                mt = get_pageblock_migratetype(page);
 711
 712                        /* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */
 713                        __free_one_page(page, page_to_pfn(page), zone, 0, mt);
 714                        trace_mm_page_pcpu_drain(page, 0, mt);
 715                } while (--to_free && --batch_free && !list_empty(list));
 716        }
 717        spin_unlock(&zone->lock);
 718}
 719
 720static void free_one_page(struct zone *zone,
 721                                struct page *page, unsigned long pfn,
 722                                unsigned int order,
 723                                int migratetype)
 724{
 725        unsigned long nr_scanned;
 726        spin_lock(&zone->lock);
 727        nr_scanned = zone_page_state(zone, NR_PAGES_SCANNED);
 728        if (nr_scanned)
 729                __mod_zone_page_state(zone, NR_PAGES_SCANNED, -nr_scanned);
 730
 731        if (unlikely(has_isolate_pageblock(zone) ||
 732                is_migrate_isolate(migratetype))) {
 733                migratetype = get_pfnblock_migratetype(page, pfn);
 734        }
 735        __free_one_page(page, pfn, zone, order, migratetype);
 736        spin_unlock(&zone->lock);
 737}
 738
 739static bool free_pages_prepare(struct page *page, unsigned int order)
 740{
 741        int i;
 742        int bad = 0;
 743
 744        trace_mm_page_free(page, order);
 745        kmemcheck_free_shadow(page, order);
 746
 747        if (PageAnon(page))
 748                page->mapping = NULL;
 749        for (i = 0; i < (1 << order); i++)
 750                bad += free_pages_check(page + i);
 751        if (bad)
 752                return false;
 753
 754        if (!PageHighMem(page)) {
 755                debug_check_no_locks_freed(page_address(page),
 756                                           PAGE_SIZE << order);
 757                debug_check_no_obj_freed(page_address(page),
 758                                           PAGE_SIZE << order);
 759        }
 760        arch_free_page(page, order);
 761        kernel_map_pages(page, 1 << order, 0);
 762
 763        return true;
 764}
 765
 766static void __free_pages_ok(struct page *page, unsigned int order)
 767{
 768        unsigned long flags;
 769        int migratetype;
 770        unsigned long pfn = page_to_pfn(page);
 771
 772        if (!free_pages_prepare(page, order))
 773                return;
 774
 775        migratetype = get_pfnblock_migratetype(page, pfn);
 776        local_irq_save(flags);
 777        __count_vm_events(PGFREE, 1 << order);
 778        set_freepage_migratetype(page, migratetype);
 779        free_one_page(page_zone(page), page, pfn, order, migratetype);
 780        local_irq_restore(flags);
 781}
 782
 783void __init __free_pages_bootmem(struct page *page, unsigned int order)
 784{
 785        unsigned int nr_pages = 1 << order;
 786        struct page *p = page;
 787        unsigned int loop;
 788
 789        prefetchw(p);
 790        for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
 791                prefetchw(p + 1);
 792                __ClearPageReserved(p);
 793                set_page_count(p, 0);
 794        }
 795        __ClearPageReserved(p);
 796        set_page_count(p, 0);
 797
 798        page_zone(page)->managed_pages += nr_pages;
 799        set_page_refcounted(page);
 800        __free_pages(page, order);
 801}
 802
 803#ifdef CONFIG_CMA
 804/* Free whole pageblock and set its migration type to MIGRATE_CMA. */
 805void __init init_cma_reserved_pageblock(struct page *page)
 806{
 807        unsigned i = pageblock_nr_pages;
 808        struct page *p = page;
 809
 810        do {
 811                __ClearPageReserved(p);
 812                set_page_count(p, 0);
 813        } while (++p, --i);
 814
 815        set_pageblock_migratetype(page, MIGRATE_CMA);
 816
 817        if (pageblock_order >= MAX_ORDER) {
 818                i = pageblock_nr_pages;
 819                p = page;
 820                do {
 821                        set_page_refcounted(p);
 822                        __free_pages(p, MAX_ORDER - 1);
 823                        p += MAX_ORDER_NR_PAGES;
 824                } while (i -= MAX_ORDER_NR_PAGES);
 825        } else {
 826                set_page_refcounted(page);
 827                __free_pages(page, pageblock_order);
 828        }
 829
 830        adjust_managed_page_count(page, pageblock_nr_pages);
 831}
 832#endif
 833
 834/*
 835 * The order of subdivision here is critical for the IO subsystem.
 836 * Please do not alter this order without good reasons and regression
 837 * testing. Specifically, as large blocks of memory are subdivided,
 838 * the order in which smaller blocks are delivered depends on the order
 839 * they're subdivided in this function. This is the primary factor
 840 * influencing the order in which pages are delivered to the IO
 841 * subsystem according to empirical testing, and this is also justified
 842 * by considering the behavior of a buddy system containing a single
 843 * large block of memory acted on by a series of small allocations.
 844 * This behavior is a critical factor in sglist merging's success.
 845 *
 846 * -- nyc
 847 */
 848static inline void expand(struct zone *zone, struct page *page,
 849        int low, int high, struct free_area *area,
 850        int migratetype)
 851{
 852        unsigned long size = 1 << high;
 853
 854        while (high > low) {
 855                area--;
 856                high--;
 857                size >>= 1;
 858                VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
 859
 860#ifdef CONFIG_DEBUG_PAGEALLOC
 861                if (high < debug_guardpage_minorder()) {
 862                        /*
 863                         * Mark as guard pages (or page), that will allow to
 864                         * merge back to allocator when buddy will be freed.
 865                         * Corresponding page table entries will not be touched,
 866                         * pages will stay not present in virtual address space
 867                         */
 868                        INIT_LIST_HEAD(&page[size].lru);
 869                        set_page_guard_flag(&page[size]);
 870                        set_page_private(&page[size], high);
 871                        /* Guard pages are not available for any usage */
 872                        __mod_zone_freepage_state(zone, -(1 << high),
 873                                                  migratetype);
 874                        continue;
 875                }
 876#endif
 877                list_add(&page[size].lru, &area->free_list[migratetype]);
 878                area->nr_free++;
 879                set_page_order(&page[size], high);
 880        }
 881}
 882
 883/*
 884 * This page is about to be returned from the page allocator
 885 */
 886static inline int check_new_page(struct page *page)
 887{
 888        const char *bad_reason = NULL;
 889        unsigned long bad_flags = 0;
 890
 891        if (unlikely(page_mapcount(page)))
 892                bad_reason = "nonzero mapcount";
 893        if (unlikely(page->mapping != NULL))
 894                bad_reason = "non-NULL mapping";
 895        if (unlikely(atomic_read(&page->_count) != 0))
 896                bad_reason = "nonzero _count";
 897        if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
 898                bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
 899                bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
 900        }
 901        if (unlikely(mem_cgroup_bad_page_check(page)))
 902                bad_reason = "cgroup check failed";
 903        if (unlikely(bad_reason)) {
 904                bad_page(page, bad_reason, bad_flags);
 905                return 1;
 906        }
 907        return 0;
 908}
 909
 910static int prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags)
 911{
 912        int i;
 913
 914        for (i = 0; i < (1 << order); i++) {
 915                struct page *p = page + i;
 916                if (unlikely(check_new_page(p)))
 917                        return 1;
 918        }
 919
 920        set_page_private(page, 0);
 921        set_page_refcounted(page);
 922
 923        arch_alloc_page(page, order);
 924        kernel_map_pages(page, 1 << order, 1);
 925
 926        if (gfp_flags & __GFP_ZERO)
 927                prep_zero_page(page, order, gfp_flags);
 928
 929        if (order && (gfp_flags & __GFP_COMP))
 930                prep_compound_page(page, order);
 931
 932        return 0;
 933}
 934
 935/*
 936 * Go through the free lists for the given migratetype and remove
 937 * the smallest available page from the freelists
 938 */
 939static inline
 940struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
 941                                                int migratetype)
 942{
 943        unsigned int current_order;
 944        struct free_area *area;
 945        struct page *page;
 946
 947        /* Find a page of the appropriate size in the preferred list */
 948        for (current_order = order; current_order < MAX_ORDER; ++current_order) {
 949                area = &(zone->free_area[current_order]);
 950                if (list_empty(&area->free_list[migratetype]))
 951                        continue;
 952
 953                page = list_entry(area->free_list[migratetype].next,
 954                                                        struct page, lru);
 955                list_del(&page->lru);
 956                rmv_page_order(page);
 957                area->nr_free--;
 958                expand(zone, page, order, current_order, area, migratetype);
 959                set_freepage_migratetype(page, migratetype);
 960                return page;
 961        }
 962
 963        return NULL;
 964}
 965
 966
 967/*
 968 * This array describes the order lists are fallen back to when
 969 * the free lists for the desirable migrate type are depleted
 970 */
 971static int fallbacks[MIGRATE_TYPES][4] = {
 972        [MIGRATE_UNMOVABLE]   = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE,     MIGRATE_RESERVE },
 973        [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE,   MIGRATE_MOVABLE,     MIGRATE_RESERVE },
 974#ifdef CONFIG_CMA
 975        [MIGRATE_MOVABLE]     = { MIGRATE_CMA,         MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
 976        [MIGRATE_CMA]         = { MIGRATE_RESERVE }, /* Never used */
 977#else
 978        [MIGRATE_MOVABLE]     = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE,   MIGRATE_RESERVE },
 979#endif
 980        [MIGRATE_RESERVE]     = { MIGRATE_RESERVE }, /* Never used */
 981#ifdef CONFIG_MEMORY_ISOLATION
 982        [MIGRATE_ISOLATE]     = { MIGRATE_RESERVE }, /* Never used */
 983#endif
 984};
 985
 986/*
 987 * Move the free pages in a range to the free lists of the requested type.
 988 * Note that start_page and end_pages are not aligned on a pageblock
 989 * boundary. If alignment is required, use move_freepages_block()
 990 */
 991int move_freepages(struct zone *zone,
 992                          struct page *start_page, struct page *end_page,
 993                          int migratetype)
 994{
 995        struct page *page;
 996        unsigned long order;
 997        int pages_moved = 0;
 998
 999#ifndef CONFIG_HOLES_IN_ZONE
1000        /*
1001         * page_zone is not safe to call in this context when
1002         * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
1003         * anyway as we check zone boundaries in move_freepages_block().
1004         * Remove at a later date when no bug reports exist related to
1005         * grouping pages by mobility
1006         */
1007        VM_BUG_ON(page_zone(start_page) != page_zone(end_page));
1008#endif
1009
1010        for (page = start_page; page <= end_page;) {
1011                /* Make sure we are not inadvertently changing nodes */
1012                VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
1013
1014                if (!pfn_valid_within(page_to_pfn(page))) {
1015                        page++;
1016                        continue;
1017                }
1018
1019                if (!PageBuddy(page)) {
1020                        page++;
1021                        continue;
1022                }
1023
1024                order = page_order(page);
1025                list_move(&page->lru,
1026                          &zone->free_area[order].free_list[migratetype]);
1027                set_freepage_migratetype(page, migratetype);
1028                page += 1 << order;
1029                pages_moved += 1 << order;
1030        }
1031
1032        return pages_moved;
1033}
1034
1035int move_freepages_block(struct zone *zone, struct page *page,
1036                                int migratetype)
1037{
1038        unsigned long start_pfn, end_pfn;
1039        struct page *start_page, *end_page;
1040
1041        start_pfn = page_to_pfn(page);
1042        start_pfn = start_pfn & ~(pageblock_nr_pages-1);
1043        start_page = pfn_to_page(start_pfn);
1044        end_page = start_page + pageblock_nr_pages - 1;
1045        end_pfn = start_pfn + pageblock_nr_pages - 1;
1046
1047        /* Do not cross zone boundaries */
1048        if (!zone_spans_pfn(zone, start_pfn))
1049                start_page = page;
1050        if (!zone_spans_pfn(zone, end_pfn))
1051                return 0;
1052
1053        return move_freepages(zone, start_page, end_page, migratetype);
1054}
1055
1056static void change_pageblock_range(struct page *pageblock_page,
1057                                        int start_order, int migratetype)
1058{
1059        int nr_pageblocks = 1 << (start_order - pageblock_order);
1060
1061        while (nr_pageblocks--) {
1062                set_pageblock_migratetype(pageblock_page, migratetype);
1063                pageblock_page += pageblock_nr_pages;
1064        }
1065}
1066
1067/*
1068 * If breaking a large block of pages, move all free pages to the preferred
1069 * allocation list. If falling back for a reclaimable kernel allocation, be
1070 * more aggressive about taking ownership of free pages.
1071 *
1072 * On the other hand, never change migration type of MIGRATE_CMA pageblocks
1073 * nor move CMA pages to different free lists. We don't want unmovable pages
1074 * to be allocated from MIGRATE_CMA areas.
1075 *
1076 * Returns the new migratetype of the pageblock (or the same old migratetype
1077 * if it was unchanged).
1078 */
1079static int try_to_steal_freepages(struct zone *zone, struct page *page,
1080                                  int start_type, int fallback_type)
1081{
1082        int current_order = page_order(page);
1083
1084        /*
1085         * When borrowing from MIGRATE_CMA, we need to release the excess
1086         * buddy pages to CMA itself. We also ensure the freepage_migratetype
1087         * is set to CMA so it is returned to the correct freelist in case
1088         * the page ends up being not actually allocated from the pcp lists.
1089         */
1090        if (is_migrate_cma(fallback_type))
1091                return fallback_type;
1092
1093        /* Take ownership for orders >= pageblock_order */
1094        if (current_order >= pageblock_order) {
1095                change_pageblock_range(page, current_order, start_type);
1096                return start_type;
1097        }
1098
1099        if (current_order >= pageblock_order / 2 ||
1100            start_type == MIGRATE_RECLAIMABLE ||
1101            page_group_by_mobility_disabled) {
1102                int pages;
1103
1104                pages = move_freepages_block(zone, page, start_type);
1105
1106                /* Claim the whole block if over half of it is free */
1107                if (pages >= (1 << (pageblock_order-1)) ||
1108                                page_group_by_mobility_disabled) {
1109
1110                        set_pageblock_migratetype(page, start_type);
1111                        return start_type;
1112                }
1113
1114        }
1115
1116        return fallback_type;
1117}
1118
1119/* Remove an element from the buddy allocator from the fallback list */
1120static inline struct page *
1121__rmqueue_fallback(struct zone *zone, unsigned int order, int start_migratetype)
1122{
1123        struct free_area *area;
1124        unsigned int current_order;
1125        struct page *page;
1126        int migratetype, new_type, i;
1127
1128        /* Find the largest possible block of pages in the other list */
1129        for (current_order = MAX_ORDER-1;
1130                                current_order >= order && current_order <= MAX_ORDER-1;
1131                                --current_order) {
1132                for (i = 0;; i++) {
1133                        migratetype = fallbacks[start_migratetype][i];
1134
1135                        /* MIGRATE_RESERVE handled later if necessary */
1136                        if (migratetype == MIGRATE_RESERVE)
1137                                break;
1138
1139                        area = &(zone->free_area[current_order]);
1140                        if (list_empty(&area->free_list[migratetype]))
1141                                continue;
1142
1143                        page = list_entry(area->free_list[migratetype].next,
1144                                        struct page, lru);
1145                        area->nr_free--;
1146
1147                        new_type = try_to_steal_freepages(zone, page,
1148                                                          start_migratetype,
1149                                                          migratetype);
1150
1151                        /* Remove the page from the freelists */
1152                        list_del(&page->lru);
1153                        rmv_page_order(page);
1154
1155                        expand(zone, page, order, current_order, area,
1156                               new_type);
1157                        /* The freepage_migratetype may differ from pageblock's
1158                         * migratetype depending on the decisions in
1159                         * try_to_steal_freepages. This is OK as long as it does
1160                         * not differ for MIGRATE_CMA type.
1161                         */
1162                        set_freepage_migratetype(page, new_type);
1163
1164                        trace_mm_page_alloc_extfrag(page, order, current_order,
1165                                start_migratetype, migratetype, new_type);
1166
1167                        return page;
1168                }
1169        }
1170
1171        return NULL;
1172}
1173
1174/*
1175 * Do the hard work of removing an element from the buddy allocator.
1176 * Call me with the zone->lock already held.
1177 */
1178static struct page *__rmqueue(struct zone *zone, unsigned int order,
1179                                                int migratetype)
1180{
1181        struct page *page;
1182
1183retry_reserve:
1184        page = __rmqueue_smallest(zone, order, migratetype);
1185
1186        if (unlikely(!page) && migratetype != MIGRATE_RESERVE) {
1187                page = __rmqueue_fallback(zone, order, migratetype);
1188
1189                /*
1190                 * Use MIGRATE_RESERVE rather than fail an allocation. goto
1191                 * is used because __rmqueue_smallest is an inline function
1192                 * and we want just one call site
1193                 */
1194                if (!page) {
1195                        migratetype = MIGRATE_RESERVE;
1196                        goto retry_reserve;
1197                }
1198        }
1199
1200        trace_mm_page_alloc_zone_locked(page, order, migratetype);
1201        return page;
1202}
1203
1204/*
1205 * Obtain a specified number of elements from the buddy allocator, all under
1206 * a single hold of the lock, for efficiency.  Add them to the supplied list.
1207 * Returns the number of new pages which were placed at *list.
1208 */
1209static int rmqueue_bulk(struct zone *zone, unsigned int order,
1210                        unsigned long count, struct list_head *list,
1211                        int migratetype, bool cold)
1212{
1213        int i;
1214
1215        spin_lock(&zone->lock);
1216        for (i = 0; i < count; ++i) {
1217                struct page *page = __rmqueue(zone, order, migratetype);
1218                if (unlikely(page == NULL))
1219                        break;
1220
1221                /*
1222                 * Split buddy pages returned by expand() are received here
1223                 * in physical page order. The page is added to the callers and
1224                 * list and the list head then moves forward. From the callers
1225                 * perspective, the linked list is ordered by page number in
1226                 * some conditions. This is useful for IO devices that can
1227                 * merge IO requests if the physical pages are ordered
1228                 * properly.
1229                 */
1230                if (likely(!cold))
1231                        list_add(&page->lru, list);
1232                else
1233                        list_add_tail(&page->lru, list);
1234                list = &page->lru;
1235                if (is_migrate_cma(get_freepage_migratetype(page)))
1236                        __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
1237                                              -(1 << order));
1238        }
1239        __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
1240        spin_unlock(&zone->lock);
1241        return i;
1242}
1243
1244#ifdef CONFIG_NUMA
1245/*
1246 * Called from the vmstat counter updater to drain pagesets of this
1247 * currently executing processor on remote nodes after they have
1248 * expired.
1249 *
1250 * Note that this function must be called with the thread pinned to
1251 * a single processor.
1252 */
1253void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
1254{
1255        unsigned long flags;
1256        int to_drain, batch;
1257
1258        local_irq_save(flags);
1259        batch = ACCESS_ONCE(pcp->batch);
1260        to_drain = min(pcp->count, batch);
1261        if (to_drain > 0) {
1262                free_pcppages_bulk(zone, to_drain, pcp);
1263                pcp->count -= to_drain;
1264        }
1265        local_irq_restore(flags);
1266}
1267#endif
1268
1269/*
1270 * Drain pages of the indicated processor.
1271 *
1272 * The processor must either be the current processor and the
1273 * thread pinned to the current processor or a processor that
1274 * is not online.
1275 */
1276static void drain_pages(unsigned int cpu)
1277{
1278        unsigned long flags;
1279        struct zone *zone;
1280
1281        for_each_populated_zone(zone) {
1282                struct per_cpu_pageset *pset;
1283                struct per_cpu_pages *pcp;
1284
1285                local_irq_save(flags);
1286                pset = per_cpu_ptr(zone->pageset, cpu);
1287
1288                pcp = &pset->pcp;
1289                if (pcp->count) {
1290                        free_pcppages_bulk(zone, pcp->count, pcp);
1291                        pcp->count = 0;
1292                }
1293                local_irq_restore(flags);
1294        }
1295}
1296
1297/*
1298 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
1299 */
1300void drain_local_pages(void *arg)
1301{
1302        drain_pages(smp_processor_id());
1303}
1304
1305/*
1306 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
1307 *
1308 * Note that this code is protected against sending an IPI to an offline
1309 * CPU but does not guarantee sending an IPI to newly hotplugged CPUs:
1310 * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but
1311 * nothing keeps CPUs from showing up after we populated the cpumask and
1312 * before the call to on_each_cpu_mask().
1313 */
1314void drain_all_pages(void)
1315{
1316        int cpu;
1317        struct per_cpu_pageset *pcp;
1318        struct zone *zone;
1319
1320        /*
1321         * Allocate in the BSS so we wont require allocation in
1322         * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
1323         */
1324        static cpumask_t cpus_with_pcps;
1325
1326        /*
1327         * We don't care about racing with CPU hotplug event
1328         * as offline notification will cause the notified
1329         * cpu to drain that CPU pcps and on_each_cpu_mask
1330         * disables preemption as part of its processing
1331         */
1332        for_each_online_cpu(cpu) {
1333                bool has_pcps = false;
1334                for_each_populated_zone(zone) {
1335                        pcp = per_cpu_ptr(zone->pageset, cpu);
1336                        if (pcp->pcp.count) {
1337                                has_pcps = true;
1338                                break;
1339                        }
1340                }
1341                if (has_pcps)
1342                        cpumask_set_cpu(cpu, &cpus_with_pcps);
1343                else
1344                        cpumask_clear_cpu(cpu, &cpus_with_pcps);
1345        }
1346        on_each_cpu_mask(&cpus_with_pcps, drain_local_pages, NULL, 1);
1347}
1348
1349#ifdef CONFIG_HIBERNATION
1350
1351void mark_free_pages(struct zone *zone)
1352{
1353        unsigned long pfn, max_zone_pfn;
1354        unsigned long flags;
1355        unsigned int order, t;
1356        struct list_head *curr;
1357
1358        if (zone_is_empty(zone))
1359                return;
1360
1361        spin_lock_irqsave(&zone->lock, flags);
1362
1363        max_zone_pfn = zone_end_pfn(zone);
1364        for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1365                if (pfn_valid(pfn)) {
1366                        struct page *page = pfn_to_page(pfn);
1367
1368                        if (!swsusp_page_is_forbidden(page))
1369                                swsusp_unset_page_free(page);
1370                }
1371
1372        for_each_migratetype_order(order, t) {
1373                list_for_each(curr, &zone->free_area[order].free_list[t]) {
1374                        unsigned long i;
1375
1376                        pfn = page_to_pfn(list_entry(curr, struct page, lru));
1377                        for (i = 0; i < (1UL << order); i++)
1378                                swsusp_set_page_free(pfn_to_page(pfn + i));
1379                }
1380        }
1381        spin_unlock_irqrestore(&zone->lock, flags);
1382}
1383#endif /* CONFIG_PM */
1384
1385/*
1386 * Free a 0-order page
1387 * cold == true ? free a cold page : free a hot page
1388 */
1389void free_hot_cold_page(struct page *page, bool cold)
1390{
1391        struct zone *zone = page_zone(page);
1392        struct per_cpu_pages *pcp;
1393        unsigned long flags;
1394        unsigned long pfn = page_to_pfn(page);
1395        int migratetype;
1396
1397        if (!free_pages_prepare(page, 0))
1398                return;
1399
1400        migratetype = get_pfnblock_migratetype(page, pfn);
1401        set_freepage_migratetype(page, migratetype);
1402        local_irq_save(flags);
1403        __count_vm_event(PGFREE);
1404
1405        /*
1406         * We only track unmovable, reclaimable and movable on pcp lists.
1407         * Free ISOLATE pages back to the allocator because they are being
1408         * offlined but treat RESERVE as movable pages so we can get those
1409         * areas back if necessary. Otherwise, we may have to free
1410         * excessively into the page allocator
1411         */
1412        if (migratetype >= MIGRATE_PCPTYPES) {
1413                if (unlikely(is_migrate_isolate(migratetype))) {
1414                        free_one_page(zone, page, pfn, 0, migratetype);
1415                        goto out;
1416                }
1417                migratetype = MIGRATE_MOVABLE;
1418        }
1419
1420        pcp = &this_cpu_ptr(zone->pageset)->pcp;
1421        if (!cold)
1422                list_add(&page->lru, &pcp->lists[migratetype]);
1423        else
1424                list_add_tail(&page->lru, &pcp->lists[migratetype]);
1425        pcp->count++;
1426        if (pcp->count >= pcp->high) {
1427                unsigned long batch = ACCESS_ONCE(pcp->batch);
1428                free_pcppages_bulk(zone, batch, pcp);
1429                pcp->count -= batch;
1430        }
1431
1432out:
1433        local_irq_restore(flags);
1434}
1435
1436/*
1437 * Free a list of 0-order pages
1438 */
1439void free_hot_cold_page_list(struct list_head *list, bool cold)
1440{
1441        struct page *page, *next;
1442
1443        list_for_each_entry_safe(page, next, list, lru) {
1444                trace_mm_page_free_batched(page, cold);
1445                free_hot_cold_page(page, cold);
1446        }
1447}
1448
1449/*
1450 * split_page takes a non-compound higher-order page, and splits it into
1451 * n (1<<order) sub-pages: page[0..n]
1452 * Each sub-page must be freed individually.
1453 *
1454 * Note: this is probably too low level an operation for use in drivers.
1455 * Please consult with lkml before using this in your driver.
1456 */
1457void split_page(struct page *page, unsigned int order)
1458{
1459        int i;
1460
1461        VM_BUG_ON_PAGE(PageCompound(page), page);
1462        VM_BUG_ON_PAGE(!page_count(page), page);
1463
1464#ifdef CONFIG_KMEMCHECK
1465        /*
1466         * Split shadow pages too, because free(page[0]) would
1467         * otherwise free the whole shadow.
1468         */
1469        if (kmemcheck_page_is_tracked(page))
1470                split_page(virt_to_page(page[0].shadow), order);
1471#endif
1472
1473        for (i = 1; i < (1 << order); i++)
1474                set_page_refcounted(page + i);
1475}
1476EXPORT_SYMBOL_GPL(split_page);
1477
1478int __isolate_free_page(struct page *page, unsigned int order)
1479{
1480        unsigned long watermark;
1481        struct zone *zone;
1482        int mt;
1483
1484        BUG_ON(!PageBuddy(page));
1485
1486        zone = page_zone(page);
1487        mt = get_pageblock_migratetype(page);
1488
1489        if (!is_migrate_isolate(mt)) {
1490                /* Obey watermarks as if the page was being allocated */
1491                watermark = low_wmark_pages(zone) + (1 << order);
1492                if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
1493                        return 0;
1494
1495                __mod_zone_freepage_state(zone, -(1UL << order), mt);
1496        }
1497
1498        /* Remove page from free list */
1499        list_del(&page->lru);
1500        zone->free_area[order].nr_free--;
1501        rmv_page_order(page);
1502
1503        /* Set the pageblock if the isolated page is at least a pageblock */
1504        if (order >= pageblock_order - 1) {
1505                struct page *endpage = page + (1 << order) - 1;
1506                for (; page < endpage; page += pageblock_nr_pages) {
1507                        int mt = get_pageblock_migratetype(page);
1508                        if (!is_migrate_isolate(mt) && !is_migrate_cma(mt))
1509                                set_pageblock_migratetype(page,
1510                                                          MIGRATE_MOVABLE);
1511                }
1512        }
1513
1514        return 1UL << order;
1515}
1516
1517/*
1518 * Similar to split_page except the page is already free. As this is only
1519 * being used for migration, the migratetype of the block also changes.
1520 * As this is called with interrupts disabled, the caller is responsible
1521 * for calling arch_alloc_page() and kernel_map_page() after interrupts
1522 * are enabled.
1523 *
1524 * Note: this is probably too low level an operation for use in drivers.
1525 * Please consult with lkml before using this in your driver.
1526 */
1527int split_free_page(struct page *page)
1528{
1529        unsigned int order;
1530        int nr_pages;
1531
1532        order = page_order(page);
1533
1534        nr_pages = __isolate_free_page(page, order);
1535        if (!nr_pages)
1536                return 0;
1537
1538        /* Split into individual pages */
1539        set_page_refcounted(page);
1540        split_page(page, order);
1541        return nr_pages;
1542}
1543
1544/*
1545 * Really, prep_compound_page() should be called from __rmqueue_bulk().  But
1546 * we cheat by calling it from here, in the order > 0 path.  Saves a branch
1547 * or two.
1548 */
1549static inline
1550struct page *buffered_rmqueue(struct zone *preferred_zone,
1551                        struct zone *zone, unsigned int order,
1552                        gfp_t gfp_flags, int migratetype)
1553{
1554        unsigned long flags;
1555        struct page *page;
1556        bool cold = ((gfp_flags & __GFP_COLD) != 0);
1557
1558again:
1559        if (likely(order == 0)) {
1560                struct per_cpu_pages *pcp;
1561                struct list_head *list;
1562
1563                local_irq_save(flags);
1564                pcp = &this_cpu_ptr(zone->pageset)->pcp;
1565                list = &pcp->lists[migratetype];
1566                if (list_empty(list)) {
1567                        pcp->count += rmqueue_bulk(zone, 0,
1568                                        pcp->batch, list,
1569                                        migratetype, cold);
1570                        if (unlikely(list_empty(list)))
1571                                goto failed;
1572                }
1573
1574                if (cold)
1575                        page = list_entry(list->prev, struct page, lru);
1576                else
1577                        page = list_entry(list->next, struct page, lru);
1578
1579                list_del(&page->lru);
1580                pcp->count--;
1581        } else {
1582                if (unlikely(gfp_flags & __GFP_NOFAIL)) {
1583                        /*
1584                         * __GFP_NOFAIL is not to be used in new code.
1585                         *
1586                         * All __GFP_NOFAIL callers should be fixed so that they
1587                         * properly detect and handle allocation failures.
1588                         *
1589                         * We most definitely don't want callers attempting to
1590                         * allocate greater than order-1 page units with
1591                         * __GFP_NOFAIL.
1592                         */
1593                        WARN_ON_ONCE(order > 1);
1594                }
1595                spin_lock_irqsave(&zone->lock, flags);
1596                page = __rmqueue(zone, order, migratetype);
1597                spin_unlock(&zone->lock);
1598                if (!page)
1599                        goto failed;
1600                __mod_zone_freepage_state(zone, -(1 << order),
1601                                          get_freepage_migratetype(page));
1602        }
1603
1604        __mod_zone_page_state(zone, NR_ALLOC_BATCH, -(1 << order));
1605        if (atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]) <= 0 &&
1606            !test_bit(ZONE_FAIR_DEPLETED, &zone->flags))
1607                set_bit(ZONE_FAIR_DEPLETED, &zone->flags);
1608
1609        __count_zone_vm_events(PGALLOC, zone, 1 << order);
1610        zone_statistics(preferred_zone, zone, gfp_flags);
1611        local_irq_restore(flags);
1612
1613        VM_BUG_ON_PAGE(bad_range(zone, page), page);
1614        if (prep_new_page(page, order, gfp_flags))
1615                goto again;
1616        return page;
1617
1618failed:
1619        local_irq_restore(flags);
1620        return NULL;
1621}
1622
1623#ifdef CONFIG_FAIL_PAGE_ALLOC
1624
1625static struct {
1626        struct fault_attr attr;
1627
1628        u32 ignore_gfp_highmem;
1629        u32 ignore_gfp_wait;
1630        u32 min_order;
1631} fail_page_alloc = {
1632        .attr = FAULT_ATTR_INITIALIZER,
1633        .ignore_gfp_wait = 1,
1634        .ignore_gfp_highmem = 1,
1635        .min_order = 1,
1636};
1637
1638static int __init setup_fail_page_alloc(char *str)
1639{
1640        return setup_fault_attr(&fail_page_alloc.attr, str);
1641}
1642__setup("fail_page_alloc=", setup_fail_page_alloc);
1643
1644static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1645{
1646        if (order < fail_page_alloc.min_order)
1647                return false;
1648        if (gfp_mask & __GFP_NOFAIL)
1649                return false;
1650        if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
1651                return false;
1652        if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
1653                return false;
1654
1655        return should_fail(&fail_page_alloc.attr, 1 << order);
1656}
1657
1658#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1659
1660static int __init fail_page_alloc_debugfs(void)
1661{
1662        umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
1663        struct dentry *dir;
1664
1665        dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
1666                                        &fail_page_alloc.attr);
1667        if (IS_ERR(dir))
1668                return PTR_ERR(dir);
1669
1670        if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
1671                                &fail_page_alloc.ignore_gfp_wait))
1672                goto fail;
1673        if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
1674                                &fail_page_alloc.ignore_gfp_highmem))
1675                goto fail;
1676        if (!debugfs_create_u32("min-order", mode, dir,
1677                                &fail_page_alloc.min_order))
1678                goto fail;
1679
1680        return 0;
1681fail:
1682        debugfs_remove_recursive(dir);
1683
1684        return -ENOMEM;
1685}
1686
1687late_initcall(fail_page_alloc_debugfs);
1688
1689#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1690
1691#else /* CONFIG_FAIL_PAGE_ALLOC */
1692
1693static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1694{
1695        return false;
1696}
1697
1698#endif /* CONFIG_FAIL_PAGE_ALLOC */
1699
1700/*
1701 * Return true if free pages are above 'mark'. This takes into account the order
1702 * of the allocation.
1703 */
1704static bool __zone_watermark_ok(struct zone *z, unsigned int order,
1705                        unsigned long mark, int classzone_idx, int alloc_flags,
1706                        long free_pages)
1707{
1708        /* free_pages my go negative - that's OK */
1709        long min = mark;
1710        int o;
1711        long free_cma = 0;
1712
1713        free_pages -= (1 << order) - 1;
1714        if (alloc_flags & ALLOC_HIGH)
1715                min -= min / 2;
1716        if (alloc_flags & ALLOC_HARDER)
1717                min -= min / 4;
1718#ifdef CONFIG_CMA
1719        /* If allocation can't use CMA areas don't use free CMA pages */
1720        if (!(alloc_flags & ALLOC_CMA))
1721                free_cma = zone_page_state(z, NR_FREE_CMA_PAGES);
1722#endif
1723
1724        if (free_pages - free_cma <= min + z->lowmem_reserve[classzone_idx])
1725                return false;
1726        for (o = 0; o < order; o++) {
1727                /* At the next order, this order's pages become unavailable */
1728                free_pages -= z->free_area[o].nr_free << o;
1729
1730                /* Require fewer higher order pages to be free */
1731                min >>= 1;
1732
1733                if (free_pages <= min)
1734                        return false;
1735        }
1736        return true;
1737}
1738
1739bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
1740                      int classzone_idx, int alloc_flags)
1741{
1742        return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1743                                        zone_page_state(z, NR_FREE_PAGES));
1744}
1745
1746bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
1747                        unsigned long mark, int classzone_idx, int alloc_flags)
1748{
1749        long free_pages = zone_page_state(z, NR_FREE_PAGES);
1750
1751        if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
1752                free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
1753
1754        return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1755                                                                free_pages);
1756}
1757
1758#ifdef CONFIG_NUMA
1759/*
1760 * zlc_setup - Setup for "zonelist cache".  Uses cached zone data to
1761 * skip over zones that are not allowed by the cpuset, or that have
1762 * been recently (in last second) found to be nearly full.  See further
1763 * comments in mmzone.h.  Reduces cache footprint of zonelist scans
1764 * that have to skip over a lot of full or unallowed zones.
1765 *
1766 * If the zonelist cache is present in the passed zonelist, then
1767 * returns a pointer to the allowed node mask (either the current
1768 * tasks mems_allowed, or node_states[N_MEMORY].)
1769 *
1770 * If the zonelist cache is not available for this zonelist, does
1771 * nothing and returns NULL.
1772 *
1773 * If the fullzones BITMAP in the zonelist cache is stale (more than
1774 * a second since last zap'd) then we zap it out (clear its bits.)
1775 *
1776 * We hold off even calling zlc_setup, until after we've checked the
1777 * first zone in the zonelist, on the theory that most allocations will
1778 * be satisfied from that first zone, so best to examine that zone as
1779 * quickly as we can.
1780 */
1781static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1782{
1783        struct zonelist_cache *zlc;     /* cached zonelist speedup info */
1784        nodemask_t *allowednodes;       /* zonelist_cache approximation */
1785
1786        zlc = zonelist->zlcache_ptr;
1787        if (!zlc)
1788                return NULL;
1789
1790        if (time_after(jiffies, zlc->last_full_zap + HZ)) {
1791                bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1792                zlc->last_full_zap = jiffies;
1793        }
1794
1795        allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1796                                        &cpuset_current_mems_allowed :
1797                                        &node_states[N_MEMORY];
1798        return allowednodes;
1799}
1800
1801/*
1802 * Given 'z' scanning a zonelist, run a couple of quick checks to see
1803 * if it is worth looking at further for free memory:
1804 *  1) Check that the zone isn't thought to be full (doesn't have its
1805 *     bit set in the zonelist_cache fullzones BITMAP).
1806 *  2) Check that the zones node (obtained from the zonelist_cache
1807 *     z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1808 * Return true (non-zero) if zone is worth looking at further, or
1809 * else return false (zero) if it is not.
1810 *
1811 * This check -ignores- the distinction between various watermarks,
1812 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ...  If a zone is
1813 * found to be full for any variation of these watermarks, it will
1814 * be considered full for up to one second by all requests, unless
1815 * we are so low on memory on all allowed nodes that we are forced
1816 * into the second scan of the zonelist.
1817 *
1818 * In the second scan we ignore this zonelist cache and exactly
1819 * apply the watermarks to all zones, even it is slower to do so.
1820 * We are low on memory in the second scan, and should leave no stone
1821 * unturned looking for a free page.
1822 */
1823static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1824                                                nodemask_t *allowednodes)
1825{
1826        struct zonelist_cache *zlc;     /* cached zonelist speedup info */
1827        int i;                          /* index of *z in zonelist zones */
1828        int n;                          /* node that zone *z is on */
1829
1830        zlc = zonelist->zlcache_ptr;
1831        if (!zlc)
1832                return 1;
1833
1834        i = z - zonelist->_zonerefs;
1835        n = zlc->z_to_n[i];
1836
1837        /* This zone is worth trying if it is allowed but not full */
1838        return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1839}
1840
1841/*
1842 * Given 'z' scanning a zonelist, set the corresponding bit in
1843 * zlc->fullzones, so that subsequent attempts to allocate a page
1844 * from that zone don't waste time re-examining it.
1845 */
1846static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1847{
1848        struct zonelist_cache *zlc;     /* cached zonelist speedup info */
1849        int i;                          /* index of *z in zonelist zones */
1850
1851        zlc = zonelist->zlcache_ptr;
1852        if (!zlc)
1853                return;
1854
1855        i = z - zonelist->_zonerefs;
1856
1857        set_bit(i, zlc->fullzones);
1858}
1859
1860/*
1861 * clear all zones full, called after direct reclaim makes progress so that
1862 * a zone that was recently full is not skipped over for up to a second
1863 */
1864static void zlc_clear_zones_full(struct zonelist *zonelist)
1865{
1866        struct zonelist_cache *zlc;     /* cached zonelist speedup info */
1867
1868        zlc = zonelist->zlcache_ptr;
1869        if (!zlc)
1870                return;
1871
1872        bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1873}
1874
1875static bool zone_local(struct zone *local_zone, struct zone *zone)
1876{
1877        return local_zone->node == zone->node;
1878}
1879
1880static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
1881{
1882        return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <
1883                                RECLAIM_DISTANCE;
1884}
1885
1886#else   /* CONFIG_NUMA */
1887
1888static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1889{
1890        return NULL;
1891}
1892
1893static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1894                                nodemask_t *allowednodes)
1895{
1896        return 1;
1897}
1898
1899static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1900{
1901}
1902
1903static void zlc_clear_zones_full(struct zonelist *zonelist)
1904{
1905}
1906
1907static bool zone_local(struct zone *local_zone, struct zone *zone)
1908{
1909        return true;
1910}
1911
1912static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
1913{
1914        return true;
1915}
1916
1917#endif  /* CONFIG_NUMA */
1918
1919static void reset_alloc_batches(struct zone *preferred_zone)
1920{
1921        struct zone *zone = preferred_zone->zone_pgdat->node_zones;
1922
1923        do {
1924                mod_zone_page_state(zone, NR_ALLOC_BATCH,
1925                        high_wmark_pages(zone) - low_wmark_pages(zone) -
1926                        atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]));
1927                clear_bit(ZONE_FAIR_DEPLETED, &zone->flags);
1928        } while (zone++ != preferred_zone);
1929}
1930
1931/*
1932 * get_page_from_freelist goes through the zonelist trying to allocate
1933 * a page.
1934 */
1935static struct page *
1936get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order,
1937                struct zonelist *zonelist, int high_zoneidx, int alloc_flags,
1938                struct zone *preferred_zone, int classzone_idx, int migratetype)
1939{
1940        struct zoneref *z;
1941        struct page *page = NULL;
1942        struct zone *zone;
1943        nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
1944        int zlc_active = 0;             /* set if using zonelist_cache */
1945        int did_zlc_setup = 0;          /* just call zlc_setup() one time */
1946        bool consider_zone_dirty = (alloc_flags & ALLOC_WMARK_LOW) &&
1947                                (gfp_mask & __GFP_WRITE);
1948        int nr_fair_skipped = 0;
1949        bool zonelist_rescan;
1950
1951zonelist_scan:
1952        zonelist_rescan = false;
1953
1954        /*
1955         * Scan zonelist, looking for a zone with enough free.
1956         * See also __cpuset_node_allowed_softwall() comment in kernel/cpuset.c.
1957         */
1958        for_each_zone_zonelist_nodemask(zone, z, zonelist,
1959                                                high_zoneidx, nodemask) {
1960                unsigned long mark;
1961
1962                if (IS_ENABLED(CONFIG_NUMA) && zlc_active &&
1963                        !zlc_zone_worth_trying(zonelist, z, allowednodes))
1964                                continue;
1965                if (cpusets_enabled() &&
1966                        (alloc_flags & ALLOC_CPUSET) &&
1967                        !cpuset_zone_allowed_softwall(zone, gfp_mask))
1968                                continue;
1969                /*
1970                 * Distribute pages in proportion to the individual
1971                 * zone size to ensure fair page aging.  The zone a
1972                 * page was allocated in should have no effect on the
1973                 * time the page has in memory before being reclaimed.
1974                 */
1975                if (alloc_flags & ALLOC_FAIR) {
1976                        if (!zone_local(preferred_zone, zone))
1977                                break;
1978                        if (test_bit(ZONE_FAIR_DEPLETED, &zone->flags)) {
1979                                nr_fair_skipped++;
1980                                continue;
1981                        }
1982                }
1983                /*
1984                 * When allocating a page cache page for writing, we
1985                 * want to get it from a zone that is within its dirty
1986                 * limit, such that no single zone holds more than its
1987                 * proportional share of globally allowed dirty pages.
1988                 * The dirty limits take into account the zone's
1989                 * lowmem reserves and high watermark so that kswapd
1990                 * should be able to balance it without having to
1991                 * write pages from its LRU list.
1992                 *
1993                 * This may look like it could increase pressure on
1994                 * lower zones by failing allocations in higher zones
1995                 * before they are full.  But the pages that do spill
1996                 * over are limited as the lower zones are protected
1997                 * by this very same mechanism.  It should not become
1998                 * a practical burden to them.
1999                 *
2000                 * XXX: For now, allow allocations to potentially
2001                 * exceed the per-zone dirty limit in the slowpath
2002                 * (ALLOC_WMARK_LOW unset) before going into reclaim,
2003                 * which is important when on a NUMA setup the allowed
2004                 * zones are together not big enough to reach the
2005                 * global limit.  The proper fix for these situations
2006                 * will require awareness of zones in the
2007                 * dirty-throttling and the flusher threads.
2008                 */
2009                if (consider_zone_dirty && !zone_dirty_ok(zone))
2010                        continue;
2011
2012                mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
2013                if (!zone_watermark_ok(zone, order, mark,
2014                                       classzone_idx, alloc_flags)) {
2015                        int ret;
2016
2017                        /* Checked here to keep the fast path fast */
2018                        BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
2019                        if (alloc_flags & ALLOC_NO_WATERMARKS)
2020                                goto try_this_zone;
2021
2022                        if (IS_ENABLED(CONFIG_NUMA) &&
2023                                        !did_zlc_setup && nr_online_nodes > 1) {
2024                                /*
2025                                 * we do zlc_setup if there are multiple nodes
2026                                 * and before considering the first zone allowed
2027                                 * by the cpuset.
2028                                 */
2029                                allowednodes = zlc_setup(zonelist, alloc_flags);
2030                                zlc_active = 1;
2031                                did_zlc_setup = 1;
2032                        }
2033
2034                        if (zone_reclaim_mode == 0 ||
2035                            !zone_allows_reclaim(preferred_zone, zone))
2036                                goto this_zone_full;
2037
2038                        /*
2039                         * As we may have just activated ZLC, check if the first
2040                         * eligible zone has failed zone_reclaim recently.
2041                         */
2042                        if (IS_ENABLED(CONFIG_NUMA) && zlc_active &&
2043                                !zlc_zone_worth_trying(zonelist, z, allowednodes))
2044                                continue;
2045
2046                        ret = zone_reclaim(zone, gfp_mask, order);
2047                        switch (ret) {
2048                        case ZONE_RECLAIM_NOSCAN:
2049                                /* did not scan */
2050                                continue;
2051                        case ZONE_RECLAIM_FULL:
2052                                /* scanned but unreclaimable */
2053                                continue;
2054                        default:
2055                                /* did we reclaim enough */
2056                                if (zone_watermark_ok(zone, order, mark,
2057                                                classzone_idx, alloc_flags))
2058                                        goto try_this_zone;
2059
2060                                /*
2061                                 * Failed to reclaim enough to meet watermark.
2062                                 * Only mark the zone full if checking the min
2063                                 * watermark or if we failed to reclaim just
2064                                 * 1<<order pages or else the page allocator
2065                                 * fastpath will prematurely mark zones full
2066                                 * when the watermark is between the low and
2067                                 * min watermarks.
2068                                 */
2069                                if (((alloc_flags & ALLOC_WMARK_MASK) == ALLOC_WMARK_MIN) ||
2070                                    ret == ZONE_RECLAIM_SOME)
2071                                        goto this_zone_full;
2072
2073                                continue;
2074                        }
2075                }
2076
2077try_this_zone:
2078                page = buffered_rmqueue(preferred_zone, zone, order,
2079                                                gfp_mask, migratetype);
2080                if (page)
2081                        break;
2082this_zone_full:
2083                if (IS_ENABLED(CONFIG_NUMA) && zlc_active)
2084                        zlc_mark_zone_full(zonelist, z);
2085        }
2086
2087        if (page) {
2088                /*
2089                 * page->pfmemalloc is set when ALLOC_NO_WATERMARKS was
2090                 * necessary to allocate the page. The expectation is
2091                 * that the caller is taking steps that will free more
2092                 * memory. The caller should avoid the page being used
2093                 * for !PFMEMALLOC purposes.
2094                 */
2095                page->pfmemalloc = !!(alloc_flags & ALLOC_NO_WATERMARKS);
2096                return page;
2097        }
2098
2099        /*
2100         * The first pass makes sure allocations are spread fairly within the
2101         * local node.  However, the local node might have free pages left
2102         * after the fairness batches are exhausted, and remote zones haven't
2103         * even been considered yet.  Try once more without fairness, and
2104         * include remote zones now, before entering the slowpath and waking
2105         * kswapd: prefer spilling to a remote zone over swapping locally.
2106         */
2107        if (alloc_flags & ALLOC_FAIR) {
2108                alloc_flags &= ~ALLOC_FAIR;
2109                if (nr_fair_skipped) {
2110                        zonelist_rescan = true;
2111                        reset_alloc_batches(preferred_zone);
2112                }
2113                if (nr_online_nodes > 1)
2114                        zonelist_rescan = true;
2115        }
2116
2117        if (unlikely(IS_ENABLED(CONFIG_NUMA) && zlc_active)) {
2118                /* Disable zlc cache for second zonelist scan */
2119                zlc_active = 0;
2120                zonelist_rescan = true;
2121        }
2122
2123        if (zonelist_rescan)
2124                goto zonelist_scan;
2125
2126        return NULL;
2127}
2128
2129/*
2130 * Large machines with many possible nodes should not always dump per-node
2131 * meminfo in irq context.
2132 */
2133static inline bool should_suppress_show_mem(void)
2134{
2135        bool ret = false;
2136
2137#if NODES_SHIFT > 8
2138        ret = in_interrupt();
2139#endif
2140        return ret;
2141}
2142
2143static DEFINE_RATELIMIT_STATE(nopage_rs,
2144                DEFAULT_RATELIMIT_INTERVAL,
2145                DEFAULT_RATELIMIT_BURST);
2146
2147void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...)
2148{
2149        unsigned int filter = SHOW_MEM_FILTER_NODES;
2150
2151        if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) ||
2152            debug_guardpage_minorder() > 0)
2153                return;
2154
2155        /*
2156         * This documents exceptions given to allocations in certain
2157         * contexts that are allowed to allocate outside current's set
2158         * of allowed nodes.
2159         */
2160        if (!(gfp_mask & __GFP_NOMEMALLOC))
2161                if (test_thread_flag(TIF_MEMDIE) ||
2162                    (current->flags & (PF_MEMALLOC | PF_EXITING)))
2163                        filter &= ~SHOW_MEM_FILTER_NODES;
2164        if (in_interrupt() || !(gfp_mask & __GFP_WAIT))
2165                filter &= ~SHOW_MEM_FILTER_NODES;
2166
2167        if (fmt) {
2168                struct va_format vaf;
2169                va_list args;
2170
2171                va_start(args, fmt);
2172
2173                vaf.fmt = fmt;
2174                vaf.va = &args;
2175
2176                pr_warn("%pV", &vaf);
2177
2178                va_end(args);
2179        }
2180
2181        pr_warn("%s: page allocation failure: order:%d, mode:0x%x\n",
2182                current->comm, order, gfp_mask);
2183
2184        dump_stack();
2185        if (!should_suppress_show_mem())
2186                show_mem(filter);
2187}
2188
2189static inline int
2190should_alloc_retry(gfp_t gfp_mask, unsigned int order,
2191                                unsigned long did_some_progress,
2192                                unsigned long pages_reclaimed)
2193{
2194        /* Do not loop if specifically requested */
2195        if (gfp_mask & __GFP_NORETRY)
2196                return 0;
2197
2198        /* Always retry if specifically requested */
2199        if (gfp_mask & __GFP_NOFAIL)
2200                return 1;
2201
2202        /*
2203         * Suspend converts GFP_KERNEL to __GFP_WAIT which can prevent reclaim
2204         * making forward progress without invoking OOM. Suspend also disables
2205         * storage devices so kswapd will not help. Bail if we are suspending.
2206         */
2207        if (!did_some_progress && pm_suspended_storage())
2208                return 0;
2209
2210        /*
2211         * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
2212         * means __GFP_NOFAIL, but that may not be true in other
2213         * implementations.
2214         */
2215        if (order <= PAGE_ALLOC_COSTLY_ORDER)
2216                return 1;
2217
2218        /*
2219         * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
2220         * specified, then we retry until we no longer reclaim any pages
2221         * (above), or we've reclaimed an order of pages at least as
2222         * large as the allocation's order. In both cases, if the
2223         * allocation still fails, we stop retrying.
2224         */
2225        if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order))
2226                return 1;
2227
2228        return 0;
2229}
2230
2231static inline struct page *
2232__alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
2233        struct zonelist *zonelist, enum zone_type high_zoneidx,
2234        nodemask_t *nodemask, struct zone *preferred_zone,
2235        int classzone_idx, int migratetype)
2236{
2237        struct page *page;
2238
2239        /* Acquire the per-zone oom lock for each zone */
2240        if (!oom_zonelist_trylock(zonelist, gfp_mask)) {
2241                schedule_timeout_uninterruptible(1);
2242                return NULL;
2243        }
2244
2245        /*
2246         * PM-freezer should be notified that there might be an OOM killer on
2247         * its way to kill and wake somebody up. This is too early and we might
2248         * end up not killing anything but false positives are acceptable.
2249         * See freeze_processes.
2250         */
2251        note_oom_kill();
2252
2253        /*
2254         * Go through the zonelist yet one more time, keep very high watermark
2255         * here, this is only to catch a parallel oom killing, we must fail if
2256         * we're still under heavy pressure.
2257         */
2258        page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask,
2259                order, zonelist, high_zoneidx,
2260                ALLOC_WMARK_HIGH|ALLOC_CPUSET,
2261                preferred_zone, classzone_idx, migratetype);
2262        if (page)
2263                goto out;
2264
2265        if (!(gfp_mask & __GFP_NOFAIL)) {
2266                /* The OOM killer will not help higher order allocs */
2267                if (order > PAGE_ALLOC_COSTLY_ORDER)
2268                        goto out;
2269                /* The OOM killer does not needlessly kill tasks for lowmem */
2270                if (high_zoneidx < ZONE_NORMAL)
2271                        goto out;
2272                /*
2273                 * GFP_THISNODE contains __GFP_NORETRY and we never hit this.
2274                 * Sanity check for bare calls of __GFP_THISNODE, not real OOM.
2275                 * The caller should handle page allocation failure by itself if
2276                 * it specifies __GFP_THISNODE.
2277                 * Note: Hugepage uses it but will hit PAGE_ALLOC_COSTLY_ORDER.
2278                 */
2279                if (gfp_mask & __GFP_THISNODE)
2280                        goto out;
2281        }
2282        /* Exhausted what can be done so it's blamo time */
2283        out_of_memory(zonelist, gfp_mask, order, nodemask, false);
2284
2285out:
2286        oom_zonelist_unlock(zonelist, gfp_mask);
2287        return page;
2288}
2289
2290#ifdef CONFIG_COMPACTION
2291/* Try memory compaction for high-order allocations before reclaim */
2292static struct page *
2293__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2294        struct zonelist *zonelist, enum zone_type high_zoneidx,
2295        nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
2296        int classzone_idx, int migratetype, enum migrate_mode mode,
2297        int *contended_compaction, bool *deferred_compaction)
2298{
2299        struct zone *last_compact_zone = NULL;
2300        unsigned long compact_result;
2301        struct page *page;
2302
2303        if (!order)
2304                return NULL;
2305
2306        current->flags |= PF_MEMALLOC;
2307        compact_result = try_to_compact_pages(zonelist, order, gfp_mask,
2308                                                nodemask, mode,
2309                                                contended_compaction,
2310                                                &last_compact_zone);
2311        current->flags &= ~PF_MEMALLOC;
2312
2313        switch (compact_result) {
2314        case COMPACT_DEFERRED:
2315                *deferred_compaction = true;
2316                /* fall-through */
2317        case COMPACT_SKIPPED:
2318                return NULL;
2319        default:
2320                break;
2321        }
2322
2323        /*
2324         * At least in one zone compaction wasn't deferred or skipped, so let's
2325         * count a compaction stall
2326         */
2327        count_vm_event(COMPACTSTALL);
2328
2329        /* Page migration frees to the PCP lists but we want merging */
2330        drain_pages(get_cpu());
2331        put_cpu();
2332
2333        page = get_page_from_freelist(gfp_mask, nodemask,
2334                        order, zonelist, high_zoneidx,
2335                        alloc_flags & ~ALLOC_NO_WATERMARKS,
2336                        preferred_zone, classzone_idx, migratetype);
2337
2338        if (page) {
2339                struct zone *zone = page_zone(page);
2340
2341                zone->compact_blockskip_flush = false;
2342                compaction_defer_reset(zone, order, true);
2343                count_vm_event(COMPACTSUCCESS);
2344                return page;
2345        }
2346
2347        /*
2348         * last_compact_zone is where try_to_compact_pages thought allocation
2349         * should succeed, so it did not defer compaction. But here we know
2350         * that it didn't succeed, so we do the defer.
2351         */
2352        if (last_compact_zone && mode != MIGRATE_ASYNC)
2353                defer_compaction(last_compact_zone, order);
2354
2355        /*
2356         * It's bad if compaction run occurs and fails. The most likely reason
2357         * is that pages exist, but not enough to satisfy watermarks.
2358         */
2359        count_vm_event(COMPACTFAIL);
2360
2361        cond_resched();
2362
2363        return NULL;
2364}
2365#else
2366static inline struct page *
2367__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2368        struct zonelist *zonelist, enum zone_type high_zoneidx,
2369        nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
2370        int classzone_idx, int migratetype, enum migrate_mode mode,
2371        int *contended_compaction, bool *deferred_compaction)
2372{
2373        return NULL;
2374}
2375#endif /* CONFIG_COMPACTION */
2376
2377/* Perform direct synchronous page reclaim */
2378static int
2379__perform_reclaim(gfp_t gfp_mask, unsigned int order, struct zonelist *zonelist,
2380                  nodemask_t *nodemask)
2381{
2382        struct reclaim_state reclaim_state;
2383        int progress;
2384
2385        cond_resched();
2386
2387        /* We now go into synchronous reclaim */
2388        cpuset_memory_pressure_bump();
2389        current->flags |= PF_MEMALLOC;
2390        lockdep_set_current_reclaim_state(gfp_mask);
2391        reclaim_state.reclaimed_slab = 0;
2392        current->reclaim_state = &reclaim_state;
2393
2394        progress = try_to_free_pages(zonelist, order, gfp_mask, nodemask);
2395
2396        current->reclaim_state = NULL;
2397        lockdep_clear_current_reclaim_state();
2398        current->flags &= ~PF_MEMALLOC;
2399
2400        cond_resched();
2401
2402        return progress;
2403}
2404
2405/* The really slow allocator path where we enter direct reclaim */
2406static inline struct page *
2407__alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
2408        struct zonelist *zonelist, enum zone_type high_zoneidx,
2409        nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
2410        int classzone_idx, int migratetype, unsigned long *did_some_progress)
2411{
2412        struct page *page = NULL;
2413        bool drained = false;
2414
2415        *did_some_progress = __perform_reclaim(gfp_mask, order, zonelist,
2416                                               nodemask);
2417        if (unlikely(!(*did_some_progress)))
2418                return NULL;
2419
2420        /* After successful reclaim, reconsider all zones for allocation */
2421        if (IS_ENABLED(CONFIG_NUMA))
2422                zlc_clear_zones_full(zonelist);
2423
2424retry:
2425        page = get_page_from_freelist(gfp_mask, nodemask, order,
2426                                        zonelist, high_zoneidx,
2427                                        alloc_flags & ~ALLOC_NO_WATERMARKS,
2428                                        preferred_zone, classzone_idx,
2429                                        migratetype);
2430
2431        /*
2432         * If an allocation failed after direct reclaim, it could be because
2433         * pages are pinned on the per-cpu lists. Drain them and try again
2434         */
2435        if (!page && !drained) {
2436                drain_all_pages();
2437                drained = true;
2438                goto retry;
2439        }
2440
2441        return page;
2442}
2443
2444/*
2445 * This is called in the allocator slow-path if the allocation request is of
2446 * sufficient urgency to ignore watermarks and take other desperate measures
2447 */
2448static inline struct page *
2449__alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order,
2450        struct zonelist *zonelist, enum zone_type high_zoneidx,
2451        nodemask_t *nodemask, struct zone *preferred_zone,
2452        int classzone_idx, int migratetype)
2453{
2454        struct page *page;
2455
2456        do {
2457                page = get_page_from_freelist(gfp_mask, nodemask, order,
2458                        zonelist, high_zoneidx, ALLOC_NO_WATERMARKS,
2459                        preferred_zone, classzone_idx, migratetype);
2460
2461                if (!page && gfp_mask & __GFP_NOFAIL)
2462                        wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
2463        } while (!page && (gfp_mask & __GFP_NOFAIL));
2464
2465        return page;
2466}
2467
2468static void wake_all_kswapds(unsigned int order,
2469                             struct zonelist *zonelist,
2470                             enum zone_type high_zoneidx,
2471                             struct zone *preferred_zone,
2472                             nodemask_t *nodemask)
2473{
2474        struct zoneref *z;
2475        struct zone *zone;
2476
2477        for_each_zone_zonelist_nodemask(zone, z, zonelist,
2478                                                high_zoneidx, nodemask)
2479                wakeup_kswapd(zone, order, zone_idx(preferred_zone));
2480}
2481
2482static inline int
2483gfp_to_alloc_flags(gfp_t gfp_mask)
2484{
2485        int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
2486        const bool atomic = !(gfp_mask & (__GFP_WAIT | __GFP_NO_KSWAPD));
2487
2488        /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
2489        BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
2490
2491        /*
2492         * The caller may dip into page reserves a bit more if the caller
2493         * cannot run direct reclaim, or if the caller has realtime scheduling
2494         * policy or is asking for __GFP_HIGH memory.  GFP_ATOMIC requests will
2495         * set both ALLOC_HARDER (atomic == true) and ALLOC_HIGH (__GFP_HIGH).
2496         */
2497        alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
2498
2499        if (atomic) {
2500                /*
2501                 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
2502                 * if it can't schedule.
2503                 */
2504                if (!(gfp_mask & __GFP_NOMEMALLOC))
2505                        alloc_flags |= ALLOC_HARDER;
2506                /*
2507                 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
2508                 * comment for __cpuset_node_allowed_softwall().
2509                 */
2510                alloc_flags &= ~ALLOC_CPUSET;
2511        } else if (unlikely(rt_task(current)) && !in_interrupt())
2512                alloc_flags |= ALLOC_HARDER;
2513
2514        if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
2515                if (gfp_mask & __GFP_MEMALLOC)
2516                        alloc_flags |= ALLOC_NO_WATERMARKS;
2517                else if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
2518                        alloc_flags |= ALLOC_NO_WATERMARKS;
2519                else if (!in_interrupt() &&
2520                                ((current->flags & PF_MEMALLOC) ||
2521                                 unlikely(test_thread_flag(TIF_MEMDIE))))
2522                        alloc_flags |= ALLOC_NO_WATERMARKS;
2523        }
2524#ifdef CONFIG_CMA
2525        if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
2526                alloc_flags |= ALLOC_CMA;
2527#endif
2528        return alloc_flags;
2529}
2530
2531bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
2532{
2533        return !!(gfp_to_alloc_flags(gfp_mask) & ALLOC_NO_WATERMARKS);
2534}
2535
2536static inline struct page *
2537__alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
2538        struct zonelist *zonelist, enum zone_type high_zoneidx,
2539        nodemask_t *nodemask, struct zone *preferred_zone,
2540        int classzone_idx, int migratetype)
2541{
2542        const gfp_t wait = gfp_mask & __GFP_WAIT;
2543        struct page *page = NULL;
2544        int alloc_flags;
2545        unsigned long pages_reclaimed = 0;
2546        unsigned long did_some_progress;
2547        enum migrate_mode migration_mode = MIGRATE_ASYNC;
2548        bool deferred_compaction = false;
2549        int contended_compaction = COMPACT_CONTENDED_NONE;
2550
2551        /*
2552         * In the slowpath, we sanity check order to avoid ever trying to
2553         * reclaim >= MAX_ORDER areas which will never succeed. Callers may
2554         * be using allocators in order of preference for an area that is
2555         * too large.
2556         */
2557        if (order >= MAX_ORDER) {
2558                WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
2559                return NULL;
2560        }
2561
2562        /*
2563         * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
2564         * __GFP_NOWARN set) should not cause reclaim since the subsystem
2565         * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
2566         * using a larger set of nodes after it has established that the
2567         * allowed per node queues are empty and that nodes are
2568         * over allocated.
2569         */
2570        if (IS_ENABLED(CONFIG_NUMA) &&
2571            (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
2572                goto nopage;
2573
2574restart:
2575        if (!(gfp_mask & __GFP_NO_KSWAPD))
2576                wake_all_kswapds(order, zonelist, high_zoneidx,
2577                                preferred_zone, nodemask);
2578
2579        /*
2580         * OK, we're below the kswapd watermark and have kicked background
2581         * reclaim. Now things get more complex, so set up alloc_flags according
2582         * to how we want to proceed.
2583         */
2584        alloc_flags = gfp_to_alloc_flags(gfp_mask);
2585
2586        /*
2587         * Find the true preferred zone if the allocation is unconstrained by
2588         * cpusets.
2589         */
2590        if (!(alloc_flags & ALLOC_CPUSET) && !nodemask) {
2591                struct zoneref *preferred_zoneref;
2592                preferred_zoneref = first_zones_zonelist(zonelist, high_zoneidx,
2593                                NULL, &preferred_zone);
2594                classzone_idx = zonelist_zone_idx(preferred_zoneref);
2595        }
2596
2597rebalance:
2598        /* This is the last chance, in general, before the goto nopage. */
2599        page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist,
2600                        high_zoneidx, alloc_flags & ~ALLOC_NO_WATERMARKS,
2601                        preferred_zone, classzone_idx, migratetype);
2602        if (page)
2603                goto got_pg;
2604
2605        /* Allocate without watermarks if the context allows */
2606        if (alloc_flags & ALLOC_NO_WATERMARKS) {
2607                /*
2608                 * Ignore mempolicies if ALLOC_NO_WATERMARKS on the grounds
2609                 * the allocation is high priority and these type of
2610                 * allocations are system rather than user orientated
2611                 */
2612                zonelist = node_zonelist(numa_node_id(), gfp_mask);
2613
2614                page = __alloc_pages_high_priority(gfp_mask, order,
2615                                zonelist, high_zoneidx, nodemask,
2616                                preferred_zone, classzone_idx, migratetype);
2617                if (page) {
2618                        goto got_pg;
2619                }
2620        }
2621
2622        /* Atomic allocations - we can't balance anything */
2623        if (!wait) {
2624                /*
2625                 * All existing users of the deprecated __GFP_NOFAIL are
2626                 * blockable, so warn of any new users that actually allow this
2627                 * type of allocation to fail.
2628                 */
2629                WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL);
2630                goto nopage;
2631        }
2632
2633        /* Avoid recursion of direct reclaim */
2634        if (current->flags & PF_MEMALLOC)
2635                goto nopage;
2636
2637        /* Avoid allocations with no watermarks from looping endlessly */
2638        if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
2639                goto nopage;
2640
2641        /*
2642         * Try direct compaction. The first pass is asynchronous. Subsequent
2643         * attempts after direct reclaim are synchronous
2644         */
2645        page = __alloc_pages_direct_compact(gfp_mask, order, zonelist,
2646                                        high_zoneidx, nodemask, alloc_flags,
2647                                        preferred_zone,
2648                                        classzone_idx, migratetype,
2649                                        migration_mode, &contended_compaction,
2650                                        &deferred_compaction);
2651        if (page)
2652                goto got_pg;
2653
2654        /* Checks for THP-specific high-order allocations */
2655        if ((gfp_mask & GFP_TRANSHUGE) == GFP_TRANSHUGE) {
2656                /*
2657                 * If compaction is deferred for high-order allocations, it is
2658                 * because sync compaction recently failed. If this is the case
2659                 * and the caller requested a THP allocation, we do not want
2660                 * to heavily disrupt the system, so we fail the allocation
2661                 * instead of entering direct reclaim.
2662                 */
2663                if (deferred_compaction)
2664                        goto nopage;
2665
2666                /*
2667                 * In all zones where compaction was attempted (and not
2668                 * deferred or skipped), lock contention has been detected.
2669                 * For THP allocation we do not want to disrupt the others
2670                 * so we fallback to base pages instead.
2671                 */
2672                if (contended_compaction == COMPACT_CONTENDED_LOCK)
2673                        goto nopage;
2674
2675                /*
2676                 * If compaction was aborted due to need_resched(), we do not
2677                 * want to further increase allocation latency, unless it is
2678                 * khugepaged trying to collapse.
2679                 */
2680                if (contended_compaction == COMPACT_CONTENDED_SCHED
2681                        && !(current->flags & PF_KTHREAD))
2682                        goto nopage;
2683        }
2684
2685        /*
2686         * It can become very expensive to allocate transparent hugepages at
2687         * fault, so use asynchronous memory compaction for THP unless it is
2688         * khugepaged trying to collapse.
2689         */
2690        if ((gfp_mask & GFP_TRANSHUGE) != GFP_TRANSHUGE ||
2691                                                (current->flags & PF_KTHREAD))
2692                migration_mode = MIGRATE_SYNC_LIGHT;
2693
2694        /* Try direct reclaim and then allocating */
2695        page = __alloc_pages_direct_reclaim(gfp_mask, order,
2696                                        zonelist, high_zoneidx,
2697                                        nodemask,
2698                                        alloc_flags, preferred_zone,
2699                                        classzone_idx, migratetype,
2700                                        &did_some_progress);
2701        if (page)
2702                goto got_pg;
2703
2704        /*
2705         * If we failed to make any progress reclaiming, then we are
2706         * running out of options and have to consider going OOM
2707         */
2708        if (!did_some_progress) {
2709                if (oom_gfp_allowed(gfp_mask)) {
2710                        if (oom_killer_disabled)
2711                                goto nopage;
2712                        /* Coredumps can quickly deplete all memory reserves */
2713                        if ((current->flags & PF_DUMPCORE) &&
2714                            !(gfp_mask & __GFP_NOFAIL))
2715                                goto nopage;
2716                        page = __alloc_pages_may_oom(gfp_mask, order,
2717                                        zonelist, high_zoneidx,
2718                                        nodemask, preferred_zone,
2719                                        classzone_idx, migratetype);
2720                        if (page)
2721                                goto got_pg;
2722
2723                        if (!(gfp_mask & __GFP_NOFAIL)) {
2724                                /*
2725                                 * The oom killer is not called for high-order
2726                                 * allocations that may fail, so if no progress
2727                                 * is being made, there are no other options and
2728                                 * retrying is unlikely to help.
2729                                 */
2730                                if (order > PAGE_ALLOC_COSTLY_ORDER)
2731                                        goto nopage;
2732                                /*
2733                                 * The oom killer is not called for lowmem
2734                                 * allocations to prevent needlessly killing
2735                                 * innocent tasks.
2736                                 */
2737                                if (high_zoneidx < ZONE_NORMAL)
2738                                        goto nopage;
2739                        }
2740
2741                        goto restart;
2742                }
2743        }
2744
2745        /* Check if we should retry the allocation */
2746        pages_reclaimed += did_some_progress;
2747        if (should_alloc_retry(gfp_mask, order, did_some_progress,
2748                                                pages_reclaimed)) {
2749                /* Wait for some write requests to complete then retry */
2750                wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
2751                goto rebalance;
2752        } else {
2753                /*
2754                 * High-order allocations do not necessarily loop after
2755                 * direct reclaim and reclaim/compaction depends on compaction
2756                 * being called after reclaim so call directly if necessary
2757                 */
2758                page = __alloc_pages_direct_compact(gfp_mask, order, zonelist,
2759                                        high_zoneidx, nodemask, alloc_flags,
2760                                        preferred_zone,
2761                                        classzone_idx, migratetype,
2762                                        migration_mode, &contended_compaction,
2763                                        &deferred_compaction);
2764                if (page)
2765                        goto got_pg;
2766        }
2767
2768nopage:
2769        warn_alloc_failed(gfp_mask, order, NULL);
2770        return page;
2771got_pg:
2772        if (kmemcheck_enabled)
2773                kmemcheck_pagealloc_alloc(page, order, gfp_mask);
2774
2775        return page;
2776}
2777
2778/*
2779 * This is the 'heart' of the zoned buddy allocator.
2780 */
2781struct page *
2782__alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
2783                        struct zonelist *zonelist, nodemask_t *nodemask)
2784{
2785        enum zone_type high_zoneidx = gfp_zone(gfp_mask);
2786        struct zone *preferred_zone;
2787        struct zoneref *preferred_zoneref;
2788        struct page *page = NULL;
2789        int migratetype = gfpflags_to_migratetype(gfp_mask);
2790        unsigned int cpuset_mems_cookie;
2791        int alloc_flags = ALLOC_WMARK_LOW|ALLOC_CPUSET|ALLOC_FAIR;
2792        int classzone_idx;
2793
2794        gfp_mask &= gfp_allowed_mask;
2795
2796        lockdep_trace_alloc(gfp_mask);
2797
2798        might_sleep_if(gfp_mask & __GFP_WAIT);
2799
2800        if (should_fail_alloc_page(gfp_mask, order))
2801                return NULL;
2802
2803        /*
2804         * Check the zones suitable for the gfp_mask contain at least one
2805         * valid zone. It's possible to have an empty zonelist as a result
2806         * of GFP_THISNODE and a memoryless node
2807         */
2808        if (unlikely(!zonelist->_zonerefs->zone))
2809                return NULL;
2810
2811        if (IS_ENABLED(CONFIG_CMA) && migratetype == MIGRATE_MOVABLE)
2812                alloc_flags |= ALLOC_CMA;
2813
2814retry_cpuset:
2815        cpuset_mems_cookie = read_mems_allowed_begin();
2816
2817        /* The preferred zone is used for statistics later */
2818        preferred_zoneref = first_zones_zonelist(zonelist, high_zoneidx,
2819                                nodemask ? : &cpuset_current_mems_allowed,
2820                                &preferred_zone);
2821        if (!preferred_zone)
2822                goto out;
2823        classzone_idx = zonelist_zone_idx(preferred_zoneref);
2824
2825        /* First allocation attempt */
2826        page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order,
2827                        zonelist, high_zoneidx, alloc_flags,
2828                        preferred_zone, classzone_idx, migratetype);
2829        if (unlikely(!page)) {
2830                /*
2831                 * Runtime PM, block IO and its error handling path
2832                 * can deadlock because I/O on the device might not
2833                 * complete.
2834                 */
2835                gfp_mask = memalloc_noio_flags(gfp_mask);
2836                page = __alloc_pages_slowpath(gfp_mask, order,
2837                                zonelist, high_zoneidx, nodemask,
2838                                preferred_zone, classzone_idx, migratetype);
2839        }
2840
2841        trace_mm_page_alloc(page, order, gfp_mask, migratetype);
2842
2843out:
2844        /*
2845         * When updating a task's mems_allowed, it is possible to race with
2846         * parallel threads in such a way that an allocation can fail while
2847         * the mask is being updated. If a page allocation is about to fail,
2848         * check if the cpuset changed during allocation and if so, retry.
2849         */
2850        if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
2851                goto retry_cpuset;
2852
2853        return page;
2854}
2855EXPORT_SYMBOL(__alloc_pages_nodemask);
2856
2857/*
2858 * Common helper functions.
2859 */
2860unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
2861{
2862        struct page *page;
2863
2864        /*
2865         * __get_free_pages() returns a 32-bit address, which cannot represent
2866         * a highmem page
2867         */
2868        VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
2869
2870        page = alloc_pages(gfp_mask, order);
2871        if (!page)
2872                return 0;
2873        return (unsigned long) page_address(page);
2874}
2875EXPORT_SYMBOL(__get_free_pages);
2876
2877unsigned long get_zeroed_page(gfp_t gfp_mask)
2878{
2879        return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
2880}
2881EXPORT_SYMBOL(get_zeroed_page);
2882
2883void __free_pages(struct page *page, unsigned int order)
2884{
2885        if (put_page_testzero(page)) {
2886                if (order == 0)
2887                        free_hot_cold_page(page, false);
2888                else
2889                        __free_pages_ok(page, order);
2890        }
2891}
2892
2893EXPORT_SYMBOL(__free_pages);
2894
2895void free_pages(unsigned long addr, unsigned int order)
2896{
2897        if (addr != 0) {
2898                VM_BUG_ON(!virt_addr_valid((void *)addr));
2899                __free_pages(virt_to_page((void *)addr), order);
2900        }
2901}
2902
2903EXPORT_SYMBOL(free_pages);
2904
2905/*
2906 * alloc_kmem_pages charges newly allocated pages to the kmem resource counter
2907 * of the current memory cgroup.
2908 *
2909 * It should be used when the caller would like to use kmalloc, but since the
2910 * allocation is large, it has to fall back to the page allocator.
2911 */
2912struct page *alloc_kmem_pages(gfp_t gfp_mask, unsigned int order)
2913{
2914        struct page *page;
2915        struct mem_cgroup *memcg = NULL;
2916
2917        if (!memcg_kmem_newpage_charge(gfp_mask, &memcg, order))
2918                return NULL;
2919        page = alloc_pages(gfp_mask, order);
2920        memcg_kmem_commit_charge(page, memcg, order);
2921        return page;
2922}
2923
2924struct page *alloc_kmem_pages_node(int nid, gfp_t gfp_mask, unsigned int order)
2925{
2926        struct page *page;
2927        struct mem_cgroup *memcg = NULL;
2928
2929        if (!memcg_kmem_newpage_charge(gfp_mask, &memcg, order))
2930                return NULL;
2931        page = alloc_pages_node(nid, gfp_mask, order);
2932        memcg_kmem_commit_charge(page, memcg, order);
2933        return page;
2934}
2935
2936/*
2937 * __free_kmem_pages and free_kmem_pages will free pages allocated with
2938 * alloc_kmem_pages.
2939 */
2940void __free_kmem_pages(struct page *page, unsigned int order)
2941{
2942        memcg_kmem_uncharge_pages(page, order);
2943        __free_pages(page, order);
2944}
2945
2946void free_kmem_pages(unsigned long addr, unsigned int order)
2947{
2948        if (addr != 0) {
2949                VM_BUG_ON(!virt_addr_valid((void *)addr));
2950                __free_kmem_pages(virt_to_page((void *)addr), order);
2951        }
2952}
2953
2954static void *make_alloc_exact(unsigned long addr, unsigned order, size_t size)
2955{
2956        if (addr) {
2957                unsigned long alloc_end = addr + (PAGE_SIZE << order);
2958                unsigned long used = addr + PAGE_ALIGN(size);
2959
2960                split_page(virt_to_page((void *)addr), order);
2961                while (used < alloc_end) {
2962                        free_page(used);
2963                        used += PAGE_SIZE;
2964                }
2965        }
2966        return (void *)addr;
2967}
2968
2969/**
2970 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
2971 * @size: the number of bytes to allocate
2972 * @gfp_mask: GFP flags for the allocation
2973 *
2974 * This function is similar to alloc_pages(), except that it allocates the
2975 * minimum number of pages to satisfy the request.  alloc_pages() can only
2976 * allocate memory in power-of-two pages.
2977 *
2978 * This function is also limited by MAX_ORDER.
2979 *
2980 * Memory allocated by this function must be released by free_pages_exact().
2981 */
2982void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
2983{
2984        unsigned int order = get_order(size);
2985        unsigned long addr;
2986
2987        addr = __get_free_pages(gfp_mask, order);
2988        return make_alloc_exact(addr, order, size);
2989}
2990EXPORT_SYMBOL(alloc_pages_exact);
2991
2992/**
2993 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
2994 *                         pages on a node.
2995 * @nid: the preferred node ID where memory should be allocated
2996 * @size: the number of bytes to allocate
2997 * @gfp_mask: GFP flags for the allocation
2998 *
2999 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
3000 * back.
3001 * Note this is not alloc_pages_exact_node() which allocates on a specific node,
3002 * but is not exact.
3003 */
3004void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
3005{
3006        unsigned order = get_order(size);
3007        struct page *p = alloc_pages_node(nid, gfp_mask, order);
3008        if (!p)
3009                return NULL;
3010        return make_alloc_exact((unsigned long)page_address(p), order, size);
3011}
3012
3013/**
3014 * free_pages_exact - release memory allocated via alloc_pages_exact()
3015 * @virt: the value returned by alloc_pages_exact.
3016 * @size: size of allocation, same value as passed to alloc_pages_exact().
3017 *
3018 * Release the memory allocated by a previous call to alloc_pages_exact.
3019 */
3020void free_pages_exact(void *virt, size_t size)
3021{
3022        unsigned long addr = (unsigned long)virt;
3023        unsigned long end = addr + PAGE_ALIGN(size);
3024
3025        while (addr < end) {
3026                free_page(addr);
3027                addr += PAGE_SIZE;
3028        }
3029}
3030EXPORT_SYMBOL(free_pages_exact);
3031
3032/**
3033 * nr_free_zone_pages - count number of pages beyond high watermark
3034 * @offset: The zone index of the highest zone
3035 *
3036 * nr_free_zone_pages() counts the number of counts pages which are beyond the
3037 * high watermark within all zones at or below a given zone index.  For each
3038 * zone, the number of pages is calculated as:
3039 *     managed_pages - high_pages
3040 */
3041static unsigned long nr_free_zone_pages(int offset)
3042{
3043        struct zoneref *z;
3044        struct zone *zone;
3045
3046        /* Just pick one node, since fallback list is circular */
3047        unsigned long sum = 0;
3048
3049        struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
3050
3051        for_each_zone_zonelist(zone, z, zonelist, offset) {
3052                unsigned long size = zone->managed_pages;
3053                unsigned long high = high_wmark_pages(zone);
3054                if (size > high)
3055                        sum += size - high;
3056        }
3057
3058        return sum;
3059}
3060
3061/**
3062 * nr_free_buffer_pages - count number of pages beyond high watermark
3063 *
3064 * nr_free_buffer_pages() counts the number of pages which are beyond the high
3065 * watermark within ZONE_DMA and ZONE_NORMAL.
3066 */
3067unsigned long nr_free_buffer_pages(void)
3068{
3069        return nr_free_zone_pages(gfp_zone(GFP_USER));
3070}
3071EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
3072
3073/**
3074 * nr_free_pagecache_pages - count number of pages beyond high watermark
3075 *
3076 * nr_free_pagecache_pages() counts the number of pages which are beyond the
3077 * high watermark within all zones.
3078 */
3079unsigned long nr_free_pagecache_pages(void)
3080{
3081        return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
3082}
3083
3084static inline void show_node(struct zone *zone)
3085{
3086        if (IS_ENABLED(CONFIG_NUMA))
3087                printk("Node %d ", zone_to_nid(zone));
3088}
3089
3090void si_meminfo(struct sysinfo *val)
3091{
3092        val->totalram = totalram_pages;
3093        val->sharedram = global_page_state(NR_SHMEM);
3094        val->freeram = global_page_state(NR_FREE_PAGES);
3095        val->bufferram = nr_blockdev_pages();
3096        val->totalhigh = totalhigh_pages;
3097        val->freehigh = nr_free_highpages();
3098        val->mem_unit = PAGE_SIZE;
3099}
3100
3101EXPORT_SYMBOL(si_meminfo);
3102
3103#ifdef CONFIG_NUMA
3104void si_meminfo_node(struct sysinfo *val, int nid)
3105{
3106        int zone_type;          /* needs to be signed */
3107        unsigned long managed_pages = 0;
3108        pg_data_t *pgdat = NODE_DATA(nid);
3109
3110        for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
3111                managed_pages += pgdat->node_zones[zone_type].managed_pages;
3112        val->totalram = managed_pages;
3113        val->sharedram = node_page_state(nid, NR_SHMEM);
3114        val->freeram = node_page_state(nid, NR_FREE_PAGES);
3115#ifdef CONFIG_HIGHMEM
3116        val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].managed_pages;
3117        val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
3118                        NR_FREE_PAGES);
3119#else
3120        val->totalhigh = 0;
3121        val->freehigh = 0;
3122#endif
3123        val->mem_unit = PAGE_SIZE;
3124}
3125#endif
3126
3127/*
3128 * Determine whether the node should be displayed or not, depending on whether
3129 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
3130 */
3131bool skip_free_areas_node(unsigned int flags, int nid)
3132{
3133        bool ret = false;
3134        unsigned int cpuset_mems_cookie;
3135
3136        if (!(flags & SHOW_MEM_FILTER_NODES))
3137                goto out;
3138
3139        do {
3140                cpuset_mems_cookie = read_mems_allowed_begin();
3141                ret = !node_isset(nid, cpuset_current_mems_allowed);
3142        } while (read_mems_allowed_retry(cpuset_mems_cookie));
3143out:
3144        return ret;
3145}
3146
3147#define K(x) ((x) << (PAGE_SHIFT-10))
3148
3149static void show_migration_types(unsigned char type)
3150{
3151        static const char types[MIGRATE_TYPES] = {
3152                [MIGRATE_UNMOVABLE]     = 'U',
3153                [MIGRATE_RECLAIMABLE]   = 'E',
3154                [MIGRATE_MOVABLE]       = 'M',
3155                [MIGRATE_RESERVE]       = 'R',
3156#ifdef CONFIG_CMA
3157                [MIGRATE_CMA]           = 'C',
3158#endif
3159#ifdef CONFIG_MEMORY_ISOLATION
3160                [MIGRATE_ISOLATE]       = 'I',
3161#endif
3162        };
3163        char tmp[MIGRATE_TYPES + 1];
3164        char *p = tmp;
3165        int i;
3166
3167        for (i = 0; i < MIGRATE_TYPES; i++) {
3168                if (type & (1 << i))
3169                        *p++ = types[i];
3170        }
3171
3172        *p = '\0';
3173        printk("(%s) ", tmp);
3174}
3175
3176/*
3177 * Show free area list (used inside shift_scroll-lock stuff)
3178 * We also calculate the percentage fragmentation. We do this by counting the
3179 * memory on each free list with the exception of the first item on the list.
3180 * Suppresses nodes that are not allowed by current's cpuset if
3181 * SHOW_MEM_FILTER_NODES is passed.
3182 */
3183void show_free_areas(unsigned int filter)
3184{
3185        int cpu;
3186        struct zone *zone;
3187
3188        for_each_populated_zone(zone) {
3189                if (skip_free_areas_node(filter, zone_to_nid(zone)))
3190                        continue;
3191                show_node(zone);
3192                printk("%s per-cpu:\n", zone->name);
3193
3194                for_each_online_cpu(cpu) {
3195                        struct per_cpu_pageset *pageset;
3196
3197                        pageset = per_cpu_ptr(zone->pageset, cpu);
3198
3199                        printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
3200                               cpu, pageset->pcp.high,
3201                               pageset->pcp.batch, pageset->pcp.count);
3202                }
3203        }
3204
3205        printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
3206                " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
3207                " unevictable:%lu"
3208                " dirty:%lu writeback:%lu unstable:%lu\n"
3209                " free:%lu slab_reclaimable:%lu slab_unreclaimable:%lu\n"
3210                " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
3211                " free_cma:%lu\n",
3212                global_page_state(NR_ACTIVE_ANON),
3213                global_page_state(NR_INACTIVE_ANON),
3214                global_page_state(NR_ISOLATED_ANON),
3215                global_page_state(NR_ACTIVE_FILE),
3216                global_page_state(NR_INACTIVE_FILE),
3217                global_page_state(NR_ISOLATED_FILE),
3218                global_page_state(NR_UNEVICTABLE),
3219                global_page_state(NR_FILE_DIRTY),
3220                global_page_state(NR_WRITEBACK),
3221                global_page_state(NR_UNSTABLE_NFS),
3222                global_page_state(NR_FREE_PAGES),
3223                global_page_state(NR_SLAB_RECLAIMABLE),
3224                global_page_state(NR_SLAB_UNRECLAIMABLE),
3225                global_page_state(NR_FILE_MAPPED),
3226                global_page_state(NR_SHMEM),
3227                global_page_state(NR_PAGETABLE),
3228                global_page_state(NR_BOUNCE),
3229                global_page_state(NR_FREE_CMA_PAGES));
3230
3231        for_each_populated_zone(zone) {
3232                int i;
3233
3234                if (skip_free_areas_node(filter, zone_to_nid(zone)))
3235                        continue;
3236                show_node(zone);
3237                printk("%s"
3238                        " free:%lukB"
3239                        " min:%lukB"
3240                        " low:%lukB"
3241                        " high:%lukB"
3242                        " active_anon:%lukB"
3243                        " inactive_anon:%lukB"
3244                        " active_file:%lukB"
3245                        " inactive_file:%lukB"
3246                        " unevictable:%lukB"
3247                        " isolated(anon):%lukB"
3248                        " isolated(file):%lukB"
3249                        " present:%lukB"
3250                        " managed:%lukB"
3251                        " mlocked:%lukB"
3252                        " dirty:%lukB"
3253                        " writeback:%lukB"
3254                        " mapped:%lukB"
3255                        " shmem:%lukB"
3256                        " slab_reclaimable:%lukB"
3257                        " slab_unreclaimable:%lukB"
3258                        " kernel_stack:%lukB"
3259                        " pagetables:%lukB"
3260                        " unstable:%lukB"
3261                        " bounce:%lukB"
3262                        " free_cma:%lukB"
3263                        " writeback_tmp:%lukB"
3264                        " pages_scanned:%lu"
3265                        " all_unreclaimable? %s"
3266                        "\n",
3267                        zone->name,
3268                        K(zone_page_state(zone, NR_FREE_PAGES)),
3269                        K(min_wmark_pages(zone)),
3270                        K(low_wmark_pages(zone)),
3271                        K(high_wmark_pages(zone)),
3272                        K(zone_page_state(zone, NR_ACTIVE_ANON)),
3273                        K(zone_page_state(zone, NR_INACTIVE_ANON)),
3274                        K(zone_page_state(zone, NR_ACTIVE_FILE)),
3275                        K(zone_page_state(zone, NR_INACTIVE_FILE)),
3276                        K(zone_page_state(zone, NR_UNEVICTABLE)),
3277                        K(zone_page_state(zone, NR_ISOLATED_ANON)),
3278                        K(zone_page_state(zone, NR_ISOLATED_FILE)),
3279                        K(zone->present_pages),
3280                        K(zone->managed_pages),
3281                        K(zone_page_state(zone, NR_MLOCK)),
3282                        K(zone_page_state(zone, NR_FILE_DIRTY)),
3283                        K(zone_page_state(zone, NR_WRITEBACK)),
3284                        K(zone_page_state(zone, NR_FILE_MAPPED)),
3285                        K(zone_page_state(zone, NR_SHMEM)),
3286                        K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
3287                        K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
3288                        zone_page_state(zone, NR_KERNEL_STACK) *
3289                                THREAD_SIZE / 1024,
3290                        K(zone_page_state(zone, NR_PAGETABLE)),
3291                        K(zone_page_state(zone, NR_UNSTABLE_NFS)),
3292                        K(zone_page_state(zone, NR_BOUNCE)),
3293                        K(zone_page_state(zone, NR_FREE_CMA_PAGES)),
3294                        K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
3295                        K(zone_page_state(zone, NR_PAGES_SCANNED)),
3296                        (!zone_reclaimable(zone) ? "yes" : "no")
3297                        );
3298                printk("lowmem_reserve[]:");
3299                for (i = 0; i < MAX_NR_ZONES; i++)
3300                        printk(" %ld", zone->lowmem_reserve[i]);
3301                printk("\n");
3302        }
3303
3304        for_each_populated_zone(zone) {
3305                unsigned long nr[MAX_ORDER], flags, order, total = 0;
3306                unsigned char types[MAX_ORDER];
3307
3308                if (skip_free_areas_node(filter, zone_to_nid(zone)))
3309                        continue;
3310                show_node(zone);
3311                printk("%s: ", zone->name);
3312
3313                spin_lock_irqsave(&zone->lock, flags);
3314                for (order = 0; order < MAX_ORDER; order++) {
3315                        struct free_area *area = &zone->free_area[order];
3316                        int type;
3317
3318                        nr[order] = area->nr_free;
3319                        total += nr[order] << order;
3320
3321                        types[order] = 0;
3322                        for (type = 0; type < MIGRATE_TYPES; type++) {
3323                                if (!list_empty(&area->free_list[type]))
3324                                        types[order] |= 1 << type;
3325                        }
3326                }
3327                spin_unlock_irqrestore(&zone->lock, flags);
3328                for (order = 0; order < MAX_ORDER; order++) {
3329                        printk("%lu*%lukB ", nr[order], K(1UL) << order);
3330                        if (nr[order])
3331                                show_migration_types(types[order]);
3332                }
3333                printk("= %lukB\n", K(total));
3334        }
3335
3336        hugetlb_show_meminfo();
3337
3338        printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
3339
3340        show_swap_cache_info();
3341}
3342
3343static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
3344{
3345        zoneref->zone = zone;
3346        zoneref->zone_idx = zone_idx(zone);
3347}
3348
3349/*
3350 * Builds allocation fallback zone lists.
3351 *
3352 * Add all populated zones of a node to the zonelist.
3353 */
3354static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
3355                                int nr_zones)
3356{
3357        struct zone *zone;
3358        enum zone_type zone_type = MAX_NR_ZONES;
3359
3360        do {
3361                zone_type--;
3362                zone = pgdat->node_zones + zone_type;
3363                if (populated_zone(zone)) {
3364                        zoneref_set_zone(zone,
3365                                &zonelist->_zonerefs[nr_zones++]);
3366                        check_highest_zone(zone_type);
3367                }
3368        } while (zone_type);
3369
3370        return nr_zones;
3371}
3372
3373
3374/*
3375 *  zonelist_order:
3376 *  0 = automatic detection of better ordering.
3377 *  1 = order by ([node] distance, -zonetype)
3378 *  2 = order by (-zonetype, [node] distance)
3379 *
3380 *  If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
3381 *  the same zonelist. So only NUMA can configure this param.
3382 */
3383#define ZONELIST_ORDER_DEFAULT  0
3384#define ZONELIST_ORDER_NODE     1
3385#define ZONELIST_ORDER_ZONE     2
3386
3387/* zonelist order in the kernel.
3388 * set_zonelist_order() will set this to NODE or ZONE.
3389 */
3390static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
3391static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
3392
3393
3394#ifdef CONFIG_NUMA
3395/* The value user specified ....changed by config */
3396static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
3397/* string for sysctl */
3398#define NUMA_ZONELIST_ORDER_LEN 16
3399char numa_zonelist_order[16] = "default";
3400
3401/*
3402 * interface for configure zonelist ordering.
3403 * command line option "numa_zonelist_order"
3404 *      = "[dD]efault   - default, automatic configuration.
3405 *      = "[nN]ode      - order by node locality, then by zone within node
3406 *      = "[zZ]one      - order by zone, then by locality within zone
3407 */
3408
3409static int __parse_numa_zonelist_order(char *s)
3410{
3411        if (*s == 'd' || *s == 'D') {
3412                user_zonelist_order = ZONELIST_ORDER_DEFAULT;
3413        } else if (*s == 'n' || *s == 'N') {
3414                user_zonelist_order = ZONELIST_ORDER_NODE;
3415        } else if (*s == 'z' || *s == 'Z') {
3416                user_zonelist_order = ZONELIST_ORDER_ZONE;
3417        } else {
3418                printk(KERN_WARNING
3419                        "Ignoring invalid numa_zonelist_order value:  "
3420                        "%s\n", s);
3421                return -EINVAL;
3422        }
3423        return 0;
3424}
3425
3426static __init int setup_numa_zonelist_order(char *s)
3427{
3428        int ret;
3429
3430        if (!s)
3431                return 0;
3432
3433        ret = __parse_numa_zonelist_order(s);
3434        if (ret == 0)
3435                strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
3436
3437        return ret;
3438}
3439early_param("numa_zonelist_order", setup_numa_zonelist_order);
3440
3441/*
3442 * sysctl handler for numa_zonelist_order
3443 */
3444int numa_zonelist_order_handler(struct ctl_table *table, int write,
3445                void __user *buffer, size_t *length,
3446                loff_t *ppos)
3447{
3448        char saved_string[NUMA_ZONELIST_ORDER_LEN];
3449        int ret;
3450        static DEFINE_MUTEX(zl_order_mutex);
3451
3452        mutex_lock(&zl_order_mutex);
3453        if (write) {
3454                if (strlen((char *)table->data) >= NUMA_ZONELIST_ORDER_LEN) {
3455                        ret = -EINVAL;
3456                        goto out;
3457                }
3458                strcpy(saved_string, (char *)table->data);
3459        }
3460        ret = proc_dostring(table, write, buffer, length, ppos);
3461        if (ret)
3462                goto out;
3463        if (write) {
3464                int oldval = user_zonelist_order;
3465
3466                ret = __parse_numa_zonelist_order((char *)table->data);
3467                if (ret) {
3468                        /*
3469                         * bogus value.  restore saved string
3470                         */
3471                        strncpy((char *)table->data, saved_string,
3472                                NUMA_ZONELIST_ORDER_LEN);
3473                        user_zonelist_order = oldval;
3474                } else if (oldval != user_zonelist_order) {
3475                        mutex_lock(&zonelists_mutex);
3476                        build_all_zonelists(NULL, NULL);
3477                        mutex_unlock(&zonelists_mutex);
3478                }
3479        }
3480out:
3481        mutex_unlock(&zl_order_mutex);
3482        return ret;
3483}
3484
3485
3486#define MAX_NODE_LOAD (nr_online_nodes)
3487static int node_load[MAX_NUMNODES];
3488
3489/**
3490 * find_next_best_node - find the next node that should appear in a given node's fallback list
3491 * @node: node whose fallback list we're appending
3492 * @used_node_mask: nodemask_t of already used nodes
3493 *
3494 * We use a number of factors to determine which is the next node that should
3495 * appear on a given node's fallback list.  The node should not have appeared
3496 * already in @node's fallback list, and it should be the next closest node
3497 * according to the distance array (which contains arbitrary distance values
3498 * from each node to each node in the system), and should also prefer nodes
3499 * with no CPUs, since presumably they'll have very little allocation pressure
3500 * on them otherwise.
3501 * It returns -1 if no node is found.
3502 */
3503static int find_next_best_node(int node, nodemask_t *used_node_mask)
3504{
3505        int n, val;
3506        int min_val = INT_MAX;
3507        int best_node = NUMA_NO_NODE;
3508        const struct cpumask *tmp = cpumask_of_node(0);
3509
3510        /* Use the local node if we haven't already */
3511        if (!node_isset(node, *used_node_mask)) {
3512                node_set(node, *used_node_mask);
3513                return node;
3514        }
3515
3516        for_each_node_state(n, N_MEMORY) {
3517
3518                /* Don't want a node to appear more than once */
3519                if (node_isset(n, *used_node_mask))
3520                        continue;
3521
3522                /* Use the distance array to find the distance */
3523                val = node_distance(node, n);
3524
3525                /* Penalize nodes under us ("prefer the next node") */
3526                val += (n < node);
3527
3528                /* Give preference to headless and unused nodes */
3529                tmp = cpumask_of_node(n);
3530                if (!cpumask_empty(tmp))
3531                        val += PENALTY_FOR_NODE_WITH_CPUS;
3532
3533                /* Slight preference for less loaded node */
3534                val *= (MAX_NODE_LOAD*MAX_NUMNODES);
3535                val += node_load[n];
3536
3537                if (val < min_val) {
3538                        min_val = val;
3539                        best_node = n;
3540                }
3541        }
3542
3543        if (best_node >= 0)
3544                node_set(best_node, *used_node_mask);
3545
3546        return best_node;
3547}
3548
3549
3550/*
3551 * Build zonelists ordered by node and zones within node.
3552 * This results in maximum locality--normal zone overflows into local
3553 * DMA zone, if any--but risks exhausting DMA zone.
3554 */
3555static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
3556{
3557        int j;
3558        struct zonelist *zonelist;
3559
3560        zonelist = &pgdat->node_zonelists[0];
3561        for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
3562                ;
3563        j = build_zonelists_node(NODE_DATA(node), zonelist, j);
3564        zonelist->_zonerefs[j].zone = NULL;
3565        zonelist->_zonerefs[j].zone_idx = 0;
3566}
3567
3568/*
3569 * Build gfp_thisnode zonelists
3570 */
3571static void build_thisnode_zonelists(pg_data_t *pgdat)
3572{
3573        int j;
3574        struct zonelist *zonelist;
3575
3576        zonelist = &pgdat->node_zonelists[1];
3577        j = build_zonelists_node(pgdat, zonelist, 0);
3578        zonelist->_zonerefs[j].zone = NULL;
3579        zonelist->_zonerefs[j].zone_idx = 0;
3580}
3581
3582/*
3583 * Build zonelists ordered by zone and nodes within zones.
3584 * This results in conserving DMA zone[s] until all Normal memory is
3585 * exhausted, but results in overflowing to remote node while memory
3586 * may still exist in local DMA zone.
3587 */
3588static int node_order[MAX_NUMNODES];
3589
3590static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
3591{
3592        int pos, j, node;
3593        int zone_type;          /* needs to be signed */
3594        struct zone *z;
3595        struct zonelist *zonelist;
3596
3597        zonelist = &pgdat->node_zonelists[0];
3598        pos = 0;
3599        for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
3600                for (j = 0; j < nr_nodes; j++) {
3601                        node = node_order[j];
3602                        z = &NODE_DATA(node)->node_zones[zone_type];
3603                        if (populated_zone(z)) {
3604                                zoneref_set_zone(z,
3605                                        &zonelist->_zonerefs[pos++]);
3606                                check_highest_zone(zone_type);
3607                        }
3608                }
3609        }
3610        zonelist->_zonerefs[pos].zone = NULL;
3611        zonelist->_zonerefs[pos].zone_idx = 0;
3612}
3613
3614#if defined(CONFIG_64BIT)
3615/*
3616 * Devices that require DMA32/DMA are relatively rare and do not justify a
3617 * penalty to every machine in case the specialised case applies. Default
3618 * to Node-ordering on 64-bit NUMA machines
3619 */
3620static int default_zonelist_order(void)
3621{
3622        return ZONELIST_ORDER_NODE;
3623}
3624#else
3625/*
3626 * On 32-bit, the Normal zone needs to be preserved for allocations accessible
3627 * by the kernel. If processes running on node 0 deplete the low memory zone
3628 * then reclaim will occur more frequency increasing stalls and potentially
3629 * be easier to OOM if a large percentage of the zone is under writeback or
3630 * dirty. The problem is significantly worse if CONFIG_HIGHPTE is not set.
3631 * Hence, default to zone ordering on 32-bit.
3632 */
3633static int default_zonelist_order(void)
3634{
3635        return ZONELIST_ORDER_ZONE;
3636}
3637#endif /* CONFIG_64BIT */
3638
3639static void set_zonelist_order(void)
3640{
3641        if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
3642                current_zonelist_order = default_zonelist_order();
3643        else
3644                current_zonelist_order = user_zonelist_order;
3645}
3646
3647static void build_zonelists(pg_data_t *pgdat)
3648{
3649        int j, node, load;
3650        enum zone_type i;
3651        nodemask_t used_mask;
3652        int local_node, prev_node;
3653        struct zonelist *zonelist;
3654        int order = current_zonelist_order;
3655
3656        /* initialize zonelists */
3657        for (i = 0; i < MAX_ZONELISTS; i++) {
3658                zonelist = pgdat->node_zonelists + i;
3659                zonelist->_zonerefs[0].zone = NULL;
3660                zonelist->_zonerefs[0].zone_idx = 0;
3661        }
3662
3663        /* NUMA-aware ordering of nodes */
3664        local_node = pgdat->node_id;
3665        load = nr_online_nodes;
3666        prev_node = local_node;
3667        nodes_clear(used_mask);
3668
3669        memset(node_order, 0, sizeof(node_order));
3670        j = 0;
3671
3672        while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
3673                /*
3674                 * We don't want to pressure a particular node.
3675                 * So adding penalty to the first node in same
3676                 * distance group to make it round-robin.
3677                 */
3678                if (node_distance(local_node, node) !=
3679                    node_distance(local_node, prev_node))
3680                        node_load[node] = load;
3681
3682                prev_node = node;
3683                load--;
3684                if (order == ZONELIST_ORDER_NODE)
3685                        build_zonelists_in_node_order(pgdat, node);
3686                else
3687                        node_order[j++] = node; /* remember order */
3688        }
3689
3690        if (order == ZONELIST_ORDER_ZONE) {
3691                /* calculate node order -- i.e., DMA last! */
3692                build_zonelists_in_zone_order(pgdat, j);
3693        }
3694
3695        build_thisnode_zonelists(pgdat);
3696}
3697
3698/* Construct the zonelist performance cache - see further mmzone.h */
3699static void build_zonelist_cache(pg_data_t *pgdat)
3700{
3701        struct zonelist *zonelist;
3702        struct zonelist_cache *zlc;
3703        struct zoneref *z;
3704
3705        zonelist = &pgdat->node_zonelists[0];
3706        zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
3707        bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
3708        for (z = zonelist->_zonerefs; z->zone; z++)
3709                zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
3710}
3711
3712#ifdef CONFIG_HAVE_MEMORYLESS_NODES
3713/*
3714 * Return node id of node used for "local" allocations.
3715 * I.e., first node id of first zone in arg node's generic zonelist.
3716 * Used for initializing percpu 'numa_mem', which is used primarily
3717 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
3718 */
3719int local_memory_node(int node)
3720{
3721        struct zone *zone;
3722
3723        (void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
3724                                   gfp_zone(GFP_KERNEL),
3725                                   NULL,
3726                                   &zone);
3727        return zone->node;
3728}
3729#endif
3730
3731#else   /* CONFIG_NUMA */
3732
3733static void set_zonelist_order(void)
3734{
3735        current_zonelist_order = ZONELIST_ORDER_ZONE;
3736}
3737
3738static void build_zonelists(pg_data_t *pgdat)
3739{
3740        int node, local_node;
3741        enum zone_type j;
3742        struct zonelist *zonelist;
3743
3744        local_node = pgdat->node_id;
3745
3746        zonelist = &pgdat->node_zonelists[0];
3747        j = build_zonelists_node(pgdat, zonelist, 0);
3748
3749        /*
3750         * Now we build the zonelist so that it contains the zones
3751         * of all the other nodes.
3752         * We don't want to pressure a particular node, so when
3753         * building the zones for node N, we make sure that the
3754         * zones coming right after the local ones are those from
3755         * node N+1 (modulo N)
3756         */
3757        for (node = local_node + 1; node < MAX_NUMNODES; node++) {
3758                if (!node_online(node))
3759                        continue;
3760                j = build_zonelists_node(NODE_DATA(node), zonelist, j);
3761        }
3762        for (node = 0; node < local_node; node++) {
3763                if (!node_online(node))
3764                        continue;
3765                j = build_zonelists_node(NODE_DATA(node), zonelist, j);
3766        }
3767
3768        zonelist->_zonerefs[j].zone = NULL;
3769        zonelist->_zonerefs[j].zone_idx = 0;
3770}
3771
3772/* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
3773static void build_zonelist_cache(pg_data_t *pgdat)
3774{
3775        pgdat->node_zonelists[0].zlcache_ptr = NULL;
3776}
3777
3778#endif  /* CONFIG_NUMA */
3779
3780/*
3781 * Boot pageset table. One per cpu which is going to be used for all
3782 * zones and all nodes. The parameters will be set in such a way
3783 * that an item put on a list will immediately be handed over to
3784 * the buddy list. This is safe since pageset manipulation is done
3785 * with interrupts disabled.
3786 *
3787 * The boot_pagesets must be kept even after bootup is complete for
3788 * unused processors and/or zones. They do play a role for bootstrapping
3789 * hotplugged processors.
3790 *
3791 * zoneinfo_show() and maybe other functions do
3792 * not check if the processor is online before following the pageset pointer.
3793 * Other parts of the kernel may not check if the zone is available.
3794 */
3795static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
3796static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
3797static void setup_zone_pageset(struct zone *zone);
3798
3799/*
3800 * Global mutex to protect against size modification of zonelists
3801 * as well as to serialize pageset setup for the new populated zone.
3802 */
3803DEFINE_MUTEX(zonelists_mutex);
3804
3805/* return values int ....just for stop_machine() */
3806static int __build_all_zonelists(void *data)
3807{
3808        int nid;
3809        int cpu;
3810        pg_data_t *self = data;
3811
3812#ifdef CONFIG_NUMA
3813        memset(node_load, 0, sizeof(node_load));
3814#endif
3815
3816        if (self && !node_online(self->node_id)) {
3817                build_zonelists(self);
3818                build_zonelist_cache(self);
3819        }
3820
3821        for_each_online_node(nid) {
3822                pg_data_t *pgdat = NODE_DATA(nid);
3823
3824                build_zonelists(pgdat);
3825                build_zonelist_cache(pgdat);
3826        }
3827
3828        /*
3829         * Initialize the boot_pagesets that are going to be used
3830         * for bootstrapping processors. The real pagesets for
3831         * each zone will be allocated later when the per cpu
3832         * allocator is available.
3833         *
3834         * boot_pagesets are used also for bootstrapping offline
3835         * cpus if the system is already booted because the pagesets
3836         * are needed to initialize allocators on a specific cpu too.
3837         * F.e. the percpu allocator needs the page allocator which
3838         * needs the percpu allocator in order to allocate its pagesets
3839         * (a chicken-egg dilemma).
3840         */
3841        for_each_possible_cpu(cpu) {
3842                setup_pageset(&per_cpu(boot_pageset, cpu), 0);
3843
3844#ifdef CONFIG_HAVE_MEMORYLESS_NODES
3845                /*
3846                 * We now know the "local memory node" for each node--
3847                 * i.e., the node of the first zone in the generic zonelist.
3848                 * Set up numa_mem percpu variable for on-line cpus.  During
3849                 * boot, only the boot cpu should be on-line;  we'll init the
3850                 * secondary cpus' numa_mem as they come on-line.  During
3851                 * node/memory hotplug, we'll fixup all on-line cpus.
3852                 */
3853                if (cpu_online(cpu))
3854                        set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
3855#endif
3856        }
3857
3858        return 0;
3859}
3860
3861/*
3862 * Called with zonelists_mutex held always
3863 * unless system_state == SYSTEM_BOOTING.
3864 */
3865void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone)
3866{
3867        set_zonelist_order();
3868
3869        if (system_state == SYSTEM_BOOTING) {
3870                __build_all_zonelists(NULL);
3871                mminit_verify_zonelist();
3872                cpuset_init_current_mems_allowed();
3873        } else {
3874#ifdef CONFIG_MEMORY_HOTPLUG
3875                if (zone)
3876                        setup_zone_pageset(zone);
3877#endif
3878                /* we have to stop all cpus to guarantee there is no user
3879                   of zonelist */
3880                stop_machine(__build_all_zonelists, pgdat, NULL);
3881                /* cpuset refresh routine should be here */
3882        }
3883        vm_total_pages = nr_free_pagecache_pages();
3884        /*
3885         * Disable grouping by mobility if the number of pages in the
3886         * system is too low to allow the mechanism to work. It would be
3887         * more accurate, but expensive to check per-zone. This check is
3888         * made on memory-hotadd so a system can start with mobility
3889         * disabled and enable it later
3890         */
3891        if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
3892                page_group_by_mobility_disabled = 1;
3893        else
3894                page_group_by_mobility_disabled = 0;
3895
3896        printk("Built %i zonelists in %s order, mobility grouping %s.  "
3897                "Total pages: %ld\n",
3898                        nr_online_nodes,
3899                        zonelist_order_name[current_zonelist_order],
3900                        page_group_by_mobility_disabled ? "off" : "on",
3901                        vm_total_pages);
3902#ifdef CONFIG_NUMA
3903        printk("Policy zone: %s\n", zone_names[policy_zone]);
3904#endif
3905}
3906
3907/*
3908 * Helper functions to size the waitqueue hash table.
3909 * Essentially these want to choose hash table sizes sufficiently
3910 * large so that collisions trying to wait on pages are rare.
3911 * But in fact, the number of active page waitqueues on typical
3912 * systems is ridiculously low, less than 200. So this is even
3913 * conservative, even though it seems large.
3914 *
3915 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
3916 * waitqueues, i.e. the size of the waitq table given the number of pages.
3917 */
3918#define PAGES_PER_WAITQUEUE     256
3919
3920#ifndef CONFIG_MEMORY_HOTPLUG
3921static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
3922{
3923        unsigned long size = 1;
3924
3925        pages /= PAGES_PER_WAITQUEUE;
3926
3927        while (size < pages)
3928                size <<= 1;
3929
3930        /*
3931         * Once we have dozens or even hundreds of threads sleeping
3932         * on IO we've got bigger problems than wait queue collision.
3933         * Limit the size of the wait table to a reasonable size.
3934         */
3935        size = min(size, 4096UL);
3936
3937        return max(size, 4UL);
3938}
3939#else
3940/*
3941 * A zone's size might be changed by hot-add, so it is not possible to determine
3942 * a suitable size for its wait_table.  So we use the maximum size now.
3943 *
3944 * The max wait table size = 4096 x sizeof(wait_queue_head_t).   ie:
3945 *
3946 *    i386 (preemption config)    : 4096 x 16 = 64Kbyte.
3947 *    ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
3948 *    ia64, x86-64 (preemption)   : 4096 x 24 = 96Kbyte.
3949 *
3950 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
3951 * or more by the traditional way. (See above).  It equals:
3952 *
3953 *    i386, x86-64, powerpc(4K page size) : =  ( 2G + 1M)byte.
3954 *    ia64(16K page size)                 : =  ( 8G + 4M)byte.
3955 *    powerpc (64K page size)             : =  (32G +16M)byte.
3956 */
3957static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
3958{
3959        return 4096UL;
3960}
3961#endif
3962
3963/*
3964 * This is an integer logarithm so that shifts can be used later
3965 * to extract the more random high bits from the multiplicative
3966 * hash function before the remainder is taken.
3967 */
3968static inline unsigned long wait_table_bits(unsigned long size)
3969{
3970        return ffz(~size);
3971}
3972
3973/*
3974 * Check if a pageblock contains reserved pages
3975 */
3976static int pageblock_is_reserved(unsigned long start_pfn, unsigned long end_pfn)
3977{
3978        unsigned long pfn;
3979
3980        for (pfn = start_pfn; pfn < end_pfn; pfn++) {
3981                if (!pfn_valid_within(pfn) || PageReserved(pfn_to_page(pfn)))
3982                        return 1;
3983        }
3984        return 0;
3985}
3986
3987/*
3988 * Mark a number of pageblocks as MIGRATE_RESERVE. The number
3989 * of blocks reserved is based on min_wmark_pages(zone). The memory within
3990 * the reserve will tend to store contiguous free pages. Setting min_free_kbytes
3991 * higher will lead to a bigger reserve which will get freed as contiguous
3992 * blocks as reclaim kicks in
3993 */
3994static void setup_zone_migrate_reserve(struct zone *zone)
3995{
3996        unsigned long start_pfn, pfn, end_pfn, block_end_pfn;
3997        struct page *page;
3998        unsigned long block_migratetype;
3999        int reserve;
4000        int old_reserve;
4001
4002        /*
4003         * Get the start pfn, end pfn and the number of blocks to reserve
4004         * We have to be careful to be aligned to pageblock_nr_pages to
4005         * make sure that we always check pfn_valid for the first page in
4006         * the block.
4007         */
4008        start_pfn = zone->zone_start_pfn;
4009        end_pfn = zone_end_pfn(zone);
4010        start_pfn = roundup(start_pfn, pageblock_nr_pages);
4011        reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >>
4012                                                        pageblock_order;
4013
4014        /*
4015         * Reserve blocks are generally in place to help high-order atomic
4016         * allocations that are short-lived. A min_free_kbytes value that
4017         * would result in more than 2 reserve blocks for atomic allocations
4018         * is assumed to be in place to help anti-fragmentation for the
4019         * future allocation of hugepages at runtime.
4020         */
4021        reserve = min(2, reserve);
4022        old_reserve = zone->nr_migrate_reserve_block;
4023
4024        /* When memory hot-add, we almost always need to do nothing */
4025        if (reserve == old_reserve)
4026                return;
4027        zone->nr_migrate_reserve_block = reserve;
4028
4029        for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
4030                if (!pfn_valid(pfn))
4031                        continue;
4032                page = pfn_to_page(pfn);
4033
4034                /* Watch out for overlapping nodes */
4035                if (page_to_nid(page) != zone_to_nid(zone))
4036                        continue;
4037
4038                block_migratetype = get_pageblock_migratetype(page);
4039
4040                /* Only test what is necessary when the reserves are not met */
4041                if (reserve > 0) {
4042                        /*
4043                         * Blocks with reserved pages will never free, skip
4044                         * them.
4045                         */
4046                        block_end_pfn = min(pfn + pageblock_nr_pages, end_pfn);
4047                        if (pageblock_is_reserved(pfn, block_end_pfn))
4048                                continue;
4049
4050                        /* If this block is reserved, account for it */
4051                        if (block_migratetype == MIGRATE_RESERVE) {
4052                                reserve--;
4053                                continue;
4054                        }
4055
4056                        /* Suitable for reserving if this block is movable */
4057                        if (block_migratetype == MIGRATE_MOVABLE) {
4058                                set_pageblock_migratetype(page,
4059                                                        MIGRATE_RESERVE);
4060                                move_freepages_block(zone, page,
4061                                                        MIGRATE_RESERVE);
4062                                reserve--;
4063                                continue;
4064                        }
4065                } else if (!old_reserve) {
4066                        /*
4067                         * At boot time we don't need to scan the whole zone
4068                         * for turning off MIGRATE_RESERVE.
4069                         */
4070                        break;
4071                }
4072
4073                /*
4074                 * If the reserve is met and this is a previous reserved block,
4075                 * take it back
4076                 */
4077                if (block_migratetype == MIGRATE_RESERVE) {
4078                        set_pageblock_migratetype(page, MIGRATE_MOVABLE);
4079                        move_freepages_block(zone, page, MIGRATE_MOVABLE);
4080                }
4081        }
4082}
4083
4084/*
4085 * Initially all pages are reserved - free ones are freed
4086 * up by free_all_bootmem() once the early boot process is
4087 * done. Non-atomic initialization, single-pass.
4088 */
4089void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
4090                unsigned long start_pfn, enum memmap_context context)
4091{
4092        struct page *page;
4093        unsigned long end_pfn = start_pfn + size;
4094        unsigned long pfn;
4095        struct zone *z;
4096
4097        if (highest_memmap_pfn < end_pfn - 1)
4098                highest_memmap_pfn = end_pfn - 1;
4099
4100        z = &NODE_DATA(nid)->node_zones[zone];
4101        for (pfn = start_pfn; pfn < end_pfn; pfn++) {
4102                /*
4103                 * There can be holes in boot-time mem_map[]s
4104                 * handed to this function.  They do not
4105                 * exist on hotplugged memory.
4106                 */
4107                if (context == MEMMAP_EARLY) {
4108                        if (!early_pfn_valid(pfn))
4109                                continue;
4110                        if (!early_pfn_in_nid(pfn, nid))
4111                                continue;
4112                }
4113                page = pfn_to_page(pfn);
4114                set_page_links(page, zone, nid, pfn);
4115                mminit_verify_page_links(page, zone, nid, pfn);
4116                init_page_count(page);
4117                page_mapcount_reset(page);
4118                page_cpupid_reset_last(page);
4119                SetPageReserved(page);
4120                /*
4121                 * Mark the block movable so that blocks are reserved for
4122                 * movable at startup. This will force kernel allocations
4123                 * to reserve their blocks rather than leaking throughout
4124                 * the address space during boot when many long-lived
4125                 * kernel allocations are made. Later some blocks near
4126                 * the start are marked MIGRATE_RESERVE by
4127                 * setup_zone_migrate_reserve()
4128                 *
4129                 * bitmap is created for zone's valid pfn range. but memmap
4130                 * can be created for invalid pages (for alignment)
4131                 * check here not to call set_pageblock_migratetype() against
4132                 * pfn out of zone.
4133                 */
4134                if ((z->zone_start_pfn <= pfn)
4135                    && (pfn < zone_end_pfn(z))
4136                    && !(pfn & (pageblock_nr_pages - 1)))
4137                        set_pageblock_migratetype(page, MIGRATE_MOVABLE);
4138
4139                INIT_LIST_HEAD(&page->lru);
4140#ifdef WANT_PAGE_VIRTUAL
4141                /* The shift won't overflow because ZONE_NORMAL is below 4G. */
4142                if (!is_highmem_idx(zone))
4143                        set_page_address(page, __va(pfn << PAGE_SHIFT));
4144#endif
4145        }
4146}
4147
4148static void __meminit zone_init_free_lists(struct zone *zone)
4149{
4150        unsigned int order, t;
4151        for_each_migratetype_order(order, t) {
4152                INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
4153                zone->free_area[order].nr_free = 0;
4154        }
4155}
4156
4157#ifndef __HAVE_ARCH_MEMMAP_INIT
4158#define memmap_init(size, nid, zone, start_pfn) \
4159        memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
4160#endif
4161
4162static int zone_batchsize(struct zone *zone)
4163{
4164#ifdef CONFIG_MMU
4165        int batch;
4166
4167        /*
4168         * The per-cpu-pages pools are set to around 1000th of the
4169         * size of the zone.  But no more than 1/2 of a meg.
4170         *
4171         * OK, so we don't know how big the cache is.  So guess.
4172         */
4173        batch = zone->managed_pages / 1024;
4174        if (batch * PAGE_SIZE > 512 * 1024)
4175                batch = (512 * 1024) / PAGE_SIZE;
4176        batch /= 4;             /* We effectively *= 4 below */
4177        if (batch < 1)
4178                batch = 1;
4179
4180        /*
4181         * Clamp the batch to a 2^n - 1 value. Having a power
4182         * of 2 value was found to be more likely to have
4183         * suboptimal cache aliasing properties in some cases.
4184         *
4185         * For example if 2 tasks are alternately allocating
4186         * batches of pages, one task can end up with a lot
4187         * of pages of one half of the possible page colors
4188         * and the other with pages of the other colors.
4189         */
4190        batch = rounddown_pow_of_two(batch + batch/2) - 1;
4191
4192        return batch;
4193
4194#else
4195        /* The deferral and batching of frees should be suppressed under NOMMU
4196         * conditions.
4197         *
4198         * The problem is that NOMMU needs to be able to allocate large chunks
4199         * of contiguous memory as there's no hardware page translation to
4200         * assemble apparent contiguous memory from discontiguous pages.
4201         *
4202         * Queueing large contiguous runs of pages for batching, however,
4203         * causes the pages to actually be freed in smaller chunks.  As there
4204         * can be a significant delay between the individual batches being
4205         * recycled, this leads to the once large chunks of space being
4206         * fragmented and becoming unavailable for high-order allocations.
4207         */
4208        return 0;
4209#endif
4210}
4211
4212/*
4213 * pcp->high and pcp->batch values are related and dependent on one another:
4214 * ->batch must never be higher then ->high.
4215 * The following function updates them in a safe manner without read side
4216 * locking.
4217 *
4218 * Any new users of pcp->batch and pcp->high should ensure they can cope with
4219 * those fields changing asynchronously (acording the the above rule).
4220 *
4221 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
4222 * outside of boot time (or some other assurance that no concurrent updaters
4223 * exist).
4224 */
4225static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
4226                unsigned long batch)
4227{
4228       /* start with a fail safe value for batch */
4229        pcp->batch = 1;
4230        smp_wmb();
4231
4232       /* Update high, then batch, in order */
4233        pcp->high = high;
4234        smp_wmb();
4235
4236        pcp->batch = batch;
4237}
4238
4239/* a companion to pageset_set_high() */
4240static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
4241{
4242        pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
4243}
4244
4245static void pageset_init(struct per_cpu_pageset *p)
4246{
4247        struct per_cpu_pages *pcp;
4248        int migratetype;
4249
4250        memset(p, 0, sizeof(*p));
4251
4252        pcp = &p->pcp;
4253        pcp->count = 0;
4254        for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
4255                INIT_LIST_HEAD(&pcp->lists[migratetype]);
4256}
4257
4258static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
4259{
4260        pageset_init(p);
4261        pageset_set_batch(p, batch);
4262}
4263
4264/*
4265 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
4266 * to the value high for the pageset p.
4267 */
4268static void pageset_set_high(struct per_cpu_pageset *p,
4269                                unsigned long high)
4270{
4271        unsigned long batch = max(1UL, high / 4);
4272        if ((high / 4) > (PAGE_SHIFT * 8))
4273                batch = PAGE_SHIFT * 8;
4274
4275        pageset_update(&p->pcp, high, batch);
4276}
4277
4278static void pageset_set_high_and_batch(struct zone *zone,
4279                                       struct per_cpu_pageset *pcp)
4280{
4281        if (percpu_pagelist_fraction)
4282                pageset_set_high(pcp,
4283                        (zone->managed_pages /
4284                                percpu_pagelist_fraction));
4285        else
4286                pageset_set_batch(pcp, zone_batchsize(zone));
4287}
4288
4289static void __meminit zone_pageset_init(struct zone *zone, int cpu)
4290{
4291        struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
4292
4293        pageset_init(pcp);
4294        pageset_set_high_and_batch(zone, pcp);
4295}
4296
4297static void __meminit setup_zone_pageset(struct zone *zone)
4298{
4299        int cpu;
4300        zone->pageset = alloc_percpu(struct per_cpu_pageset);
4301        for_each_possible_cpu(cpu)
4302                zone_pageset_init(zone, cpu);
4303}
4304
4305/*
4306 * Allocate per cpu pagesets and initialize them.
4307 * Before this call only boot pagesets were available.
4308 */
4309void __init setup_per_cpu_pageset(void)
4310{
4311        struct zone *zone;
4312
4313        for_each_populated_zone(zone)
4314                setup_zone_pageset(zone);
4315}
4316
4317static noinline __init_refok
4318int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
4319{
4320        int i;
4321        size_t alloc_size;
4322
4323        /*
4324         * The per-page waitqueue mechanism uses hashed waitqueues
4325         * per zone.
4326         */
4327        zone->wait_table_hash_nr_entries =
4328                 wait_table_hash_nr_entries(zone_size_pages);
4329        zone->wait_table_bits =
4330                wait_table_bits(zone->wait_table_hash_nr_entries);
4331        alloc_size = zone->wait_table_hash_nr_entries
4332                                        * sizeof(wait_queue_head_t);
4333
4334        if (!slab_is_available()) {
4335                zone->wait_table = (wait_queue_head_t *)
4336                        memblock_virt_alloc_node_nopanic(
4337                                alloc_size, zone->zone_pgdat->node_id);
4338        } else {
4339                /*
4340                 * This case means that a zone whose size was 0 gets new memory
4341                 * via memory hot-add.
4342                 * But it may be the case that a new node was hot-added.  In
4343                 * this case vmalloc() will not be able to use this new node's
4344                 * memory - this wait_table must be initialized to use this new
4345                 * node itself as well.
4346                 * To use this new node's memory, further consideration will be
4347                 * necessary.
4348                 */
4349                zone->wait_table = vmalloc(alloc_size);
4350        }
4351        if (!zone->wait_table)
4352                return -ENOMEM;
4353
4354        for (i = 0; i < zone->wait_table_hash_nr_entries; ++i)
4355                init_waitqueue_head(zone->wait_table + i);
4356
4357        return 0;
4358}
4359
4360static __meminit void zone_pcp_init(struct zone *zone)
4361{
4362        /*
4363         * per cpu subsystem is not up at this point. The following code
4364         * relies on the ability of the linker to provide the
4365         * offset of a (static) per cpu variable into the per cpu area.
4366         */
4367        zone->pageset = &boot_pageset;
4368
4369        if (populated_zone(zone))
4370                printk(KERN_DEBUG "  %s zone: %lu pages, LIFO batch:%u\n",
4371                        zone->name, zone->present_pages,
4372                                         zone_batchsize(zone));
4373}
4374
4375int __meminit init_currently_empty_zone(struct zone *zone,
4376                                        unsigned long zone_start_pfn,
4377                                        unsigned long size,
4378                                        enum memmap_context context)
4379{
4380        struct pglist_data *pgdat = zone->zone_pgdat;
4381        int ret;
4382        ret = zone_wait_table_init(zone, size);
4383        if (ret)
4384                return ret;
4385        pgdat->nr_zones = zone_idx(zone) + 1;
4386
4387        zone->zone_start_pfn = zone_start_pfn;
4388
4389        mminit_dprintk(MMINIT_TRACE, "memmap_init",
4390                        "Initialising map node %d zone %lu pfns %lu -> %lu\n",
4391                        pgdat->node_id,
4392                        (unsigned long)zone_idx(zone),
4393                        zone_start_pfn, (zone_start_pfn + size));
4394
4395        zone_init_free_lists(zone);
4396
4397        return 0;
4398}
4399
4400#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4401#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
4402/*
4403 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
4404 */
4405int __meminit __early_pfn_to_nid(unsigned long pfn)
4406{
4407        unsigned long start_pfn, end_pfn;
4408        int nid;
4409        /*
4410         * NOTE: The following SMP-unsafe globals are only used early in boot
4411         * when the kernel is running single-threaded.
4412         */
4413        static unsigned long __meminitdata last_start_pfn, last_end_pfn;
4414        static int __meminitdata last_nid;
4415
4416        if (last_start_pfn <= pfn && pfn < last_end_pfn)
4417                return last_nid;
4418
4419        nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
4420        if (nid != -1) {
4421                last_start_pfn = start_pfn;
4422                last_end_pfn = end_pfn;
4423                last_nid = nid;
4424        }
4425
4426        return nid;
4427}
4428#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
4429
4430int __meminit early_pfn_to_nid(unsigned long pfn)
4431{
4432        int nid;
4433
4434        nid = __early_pfn_to_nid(pfn);
4435        if (nid >= 0)
4436                return nid;
4437        /* just returns 0 */
4438        return 0;
4439}
4440
4441#ifdef CONFIG_NODES_SPAN_OTHER_NODES
4442bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
4443{
4444        int nid;
4445
4446        nid = __early_pfn_to_nid(pfn);
4447        if (nid >= 0 && nid != node)
4448                return false;
4449        return true;
4450}
4451#endif
4452
4453/**
4454 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
4455 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
4456 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
4457 *
4458 * If an architecture guarantees that all ranges registered contain no holes
4459 * and may be freed, this this function may be used instead of calling
4460 * memblock_free_early_nid() manually.
4461 */
4462void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
4463{
4464        unsigned long start_pfn, end_pfn;
4465        int i, this_nid;
4466
4467        for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
4468                start_pfn = min(start_pfn, max_low_pfn);
4469                end_pfn = min(end_pfn, max_low_pfn);
4470
4471                if (start_pfn < end_pfn)
4472                        memblock_free_early_nid(PFN_PHYS(start_pfn),
4473                                        (end_pfn - start_pfn) << PAGE_SHIFT,
4474                                        this_nid);
4475        }
4476}
4477
4478/**
4479 * sparse_memory_present_with_active_regions - Call memory_present for each active range
4480 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
4481 *
4482 * If an architecture guarantees that all ranges registered contain no holes and may
4483 * be freed, this function may be used instead of calling memory_present() manually.
4484 */
4485void __init sparse_memory_present_with_active_regions(int nid)
4486{
4487        unsigned long start_pfn, end_pfn;
4488        int i, this_nid;
4489
4490        for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
4491                memory_present(this_nid, start_pfn, end_pfn);
4492}
4493
4494/**
4495 * get_pfn_range_for_nid - Return the start and end page frames for a node
4496 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
4497 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
4498 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
4499 *
4500 * It returns the start and end page frame of a node based on information
4501 * provided by memblock_set_node(). If called for a node
4502 * with no available memory, a warning is printed and the start and end
4503 * PFNs will be 0.
4504 */
4505void __meminit get_pfn_range_for_nid(unsigned int nid,
4506                        unsigned long *start_pfn, unsigned long *end_pfn)
4507{
4508        unsigned long this_start_pfn, this_end_pfn;
4509        int i;
4510
4511        *start_pfn = -1UL;
4512        *end_pfn = 0;
4513
4514        for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
4515                *start_pfn = min(*start_pfn, this_start_pfn);
4516                *end_pfn = max(*end_pfn, this_end_pfn);
4517        }
4518
4519        if (*start_pfn == -1UL)
4520                *start_pfn = 0;
4521}
4522
4523/*
4524 * This finds a zone that can be used for ZONE_MOVABLE pages. The
4525 * assumption is made that zones within a node are ordered in monotonic
4526 * increasing memory addresses so that the "highest" populated zone is used
4527 */
4528static void __init find_usable_zone_for_movable(void)
4529{
4530        int zone_index;
4531        for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
4532                if (zone_index == ZONE_MOVABLE)
4533                        continue;
4534
4535                if (arch_zone_highest_possible_pfn[zone_index] >
4536                                arch_zone_lowest_possible_pfn[zone_index])
4537                        break;
4538        }
4539
4540        VM_BUG_ON(zone_index == -1);
4541        movable_zone = zone_index;
4542}
4543
4544/*
4545 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
4546 * because it is sized independent of architecture. Unlike the other zones,
4547 * the starting point for ZONE_MOVABLE is not fixed. It may be different
4548 * in each node depending on the size of each node and how evenly kernelcore
4549 * is distributed. This helper function adjusts the zone ranges
4550 * provided by the architecture for a given node by using the end of the
4551 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
4552 * zones within a node are in order of monotonic increases memory addresses
4553 */
4554static void __meminit adjust_zone_range_for_zone_movable(int nid,
4555                                        unsigned long zone_type,
4556                                        unsigned long node_start_pfn,
4557                                        unsigned long node_end_pfn,
4558                                        unsigned long *zone_start_pfn,
4559                                        unsigned long *zone_end_pfn)
4560{
4561        /* Only adjust if ZONE_MOVABLE is on this node */
4562        if (zone_movable_pfn[nid]) {
4563                /* Size ZONE_MOVABLE */
4564                if (zone_type == ZONE_MOVABLE) {
4565                        *zone_start_pfn = zone_movable_pfn[nid];
4566                        *zone_end_pfn = min(node_end_pfn,
4567                                arch_zone_highest_possible_pfn[movable_zone]);
4568
4569                /* Adjust for ZONE_MOVABLE starting within this range */
4570                } else if (*zone_start_pfn < zone_movable_pfn[nid] &&
4571                                *zone_end_pfn > zone_movable_pfn[nid]) {
4572                        *zone_end_pfn = zone_movable_pfn[nid];
4573
4574                /* Check if this whole range is within ZONE_MOVABLE */
4575                } else if (*zone_start_pfn >= zone_movable_pfn[nid])
4576                        *zone_start_pfn = *zone_end_pfn;
4577        }
4578}
4579
4580/*
4581 * Return the number of pages a zone spans in a node, including holes
4582 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
4583 */
4584static unsigned long __meminit zone_spanned_pages_in_node(int nid,
4585                                        unsigned long zone_type,
4586                                        unsigned long node_start_pfn,
4587                                        unsigned long node_end_pfn,
4588                                        unsigned long *ignored)
4589{
4590        unsigned long zone_start_pfn, zone_end_pfn;
4591
4592        /* Get the start and end of the zone */
4593        zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
4594        zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
4595        adjust_zone_range_for_zone_movable(nid, zone_type,
4596                                node_start_pfn, node_end_pfn,
4597                                &zone_start_pfn, &zone_end_pfn);
4598
4599        /* Check that this node has pages within the zone's required range */
4600        if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
4601                return 0;
4602
4603        /* Move the zone boundaries inside the node if necessary */
4604        zone_end_pfn = min(zone_end_pfn, node_end_pfn);
4605        zone_start_pfn = max(zone_start_pfn, node_start_pfn);
4606
4607        /* Return the spanned pages */
4608        return zone_end_pfn - zone_start_pfn;
4609}
4610
4611/*
4612 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
4613 * then all holes in the requested range will be accounted for.
4614 */
4615unsigned long __meminit __absent_pages_in_range(int nid,
4616                                unsigned long range_start_pfn,
4617                                unsigned long range_end_pfn)
4618{
4619        unsigned long nr_absent = range_end_pfn - range_start_pfn;
4620        unsigned long start_pfn, end_pfn;
4621        int i;
4622
4623        for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
4624                start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
4625                end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
4626                nr_absent -= end_pfn - start_pfn;
4627        }
4628        return nr_absent;
4629}
4630
4631/**
4632 * absent_pages_in_range - Return number of page frames in holes within a range
4633 * @start_pfn: The start PFN to start searching for holes
4634 * @end_pfn: The end PFN to stop searching for holes
4635 *
4636 * It returns the number of pages frames in memory holes within a range.
4637 */
4638unsigned long __init absent_pages_in_range(unsigned long start_pfn,
4639                                                        unsigned long end_pfn)
4640{
4641        return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
4642}
4643
4644/* Return the number of page frames in holes in a zone on a node */
4645static unsigned long __meminit zone_absent_pages_in_node(int nid,
4646                                        unsigned long zone_type,
4647                                        unsigned long node_start_pfn,
4648                                        unsigned long node_end_pfn,
4649                                        unsigned long *ignored)
4650{
4651        unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
4652        unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
4653        unsigned long zone_start_pfn, zone_end_pfn;
4654
4655        zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
4656        zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
4657
4658        adjust_zone_range_for_zone_movable(nid, zone_type,
4659                        node_start_pfn, node_end_pfn,
4660                        &zone_start_pfn, &zone_end_pfn);
4661        return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
4662}
4663
4664#else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
4665static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
4666                                        unsigned long zone_type,
4667                                        unsigned long node_start_pfn,
4668                                        unsigned long node_end_pfn,
4669                                        unsigned long *zones_size)
4670{
4671        return zones_size[zone_type];
4672}
4673
4674static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
4675                                                unsigned long zone_type,
4676                                                unsigned long node_start_pfn,
4677                                                unsigned long node_end_pfn,
4678                                                unsigned long *zholes_size)
4679{
4680        if (!zholes_size)
4681                return 0;
4682
4683        return zholes_size[zone_type];
4684}
4685
4686#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
4687
4688static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
4689                                                unsigned long node_start_pfn,
4690                                                unsigned long node_end_pfn,
4691                                                unsigned long *zones_size,
4692                                                unsigned long *zholes_size)
4693{
4694        unsigned long realtotalpages, totalpages = 0;
4695        enum zone_type i;
4696
4697        for (i = 0; i < MAX_NR_ZONES; i++)
4698                totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
4699                                                         node_start_pfn,
4700                                                         node_end_pfn,
4701                                                         zones_size);
4702        pgdat->node_spanned_pages = totalpages;
4703
4704        realtotalpages = totalpages;
4705        for (i = 0; i < MAX_NR_ZONES; i++)
4706                realtotalpages -=
4707                        zone_absent_pages_in_node(pgdat->node_id, i,
4708                                                  node_start_pfn, node_end_pfn,
4709                                                  zholes_size);
4710        pgdat->node_present_pages = realtotalpages;
4711        printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
4712                                                        realtotalpages);
4713}
4714
4715#ifndef CONFIG_SPARSEMEM
4716/*
4717 * Calculate the size of the zone->blockflags rounded to an unsigned long
4718 * Start by making sure zonesize is a multiple of pageblock_order by rounding
4719 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
4720 * round what is now in bits to nearest long in bits, then return it in
4721 * bytes.
4722 */
4723static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
4724{
4725        unsigned long usemapsize;
4726
4727        zonesize += zone_start_pfn & (pageblock_nr_pages-1);
4728        usemapsize = roundup(zonesize, pageblock_nr_pages);
4729        usemapsize = usemapsize >> pageblock_order;
4730        usemapsize *= NR_PAGEBLOCK_BITS;
4731        usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
4732
4733        return usemapsize / 8;
4734}
4735
4736static void __init setup_usemap(struct pglist_data *pgdat,
4737                                struct zone *zone,
4738                                unsigned long zone_start_pfn,
4739                                unsigned long zonesize)
4740{
4741        unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
4742        zone->pageblock_flags = NULL;
4743        if (usemapsize)
4744                zone->pageblock_flags =
4745                        memblock_virt_alloc_node_nopanic(usemapsize,
4746                                                         pgdat->node_id);
4747}
4748#else
4749static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
4750                                unsigned long zone_start_pfn, unsigned long zonesize) {}
4751#endif /* CONFIG_SPARSEMEM */
4752
4753#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
4754
4755/* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
4756void __paginginit set_pageblock_order(void)
4757{
4758        unsigned int order;
4759
4760        /* Check that pageblock_nr_pages has not already been setup */
4761        if (pageblock_order)
4762                return;
4763
4764        if (HPAGE_SHIFT > PAGE_SHIFT)
4765                order = HUGETLB_PAGE_ORDER;
4766        else
4767                order = MAX_ORDER - 1;
4768
4769        /*
4770         * Assume the largest contiguous order of interest is a huge page.
4771         * This value may be variable depending on boot parameters on IA64 and
4772         * powerpc.
4773         */
4774        pageblock_order = order;
4775}
4776#else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4777
4778/*
4779 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
4780 * is unused as pageblock_order is set at compile-time. See
4781 * include/linux/pageblock-flags.h for the values of pageblock_order based on
4782 * the kernel config
4783 */
4784void __paginginit set_pageblock_order(void)
4785{
4786}
4787
4788#endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4789
4790static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages,
4791                                                   unsigned long present_pages)
4792{
4793        unsigned long pages = spanned_pages;
4794
4795        /*
4796         * Provide a more accurate estimation if there are holes within
4797         * the zone and SPARSEMEM is in use. If there are holes within the
4798         * zone, each populated memory region may cost us one or two extra
4799         * memmap pages due to alignment because memmap pages for each
4800         * populated regions may not naturally algined on page boundary.
4801         * So the (present_pages >> 4) heuristic is a tradeoff for that.
4802         */
4803        if (spanned_pages > present_pages + (present_pages >> 4) &&
4804            IS_ENABLED(CONFIG_SPARSEMEM))
4805                pages = present_pages;
4806
4807        return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
4808}
4809
4810/*
4811 * Set up the zone data structures:
4812 *   - mark all pages reserved
4813 *   - mark all memory queues empty
4814 *   - clear the memory bitmaps
4815 *
4816 * NOTE: pgdat should get zeroed by caller.
4817 */
4818static void __paginginit free_area_init_core(struct pglist_data *pgdat,
4819                unsigned long node_start_pfn, unsigned long node_end_pfn,
4820                unsigned long *zones_size, unsigned long *zholes_size)
4821{
4822        enum zone_type j;
4823        int nid = pgdat->node_id;
4824        unsigned long zone_start_pfn = pgdat->node_start_pfn;
4825        int ret;
4826
4827        pgdat_resize_init(pgdat);
4828#ifdef CONFIG_NUMA_BALANCING
4829        spin_lock_init(&pgdat->numabalancing_migrate_lock);
4830        pgdat->numabalancing_migrate_nr_pages = 0;
4831        pgdat->numabalancing_migrate_next_window = jiffies;
4832#endif
4833        init_waitqueue_head(&pgdat->kswapd_wait);
4834        init_waitqueue_head(&pgdat->pfmemalloc_wait);
4835        pgdat_page_cgroup_init(pgdat);
4836
4837        for (j = 0; j < MAX_NR_ZONES; j++) {
4838                struct zone *zone = pgdat->node_zones + j;
4839                unsigned long size, realsize, freesize, memmap_pages;
4840
4841                size = zone_spanned_pages_in_node(nid, j, node_start_pfn,
4842                                                  node_end_pfn, zones_size);
4843                realsize = freesize = size - zone_absent_pages_in_node(nid, j,
4844                                                                node_start_pfn,
4845                                                                node_end_pfn,
4846                                                                zholes_size);
4847
4848                /*
4849                 * Adjust freesize so that it accounts for how much memory
4850                 * is used by this zone for memmap. This affects the watermark
4851                 * and per-cpu initialisations
4852                 */
4853                memmap_pages = calc_memmap_size(size, realsize);
4854                if (freesize >= memmap_pages) {
4855                        freesize -= memmap_pages;
4856                        if (memmap_pages)
4857                                printk(KERN_DEBUG
4858                                       "  %s zone: %lu pages used for memmap\n",
4859                                       zone_names[j], memmap_pages);
4860                } else
4861                        printk(KERN_WARNING
4862                                "  %s zone: %lu pages exceeds freesize %lu\n",
4863                                zone_names[j], memmap_pages, freesize);
4864
4865                /* Account for reserved pages */
4866                if (j == 0 && freesize > dma_reserve) {
4867                        freesize -= dma_reserve;
4868                        printk(KERN_DEBUG "  %s zone: %lu pages reserved\n",
4869                                        zone_names[0], dma_reserve);
4870                }
4871
4872                if (!is_highmem_idx(j))
4873                        nr_kernel_pages += freesize;
4874                /* Charge for highmem memmap if there are enough kernel pages */
4875                else if (nr_kernel_pages > memmap_pages * 2)
4876                        nr_kernel_pages -= memmap_pages;
4877                nr_all_pages += freesize;
4878
4879                zone->spanned_pages = size;
4880                zone->present_pages = realsize;
4881                /*
4882                 * Set an approximate value for lowmem here, it will be adjusted
4883                 * when the bootmem allocator frees pages into the buddy system.
4884                 * And all highmem pages will be managed by the buddy system.
4885                 */
4886                zone->managed_pages = is_highmem_idx(j) ? realsize : freesize;
4887#ifdef CONFIG_NUMA
4888                zone->node = nid;
4889                zone->min_unmapped_pages = (freesize*sysctl_min_unmapped_ratio)
4890                                                / 100;
4891                zone->min_slab_pages = (freesize * sysctl_min_slab_ratio) / 100;
4892#endif
4893                zone->name = zone_names[j];
4894                spin_lock_init(&zone->lock);
4895                spin_lock_init(&zone->lru_lock);
4896                zone_seqlock_init(zone);
4897                zone->zone_pgdat = pgdat;
4898                zone_pcp_init(zone);
4899
4900                /* For bootup, initialized properly in watermark setup */
4901                mod_zone_page_state(zone, NR_ALLOC_BATCH, zone->managed_pages);
4902
4903                lruvec_init(&zone->lruvec);
4904                if (!size)
4905                        continue;
4906
4907                set_pageblock_order();
4908                setup_usemap(pgdat, zone, zone_start_pfn, size);
4909                ret = init_currently_empty_zone(zone, zone_start_pfn,
4910                                                size, MEMMAP_EARLY);
4911                BUG_ON(ret);
4912                memmap_init(size, nid, j, zone_start_pfn);
4913                zone_start_pfn += size;
4914        }
4915}
4916
4917static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
4918{
4919        /* Skip empty nodes */
4920        if (!pgdat->node_spanned_pages)
4921                return;
4922
4923#ifdef CONFIG_FLAT_NODE_MEM_MAP
4924        /* ia64 gets its own node_mem_map, before this, without bootmem */
4925        if (!pgdat->node_mem_map) {
4926                unsigned long size, start, end;
4927                struct page *map;
4928
4929                /*
4930                 * The zone's endpoints aren't required to be MAX_ORDER
4931                 * aligned but the node_mem_map endpoints must be in order
4932                 * for the buddy allocator to function correctly.
4933                 */
4934                start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
4935                end = pgdat_end_pfn(pgdat);
4936                end = ALIGN(end, MAX_ORDER_NR_PAGES);
4937                size =  (end - start) * sizeof(struct page);
4938                map = alloc_remap(pgdat->node_id, size);
4939                if (!map)
4940                        map = memblock_virt_alloc_node_nopanic(size,
4941                                                               pgdat->node_id);
4942                pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
4943        }
4944#ifndef CONFIG_NEED_MULTIPLE_NODES
4945        /*
4946         * With no DISCONTIG, the global mem_map is just set as node 0's
4947         */
4948        if (pgdat == NODE_DATA(0)) {
4949                mem_map = NODE_DATA(0)->node_mem_map;
4950#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4951                if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
4952                        mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
4953#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
4954        }
4955#endif
4956#endif /* CONFIG_FLAT_NODE_MEM_MAP */
4957}
4958
4959void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
4960                unsigned long node_start_pfn, unsigned long *zholes_size)
4961{
4962        pg_data_t *pgdat = NODE_DATA(nid);
4963        unsigned long start_pfn = 0;
4964        unsigned long end_pfn = 0;
4965
4966        /* pg_data_t should be reset to zero when it's allocated */
4967        WARN_ON(pgdat->nr_zones || pgdat->classzone_idx);
4968
4969        pgdat->node_id = nid;
4970        pgdat->node_start_pfn = node_start_pfn;
4971#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4972        get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
4973        printk(KERN_INFO "Initmem setup node %d [mem %#010Lx-%#010Lx]\n", nid,
4974                        (u64) start_pfn << PAGE_SHIFT, (u64) (end_pfn << PAGE_SHIFT) - 1);
4975#endif
4976        calculate_node_totalpages(pgdat, start_pfn, end_pfn,
4977                                  zones_size, zholes_size);
4978
4979        alloc_node_mem_map(pgdat);
4980#ifdef CONFIG_FLAT_NODE_MEM_MAP
4981        printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
4982                nid, (unsigned long)pgdat,
4983                (unsigned long)pgdat->node_mem_map);
4984#endif
4985
4986        free_area_init_core(pgdat, start_pfn, end_pfn,
4987                            zones_size, zholes_size);
4988}
4989
4990#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4991
4992#if MAX_NUMNODES > 1
4993/*
4994 * Figure out the number of possible node ids.
4995 */
4996void __init setup_nr_node_ids(void)
4997{
4998        unsigned int node;
4999        unsigned int highest = 0;
5000
5001        for_each_node_mask(node, node_possible_map)
5002                highest = node;
5003        nr_node_ids = highest + 1;
5004}
5005#endif
5006
5007/**
5008 * node_map_pfn_alignment - determine the maximum internode alignment
5009 *
5010 * This function should be called after node map is populated and sorted.
5011 * It calculates the maximum power of two alignment which can distinguish
5012 * all the nodes.
5013 *
5014 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
5015 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)).  If the
5016 * nodes are shifted by 256MiB, 256MiB.  Note that if only the last node is
5017 * shifted, 1GiB is enough and this function will indicate so.
5018 *
5019 * This is used to test whether pfn -> nid mapping of the chosen memory
5020 * model has fine enough granularity to avoid incorrect mapping for the
5021 * populated node map.
5022 *
5023 * Returns the determined alignment in pfn's.  0 if there is no alignment
5024 * requirement (single node).
5025 */
5026unsigned long __init node_map_pfn_alignment(void)
5027{
5028        unsigned long accl_mask = 0, last_end = 0;
5029        unsigned long start, end, mask;
5030        int last_nid = -1;
5031        int i, nid;
5032
5033        for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
5034                if (!start || last_nid < 0 || last_nid == nid) {
5035                        last_nid = nid;
5036                        last_end = end;
5037                        continue;
5038                }
5039
5040                /*
5041                 * Start with a mask granular enough to pin-point to the
5042                 * start pfn and tick off bits one-by-one until it becomes
5043                 * too coarse to separate the current node from the last.
5044                 */
5045                mask = ~((1 << __ffs(start)) - 1);
5046                while (mask && last_end <= (start & (mask << 1)))
5047                        mask <<= 1;
5048
5049                /* accumulate all internode masks */
5050                accl_mask |= mask;
5051        }
5052
5053        /* convert mask to number of pages */
5054        return ~accl_mask + 1;
5055}
5056
5057/* Find the lowest pfn for a node */
5058static unsigned long __init find_min_pfn_for_node(int nid)
5059{
5060        unsigned long min_pfn = ULONG_MAX;
5061        unsigned long start_pfn;
5062        int i;
5063
5064        for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
5065                min_pfn = min(min_pfn, start_pfn);
5066
5067        if (min_pfn == ULONG_MAX) {
5068                printk(KERN_WARNING
5069                        "Could not find start_pfn for node %d\n", nid);
5070                return 0;
5071        }
5072
5073        return min_pfn;
5074}
5075
5076/**
5077 * find_min_pfn_with_active_regions - Find the minimum PFN registered
5078 *
5079 * It returns the minimum PFN based on information provided via
5080 * memblock_set_node().
5081 */
5082unsigned long __init find_min_pfn_with_active_regions(void)
5083{
5084        return find_min_pfn_for_node(MAX_NUMNODES);
5085}
5086
5087/*
5088 * early_calculate_totalpages()
5089 * Sum pages in active regions for movable zone.
5090 * Populate N_MEMORY for calculating usable_nodes.
5091 */
5092static unsigned long __init early_calculate_totalpages(void)
5093{
5094        unsigned long totalpages = 0;
5095        unsigned long start_pfn, end_pfn;
5096        int i, nid;
5097
5098        for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
5099                unsigned long pages = end_pfn - start_pfn;
5100
5101                totalpages += pages;
5102                if (pages)
5103                        node_set_state(nid, N_MEMORY);
5104        }
5105        return totalpages;
5106}
5107
5108/*
5109 * Find the PFN the Movable zone begins in each node. Kernel memory
5110 * is spread evenly between nodes as long as the nodes have enough
5111 * memory. When they don't, some nodes will have more kernelcore than
5112 * others
5113 */
5114static void __init find_zone_movable_pfns_for_nodes(void)
5115{
5116        int i, nid;
5117        unsigned long usable_startpfn;
5118        unsigned long kernelcore_node, kernelcore_remaining;
5119        /* save the state before borrow the nodemask */
5120        nodemask_t saved_node_state = node_states[N_MEMORY];
5121        unsigned long totalpages = early_calculate_totalpages();
5122        int usable_nodes = nodes_weight(node_states[N_MEMORY]);
5123        struct memblock_region *r;
5124
5125        /* Need to find movable_zone earlier when movable_node is specified. */
5126        find_usable_zone_for_movable();
5127
5128        /*
5129         * If movable_node is specified, ignore kernelcore and movablecore
5130         * options.
5131         */
5132        if (movable_node_is_enabled()) {
5133                for_each_memblock(memory, r) {
5134                        if (!memblock_is_hotpluggable(r))
5135                                continue;
5136
5137                        nid = r->nid;
5138
5139                        usable_startpfn = PFN_DOWN(r->base);
5140                        zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
5141                                min(usable_startpfn, zone_movable_pfn[nid]) :
5142                                usable_startpfn;
5143                }
5144
5145                goto out2;
5146        }
5147
5148        /*
5149         * If movablecore=nn[KMG] was specified, calculate what size of
5150         * kernelcore that corresponds so that memory usable for
5151         * any allocation type is evenly spread. If both kernelcore
5152         * and movablecore are specified, then the value of kernelcore
5153         * will be used for required_kernelcore if it's greater than
5154         * what movablecore would have allowed.
5155         */
5156        if (required_movablecore) {
5157                unsigned long corepages;
5158
5159                /*
5160                 * Round-up so that ZONE_MOVABLE is at least as large as what
5161                 * was requested by the user
5162                 */
5163                required_movablecore =
5164                        roundup(required_movablecore, MAX_ORDER_NR_PAGES);
5165                corepages = totalpages - required_movablecore;
5166
5167                required_kernelcore = max(required_kernelcore, corepages);
5168        }
5169
5170        /* If kernelcore was not specified, there is no ZONE_MOVABLE */
5171        if (!required_kernelcore)
5172                goto out;
5173
5174        /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
5175        usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
5176
5177restart:
5178        /* Spread kernelcore memory as evenly as possible throughout nodes */
5179        kernelcore_node = required_kernelcore / usable_nodes;
5180        for_each_node_state(nid, N_MEMORY) {
5181                unsigned long start_pfn, end_pfn;
5182
5183                /*
5184                 * Recalculate kernelcore_node if the division per node
5185                 * now exceeds what is necessary to satisfy the requested
5186                 * amount of memory for the kernel
5187                 */
5188                if (required_kernelcore < kernelcore_node)
5189                        kernelcore_node = required_kernelcore / usable_nodes;
5190
5191                /*
5192                 * As the map is walked, we track how much memory is usable
5193                 * by the kernel using kernelcore_remaining. When it is
5194                 * 0, the rest of the node is usable by ZONE_MOVABLE
5195                 */
5196                kernelcore_remaining = kernelcore_node;
5197
5198                /* Go through each range of PFNs within this node */
5199                for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
5200                        unsigned long size_pages;
5201
5202                        start_pfn = max(start_pfn, zone_movable_pfn[nid]);
5203                        if (start_pfn >= end_pfn)
5204                                continue;
5205
5206                        /* Account for what is only usable for kernelcore */
5207                        if (start_pfn < usable_startpfn) {
5208                                unsigned long kernel_pages;
5209                                kernel_pages = min(end_pfn, usable_startpfn)
5210                                                                - start_pfn;
5211
5212                                kernelcore_remaining -= min(kernel_pages,
5213                                                        kernelcore_remaining);
5214                                required_kernelcore -= min(kernel_pages,
5215                                                        required_kernelcore);
5216
5217                                /* Continue if range is now fully accounted */
5218                                if (end_pfn <= usable_startpfn) {
5219
5220                                        /*
5221                                         * Push zone_movable_pfn to the end so
5222                                         * that if we have to rebalance
5223                                         * kernelcore across nodes, we will
5224                                         * not double account here
5225                                         */
5226                                        zone_movable_pfn[nid] = end_pfn;
5227                                        continue;
5228                                }
5229                                start_pfn = usable_startpfn;
5230                        }
5231
5232                        /*
5233                         * The usable PFN range for ZONE_MOVABLE is from
5234                         * start_pfn->end_pfn. Calculate size_pages as the
5235                         * number of pages used as kernelcore
5236                         */
5237                        size_pages = end_pfn - start_pfn;
5238                        if (size_pages > kernelcore_remaining)
5239                                size_pages = kernelcore_remaining;
5240                        zone_movable_pfn[nid] = start_pfn + size_pages;
5241
5242                        /*
5243                         * Some kernelcore has been met, update counts and
5244                         * break if the kernelcore for this node has been
5245                         * satisfied
5246                         */
5247                        required_kernelcore -= min(required_kernelcore,
5248                                                                size_pages);
5249                        kernelcore_remaining -= size_pages;
5250                        if (!kernelcore_remaining)
5251                                break;
5252                }
5253        }
5254
5255        /*
5256         * If there is still required_kernelcore, we do another pass with one
5257         * less node in the count. This will push zone_movable_pfn[nid] further
5258         * along on the nodes that still have memory until kernelcore is
5259         * satisfied
5260         */
5261        usable_nodes--;
5262        if (usable_nodes && required_kernelcore > usable_nodes)
5263                goto restart;
5264
5265out2:
5266        /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
5267        for (nid = 0; nid < MAX_NUMNODES; nid++)
5268                zone_movable_pfn[nid] =
5269                        roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
5270
5271out:
5272        /* restore the node_state */
5273        node_states[N_MEMORY] = saved_node_state;
5274}
5275
5276/* Any regular or high memory on that node ? */
5277static void check_for_memory(pg_data_t *pgdat, int nid)
5278{
5279        enum zone_type zone_type;
5280
5281        if (N_MEMORY == N_NORMAL_MEMORY)
5282                return;
5283
5284        for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
5285                struct zone *zone = &pgdat->node_zones[zone_type];
5286                if (populated_zone(zone)) {
5287                        node_set_state(nid, N_HIGH_MEMORY);
5288                        if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
5289                            zone_type <= ZONE_NORMAL)
5290                                node_set_state(nid, N_NORMAL_MEMORY);
5291                        break;
5292                }
5293        }
5294}
5295
5296/**
5297 * free_area_init_nodes - Initialise all pg_data_t and zone data
5298 * @max_zone_pfn: an array of max PFNs for each zone
5299 *
5300 * This will call free_area_init_node() for each active node in the system.
5301 * Using the page ranges provided by memblock_set_node(), the size of each
5302 * zone in each node and their holes is calculated. If the maximum PFN
5303 * between two adjacent zones match, it is assumed that the zone is empty.
5304 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
5305 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
5306 * starts where the previous one ended. For example, ZONE_DMA32 starts
5307 * at arch_max_dma_pfn.
5308 */
5309void __init free_area_init_nodes(unsigned long *max_zone_pfn)
5310{
5311        unsigned long start_pfn, end_pfn;
5312        int i, nid;
5313
5314        /* Record where the zone boundaries are */
5315        memset(arch_zone_lowest_possible_pfn, 0,
5316                                sizeof(arch_zone_lowest_possible_pfn));
5317        memset(arch_zone_highest_possible_pfn, 0,
5318                                sizeof(arch_zone_highest_possible_pfn));
5319        arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
5320        arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
5321        for (i = 1; i < MAX_NR_ZONES; i++) {
5322                if (i == ZONE_MOVABLE)
5323                        continue;
5324                arch_zone_lowest_possible_pfn[i] =
5325                        arch_zone_highest_possible_pfn[i-1];
5326                arch_zone_highest_possible_pfn[i] =
5327                        max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
5328        }
5329        arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
5330        arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
5331
5332        /* Find the PFNs that ZONE_MOVABLE begins at in each node */
5333        memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
5334        find_zone_movable_pfns_for_nodes();
5335
5336        /* Print out the zone ranges */
5337        printk("Zone ranges:\n");
5338        for (i = 0; i < MAX_NR_ZONES; i++) {
5339                if (i == ZONE_MOVABLE)
5340                        continue;
5341                printk(KERN_CONT "  %-8s ", zone_names[i]);
5342                if (arch_zone_lowest_possible_pfn[i] ==
5343                                arch_zone_highest_possible_pfn[i])
5344                        printk(KERN_CONT "empty\n");
5345                else
5346                        printk(KERN_CONT "[mem %0#10lx-%0#10lx]\n",
5347                                arch_zone_lowest_possible_pfn[i] << PAGE_SHIFT,
5348                                (arch_zone_highest_possible_pfn[i]
5349                                        << PAGE_SHIFT) - 1);
5350        }
5351
5352        /* Print out the PFNs ZONE_MOVABLE begins at in each node */
5353        printk("Movable zone start for each node\n");
5354        for (i = 0; i < MAX_NUMNODES; i++) {
5355                if (zone_movable_pfn[i])
5356                        printk("  Node %d: %#010lx\n", i,
5357                               zone_movable_pfn[i] << PAGE_SHIFT);
5358        }
5359
5360        /* Print out the early node map */
5361        printk("Early memory node ranges\n");
5362        for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
5363                printk("  node %3d: [mem %#010lx-%#010lx]\n", nid,
5364                       start_pfn << PAGE_SHIFT, (end_pfn << PAGE_SHIFT) - 1);
5365
5366        /* Initialise every node */
5367        mminit_verify_pageflags_layout();
5368        setup_nr_node_ids();
5369        for_each_online_node(nid) {
5370                pg_data_t *pgdat = NODE_DATA(nid);
5371                free_area_init_node(nid, NULL,
5372                                find_min_pfn_for_node(nid), NULL);
5373
5374                /* Any memory on that node */
5375                if (pgdat->node_present_pages)
5376                        node_set_state(nid, N_MEMORY);
5377                check_for_memory(pgdat, nid);
5378        }
5379}
5380
5381static int __init cmdline_parse_core(char *p, unsigned long *core)
5382{
5383        unsigned long long coremem;
5384        if (!p)
5385                return -EINVAL;
5386
5387        coremem = memparse(p, &p);
5388        *core = coremem >> PAGE_SHIFT;
5389
5390        /* Paranoid check that UL is enough for the coremem value */
5391        WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
5392
5393        return 0;
5394}
5395
5396/*
5397 * kernelcore=size sets the amount of memory for use for allocations that
5398 * cannot be reclaimed or migrated.
5399 */
5400static int __init cmdline_parse_kernelcore(char *p)
5401{
5402        return cmdline_parse_core(p, &required_kernelcore);
5403}
5404
5405/*
5406 * movablecore=size sets the amount of memory for use for allocations that
5407 * can be reclaimed or migrated.
5408 */
5409static int __init cmdline_parse_movablecore(char *p)
5410{
5411        return cmdline_parse_core(p, &required_movablecore);
5412}
5413
5414early_param("kernelcore", cmdline_parse_kernelcore);
5415early_param("movablecore", cmdline_parse_movablecore);
5416
5417#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5418
5419void adjust_managed_page_count(struct page *page, long count)
5420{
5421        spin_lock(&managed_page_count_lock);
5422        page_zone(page)->managed_pages += count;
5423        totalram_pages += count;
5424#ifdef CONFIG_HIGHMEM
5425        if (PageHighMem(page))
5426                totalhigh_pages += count;
5427#endif
5428        spin_unlock(&managed_page_count_lock);
5429}
5430EXPORT_SYMBOL(adjust_managed_page_count);
5431
5432unsigned long free_reserved_area(void *start, void *end, int poison, char *s)
5433{
5434        void *pos;
5435        unsigned long pages = 0;
5436
5437        start = (void *)PAGE_ALIGN((unsigned long)start);
5438        end = (void *)((unsigned long)end & PAGE_MASK);
5439        for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
5440                if ((unsigned int)poison <= 0xFF)
5441                        memset(pos, poison, PAGE_SIZE);
5442                free_reserved_page(virt_to_page(pos));
5443        }
5444
5445        if (pages && s)
5446                pr_info("Freeing %s memory: %ldK (%p - %p)\n",
5447                        s, pages << (PAGE_SHIFT - 10), start, end);
5448
5449        return pages;
5450}
5451EXPORT_SYMBOL(free_reserved_area);
5452
5453#ifdef  CONFIG_HIGHMEM
5454void free_highmem_page(struct page *page)
5455{
5456        __free_reserved_page(page);
5457        totalram_pages++;
5458        page_zone(page)->managed_pages++;
5459        totalhigh_pages++;
5460}
5461#endif
5462
5463
5464void __init mem_init_print_info(const char *str)
5465{
5466        unsigned long physpages, codesize, datasize, rosize, bss_size;
5467        unsigned long init_code_size, init_data_size;
5468
5469        physpages = get_num_physpages();
5470        codesize = _etext - _stext;
5471        datasize = _edata - _sdata;
5472        rosize = __end_rodata - __start_rodata;
5473        bss_size = __bss_stop - __bss_start;
5474        init_data_size = __init_end - __init_begin;
5475        init_code_size = _einittext - _sinittext;
5476
5477        /*
5478         * Detect special cases and adjust section sizes accordingly:
5479         * 1) .init.* may be embedded into .data sections
5480         * 2) .init.text.* may be out of [__init_begin, __init_end],
5481         *    please refer to arch/tile/kernel/vmlinux.lds.S.
5482         * 3) .rodata.* may be embedded into .text or .data sections.
5483         */
5484#define adj_init_size(start, end, size, pos, adj) \
5485        do { \
5486                if (start <= pos && pos < end && size > adj) \
5487                        size -= adj; \
5488        } while (0)
5489
5490        adj_init_size(__init_begin, __init_end, init_data_size,
5491                     _sinittext, init_code_size);
5492        adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
5493        adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
5494        adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
5495        adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
5496
5497#undef  adj_init_size
5498
5499        printk("Memory: %luK/%luK available "
5500               "(%luK kernel code, %luK rwdata, %luK rodata, "
5501               "%luK init, %luK bss, %luK reserved"
5502#ifdef  CONFIG_HIGHMEM
5503               ", %luK highmem"
5504#endif
5505               "%s%s)\n",
5506               nr_free_pages() << (PAGE_SHIFT-10), physpages << (PAGE_SHIFT-10),
5507               codesize >> 10, datasize >> 10, rosize >> 10,
5508               (init_data_size + init_code_size) >> 10, bss_size >> 10,
5509               (physpages - totalram_pages) << (PAGE_SHIFT-10),
5510#ifdef  CONFIG_HIGHMEM
5511               totalhigh_pages << (PAGE_SHIFT-10),
5512#endif
5513               str ? ", " : "", str ? str : "");
5514}
5515
5516/**
5517 * set_dma_reserve - set the specified number of pages reserved in the first zone
5518 * @new_dma_reserve: The number of pages to mark reserved
5519 *
5520 * The per-cpu batchsize and zone watermarks are determined by present_pages.
5521 * In the DMA zone, a significant percentage may be consumed by kernel image
5522 * and other unfreeable allocations which can skew the watermarks badly. This
5523 * function may optionally be used to account for unfreeable pages in the
5524 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
5525 * smaller per-cpu batchsize.
5526 */
5527void __init set_dma_reserve(unsigned long new_dma_reserve)
5528{
5529        dma_reserve = new_dma_reserve;
5530}
5531
5532void __init free_area_init(unsigned long *zones_size)
5533{
5534        free_area_init_node(0, zones_size,
5535                        __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
5536}
5537
5538static int page_alloc_cpu_notify(struct notifier_block *self,
5539                                 unsigned long action, void *hcpu)
5540{
5541        int cpu = (unsigned long)hcpu;
5542
5543        if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
5544                lru_add_drain_cpu(cpu);
5545                drain_pages(cpu);
5546
5547                /*
5548                 * Spill the event counters of the dead processor
5549                 * into the current processors event counters.
5550                 * This artificially elevates the count of the current
5551                 * processor.
5552                 */
5553                vm_events_fold_cpu(cpu);
5554
5555                /*
5556                 * Zero the differential counters of the dead processor
5557                 * so that the vm statistics are consistent.
5558                 *
5559                 * This is only okay since the processor is dead and cannot
5560                 * race with what we are doing.
5561                 */
5562                cpu_vm_stats_fold(cpu);
5563        }
5564        return NOTIFY_OK;
5565}
5566
5567void __init page_alloc_init(void)
5568{
5569        hotcpu_notifier(page_alloc_cpu_notify, 0);
5570}
5571
5572/*
5573 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
5574 *      or min_free_kbytes changes.
5575 */
5576static void calculate_totalreserve_pages(void)
5577{
5578        struct pglist_data *pgdat;
5579        unsigned long reserve_pages = 0;
5580        enum zone_type i, j;
5581
5582        for_each_online_pgdat(pgdat) {
5583                for (i = 0; i < MAX_NR_ZONES; i++) {
5584                        struct zone *zone = pgdat->node_zones + i;
5585                        long max = 0;
5586
5587                        /* Find valid and maximum lowmem_reserve in the zone */
5588                        for (j = i; j < MAX_NR_ZONES; j++) {
5589                                if (zone->lowmem_reserve[j] > max)
5590                                        max = zone->lowmem_reserve[j];
5591                        }
5592
5593                        /* we treat the high watermark as reserved pages. */
5594                        max += high_wmark_pages(zone);
5595
5596                        if (max > zone->managed_pages)
5597                                max = zone->managed_pages;
5598                        reserve_pages += max;
5599                        /*
5600                         * Lowmem reserves are not available to
5601                         * GFP_HIGHUSER page cache allocations and
5602                         * kswapd tries to balance zones to their high
5603                         * watermark.  As a result, neither should be
5604                         * regarded as dirtyable memory, to prevent a
5605                         * situation where reclaim has to clean pages
5606                         * in order to balance the zones.
5607                         */
5608                        zone->dirty_balance_reserve = max;
5609                }
5610        }
5611        dirty_balance_reserve = reserve_pages;
5612        totalreserve_pages = reserve_pages;
5613}
5614
5615/*
5616 * setup_per_zone_lowmem_reserve - called whenever
5617 *      sysctl_lower_zone_reserve_ratio changes.  Ensures that each zone
5618 *      has a correct pages reserved value, so an adequate number of
5619 *      pages are left in the zone after a successful __alloc_pages().
5620 */
5621static void setup_per_zone_lowmem_reserve(void)
5622{
5623        struct pglist_data *pgdat;
5624        enum zone_type j, idx;
5625
5626        for_each_online_pgdat(pgdat) {
5627                for (j = 0; j < MAX_NR_ZONES; j++) {
5628                        struct zone *zone = pgdat->node_zones + j;
5629                        unsigned long managed_pages = zone->managed_pages;
5630
5631                        zone->lowmem_reserve[j] = 0;
5632
5633                        idx = j;
5634                        while (idx) {
5635                                struct zone *lower_zone;
5636
5637                                idx--;
5638
5639                                if (sysctl_lowmem_reserve_ratio[idx] < 1)
5640                                        sysctl_lowmem_reserve_ratio[idx] = 1;
5641
5642                                lower_zone = pgdat->node_zones + idx;
5643                                lower_zone->lowmem_reserve[j] = managed_pages /
5644                                        sysctl_lowmem_reserve_ratio[idx];
5645                                managed_pages += lower_zone->managed_pages;
5646                        }
5647                }
5648        }
5649
5650        /* update totalreserve_pages */
5651        calculate_totalreserve_pages();
5652}
5653
5654static void __setup_per_zone_wmarks(void)
5655{
5656        unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
5657        unsigned long lowmem_pages = 0;
5658        struct zone *zone;
5659        unsigned long flags;
5660
5661        /* Calculate total number of !ZONE_HIGHMEM pages */
5662        for_each_zone(zone) {
5663                if (!is_highmem(zone))
5664                        lowmem_pages += zone->managed_pages;
5665        }
5666
5667        for_each_zone(zone) {
5668                u64 tmp;
5669
5670                spin_lock_irqsave(&zone->lock, flags);
5671                tmp = (u64)pages_min * zone->managed_pages;
5672                do_div(tmp, lowmem_pages);
5673                if (is_highmem(zone)) {
5674                        /*
5675                         * __GFP_HIGH and PF_MEMALLOC allocations usually don't
5676                         * need highmem pages, so cap pages_min to a small
5677                         * value here.
5678                         *
5679                         * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
5680                         * deltas controls asynch page reclaim, and so should
5681                         * not be capped for highmem.
5682                         */
5683                        unsigned long min_pages;
5684
5685                        min_pages = zone->managed_pages / 1024;
5686                        min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
5687                        zone->watermark[WMARK_MIN] = min_pages;
5688                } else {
5689                        /*
5690                         * If it's a lowmem zone, reserve a number of pages
5691                         * proportionate to the zone's size.
5692                         */
5693                        zone->watermark[WMARK_MIN] = tmp;
5694                }
5695
5696                zone->watermark[WMARK_LOW]  = min_wmark_pages(zone) + (tmp >> 2);
5697                zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1);
5698
5699                __mod_zone_page_state(zone, NR_ALLOC_BATCH,
5700                        high_wmark_pages(zone) - low_wmark_pages(zone) -
5701                        atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]));
5702
5703                setup_zone_migrate_reserve(zone);
5704                spin_unlock_irqrestore(&zone->lock, flags);
5705        }
5706
5707        /* update totalreserve_pages */
5708        calculate_totalreserve_pages();
5709}
5710
5711/**
5712 * setup_per_zone_wmarks - called when min_free_kbytes changes
5713 * or when memory is hot-{added|removed}
5714 *
5715 * Ensures that the watermark[min,low,high] values for each zone are set
5716 * correctly with respect to min_free_kbytes.
5717 */
5718void setup_per_zone_wmarks(void)
5719{
5720        mutex_lock(&zonelists_mutex);
5721        __setup_per_zone_wmarks();
5722        mutex_unlock(&zonelists_mutex);
5723}
5724
5725/*
5726 * The inactive anon list should be small enough that the VM never has to
5727 * do too much work, but large enough that each inactive page has a chance
5728 * to be referenced again before it is swapped out.
5729 *
5730 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
5731 * INACTIVE_ANON pages on this zone's LRU, maintained by the
5732 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
5733 * the anonymous pages are kept on the inactive list.
5734 *
5735 * total     target    max
5736 * memory    ratio     inactive anon
5737 * -------------------------------------
5738 *   10MB       1         5MB
5739 *  100MB       1        50MB
5740 *    1GB       3       250MB
5741 *   10GB      10       0.9GB
5742 *  100GB      31         3GB
5743 *    1TB     101        10GB
5744 *   10TB     320        32GB
5745 */
5746static void __meminit calculate_zone_inactive_ratio(struct zone *zone)
5747{
5748        unsigned int gb, ratio;
5749
5750        /* Zone size in gigabytes */
5751        gb = zone->managed_pages >> (30 - PAGE_SHIFT);
5752        if (gb)
5753                ratio = int_sqrt(10 * gb);
5754        else
5755                ratio = 1;
5756
5757        zone->inactive_ratio = ratio;
5758}
5759
5760static void __meminit setup_per_zone_inactive_ratio(void)
5761{
5762        struct zone *zone;
5763
5764        for_each_zone(zone)
5765                calculate_zone_inactive_ratio(zone);
5766}
5767
5768/*
5769 * Initialise min_free_kbytes.
5770 *
5771 * For small machines we want it small (128k min).  For large machines
5772 * we want it large (64MB max).  But it is not linear, because network
5773 * bandwidth does not increase linearly with machine size.  We use
5774 *
5775 *      min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
5776 *      min_free_kbytes = sqrt(lowmem_kbytes * 16)
5777 *
5778 * which yields
5779 *
5780 * 16MB:        512k
5781 * 32MB:        724k
5782 * 64MB:        1024k
5783 * 128MB:       1448k
5784 * 256MB:       2048k
5785 * 512MB:       2896k
5786 * 1024MB:      4096k
5787 * 2048MB:      5792k
5788 * 4096MB:      8192k
5789 * 8192MB:      11584k
5790 * 16384MB:     16384k
5791 */
5792int __meminit init_per_zone_wmark_min(void)
5793{
5794        unsigned long lowmem_kbytes;
5795        int new_min_free_kbytes;
5796
5797        lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
5798        new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
5799
5800        if (new_min_free_kbytes > user_min_free_kbytes) {
5801                min_free_kbytes = new_min_free_kbytes;
5802                if (min_free_kbytes < 128)
5803                        min_free_kbytes = 128;
5804                if (min_free_kbytes > 65536)
5805                        min_free_kbytes = 65536;
5806        } else {
5807                pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
5808                                new_min_free_kbytes, user_min_free_kbytes);
5809        }
5810        setup_per_zone_wmarks();
5811        refresh_zone_stat_thresholds();
5812        setup_per_zone_lowmem_reserve();
5813        setup_per_zone_inactive_ratio();
5814        return 0;
5815}
5816module_init(init_per_zone_wmark_min)
5817
5818/*
5819 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
5820 *      that we can call two helper functions whenever min_free_kbytes
5821 *      changes.
5822 */
5823int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
5824        void __user *buffer, size_t *length, loff_t *ppos)
5825{
5826        int rc;
5827
5828        rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5829        if (rc)
5830                return rc;
5831
5832        if (write) {
5833                user_min_free_kbytes = min_free_kbytes;
5834                setup_per_zone_wmarks();
5835        }
5836        return 0;
5837}
5838
5839#ifdef CONFIG_NUMA
5840int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
5841        void __user *buffer, size_t *length, loff_t *ppos)
5842{
5843        struct zone *zone;
5844        int rc;
5845
5846        rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5847        if (rc)
5848                return rc;
5849
5850        for_each_zone(zone)
5851                zone->min_unmapped_pages = (zone->managed_pages *
5852                                sysctl_min_unmapped_ratio) / 100;
5853        return 0;
5854}
5855
5856int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
5857        void __user *buffer, size_t *length, loff_t *ppos)
5858{
5859        struct zone *zone;
5860        int rc;
5861
5862        rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5863        if (rc)
5864                return rc;
5865
5866        for_each_zone(zone)
5867                zone->min_slab_pages = (zone->managed_pages *
5868                                sysctl_min_slab_ratio) / 100;
5869        return 0;
5870}
5871#endif
5872
5873/*
5874 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
5875 *      proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
5876 *      whenever sysctl_lowmem_reserve_ratio changes.
5877 *
5878 * The reserve ratio obviously has absolutely no relation with the
5879 * minimum watermarks. The lowmem reserve ratio can only make sense
5880 * if in function of the boot time zone sizes.
5881 */
5882int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
5883        void __user *buffer, size_t *length, loff_t *ppos)
5884{
5885        proc_dointvec_minmax(table, write, buffer, length, ppos);
5886        setup_per_zone_lowmem_reserve();
5887        return 0;
5888}
5889
5890/*
5891 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
5892 * cpu.  It is the fraction of total pages in each zone that a hot per cpu
5893 * pagelist can have before it gets flushed back to buddy allocator.
5894 */
5895int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
5896        void __user *buffer, size_t *length, loff_t *ppos)
5897{
5898        struct zone *zone;
5899        int old_percpu_pagelist_fraction;
5900        int ret;
5901
5902        mutex_lock(&pcp_batch_high_lock);
5903        old_percpu_pagelist_fraction = percpu_pagelist_fraction;
5904
5905        ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
5906        if (!write || ret < 0)
5907                goto out;
5908
5909        /* Sanity checking to avoid pcp imbalance */
5910        if (percpu_pagelist_fraction &&
5911            percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
5912                percpu_pagelist_fraction = old_percpu_pagelist_fraction;
5913                ret = -EINVAL;
5914                goto out;
5915        }
5916
5917        /* No change? */
5918        if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
5919                goto out;
5920
5921        for_each_populated_zone(zone) {
5922                unsigned int cpu;
5923
5924                for_each_possible_cpu(cpu)
5925                        pageset_set_high_and_batch(zone,
5926                                        per_cpu_ptr(zone->pageset, cpu));
5927        }
5928out:
5929        mutex_unlock(&pcp_batch_high_lock);
5930        return ret;
5931}
5932
5933int hashdist = HASHDIST_DEFAULT;
5934
5935#ifdef CONFIG_NUMA
5936static int __init set_hashdist(char *str)
5937{
5938        if (!str)
5939                return 0;
5940        hashdist = simple_strtoul(str, &str, 0);
5941        return 1;
5942}
5943__setup("hashdist=", set_hashdist);
5944#endif
5945
5946/*
5947 * allocate a large system hash table from bootmem
5948 * - it is assumed that the hash table must contain an exact power-of-2
5949 *   quantity of entries
5950 * - limit is the number of hash buckets, not the total allocation size
5951 */
5952void *__init alloc_large_system_hash(const char *tablename,
5953                                     unsigned long bucketsize,
5954                                     unsigned long numentries,
5955                                     int scale,
5956                                     int flags,
5957                                     unsigned int *_hash_shift,
5958                                     unsigned int *_hash_mask,
5959                                     unsigned long low_limit,
5960                                     unsigned long high_limit)
5961{
5962        unsigned long long max = high_limit;
5963        unsigned long log2qty, size;
5964        void *table = NULL;
5965
5966        /* allow the kernel cmdline to have a say */
5967        if (!numentries) {
5968                /* round applicable memory size up to nearest megabyte */
5969                numentries = nr_kernel_pages;
5970
5971                /* It isn't necessary when PAGE_SIZE >= 1MB */
5972                if (PAGE_SHIFT < 20)
5973                        numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
5974
5975                /* limit to 1 bucket per 2^scale bytes of low memory */
5976                if (scale > PAGE_SHIFT)
5977                        numentries >>= (scale - PAGE_SHIFT);
5978                else
5979                        numentries <<= (PAGE_SHIFT - scale);
5980
5981                /* Make sure we've got at least a 0-order allocation.. */
5982                if (unlikely(flags & HASH_SMALL)) {
5983                        /* Makes no sense without HASH_EARLY */
5984                        WARN_ON(!(flags & HASH_EARLY));
5985                        if (!(numentries >> *_hash_shift)) {
5986                                numentries = 1UL << *_hash_shift;
5987                                BUG_ON(!numentries);
5988                        }
5989                } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
5990                        numentries = PAGE_SIZE / bucketsize;
5991        }
5992        numentries = roundup_pow_of_two(numentries);
5993
5994        /* limit allocation size to 1/16 total memory by default */
5995        if (max == 0) {
5996                max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
5997                do_div(max, bucketsize);
5998        }
5999        max = min(max, 0x80000000ULL);
6000
6001        if (numentries < low_limit)
6002                numentries = low_limit;
6003        if (numentries > max)
6004                numentries = max;
6005
6006        log2qty = ilog2(numentries);
6007
6008        do {
6009                size = bucketsize << log2qty;
6010                if (flags & HASH_EARLY)
6011                        table = memblock_virt_alloc_nopanic(size, 0);
6012                else if (hashdist)
6013                        table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
6014                else {
6015                        /*
6016                         * If bucketsize is not a power-of-two, we may free
6017                         * some pages at the end of hash table which
6018                         * alloc_pages_exact() automatically does
6019                         */
6020                        if (get_order(size) < MAX_ORDER) {
6021                                table = alloc_pages_exact(size, GFP_ATOMIC);
6022                                kmemleak_alloc(table, size, 1, GFP_ATOMIC);
6023                        }
6024                }
6025        } while (!table && size > PAGE_SIZE && --log2qty);
6026
6027        if (!table)
6028                panic("Failed to allocate %s hash table\n", tablename);
6029
6030        printk(KERN_INFO "%s hash table entries: %ld (order: %d, %lu bytes)\n",
6031               tablename,
6032               (1UL << log2qty),
6033               ilog2(size) - PAGE_SHIFT,
6034               size);
6035
6036        if (_hash_shift)
6037                *_hash_shift = log2qty;
6038        if (_hash_mask)
6039                *_hash_mask = (1 << log2qty) - 1;
6040
6041        return table;
6042}
6043
6044/* Return a pointer to the bitmap storing bits affecting a block of pages */
6045static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
6046                                                        unsigned long pfn)
6047{
6048#ifdef CONFIG_SPARSEMEM
6049        return __pfn_to_section(pfn)->pageblock_flags;
6050#else
6051        return zone->pageblock_flags;
6052#endif /* CONFIG_SPARSEMEM */
6053}
6054
6055static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
6056{
6057#ifdef CONFIG_SPARSEMEM
6058        pfn &= (PAGES_PER_SECTION-1);
6059        return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
6060#else
6061        pfn = pfn - round_down(zone->zone_start_pfn, pageblock_nr_pages);
6062        return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
6063#endif /* CONFIG_SPARSEMEM */
6064}
6065
6066/**
6067 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
6068 * @page: The page within the block of interest
6069 * @pfn: The target page frame number
6070 * @end_bitidx: The last bit of interest to retrieve
6071 * @mask: mask of bits that the caller is interested in
6072 *
6073 * Return: pageblock_bits flags
6074 */
6075unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
6076                                        unsigned long end_bitidx,
6077                                        unsigned long mask)
6078{
6079        struct zone *zone;
6080        unsigned long *bitmap;
6081        unsigned long bitidx, word_bitidx;
6082        unsigned long word;
6083
6084        zone = page_zone(page);
6085        bitmap = get_pageblock_bitmap(zone, pfn);
6086        bitidx = pfn_to_bitidx(zone, pfn);
6087        word_bitidx = bitidx / BITS_PER_LONG;
6088        bitidx &= (BITS_PER_LONG-1);
6089
6090        word = bitmap[word_bitidx];
6091        bitidx += end_bitidx;
6092        return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
6093}
6094
6095/**
6096 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
6097 * @page: The page within the block of interest
6098 * @flags: The flags to set
6099 * @pfn: The target page frame number
6100 * @end_bitidx: The last bit of interest
6101 * @mask: mask of bits that the caller is interested in
6102 */
6103void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
6104                                        unsigned long pfn,
6105                                        unsigned long end_bitidx,
6106                                        unsigned long mask)
6107{
6108        struct zone *zone;
6109        unsigned long *bitmap;
6110        unsigned long bitidx, word_bitidx;
6111        unsigned long old_word, word;
6112
6113        BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
6114
6115        zone = page_zone(page);
6116        bitmap = get_pageblock_bitmap(zone, pfn);
6117        bitidx = pfn_to_bitidx(zone, pfn);
6118        word_bitidx = bitidx / BITS_PER_LONG;
6119        bitidx &= (BITS_PER_LONG-1);
6120
6121        VM_BUG_ON_PAGE(!zone_spans_pfn(zone, pfn), page);
6122
6123        bitidx += end_bitidx;
6124        mask <<= (BITS_PER_LONG - bitidx - 1);
6125        flags <<= (BITS_PER_LONG - bitidx - 1);
6126
6127        word = ACCESS_ONCE(bitmap[word_bitidx]);
6128        for (;;) {
6129                old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
6130                if (word == old_word)
6131                        break;
6132                word = old_word;
6133        }
6134}
6135
6136/*
6137 * This function checks whether pageblock includes unmovable pages or not.
6138 * If @count is not zero, it is okay to include less @count unmovable pages
6139 *
6140 * PageLRU check without isolation or lru_lock could race so that
6141 * MIGRATE_MOVABLE block might include unmovable pages. It means you can't
6142 * expect this function should be exact.
6143 */
6144bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
6145                         bool skip_hwpoisoned_pages)
6146{
6147        unsigned long pfn, iter, found;
6148        int mt;
6149
6150        /*
6151         * For avoiding noise data, lru_add_drain_all() should be called
6152         * If ZONE_MOVABLE, the zone never contains unmovable pages
6153         */
6154        if (zone_idx(zone) == ZONE_MOVABLE)
6155                return false;
6156        mt = get_pageblock_migratetype(page);
6157        if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt))
6158                return false;
6159
6160        pfn = page_to_pfn(page);
6161        for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
6162                unsigned long check = pfn + iter;
6163
6164                if (!pfn_valid_within(check))
6165                        continue;
6166
6167                page = pfn_to_page(check);
6168
6169                /*
6170                 * Hugepages are not in LRU lists, but they're movable.
6171                 * We need not scan over tail pages bacause we don't
6172                 * handle each tail page individually in migration.
6173                 */
6174                if (PageHuge(page)) {
6175                        iter = round_up(iter + 1, 1<<compound_order(page)) - 1;
6176                        continue;
6177                }
6178
6179                /*
6180                 * We can't use page_count without pin a page
6181                 * because another CPU can free compound page.
6182                 * This check already skips compound tails of THP
6183                 * because their page->_count is zero at all time.
6184                 */
6185                if (!atomic_read(&page->_count)) {
6186                        if (PageBuddy(page))
6187                                iter += (1 << page_order(page)) - 1;
6188                        continue;
6189                }
6190
6191                /*
6192                 * The HWPoisoned page may be not in buddy system, and
6193                 * page_count() is not 0.
6194                 */
6195                if (skip_hwpoisoned_pages && PageHWPoison(page))
6196                        continue;
6197
6198                if (!PageLRU(page))
6199                        found++;
6200                /*
6201                 * If there are RECLAIMABLE pages, we need to check it.
6202                 * But now, memory offline itself doesn't call shrink_slab()
6203                 * and it still to be fixed.
6204                 */
6205                /*
6206                 * If the page is not RAM, page_count()should be 0.
6207                 * we don't need more check. This is an _used_ not-movable page.
6208                 *
6209                 * The problematic thing here is PG_reserved pages. PG_reserved
6210                 * is set to both of a memory hole page and a _used_ kernel
6211                 * page at boot.
6212                 */
6213                if (found > count)
6214                        return true;
6215        }
6216        return false;
6217}
6218
6219bool is_pageblock_removable_nolock(struct page *page)
6220{
6221        struct zone *zone;
6222        unsigned long pfn;
6223
6224        /*
6225         * We have to be careful here because we are iterating over memory
6226         * sections which are not zone aware so we might end up outside of
6227         * the zone but still within the section.
6228         * We have to take care about the node as well. If the node is offline
6229         * its NODE_DATA will be NULL - see page_zone.
6230         */
6231        if (!node_online(page_to_nid(page)))
6232                return false;
6233
6234        zone = page_zone(page);
6235        pfn = page_to_pfn(page);
6236        if (!zone_spans_pfn(zone, pfn))
6237                return false;
6238
6239        return !has_unmovable_pages(zone, page, 0, true);
6240}
6241
6242#ifdef CONFIG_CMA
6243
6244static unsigned long pfn_max_align_down(unsigned long pfn)
6245{
6246        return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
6247                             pageblock_nr_pages) - 1);
6248}
6249
6250static unsigned long pfn_max_align_up(unsigned long pfn)
6251{
6252        return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
6253                                pageblock_nr_pages));
6254}
6255
6256/* [start, end) must belong to a single zone. */
6257static int __alloc_contig_migrate_range(struct compact_control *cc,
6258                                        unsigned long start, unsigned long end)
6259{
6260        /* This function is based on compact_zone() from compaction.c. */
6261        unsigned long nr_reclaimed;
6262        unsigned long pfn = start;
6263        unsigned int tries = 0;
6264        int ret = 0;
6265
6266        migrate_prep();
6267
6268        while (pfn < end || !list_empty(&cc->migratepages)) {
6269                if (fatal_signal_pending(current)) {
6270                        ret = -EINTR;
6271                        break;
6272                }
6273
6274                if (list_empty(&cc->migratepages)) {
6275                        cc->nr_migratepages = 0;
6276                        pfn = isolate_migratepages_range(cc, pfn, end);
6277                        if (!pfn) {
6278                                ret = -EINTR;
6279                                break;
6280                        }
6281                        tries = 0;
6282                } else if (++tries == 5) {
6283                        ret = ret < 0 ? ret : -EBUSY;
6284                        break;
6285                }
6286
6287                nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
6288                                                        &cc->migratepages);
6289                cc->nr_migratepages -= nr_reclaimed;
6290
6291                ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
6292                                    NULL, 0, cc->mode, MR_CMA);
6293        }
6294        if (ret < 0) {
6295                putback_movable_pages(&cc->migratepages);
6296                return ret;
6297        }
6298        return 0;
6299}
6300
6301/**
6302 * alloc_contig_range() -- tries to allocate given range of pages
6303 * @start:      start PFN to allocate
6304 * @end:        one-past-the-last PFN to allocate
6305 * @migratetype:        migratetype of the underlaying pageblocks (either
6306 *                      #MIGRATE_MOVABLE or #MIGRATE_CMA).  All pageblocks
6307 *                      in range must have the same migratetype and it must
6308 *                      be either of the two.
6309 *
6310 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
6311 * aligned, however it's the caller's responsibility to guarantee that
6312 * we are the only thread that changes migrate type of pageblocks the
6313 * pages fall in.
6314 *
6315 * The PFN range must belong to a single zone.
6316 *
6317 * Returns zero on success or negative error code.  On success all
6318 * pages which PFN is in [start, end) are allocated for the caller and
6319 * need to be freed with free_contig_range().
6320 */
6321int alloc_contig_range(unsigned long start, unsigned long end,
6322                       unsigned migratetype)
6323{
6324        unsigned long outer_start, outer_end;
6325        int ret = 0, order;
6326
6327        struct compact_control cc = {
6328                .nr_migratepages = 0,
6329                .order = -1,
6330                .zone = page_zone(pfn_to_page(start)),
6331                .mode = MIGRATE_SYNC,
6332                .ignore_skip_hint = true,
6333        };
6334        INIT_LIST_HEAD(&cc.migratepages);
6335
6336        /*
6337         * What we do here is we mark all pageblocks in range as
6338         * MIGRATE_ISOLATE.  Because pageblock and max order pages may
6339         * have different sizes, and due to the way page allocator
6340         * work, we align the range to biggest of the two pages so
6341         * that page allocator won't try to merge buddies from
6342         * different pageblocks and change MIGRATE_ISOLATE to some
6343         * other migration type.
6344         *
6345         * Once the pageblocks are marked as MIGRATE_ISOLATE, we
6346         * migrate the pages from an unaligned range (ie. pages that
6347         * we are interested in).  This will put all the pages in
6348         * range back to page allocator as MIGRATE_ISOLATE.
6349         *
6350         * When this is done, we take the pages in range from page
6351         * allocator removing them from the buddy system.  This way
6352         * page allocator will never consider using them.
6353         *
6354         * This lets us mark the pageblocks back as
6355         * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
6356         * aligned range but not in the unaligned, original range are
6357         * put back to page allocator so that buddy can use them.
6358         */
6359
6360        ret = start_isolate_page_range(pfn_max_align_down(start),
6361                                       pfn_max_align_up(end), migratetype,
6362                                       false);
6363        if (ret)
6364                return ret;
6365
6366        ret = __alloc_contig_migrate_range(&cc, start, end);
6367        if (ret)
6368                goto done;
6369
6370        /*
6371         * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
6372         * aligned blocks that are marked as MIGRATE_ISOLATE.  What's
6373         * more, all pages in [start, end) are free in page allocator.
6374         * What we are going to do is to allocate all pages from
6375         * [start, end) (that is remove them from page allocator).
6376         *
6377         * The only problem is that pages at the beginning and at the
6378         * end of interesting range may be not aligned with pages that
6379         * page allocator holds, ie. they can be part of higher order
6380         * pages.  Because of this, we reserve the bigger range and
6381         * once this is done free the pages we are not interested in.
6382         *
6383         * We don't have to hold zone->lock here because the pages are
6384         * isolated thus they won't get removed from buddy.
6385         */
6386
6387        lru_add_drain_all();
6388        drain_all_pages();
6389
6390        order = 0;
6391        outer_start = start;
6392        while (!PageBuddy(pfn_to_page(outer_start))) {
6393                if (++order >= MAX_ORDER) {
6394                        ret = -EBUSY;
6395                        goto done;
6396                }
6397                outer_start &= ~0UL << order;
6398        }
6399
6400        /* Make sure the range is really isolated. */
6401        if (test_pages_isolated(outer_start, end, false)) {
6402                pr_info("%s: [%lx, %lx) PFNs busy\n",
6403                        __func__, outer_start, end);
6404                ret = -EBUSY;
6405                goto done;
6406        }
6407
6408        /* Grab isolated pages from freelists. */
6409        outer_end = isolate_freepages_range(&cc, outer_start, end);
6410        if (!outer_end) {
6411                ret = -EBUSY;
6412                goto done;
6413        }
6414
6415        /* Free head and tail (if any) */
6416        if (start != outer_start)
6417                free_contig_range(outer_start, start - outer_start);
6418        if (end != outer_end)
6419                free_contig_range(end, outer_end - end);
6420
6421done:
6422        undo_isolate_page_range(pfn_max_align_down(start),
6423                                pfn_max_align_up(end), migratetype);
6424        return ret;
6425}
6426
6427void free_contig_range(unsigned long pfn, unsigned nr_pages)
6428{
6429        unsigned int count = 0;
6430
6431        for (; nr_pages--; pfn++) {
6432                struct page *page = pfn_to_page(pfn);
6433
6434                count += page_count(page) != 1;
6435                __free_page(page);
6436        }
6437        WARN(count != 0, "%d pages are still in use!\n", count);
6438}
6439#endif
6440
6441#ifdef CONFIG_MEMORY_HOTPLUG
6442/*
6443 * The zone indicated has a new number of managed_pages; batch sizes and percpu
6444 * page high values need to be recalulated.
6445 */
6446void __meminit zone_pcp_update(struct zone *zone)
6447{
6448        unsigned cpu;
6449        mutex_lock(&pcp_batch_high_lock);
6450        for_each_possible_cpu(cpu)
6451                pageset_set_high_and_batch(zone,
6452                                per_cpu_ptr(zone->pageset, cpu));
6453        mutex_unlock(&pcp_batch_high_lock);
6454}
6455#endif
6456
6457void zone_pcp_reset(struct zone *zone)
6458{
6459        unsigned long flags;
6460        int cpu;
6461        struct per_cpu_pageset *pset;
6462
6463        /* avoid races with drain_pages()  */
6464        local_irq_save(flags);
6465        if (zone->pageset != &boot_pageset) {
6466                for_each_online_cpu(cpu) {
6467                        pset = per_cpu_ptr(zone->pageset, cpu);
6468                        drain_zonestat(zone, pset);
6469                }
6470                free_percpu(zone->pageset);
6471                zone->pageset = &boot_pageset;
6472        }
6473        local_irq_restore(flags);
6474}
6475
6476#ifdef CONFIG_MEMORY_HOTREMOVE
6477/*
6478 * All pages in the range must be isolated before calling this.
6479 */
6480void
6481__offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
6482{
6483        struct page *page;
6484        struct zone *zone;
6485        unsigned int order, i;
6486        unsigned long pfn;
6487        unsigned long flags;
6488        /* find the first valid pfn */
6489        for (pfn = start_pfn; pfn < end_pfn; pfn++)
6490                if (pfn_valid(pfn))
6491                        break;
6492        if (pfn == end_pfn)
6493                return;
6494        zone = page_zone(pfn_to_page(pfn));
6495        spin_lock_irqsave(&zone->lock, flags);
6496        pfn = start_pfn;
6497        while (pfn < end_pfn) {
6498                if (!pfn_valid(pfn)) {
6499                        pfn++;
6500                        continue;
6501                }
6502                page = pfn_to_page(pfn);
6503                /*
6504                 * The HWPoisoned page may be not in buddy system, and
6505                 * page_count() is not 0.
6506                 */
6507                if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
6508                        pfn++;
6509                        SetPageReserved(page);
6510                        continue;
6511                }
6512
6513                BUG_ON(page_count(page));
6514                BUG_ON(!PageBuddy(page));
6515                order = page_order(page);
6516#ifdef CONFIG_DEBUG_VM
6517                printk(KERN_INFO "remove from free list %lx %d %lx\n",
6518                       pfn, 1 << order, end_pfn);
6519#endif
6520                list_del(&page->lru);
6521                rmv_page_order(page);
6522                zone->free_area[order].nr_free--;
6523                for (i = 0; i < (1 << order); i++)
6524                        SetPageReserved((page+i));
6525                pfn += (1 << order);
6526        }
6527        spin_unlock_irqrestore(&zone->lock, flags);
6528}
6529#endif
6530
6531#ifdef CONFIG_MEMORY_FAILURE
6532bool is_free_buddy_page(struct page *page)
6533{
6534        struct zone *zone = page_zone(page);
6535        unsigned long pfn = page_to_pfn(page);
6536        unsigned long flags;
6537        unsigned int order;
6538
6539        spin_lock_irqsave(&zone->lock, flags);
6540        for (order = 0; order < MAX_ORDER; order++) {
6541                struct page *page_head = page - (pfn & ((1 << order) - 1));
6542
6543                if (PageBuddy(page_head) && page_order(page_head) >= order)
6544                        break;
6545        }
6546        spin_unlock_irqrestore(&zone->lock, flags);
6547
6548        return order < MAX_ORDER;
6549}
6550#endif
6551