linux/mm/rmap.c
<<
>>
Prefs
   1/*
   2 * mm/rmap.c - physical to virtual reverse mappings
   3 *
   4 * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
   5 * Released under the General Public License (GPL).
   6 *
   7 * Simple, low overhead reverse mapping scheme.
   8 * Please try to keep this thing as modular as possible.
   9 *
  10 * Provides methods for unmapping each kind of mapped page:
  11 * the anon methods track anonymous pages, and
  12 * the file methods track pages belonging to an inode.
  13 *
  14 * Original design by Rik van Riel <riel@conectiva.com.br> 2001
  15 * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
  16 * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
  17 * Contributions by Hugh Dickins 2003, 2004
  18 */
  19
  20/*
  21 * Lock ordering in mm:
  22 *
  23 * inode->i_mutex       (while writing or truncating, not reading or faulting)
  24 *   mm->mmap_sem
  25 *     page->flags PG_locked (lock_page)
  26 *       mapping->i_mmap_mutex
  27 *         anon_vma->rwsem
  28 *           mm->page_table_lock or pte_lock
  29 *             zone->lru_lock (in mark_page_accessed, isolate_lru_page)
  30 *             swap_lock (in swap_duplicate, swap_info_get)
  31 *               mmlist_lock (in mmput, drain_mmlist and others)
  32 *               mapping->private_lock (in __set_page_dirty_buffers)
  33 *               inode->i_lock (in set_page_dirty's __mark_inode_dirty)
  34 *               bdi.wb->list_lock (in set_page_dirty's __mark_inode_dirty)
  35 *                 sb_lock (within inode_lock in fs/fs-writeback.c)
  36 *                 mapping->tree_lock (widely used, in set_page_dirty,
  37 *                           in arch-dependent flush_dcache_mmap_lock,
  38 *                           within bdi.wb->list_lock in __sync_single_inode)
  39 *
  40 * anon_vma->rwsem,mapping->i_mutex      (memory_failure, collect_procs_anon)
  41 *   ->tasklist_lock
  42 *     pte map lock
  43 */
  44
  45#include <linux/mm.h>
  46#include <linux/pagemap.h>
  47#include <linux/swap.h>
  48#include <linux/swapops.h>
  49#include <linux/slab.h>
  50#include <linux/init.h>
  51#include <linux/ksm.h>
  52#include <linux/rmap.h>
  53#include <linux/rcupdate.h>
  54#include <linux/export.h>
  55#include <linux/memcontrol.h>
  56#include <linux/mmu_notifier.h>
  57#include <linux/migrate.h>
  58#include <linux/hugetlb.h>
  59#include <linux/backing-dev.h>
  60
  61#include <asm/tlbflush.h>
  62
  63#include "internal.h"
  64
  65static struct kmem_cache *anon_vma_cachep;
  66static struct kmem_cache *anon_vma_chain_cachep;
  67
  68static inline struct anon_vma *anon_vma_alloc(void)
  69{
  70        struct anon_vma *anon_vma;
  71
  72        anon_vma = kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL);
  73        if (anon_vma) {
  74                atomic_set(&anon_vma->refcount, 1);
  75                /*
  76                 * Initialise the anon_vma root to point to itself. If called
  77                 * from fork, the root will be reset to the parents anon_vma.
  78                 */
  79                anon_vma->root = anon_vma;
  80        }
  81
  82        return anon_vma;
  83}
  84
  85static inline void anon_vma_free(struct anon_vma *anon_vma)
  86{
  87        VM_BUG_ON(atomic_read(&anon_vma->refcount));
  88
  89        /*
  90         * Synchronize against page_lock_anon_vma_read() such that
  91         * we can safely hold the lock without the anon_vma getting
  92         * freed.
  93         *
  94         * Relies on the full mb implied by the atomic_dec_and_test() from
  95         * put_anon_vma() against the acquire barrier implied by
  96         * down_read_trylock() from page_lock_anon_vma_read(). This orders:
  97         *
  98         * page_lock_anon_vma_read()    VS      put_anon_vma()
  99         *   down_read_trylock()                  atomic_dec_and_test()
 100         *   LOCK                                 MB
 101         *   atomic_read()                        rwsem_is_locked()
 102         *
 103         * LOCK should suffice since the actual taking of the lock must
 104         * happen _before_ what follows.
 105         */
 106        might_sleep();
 107        if (rwsem_is_locked(&anon_vma->root->rwsem)) {
 108                anon_vma_lock_write(anon_vma);
 109                anon_vma_unlock_write(anon_vma);
 110        }
 111
 112        kmem_cache_free(anon_vma_cachep, anon_vma);
 113}
 114
 115static inline struct anon_vma_chain *anon_vma_chain_alloc(gfp_t gfp)
 116{
 117        return kmem_cache_alloc(anon_vma_chain_cachep, gfp);
 118}
 119
 120static void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain)
 121{
 122        kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain);
 123}
 124
 125static void anon_vma_chain_link(struct vm_area_struct *vma,
 126                                struct anon_vma_chain *avc,
 127                                struct anon_vma *anon_vma)
 128{
 129        avc->vma = vma;
 130        avc->anon_vma = anon_vma;
 131        list_add(&avc->same_vma, &vma->anon_vma_chain);
 132        anon_vma_interval_tree_insert(avc, &anon_vma->rb_root);
 133}
 134
 135/**
 136 * anon_vma_prepare - attach an anon_vma to a memory region
 137 * @vma: the memory region in question
 138 *
 139 * This makes sure the memory mapping described by 'vma' has
 140 * an 'anon_vma' attached to it, so that we can associate the
 141 * anonymous pages mapped into it with that anon_vma.
 142 *
 143 * The common case will be that we already have one, but if
 144 * not we either need to find an adjacent mapping that we
 145 * can re-use the anon_vma from (very common when the only
 146 * reason for splitting a vma has been mprotect()), or we
 147 * allocate a new one.
 148 *
 149 * Anon-vma allocations are very subtle, because we may have
 150 * optimistically looked up an anon_vma in page_lock_anon_vma_read()
 151 * and that may actually touch the spinlock even in the newly
 152 * allocated vma (it depends on RCU to make sure that the
 153 * anon_vma isn't actually destroyed).
 154 *
 155 * As a result, we need to do proper anon_vma locking even
 156 * for the new allocation. At the same time, we do not want
 157 * to do any locking for the common case of already having
 158 * an anon_vma.
 159 *
 160 * This must be called with the mmap_sem held for reading.
 161 */
 162int anon_vma_prepare(struct vm_area_struct *vma)
 163{
 164        struct anon_vma *anon_vma = vma->anon_vma;
 165        struct anon_vma_chain *avc;
 166
 167        might_sleep();
 168        if (unlikely(!anon_vma)) {
 169                struct mm_struct *mm = vma->vm_mm;
 170                struct anon_vma *allocated;
 171
 172                avc = anon_vma_chain_alloc(GFP_KERNEL);
 173                if (!avc)
 174                        goto out_enomem;
 175
 176                anon_vma = find_mergeable_anon_vma(vma);
 177                allocated = NULL;
 178                if (!anon_vma) {
 179                        anon_vma = anon_vma_alloc();
 180                        if (unlikely(!anon_vma))
 181                                goto out_enomem_free_avc;
 182                        allocated = anon_vma;
 183                }
 184
 185                anon_vma_lock_write(anon_vma);
 186                /* page_table_lock to protect against threads */
 187                spin_lock(&mm->page_table_lock);
 188                if (likely(!vma->anon_vma)) {
 189                        vma->anon_vma = anon_vma;
 190                        anon_vma_chain_link(vma, avc, anon_vma);
 191                        allocated = NULL;
 192                        avc = NULL;
 193                }
 194                spin_unlock(&mm->page_table_lock);
 195                anon_vma_unlock_write(anon_vma);
 196
 197                if (unlikely(allocated))
 198                        put_anon_vma(allocated);
 199                if (unlikely(avc))
 200                        anon_vma_chain_free(avc);
 201        }
 202        return 0;
 203
 204 out_enomem_free_avc:
 205        anon_vma_chain_free(avc);
 206 out_enomem:
 207        return -ENOMEM;
 208}
 209
 210/*
 211 * This is a useful helper function for locking the anon_vma root as
 212 * we traverse the vma->anon_vma_chain, looping over anon_vma's that
 213 * have the same vma.
 214 *
 215 * Such anon_vma's should have the same root, so you'd expect to see
 216 * just a single mutex_lock for the whole traversal.
 217 */
 218static inline struct anon_vma *lock_anon_vma_root(struct anon_vma *root, struct anon_vma *anon_vma)
 219{
 220        struct anon_vma *new_root = anon_vma->root;
 221        if (new_root != root) {
 222                if (WARN_ON_ONCE(root))
 223                        up_write(&root->rwsem);
 224                root = new_root;
 225                down_write(&root->rwsem);
 226        }
 227        return root;
 228}
 229
 230static inline void unlock_anon_vma_root(struct anon_vma *root)
 231{
 232        if (root)
 233                up_write(&root->rwsem);
 234}
 235
 236/*
 237 * Attach the anon_vmas from src to dst.
 238 * Returns 0 on success, -ENOMEM on failure.
 239 */
 240int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src)
 241{
 242        struct anon_vma_chain *avc, *pavc;
 243        struct anon_vma *root = NULL;
 244
 245        list_for_each_entry_reverse(pavc, &src->anon_vma_chain, same_vma) {
 246                struct anon_vma *anon_vma;
 247
 248                avc = anon_vma_chain_alloc(GFP_NOWAIT | __GFP_NOWARN);
 249                if (unlikely(!avc)) {
 250                        unlock_anon_vma_root(root);
 251                        root = NULL;
 252                        avc = anon_vma_chain_alloc(GFP_KERNEL);
 253                        if (!avc)
 254                                goto enomem_failure;
 255                }
 256                anon_vma = pavc->anon_vma;
 257                root = lock_anon_vma_root(root, anon_vma);
 258                anon_vma_chain_link(dst, avc, anon_vma);
 259        }
 260        unlock_anon_vma_root(root);
 261        return 0;
 262
 263 enomem_failure:
 264        unlink_anon_vmas(dst);
 265        return -ENOMEM;
 266}
 267
 268/*
 269 * Attach vma to its own anon_vma, as well as to the anon_vmas that
 270 * the corresponding VMA in the parent process is attached to.
 271 * Returns 0 on success, non-zero on failure.
 272 */
 273int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma)
 274{
 275        struct anon_vma_chain *avc;
 276        struct anon_vma *anon_vma;
 277        int error;
 278
 279        /* Don't bother if the parent process has no anon_vma here. */
 280        if (!pvma->anon_vma)
 281                return 0;
 282
 283        /*
 284         * First, attach the new VMA to the parent VMA's anon_vmas,
 285         * so rmap can find non-COWed pages in child processes.
 286         */
 287        error = anon_vma_clone(vma, pvma);
 288        if (error)
 289                return error;
 290
 291        /* Then add our own anon_vma. */
 292        anon_vma = anon_vma_alloc();
 293        if (!anon_vma)
 294                goto out_error;
 295        avc = anon_vma_chain_alloc(GFP_KERNEL);
 296        if (!avc)
 297                goto out_error_free_anon_vma;
 298
 299        /*
 300         * The root anon_vma's spinlock is the lock actually used when we
 301         * lock any of the anon_vmas in this anon_vma tree.
 302         */
 303        anon_vma->root = pvma->anon_vma->root;
 304        /*
 305         * With refcounts, an anon_vma can stay around longer than the
 306         * process it belongs to. The root anon_vma needs to be pinned until
 307         * this anon_vma is freed, because the lock lives in the root.
 308         */
 309        get_anon_vma(anon_vma->root);
 310        /* Mark this anon_vma as the one where our new (COWed) pages go. */
 311        vma->anon_vma = anon_vma;
 312        anon_vma_lock_write(anon_vma);
 313        anon_vma_chain_link(vma, avc, anon_vma);
 314        anon_vma_unlock_write(anon_vma);
 315
 316        return 0;
 317
 318 out_error_free_anon_vma:
 319        put_anon_vma(anon_vma);
 320 out_error:
 321        unlink_anon_vmas(vma);
 322        return -ENOMEM;
 323}
 324
 325void unlink_anon_vmas(struct vm_area_struct *vma)
 326{
 327        struct anon_vma_chain *avc, *next;
 328        struct anon_vma *root = NULL;
 329
 330        /*
 331         * Unlink each anon_vma chained to the VMA.  This list is ordered
 332         * from newest to oldest, ensuring the root anon_vma gets freed last.
 333         */
 334        list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
 335                struct anon_vma *anon_vma = avc->anon_vma;
 336
 337                root = lock_anon_vma_root(root, anon_vma);
 338                anon_vma_interval_tree_remove(avc, &anon_vma->rb_root);
 339
 340                /*
 341                 * Leave empty anon_vmas on the list - we'll need
 342                 * to free them outside the lock.
 343                 */
 344                if (RB_EMPTY_ROOT(&anon_vma->rb_root))
 345                        continue;
 346
 347                list_del(&avc->same_vma);
 348                anon_vma_chain_free(avc);
 349        }
 350        unlock_anon_vma_root(root);
 351
 352        /*
 353         * Iterate the list once more, it now only contains empty and unlinked
 354         * anon_vmas, destroy them. Could not do before due to __put_anon_vma()
 355         * needing to write-acquire the anon_vma->root->rwsem.
 356         */
 357        list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
 358                struct anon_vma *anon_vma = avc->anon_vma;
 359
 360                put_anon_vma(anon_vma);
 361
 362                list_del(&avc->same_vma);
 363                anon_vma_chain_free(avc);
 364        }
 365}
 366
 367static void anon_vma_ctor(void *data)
 368{
 369        struct anon_vma *anon_vma = data;
 370
 371        init_rwsem(&anon_vma->rwsem);
 372        atomic_set(&anon_vma->refcount, 0);
 373        anon_vma->rb_root = RB_ROOT;
 374}
 375
 376void __init anon_vma_init(void)
 377{
 378        anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma),
 379                        0, SLAB_DESTROY_BY_RCU|SLAB_PANIC, anon_vma_ctor);
 380        anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain, SLAB_PANIC);
 381}
 382
 383/*
 384 * Getting a lock on a stable anon_vma from a page off the LRU is tricky!
 385 *
 386 * Since there is no serialization what so ever against page_remove_rmap()
 387 * the best this function can do is return a locked anon_vma that might
 388 * have been relevant to this page.
 389 *
 390 * The page might have been remapped to a different anon_vma or the anon_vma
 391 * returned may already be freed (and even reused).
 392 *
 393 * In case it was remapped to a different anon_vma, the new anon_vma will be a
 394 * child of the old anon_vma, and the anon_vma lifetime rules will therefore
 395 * ensure that any anon_vma obtained from the page will still be valid for as
 396 * long as we observe page_mapped() [ hence all those page_mapped() tests ].
 397 *
 398 * All users of this function must be very careful when walking the anon_vma
 399 * chain and verify that the page in question is indeed mapped in it
 400 * [ something equivalent to page_mapped_in_vma() ].
 401 *
 402 * Since anon_vma's slab is DESTROY_BY_RCU and we know from page_remove_rmap()
 403 * that the anon_vma pointer from page->mapping is valid if there is a
 404 * mapcount, we can dereference the anon_vma after observing those.
 405 */
 406struct anon_vma *page_get_anon_vma(struct page *page)
 407{
 408        struct anon_vma *anon_vma = NULL;
 409        unsigned long anon_mapping;
 410
 411        rcu_read_lock();
 412        anon_mapping = (unsigned long) ACCESS_ONCE(page->mapping);
 413        if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
 414                goto out;
 415        if (!page_mapped(page))
 416                goto out;
 417
 418        anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
 419        if (!atomic_inc_not_zero(&anon_vma->refcount)) {
 420                anon_vma = NULL;
 421                goto out;
 422        }
 423
 424        /*
 425         * If this page is still mapped, then its anon_vma cannot have been
 426         * freed.  But if it has been unmapped, we have no security against the
 427         * anon_vma structure being freed and reused (for another anon_vma:
 428         * SLAB_DESTROY_BY_RCU guarantees that - so the atomic_inc_not_zero()
 429         * above cannot corrupt).
 430         */
 431        if (!page_mapped(page)) {
 432                rcu_read_unlock();
 433                put_anon_vma(anon_vma);
 434                return NULL;
 435        }
 436out:
 437        rcu_read_unlock();
 438
 439        return anon_vma;
 440}
 441
 442/*
 443 * Similar to page_get_anon_vma() except it locks the anon_vma.
 444 *
 445 * Its a little more complex as it tries to keep the fast path to a single
 446 * atomic op -- the trylock. If we fail the trylock, we fall back to getting a
 447 * reference like with page_get_anon_vma() and then block on the mutex.
 448 */
 449struct anon_vma *page_lock_anon_vma_read(struct page *page)
 450{
 451        struct anon_vma *anon_vma = NULL;
 452        struct anon_vma *root_anon_vma;
 453        unsigned long anon_mapping;
 454
 455        rcu_read_lock();
 456        anon_mapping = (unsigned long) ACCESS_ONCE(page->mapping);
 457        if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
 458                goto out;
 459        if (!page_mapped(page))
 460                goto out;
 461
 462        anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
 463        root_anon_vma = ACCESS_ONCE(anon_vma->root);
 464        if (down_read_trylock(&root_anon_vma->rwsem)) {
 465                /*
 466                 * If the page is still mapped, then this anon_vma is still
 467                 * its anon_vma, and holding the mutex ensures that it will
 468                 * not go away, see anon_vma_free().
 469                 */
 470                if (!page_mapped(page)) {
 471                        up_read(&root_anon_vma->rwsem);
 472                        anon_vma = NULL;
 473                }
 474                goto out;
 475        }
 476
 477        /* trylock failed, we got to sleep */
 478        if (!atomic_inc_not_zero(&anon_vma->refcount)) {
 479                anon_vma = NULL;
 480                goto out;
 481        }
 482
 483        if (!page_mapped(page)) {
 484                rcu_read_unlock();
 485                put_anon_vma(anon_vma);
 486                return NULL;
 487        }
 488
 489        /* we pinned the anon_vma, its safe to sleep */
 490        rcu_read_unlock();
 491        anon_vma_lock_read(anon_vma);
 492
 493        if (atomic_dec_and_test(&anon_vma->refcount)) {
 494                /*
 495                 * Oops, we held the last refcount, release the lock
 496                 * and bail -- can't simply use put_anon_vma() because
 497                 * we'll deadlock on the anon_vma_lock_write() recursion.
 498                 */
 499                anon_vma_unlock_read(anon_vma);
 500                __put_anon_vma(anon_vma);
 501                anon_vma = NULL;
 502        }
 503
 504        return anon_vma;
 505
 506out:
 507        rcu_read_unlock();
 508        return anon_vma;
 509}
 510
 511void page_unlock_anon_vma_read(struct anon_vma *anon_vma)
 512{
 513        anon_vma_unlock_read(anon_vma);
 514}
 515
 516/*
 517 * At what user virtual address is page expected in @vma?
 518 */
 519static inline unsigned long
 520__vma_address(struct page *page, struct vm_area_struct *vma)
 521{
 522        pgoff_t pgoff = page_to_pgoff(page);
 523        return vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
 524}
 525
 526inline unsigned long
 527vma_address(struct page *page, struct vm_area_struct *vma)
 528{
 529        unsigned long address = __vma_address(page, vma);
 530
 531        /* page should be within @vma mapping range */
 532        VM_BUG_ON_VMA(address < vma->vm_start || address >= vma->vm_end, vma);
 533
 534        return address;
 535}
 536
 537/*
 538 * At what user virtual address is page expected in vma?
 539 * Caller should check the page is actually part of the vma.
 540 */
 541unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma)
 542{
 543        unsigned long address;
 544        if (PageAnon(page)) {
 545                struct anon_vma *page__anon_vma = page_anon_vma(page);
 546                /*
 547                 * Note: swapoff's unuse_vma() is more efficient with this
 548                 * check, and needs it to match anon_vma when KSM is active.
 549                 */
 550                if (!vma->anon_vma || !page__anon_vma ||
 551                    vma->anon_vma->root != page__anon_vma->root)
 552                        return -EFAULT;
 553        } else if (page->mapping && !(vma->vm_flags & VM_NONLINEAR)) {
 554                if (!vma->vm_file ||
 555                    vma->vm_file->f_mapping != page->mapping)
 556                        return -EFAULT;
 557        } else
 558                return -EFAULT;
 559        address = __vma_address(page, vma);
 560        if (unlikely(address < vma->vm_start || address >= vma->vm_end))
 561                return -EFAULT;
 562        return address;
 563}
 564
 565pmd_t *mm_find_pmd(struct mm_struct *mm, unsigned long address)
 566{
 567        pgd_t *pgd;
 568        pud_t *pud;
 569        pmd_t *pmd = NULL;
 570        pmd_t pmde;
 571
 572        pgd = pgd_offset(mm, address);
 573        if (!pgd_present(*pgd))
 574                goto out;
 575
 576        pud = pud_offset(pgd, address);
 577        if (!pud_present(*pud))
 578                goto out;
 579
 580        pmd = pmd_offset(pud, address);
 581        /*
 582         * Some THP functions use the sequence pmdp_clear_flush(), set_pmd_at()
 583         * without holding anon_vma lock for write.  So when looking for a
 584         * genuine pmde (in which to find pte), test present and !THP together.
 585         */
 586        pmde = ACCESS_ONCE(*pmd);
 587        if (!pmd_present(pmde) || pmd_trans_huge(pmde))
 588                pmd = NULL;
 589out:
 590        return pmd;
 591}
 592
 593/*
 594 * Check that @page is mapped at @address into @mm.
 595 *
 596 * If @sync is false, page_check_address may perform a racy check to avoid
 597 * the page table lock when the pte is not present (helpful when reclaiming
 598 * highly shared pages).
 599 *
 600 * On success returns with pte mapped and locked.
 601 */
 602pte_t *__page_check_address(struct page *page, struct mm_struct *mm,
 603                          unsigned long address, spinlock_t **ptlp, int sync)
 604{
 605        pmd_t *pmd;
 606        pte_t *pte;
 607        spinlock_t *ptl;
 608
 609        if (unlikely(PageHuge(page))) {
 610                /* when pud is not present, pte will be NULL */
 611                pte = huge_pte_offset(mm, address);
 612                if (!pte)
 613                        return NULL;
 614
 615                ptl = huge_pte_lockptr(page_hstate(page), mm, pte);
 616                goto check;
 617        }
 618
 619        pmd = mm_find_pmd(mm, address);
 620        if (!pmd)
 621                return NULL;
 622
 623        pte = pte_offset_map(pmd, address);
 624        /* Make a quick check before getting the lock */
 625        if (!sync && !pte_present(*pte)) {
 626                pte_unmap(pte);
 627                return NULL;
 628        }
 629
 630        ptl = pte_lockptr(mm, pmd);
 631check:
 632        spin_lock(ptl);
 633        if (pte_present(*pte) && page_to_pfn(page) == pte_pfn(*pte)) {
 634                *ptlp = ptl;
 635                return pte;
 636        }
 637        pte_unmap_unlock(pte, ptl);
 638        return NULL;
 639}
 640
 641/**
 642 * page_mapped_in_vma - check whether a page is really mapped in a VMA
 643 * @page: the page to test
 644 * @vma: the VMA to test
 645 *
 646 * Returns 1 if the page is mapped into the page tables of the VMA, 0
 647 * if the page is not mapped into the page tables of this VMA.  Only
 648 * valid for normal file or anonymous VMAs.
 649 */
 650int page_mapped_in_vma(struct page *page, struct vm_area_struct *vma)
 651{
 652        unsigned long address;
 653        pte_t *pte;
 654        spinlock_t *ptl;
 655
 656        address = __vma_address(page, vma);
 657        if (unlikely(address < vma->vm_start || address >= vma->vm_end))
 658                return 0;
 659        pte = page_check_address(page, vma->vm_mm, address, &ptl, 1);
 660        if (!pte)                       /* the page is not in this mm */
 661                return 0;
 662        pte_unmap_unlock(pte, ptl);
 663
 664        return 1;
 665}
 666
 667struct page_referenced_arg {
 668        int mapcount;
 669        int referenced;
 670        unsigned long vm_flags;
 671        struct mem_cgroup *memcg;
 672};
 673/*
 674 * arg: page_referenced_arg will be passed
 675 */
 676static int page_referenced_one(struct page *page, struct vm_area_struct *vma,
 677                        unsigned long address, void *arg)
 678{
 679        struct mm_struct *mm = vma->vm_mm;
 680        spinlock_t *ptl;
 681        int referenced = 0;
 682        struct page_referenced_arg *pra = arg;
 683
 684        if (unlikely(PageTransHuge(page))) {
 685                pmd_t *pmd;
 686
 687                /*
 688                 * rmap might return false positives; we must filter
 689                 * these out using page_check_address_pmd().
 690                 */
 691                pmd = page_check_address_pmd(page, mm, address,
 692                                             PAGE_CHECK_ADDRESS_PMD_FLAG, &ptl);
 693                if (!pmd)
 694                        return SWAP_AGAIN;
 695
 696                if (vma->vm_flags & VM_LOCKED) {
 697                        spin_unlock(ptl);
 698                        pra->vm_flags |= VM_LOCKED;
 699                        return SWAP_FAIL; /* To break the loop */
 700                }
 701
 702                /* go ahead even if the pmd is pmd_trans_splitting() */
 703                if (pmdp_clear_flush_young_notify(vma, address, pmd))
 704                        referenced++;
 705                spin_unlock(ptl);
 706        } else {
 707                pte_t *pte;
 708
 709                /*
 710                 * rmap might return false positives; we must filter
 711                 * these out using page_check_address().
 712                 */
 713                pte = page_check_address(page, mm, address, &ptl, 0);
 714                if (!pte)
 715                        return SWAP_AGAIN;
 716
 717                if (vma->vm_flags & VM_LOCKED) {
 718                        pte_unmap_unlock(pte, ptl);
 719                        pra->vm_flags |= VM_LOCKED;
 720                        return SWAP_FAIL; /* To break the loop */
 721                }
 722
 723                if (ptep_clear_flush_young_notify(vma, address, pte)) {
 724                        /*
 725                         * Don't treat a reference through a sequentially read
 726                         * mapping as such.  If the page has been used in
 727                         * another mapping, we will catch it; if this other
 728                         * mapping is already gone, the unmap path will have
 729                         * set PG_referenced or activated the page.
 730                         */
 731                        if (likely(!(vma->vm_flags & VM_SEQ_READ)))
 732                                referenced++;
 733                }
 734                pte_unmap_unlock(pte, ptl);
 735        }
 736
 737        if (referenced) {
 738                pra->referenced++;
 739                pra->vm_flags |= vma->vm_flags;
 740        }
 741
 742        pra->mapcount--;
 743        if (!pra->mapcount)
 744                return SWAP_SUCCESS; /* To break the loop */
 745
 746        return SWAP_AGAIN;
 747}
 748
 749static bool invalid_page_referenced_vma(struct vm_area_struct *vma, void *arg)
 750{
 751        struct page_referenced_arg *pra = arg;
 752        struct mem_cgroup *memcg = pra->memcg;
 753
 754        if (!mm_match_cgroup(vma->vm_mm, memcg))
 755                return true;
 756
 757        return false;
 758}
 759
 760/**
 761 * page_referenced - test if the page was referenced
 762 * @page: the page to test
 763 * @is_locked: caller holds lock on the page
 764 * @memcg: target memory cgroup
 765 * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
 766 *
 767 * Quick test_and_clear_referenced for all mappings to a page,
 768 * returns the number of ptes which referenced the page.
 769 */
 770int page_referenced(struct page *page,
 771                    int is_locked,
 772                    struct mem_cgroup *memcg,
 773                    unsigned long *vm_flags)
 774{
 775        int ret;
 776        int we_locked = 0;
 777        struct page_referenced_arg pra = {
 778                .mapcount = page_mapcount(page),
 779                .memcg = memcg,
 780        };
 781        struct rmap_walk_control rwc = {
 782                .rmap_one = page_referenced_one,
 783                .arg = (void *)&pra,
 784                .anon_lock = page_lock_anon_vma_read,
 785        };
 786
 787        *vm_flags = 0;
 788        if (!page_mapped(page))
 789                return 0;
 790
 791        if (!page_rmapping(page))
 792                return 0;
 793
 794        if (!is_locked && (!PageAnon(page) || PageKsm(page))) {
 795                we_locked = trylock_page(page);
 796                if (!we_locked)
 797                        return 1;
 798        }
 799
 800        /*
 801         * If we are reclaiming on behalf of a cgroup, skip
 802         * counting on behalf of references from different
 803         * cgroups
 804         */
 805        if (memcg) {
 806                rwc.invalid_vma = invalid_page_referenced_vma;
 807        }
 808
 809        ret = rmap_walk(page, &rwc);
 810        *vm_flags = pra.vm_flags;
 811
 812        if (we_locked)
 813                unlock_page(page);
 814
 815        return pra.referenced;
 816}
 817
 818static int page_mkclean_one(struct page *page, struct vm_area_struct *vma,
 819                            unsigned long address, void *arg)
 820{
 821        struct mm_struct *mm = vma->vm_mm;
 822        pte_t *pte;
 823        spinlock_t *ptl;
 824        int ret = 0;
 825        int *cleaned = arg;
 826
 827        pte = page_check_address(page, mm, address, &ptl, 1);
 828        if (!pte)
 829                goto out;
 830
 831        if (pte_dirty(*pte) || pte_write(*pte)) {
 832                pte_t entry;
 833
 834                flush_cache_page(vma, address, pte_pfn(*pte));
 835                entry = ptep_clear_flush(vma, address, pte);
 836                entry = pte_wrprotect(entry);
 837                entry = pte_mkclean(entry);
 838                set_pte_at(mm, address, pte, entry);
 839                ret = 1;
 840        }
 841
 842        pte_unmap_unlock(pte, ptl);
 843
 844        if (ret) {
 845                mmu_notifier_invalidate_page(mm, address);
 846                (*cleaned)++;
 847        }
 848out:
 849        return SWAP_AGAIN;
 850}
 851
 852static bool invalid_mkclean_vma(struct vm_area_struct *vma, void *arg)
 853{
 854        if (vma->vm_flags & VM_SHARED)
 855                return false;
 856
 857        return true;
 858}
 859
 860int page_mkclean(struct page *page)
 861{
 862        int cleaned = 0;
 863        struct address_space *mapping;
 864        struct rmap_walk_control rwc = {
 865                .arg = (void *)&cleaned,
 866                .rmap_one = page_mkclean_one,
 867                .invalid_vma = invalid_mkclean_vma,
 868        };
 869
 870        BUG_ON(!PageLocked(page));
 871
 872        if (!page_mapped(page))
 873                return 0;
 874
 875        mapping = page_mapping(page);
 876        if (!mapping)
 877                return 0;
 878
 879        rmap_walk(page, &rwc);
 880
 881        return cleaned;
 882}
 883EXPORT_SYMBOL_GPL(page_mkclean);
 884
 885/**
 886 * page_move_anon_rmap - move a page to our anon_vma
 887 * @page:       the page to move to our anon_vma
 888 * @vma:        the vma the page belongs to
 889 * @address:    the user virtual address mapped
 890 *
 891 * When a page belongs exclusively to one process after a COW event,
 892 * that page can be moved into the anon_vma that belongs to just that
 893 * process, so the rmap code will not search the parent or sibling
 894 * processes.
 895 */
 896void page_move_anon_rmap(struct page *page,
 897        struct vm_area_struct *vma, unsigned long address)
 898{
 899        struct anon_vma *anon_vma = vma->anon_vma;
 900
 901        VM_BUG_ON_PAGE(!PageLocked(page), page);
 902        VM_BUG_ON_VMA(!anon_vma, vma);
 903        VM_BUG_ON_PAGE(page->index != linear_page_index(vma, address), page);
 904
 905        anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
 906        page->mapping = (struct address_space *) anon_vma;
 907}
 908
 909/**
 910 * __page_set_anon_rmap - set up new anonymous rmap
 911 * @page:       Page to add to rmap     
 912 * @vma:        VM area to add page to.
 913 * @address:    User virtual address of the mapping     
 914 * @exclusive:  the page is exclusively owned by the current process
 915 */
 916static void __page_set_anon_rmap(struct page *page,
 917        struct vm_area_struct *vma, unsigned long address, int exclusive)
 918{
 919        struct anon_vma *anon_vma = vma->anon_vma;
 920
 921        BUG_ON(!anon_vma);
 922
 923        if (PageAnon(page))
 924                return;
 925
 926        /*
 927         * If the page isn't exclusively mapped into this vma,
 928         * we must use the _oldest_ possible anon_vma for the
 929         * page mapping!
 930         */
 931        if (!exclusive)
 932                anon_vma = anon_vma->root;
 933
 934        anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
 935        page->mapping = (struct address_space *) anon_vma;
 936        page->index = linear_page_index(vma, address);
 937}
 938
 939/**
 940 * __page_check_anon_rmap - sanity check anonymous rmap addition
 941 * @page:       the page to add the mapping to
 942 * @vma:        the vm area in which the mapping is added
 943 * @address:    the user virtual address mapped
 944 */
 945static void __page_check_anon_rmap(struct page *page,
 946        struct vm_area_struct *vma, unsigned long address)
 947{
 948#ifdef CONFIG_DEBUG_VM
 949        /*
 950         * The page's anon-rmap details (mapping and index) are guaranteed to
 951         * be set up correctly at this point.
 952         *
 953         * We have exclusion against page_add_anon_rmap because the caller
 954         * always holds the page locked, except if called from page_dup_rmap,
 955         * in which case the page is already known to be setup.
 956         *
 957         * We have exclusion against page_add_new_anon_rmap because those pages
 958         * are initially only visible via the pagetables, and the pte is locked
 959         * over the call to page_add_new_anon_rmap.
 960         */
 961        BUG_ON(page_anon_vma(page)->root != vma->anon_vma->root);
 962        BUG_ON(page->index != linear_page_index(vma, address));
 963#endif
 964}
 965
 966/**
 967 * page_add_anon_rmap - add pte mapping to an anonymous page
 968 * @page:       the page to add the mapping to
 969 * @vma:        the vm area in which the mapping is added
 970 * @address:    the user virtual address mapped
 971 *
 972 * The caller needs to hold the pte lock, and the page must be locked in
 973 * the anon_vma case: to serialize mapping,index checking after setting,
 974 * and to ensure that PageAnon is not being upgraded racily to PageKsm
 975 * (but PageKsm is never downgraded to PageAnon).
 976 */
 977void page_add_anon_rmap(struct page *page,
 978        struct vm_area_struct *vma, unsigned long address)
 979{
 980        do_page_add_anon_rmap(page, vma, address, 0);
 981}
 982
 983/*
 984 * Special version of the above for do_swap_page, which often runs
 985 * into pages that are exclusively owned by the current process.
 986 * Everybody else should continue to use page_add_anon_rmap above.
 987 */
 988void do_page_add_anon_rmap(struct page *page,
 989        struct vm_area_struct *vma, unsigned long address, int exclusive)
 990{
 991        int first = atomic_inc_and_test(&page->_mapcount);
 992        if (first) {
 993                /*
 994                 * We use the irq-unsafe __{inc|mod}_zone_page_stat because
 995                 * these counters are not modified in interrupt context, and
 996                 * pte lock(a spinlock) is held, which implies preemption
 997                 * disabled.
 998                 */
 999                if (PageTransHuge(page))
1000                        __inc_zone_page_state(page,
1001                                              NR_ANON_TRANSPARENT_HUGEPAGES);
1002                __mod_zone_page_state(page_zone(page), NR_ANON_PAGES,
1003                                hpage_nr_pages(page));
1004        }
1005        if (unlikely(PageKsm(page)))
1006                return;
1007
1008        VM_BUG_ON_PAGE(!PageLocked(page), page);
1009        /* address might be in next vma when migration races vma_adjust */
1010        if (first)
1011                __page_set_anon_rmap(page, vma, address, exclusive);
1012        else
1013                __page_check_anon_rmap(page, vma, address);
1014}
1015
1016/**
1017 * page_add_new_anon_rmap - add pte mapping to a new anonymous page
1018 * @page:       the page to add the mapping to
1019 * @vma:        the vm area in which the mapping is added
1020 * @address:    the user virtual address mapped
1021 *
1022 * Same as page_add_anon_rmap but must only be called on *new* pages.
1023 * This means the inc-and-test can be bypassed.
1024 * Page does not have to be locked.
1025 */
1026void page_add_new_anon_rmap(struct page *page,
1027        struct vm_area_struct *vma, unsigned long address)
1028{
1029        VM_BUG_ON_VMA(address < vma->vm_start || address >= vma->vm_end, vma);
1030        SetPageSwapBacked(page);
1031        atomic_set(&page->_mapcount, 0); /* increment count (starts at -1) */
1032        if (PageTransHuge(page))
1033                __inc_zone_page_state(page, NR_ANON_TRANSPARENT_HUGEPAGES);
1034        __mod_zone_page_state(page_zone(page), NR_ANON_PAGES,
1035                        hpage_nr_pages(page));
1036        __page_set_anon_rmap(page, vma, address, 1);
1037}
1038
1039/**
1040 * page_add_file_rmap - add pte mapping to a file page
1041 * @page: the page to add the mapping to
1042 *
1043 * The caller needs to hold the pte lock.
1044 */
1045void page_add_file_rmap(struct page *page)
1046{
1047        struct mem_cgroup *memcg;
1048        unsigned long flags;
1049        bool locked;
1050
1051        memcg = mem_cgroup_begin_page_stat(page, &locked, &flags);
1052        if (atomic_inc_and_test(&page->_mapcount)) {
1053                __inc_zone_page_state(page, NR_FILE_MAPPED);
1054                mem_cgroup_inc_page_stat(memcg, MEM_CGROUP_STAT_FILE_MAPPED);
1055        }
1056        mem_cgroup_end_page_stat(memcg, locked, flags);
1057}
1058
1059static void page_remove_file_rmap(struct page *page)
1060{
1061        struct mem_cgroup *memcg;
1062        unsigned long flags;
1063        bool locked;
1064
1065        memcg = mem_cgroup_begin_page_stat(page, &locked, &flags);
1066
1067        /* page still mapped by someone else? */
1068        if (!atomic_add_negative(-1, &page->_mapcount))
1069                goto out;
1070
1071        /* Hugepages are not counted in NR_FILE_MAPPED for now. */
1072        if (unlikely(PageHuge(page)))
1073                goto out;
1074
1075        /*
1076         * We use the irq-unsafe __{inc|mod}_zone_page_stat because
1077         * these counters are not modified in interrupt context, and
1078         * pte lock(a spinlock) is held, which implies preemption disabled.
1079         */
1080        __dec_zone_page_state(page, NR_FILE_MAPPED);
1081        mem_cgroup_dec_page_stat(memcg, MEM_CGROUP_STAT_FILE_MAPPED);
1082
1083        if (unlikely(PageMlocked(page)))
1084                clear_page_mlock(page);
1085out:
1086        mem_cgroup_end_page_stat(memcg, locked, flags);
1087}
1088
1089/**
1090 * page_remove_rmap - take down pte mapping from a page
1091 * @page: page to remove mapping from
1092 *
1093 * The caller needs to hold the pte lock.
1094 */
1095void page_remove_rmap(struct page *page)
1096{
1097        if (!PageAnon(page)) {
1098                page_remove_file_rmap(page);
1099                return;
1100        }
1101
1102        /* page still mapped by someone else? */
1103        if (!atomic_add_negative(-1, &page->_mapcount))
1104                return;
1105
1106        /* Hugepages are not counted in NR_ANON_PAGES for now. */
1107        if (unlikely(PageHuge(page)))
1108                return;
1109
1110        /*
1111         * We use the irq-unsafe __{inc|mod}_zone_page_stat because
1112         * these counters are not modified in interrupt context, and
1113         * pte lock(a spinlock) is held, which implies preemption disabled.
1114         */
1115        if (PageTransHuge(page))
1116                __dec_zone_page_state(page, NR_ANON_TRANSPARENT_HUGEPAGES);
1117
1118        __mod_zone_page_state(page_zone(page), NR_ANON_PAGES,
1119                              -hpage_nr_pages(page));
1120
1121        if (unlikely(PageMlocked(page)))
1122                clear_page_mlock(page);
1123
1124        /*
1125         * It would be tidy to reset the PageAnon mapping here,
1126         * but that might overwrite a racing page_add_anon_rmap
1127         * which increments mapcount after us but sets mapping
1128         * before us: so leave the reset to free_hot_cold_page,
1129         * and remember that it's only reliable while mapped.
1130         * Leaving it set also helps swapoff to reinstate ptes
1131         * faster for those pages still in swapcache.
1132         */
1133}
1134
1135/*
1136 * @arg: enum ttu_flags will be passed to this argument
1137 */
1138static int try_to_unmap_one(struct page *page, struct vm_area_struct *vma,
1139                     unsigned long address, void *arg)
1140{
1141        struct mm_struct *mm = vma->vm_mm;
1142        pte_t *pte;
1143        pte_t pteval;
1144        spinlock_t *ptl;
1145        int ret = SWAP_AGAIN;
1146        enum ttu_flags flags = (enum ttu_flags)arg;
1147
1148        pte = page_check_address(page, mm, address, &ptl, 0);
1149        if (!pte)
1150                goto out;
1151
1152        /*
1153         * If the page is mlock()d, we cannot swap it out.
1154         * If it's recently referenced (perhaps page_referenced
1155         * skipped over this mm) then we should reactivate it.
1156         */
1157        if (!(flags & TTU_IGNORE_MLOCK)) {
1158                if (vma->vm_flags & VM_LOCKED)
1159                        goto out_mlock;
1160
1161                if (flags & TTU_MUNLOCK)
1162                        goto out_unmap;
1163        }
1164        if (!(flags & TTU_IGNORE_ACCESS)) {
1165                if (ptep_clear_flush_young_notify(vma, address, pte)) {
1166                        ret = SWAP_FAIL;
1167                        goto out_unmap;
1168                }
1169        }
1170
1171        /* Nuke the page table entry. */
1172        flush_cache_page(vma, address, page_to_pfn(page));
1173        pteval = ptep_clear_flush(vma, address, pte);
1174
1175        /* Move the dirty bit to the physical page now the pte is gone. */
1176        if (pte_dirty(pteval))
1177                set_page_dirty(page);
1178
1179        /* Update high watermark before we lower rss */
1180        update_hiwater_rss(mm);
1181
1182        if (PageHWPoison(page) && !(flags & TTU_IGNORE_HWPOISON)) {
1183                if (!PageHuge(page)) {
1184                        if (PageAnon(page))
1185                                dec_mm_counter(mm, MM_ANONPAGES);
1186                        else
1187                                dec_mm_counter(mm, MM_FILEPAGES);
1188                }
1189                set_pte_at(mm, address, pte,
1190                           swp_entry_to_pte(make_hwpoison_entry(page)));
1191        } else if (pte_unused(pteval)) {
1192                /*
1193                 * The guest indicated that the page content is of no
1194                 * interest anymore. Simply discard the pte, vmscan
1195                 * will take care of the rest.
1196                 */
1197                if (PageAnon(page))
1198                        dec_mm_counter(mm, MM_ANONPAGES);
1199                else
1200                        dec_mm_counter(mm, MM_FILEPAGES);
1201        } else if (PageAnon(page)) {
1202                swp_entry_t entry = { .val = page_private(page) };
1203                pte_t swp_pte;
1204
1205                if (PageSwapCache(page)) {
1206                        /*
1207                         * Store the swap location in the pte.
1208                         * See handle_pte_fault() ...
1209                         */
1210                        if (swap_duplicate(entry) < 0) {
1211                                set_pte_at(mm, address, pte, pteval);
1212                                ret = SWAP_FAIL;
1213                                goto out_unmap;
1214                        }
1215                        if (list_empty(&mm->mmlist)) {
1216                                spin_lock(&mmlist_lock);
1217                                if (list_empty(&mm->mmlist))
1218                                        list_add(&mm->mmlist, &init_mm.mmlist);
1219                                spin_unlock(&mmlist_lock);
1220                        }
1221                        dec_mm_counter(mm, MM_ANONPAGES);
1222                        inc_mm_counter(mm, MM_SWAPENTS);
1223                } else if (IS_ENABLED(CONFIG_MIGRATION)) {
1224                        /*
1225                         * Store the pfn of the page in a special migration
1226                         * pte. do_swap_page() will wait until the migration
1227                         * pte is removed and then restart fault handling.
1228                         */
1229                        BUG_ON(!(flags & TTU_MIGRATION));
1230                        entry = make_migration_entry(page, pte_write(pteval));
1231                }
1232                swp_pte = swp_entry_to_pte(entry);
1233                if (pte_soft_dirty(pteval))
1234                        swp_pte = pte_swp_mksoft_dirty(swp_pte);
1235                set_pte_at(mm, address, pte, swp_pte);
1236                BUG_ON(pte_file(*pte));
1237        } else if (IS_ENABLED(CONFIG_MIGRATION) &&
1238                   (flags & TTU_MIGRATION)) {
1239                /* Establish migration entry for a file page */
1240                swp_entry_t entry;
1241                entry = make_migration_entry(page, pte_write(pteval));
1242                set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
1243        } else
1244                dec_mm_counter(mm, MM_FILEPAGES);
1245
1246        page_remove_rmap(page);
1247        page_cache_release(page);
1248
1249out_unmap:
1250        pte_unmap_unlock(pte, ptl);
1251        if (ret != SWAP_FAIL && !(flags & TTU_MUNLOCK))
1252                mmu_notifier_invalidate_page(mm, address);
1253out:
1254        return ret;
1255
1256out_mlock:
1257        pte_unmap_unlock(pte, ptl);
1258
1259
1260        /*
1261         * We need mmap_sem locking, Otherwise VM_LOCKED check makes
1262         * unstable result and race. Plus, We can't wait here because
1263         * we now hold anon_vma->rwsem or mapping->i_mmap_mutex.
1264         * if trylock failed, the page remain in evictable lru and later
1265         * vmscan could retry to move the page to unevictable lru if the
1266         * page is actually mlocked.
1267         */
1268        if (down_read_trylock(&vma->vm_mm->mmap_sem)) {
1269                if (vma->vm_flags & VM_LOCKED) {
1270                        mlock_vma_page(page);
1271                        ret = SWAP_MLOCK;
1272                }
1273                up_read(&vma->vm_mm->mmap_sem);
1274        }
1275        return ret;
1276}
1277
1278/*
1279 * objrmap doesn't work for nonlinear VMAs because the assumption that
1280 * offset-into-file correlates with offset-into-virtual-addresses does not hold.
1281 * Consequently, given a particular page and its ->index, we cannot locate the
1282 * ptes which are mapping that page without an exhaustive linear search.
1283 *
1284 * So what this code does is a mini "virtual scan" of each nonlinear VMA which
1285 * maps the file to which the target page belongs.  The ->vm_private_data field
1286 * holds the current cursor into that scan.  Successive searches will circulate
1287 * around the vma's virtual address space.
1288 *
1289 * So as more replacement pressure is applied to the pages in a nonlinear VMA,
1290 * more scanning pressure is placed against them as well.   Eventually pages
1291 * will become fully unmapped and are eligible for eviction.
1292 *
1293 * For very sparsely populated VMAs this is a little inefficient - chances are
1294 * there there won't be many ptes located within the scan cluster.  In this case
1295 * maybe we could scan further - to the end of the pte page, perhaps.
1296 *
1297 * Mlocked pages:  check VM_LOCKED under mmap_sem held for read, if we can
1298 * acquire it without blocking.  If vma locked, mlock the pages in the cluster,
1299 * rather than unmapping them.  If we encounter the "check_page" that vmscan is
1300 * trying to unmap, return SWAP_MLOCK, else default SWAP_AGAIN.
1301 */
1302#define CLUSTER_SIZE    min(32*PAGE_SIZE, PMD_SIZE)
1303#define CLUSTER_MASK    (~(CLUSTER_SIZE - 1))
1304
1305static int try_to_unmap_cluster(unsigned long cursor, unsigned int *mapcount,
1306                struct vm_area_struct *vma, struct page *check_page)
1307{
1308        struct mm_struct *mm = vma->vm_mm;
1309        pmd_t *pmd;
1310        pte_t *pte;
1311        pte_t pteval;
1312        spinlock_t *ptl;
1313        struct page *page;
1314        unsigned long address;
1315        unsigned long mmun_start;       /* For mmu_notifiers */
1316        unsigned long mmun_end;         /* For mmu_notifiers */
1317        unsigned long end;
1318        int ret = SWAP_AGAIN;
1319        int locked_vma = 0;
1320
1321        address = (vma->vm_start + cursor) & CLUSTER_MASK;
1322        end = address + CLUSTER_SIZE;
1323        if (address < vma->vm_start)
1324                address = vma->vm_start;
1325        if (end > vma->vm_end)
1326                end = vma->vm_end;
1327
1328        pmd = mm_find_pmd(mm, address);
1329        if (!pmd)
1330                return ret;
1331
1332        mmun_start = address;
1333        mmun_end   = end;
1334        mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1335
1336        /*
1337         * If we can acquire the mmap_sem for read, and vma is VM_LOCKED,
1338         * keep the sem while scanning the cluster for mlocking pages.
1339         */
1340        if (down_read_trylock(&vma->vm_mm->mmap_sem)) {
1341                locked_vma = (vma->vm_flags & VM_LOCKED);
1342                if (!locked_vma)
1343                        up_read(&vma->vm_mm->mmap_sem); /* don't need it */
1344        }
1345
1346        pte = pte_offset_map_lock(mm, pmd, address, &ptl);
1347
1348        /* Update high watermark before we lower rss */
1349        update_hiwater_rss(mm);
1350
1351        for (; address < end; pte++, address += PAGE_SIZE) {
1352                if (!pte_present(*pte))
1353                        continue;
1354                page = vm_normal_page(vma, address, *pte);
1355                BUG_ON(!page || PageAnon(page));
1356
1357                if (locked_vma) {
1358                        if (page == check_page) {
1359                                /* we know we have check_page locked */
1360                                mlock_vma_page(page);
1361                                ret = SWAP_MLOCK;
1362                        } else if (trylock_page(page)) {
1363                                /*
1364                                 * If we can lock the page, perform mlock.
1365                                 * Otherwise leave the page alone, it will be
1366                                 * eventually encountered again later.
1367                                 */
1368                                mlock_vma_page(page);
1369                                unlock_page(page);
1370                        }
1371                        continue;       /* don't unmap */
1372                }
1373
1374                /*
1375                 * No need for _notify because we're within an
1376                 * mmu_notifier_invalidate_range_ {start|end} scope.
1377                 */
1378                if (ptep_clear_flush_young(vma, address, pte))
1379                        continue;
1380
1381                /* Nuke the page table entry. */
1382                flush_cache_page(vma, address, pte_pfn(*pte));
1383                pteval = ptep_clear_flush(vma, address, pte);
1384
1385                /* If nonlinear, store the file page offset in the pte. */
1386                if (page->index != linear_page_index(vma, address)) {
1387                        pte_t ptfile = pgoff_to_pte(page->index);
1388                        if (pte_soft_dirty(pteval))
1389                                ptfile = pte_file_mksoft_dirty(ptfile);
1390                        set_pte_at(mm, address, pte, ptfile);
1391                }
1392
1393                /* Move the dirty bit to the physical page now the pte is gone. */
1394                if (pte_dirty(pteval))
1395                        set_page_dirty(page);
1396
1397                page_remove_rmap(page);
1398                page_cache_release(page);
1399                dec_mm_counter(mm, MM_FILEPAGES);
1400                (*mapcount)--;
1401        }
1402        pte_unmap_unlock(pte - 1, ptl);
1403        mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1404        if (locked_vma)
1405                up_read(&vma->vm_mm->mmap_sem);
1406        return ret;
1407}
1408
1409static int try_to_unmap_nonlinear(struct page *page,
1410                struct address_space *mapping, void *arg)
1411{
1412        struct vm_area_struct *vma;
1413        int ret = SWAP_AGAIN;
1414        unsigned long cursor;
1415        unsigned long max_nl_cursor = 0;
1416        unsigned long max_nl_size = 0;
1417        unsigned int mapcount;
1418
1419        list_for_each_entry(vma,
1420                &mapping->i_mmap_nonlinear, shared.nonlinear) {
1421
1422                cursor = (unsigned long) vma->vm_private_data;
1423                if (cursor > max_nl_cursor)
1424                        max_nl_cursor = cursor;
1425                cursor = vma->vm_end - vma->vm_start;
1426                if (cursor > max_nl_size)
1427                        max_nl_size = cursor;
1428        }
1429
1430        if (max_nl_size == 0) { /* all nonlinears locked or reserved ? */
1431                return SWAP_FAIL;
1432        }
1433
1434        /*
1435         * We don't try to search for this page in the nonlinear vmas,
1436         * and page_referenced wouldn't have found it anyway.  Instead
1437         * just walk the nonlinear vmas trying to age and unmap some.
1438         * The mapcount of the page we came in with is irrelevant,
1439         * but even so use it as a guide to how hard we should try?
1440         */
1441        mapcount = page_mapcount(page);
1442        if (!mapcount)
1443                return ret;
1444
1445        cond_resched();
1446
1447        max_nl_size = (max_nl_size + CLUSTER_SIZE - 1) & CLUSTER_MASK;
1448        if (max_nl_cursor == 0)
1449                max_nl_cursor = CLUSTER_SIZE;
1450
1451        do {
1452                list_for_each_entry(vma,
1453                        &mapping->i_mmap_nonlinear, shared.nonlinear) {
1454
1455                        cursor = (unsigned long) vma->vm_private_data;
1456                        while (cursor < max_nl_cursor &&
1457                                cursor < vma->vm_end - vma->vm_start) {
1458                                if (try_to_unmap_cluster(cursor, &mapcount,
1459                                                vma, page) == SWAP_MLOCK)
1460                                        ret = SWAP_MLOCK;
1461                                cursor += CLUSTER_SIZE;
1462                                vma->vm_private_data = (void *) cursor;
1463                                if ((int)mapcount <= 0)
1464                                        return ret;
1465                        }
1466                        vma->vm_private_data = (void *) max_nl_cursor;
1467                }
1468                cond_resched();
1469                max_nl_cursor += CLUSTER_SIZE;
1470        } while (max_nl_cursor <= max_nl_size);
1471
1472        /*
1473         * Don't loop forever (perhaps all the remaining pages are
1474         * in locked vmas).  Reset cursor on all unreserved nonlinear
1475         * vmas, now forgetting on which ones it had fallen behind.
1476         */
1477        list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.nonlinear)
1478                vma->vm_private_data = NULL;
1479
1480        return ret;
1481}
1482
1483bool is_vma_temporary_stack(struct vm_area_struct *vma)
1484{
1485        int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP);
1486
1487        if (!maybe_stack)
1488                return false;
1489
1490        if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) ==
1491                                                VM_STACK_INCOMPLETE_SETUP)
1492                return true;
1493
1494        return false;
1495}
1496
1497static bool invalid_migration_vma(struct vm_area_struct *vma, void *arg)
1498{
1499        return is_vma_temporary_stack(vma);
1500}
1501
1502static int page_not_mapped(struct page *page)
1503{
1504        return !page_mapped(page);
1505};
1506
1507/**
1508 * try_to_unmap - try to remove all page table mappings to a page
1509 * @page: the page to get unmapped
1510 * @flags: action and flags
1511 *
1512 * Tries to remove all the page table entries which are mapping this
1513 * page, used in the pageout path.  Caller must hold the page lock.
1514 * Return values are:
1515 *
1516 * SWAP_SUCCESS - we succeeded in removing all mappings
1517 * SWAP_AGAIN   - we missed a mapping, try again later
1518 * SWAP_FAIL    - the page is unswappable
1519 * SWAP_MLOCK   - page is mlocked.
1520 */
1521int try_to_unmap(struct page *page, enum ttu_flags flags)
1522{
1523        int ret;
1524        struct rmap_walk_control rwc = {
1525                .rmap_one = try_to_unmap_one,
1526                .arg = (void *)flags,
1527                .done = page_not_mapped,
1528                .file_nonlinear = try_to_unmap_nonlinear,
1529                .anon_lock = page_lock_anon_vma_read,
1530        };
1531
1532        VM_BUG_ON_PAGE(!PageHuge(page) && PageTransHuge(page), page);
1533
1534        /*
1535         * During exec, a temporary VMA is setup and later moved.
1536         * The VMA is moved under the anon_vma lock but not the
1537         * page tables leading to a race where migration cannot
1538         * find the migration ptes. Rather than increasing the
1539         * locking requirements of exec(), migration skips
1540         * temporary VMAs until after exec() completes.
1541         */
1542        if ((flags & TTU_MIGRATION) && !PageKsm(page) && PageAnon(page))
1543                rwc.invalid_vma = invalid_migration_vma;
1544
1545        ret = rmap_walk(page, &rwc);
1546
1547        if (ret != SWAP_MLOCK && !page_mapped(page))
1548                ret = SWAP_SUCCESS;
1549        return ret;
1550}
1551
1552/**
1553 * try_to_munlock - try to munlock a page
1554 * @page: the page to be munlocked
1555 *
1556 * Called from munlock code.  Checks all of the VMAs mapping the page
1557 * to make sure nobody else has this page mlocked. The page will be
1558 * returned with PG_mlocked cleared if no other vmas have it mlocked.
1559 *
1560 * Return values are:
1561 *
1562 * SWAP_AGAIN   - no vma is holding page mlocked, or,
1563 * SWAP_AGAIN   - page mapped in mlocked vma -- couldn't acquire mmap sem
1564 * SWAP_FAIL    - page cannot be located at present
1565 * SWAP_MLOCK   - page is now mlocked.
1566 */
1567int try_to_munlock(struct page *page)
1568{
1569        int ret;
1570        struct rmap_walk_control rwc = {
1571                .rmap_one = try_to_unmap_one,
1572                .arg = (void *)TTU_MUNLOCK,
1573                .done = page_not_mapped,
1574                /*
1575                 * We don't bother to try to find the munlocked page in
1576                 * nonlinears. It's costly. Instead, later, page reclaim logic
1577                 * may call try_to_unmap() and recover PG_mlocked lazily.
1578                 */
1579                .file_nonlinear = NULL,
1580                .anon_lock = page_lock_anon_vma_read,
1581
1582        };
1583
1584        VM_BUG_ON_PAGE(!PageLocked(page) || PageLRU(page), page);
1585
1586        ret = rmap_walk(page, &rwc);
1587        return ret;
1588}
1589
1590void __put_anon_vma(struct anon_vma *anon_vma)
1591{
1592        struct anon_vma *root = anon_vma->root;
1593
1594        anon_vma_free(anon_vma);
1595        if (root != anon_vma && atomic_dec_and_test(&root->refcount))
1596                anon_vma_free(root);
1597}
1598
1599static struct anon_vma *rmap_walk_anon_lock(struct page *page,
1600                                        struct rmap_walk_control *rwc)
1601{
1602        struct anon_vma *anon_vma;
1603
1604        if (rwc->anon_lock)
1605                return rwc->anon_lock(page);
1606
1607        /*
1608         * Note: remove_migration_ptes() cannot use page_lock_anon_vma_read()
1609         * because that depends on page_mapped(); but not all its usages
1610         * are holding mmap_sem. Users without mmap_sem are required to
1611         * take a reference count to prevent the anon_vma disappearing
1612         */
1613        anon_vma = page_anon_vma(page);
1614        if (!anon_vma)
1615                return NULL;
1616
1617        anon_vma_lock_read(anon_vma);
1618        return anon_vma;
1619}
1620
1621/*
1622 * rmap_walk_anon - do something to anonymous page using the object-based
1623 * rmap method
1624 * @page: the page to be handled
1625 * @rwc: control variable according to each walk type
1626 *
1627 * Find all the mappings of a page using the mapping pointer and the vma chains
1628 * contained in the anon_vma struct it points to.
1629 *
1630 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1631 * where the page was found will be held for write.  So, we won't recheck
1632 * vm_flags for that VMA.  That should be OK, because that vma shouldn't be
1633 * LOCKED.
1634 */
1635static int rmap_walk_anon(struct page *page, struct rmap_walk_control *rwc)
1636{
1637        struct anon_vma *anon_vma;
1638        pgoff_t pgoff = page_to_pgoff(page);
1639        struct anon_vma_chain *avc;
1640        int ret = SWAP_AGAIN;
1641
1642        anon_vma = rmap_walk_anon_lock(page, rwc);
1643        if (!anon_vma)
1644                return ret;
1645
1646        anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) {
1647                struct vm_area_struct *vma = avc->vma;
1648                unsigned long address = vma_address(page, vma);
1649
1650                if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
1651                        continue;
1652
1653                ret = rwc->rmap_one(page, vma, address, rwc->arg);
1654                if (ret != SWAP_AGAIN)
1655                        break;
1656                if (rwc->done && rwc->done(page))
1657                        break;
1658        }
1659        anon_vma_unlock_read(anon_vma);
1660        return ret;
1661}
1662
1663/*
1664 * rmap_walk_file - do something to file page using the object-based rmap method
1665 * @page: the page to be handled
1666 * @rwc: control variable according to each walk type
1667 *
1668 * Find all the mappings of a page using the mapping pointer and the vma chains
1669 * contained in the address_space struct it points to.
1670 *
1671 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1672 * where the page was found will be held for write.  So, we won't recheck
1673 * vm_flags for that VMA.  That should be OK, because that vma shouldn't be
1674 * LOCKED.
1675 */
1676static int rmap_walk_file(struct page *page, struct rmap_walk_control *rwc)
1677{
1678        struct address_space *mapping = page->mapping;
1679        pgoff_t pgoff = page_to_pgoff(page);
1680        struct vm_area_struct *vma;
1681        int ret = SWAP_AGAIN;
1682
1683        /*
1684         * The page lock not only makes sure that page->mapping cannot
1685         * suddenly be NULLified by truncation, it makes sure that the
1686         * structure at mapping cannot be freed and reused yet,
1687         * so we can safely take mapping->i_mmap_mutex.
1688         */
1689        VM_BUG_ON_PAGE(!PageLocked(page), page);
1690
1691        if (!mapping)
1692                return ret;
1693        mutex_lock(&mapping->i_mmap_mutex);
1694        vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
1695                unsigned long address = vma_address(page, vma);
1696
1697                if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
1698                        continue;
1699
1700                ret = rwc->rmap_one(page, vma, address, rwc->arg);
1701                if (ret != SWAP_AGAIN)
1702                        goto done;
1703                if (rwc->done && rwc->done(page))
1704                        goto done;
1705        }
1706
1707        if (!rwc->file_nonlinear)
1708                goto done;
1709
1710        if (list_empty(&mapping->i_mmap_nonlinear))
1711                goto done;
1712
1713        ret = rwc->file_nonlinear(page, mapping, rwc->arg);
1714
1715done:
1716        mutex_unlock(&mapping->i_mmap_mutex);
1717        return ret;
1718}
1719
1720int rmap_walk(struct page *page, struct rmap_walk_control *rwc)
1721{
1722        if (unlikely(PageKsm(page)))
1723                return rmap_walk_ksm(page, rwc);
1724        else if (PageAnon(page))
1725                return rmap_walk_anon(page, rwc);
1726        else
1727                return rmap_walk_file(page, rwc);
1728}
1729
1730#ifdef CONFIG_HUGETLB_PAGE
1731/*
1732 * The following three functions are for anonymous (private mapped) hugepages.
1733 * Unlike common anonymous pages, anonymous hugepages have no accounting code
1734 * and no lru code, because we handle hugepages differently from common pages.
1735 */
1736static void __hugepage_set_anon_rmap(struct page *page,
1737        struct vm_area_struct *vma, unsigned long address, int exclusive)
1738{
1739        struct anon_vma *anon_vma = vma->anon_vma;
1740
1741        BUG_ON(!anon_vma);
1742
1743        if (PageAnon(page))
1744                return;
1745        if (!exclusive)
1746                anon_vma = anon_vma->root;
1747
1748        anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
1749        page->mapping = (struct address_space *) anon_vma;
1750        page->index = linear_page_index(vma, address);
1751}
1752
1753void hugepage_add_anon_rmap(struct page *page,
1754                            struct vm_area_struct *vma, unsigned long address)
1755{
1756        struct anon_vma *anon_vma = vma->anon_vma;
1757        int first;
1758
1759        BUG_ON(!PageLocked(page));
1760        BUG_ON(!anon_vma);
1761        /* address might be in next vma when migration races vma_adjust */
1762        first = atomic_inc_and_test(&page->_mapcount);
1763        if (first)
1764                __hugepage_set_anon_rmap(page, vma, address, 0);
1765}
1766
1767void hugepage_add_new_anon_rmap(struct page *page,
1768                        struct vm_area_struct *vma, unsigned long address)
1769{
1770        BUG_ON(address < vma->vm_start || address >= vma->vm_end);
1771        atomic_set(&page->_mapcount, 0);
1772        __hugepage_set_anon_rmap(page, vma, address, 1);
1773}
1774#endif /* CONFIG_HUGETLB_PAGE */
1775