linux/mm/shmem.c
<<
>>
Prefs
   1/*
   2 * Resizable virtual memory filesystem for Linux.
   3 *
   4 * Copyright (C) 2000 Linus Torvalds.
   5 *               2000 Transmeta Corp.
   6 *               2000-2001 Christoph Rohland
   7 *               2000-2001 SAP AG
   8 *               2002 Red Hat Inc.
   9 * Copyright (C) 2002-2011 Hugh Dickins.
  10 * Copyright (C) 2011 Google Inc.
  11 * Copyright (C) 2002-2005 VERITAS Software Corporation.
  12 * Copyright (C) 2004 Andi Kleen, SuSE Labs
  13 *
  14 * Extended attribute support for tmpfs:
  15 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
  16 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
  17 *
  18 * tiny-shmem:
  19 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
  20 *
  21 * This file is released under the GPL.
  22 */
  23
  24#include <linux/fs.h>
  25#include <linux/init.h>
  26#include <linux/vfs.h>
  27#include <linux/mount.h>
  28#include <linux/ramfs.h>
  29#include <linux/pagemap.h>
  30#include <linux/file.h>
  31#include <linux/mm.h>
  32#include <linux/export.h>
  33#include <linux/swap.h>
  34#include <linux/aio.h>
  35
  36static struct vfsmount *shm_mnt;
  37
  38#ifdef CONFIG_SHMEM
  39/*
  40 * This virtual memory filesystem is heavily based on the ramfs. It
  41 * extends ramfs by the ability to use swap and honor resource limits
  42 * which makes it a completely usable filesystem.
  43 */
  44
  45#include <linux/xattr.h>
  46#include <linux/exportfs.h>
  47#include <linux/posix_acl.h>
  48#include <linux/posix_acl_xattr.h>
  49#include <linux/mman.h>
  50#include <linux/string.h>
  51#include <linux/slab.h>
  52#include <linux/backing-dev.h>
  53#include <linux/shmem_fs.h>
  54#include <linux/writeback.h>
  55#include <linux/blkdev.h>
  56#include <linux/pagevec.h>
  57#include <linux/percpu_counter.h>
  58#include <linux/falloc.h>
  59#include <linux/splice.h>
  60#include <linux/security.h>
  61#include <linux/swapops.h>
  62#include <linux/mempolicy.h>
  63#include <linux/namei.h>
  64#include <linux/ctype.h>
  65#include <linux/migrate.h>
  66#include <linux/highmem.h>
  67#include <linux/seq_file.h>
  68#include <linux/magic.h>
  69#include <linux/syscalls.h>
  70#include <linux/fcntl.h>
  71#include <uapi/linux/memfd.h>
  72
  73#include <asm/uaccess.h>
  74#include <asm/pgtable.h>
  75
  76#define BLOCKS_PER_PAGE  (PAGE_CACHE_SIZE/512)
  77#define VM_ACCT(size)    (PAGE_CACHE_ALIGN(size) >> PAGE_SHIFT)
  78
  79/* Pretend that each entry is of this size in directory's i_size */
  80#define BOGO_DIRENT_SIZE 20
  81
  82/* Symlink up to this size is kmalloc'ed instead of using a swappable page */
  83#define SHORT_SYMLINK_LEN 128
  84
  85/*
  86 * shmem_fallocate communicates with shmem_fault or shmem_writepage via
  87 * inode->i_private (with i_mutex making sure that it has only one user at
  88 * a time): we would prefer not to enlarge the shmem inode just for that.
  89 */
  90struct shmem_falloc {
  91        wait_queue_head_t *waitq; /* faults into hole wait for punch to end */
  92        pgoff_t start;          /* start of range currently being fallocated */
  93        pgoff_t next;           /* the next page offset to be fallocated */
  94        pgoff_t nr_falloced;    /* how many new pages have been fallocated */
  95        pgoff_t nr_unswapped;   /* how often writepage refused to swap out */
  96};
  97
  98/* Flag allocation requirements to shmem_getpage */
  99enum sgp_type {
 100        SGP_READ,       /* don't exceed i_size, don't allocate page */
 101        SGP_CACHE,      /* don't exceed i_size, may allocate page */
 102        SGP_DIRTY,      /* like SGP_CACHE, but set new page dirty */
 103        SGP_WRITE,      /* may exceed i_size, may allocate !Uptodate page */
 104        SGP_FALLOC,     /* like SGP_WRITE, but make existing page Uptodate */
 105};
 106
 107#ifdef CONFIG_TMPFS
 108static unsigned long shmem_default_max_blocks(void)
 109{
 110        return totalram_pages / 2;
 111}
 112
 113static unsigned long shmem_default_max_inodes(void)
 114{
 115        return min(totalram_pages - totalhigh_pages, totalram_pages / 2);
 116}
 117#endif
 118
 119static bool shmem_should_replace_page(struct page *page, gfp_t gfp);
 120static int shmem_replace_page(struct page **pagep, gfp_t gfp,
 121                                struct shmem_inode_info *info, pgoff_t index);
 122static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
 123        struct page **pagep, enum sgp_type sgp, gfp_t gfp, int *fault_type);
 124
 125static inline int shmem_getpage(struct inode *inode, pgoff_t index,
 126        struct page **pagep, enum sgp_type sgp, int *fault_type)
 127{
 128        return shmem_getpage_gfp(inode, index, pagep, sgp,
 129                        mapping_gfp_mask(inode->i_mapping), fault_type);
 130}
 131
 132static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
 133{
 134        return sb->s_fs_info;
 135}
 136
 137/*
 138 * shmem_file_setup pre-accounts the whole fixed size of a VM object,
 139 * for shared memory and for shared anonymous (/dev/zero) mappings
 140 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
 141 * consistent with the pre-accounting of private mappings ...
 142 */
 143static inline int shmem_acct_size(unsigned long flags, loff_t size)
 144{
 145        return (flags & VM_NORESERVE) ?
 146                0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
 147}
 148
 149static inline void shmem_unacct_size(unsigned long flags, loff_t size)
 150{
 151        if (!(flags & VM_NORESERVE))
 152                vm_unacct_memory(VM_ACCT(size));
 153}
 154
 155static inline int shmem_reacct_size(unsigned long flags,
 156                loff_t oldsize, loff_t newsize)
 157{
 158        if (!(flags & VM_NORESERVE)) {
 159                if (VM_ACCT(newsize) > VM_ACCT(oldsize))
 160                        return security_vm_enough_memory_mm(current->mm,
 161                                        VM_ACCT(newsize) - VM_ACCT(oldsize));
 162                else if (VM_ACCT(newsize) < VM_ACCT(oldsize))
 163                        vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize));
 164        }
 165        return 0;
 166}
 167
 168/*
 169 * ... whereas tmpfs objects are accounted incrementally as
 170 * pages are allocated, in order to allow huge sparse files.
 171 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
 172 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
 173 */
 174static inline int shmem_acct_block(unsigned long flags)
 175{
 176        return (flags & VM_NORESERVE) ?
 177                security_vm_enough_memory_mm(current->mm, VM_ACCT(PAGE_CACHE_SIZE)) : 0;
 178}
 179
 180static inline void shmem_unacct_blocks(unsigned long flags, long pages)
 181{
 182        if (flags & VM_NORESERVE)
 183                vm_unacct_memory(pages * VM_ACCT(PAGE_CACHE_SIZE));
 184}
 185
 186static const struct super_operations shmem_ops;
 187static const struct address_space_operations shmem_aops;
 188static const struct file_operations shmem_file_operations;
 189static const struct inode_operations shmem_inode_operations;
 190static const struct inode_operations shmem_dir_inode_operations;
 191static const struct inode_operations shmem_special_inode_operations;
 192static const struct vm_operations_struct shmem_vm_ops;
 193
 194static struct backing_dev_info shmem_backing_dev_info  __read_mostly = {
 195        .ra_pages       = 0,    /* No readahead */
 196        .capabilities   = BDI_CAP_NO_ACCT_AND_WRITEBACK | BDI_CAP_SWAP_BACKED,
 197};
 198
 199static LIST_HEAD(shmem_swaplist);
 200static DEFINE_MUTEX(shmem_swaplist_mutex);
 201
 202static int shmem_reserve_inode(struct super_block *sb)
 203{
 204        struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
 205        if (sbinfo->max_inodes) {
 206                spin_lock(&sbinfo->stat_lock);
 207                if (!sbinfo->free_inodes) {
 208                        spin_unlock(&sbinfo->stat_lock);
 209                        return -ENOSPC;
 210                }
 211                sbinfo->free_inodes--;
 212                spin_unlock(&sbinfo->stat_lock);
 213        }
 214        return 0;
 215}
 216
 217static void shmem_free_inode(struct super_block *sb)
 218{
 219        struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
 220        if (sbinfo->max_inodes) {
 221                spin_lock(&sbinfo->stat_lock);
 222                sbinfo->free_inodes++;
 223                spin_unlock(&sbinfo->stat_lock);
 224        }
 225}
 226
 227/**
 228 * shmem_recalc_inode - recalculate the block usage of an inode
 229 * @inode: inode to recalc
 230 *
 231 * We have to calculate the free blocks since the mm can drop
 232 * undirtied hole pages behind our back.
 233 *
 234 * But normally   info->alloced == inode->i_mapping->nrpages + info->swapped
 235 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
 236 *
 237 * It has to be called with the spinlock held.
 238 */
 239static void shmem_recalc_inode(struct inode *inode)
 240{
 241        struct shmem_inode_info *info = SHMEM_I(inode);
 242        long freed;
 243
 244        freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
 245        if (freed > 0) {
 246                struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
 247                if (sbinfo->max_blocks)
 248                        percpu_counter_add(&sbinfo->used_blocks, -freed);
 249                info->alloced -= freed;
 250                inode->i_blocks -= freed * BLOCKS_PER_PAGE;
 251                shmem_unacct_blocks(info->flags, freed);
 252        }
 253}
 254
 255/*
 256 * Replace item expected in radix tree by a new item, while holding tree lock.
 257 */
 258static int shmem_radix_tree_replace(struct address_space *mapping,
 259                        pgoff_t index, void *expected, void *replacement)
 260{
 261        void **pslot;
 262        void *item;
 263
 264        VM_BUG_ON(!expected);
 265        VM_BUG_ON(!replacement);
 266        pslot = radix_tree_lookup_slot(&mapping->page_tree, index);
 267        if (!pslot)
 268                return -ENOENT;
 269        item = radix_tree_deref_slot_protected(pslot, &mapping->tree_lock);
 270        if (item != expected)
 271                return -ENOENT;
 272        radix_tree_replace_slot(pslot, replacement);
 273        return 0;
 274}
 275
 276/*
 277 * Sometimes, before we decide whether to proceed or to fail, we must check
 278 * that an entry was not already brought back from swap by a racing thread.
 279 *
 280 * Checking page is not enough: by the time a SwapCache page is locked, it
 281 * might be reused, and again be SwapCache, using the same swap as before.
 282 */
 283static bool shmem_confirm_swap(struct address_space *mapping,
 284                               pgoff_t index, swp_entry_t swap)
 285{
 286        void *item;
 287
 288        rcu_read_lock();
 289        item = radix_tree_lookup(&mapping->page_tree, index);
 290        rcu_read_unlock();
 291        return item == swp_to_radix_entry(swap);
 292}
 293
 294/*
 295 * Like add_to_page_cache_locked, but error if expected item has gone.
 296 */
 297static int shmem_add_to_page_cache(struct page *page,
 298                                   struct address_space *mapping,
 299                                   pgoff_t index, void *expected)
 300{
 301        int error;
 302
 303        VM_BUG_ON_PAGE(!PageLocked(page), page);
 304        VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
 305
 306        page_cache_get(page);
 307        page->mapping = mapping;
 308        page->index = index;
 309
 310        spin_lock_irq(&mapping->tree_lock);
 311        if (!expected)
 312                error = radix_tree_insert(&mapping->page_tree, index, page);
 313        else
 314                error = shmem_radix_tree_replace(mapping, index, expected,
 315                                                                 page);
 316        if (!error) {
 317                mapping->nrpages++;
 318                __inc_zone_page_state(page, NR_FILE_PAGES);
 319                __inc_zone_page_state(page, NR_SHMEM);
 320                spin_unlock_irq(&mapping->tree_lock);
 321        } else {
 322                page->mapping = NULL;
 323                spin_unlock_irq(&mapping->tree_lock);
 324                page_cache_release(page);
 325        }
 326        return error;
 327}
 328
 329/*
 330 * Like delete_from_page_cache, but substitutes swap for page.
 331 */
 332static void shmem_delete_from_page_cache(struct page *page, void *radswap)
 333{
 334        struct address_space *mapping = page->mapping;
 335        int error;
 336
 337        spin_lock_irq(&mapping->tree_lock);
 338        error = shmem_radix_tree_replace(mapping, page->index, page, radswap);
 339        page->mapping = NULL;
 340        mapping->nrpages--;
 341        __dec_zone_page_state(page, NR_FILE_PAGES);
 342        __dec_zone_page_state(page, NR_SHMEM);
 343        spin_unlock_irq(&mapping->tree_lock);
 344        page_cache_release(page);
 345        BUG_ON(error);
 346}
 347
 348/*
 349 * Remove swap entry from radix tree, free the swap and its page cache.
 350 */
 351static int shmem_free_swap(struct address_space *mapping,
 352                           pgoff_t index, void *radswap)
 353{
 354        void *old;
 355
 356        spin_lock_irq(&mapping->tree_lock);
 357        old = radix_tree_delete_item(&mapping->page_tree, index, radswap);
 358        spin_unlock_irq(&mapping->tree_lock);
 359        if (old != radswap)
 360                return -ENOENT;
 361        free_swap_and_cache(radix_to_swp_entry(radswap));
 362        return 0;
 363}
 364
 365/*
 366 * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
 367 */
 368void shmem_unlock_mapping(struct address_space *mapping)
 369{
 370        struct pagevec pvec;
 371        pgoff_t indices[PAGEVEC_SIZE];
 372        pgoff_t index = 0;
 373
 374        pagevec_init(&pvec, 0);
 375        /*
 376         * Minor point, but we might as well stop if someone else SHM_LOCKs it.
 377         */
 378        while (!mapping_unevictable(mapping)) {
 379                /*
 380                 * Avoid pagevec_lookup(): find_get_pages() returns 0 as if it
 381                 * has finished, if it hits a row of PAGEVEC_SIZE swap entries.
 382                 */
 383                pvec.nr = find_get_entries(mapping, index,
 384                                           PAGEVEC_SIZE, pvec.pages, indices);
 385                if (!pvec.nr)
 386                        break;
 387                index = indices[pvec.nr - 1] + 1;
 388                pagevec_remove_exceptionals(&pvec);
 389                check_move_unevictable_pages(pvec.pages, pvec.nr);
 390                pagevec_release(&pvec);
 391                cond_resched();
 392        }
 393}
 394
 395/*
 396 * Remove range of pages and swap entries from radix tree, and free them.
 397 * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
 398 */
 399static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
 400                                                                 bool unfalloc)
 401{
 402        struct address_space *mapping = inode->i_mapping;
 403        struct shmem_inode_info *info = SHMEM_I(inode);
 404        pgoff_t start = (lstart + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
 405        pgoff_t end = (lend + 1) >> PAGE_CACHE_SHIFT;
 406        unsigned int partial_start = lstart & (PAGE_CACHE_SIZE - 1);
 407        unsigned int partial_end = (lend + 1) & (PAGE_CACHE_SIZE - 1);
 408        struct pagevec pvec;
 409        pgoff_t indices[PAGEVEC_SIZE];
 410        long nr_swaps_freed = 0;
 411        pgoff_t index;
 412        int i;
 413
 414        if (lend == -1)
 415                end = -1;       /* unsigned, so actually very big */
 416
 417        pagevec_init(&pvec, 0);
 418        index = start;
 419        while (index < end) {
 420                pvec.nr = find_get_entries(mapping, index,
 421                        min(end - index, (pgoff_t)PAGEVEC_SIZE),
 422                        pvec.pages, indices);
 423                if (!pvec.nr)
 424                        break;
 425                for (i = 0; i < pagevec_count(&pvec); i++) {
 426                        struct page *page = pvec.pages[i];
 427
 428                        index = indices[i];
 429                        if (index >= end)
 430                                break;
 431
 432                        if (radix_tree_exceptional_entry(page)) {
 433                                if (unfalloc)
 434                                        continue;
 435                                nr_swaps_freed += !shmem_free_swap(mapping,
 436                                                                index, page);
 437                                continue;
 438                        }
 439
 440                        if (!trylock_page(page))
 441                                continue;
 442                        if (!unfalloc || !PageUptodate(page)) {
 443                                if (page->mapping == mapping) {
 444                                        VM_BUG_ON_PAGE(PageWriteback(page), page);
 445                                        truncate_inode_page(mapping, page);
 446                                }
 447                        }
 448                        unlock_page(page);
 449                }
 450                pagevec_remove_exceptionals(&pvec);
 451                pagevec_release(&pvec);
 452                cond_resched();
 453                index++;
 454        }
 455
 456        if (partial_start) {
 457                struct page *page = NULL;
 458                shmem_getpage(inode, start - 1, &page, SGP_READ, NULL);
 459                if (page) {
 460                        unsigned int top = PAGE_CACHE_SIZE;
 461                        if (start > end) {
 462                                top = partial_end;
 463                                partial_end = 0;
 464                        }
 465                        zero_user_segment(page, partial_start, top);
 466                        set_page_dirty(page);
 467                        unlock_page(page);
 468                        page_cache_release(page);
 469                }
 470        }
 471        if (partial_end) {
 472                struct page *page = NULL;
 473                shmem_getpage(inode, end, &page, SGP_READ, NULL);
 474                if (page) {
 475                        zero_user_segment(page, 0, partial_end);
 476                        set_page_dirty(page);
 477                        unlock_page(page);
 478                        page_cache_release(page);
 479                }
 480        }
 481        if (start >= end)
 482                return;
 483
 484        index = start;
 485        while (index < end) {
 486                cond_resched();
 487
 488                pvec.nr = find_get_entries(mapping, index,
 489                                min(end - index, (pgoff_t)PAGEVEC_SIZE),
 490                                pvec.pages, indices);
 491                if (!pvec.nr) {
 492                        /* If all gone or hole-punch or unfalloc, we're done */
 493                        if (index == start || end != -1)
 494                                break;
 495                        /* But if truncating, restart to make sure all gone */
 496                        index = start;
 497                        continue;
 498                }
 499                for (i = 0; i < pagevec_count(&pvec); i++) {
 500                        struct page *page = pvec.pages[i];
 501
 502                        index = indices[i];
 503                        if (index >= end)
 504                                break;
 505
 506                        if (radix_tree_exceptional_entry(page)) {
 507                                if (unfalloc)
 508                                        continue;
 509                                if (shmem_free_swap(mapping, index, page)) {
 510                                        /* Swap was replaced by page: retry */
 511                                        index--;
 512                                        break;
 513                                }
 514                                nr_swaps_freed++;
 515                                continue;
 516                        }
 517
 518                        lock_page(page);
 519                        if (!unfalloc || !PageUptodate(page)) {
 520                                if (page->mapping == mapping) {
 521                                        VM_BUG_ON_PAGE(PageWriteback(page), page);
 522                                        truncate_inode_page(mapping, page);
 523                                } else {
 524                                        /* Page was replaced by swap: retry */
 525                                        unlock_page(page);
 526                                        index--;
 527                                        break;
 528                                }
 529                        }
 530                        unlock_page(page);
 531                }
 532                pagevec_remove_exceptionals(&pvec);
 533                pagevec_release(&pvec);
 534                index++;
 535        }
 536
 537        spin_lock(&info->lock);
 538        info->swapped -= nr_swaps_freed;
 539        shmem_recalc_inode(inode);
 540        spin_unlock(&info->lock);
 541}
 542
 543void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
 544{
 545        shmem_undo_range(inode, lstart, lend, false);
 546        inode->i_ctime = inode->i_mtime = CURRENT_TIME;
 547}
 548EXPORT_SYMBOL_GPL(shmem_truncate_range);
 549
 550static int shmem_setattr(struct dentry *dentry, struct iattr *attr)
 551{
 552        struct inode *inode = dentry->d_inode;
 553        struct shmem_inode_info *info = SHMEM_I(inode);
 554        int error;
 555
 556        error = inode_change_ok(inode, attr);
 557        if (error)
 558                return error;
 559
 560        if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
 561                loff_t oldsize = inode->i_size;
 562                loff_t newsize = attr->ia_size;
 563
 564                /* protected by i_mutex */
 565                if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
 566                    (newsize > oldsize && (info->seals & F_SEAL_GROW)))
 567                        return -EPERM;
 568
 569                if (newsize != oldsize) {
 570                        error = shmem_reacct_size(SHMEM_I(inode)->flags,
 571                                        oldsize, newsize);
 572                        if (error)
 573                                return error;
 574                        i_size_write(inode, newsize);
 575                        inode->i_ctime = inode->i_mtime = CURRENT_TIME;
 576                }
 577                if (newsize < oldsize) {
 578                        loff_t holebegin = round_up(newsize, PAGE_SIZE);
 579                        unmap_mapping_range(inode->i_mapping, holebegin, 0, 1);
 580                        shmem_truncate_range(inode, newsize, (loff_t)-1);
 581                        /* unmap again to remove racily COWed private pages */
 582                        unmap_mapping_range(inode->i_mapping, holebegin, 0, 1);
 583                }
 584        }
 585
 586        setattr_copy(inode, attr);
 587        if (attr->ia_valid & ATTR_MODE)
 588                error = posix_acl_chmod(inode, inode->i_mode);
 589        return error;
 590}
 591
 592static void shmem_evict_inode(struct inode *inode)
 593{
 594        struct shmem_inode_info *info = SHMEM_I(inode);
 595
 596        if (inode->i_mapping->a_ops == &shmem_aops) {
 597                shmem_unacct_size(info->flags, inode->i_size);
 598                inode->i_size = 0;
 599                shmem_truncate_range(inode, 0, (loff_t)-1);
 600                if (!list_empty(&info->swaplist)) {
 601                        mutex_lock(&shmem_swaplist_mutex);
 602                        list_del_init(&info->swaplist);
 603                        mutex_unlock(&shmem_swaplist_mutex);
 604                }
 605        } else
 606                kfree(info->symlink);
 607
 608        simple_xattrs_free(&info->xattrs);
 609        WARN_ON(inode->i_blocks);
 610        shmem_free_inode(inode->i_sb);
 611        clear_inode(inode);
 612}
 613
 614/*
 615 * If swap found in inode, free it and move page from swapcache to filecache.
 616 */
 617static int shmem_unuse_inode(struct shmem_inode_info *info,
 618                             swp_entry_t swap, struct page **pagep)
 619{
 620        struct address_space *mapping = info->vfs_inode.i_mapping;
 621        void *radswap;
 622        pgoff_t index;
 623        gfp_t gfp;
 624        int error = 0;
 625
 626        radswap = swp_to_radix_entry(swap);
 627        index = radix_tree_locate_item(&mapping->page_tree, radswap);
 628        if (index == -1)
 629                return -EAGAIN; /* tell shmem_unuse we found nothing */
 630
 631        /*
 632         * Move _head_ to start search for next from here.
 633         * But be careful: shmem_evict_inode checks list_empty without taking
 634         * mutex, and there's an instant in list_move_tail when info->swaplist
 635         * would appear empty, if it were the only one on shmem_swaplist.
 636         */
 637        if (shmem_swaplist.next != &info->swaplist)
 638                list_move_tail(&shmem_swaplist, &info->swaplist);
 639
 640        gfp = mapping_gfp_mask(mapping);
 641        if (shmem_should_replace_page(*pagep, gfp)) {
 642                mutex_unlock(&shmem_swaplist_mutex);
 643                error = shmem_replace_page(pagep, gfp, info, index);
 644                mutex_lock(&shmem_swaplist_mutex);
 645                /*
 646                 * We needed to drop mutex to make that restrictive page
 647                 * allocation, but the inode might have been freed while we
 648                 * dropped it: although a racing shmem_evict_inode() cannot
 649                 * complete without emptying the radix_tree, our page lock
 650                 * on this swapcache page is not enough to prevent that -
 651                 * free_swap_and_cache() of our swap entry will only
 652                 * trylock_page(), removing swap from radix_tree whatever.
 653                 *
 654                 * We must not proceed to shmem_add_to_page_cache() if the
 655                 * inode has been freed, but of course we cannot rely on
 656                 * inode or mapping or info to check that.  However, we can
 657                 * safely check if our swap entry is still in use (and here
 658                 * it can't have got reused for another page): if it's still
 659                 * in use, then the inode cannot have been freed yet, and we
 660                 * can safely proceed (if it's no longer in use, that tells
 661                 * nothing about the inode, but we don't need to unuse swap).
 662                 */
 663                if (!page_swapcount(*pagep))
 664                        error = -ENOENT;
 665        }
 666
 667        /*
 668         * We rely on shmem_swaplist_mutex, not only to protect the swaplist,
 669         * but also to hold up shmem_evict_inode(): so inode cannot be freed
 670         * beneath us (pagelock doesn't help until the page is in pagecache).
 671         */
 672        if (!error)
 673                error = shmem_add_to_page_cache(*pagep, mapping, index,
 674                                                radswap);
 675        if (error != -ENOMEM) {
 676                /*
 677                 * Truncation and eviction use free_swap_and_cache(), which
 678                 * only does trylock page: if we raced, best clean up here.
 679                 */
 680                delete_from_swap_cache(*pagep);
 681                set_page_dirty(*pagep);
 682                if (!error) {
 683                        spin_lock(&info->lock);
 684                        info->swapped--;
 685                        spin_unlock(&info->lock);
 686                        swap_free(swap);
 687                }
 688        }
 689        return error;
 690}
 691
 692/*
 693 * Search through swapped inodes to find and replace swap by page.
 694 */
 695int shmem_unuse(swp_entry_t swap, struct page *page)
 696{
 697        struct list_head *this, *next;
 698        struct shmem_inode_info *info;
 699        struct mem_cgroup *memcg;
 700        int error = 0;
 701
 702        /*
 703         * There's a faint possibility that swap page was replaced before
 704         * caller locked it: caller will come back later with the right page.
 705         */
 706        if (unlikely(!PageSwapCache(page) || page_private(page) != swap.val))
 707                goto out;
 708
 709        /*
 710         * Charge page using GFP_KERNEL while we can wait, before taking
 711         * the shmem_swaplist_mutex which might hold up shmem_writepage().
 712         * Charged back to the user (not to caller) when swap account is used.
 713         */
 714        error = mem_cgroup_try_charge(page, current->mm, GFP_KERNEL, &memcg);
 715        if (error)
 716                goto out;
 717        /* No radix_tree_preload: swap entry keeps a place for page in tree */
 718        error = -EAGAIN;
 719
 720        mutex_lock(&shmem_swaplist_mutex);
 721        list_for_each_safe(this, next, &shmem_swaplist) {
 722                info = list_entry(this, struct shmem_inode_info, swaplist);
 723                if (info->swapped)
 724                        error = shmem_unuse_inode(info, swap, &page);
 725                else
 726                        list_del_init(&info->swaplist);
 727                cond_resched();
 728                if (error != -EAGAIN)
 729                        break;
 730                /* found nothing in this: move on to search the next */
 731        }
 732        mutex_unlock(&shmem_swaplist_mutex);
 733
 734        if (error) {
 735                if (error != -ENOMEM)
 736                        error = 0;
 737                mem_cgroup_cancel_charge(page, memcg);
 738        } else
 739                mem_cgroup_commit_charge(page, memcg, true);
 740out:
 741        unlock_page(page);
 742        page_cache_release(page);
 743        return error;
 744}
 745
 746/*
 747 * Move the page from the page cache to the swap cache.
 748 */
 749static int shmem_writepage(struct page *page, struct writeback_control *wbc)
 750{
 751        struct shmem_inode_info *info;
 752        struct address_space *mapping;
 753        struct inode *inode;
 754        swp_entry_t swap;
 755        pgoff_t index;
 756
 757        BUG_ON(!PageLocked(page));
 758        mapping = page->mapping;
 759        index = page->index;
 760        inode = mapping->host;
 761        info = SHMEM_I(inode);
 762        if (info->flags & VM_LOCKED)
 763                goto redirty;
 764        if (!total_swap_pages)
 765                goto redirty;
 766
 767        /*
 768         * shmem_backing_dev_info's capabilities prevent regular writeback or
 769         * sync from ever calling shmem_writepage; but a stacking filesystem
 770         * might use ->writepage of its underlying filesystem, in which case
 771         * tmpfs should write out to swap only in response to memory pressure,
 772         * and not for the writeback threads or sync.
 773         */
 774        if (!wbc->for_reclaim) {
 775                WARN_ON_ONCE(1);        /* Still happens? Tell us about it! */
 776                goto redirty;
 777        }
 778
 779        /*
 780         * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
 781         * value into swapfile.c, the only way we can correctly account for a
 782         * fallocated page arriving here is now to initialize it and write it.
 783         *
 784         * That's okay for a page already fallocated earlier, but if we have
 785         * not yet completed the fallocation, then (a) we want to keep track
 786         * of this page in case we have to undo it, and (b) it may not be a
 787         * good idea to continue anyway, once we're pushing into swap.  So
 788         * reactivate the page, and let shmem_fallocate() quit when too many.
 789         */
 790        if (!PageUptodate(page)) {
 791                if (inode->i_private) {
 792                        struct shmem_falloc *shmem_falloc;
 793                        spin_lock(&inode->i_lock);
 794                        shmem_falloc = inode->i_private;
 795                        if (shmem_falloc &&
 796                            !shmem_falloc->waitq &&
 797                            index >= shmem_falloc->start &&
 798                            index < shmem_falloc->next)
 799                                shmem_falloc->nr_unswapped++;
 800                        else
 801                                shmem_falloc = NULL;
 802                        spin_unlock(&inode->i_lock);
 803                        if (shmem_falloc)
 804                                goto redirty;
 805                }
 806                clear_highpage(page);
 807                flush_dcache_page(page);
 808                SetPageUptodate(page);
 809        }
 810
 811        swap = get_swap_page();
 812        if (!swap.val)
 813                goto redirty;
 814
 815        /*
 816         * Add inode to shmem_unuse()'s list of swapped-out inodes,
 817         * if it's not already there.  Do it now before the page is
 818         * moved to swap cache, when its pagelock no longer protects
 819         * the inode from eviction.  But don't unlock the mutex until
 820         * we've incremented swapped, because shmem_unuse_inode() will
 821         * prune a !swapped inode from the swaplist under this mutex.
 822         */
 823        mutex_lock(&shmem_swaplist_mutex);
 824        if (list_empty(&info->swaplist))
 825                list_add_tail(&info->swaplist, &shmem_swaplist);
 826
 827        if (add_to_swap_cache(page, swap, GFP_ATOMIC) == 0) {
 828                swap_shmem_alloc(swap);
 829                shmem_delete_from_page_cache(page, swp_to_radix_entry(swap));
 830
 831                spin_lock(&info->lock);
 832                info->swapped++;
 833                shmem_recalc_inode(inode);
 834                spin_unlock(&info->lock);
 835
 836                mutex_unlock(&shmem_swaplist_mutex);
 837                BUG_ON(page_mapped(page));
 838                swap_writepage(page, wbc);
 839                return 0;
 840        }
 841
 842        mutex_unlock(&shmem_swaplist_mutex);
 843        swapcache_free(swap);
 844redirty:
 845        set_page_dirty(page);
 846        if (wbc->for_reclaim)
 847                return AOP_WRITEPAGE_ACTIVATE;  /* Return with page locked */
 848        unlock_page(page);
 849        return 0;
 850}
 851
 852#ifdef CONFIG_NUMA
 853#ifdef CONFIG_TMPFS
 854static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
 855{
 856        char buffer[64];
 857
 858        if (!mpol || mpol->mode == MPOL_DEFAULT)
 859                return;         /* show nothing */
 860
 861        mpol_to_str(buffer, sizeof(buffer), mpol);
 862
 863        seq_printf(seq, ",mpol=%s", buffer);
 864}
 865
 866static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
 867{
 868        struct mempolicy *mpol = NULL;
 869        if (sbinfo->mpol) {
 870                spin_lock(&sbinfo->stat_lock);  /* prevent replace/use races */
 871                mpol = sbinfo->mpol;
 872                mpol_get(mpol);
 873                spin_unlock(&sbinfo->stat_lock);
 874        }
 875        return mpol;
 876}
 877#endif /* CONFIG_TMPFS */
 878
 879static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
 880                        struct shmem_inode_info *info, pgoff_t index)
 881{
 882        struct vm_area_struct pvma;
 883        struct page *page;
 884
 885        /* Create a pseudo vma that just contains the policy */
 886        pvma.vm_start = 0;
 887        /* Bias interleave by inode number to distribute better across nodes */
 888        pvma.vm_pgoff = index + info->vfs_inode.i_ino;
 889        pvma.vm_ops = NULL;
 890        pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, index);
 891
 892        page = swapin_readahead(swap, gfp, &pvma, 0);
 893
 894        /* Drop reference taken by mpol_shared_policy_lookup() */
 895        mpol_cond_put(pvma.vm_policy);
 896
 897        return page;
 898}
 899
 900static struct page *shmem_alloc_page(gfp_t gfp,
 901                        struct shmem_inode_info *info, pgoff_t index)
 902{
 903        struct vm_area_struct pvma;
 904        struct page *page;
 905
 906        /* Create a pseudo vma that just contains the policy */
 907        pvma.vm_start = 0;
 908        /* Bias interleave by inode number to distribute better across nodes */
 909        pvma.vm_pgoff = index + info->vfs_inode.i_ino;
 910        pvma.vm_ops = NULL;
 911        pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, index);
 912
 913        page = alloc_page_vma(gfp, &pvma, 0);
 914
 915        /* Drop reference taken by mpol_shared_policy_lookup() */
 916        mpol_cond_put(pvma.vm_policy);
 917
 918        return page;
 919}
 920#else /* !CONFIG_NUMA */
 921#ifdef CONFIG_TMPFS
 922static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
 923{
 924}
 925#endif /* CONFIG_TMPFS */
 926
 927static inline struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
 928                        struct shmem_inode_info *info, pgoff_t index)
 929{
 930        return swapin_readahead(swap, gfp, NULL, 0);
 931}
 932
 933static inline struct page *shmem_alloc_page(gfp_t gfp,
 934                        struct shmem_inode_info *info, pgoff_t index)
 935{
 936        return alloc_page(gfp);
 937}
 938#endif /* CONFIG_NUMA */
 939
 940#if !defined(CONFIG_NUMA) || !defined(CONFIG_TMPFS)
 941static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
 942{
 943        return NULL;
 944}
 945#endif
 946
 947/*
 948 * When a page is moved from swapcache to shmem filecache (either by the
 949 * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of
 950 * shmem_unuse_inode()), it may have been read in earlier from swap, in
 951 * ignorance of the mapping it belongs to.  If that mapping has special
 952 * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
 953 * we may need to copy to a suitable page before moving to filecache.
 954 *
 955 * In a future release, this may well be extended to respect cpuset and
 956 * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
 957 * but for now it is a simple matter of zone.
 958 */
 959static bool shmem_should_replace_page(struct page *page, gfp_t gfp)
 960{
 961        return page_zonenum(page) > gfp_zone(gfp);
 962}
 963
 964static int shmem_replace_page(struct page **pagep, gfp_t gfp,
 965                                struct shmem_inode_info *info, pgoff_t index)
 966{
 967        struct page *oldpage, *newpage;
 968        struct address_space *swap_mapping;
 969        pgoff_t swap_index;
 970        int error;
 971
 972        oldpage = *pagep;
 973        swap_index = page_private(oldpage);
 974        swap_mapping = page_mapping(oldpage);
 975
 976        /*
 977         * We have arrived here because our zones are constrained, so don't
 978         * limit chance of success by further cpuset and node constraints.
 979         */
 980        gfp &= ~GFP_CONSTRAINT_MASK;
 981        newpage = shmem_alloc_page(gfp, info, index);
 982        if (!newpage)
 983                return -ENOMEM;
 984
 985        page_cache_get(newpage);
 986        copy_highpage(newpage, oldpage);
 987        flush_dcache_page(newpage);
 988
 989        __set_page_locked(newpage);
 990        SetPageUptodate(newpage);
 991        SetPageSwapBacked(newpage);
 992        set_page_private(newpage, swap_index);
 993        SetPageSwapCache(newpage);
 994
 995        /*
 996         * Our caller will very soon move newpage out of swapcache, but it's
 997         * a nice clean interface for us to replace oldpage by newpage there.
 998         */
 999        spin_lock_irq(&swap_mapping->tree_lock);
1000        error = shmem_radix_tree_replace(swap_mapping, swap_index, oldpage,
1001                                                                   newpage);
1002        if (!error) {
1003                __inc_zone_page_state(newpage, NR_FILE_PAGES);
1004                __dec_zone_page_state(oldpage, NR_FILE_PAGES);
1005        }
1006        spin_unlock_irq(&swap_mapping->tree_lock);
1007
1008        if (unlikely(error)) {
1009                /*
1010                 * Is this possible?  I think not, now that our callers check
1011                 * both PageSwapCache and page_private after getting page lock;
1012                 * but be defensive.  Reverse old to newpage for clear and free.
1013                 */
1014                oldpage = newpage;
1015        } else {
1016                mem_cgroup_migrate(oldpage, newpage, false);
1017                lru_cache_add_anon(newpage);
1018                *pagep = newpage;
1019        }
1020
1021        ClearPageSwapCache(oldpage);
1022        set_page_private(oldpage, 0);
1023
1024        unlock_page(oldpage);
1025        page_cache_release(oldpage);
1026        page_cache_release(oldpage);
1027        return error;
1028}
1029
1030/*
1031 * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
1032 *
1033 * If we allocate a new one we do not mark it dirty. That's up to the
1034 * vm. If we swap it in we mark it dirty since we also free the swap
1035 * entry since a page cannot live in both the swap and page cache
1036 */
1037static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
1038        struct page **pagep, enum sgp_type sgp, gfp_t gfp, int *fault_type)
1039{
1040        struct address_space *mapping = inode->i_mapping;
1041        struct shmem_inode_info *info;
1042        struct shmem_sb_info *sbinfo;
1043        struct mem_cgroup *memcg;
1044        struct page *page;
1045        swp_entry_t swap;
1046        int error;
1047        int once = 0;
1048        int alloced = 0;
1049
1050        if (index > (MAX_LFS_FILESIZE >> PAGE_CACHE_SHIFT))
1051                return -EFBIG;
1052repeat:
1053        swap.val = 0;
1054        page = find_lock_entry(mapping, index);
1055        if (radix_tree_exceptional_entry(page)) {
1056                swap = radix_to_swp_entry(page);
1057                page = NULL;
1058        }
1059
1060        if (sgp != SGP_WRITE && sgp != SGP_FALLOC &&
1061            ((loff_t)index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) {
1062                error = -EINVAL;
1063                goto failed;
1064        }
1065
1066        if (page && sgp == SGP_WRITE)
1067                mark_page_accessed(page);
1068
1069        /* fallocated page? */
1070        if (page && !PageUptodate(page)) {
1071                if (sgp != SGP_READ)
1072                        goto clear;
1073                unlock_page(page);
1074                page_cache_release(page);
1075                page = NULL;
1076        }
1077        if (page || (sgp == SGP_READ && !swap.val)) {
1078                *pagep = page;
1079                return 0;
1080        }
1081
1082        /*
1083         * Fast cache lookup did not find it:
1084         * bring it back from swap or allocate.
1085         */
1086        info = SHMEM_I(inode);
1087        sbinfo = SHMEM_SB(inode->i_sb);
1088
1089        if (swap.val) {
1090                /* Look it up and read it in.. */
1091                page = lookup_swap_cache(swap);
1092                if (!page) {
1093                        /* here we actually do the io */
1094                        if (fault_type)
1095                                *fault_type |= VM_FAULT_MAJOR;
1096                        page = shmem_swapin(swap, gfp, info, index);
1097                        if (!page) {
1098                                error = -ENOMEM;
1099                                goto failed;
1100                        }
1101                }
1102
1103                /* We have to do this with page locked to prevent races */
1104                lock_page(page);
1105                if (!PageSwapCache(page) || page_private(page) != swap.val ||
1106                    !shmem_confirm_swap(mapping, index, swap)) {
1107                        error = -EEXIST;        /* try again */
1108                        goto unlock;
1109                }
1110                if (!PageUptodate(page)) {
1111                        error = -EIO;
1112                        goto failed;
1113                }
1114                wait_on_page_writeback(page);
1115
1116                if (shmem_should_replace_page(page, gfp)) {
1117                        error = shmem_replace_page(&page, gfp, info, index);
1118                        if (error)
1119                                goto failed;
1120                }
1121
1122                error = mem_cgroup_try_charge(page, current->mm, gfp, &memcg);
1123                if (!error) {
1124                        error = shmem_add_to_page_cache(page, mapping, index,
1125                                                swp_to_radix_entry(swap));
1126                        /*
1127                         * We already confirmed swap under page lock, and make
1128                         * no memory allocation here, so usually no possibility
1129                         * of error; but free_swap_and_cache() only trylocks a
1130                         * page, so it is just possible that the entry has been
1131                         * truncated or holepunched since swap was confirmed.
1132                         * shmem_undo_range() will have done some of the
1133                         * unaccounting, now delete_from_swap_cache() will do
1134                         * the rest (including mem_cgroup_uncharge_swapcache).
1135                         * Reset swap.val? No, leave it so "failed" goes back to
1136                         * "repeat": reading a hole and writing should succeed.
1137                         */
1138                        if (error) {
1139                                mem_cgroup_cancel_charge(page, memcg);
1140                                delete_from_swap_cache(page);
1141                        }
1142                }
1143                if (error)
1144                        goto failed;
1145
1146                mem_cgroup_commit_charge(page, memcg, true);
1147
1148                spin_lock(&info->lock);
1149                info->swapped--;
1150                shmem_recalc_inode(inode);
1151                spin_unlock(&info->lock);
1152
1153                if (sgp == SGP_WRITE)
1154                        mark_page_accessed(page);
1155
1156                delete_from_swap_cache(page);
1157                set_page_dirty(page);
1158                swap_free(swap);
1159
1160        } else {
1161                if (shmem_acct_block(info->flags)) {
1162                        error = -ENOSPC;
1163                        goto failed;
1164                }
1165                if (sbinfo->max_blocks) {
1166                        if (percpu_counter_compare(&sbinfo->used_blocks,
1167                                                sbinfo->max_blocks) >= 0) {
1168                                error = -ENOSPC;
1169                                goto unacct;
1170                        }
1171                        percpu_counter_inc(&sbinfo->used_blocks);
1172                }
1173
1174                page = shmem_alloc_page(gfp, info, index);
1175                if (!page) {
1176                        error = -ENOMEM;
1177                        goto decused;
1178                }
1179
1180                __SetPageSwapBacked(page);
1181                __set_page_locked(page);
1182                if (sgp == SGP_WRITE)
1183                        __SetPageReferenced(page);
1184
1185                error = mem_cgroup_try_charge(page, current->mm, gfp, &memcg);
1186                if (error)
1187                        goto decused;
1188                error = radix_tree_maybe_preload(gfp & GFP_RECLAIM_MASK);
1189                if (!error) {
1190                        error = shmem_add_to_page_cache(page, mapping, index,
1191                                                        NULL);
1192                        radix_tree_preload_end();
1193                }
1194                if (error) {
1195                        mem_cgroup_cancel_charge(page, memcg);
1196                        goto decused;
1197                }
1198                mem_cgroup_commit_charge(page, memcg, false);
1199                lru_cache_add_anon(page);
1200
1201                spin_lock(&info->lock);
1202                info->alloced++;
1203                inode->i_blocks += BLOCKS_PER_PAGE;
1204                shmem_recalc_inode(inode);
1205                spin_unlock(&info->lock);
1206                alloced = true;
1207
1208                /*
1209                 * Let SGP_FALLOC use the SGP_WRITE optimization on a new page.
1210                 */
1211                if (sgp == SGP_FALLOC)
1212                        sgp = SGP_WRITE;
1213clear:
1214                /*
1215                 * Let SGP_WRITE caller clear ends if write does not fill page;
1216                 * but SGP_FALLOC on a page fallocated earlier must initialize
1217                 * it now, lest undo on failure cancel our earlier guarantee.
1218                 */
1219                if (sgp != SGP_WRITE) {
1220                        clear_highpage(page);
1221                        flush_dcache_page(page);
1222                        SetPageUptodate(page);
1223                }
1224                if (sgp == SGP_DIRTY)
1225                        set_page_dirty(page);
1226        }
1227
1228        /* Perhaps the file has been truncated since we checked */
1229        if (sgp != SGP_WRITE && sgp != SGP_FALLOC &&
1230            ((loff_t)index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) {
1231                error = -EINVAL;
1232                if (alloced)
1233                        goto trunc;
1234                else
1235                        goto failed;
1236        }
1237        *pagep = page;
1238        return 0;
1239
1240        /*
1241         * Error recovery.
1242         */
1243trunc:
1244        info = SHMEM_I(inode);
1245        ClearPageDirty(page);
1246        delete_from_page_cache(page);
1247        spin_lock(&info->lock);
1248        info->alloced--;
1249        inode->i_blocks -= BLOCKS_PER_PAGE;
1250        spin_unlock(&info->lock);
1251decused:
1252        sbinfo = SHMEM_SB(inode->i_sb);
1253        if (sbinfo->max_blocks)
1254                percpu_counter_add(&sbinfo->used_blocks, -1);
1255unacct:
1256        shmem_unacct_blocks(info->flags, 1);
1257failed:
1258        if (swap.val && error != -EINVAL &&
1259            !shmem_confirm_swap(mapping, index, swap))
1260                error = -EEXIST;
1261unlock:
1262        if (page) {
1263                unlock_page(page);
1264                page_cache_release(page);
1265        }
1266        if (error == -ENOSPC && !once++) {
1267                info = SHMEM_I(inode);
1268                spin_lock(&info->lock);
1269                shmem_recalc_inode(inode);
1270                spin_unlock(&info->lock);
1271                goto repeat;
1272        }
1273        if (error == -EEXIST)   /* from above or from radix_tree_insert */
1274                goto repeat;
1275        return error;
1276}
1277
1278static int shmem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1279{
1280        struct inode *inode = file_inode(vma->vm_file);
1281        int error;
1282        int ret = VM_FAULT_LOCKED;
1283
1284        /*
1285         * Trinity finds that probing a hole which tmpfs is punching can
1286         * prevent the hole-punch from ever completing: which in turn
1287         * locks writers out with its hold on i_mutex.  So refrain from
1288         * faulting pages into the hole while it's being punched.  Although
1289         * shmem_undo_range() does remove the additions, it may be unable to
1290         * keep up, as each new page needs its own unmap_mapping_range() call,
1291         * and the i_mmap tree grows ever slower to scan if new vmas are added.
1292         *
1293         * It does not matter if we sometimes reach this check just before the
1294         * hole-punch begins, so that one fault then races with the punch:
1295         * we just need to make racing faults a rare case.
1296         *
1297         * The implementation below would be much simpler if we just used a
1298         * standard mutex or completion: but we cannot take i_mutex in fault,
1299         * and bloating every shmem inode for this unlikely case would be sad.
1300         */
1301        if (unlikely(inode->i_private)) {
1302                struct shmem_falloc *shmem_falloc;
1303
1304                spin_lock(&inode->i_lock);
1305                shmem_falloc = inode->i_private;
1306                if (shmem_falloc &&
1307                    shmem_falloc->waitq &&
1308                    vmf->pgoff >= shmem_falloc->start &&
1309                    vmf->pgoff < shmem_falloc->next) {
1310                        wait_queue_head_t *shmem_falloc_waitq;
1311                        DEFINE_WAIT(shmem_fault_wait);
1312
1313                        ret = VM_FAULT_NOPAGE;
1314                        if ((vmf->flags & FAULT_FLAG_ALLOW_RETRY) &&
1315                           !(vmf->flags & FAULT_FLAG_RETRY_NOWAIT)) {
1316                                /* It's polite to up mmap_sem if we can */
1317                                up_read(&vma->vm_mm->mmap_sem);
1318                                ret = VM_FAULT_RETRY;
1319                        }
1320
1321                        shmem_falloc_waitq = shmem_falloc->waitq;
1322                        prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait,
1323                                        TASK_UNINTERRUPTIBLE);
1324                        spin_unlock(&inode->i_lock);
1325                        schedule();
1326
1327                        /*
1328                         * shmem_falloc_waitq points into the shmem_fallocate()
1329                         * stack of the hole-punching task: shmem_falloc_waitq
1330                         * is usually invalid by the time we reach here, but
1331                         * finish_wait() does not dereference it in that case;
1332                         * though i_lock needed lest racing with wake_up_all().
1333                         */
1334                        spin_lock(&inode->i_lock);
1335                        finish_wait(shmem_falloc_waitq, &shmem_fault_wait);
1336                        spin_unlock(&inode->i_lock);
1337                        return ret;
1338                }
1339                spin_unlock(&inode->i_lock);
1340        }
1341
1342        error = shmem_getpage(inode, vmf->pgoff, &vmf->page, SGP_CACHE, &ret);
1343        if (error)
1344                return ((error == -ENOMEM) ? VM_FAULT_OOM : VM_FAULT_SIGBUS);
1345
1346        if (ret & VM_FAULT_MAJOR) {
1347                count_vm_event(PGMAJFAULT);
1348                mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
1349        }
1350        return ret;
1351}
1352
1353#ifdef CONFIG_NUMA
1354static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
1355{
1356        struct inode *inode = file_inode(vma->vm_file);
1357        return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
1358}
1359
1360static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
1361                                          unsigned long addr)
1362{
1363        struct inode *inode = file_inode(vma->vm_file);
1364        pgoff_t index;
1365
1366        index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
1367        return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
1368}
1369#endif
1370
1371int shmem_lock(struct file *file, int lock, struct user_struct *user)
1372{
1373        struct inode *inode = file_inode(file);
1374        struct shmem_inode_info *info = SHMEM_I(inode);
1375        int retval = -ENOMEM;
1376
1377        spin_lock(&info->lock);
1378        if (lock && !(info->flags & VM_LOCKED)) {
1379                if (!user_shm_lock(inode->i_size, user))
1380                        goto out_nomem;
1381                info->flags |= VM_LOCKED;
1382                mapping_set_unevictable(file->f_mapping);
1383        }
1384        if (!lock && (info->flags & VM_LOCKED) && user) {
1385                user_shm_unlock(inode->i_size, user);
1386                info->flags &= ~VM_LOCKED;
1387                mapping_clear_unevictable(file->f_mapping);
1388        }
1389        retval = 0;
1390
1391out_nomem:
1392        spin_unlock(&info->lock);
1393        return retval;
1394}
1395
1396static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
1397{
1398        file_accessed(file);
1399        vma->vm_ops = &shmem_vm_ops;
1400        return 0;
1401}
1402
1403static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
1404                                     umode_t mode, dev_t dev, unsigned long flags)
1405{
1406        struct inode *inode;
1407        struct shmem_inode_info *info;
1408        struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
1409
1410        if (shmem_reserve_inode(sb))
1411                return NULL;
1412
1413        inode = new_inode(sb);
1414        if (inode) {
1415                inode->i_ino = get_next_ino();
1416                inode_init_owner(inode, dir, mode);
1417                inode->i_blocks = 0;
1418                inode->i_mapping->backing_dev_info = &shmem_backing_dev_info;
1419                inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
1420                inode->i_generation = get_seconds();
1421                info = SHMEM_I(inode);
1422                memset(info, 0, (char *)inode - (char *)info);
1423                spin_lock_init(&info->lock);
1424                info->seals = F_SEAL_SEAL;
1425                info->flags = flags & VM_NORESERVE;
1426                INIT_LIST_HEAD(&info->swaplist);
1427                simple_xattrs_init(&info->xattrs);
1428                cache_no_acl(inode);
1429
1430                switch (mode & S_IFMT) {
1431                default:
1432                        inode->i_op = &shmem_special_inode_operations;
1433                        init_special_inode(inode, mode, dev);
1434                        break;
1435                case S_IFREG:
1436                        inode->i_mapping->a_ops = &shmem_aops;
1437                        inode->i_op = &shmem_inode_operations;
1438                        inode->i_fop = &shmem_file_operations;
1439                        mpol_shared_policy_init(&info->policy,
1440                                                 shmem_get_sbmpol(sbinfo));
1441                        break;
1442                case S_IFDIR:
1443                        inc_nlink(inode);
1444                        /* Some things misbehave if size == 0 on a directory */
1445                        inode->i_size = 2 * BOGO_DIRENT_SIZE;
1446                        inode->i_op = &shmem_dir_inode_operations;
1447                        inode->i_fop = &simple_dir_operations;
1448                        break;
1449                case S_IFLNK:
1450                        /*
1451                         * Must not load anything in the rbtree,
1452                         * mpol_free_shared_policy will not be called.
1453                         */
1454                        mpol_shared_policy_init(&info->policy, NULL);
1455                        break;
1456                }
1457        } else
1458                shmem_free_inode(sb);
1459        return inode;
1460}
1461
1462bool shmem_mapping(struct address_space *mapping)
1463{
1464        return mapping->backing_dev_info == &shmem_backing_dev_info;
1465}
1466
1467#ifdef CONFIG_TMPFS
1468static const struct inode_operations shmem_symlink_inode_operations;
1469static const struct inode_operations shmem_short_symlink_operations;
1470
1471#ifdef CONFIG_TMPFS_XATTR
1472static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
1473#else
1474#define shmem_initxattrs NULL
1475#endif
1476
1477static int
1478shmem_write_begin(struct file *file, struct address_space *mapping,
1479                        loff_t pos, unsigned len, unsigned flags,
1480                        struct page **pagep, void **fsdata)
1481{
1482        struct inode *inode = mapping->host;
1483        struct shmem_inode_info *info = SHMEM_I(inode);
1484        pgoff_t index = pos >> PAGE_CACHE_SHIFT;
1485
1486        /* i_mutex is held by caller */
1487        if (unlikely(info->seals)) {
1488                if (info->seals & F_SEAL_WRITE)
1489                        return -EPERM;
1490                if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size)
1491                        return -EPERM;
1492        }
1493
1494        return shmem_getpage(inode, index, pagep, SGP_WRITE, NULL);
1495}
1496
1497static int
1498shmem_write_end(struct file *file, struct address_space *mapping,
1499                        loff_t pos, unsigned len, unsigned copied,
1500                        struct page *page, void *fsdata)
1501{
1502        struct inode *inode = mapping->host;
1503
1504        if (pos + copied > inode->i_size)
1505                i_size_write(inode, pos + copied);
1506
1507        if (!PageUptodate(page)) {
1508                if (copied < PAGE_CACHE_SIZE) {
1509                        unsigned from = pos & (PAGE_CACHE_SIZE - 1);
1510                        zero_user_segments(page, 0, from,
1511                                        from + copied, PAGE_CACHE_SIZE);
1512                }
1513                SetPageUptodate(page);
1514        }
1515        set_page_dirty(page);
1516        unlock_page(page);
1517        page_cache_release(page);
1518
1519        return copied;
1520}
1521
1522static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
1523{
1524        struct file *file = iocb->ki_filp;
1525        struct inode *inode = file_inode(file);
1526        struct address_space *mapping = inode->i_mapping;
1527        pgoff_t index;
1528        unsigned long offset;
1529        enum sgp_type sgp = SGP_READ;
1530        int error = 0;
1531        ssize_t retval = 0;
1532        loff_t *ppos = &iocb->ki_pos;
1533
1534        /*
1535         * Might this read be for a stacking filesystem?  Then when reading
1536         * holes of a sparse file, we actually need to allocate those pages,
1537         * and even mark them dirty, so it cannot exceed the max_blocks limit.
1538         */
1539        if (segment_eq(get_fs(), KERNEL_DS))
1540                sgp = SGP_DIRTY;
1541
1542        index = *ppos >> PAGE_CACHE_SHIFT;
1543        offset = *ppos & ~PAGE_CACHE_MASK;
1544
1545        for (;;) {
1546                struct page *page = NULL;
1547                pgoff_t end_index;
1548                unsigned long nr, ret;
1549                loff_t i_size = i_size_read(inode);
1550
1551                end_index = i_size >> PAGE_CACHE_SHIFT;
1552                if (index > end_index)
1553                        break;
1554                if (index == end_index) {
1555                        nr = i_size & ~PAGE_CACHE_MASK;
1556                        if (nr <= offset)
1557                                break;
1558                }
1559
1560                error = shmem_getpage(inode, index, &page, sgp, NULL);
1561                if (error) {
1562                        if (error == -EINVAL)
1563                                error = 0;
1564                        break;
1565                }
1566                if (page)
1567                        unlock_page(page);
1568
1569                /*
1570                 * We must evaluate after, since reads (unlike writes)
1571                 * are called without i_mutex protection against truncate
1572                 */
1573                nr = PAGE_CACHE_SIZE;
1574                i_size = i_size_read(inode);
1575                end_index = i_size >> PAGE_CACHE_SHIFT;
1576                if (index == end_index) {
1577                        nr = i_size & ~PAGE_CACHE_MASK;
1578                        if (nr <= offset) {
1579                                if (page)
1580                                        page_cache_release(page);
1581                                break;
1582                        }
1583                }
1584                nr -= offset;
1585
1586                if (page) {
1587                        /*
1588                         * If users can be writing to this page using arbitrary
1589                         * virtual addresses, take care about potential aliasing
1590                         * before reading the page on the kernel side.
1591                         */
1592                        if (mapping_writably_mapped(mapping))
1593                                flush_dcache_page(page);
1594                        /*
1595                         * Mark the page accessed if we read the beginning.
1596                         */
1597                        if (!offset)
1598                                mark_page_accessed(page);
1599                } else {
1600                        page = ZERO_PAGE(0);
1601                        page_cache_get(page);
1602                }
1603
1604                /*
1605                 * Ok, we have the page, and it's up-to-date, so
1606                 * now we can copy it to user space...
1607                 */
1608                ret = copy_page_to_iter(page, offset, nr, to);
1609                retval += ret;
1610                offset += ret;
1611                index += offset >> PAGE_CACHE_SHIFT;
1612                offset &= ~PAGE_CACHE_MASK;
1613
1614                page_cache_release(page);
1615                if (!iov_iter_count(to))
1616                        break;
1617                if (ret < nr) {
1618                        error = -EFAULT;
1619                        break;
1620                }
1621                cond_resched();
1622        }
1623
1624        *ppos = ((loff_t) index << PAGE_CACHE_SHIFT) + offset;
1625        file_accessed(file);
1626        return retval ? retval : error;
1627}
1628
1629static ssize_t shmem_file_splice_read(struct file *in, loff_t *ppos,
1630                                struct pipe_inode_info *pipe, size_t len,
1631                                unsigned int flags)
1632{
1633        struct address_space *mapping = in->f_mapping;
1634        struct inode *inode = mapping->host;
1635        unsigned int loff, nr_pages, req_pages;
1636        struct page *pages[PIPE_DEF_BUFFERS];
1637        struct partial_page partial[PIPE_DEF_BUFFERS];
1638        struct page *page;
1639        pgoff_t index, end_index;
1640        loff_t isize, left;
1641        int error, page_nr;
1642        struct splice_pipe_desc spd = {
1643                .pages = pages,
1644                .partial = partial,
1645                .nr_pages_max = PIPE_DEF_BUFFERS,
1646                .flags = flags,
1647                .ops = &page_cache_pipe_buf_ops,
1648                .spd_release = spd_release_page,
1649        };
1650
1651        isize = i_size_read(inode);
1652        if (unlikely(*ppos >= isize))
1653                return 0;
1654
1655        left = isize - *ppos;
1656        if (unlikely(left < len))
1657                len = left;
1658
1659        if (splice_grow_spd(pipe, &spd))
1660                return -ENOMEM;
1661
1662        index = *ppos >> PAGE_CACHE_SHIFT;
1663        loff = *ppos & ~PAGE_CACHE_MASK;
1664        req_pages = (len + loff + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1665        nr_pages = min(req_pages, spd.nr_pages_max);
1666
1667        spd.nr_pages = find_get_pages_contig(mapping, index,
1668                                                nr_pages, spd.pages);
1669        index += spd.nr_pages;
1670        error = 0;
1671
1672        while (spd.nr_pages < nr_pages) {
1673                error = shmem_getpage(inode, index, &page, SGP_CACHE, NULL);
1674                if (error)
1675                        break;
1676                unlock_page(page);
1677                spd.pages[spd.nr_pages++] = page;
1678                index++;
1679        }
1680
1681        index = *ppos >> PAGE_CACHE_SHIFT;
1682        nr_pages = spd.nr_pages;
1683        spd.nr_pages = 0;
1684
1685        for (page_nr = 0; page_nr < nr_pages; page_nr++) {
1686                unsigned int this_len;
1687
1688                if (!len)
1689                        break;
1690
1691                this_len = min_t(unsigned long, len, PAGE_CACHE_SIZE - loff);
1692                page = spd.pages[page_nr];
1693
1694                if (!PageUptodate(page) || page->mapping != mapping) {
1695                        error = shmem_getpage(inode, index, &page,
1696                                                        SGP_CACHE, NULL);
1697                        if (error)
1698                                break;
1699                        unlock_page(page);
1700                        page_cache_release(spd.pages[page_nr]);
1701                        spd.pages[page_nr] = page;
1702                }
1703
1704                isize = i_size_read(inode);
1705                end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1706                if (unlikely(!isize || index > end_index))
1707                        break;
1708
1709                if (end_index == index) {
1710                        unsigned int plen;
1711
1712                        plen = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
1713                        if (plen <= loff)
1714                                break;
1715
1716                        this_len = min(this_len, plen - loff);
1717                        len = this_len;
1718                }
1719
1720                spd.partial[page_nr].offset = loff;
1721                spd.partial[page_nr].len = this_len;
1722                len -= this_len;
1723                loff = 0;
1724                spd.nr_pages++;
1725                index++;
1726        }
1727
1728        while (page_nr < nr_pages)
1729                page_cache_release(spd.pages[page_nr++]);
1730
1731        if (spd.nr_pages)
1732                error = splice_to_pipe(pipe, &spd);
1733
1734        splice_shrink_spd(&spd);
1735
1736        if (error > 0) {
1737                *ppos += error;
1738                file_accessed(in);
1739        }
1740        return error;
1741}
1742
1743/*
1744 * llseek SEEK_DATA or SEEK_HOLE through the radix_tree.
1745 */
1746static pgoff_t shmem_seek_hole_data(struct address_space *mapping,
1747                                    pgoff_t index, pgoff_t end, int whence)
1748{
1749        struct page *page;
1750        struct pagevec pvec;
1751        pgoff_t indices[PAGEVEC_SIZE];
1752        bool done = false;
1753        int i;
1754
1755        pagevec_init(&pvec, 0);
1756        pvec.nr = 1;            /* start small: we may be there already */
1757        while (!done) {
1758                pvec.nr = find_get_entries(mapping, index,
1759                                        pvec.nr, pvec.pages, indices);
1760                if (!pvec.nr) {
1761                        if (whence == SEEK_DATA)
1762                                index = end;
1763                        break;
1764                }
1765                for (i = 0; i < pvec.nr; i++, index++) {
1766                        if (index < indices[i]) {
1767                                if (whence == SEEK_HOLE) {
1768                                        done = true;
1769                                        break;
1770                                }
1771                                index = indices[i];
1772                        }
1773                        page = pvec.pages[i];
1774                        if (page && !radix_tree_exceptional_entry(page)) {
1775                                if (!PageUptodate(page))
1776                                        page = NULL;
1777                        }
1778                        if (index >= end ||
1779                            (page && whence == SEEK_DATA) ||
1780                            (!page && whence == SEEK_HOLE)) {
1781                                done = true;
1782                                break;
1783                        }
1784                }
1785                pagevec_remove_exceptionals(&pvec);
1786                pagevec_release(&pvec);
1787                pvec.nr = PAGEVEC_SIZE;
1788                cond_resched();
1789        }
1790        return index;
1791}
1792
1793static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
1794{
1795        struct address_space *mapping = file->f_mapping;
1796        struct inode *inode = mapping->host;
1797        pgoff_t start, end;
1798        loff_t new_offset;
1799
1800        if (whence != SEEK_DATA && whence != SEEK_HOLE)
1801                return generic_file_llseek_size(file, offset, whence,
1802                                        MAX_LFS_FILESIZE, i_size_read(inode));
1803        mutex_lock(&inode->i_mutex);
1804        /* We're holding i_mutex so we can access i_size directly */
1805
1806        if (offset < 0)
1807                offset = -EINVAL;
1808        else if (offset >= inode->i_size)
1809                offset = -ENXIO;
1810        else {
1811                start = offset >> PAGE_CACHE_SHIFT;
1812                end = (inode->i_size + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1813                new_offset = shmem_seek_hole_data(mapping, start, end, whence);
1814                new_offset <<= PAGE_CACHE_SHIFT;
1815                if (new_offset > offset) {
1816                        if (new_offset < inode->i_size)
1817                                offset = new_offset;
1818                        else if (whence == SEEK_DATA)
1819                                offset = -ENXIO;
1820                        else
1821                                offset = inode->i_size;
1822                }
1823        }
1824
1825        if (offset >= 0)
1826                offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE);
1827        mutex_unlock(&inode->i_mutex);
1828        return offset;
1829}
1830
1831/*
1832 * We need a tag: a new tag would expand every radix_tree_node by 8 bytes,
1833 * so reuse a tag which we firmly believe is never set or cleared on shmem.
1834 */
1835#define SHMEM_TAG_PINNED        PAGECACHE_TAG_TOWRITE
1836#define LAST_SCAN               4       /* about 150ms max */
1837
1838static void shmem_tag_pins(struct address_space *mapping)
1839{
1840        struct radix_tree_iter iter;
1841        void **slot;
1842        pgoff_t start;
1843        struct page *page;
1844
1845        lru_add_drain();
1846        start = 0;
1847        rcu_read_lock();
1848
1849restart:
1850        radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
1851                page = radix_tree_deref_slot(slot);
1852                if (!page || radix_tree_exception(page)) {
1853                        if (radix_tree_deref_retry(page))
1854                                goto restart;
1855                } else if (page_count(page) - page_mapcount(page) > 1) {
1856                        spin_lock_irq(&mapping->tree_lock);
1857                        radix_tree_tag_set(&mapping->page_tree, iter.index,
1858                                           SHMEM_TAG_PINNED);
1859                        spin_unlock_irq(&mapping->tree_lock);
1860                }
1861
1862                if (need_resched()) {
1863                        cond_resched_rcu();
1864                        start = iter.index + 1;
1865                        goto restart;
1866                }
1867        }
1868        rcu_read_unlock();
1869}
1870
1871/*
1872 * Setting SEAL_WRITE requires us to verify there's no pending writer. However,
1873 * via get_user_pages(), drivers might have some pending I/O without any active
1874 * user-space mappings (eg., direct-IO, AIO). Therefore, we look at all pages
1875 * and see whether it has an elevated ref-count. If so, we tag them and wait for
1876 * them to be dropped.
1877 * The caller must guarantee that no new user will acquire writable references
1878 * to those pages to avoid races.
1879 */
1880static int shmem_wait_for_pins(struct address_space *mapping)
1881{
1882        struct radix_tree_iter iter;
1883        void **slot;
1884        pgoff_t start;
1885        struct page *page;
1886        int error, scan;
1887
1888        shmem_tag_pins(mapping);
1889
1890        error = 0;
1891        for (scan = 0; scan <= LAST_SCAN; scan++) {
1892                if (!radix_tree_tagged(&mapping->page_tree, SHMEM_TAG_PINNED))
1893                        break;
1894
1895                if (!scan)
1896                        lru_add_drain_all();
1897                else if (schedule_timeout_killable((HZ << scan) / 200))
1898                        scan = LAST_SCAN;
1899
1900                start = 0;
1901                rcu_read_lock();
1902restart:
1903                radix_tree_for_each_tagged(slot, &mapping->page_tree, &iter,
1904                                           start, SHMEM_TAG_PINNED) {
1905
1906                        page = radix_tree_deref_slot(slot);
1907                        if (radix_tree_exception(page)) {
1908                                if (radix_tree_deref_retry(page))
1909                                        goto restart;
1910
1911                                page = NULL;
1912                        }
1913
1914                        if (page &&
1915                            page_count(page) - page_mapcount(page) != 1) {
1916                                if (scan < LAST_SCAN)
1917                                        goto continue_resched;
1918
1919                                /*
1920                                 * On the last scan, we clean up all those tags
1921                                 * we inserted; but make a note that we still
1922                                 * found pages pinned.
1923                                 */
1924                                error = -EBUSY;
1925                        }
1926
1927                        spin_lock_irq(&mapping->tree_lock);
1928                        radix_tree_tag_clear(&mapping->page_tree,
1929                                             iter.index, SHMEM_TAG_PINNED);
1930                        spin_unlock_irq(&mapping->tree_lock);
1931continue_resched:
1932                        if (need_resched()) {
1933                                cond_resched_rcu();
1934                                start = iter.index + 1;
1935                                goto restart;
1936                        }
1937                }
1938                rcu_read_unlock();
1939        }
1940
1941        return error;
1942}
1943
1944#define F_ALL_SEALS (F_SEAL_SEAL | \
1945                     F_SEAL_SHRINK | \
1946                     F_SEAL_GROW | \
1947                     F_SEAL_WRITE)
1948
1949int shmem_add_seals(struct file *file, unsigned int seals)
1950{
1951        struct inode *inode = file_inode(file);
1952        struct shmem_inode_info *info = SHMEM_I(inode);
1953        int error;
1954
1955        /*
1956         * SEALING
1957         * Sealing allows multiple parties to share a shmem-file but restrict
1958         * access to a specific subset of file operations. Seals can only be
1959         * added, but never removed. This way, mutually untrusted parties can
1960         * share common memory regions with a well-defined policy. A malicious
1961         * peer can thus never perform unwanted operations on a shared object.
1962         *
1963         * Seals are only supported on special shmem-files and always affect
1964         * the whole underlying inode. Once a seal is set, it may prevent some
1965         * kinds of access to the file. Currently, the following seals are
1966         * defined:
1967         *   SEAL_SEAL: Prevent further seals from being set on this file
1968         *   SEAL_SHRINK: Prevent the file from shrinking
1969         *   SEAL_GROW: Prevent the file from growing
1970         *   SEAL_WRITE: Prevent write access to the file
1971         *
1972         * As we don't require any trust relationship between two parties, we
1973         * must prevent seals from being removed. Therefore, sealing a file
1974         * only adds a given set of seals to the file, it never touches
1975         * existing seals. Furthermore, the "setting seals"-operation can be
1976         * sealed itself, which basically prevents any further seal from being
1977         * added.
1978         *
1979         * Semantics of sealing are only defined on volatile files. Only
1980         * anonymous shmem files support sealing. More importantly, seals are
1981         * never written to disk. Therefore, there's no plan to support it on
1982         * other file types.
1983         */
1984
1985        if (file->f_op != &shmem_file_operations)
1986                return -EINVAL;
1987        if (!(file->f_mode & FMODE_WRITE))
1988                return -EPERM;
1989        if (seals & ~(unsigned int)F_ALL_SEALS)
1990                return -EINVAL;
1991
1992        mutex_lock(&inode->i_mutex);
1993
1994        if (info->seals & F_SEAL_SEAL) {
1995                error = -EPERM;
1996                goto unlock;
1997        }
1998
1999        if ((seals & F_SEAL_WRITE) && !(info->seals & F_SEAL_WRITE)) {
2000                error = mapping_deny_writable(file->f_mapping);
2001                if (error)
2002                        goto unlock;
2003
2004                error = shmem_wait_for_pins(file->f_mapping);
2005                if (error) {
2006                        mapping_allow_writable(file->f_mapping);
2007                        goto unlock;
2008                }
2009        }
2010
2011        info->seals |= seals;
2012        error = 0;
2013
2014unlock:
2015        mutex_unlock(&inode->i_mutex);
2016        return error;
2017}
2018EXPORT_SYMBOL_GPL(shmem_add_seals);
2019
2020int shmem_get_seals(struct file *file)
2021{
2022        if (file->f_op != &shmem_file_operations)
2023                return -EINVAL;
2024
2025        return SHMEM_I(file_inode(file))->seals;
2026}
2027EXPORT_SYMBOL_GPL(shmem_get_seals);
2028
2029long shmem_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
2030{
2031        long error;
2032
2033        switch (cmd) {
2034        case F_ADD_SEALS:
2035                /* disallow upper 32bit */
2036                if (arg > UINT_MAX)
2037                        return -EINVAL;
2038
2039                error = shmem_add_seals(file, arg);
2040                break;
2041        case F_GET_SEALS:
2042                error = shmem_get_seals(file);
2043                break;
2044        default:
2045                error = -EINVAL;
2046                break;
2047        }
2048
2049        return error;
2050}
2051
2052static long shmem_fallocate(struct file *file, int mode, loff_t offset,
2053                                                         loff_t len)
2054{
2055        struct inode *inode = file_inode(file);
2056        struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
2057        struct shmem_inode_info *info = SHMEM_I(inode);
2058        struct shmem_falloc shmem_falloc;
2059        pgoff_t start, index, end;
2060        int error;
2061
2062        if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2063                return -EOPNOTSUPP;
2064
2065        mutex_lock(&inode->i_mutex);
2066
2067        if (mode & FALLOC_FL_PUNCH_HOLE) {
2068                struct address_space *mapping = file->f_mapping;
2069                loff_t unmap_start = round_up(offset, PAGE_SIZE);
2070                loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
2071                DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq);
2072
2073                /* protected by i_mutex */
2074                if (info->seals & F_SEAL_WRITE) {
2075                        error = -EPERM;
2076                        goto out;
2077                }
2078
2079                shmem_falloc.waitq = &shmem_falloc_waitq;
2080                shmem_falloc.start = unmap_start >> PAGE_SHIFT;
2081                shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT;
2082                spin_lock(&inode->i_lock);
2083                inode->i_private = &shmem_falloc;
2084                spin_unlock(&inode->i_lock);
2085
2086                if ((u64)unmap_end > (u64)unmap_start)
2087                        unmap_mapping_range(mapping, unmap_start,
2088                                            1 + unmap_end - unmap_start, 0);
2089                shmem_truncate_range(inode, offset, offset + len - 1);
2090                /* No need to unmap again: hole-punching leaves COWed pages */
2091
2092                spin_lock(&inode->i_lock);
2093                inode->i_private = NULL;
2094                wake_up_all(&shmem_falloc_waitq);
2095                spin_unlock(&inode->i_lock);
2096                error = 0;
2097                goto out;
2098        }
2099
2100        /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
2101        error = inode_newsize_ok(inode, offset + len);
2102        if (error)
2103                goto out;
2104
2105        if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
2106                error = -EPERM;
2107                goto out;
2108        }
2109
2110        start = offset >> PAGE_CACHE_SHIFT;
2111        end = (offset + len + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
2112        /* Try to avoid a swapstorm if len is impossible to satisfy */
2113        if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
2114                error = -ENOSPC;
2115                goto out;
2116        }
2117
2118        shmem_falloc.waitq = NULL;
2119        shmem_falloc.start = start;
2120        shmem_falloc.next  = start;
2121        shmem_falloc.nr_falloced = 0;
2122        shmem_falloc.nr_unswapped = 0;
2123        spin_lock(&inode->i_lock);
2124        inode->i_private = &shmem_falloc;
2125        spin_unlock(&inode->i_lock);
2126
2127        for (index = start; index < end; index++) {
2128                struct page *page;
2129
2130                /*
2131                 * Good, the fallocate(2) manpage permits EINTR: we may have
2132                 * been interrupted because we are using up too much memory.
2133                 */
2134                if (signal_pending(current))
2135                        error = -EINTR;
2136                else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
2137                        error = -ENOMEM;
2138                else
2139                        error = shmem_getpage(inode, index, &page, SGP_FALLOC,
2140                                                                        NULL);
2141                if (error) {
2142                        /* Remove the !PageUptodate pages we added */
2143                        shmem_undo_range(inode,
2144                                (loff_t)start << PAGE_CACHE_SHIFT,
2145                                (loff_t)index << PAGE_CACHE_SHIFT, true);
2146                        goto undone;
2147                }
2148
2149                /*
2150                 * Inform shmem_writepage() how far we have reached.
2151                 * No need for lock or barrier: we have the page lock.
2152                 */
2153                shmem_falloc.next++;
2154                if (!PageUptodate(page))
2155                        shmem_falloc.nr_falloced++;
2156
2157                /*
2158                 * If !PageUptodate, leave it that way so that freeable pages
2159                 * can be recognized if we need to rollback on error later.
2160                 * But set_page_dirty so that memory pressure will swap rather
2161                 * than free the pages we are allocating (and SGP_CACHE pages
2162                 * might still be clean: we now need to mark those dirty too).
2163                 */
2164                set_page_dirty(page);
2165                unlock_page(page);
2166                page_cache_release(page);
2167                cond_resched();
2168        }
2169
2170        if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
2171                i_size_write(inode, offset + len);
2172        inode->i_ctime = CURRENT_TIME;
2173undone:
2174        spin_lock(&inode->i_lock);
2175        inode->i_private = NULL;
2176        spin_unlock(&inode->i_lock);
2177out:
2178        mutex_unlock(&inode->i_mutex);
2179        return error;
2180}
2181
2182static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
2183{
2184        struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
2185
2186        buf->f_type = TMPFS_MAGIC;
2187        buf->f_bsize = PAGE_CACHE_SIZE;
2188        buf->f_namelen = NAME_MAX;
2189        if (sbinfo->max_blocks) {
2190                buf->f_blocks = sbinfo->max_blocks;
2191                buf->f_bavail =
2192                buf->f_bfree  = sbinfo->max_blocks -
2193                                percpu_counter_sum(&sbinfo->used_blocks);
2194        }
2195        if (sbinfo->max_inodes) {
2196                buf->f_files = sbinfo->max_inodes;
2197                buf->f_ffree = sbinfo->free_inodes;
2198        }
2199        /* else leave those fields 0 like simple_statfs */
2200        return 0;
2201}
2202
2203/*
2204 * File creation. Allocate an inode, and we're done..
2205 */
2206static int
2207shmem_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
2208{
2209        struct inode *inode;
2210        int error = -ENOSPC;
2211
2212        inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
2213        if (inode) {
2214                error = simple_acl_create(dir, inode);
2215                if (error)
2216                        goto out_iput;
2217                error = security_inode_init_security(inode, dir,
2218                                                     &dentry->d_name,
2219                                                     shmem_initxattrs, NULL);
2220                if (error && error != -EOPNOTSUPP)
2221                        goto out_iput;
2222
2223                error = 0;
2224                dir->i_size += BOGO_DIRENT_SIZE;
2225                dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2226                d_instantiate(dentry, inode);
2227                dget(dentry); /* Extra count - pin the dentry in core */
2228        }
2229        return error;
2230out_iput:
2231        iput(inode);
2232        return error;
2233}
2234
2235static int
2236shmem_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
2237{
2238        struct inode *inode;
2239        int error = -ENOSPC;
2240
2241        inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE);
2242        if (inode) {
2243                error = security_inode_init_security(inode, dir,
2244                                                     NULL,
2245                                                     shmem_initxattrs, NULL);
2246                if (error && error != -EOPNOTSUPP)
2247                        goto out_iput;
2248                error = simple_acl_create(dir, inode);
2249                if (error)
2250                        goto out_iput;
2251                d_tmpfile(dentry, inode);
2252        }
2253        return error;
2254out_iput:
2255        iput(inode);
2256        return error;
2257}
2258
2259static int shmem_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
2260{
2261        int error;
2262
2263        if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
2264                return error;
2265        inc_nlink(dir);
2266        return 0;
2267}
2268
2269static int shmem_create(struct inode *dir, struct dentry *dentry, umode_t mode,
2270                bool excl)
2271{
2272        return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
2273}
2274
2275/*
2276 * Link a file..
2277 */
2278static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
2279{
2280        struct inode *inode = old_dentry->d_inode;
2281        int ret;
2282
2283        /*
2284         * No ordinary (disk based) filesystem counts links as inodes;
2285         * but each new link needs a new dentry, pinning lowmem, and
2286         * tmpfs dentries cannot be pruned until they are unlinked.
2287         */
2288        ret = shmem_reserve_inode(inode->i_sb);
2289        if (ret)
2290                goto out;
2291
2292        dir->i_size += BOGO_DIRENT_SIZE;
2293        inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2294        inc_nlink(inode);
2295        ihold(inode);   /* New dentry reference */
2296        dget(dentry);           /* Extra pinning count for the created dentry */
2297        d_instantiate(dentry, inode);
2298out:
2299        return ret;
2300}
2301
2302static int shmem_unlink(struct inode *dir, struct dentry *dentry)
2303{
2304        struct inode *inode = dentry->d_inode;
2305
2306        if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
2307                shmem_free_inode(inode->i_sb);
2308
2309        dir->i_size -= BOGO_DIRENT_SIZE;
2310        inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2311        drop_nlink(inode);
2312        dput(dentry);   /* Undo the count from "create" - this does all the work */
2313        return 0;
2314}
2315
2316static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
2317{
2318        if (!simple_empty(dentry))
2319                return -ENOTEMPTY;
2320
2321        drop_nlink(dentry->d_inode);
2322        drop_nlink(dir);
2323        return shmem_unlink(dir, dentry);
2324}
2325
2326static int shmem_exchange(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
2327{
2328        bool old_is_dir = S_ISDIR(old_dentry->d_inode->i_mode);
2329        bool new_is_dir = S_ISDIR(new_dentry->d_inode->i_mode);
2330
2331        if (old_dir != new_dir && old_is_dir != new_is_dir) {
2332                if (old_is_dir) {
2333                        drop_nlink(old_dir);
2334                        inc_nlink(new_dir);
2335                } else {
2336                        drop_nlink(new_dir);
2337                        inc_nlink(old_dir);
2338                }
2339        }
2340        old_dir->i_ctime = old_dir->i_mtime =
2341        new_dir->i_ctime = new_dir->i_mtime =
2342        old_dentry->d_inode->i_ctime =
2343        new_dentry->d_inode->i_ctime = CURRENT_TIME;
2344
2345        return 0;
2346}
2347
2348static int shmem_whiteout(struct inode *old_dir, struct dentry *old_dentry)
2349{
2350        struct dentry *whiteout;
2351        int error;
2352
2353        whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name);
2354        if (!whiteout)
2355                return -ENOMEM;
2356
2357        error = shmem_mknod(old_dir, whiteout,
2358                            S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
2359        dput(whiteout);
2360        if (error)
2361                return error;
2362
2363        /*
2364         * Cheat and hash the whiteout while the old dentry is still in
2365         * place, instead of playing games with FS_RENAME_DOES_D_MOVE.
2366         *
2367         * d_lookup() will consistently find one of them at this point,
2368         * not sure which one, but that isn't even important.
2369         */
2370        d_rehash(whiteout);
2371        return 0;
2372}
2373
2374/*
2375 * The VFS layer already does all the dentry stuff for rename,
2376 * we just have to decrement the usage count for the target if
2377 * it exists so that the VFS layer correctly free's it when it
2378 * gets overwritten.
2379 */
2380static int shmem_rename2(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry, unsigned int flags)
2381{
2382        struct inode *inode = old_dentry->d_inode;
2383        int they_are_dirs = S_ISDIR(inode->i_mode);
2384
2385        if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
2386                return -EINVAL;
2387
2388        if (flags & RENAME_EXCHANGE)
2389                return shmem_exchange(old_dir, old_dentry, new_dir, new_dentry);
2390
2391        if (!simple_empty(new_dentry))
2392                return -ENOTEMPTY;
2393
2394        if (flags & RENAME_WHITEOUT) {
2395                int error;
2396
2397                error = shmem_whiteout(old_dir, old_dentry);
2398                if (error)
2399                        return error;
2400        }
2401
2402        if (new_dentry->d_inode) {
2403                (void) shmem_unlink(new_dir, new_dentry);
2404                if (they_are_dirs) {
2405                        drop_nlink(new_dentry->d_inode);
2406                        drop_nlink(old_dir);
2407                }
2408        } else if (they_are_dirs) {
2409                drop_nlink(old_dir);
2410                inc_nlink(new_dir);
2411        }
2412
2413        old_dir->i_size -= BOGO_DIRENT_SIZE;
2414        new_dir->i_size += BOGO_DIRENT_SIZE;
2415        old_dir->i_ctime = old_dir->i_mtime =
2416        new_dir->i_ctime = new_dir->i_mtime =
2417        inode->i_ctime = CURRENT_TIME;
2418        return 0;
2419}
2420
2421static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
2422{
2423        int error;
2424        int len;
2425        struct inode *inode;
2426        struct page *page;
2427        char *kaddr;
2428        struct shmem_inode_info *info;
2429
2430        len = strlen(symname) + 1;
2431        if (len > PAGE_CACHE_SIZE)
2432                return -ENAMETOOLONG;
2433
2434        inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0, VM_NORESERVE);
2435        if (!inode)
2436                return -ENOSPC;
2437
2438        error = security_inode_init_security(inode, dir, &dentry->d_name,
2439                                             shmem_initxattrs, NULL);
2440        if (error) {
2441                if (error != -EOPNOTSUPP) {
2442                        iput(inode);
2443                        return error;
2444                }
2445                error = 0;
2446        }
2447
2448        info = SHMEM_I(inode);
2449        inode->i_size = len-1;
2450        if (len <= SHORT_SYMLINK_LEN) {
2451                info->symlink = kmemdup(symname, len, GFP_KERNEL);
2452                if (!info->symlink) {
2453                        iput(inode);
2454                        return -ENOMEM;
2455                }
2456                inode->i_op = &shmem_short_symlink_operations;
2457        } else {
2458                error = shmem_getpage(inode, 0, &page, SGP_WRITE, NULL);
2459                if (error) {
2460                        iput(inode);
2461                        return error;
2462                }
2463                inode->i_mapping->a_ops = &shmem_aops;
2464                inode->i_op = &shmem_symlink_inode_operations;
2465                kaddr = kmap_atomic(page);
2466                memcpy(kaddr, symname, len);
2467                kunmap_atomic(kaddr);
2468                SetPageUptodate(page);
2469                set_page_dirty(page);
2470                unlock_page(page);
2471                page_cache_release(page);
2472        }
2473        dir->i_size += BOGO_DIRENT_SIZE;
2474        dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2475        d_instantiate(dentry, inode);
2476        dget(dentry);
2477        return 0;
2478}
2479
2480static void *shmem_follow_short_symlink(struct dentry *dentry, struct nameidata *nd)
2481{
2482        nd_set_link(nd, SHMEM_I(dentry->d_inode)->symlink);
2483        return NULL;
2484}
2485
2486static void *shmem_follow_link(struct dentry *dentry, struct nameidata *nd)
2487{
2488        struct page *page = NULL;
2489        int error = shmem_getpage(dentry->d_inode, 0, &page, SGP_READ, NULL);
2490        nd_set_link(nd, error ? ERR_PTR(error) : kmap(page));
2491        if (page)
2492                unlock_page(page);
2493        return page;
2494}
2495
2496static void shmem_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
2497{
2498        if (!IS_ERR(nd_get_link(nd))) {
2499                struct page *page = cookie;
2500                kunmap(page);
2501                mark_page_accessed(page);
2502                page_cache_release(page);
2503        }
2504}
2505
2506#ifdef CONFIG_TMPFS_XATTR
2507/*
2508 * Superblocks without xattr inode operations may get some security.* xattr
2509 * support from the LSM "for free". As soon as we have any other xattrs
2510 * like ACLs, we also need to implement the security.* handlers at
2511 * filesystem level, though.
2512 */
2513
2514/*
2515 * Callback for security_inode_init_security() for acquiring xattrs.
2516 */
2517static int shmem_initxattrs(struct inode *inode,
2518                            const struct xattr *xattr_array,
2519                            void *fs_info)
2520{
2521        struct shmem_inode_info *info = SHMEM_I(inode);
2522        const struct xattr *xattr;
2523        struct simple_xattr *new_xattr;
2524        size_t len;
2525
2526        for (xattr = xattr_array; xattr->name != NULL; xattr++) {
2527                new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
2528                if (!new_xattr)
2529                        return -ENOMEM;
2530
2531                len = strlen(xattr->name) + 1;
2532                new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
2533                                          GFP_KERNEL);
2534                if (!new_xattr->name) {
2535                        kfree(new_xattr);
2536                        return -ENOMEM;
2537                }
2538
2539                memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
2540                       XATTR_SECURITY_PREFIX_LEN);
2541                memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
2542                       xattr->name, len);
2543
2544                simple_xattr_list_add(&info->xattrs, new_xattr);
2545        }
2546
2547        return 0;
2548}
2549
2550static const struct xattr_handler *shmem_xattr_handlers[] = {
2551#ifdef CONFIG_TMPFS_POSIX_ACL
2552        &posix_acl_access_xattr_handler,
2553        &posix_acl_default_xattr_handler,
2554#endif
2555        NULL
2556};
2557
2558static int shmem_xattr_validate(const char *name)
2559{
2560        struct { const char *prefix; size_t len; } arr[] = {
2561                { XATTR_SECURITY_PREFIX, XATTR_SECURITY_PREFIX_LEN },
2562                { XATTR_TRUSTED_PREFIX, XATTR_TRUSTED_PREFIX_LEN }
2563        };
2564        int i;
2565
2566        for (i = 0; i < ARRAY_SIZE(arr); i++) {
2567                size_t preflen = arr[i].len;
2568                if (strncmp(name, arr[i].prefix, preflen) == 0) {
2569                        if (!name[preflen])
2570                                return -EINVAL;
2571                        return 0;
2572                }
2573        }
2574        return -EOPNOTSUPP;
2575}
2576
2577static ssize_t shmem_getxattr(struct dentry *dentry, const char *name,
2578                              void *buffer, size_t size)
2579{
2580        struct shmem_inode_info *info = SHMEM_I(dentry->d_inode);
2581        int err;
2582
2583        /*
2584         * If this is a request for a synthetic attribute in the system.*
2585         * namespace use the generic infrastructure to resolve a handler
2586         * for it via sb->s_xattr.
2587         */
2588        if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
2589                return generic_getxattr(dentry, name, buffer, size);
2590
2591        err = shmem_xattr_validate(name);
2592        if (err)
2593                return err;
2594
2595        return simple_xattr_get(&info->xattrs, name, buffer, size);
2596}
2597
2598static int shmem_setxattr(struct dentry *dentry, const char *name,
2599                          const void *value, size_t size, int flags)
2600{
2601        struct shmem_inode_info *info = SHMEM_I(dentry->d_inode);
2602        int err;
2603
2604        /*
2605         * If this is a request for a synthetic attribute in the system.*
2606         * namespace use the generic infrastructure to resolve a handler
2607         * for it via sb->s_xattr.
2608         */
2609        if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
2610                return generic_setxattr(dentry, name, value, size, flags);
2611
2612        err = shmem_xattr_validate(name);
2613        if (err)
2614                return err;
2615
2616        return simple_xattr_set(&info->xattrs, name, value, size, flags);
2617}
2618
2619static int shmem_removexattr(struct dentry *dentry, const char *name)
2620{
2621        struct shmem_inode_info *info = SHMEM_I(dentry->d_inode);
2622        int err;
2623
2624        /*
2625         * If this is a request for a synthetic attribute in the system.*
2626         * namespace use the generic infrastructure to resolve a handler
2627         * for it via sb->s_xattr.
2628         */
2629        if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
2630                return generic_removexattr(dentry, name);
2631
2632        err = shmem_xattr_validate(name);
2633        if (err)
2634                return err;
2635
2636        return simple_xattr_remove(&info->xattrs, name);
2637}
2638
2639static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
2640{
2641        struct shmem_inode_info *info = SHMEM_I(dentry->d_inode);
2642        return simple_xattr_list(&info->xattrs, buffer, size);
2643}
2644#endif /* CONFIG_TMPFS_XATTR */
2645
2646static const struct inode_operations shmem_short_symlink_operations = {
2647        .readlink       = generic_readlink,
2648        .follow_link    = shmem_follow_short_symlink,
2649#ifdef CONFIG_TMPFS_XATTR
2650        .setxattr       = shmem_setxattr,
2651        .getxattr       = shmem_getxattr,
2652        .listxattr      = shmem_listxattr,
2653        .removexattr    = shmem_removexattr,
2654#endif
2655};
2656
2657static const struct inode_operations shmem_symlink_inode_operations = {
2658        .readlink       = generic_readlink,
2659        .follow_link    = shmem_follow_link,
2660        .put_link       = shmem_put_link,
2661#ifdef CONFIG_TMPFS_XATTR
2662        .setxattr       = shmem_setxattr,
2663        .getxattr       = shmem_getxattr,
2664        .listxattr      = shmem_listxattr,
2665        .removexattr    = shmem_removexattr,
2666#endif
2667};
2668
2669static struct dentry *shmem_get_parent(struct dentry *child)
2670{
2671        return ERR_PTR(-ESTALE);
2672}
2673
2674static int shmem_match(struct inode *ino, void *vfh)
2675{
2676        __u32 *fh = vfh;
2677        __u64 inum = fh[2];
2678        inum = (inum << 32) | fh[1];
2679        return ino->i_ino == inum && fh[0] == ino->i_generation;
2680}
2681
2682static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
2683                struct fid *fid, int fh_len, int fh_type)
2684{
2685        struct inode *inode;
2686        struct dentry *dentry = NULL;
2687        u64 inum;
2688
2689        if (fh_len < 3)
2690                return NULL;
2691
2692        inum = fid->raw[2];
2693        inum = (inum << 32) | fid->raw[1];
2694
2695        inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
2696                        shmem_match, fid->raw);
2697        if (inode) {
2698                dentry = d_find_alias(inode);
2699                iput(inode);
2700        }
2701
2702        return dentry;
2703}
2704
2705static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
2706                                struct inode *parent)
2707{
2708        if (*len < 3) {
2709                *len = 3;
2710                return FILEID_INVALID;
2711        }
2712
2713        if (inode_unhashed(inode)) {
2714                /* Unfortunately insert_inode_hash is not idempotent,
2715                 * so as we hash inodes here rather than at creation
2716                 * time, we need a lock to ensure we only try
2717                 * to do it once
2718                 */
2719                static DEFINE_SPINLOCK(lock);
2720                spin_lock(&lock);
2721                if (inode_unhashed(inode))
2722                        __insert_inode_hash(inode,
2723                                            inode->i_ino + inode->i_generation);
2724                spin_unlock(&lock);
2725        }
2726
2727        fh[0] = inode->i_generation;
2728        fh[1] = inode->i_ino;
2729        fh[2] = ((__u64)inode->i_ino) >> 32;
2730
2731        *len = 3;
2732        return 1;
2733}
2734
2735static const struct export_operations shmem_export_ops = {
2736        .get_parent     = shmem_get_parent,
2737        .encode_fh      = shmem_encode_fh,
2738        .fh_to_dentry   = shmem_fh_to_dentry,
2739};
2740
2741static int shmem_parse_options(char *options, struct shmem_sb_info *sbinfo,
2742                               bool remount)
2743{
2744        char *this_char, *value, *rest;
2745        struct mempolicy *mpol = NULL;
2746        uid_t uid;
2747        gid_t gid;
2748
2749        while (options != NULL) {
2750                this_char = options;
2751                for (;;) {
2752                        /*
2753                         * NUL-terminate this option: unfortunately,
2754                         * mount options form a comma-separated list,
2755                         * but mpol's nodelist may also contain commas.
2756                         */
2757                        options = strchr(options, ',');
2758                        if (options == NULL)
2759                                break;
2760                        options++;
2761                        if (!isdigit(*options)) {
2762                                options[-1] = '\0';
2763                                break;
2764                        }
2765                }
2766                if (!*this_char)
2767                        continue;
2768                if ((value = strchr(this_char,'=')) != NULL) {
2769                        *value++ = 0;
2770                } else {
2771                        printk(KERN_ERR
2772                            "tmpfs: No value for mount option '%s'\n",
2773                            this_char);
2774                        goto error;
2775                }
2776
2777                if (!strcmp(this_char,"size")) {
2778                        unsigned long long size;
2779                        size = memparse(value,&rest);
2780                        if (*rest == '%') {
2781                                size <<= PAGE_SHIFT;
2782                                size *= totalram_pages;
2783                                do_div(size, 100);
2784                                rest++;
2785                        }
2786                        if (*rest)
2787                                goto bad_val;
2788                        sbinfo->max_blocks =
2789                                DIV_ROUND_UP(size, PAGE_CACHE_SIZE);
2790                } else if (!strcmp(this_char,"nr_blocks")) {
2791                        sbinfo->max_blocks = memparse(value, &rest);
2792                        if (*rest)
2793                                goto bad_val;
2794                } else if (!strcmp(this_char,"nr_inodes")) {
2795                        sbinfo->max_inodes = memparse(value, &rest);
2796                        if (*rest)
2797                                goto bad_val;
2798                } else if (!strcmp(this_char,"mode")) {
2799                        if (remount)
2800                                continue;
2801                        sbinfo->mode = simple_strtoul(value, &rest, 8) & 07777;
2802                        if (*rest)
2803                                goto bad_val;
2804                } else if (!strcmp(this_char,"uid")) {
2805                        if (remount)
2806                                continue;
2807                        uid = simple_strtoul(value, &rest, 0);
2808                        if (*rest)
2809                                goto bad_val;
2810                        sbinfo->uid = make_kuid(current_user_ns(), uid);
2811                        if (!uid_valid(sbinfo->uid))
2812                                goto bad_val;
2813                } else if (!strcmp(this_char,"gid")) {
2814                        if (remount)
2815                                continue;
2816                        gid = simple_strtoul(value, &rest, 0);
2817                        if (*rest)
2818                                goto bad_val;
2819                        sbinfo->gid = make_kgid(current_user_ns(), gid);
2820                        if (!gid_valid(sbinfo->gid))
2821                                goto bad_val;
2822                } else if (!strcmp(this_char,"mpol")) {
2823                        mpol_put(mpol);
2824                        mpol = NULL;
2825                        if (mpol_parse_str(value, &mpol))
2826                                goto bad_val;
2827                } else {
2828                        printk(KERN_ERR "tmpfs: Bad mount option %s\n",
2829                               this_char);
2830                        goto error;
2831                }
2832        }
2833        sbinfo->mpol = mpol;
2834        return 0;
2835
2836bad_val:
2837        printk(KERN_ERR "tmpfs: Bad value '%s' for mount option '%s'\n",
2838               value, this_char);
2839error:
2840        mpol_put(mpol);
2841        return 1;
2842
2843}
2844
2845static int shmem_remount_fs(struct super_block *sb, int *flags, char *data)
2846{
2847        struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2848        struct shmem_sb_info config = *sbinfo;
2849        unsigned long inodes;
2850        int error = -EINVAL;
2851
2852        config.mpol = NULL;
2853        if (shmem_parse_options(data, &config, true))
2854                return error;
2855
2856        spin_lock(&sbinfo->stat_lock);
2857        inodes = sbinfo->max_inodes - sbinfo->free_inodes;
2858        if (percpu_counter_compare(&sbinfo->used_blocks, config.max_blocks) > 0)
2859                goto out;
2860        if (config.max_inodes < inodes)
2861                goto out;
2862        /*
2863         * Those tests disallow limited->unlimited while any are in use;
2864         * but we must separately disallow unlimited->limited, because
2865         * in that case we have no record of how much is already in use.
2866         */
2867        if (config.max_blocks && !sbinfo->max_blocks)
2868                goto out;
2869        if (config.max_inodes && !sbinfo->max_inodes)
2870                goto out;
2871
2872        error = 0;
2873        sbinfo->max_blocks  = config.max_blocks;
2874        sbinfo->max_inodes  = config.max_inodes;
2875        sbinfo->free_inodes = config.max_inodes - inodes;
2876
2877        /*
2878         * Preserve previous mempolicy unless mpol remount option was specified.
2879         */
2880        if (config.mpol) {
2881                mpol_put(sbinfo->mpol);
2882                sbinfo->mpol = config.mpol;     /* transfers initial ref */
2883        }
2884out:
2885        spin_unlock(&sbinfo->stat_lock);
2886        return error;
2887}
2888
2889static int shmem_show_options(struct seq_file *seq, struct dentry *root)
2890{
2891        struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
2892
2893        if (sbinfo->max_blocks != shmem_default_max_blocks())
2894                seq_printf(seq, ",size=%luk",
2895                        sbinfo->max_blocks << (PAGE_CACHE_SHIFT - 10));
2896        if (sbinfo->max_inodes != shmem_default_max_inodes())
2897                seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
2898        if (sbinfo->mode != (S_IRWXUGO | S_ISVTX))
2899                seq_printf(seq, ",mode=%03ho", sbinfo->mode);
2900        if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
2901                seq_printf(seq, ",uid=%u",
2902                                from_kuid_munged(&init_user_ns, sbinfo->uid));
2903        if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
2904                seq_printf(seq, ",gid=%u",
2905                                from_kgid_munged(&init_user_ns, sbinfo->gid));
2906        shmem_show_mpol(seq, sbinfo->mpol);
2907        return 0;
2908}
2909
2910#define MFD_NAME_PREFIX "memfd:"
2911#define MFD_NAME_PREFIX_LEN (sizeof(MFD_NAME_PREFIX) - 1)
2912#define MFD_NAME_MAX_LEN (NAME_MAX - MFD_NAME_PREFIX_LEN)
2913
2914#define MFD_ALL_FLAGS (MFD_CLOEXEC | MFD_ALLOW_SEALING)
2915
2916SYSCALL_DEFINE2(memfd_create,
2917                const char __user *, uname,
2918                unsigned int, flags)
2919{
2920        struct shmem_inode_info *info;
2921        struct file *file;
2922        int fd, error;
2923        char *name;
2924        long len;
2925
2926        if (flags & ~(unsigned int)MFD_ALL_FLAGS)
2927                return -EINVAL;
2928
2929        /* length includes terminating zero */
2930        len = strnlen_user(uname, MFD_NAME_MAX_LEN + 1);
2931        if (len <= 0)
2932                return -EFAULT;
2933        if (len > MFD_NAME_MAX_LEN + 1)
2934                return -EINVAL;
2935
2936        name = kmalloc(len + MFD_NAME_PREFIX_LEN, GFP_TEMPORARY);
2937        if (!name)
2938                return -ENOMEM;
2939
2940        strcpy(name, MFD_NAME_PREFIX);
2941        if (copy_from_user(&name[MFD_NAME_PREFIX_LEN], uname, len)) {
2942                error = -EFAULT;
2943                goto err_name;
2944        }
2945
2946        /* terminating-zero may have changed after strnlen_user() returned */
2947        if (name[len + MFD_NAME_PREFIX_LEN - 1]) {
2948                error = -EFAULT;
2949                goto err_name;
2950        }
2951
2952        fd = get_unused_fd_flags((flags & MFD_CLOEXEC) ? O_CLOEXEC : 0);
2953        if (fd < 0) {
2954                error = fd;
2955                goto err_name;
2956        }
2957
2958        file = shmem_file_setup(name, 0, VM_NORESERVE);
2959        if (IS_ERR(file)) {
2960                error = PTR_ERR(file);
2961                goto err_fd;
2962        }
2963        info = SHMEM_I(file_inode(file));
2964        file->f_mode |= FMODE_LSEEK | FMODE_PREAD | FMODE_PWRITE;
2965        file->f_flags |= O_RDWR | O_LARGEFILE;
2966        if (flags & MFD_ALLOW_SEALING)
2967                info->seals &= ~F_SEAL_SEAL;
2968
2969        fd_install(fd, file);
2970        kfree(name);
2971        return fd;
2972
2973err_fd:
2974        put_unused_fd(fd);
2975err_name:
2976        kfree(name);
2977        return error;
2978}
2979
2980#endif /* CONFIG_TMPFS */
2981
2982static void shmem_put_super(struct super_block *sb)
2983{
2984        struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2985
2986        percpu_counter_destroy(&sbinfo->used_blocks);
2987        mpol_put(sbinfo->mpol);
2988        kfree(sbinfo);
2989        sb->s_fs_info = NULL;
2990}
2991
2992int shmem_fill_super(struct super_block *sb, void *data, int silent)
2993{
2994        struct inode *inode;
2995        struct shmem_sb_info *sbinfo;
2996        int err = -ENOMEM;
2997
2998        /* Round up to L1_CACHE_BYTES to resist false sharing */
2999        sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
3000                                L1_CACHE_BYTES), GFP_KERNEL);
3001        if (!sbinfo)
3002                return -ENOMEM;
3003
3004        sbinfo->mode = S_IRWXUGO | S_ISVTX;
3005        sbinfo->uid = current_fsuid();
3006        sbinfo->gid = current_fsgid();
3007        sb->s_fs_info = sbinfo;
3008
3009#ifdef CONFIG_TMPFS
3010        /*
3011         * Per default we only allow half of the physical ram per
3012         * tmpfs instance, limiting inodes to one per page of lowmem;
3013         * but the internal instance is left unlimited.
3014         */
3015        if (!(sb->s_flags & MS_KERNMOUNT)) {
3016                sbinfo->max_blocks = shmem_default_max_blocks();
3017                sbinfo->max_inodes = shmem_default_max_inodes();
3018                if (shmem_parse_options(data, sbinfo, false)) {
3019                        err = -EINVAL;
3020                        goto failed;
3021                }
3022        } else {
3023                sb->s_flags |= MS_NOUSER;
3024        }
3025        sb->s_export_op = &shmem_export_ops;
3026        sb->s_flags |= MS_NOSEC;
3027#else
3028        sb->s_flags |= MS_NOUSER;
3029#endif
3030
3031        spin_lock_init(&sbinfo->stat_lock);
3032        if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL))
3033                goto failed;
3034        sbinfo->free_inodes = sbinfo->max_inodes;
3035
3036        sb->s_maxbytes = MAX_LFS_FILESIZE;
3037        sb->s_blocksize = PAGE_CACHE_SIZE;
3038        sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
3039        sb->s_magic = TMPFS_MAGIC;
3040        sb->s_op = &shmem_ops;
3041        sb->s_time_gran = 1;
3042#ifdef CONFIG_TMPFS_XATTR
3043        sb->s_xattr = shmem_xattr_handlers;
3044#endif
3045#ifdef CONFIG_TMPFS_POSIX_ACL
3046        sb->s_flags |= MS_POSIXACL;
3047#endif
3048
3049        inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
3050        if (!inode)
3051                goto failed;
3052        inode->i_uid = sbinfo->uid;
3053        inode->i_gid = sbinfo->gid;
3054        sb->s_root = d_make_root(inode);
3055        if (!sb->s_root)
3056                goto failed;
3057        return 0;
3058
3059failed:
3060        shmem_put_super(sb);
3061        return err;
3062}
3063
3064static struct kmem_cache *shmem_inode_cachep;
3065
3066static struct inode *shmem_alloc_inode(struct super_block *sb)
3067{
3068        struct shmem_inode_info *info;
3069        info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
3070        if (!info)
3071                return NULL;
3072        return &info->vfs_inode;
3073}
3074
3075static void shmem_destroy_callback(struct rcu_head *head)
3076{
3077        struct inode *inode = container_of(head, struct inode, i_rcu);
3078        kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
3079}
3080
3081static void shmem_destroy_inode(struct inode *inode)
3082{
3083        if (S_ISREG(inode->i_mode))
3084                mpol_free_shared_policy(&SHMEM_I(inode)->policy);
3085        call_rcu(&inode->i_rcu, shmem_destroy_callback);
3086}
3087
3088static void shmem_init_inode(void *foo)
3089{
3090        struct shmem_inode_info *info = foo;
3091        inode_init_once(&info->vfs_inode);
3092}
3093
3094static int shmem_init_inodecache(void)
3095{
3096        shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
3097                                sizeof(struct shmem_inode_info),
3098                                0, SLAB_PANIC, shmem_init_inode);
3099        return 0;
3100}
3101
3102static void shmem_destroy_inodecache(void)
3103{
3104        kmem_cache_destroy(shmem_inode_cachep);
3105}
3106
3107static const struct address_space_operations shmem_aops = {
3108        .writepage      = shmem_writepage,
3109        .set_page_dirty = __set_page_dirty_no_writeback,
3110#ifdef CONFIG_TMPFS
3111        .write_begin    = shmem_write_begin,
3112        .write_end      = shmem_write_end,
3113#endif
3114#ifdef CONFIG_MIGRATION
3115        .migratepage    = migrate_page,
3116#endif
3117        .error_remove_page = generic_error_remove_page,
3118};
3119
3120static const struct file_operations shmem_file_operations = {
3121        .mmap           = shmem_mmap,
3122#ifdef CONFIG_TMPFS
3123        .llseek         = shmem_file_llseek,
3124        .read           = new_sync_read,
3125        .write          = new_sync_write,
3126        .read_iter      = shmem_file_read_iter,
3127        .write_iter     = generic_file_write_iter,
3128        .fsync          = noop_fsync,
3129        .splice_read    = shmem_file_splice_read,
3130        .splice_write   = iter_file_splice_write,
3131        .fallocate      = shmem_fallocate,
3132#endif
3133};
3134
3135static const struct inode_operations shmem_inode_operations = {
3136        .setattr        = shmem_setattr,
3137#ifdef CONFIG_TMPFS_XATTR
3138        .setxattr       = shmem_setxattr,
3139        .getxattr       = shmem_getxattr,
3140        .listxattr      = shmem_listxattr,
3141        .removexattr    = shmem_removexattr,
3142        .set_acl        = simple_set_acl,
3143#endif
3144};
3145
3146static const struct inode_operations shmem_dir_inode_operations = {
3147#ifdef CONFIG_TMPFS
3148        .create         = shmem_create,
3149        .lookup         = simple_lookup,
3150        .link           = shmem_link,
3151        .unlink         = shmem_unlink,
3152        .symlink        = shmem_symlink,
3153        .mkdir          = shmem_mkdir,
3154        .rmdir          = shmem_rmdir,
3155        .mknod          = shmem_mknod,
3156        .rename2        = shmem_rename2,
3157        .tmpfile        = shmem_tmpfile,
3158#endif
3159#ifdef CONFIG_TMPFS_XATTR
3160        .setxattr       = shmem_setxattr,
3161        .getxattr       = shmem_getxattr,
3162        .listxattr      = shmem_listxattr,
3163        .removexattr    = shmem_removexattr,
3164#endif
3165#ifdef CONFIG_TMPFS_POSIX_ACL
3166        .setattr        = shmem_setattr,
3167        .set_acl        = simple_set_acl,
3168#endif
3169};
3170
3171static const struct inode_operations shmem_special_inode_operations = {
3172#ifdef CONFIG_TMPFS_XATTR
3173        .setxattr       = shmem_setxattr,
3174        .getxattr       = shmem_getxattr,
3175        .listxattr      = shmem_listxattr,
3176        .removexattr    = shmem_removexattr,
3177#endif
3178#ifdef CONFIG_TMPFS_POSIX_ACL
3179        .setattr        = shmem_setattr,
3180        .set_acl        = simple_set_acl,
3181#endif
3182};
3183
3184static const struct super_operations shmem_ops = {
3185        .alloc_inode    = shmem_alloc_inode,
3186        .destroy_inode  = shmem_destroy_inode,
3187#ifdef CONFIG_TMPFS
3188        .statfs         = shmem_statfs,
3189        .remount_fs     = shmem_remount_fs,
3190        .show_options   = shmem_show_options,
3191#endif
3192        .evict_inode    = shmem_evict_inode,
3193        .drop_inode     = generic_delete_inode,
3194        .put_super      = shmem_put_super,
3195};
3196
3197static const struct vm_operations_struct shmem_vm_ops = {
3198        .fault          = shmem_fault,
3199        .map_pages      = filemap_map_pages,
3200#ifdef CONFIG_NUMA
3201        .set_policy     = shmem_set_policy,
3202        .get_policy     = shmem_get_policy,
3203#endif
3204        .remap_pages    = generic_file_remap_pages,
3205};
3206
3207static struct dentry *shmem_mount(struct file_system_type *fs_type,
3208        int flags, const char *dev_name, void *data)
3209{
3210        return mount_nodev(fs_type, flags, data, shmem_fill_super);
3211}
3212
3213static struct file_system_type shmem_fs_type = {
3214        .owner          = THIS_MODULE,
3215        .name           = "tmpfs",
3216        .mount          = shmem_mount,
3217        .kill_sb        = kill_litter_super,
3218        .fs_flags       = FS_USERNS_MOUNT,
3219};
3220
3221int __init shmem_init(void)
3222{
3223        int error;
3224
3225        /* If rootfs called this, don't re-init */
3226        if (shmem_inode_cachep)
3227                return 0;
3228
3229        error = bdi_init(&shmem_backing_dev_info);
3230        if (error)
3231                goto out4;
3232
3233        error = shmem_init_inodecache();
3234        if (error)
3235                goto out3;
3236
3237        error = register_filesystem(&shmem_fs_type);
3238        if (error) {
3239                printk(KERN_ERR "Could not register tmpfs\n");
3240                goto out2;
3241        }
3242
3243        shm_mnt = kern_mount(&shmem_fs_type);
3244        if (IS_ERR(shm_mnt)) {
3245                error = PTR_ERR(shm_mnt);
3246                printk(KERN_ERR "Could not kern_mount tmpfs\n");
3247                goto out1;
3248        }
3249        return 0;
3250
3251out1:
3252        unregister_filesystem(&shmem_fs_type);
3253out2:
3254        shmem_destroy_inodecache();
3255out3:
3256        bdi_destroy(&shmem_backing_dev_info);
3257out4:
3258        shm_mnt = ERR_PTR(error);
3259        return error;
3260}
3261
3262#else /* !CONFIG_SHMEM */
3263
3264/*
3265 * tiny-shmem: simple shmemfs and tmpfs using ramfs code
3266 *
3267 * This is intended for small system where the benefits of the full
3268 * shmem code (swap-backed and resource-limited) are outweighed by
3269 * their complexity. On systems without swap this code should be
3270 * effectively equivalent, but much lighter weight.
3271 */
3272
3273static struct file_system_type shmem_fs_type = {
3274        .name           = "tmpfs",
3275        .mount          = ramfs_mount,
3276        .kill_sb        = kill_litter_super,
3277        .fs_flags       = FS_USERNS_MOUNT,
3278};
3279
3280int __init shmem_init(void)
3281{
3282        BUG_ON(register_filesystem(&shmem_fs_type) != 0);
3283
3284        shm_mnt = kern_mount(&shmem_fs_type);
3285        BUG_ON(IS_ERR(shm_mnt));
3286
3287        return 0;
3288}
3289
3290int shmem_unuse(swp_entry_t swap, struct page *page)
3291{
3292        return 0;
3293}
3294
3295int shmem_lock(struct file *file, int lock, struct user_struct *user)
3296{
3297        return 0;
3298}
3299
3300void shmem_unlock_mapping(struct address_space *mapping)
3301{
3302}
3303
3304void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
3305{
3306        truncate_inode_pages_range(inode->i_mapping, lstart, lend);
3307}
3308EXPORT_SYMBOL_GPL(shmem_truncate_range);
3309
3310#define shmem_vm_ops                            generic_file_vm_ops
3311#define shmem_file_operations                   ramfs_file_operations
3312#define shmem_get_inode(sb, dir, mode, dev, flags)      ramfs_get_inode(sb, dir, mode, dev)
3313#define shmem_acct_size(flags, size)            0
3314#define shmem_unacct_size(flags, size)          do {} while (0)
3315
3316#endif /* CONFIG_SHMEM */
3317
3318/* common code */
3319
3320static struct dentry_operations anon_ops = {
3321        .d_dname = simple_dname
3322};
3323
3324static struct file *__shmem_file_setup(const char *name, loff_t size,
3325                                       unsigned long flags, unsigned int i_flags)
3326{
3327        struct file *res;
3328        struct inode *inode;
3329        struct path path;
3330        struct super_block *sb;
3331        struct qstr this;
3332
3333        if (IS_ERR(shm_mnt))
3334                return ERR_CAST(shm_mnt);
3335
3336        if (size < 0 || size > MAX_LFS_FILESIZE)
3337                return ERR_PTR(-EINVAL);
3338
3339        if (shmem_acct_size(flags, size))
3340                return ERR_PTR(-ENOMEM);
3341
3342        res = ERR_PTR(-ENOMEM);
3343        this.name = name;
3344        this.len = strlen(name);
3345        this.hash = 0; /* will go */
3346        sb = shm_mnt->mnt_sb;
3347        path.mnt = mntget(shm_mnt);
3348        path.dentry = d_alloc_pseudo(sb, &this);
3349        if (!path.dentry)
3350                goto put_memory;
3351        d_set_d_op(path.dentry, &anon_ops);
3352
3353        res = ERR_PTR(-ENOSPC);
3354        inode = shmem_get_inode(sb, NULL, S_IFREG | S_IRWXUGO, 0, flags);
3355        if (!inode)
3356                goto put_memory;
3357
3358        inode->i_flags |= i_flags;
3359        d_instantiate(path.dentry, inode);
3360        inode->i_size = size;
3361        clear_nlink(inode);     /* It is unlinked */
3362        res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
3363        if (IS_ERR(res))
3364                goto put_path;
3365
3366        res = alloc_file(&path, FMODE_WRITE | FMODE_READ,
3367                  &shmem_file_operations);
3368        if (IS_ERR(res))
3369                goto put_path;
3370
3371        return res;
3372
3373put_memory:
3374        shmem_unacct_size(flags, size);
3375put_path:
3376        path_put(&path);
3377        return res;
3378}
3379
3380/**
3381 * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
3382 *      kernel internal.  There will be NO LSM permission checks against the
3383 *      underlying inode.  So users of this interface must do LSM checks at a
3384 *      higher layer.  The one user is the big_key implementation.  LSM checks
3385 *      are provided at the key level rather than the inode level.
3386 * @name: name for dentry (to be seen in /proc/<pid>/maps
3387 * @size: size to be set for the file
3388 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
3389 */
3390struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags)
3391{
3392        return __shmem_file_setup(name, size, flags, S_PRIVATE);
3393}
3394
3395/**
3396 * shmem_file_setup - get an unlinked file living in tmpfs
3397 * @name: name for dentry (to be seen in /proc/<pid>/maps
3398 * @size: size to be set for the file
3399 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
3400 */
3401struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
3402{
3403        return __shmem_file_setup(name, size, flags, 0);
3404}
3405EXPORT_SYMBOL_GPL(shmem_file_setup);
3406
3407/**
3408 * shmem_zero_setup - setup a shared anonymous mapping
3409 * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
3410 */
3411int shmem_zero_setup(struct vm_area_struct *vma)
3412{
3413        struct file *file;
3414        loff_t size = vma->vm_end - vma->vm_start;
3415
3416        file = shmem_file_setup("dev/zero", size, vma->vm_flags);
3417        if (IS_ERR(file))
3418                return PTR_ERR(file);
3419
3420        if (vma->vm_file)
3421                fput(vma->vm_file);
3422        vma->vm_file = file;
3423        vma->vm_ops = &shmem_vm_ops;
3424        return 0;
3425}
3426
3427/**
3428 * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
3429 * @mapping:    the page's address_space
3430 * @index:      the page index
3431 * @gfp:        the page allocator flags to use if allocating
3432 *
3433 * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
3434 * with any new page allocations done using the specified allocation flags.
3435 * But read_cache_page_gfp() uses the ->readpage() method: which does not
3436 * suit tmpfs, since it may have pages in swapcache, and needs to find those
3437 * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
3438 *
3439 * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
3440 * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
3441 */
3442struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
3443                                         pgoff_t index, gfp_t gfp)
3444{
3445#ifdef CONFIG_SHMEM
3446        struct inode *inode = mapping->host;
3447        struct page *page;
3448        int error;
3449
3450        BUG_ON(mapping->a_ops != &shmem_aops);
3451        error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE, gfp, NULL);
3452        if (error)
3453                page = ERR_PTR(error);
3454        else
3455                unlock_page(page);
3456        return page;
3457#else
3458        /*
3459         * The tiny !SHMEM case uses ramfs without swap
3460         */
3461        return read_cache_page_gfp(mapping, index, gfp);
3462#endif
3463}
3464EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);
3465