linux/mm/swap.c
<<
>>
Prefs
   1/*
   2 *  linux/mm/swap.c
   3 *
   4 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
   5 */
   6
   7/*
   8 * This file contains the default values for the operation of the
   9 * Linux VM subsystem. Fine-tuning documentation can be found in
  10 * Documentation/sysctl/vm.txt.
  11 * Started 18.12.91
  12 * Swap aging added 23.2.95, Stephen Tweedie.
  13 * Buffermem limits added 12.3.98, Rik van Riel.
  14 */
  15
  16#include <linux/mm.h>
  17#include <linux/sched.h>
  18#include <linux/kernel_stat.h>
  19#include <linux/swap.h>
  20#include <linux/mman.h>
  21#include <linux/pagemap.h>
  22#include <linux/pagevec.h>
  23#include <linux/init.h>
  24#include <linux/export.h>
  25#include <linux/mm_inline.h>
  26#include <linux/percpu_counter.h>
  27#include <linux/percpu.h>
  28#include <linux/cpu.h>
  29#include <linux/notifier.h>
  30#include <linux/backing-dev.h>
  31#include <linux/memcontrol.h>
  32#include <linux/gfp.h>
  33#include <linux/uio.h>
  34
  35#include "internal.h"
  36
  37#define CREATE_TRACE_POINTS
  38#include <trace/events/pagemap.h>
  39
  40/* How many pages do we try to swap or page in/out together? */
  41int page_cluster;
  42
  43static DEFINE_PER_CPU(struct pagevec, lru_add_pvec);
  44static DEFINE_PER_CPU(struct pagevec, lru_rotate_pvecs);
  45static DEFINE_PER_CPU(struct pagevec, lru_deactivate_pvecs);
  46
  47/*
  48 * This path almost never happens for VM activity - pages are normally
  49 * freed via pagevecs.  But it gets used by networking.
  50 */
  51static void __page_cache_release(struct page *page)
  52{
  53        if (PageLRU(page)) {
  54                struct zone *zone = page_zone(page);
  55                struct lruvec *lruvec;
  56                unsigned long flags;
  57
  58                spin_lock_irqsave(&zone->lru_lock, flags);
  59                lruvec = mem_cgroup_page_lruvec(page, zone);
  60                VM_BUG_ON_PAGE(!PageLRU(page), page);
  61                __ClearPageLRU(page);
  62                del_page_from_lru_list(page, lruvec, page_off_lru(page));
  63                spin_unlock_irqrestore(&zone->lru_lock, flags);
  64        }
  65        mem_cgroup_uncharge(page);
  66}
  67
  68static void __put_single_page(struct page *page)
  69{
  70        __page_cache_release(page);
  71        free_hot_cold_page(page, false);
  72}
  73
  74static void __put_compound_page(struct page *page)
  75{
  76        compound_page_dtor *dtor;
  77
  78        __page_cache_release(page);
  79        dtor = get_compound_page_dtor(page);
  80        (*dtor)(page);
  81}
  82
  83/**
  84 * Two special cases here: we could avoid taking compound_lock_irqsave
  85 * and could skip the tail refcounting(in _mapcount).
  86 *
  87 * 1. Hugetlbfs page:
  88 *
  89 *    PageHeadHuge will remain true until the compound page
  90 *    is released and enters the buddy allocator, and it could
  91 *    not be split by __split_huge_page_refcount().
  92 *
  93 *    So if we see PageHeadHuge set, and we have the tail page pin,
  94 *    then we could safely put head page.
  95 *
  96 * 2. Slab THP page:
  97 *
  98 *    PG_slab is cleared before the slab frees the head page, and
  99 *    tail pin cannot be the last reference left on the head page,
 100 *    because the slab code is free to reuse the compound page
 101 *    after a kfree/kmem_cache_free without having to check if
 102 *    there's any tail pin left.  In turn all tail pinsmust be always
 103 *    released while the head is still pinned by the slab code
 104 *    and so we know PG_slab will be still set too.
 105 *
 106 *    So if we see PageSlab set, and we have the tail page pin,
 107 *    then we could safely put head page.
 108 */
 109static __always_inline
 110void put_unrefcounted_compound_page(struct page *page_head, struct page *page)
 111{
 112        /*
 113         * If @page is a THP tail, we must read the tail page
 114         * flags after the head page flags. The
 115         * __split_huge_page_refcount side enforces write memory barriers
 116         * between clearing PageTail and before the head page
 117         * can be freed and reallocated.
 118         */
 119        smp_rmb();
 120        if (likely(PageTail(page))) {
 121                /*
 122                 * __split_huge_page_refcount cannot race
 123                 * here, see the comment above this function.
 124                 */
 125                VM_BUG_ON_PAGE(!PageHead(page_head), page_head);
 126                VM_BUG_ON_PAGE(page_mapcount(page) != 0, page);
 127                if (put_page_testzero(page_head)) {
 128                        /*
 129                         * If this is the tail of a slab THP page,
 130                         * the tail pin must not be the last reference
 131                         * held on the page, because the PG_slab cannot
 132                         * be cleared before all tail pins (which skips
 133                         * the _mapcount tail refcounting) have been
 134                         * released.
 135                         *
 136                         * If this is the tail of a hugetlbfs page,
 137                         * the tail pin may be the last reference on
 138                         * the page instead, because PageHeadHuge will
 139                         * not go away until the compound page enters
 140                         * the buddy allocator.
 141                         */
 142                        VM_BUG_ON_PAGE(PageSlab(page_head), page_head);
 143                        __put_compound_page(page_head);
 144                }
 145        } else
 146                /*
 147                 * __split_huge_page_refcount run before us,
 148                 * @page was a THP tail. The split @page_head
 149                 * has been freed and reallocated as slab or
 150                 * hugetlbfs page of smaller order (only
 151                 * possible if reallocated as slab on x86).
 152                 */
 153                if (put_page_testzero(page))
 154                        __put_single_page(page);
 155}
 156
 157static __always_inline
 158void put_refcounted_compound_page(struct page *page_head, struct page *page)
 159{
 160        if (likely(page != page_head && get_page_unless_zero(page_head))) {
 161                unsigned long flags;
 162
 163                /*
 164                 * @page_head wasn't a dangling pointer but it may not
 165                 * be a head page anymore by the time we obtain the
 166                 * lock. That is ok as long as it can't be freed from
 167                 * under us.
 168                 */
 169                flags = compound_lock_irqsave(page_head);
 170                if (unlikely(!PageTail(page))) {
 171                        /* __split_huge_page_refcount run before us */
 172                        compound_unlock_irqrestore(page_head, flags);
 173                        if (put_page_testzero(page_head)) {
 174                                /*
 175                                 * The @page_head may have been freed
 176                                 * and reallocated as a compound page
 177                                 * of smaller order and then freed
 178                                 * again.  All we know is that it
 179                                 * cannot have become: a THP page, a
 180                                 * compound page of higher order, a
 181                                 * tail page.  That is because we
 182                                 * still hold the refcount of the
 183                                 * split THP tail and page_head was
 184                                 * the THP head before the split.
 185                                 */
 186                                if (PageHead(page_head))
 187                                        __put_compound_page(page_head);
 188                                else
 189                                        __put_single_page(page_head);
 190                        }
 191out_put_single:
 192                        if (put_page_testzero(page))
 193                                __put_single_page(page);
 194                        return;
 195                }
 196                VM_BUG_ON_PAGE(page_head != page->first_page, page);
 197                /*
 198                 * We can release the refcount taken by
 199                 * get_page_unless_zero() now that
 200                 * __split_huge_page_refcount() is blocked on the
 201                 * compound_lock.
 202                 */
 203                if (put_page_testzero(page_head))
 204                        VM_BUG_ON_PAGE(1, page_head);
 205                /* __split_huge_page_refcount will wait now */
 206                VM_BUG_ON_PAGE(page_mapcount(page) <= 0, page);
 207                atomic_dec(&page->_mapcount);
 208                VM_BUG_ON_PAGE(atomic_read(&page_head->_count) <= 0, page_head);
 209                VM_BUG_ON_PAGE(atomic_read(&page->_count) != 0, page);
 210                compound_unlock_irqrestore(page_head, flags);
 211
 212                if (put_page_testzero(page_head)) {
 213                        if (PageHead(page_head))
 214                                __put_compound_page(page_head);
 215                        else
 216                                __put_single_page(page_head);
 217                }
 218        } else {
 219                /* @page_head is a dangling pointer */
 220                VM_BUG_ON_PAGE(PageTail(page), page);
 221                goto out_put_single;
 222        }
 223}
 224
 225static void put_compound_page(struct page *page)
 226{
 227        struct page *page_head;
 228
 229        /*
 230         * We see the PageCompound set and PageTail not set, so @page maybe:
 231         *  1. hugetlbfs head page, or
 232         *  2. THP head page.
 233         */
 234        if (likely(!PageTail(page))) {
 235                if (put_page_testzero(page)) {
 236                        /*
 237                         * By the time all refcounts have been released
 238                         * split_huge_page cannot run anymore from under us.
 239                         */
 240                        if (PageHead(page))
 241                                __put_compound_page(page);
 242                        else
 243                                __put_single_page(page);
 244                }
 245                return;
 246        }
 247
 248        /*
 249         * We see the PageCompound set and PageTail set, so @page maybe:
 250         *  1. a tail hugetlbfs page, or
 251         *  2. a tail THP page, or
 252         *  3. a split THP page.
 253         *
 254         *  Case 3 is possible, as we may race with
 255         *  __split_huge_page_refcount tearing down a THP page.
 256         */
 257        page_head = compound_head_by_tail(page);
 258        if (!__compound_tail_refcounted(page_head))
 259                put_unrefcounted_compound_page(page_head, page);
 260        else
 261                put_refcounted_compound_page(page_head, page);
 262}
 263
 264void put_page(struct page *page)
 265{
 266        if (unlikely(PageCompound(page)))
 267                put_compound_page(page);
 268        else if (put_page_testzero(page))
 269                __put_single_page(page);
 270}
 271EXPORT_SYMBOL(put_page);
 272
 273/*
 274 * This function is exported but must not be called by anything other
 275 * than get_page(). It implements the slow path of get_page().
 276 */
 277bool __get_page_tail(struct page *page)
 278{
 279        /*
 280         * This takes care of get_page() if run on a tail page
 281         * returned by one of the get_user_pages/follow_page variants.
 282         * get_user_pages/follow_page itself doesn't need the compound
 283         * lock because it runs __get_page_tail_foll() under the
 284         * proper PT lock that already serializes against
 285         * split_huge_page().
 286         */
 287        unsigned long flags;
 288        bool got;
 289        struct page *page_head = compound_head(page);
 290
 291        /* Ref to put_compound_page() comment. */
 292        if (!__compound_tail_refcounted(page_head)) {
 293                smp_rmb();
 294                if (likely(PageTail(page))) {
 295                        /*
 296                         * This is a hugetlbfs page or a slab
 297                         * page. __split_huge_page_refcount
 298                         * cannot race here.
 299                         */
 300                        VM_BUG_ON_PAGE(!PageHead(page_head), page_head);
 301                        __get_page_tail_foll(page, true);
 302                        return true;
 303                } else {
 304                        /*
 305                         * __split_huge_page_refcount run
 306                         * before us, "page" was a THP
 307                         * tail. The split page_head has been
 308                         * freed and reallocated as slab or
 309                         * hugetlbfs page of smaller order
 310                         * (only possible if reallocated as
 311                         * slab on x86).
 312                         */
 313                        return false;
 314                }
 315        }
 316
 317        got = false;
 318        if (likely(page != page_head && get_page_unless_zero(page_head))) {
 319                /*
 320                 * page_head wasn't a dangling pointer but it
 321                 * may not be a head page anymore by the time
 322                 * we obtain the lock. That is ok as long as it
 323                 * can't be freed from under us.
 324                 */
 325                flags = compound_lock_irqsave(page_head);
 326                /* here __split_huge_page_refcount won't run anymore */
 327                if (likely(PageTail(page))) {
 328                        __get_page_tail_foll(page, false);
 329                        got = true;
 330                }
 331                compound_unlock_irqrestore(page_head, flags);
 332                if (unlikely(!got))
 333                        put_page(page_head);
 334        }
 335        return got;
 336}
 337EXPORT_SYMBOL(__get_page_tail);
 338
 339/**
 340 * put_pages_list() - release a list of pages
 341 * @pages: list of pages threaded on page->lru
 342 *
 343 * Release a list of pages which are strung together on page.lru.  Currently
 344 * used by read_cache_pages() and related error recovery code.
 345 */
 346void put_pages_list(struct list_head *pages)
 347{
 348        while (!list_empty(pages)) {
 349                struct page *victim;
 350
 351                victim = list_entry(pages->prev, struct page, lru);
 352                list_del(&victim->lru);
 353                page_cache_release(victim);
 354        }
 355}
 356EXPORT_SYMBOL(put_pages_list);
 357
 358/*
 359 * get_kernel_pages() - pin kernel pages in memory
 360 * @kiov:       An array of struct kvec structures
 361 * @nr_segs:    number of segments to pin
 362 * @write:      pinning for read/write, currently ignored
 363 * @pages:      array that receives pointers to the pages pinned.
 364 *              Should be at least nr_segs long.
 365 *
 366 * Returns number of pages pinned. This may be fewer than the number
 367 * requested. If nr_pages is 0 or negative, returns 0. If no pages
 368 * were pinned, returns -errno. Each page returned must be released
 369 * with a put_page() call when it is finished with.
 370 */
 371int get_kernel_pages(const struct kvec *kiov, int nr_segs, int write,
 372                struct page **pages)
 373{
 374        int seg;
 375
 376        for (seg = 0; seg < nr_segs; seg++) {
 377                if (WARN_ON(kiov[seg].iov_len != PAGE_SIZE))
 378                        return seg;
 379
 380                pages[seg] = kmap_to_page(kiov[seg].iov_base);
 381                page_cache_get(pages[seg]);
 382        }
 383
 384        return seg;
 385}
 386EXPORT_SYMBOL_GPL(get_kernel_pages);
 387
 388/*
 389 * get_kernel_page() - pin a kernel page in memory
 390 * @start:      starting kernel address
 391 * @write:      pinning for read/write, currently ignored
 392 * @pages:      array that receives pointer to the page pinned.
 393 *              Must be at least nr_segs long.
 394 *
 395 * Returns 1 if page is pinned. If the page was not pinned, returns
 396 * -errno. The page returned must be released with a put_page() call
 397 * when it is finished with.
 398 */
 399int get_kernel_page(unsigned long start, int write, struct page **pages)
 400{
 401        const struct kvec kiov = {
 402                .iov_base = (void *)start,
 403                .iov_len = PAGE_SIZE
 404        };
 405
 406        return get_kernel_pages(&kiov, 1, write, pages);
 407}
 408EXPORT_SYMBOL_GPL(get_kernel_page);
 409
 410static void pagevec_lru_move_fn(struct pagevec *pvec,
 411        void (*move_fn)(struct page *page, struct lruvec *lruvec, void *arg),
 412        void *arg)
 413{
 414        int i;
 415        struct zone *zone = NULL;
 416        struct lruvec *lruvec;
 417        unsigned long flags = 0;
 418
 419        for (i = 0; i < pagevec_count(pvec); i++) {
 420                struct page *page = pvec->pages[i];
 421                struct zone *pagezone = page_zone(page);
 422
 423                if (pagezone != zone) {
 424                        if (zone)
 425                                spin_unlock_irqrestore(&zone->lru_lock, flags);
 426                        zone = pagezone;
 427                        spin_lock_irqsave(&zone->lru_lock, flags);
 428                }
 429
 430                lruvec = mem_cgroup_page_lruvec(page, zone);
 431                (*move_fn)(page, lruvec, arg);
 432        }
 433        if (zone)
 434                spin_unlock_irqrestore(&zone->lru_lock, flags);
 435        release_pages(pvec->pages, pvec->nr, pvec->cold);
 436        pagevec_reinit(pvec);
 437}
 438
 439static void pagevec_move_tail_fn(struct page *page, struct lruvec *lruvec,
 440                                 void *arg)
 441{
 442        int *pgmoved = arg;
 443
 444        if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) {
 445                enum lru_list lru = page_lru_base_type(page);
 446                list_move_tail(&page->lru, &lruvec->lists[lru]);
 447                (*pgmoved)++;
 448        }
 449}
 450
 451/*
 452 * pagevec_move_tail() must be called with IRQ disabled.
 453 * Otherwise this may cause nasty races.
 454 */
 455static void pagevec_move_tail(struct pagevec *pvec)
 456{
 457        int pgmoved = 0;
 458
 459        pagevec_lru_move_fn(pvec, pagevec_move_tail_fn, &pgmoved);
 460        __count_vm_events(PGROTATED, pgmoved);
 461}
 462
 463/*
 464 * Writeback is about to end against a page which has been marked for immediate
 465 * reclaim.  If it still appears to be reclaimable, move it to the tail of the
 466 * inactive list.
 467 */
 468void rotate_reclaimable_page(struct page *page)
 469{
 470        if (!PageLocked(page) && !PageDirty(page) && !PageActive(page) &&
 471            !PageUnevictable(page) && PageLRU(page)) {
 472                struct pagevec *pvec;
 473                unsigned long flags;
 474
 475                page_cache_get(page);
 476                local_irq_save(flags);
 477                pvec = this_cpu_ptr(&lru_rotate_pvecs);
 478                if (!pagevec_add(pvec, page))
 479                        pagevec_move_tail(pvec);
 480                local_irq_restore(flags);
 481        }
 482}
 483
 484static void update_page_reclaim_stat(struct lruvec *lruvec,
 485                                     int file, int rotated)
 486{
 487        struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
 488
 489        reclaim_stat->recent_scanned[file]++;
 490        if (rotated)
 491                reclaim_stat->recent_rotated[file]++;
 492}
 493
 494static void __activate_page(struct page *page, struct lruvec *lruvec,
 495                            void *arg)
 496{
 497        if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) {
 498                int file = page_is_file_cache(page);
 499                int lru = page_lru_base_type(page);
 500
 501                del_page_from_lru_list(page, lruvec, lru);
 502                SetPageActive(page);
 503                lru += LRU_ACTIVE;
 504                add_page_to_lru_list(page, lruvec, lru);
 505                trace_mm_lru_activate(page);
 506
 507                __count_vm_event(PGACTIVATE);
 508                update_page_reclaim_stat(lruvec, file, 1);
 509        }
 510}
 511
 512#ifdef CONFIG_SMP
 513static DEFINE_PER_CPU(struct pagevec, activate_page_pvecs);
 514
 515static void activate_page_drain(int cpu)
 516{
 517        struct pagevec *pvec = &per_cpu(activate_page_pvecs, cpu);
 518
 519        if (pagevec_count(pvec))
 520                pagevec_lru_move_fn(pvec, __activate_page, NULL);
 521}
 522
 523static bool need_activate_page_drain(int cpu)
 524{
 525        return pagevec_count(&per_cpu(activate_page_pvecs, cpu)) != 0;
 526}
 527
 528void activate_page(struct page *page)
 529{
 530        if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) {
 531                struct pagevec *pvec = &get_cpu_var(activate_page_pvecs);
 532
 533                page_cache_get(page);
 534                if (!pagevec_add(pvec, page))
 535                        pagevec_lru_move_fn(pvec, __activate_page, NULL);
 536                put_cpu_var(activate_page_pvecs);
 537        }
 538}
 539
 540#else
 541static inline void activate_page_drain(int cpu)
 542{
 543}
 544
 545static bool need_activate_page_drain(int cpu)
 546{
 547        return false;
 548}
 549
 550void activate_page(struct page *page)
 551{
 552        struct zone *zone = page_zone(page);
 553
 554        spin_lock_irq(&zone->lru_lock);
 555        __activate_page(page, mem_cgroup_page_lruvec(page, zone), NULL);
 556        spin_unlock_irq(&zone->lru_lock);
 557}
 558#endif
 559
 560static void __lru_cache_activate_page(struct page *page)
 561{
 562        struct pagevec *pvec = &get_cpu_var(lru_add_pvec);
 563        int i;
 564
 565        /*
 566         * Search backwards on the optimistic assumption that the page being
 567         * activated has just been added to this pagevec. Note that only
 568         * the local pagevec is examined as a !PageLRU page could be in the
 569         * process of being released, reclaimed, migrated or on a remote
 570         * pagevec that is currently being drained. Furthermore, marking
 571         * a remote pagevec's page PageActive potentially hits a race where
 572         * a page is marked PageActive just after it is added to the inactive
 573         * list causing accounting errors and BUG_ON checks to trigger.
 574         */
 575        for (i = pagevec_count(pvec) - 1; i >= 0; i--) {
 576                struct page *pagevec_page = pvec->pages[i];
 577
 578                if (pagevec_page == page) {
 579                        SetPageActive(page);
 580                        break;
 581                }
 582        }
 583
 584        put_cpu_var(lru_add_pvec);
 585}
 586
 587/*
 588 * Mark a page as having seen activity.
 589 *
 590 * inactive,unreferenced        ->      inactive,referenced
 591 * inactive,referenced          ->      active,unreferenced
 592 * active,unreferenced          ->      active,referenced
 593 *
 594 * When a newly allocated page is not yet visible, so safe for non-atomic ops,
 595 * __SetPageReferenced(page) may be substituted for mark_page_accessed(page).
 596 */
 597void mark_page_accessed(struct page *page)
 598{
 599        if (!PageActive(page) && !PageUnevictable(page) &&
 600                        PageReferenced(page)) {
 601
 602                /*
 603                 * If the page is on the LRU, queue it for activation via
 604                 * activate_page_pvecs. Otherwise, assume the page is on a
 605                 * pagevec, mark it active and it'll be moved to the active
 606                 * LRU on the next drain.
 607                 */
 608                if (PageLRU(page))
 609                        activate_page(page);
 610                else
 611                        __lru_cache_activate_page(page);
 612                ClearPageReferenced(page);
 613                if (page_is_file_cache(page))
 614                        workingset_activation(page);
 615        } else if (!PageReferenced(page)) {
 616                SetPageReferenced(page);
 617        }
 618}
 619EXPORT_SYMBOL(mark_page_accessed);
 620
 621static void __lru_cache_add(struct page *page)
 622{
 623        struct pagevec *pvec = &get_cpu_var(lru_add_pvec);
 624
 625        page_cache_get(page);
 626        if (!pagevec_space(pvec))
 627                __pagevec_lru_add(pvec);
 628        pagevec_add(pvec, page);
 629        put_cpu_var(lru_add_pvec);
 630}
 631
 632/**
 633 * lru_cache_add: add a page to the page lists
 634 * @page: the page to add
 635 */
 636void lru_cache_add_anon(struct page *page)
 637{
 638        if (PageActive(page))
 639                ClearPageActive(page);
 640        __lru_cache_add(page);
 641}
 642
 643void lru_cache_add_file(struct page *page)
 644{
 645        if (PageActive(page))
 646                ClearPageActive(page);
 647        __lru_cache_add(page);
 648}
 649EXPORT_SYMBOL(lru_cache_add_file);
 650
 651/**
 652 * lru_cache_add - add a page to a page list
 653 * @page: the page to be added to the LRU.
 654 *
 655 * Queue the page for addition to the LRU via pagevec. The decision on whether
 656 * to add the page to the [in]active [file|anon] list is deferred until the
 657 * pagevec is drained. This gives a chance for the caller of lru_cache_add()
 658 * have the page added to the active list using mark_page_accessed().
 659 */
 660void lru_cache_add(struct page *page)
 661{
 662        VM_BUG_ON_PAGE(PageActive(page) && PageUnevictable(page), page);
 663        VM_BUG_ON_PAGE(PageLRU(page), page);
 664        __lru_cache_add(page);
 665}
 666
 667/**
 668 * add_page_to_unevictable_list - add a page to the unevictable list
 669 * @page:  the page to be added to the unevictable list
 670 *
 671 * Add page directly to its zone's unevictable list.  To avoid races with
 672 * tasks that might be making the page evictable, through eg. munlock,
 673 * munmap or exit, while it's not on the lru, we want to add the page
 674 * while it's locked or otherwise "invisible" to other tasks.  This is
 675 * difficult to do when using the pagevec cache, so bypass that.
 676 */
 677void add_page_to_unevictable_list(struct page *page)
 678{
 679        struct zone *zone = page_zone(page);
 680        struct lruvec *lruvec;
 681
 682        spin_lock_irq(&zone->lru_lock);
 683        lruvec = mem_cgroup_page_lruvec(page, zone);
 684        ClearPageActive(page);
 685        SetPageUnevictable(page);
 686        SetPageLRU(page);
 687        add_page_to_lru_list(page, lruvec, LRU_UNEVICTABLE);
 688        spin_unlock_irq(&zone->lru_lock);
 689}
 690
 691/**
 692 * lru_cache_add_active_or_unevictable
 693 * @page:  the page to be added to LRU
 694 * @vma:   vma in which page is mapped for determining reclaimability
 695 *
 696 * Place @page on the active or unevictable LRU list, depending on its
 697 * evictability.  Note that if the page is not evictable, it goes
 698 * directly back onto it's zone's unevictable list, it does NOT use a
 699 * per cpu pagevec.
 700 */
 701void lru_cache_add_active_or_unevictable(struct page *page,
 702                                         struct vm_area_struct *vma)
 703{
 704        VM_BUG_ON_PAGE(PageLRU(page), page);
 705
 706        if (likely((vma->vm_flags & (VM_LOCKED | VM_SPECIAL)) != VM_LOCKED)) {
 707                SetPageActive(page);
 708                lru_cache_add(page);
 709                return;
 710        }
 711
 712        if (!TestSetPageMlocked(page)) {
 713                /*
 714                 * We use the irq-unsafe __mod_zone_page_stat because this
 715                 * counter is not modified from interrupt context, and the pte
 716                 * lock is held(spinlock), which implies preemption disabled.
 717                 */
 718                __mod_zone_page_state(page_zone(page), NR_MLOCK,
 719                                    hpage_nr_pages(page));
 720                count_vm_event(UNEVICTABLE_PGMLOCKED);
 721        }
 722        add_page_to_unevictable_list(page);
 723}
 724
 725/*
 726 * If the page can not be invalidated, it is moved to the
 727 * inactive list to speed up its reclaim.  It is moved to the
 728 * head of the list, rather than the tail, to give the flusher
 729 * threads some time to write it out, as this is much more
 730 * effective than the single-page writeout from reclaim.
 731 *
 732 * If the page isn't page_mapped and dirty/writeback, the page
 733 * could reclaim asap using PG_reclaim.
 734 *
 735 * 1. active, mapped page -> none
 736 * 2. active, dirty/writeback page -> inactive, head, PG_reclaim
 737 * 3. inactive, mapped page -> none
 738 * 4. inactive, dirty/writeback page -> inactive, head, PG_reclaim
 739 * 5. inactive, clean -> inactive, tail
 740 * 6. Others -> none
 741 *
 742 * In 4, why it moves inactive's head, the VM expects the page would
 743 * be write it out by flusher threads as this is much more effective
 744 * than the single-page writeout from reclaim.
 745 */
 746static void lru_deactivate_fn(struct page *page, struct lruvec *lruvec,
 747                              void *arg)
 748{
 749        int lru, file;
 750        bool active;
 751
 752        if (!PageLRU(page))
 753                return;
 754
 755        if (PageUnevictable(page))
 756                return;
 757
 758        /* Some processes are using the page */
 759        if (page_mapped(page))
 760                return;
 761
 762        active = PageActive(page);
 763        file = page_is_file_cache(page);
 764        lru = page_lru_base_type(page);
 765
 766        del_page_from_lru_list(page, lruvec, lru + active);
 767        ClearPageActive(page);
 768        ClearPageReferenced(page);
 769        add_page_to_lru_list(page, lruvec, lru);
 770
 771        if (PageWriteback(page) || PageDirty(page)) {
 772                /*
 773                 * PG_reclaim could be raced with end_page_writeback
 774                 * It can make readahead confusing.  But race window
 775                 * is _really_ small and  it's non-critical problem.
 776                 */
 777                SetPageReclaim(page);
 778        } else {
 779                /*
 780                 * The page's writeback ends up during pagevec
 781                 * We moves tha page into tail of inactive.
 782                 */
 783                list_move_tail(&page->lru, &lruvec->lists[lru]);
 784                __count_vm_event(PGROTATED);
 785        }
 786
 787        if (active)
 788                __count_vm_event(PGDEACTIVATE);
 789        update_page_reclaim_stat(lruvec, file, 0);
 790}
 791
 792/*
 793 * Drain pages out of the cpu's pagevecs.
 794 * Either "cpu" is the current CPU, and preemption has already been
 795 * disabled; or "cpu" is being hot-unplugged, and is already dead.
 796 */
 797void lru_add_drain_cpu(int cpu)
 798{
 799        struct pagevec *pvec = &per_cpu(lru_add_pvec, cpu);
 800
 801        if (pagevec_count(pvec))
 802                __pagevec_lru_add(pvec);
 803
 804        pvec = &per_cpu(lru_rotate_pvecs, cpu);
 805        if (pagevec_count(pvec)) {
 806                unsigned long flags;
 807
 808                /* No harm done if a racing interrupt already did this */
 809                local_irq_save(flags);
 810                pagevec_move_tail(pvec);
 811                local_irq_restore(flags);
 812        }
 813
 814        pvec = &per_cpu(lru_deactivate_pvecs, cpu);
 815        if (pagevec_count(pvec))
 816                pagevec_lru_move_fn(pvec, lru_deactivate_fn, NULL);
 817
 818        activate_page_drain(cpu);
 819}
 820
 821/**
 822 * deactivate_page - forcefully deactivate a page
 823 * @page: page to deactivate
 824 *
 825 * This function hints the VM that @page is a good reclaim candidate,
 826 * for example if its invalidation fails due to the page being dirty
 827 * or under writeback.
 828 */
 829void deactivate_page(struct page *page)
 830{
 831        /*
 832         * In a workload with many unevictable page such as mprotect, unevictable
 833         * page deactivation for accelerating reclaim is pointless.
 834         */
 835        if (PageUnevictable(page))
 836                return;
 837
 838        if (likely(get_page_unless_zero(page))) {
 839                struct pagevec *pvec = &get_cpu_var(lru_deactivate_pvecs);
 840
 841                if (!pagevec_add(pvec, page))
 842                        pagevec_lru_move_fn(pvec, lru_deactivate_fn, NULL);
 843                put_cpu_var(lru_deactivate_pvecs);
 844        }
 845}
 846
 847void lru_add_drain(void)
 848{
 849        lru_add_drain_cpu(get_cpu());
 850        put_cpu();
 851}
 852
 853static void lru_add_drain_per_cpu(struct work_struct *dummy)
 854{
 855        lru_add_drain();
 856}
 857
 858static DEFINE_PER_CPU(struct work_struct, lru_add_drain_work);
 859
 860void lru_add_drain_all(void)
 861{
 862        static DEFINE_MUTEX(lock);
 863        static struct cpumask has_work;
 864        int cpu;
 865
 866        mutex_lock(&lock);
 867        get_online_cpus();
 868        cpumask_clear(&has_work);
 869
 870        for_each_online_cpu(cpu) {
 871                struct work_struct *work = &per_cpu(lru_add_drain_work, cpu);
 872
 873                if (pagevec_count(&per_cpu(lru_add_pvec, cpu)) ||
 874                    pagevec_count(&per_cpu(lru_rotate_pvecs, cpu)) ||
 875                    pagevec_count(&per_cpu(lru_deactivate_pvecs, cpu)) ||
 876                    need_activate_page_drain(cpu)) {
 877                        INIT_WORK(work, lru_add_drain_per_cpu);
 878                        schedule_work_on(cpu, work);
 879                        cpumask_set_cpu(cpu, &has_work);
 880                }
 881        }
 882
 883        for_each_cpu(cpu, &has_work)
 884                flush_work(&per_cpu(lru_add_drain_work, cpu));
 885
 886        put_online_cpus();
 887        mutex_unlock(&lock);
 888}
 889
 890/**
 891 * release_pages - batched page_cache_release()
 892 * @pages: array of pages to release
 893 * @nr: number of pages
 894 * @cold: whether the pages are cache cold
 895 *
 896 * Decrement the reference count on all the pages in @pages.  If it
 897 * fell to zero, remove the page from the LRU and free it.
 898 */
 899void release_pages(struct page **pages, int nr, bool cold)
 900{
 901        int i;
 902        LIST_HEAD(pages_to_free);
 903        struct zone *zone = NULL;
 904        struct lruvec *lruvec;
 905        unsigned long uninitialized_var(flags);
 906        unsigned int uninitialized_var(lock_batch);
 907
 908        for (i = 0; i < nr; i++) {
 909                struct page *page = pages[i];
 910
 911                if (unlikely(PageCompound(page))) {
 912                        if (zone) {
 913                                spin_unlock_irqrestore(&zone->lru_lock, flags);
 914                                zone = NULL;
 915                        }
 916                        put_compound_page(page);
 917                        continue;
 918                }
 919
 920                /*
 921                 * Make sure the IRQ-safe lock-holding time does not get
 922                 * excessive with a continuous string of pages from the
 923                 * same zone. The lock is held only if zone != NULL.
 924                 */
 925                if (zone && ++lock_batch == SWAP_CLUSTER_MAX) {
 926                        spin_unlock_irqrestore(&zone->lru_lock, flags);
 927                        zone = NULL;
 928                }
 929
 930                if (!put_page_testzero(page))
 931                        continue;
 932
 933                if (PageLRU(page)) {
 934                        struct zone *pagezone = page_zone(page);
 935
 936                        if (pagezone != zone) {
 937                                if (zone)
 938                                        spin_unlock_irqrestore(&zone->lru_lock,
 939                                                                        flags);
 940                                lock_batch = 0;
 941                                zone = pagezone;
 942                                spin_lock_irqsave(&zone->lru_lock, flags);
 943                        }
 944
 945                        lruvec = mem_cgroup_page_lruvec(page, zone);
 946                        VM_BUG_ON_PAGE(!PageLRU(page), page);
 947                        __ClearPageLRU(page);
 948                        del_page_from_lru_list(page, lruvec, page_off_lru(page));
 949                }
 950
 951                /* Clear Active bit in case of parallel mark_page_accessed */
 952                __ClearPageActive(page);
 953
 954                list_add(&page->lru, &pages_to_free);
 955        }
 956        if (zone)
 957                spin_unlock_irqrestore(&zone->lru_lock, flags);
 958
 959        mem_cgroup_uncharge_list(&pages_to_free);
 960        free_hot_cold_page_list(&pages_to_free, cold);
 961}
 962EXPORT_SYMBOL(release_pages);
 963
 964/*
 965 * The pages which we're about to release may be in the deferred lru-addition
 966 * queues.  That would prevent them from really being freed right now.  That's
 967 * OK from a correctness point of view but is inefficient - those pages may be
 968 * cache-warm and we want to give them back to the page allocator ASAP.
 969 *
 970 * So __pagevec_release() will drain those queues here.  __pagevec_lru_add()
 971 * and __pagevec_lru_add_active() call release_pages() directly to avoid
 972 * mutual recursion.
 973 */
 974void __pagevec_release(struct pagevec *pvec)
 975{
 976        lru_add_drain();
 977        release_pages(pvec->pages, pagevec_count(pvec), pvec->cold);
 978        pagevec_reinit(pvec);
 979}
 980EXPORT_SYMBOL(__pagevec_release);
 981
 982#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 983/* used by __split_huge_page_refcount() */
 984void lru_add_page_tail(struct page *page, struct page *page_tail,
 985                       struct lruvec *lruvec, struct list_head *list)
 986{
 987        const int file = 0;
 988
 989        VM_BUG_ON_PAGE(!PageHead(page), page);
 990        VM_BUG_ON_PAGE(PageCompound(page_tail), page);
 991        VM_BUG_ON_PAGE(PageLRU(page_tail), page);
 992        VM_BUG_ON(NR_CPUS != 1 &&
 993                  !spin_is_locked(&lruvec_zone(lruvec)->lru_lock));
 994
 995        if (!list)
 996                SetPageLRU(page_tail);
 997
 998        if (likely(PageLRU(page)))
 999                list_add_tail(&page_tail->lru, &page->lru);
1000        else if (list) {
1001                /* page reclaim is reclaiming a huge page */
1002                get_page(page_tail);
1003                list_add_tail(&page_tail->lru, list);
1004        } else {
1005                struct list_head *list_head;
1006                /*
1007                 * Head page has not yet been counted, as an hpage,
1008                 * so we must account for each subpage individually.
1009                 *
1010                 * Use the standard add function to put page_tail on the list,
1011                 * but then correct its position so they all end up in order.
1012                 */
1013                add_page_to_lru_list(page_tail, lruvec, page_lru(page_tail));
1014                list_head = page_tail->lru.prev;
1015                list_move_tail(&page_tail->lru, list_head);
1016        }
1017
1018        if (!PageUnevictable(page))
1019                update_page_reclaim_stat(lruvec, file, PageActive(page_tail));
1020}
1021#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1022
1023static void __pagevec_lru_add_fn(struct page *page, struct lruvec *lruvec,
1024                                 void *arg)
1025{
1026        int file = page_is_file_cache(page);
1027        int active = PageActive(page);
1028        enum lru_list lru = page_lru(page);
1029
1030        VM_BUG_ON_PAGE(PageLRU(page), page);
1031
1032        SetPageLRU(page);
1033        add_page_to_lru_list(page, lruvec, lru);
1034        update_page_reclaim_stat(lruvec, file, active);
1035        trace_mm_lru_insertion(page, lru);
1036}
1037
1038/*
1039 * Add the passed pages to the LRU, then drop the caller's refcount
1040 * on them.  Reinitialises the caller's pagevec.
1041 */
1042void __pagevec_lru_add(struct pagevec *pvec)
1043{
1044        pagevec_lru_move_fn(pvec, __pagevec_lru_add_fn, NULL);
1045}
1046EXPORT_SYMBOL(__pagevec_lru_add);
1047
1048/**
1049 * pagevec_lookup_entries - gang pagecache lookup
1050 * @pvec:       Where the resulting entries are placed
1051 * @mapping:    The address_space to search
1052 * @start:      The starting entry index
1053 * @nr_entries: The maximum number of entries
1054 * @indices:    The cache indices corresponding to the entries in @pvec
1055 *
1056 * pagevec_lookup_entries() will search for and return a group of up
1057 * to @nr_entries pages and shadow entries in the mapping.  All
1058 * entries are placed in @pvec.  pagevec_lookup_entries() takes a
1059 * reference against actual pages in @pvec.
1060 *
1061 * The search returns a group of mapping-contiguous entries with
1062 * ascending indexes.  There may be holes in the indices due to
1063 * not-present entries.
1064 *
1065 * pagevec_lookup_entries() returns the number of entries which were
1066 * found.
1067 */
1068unsigned pagevec_lookup_entries(struct pagevec *pvec,
1069                                struct address_space *mapping,
1070                                pgoff_t start, unsigned nr_pages,
1071                                pgoff_t *indices)
1072{
1073        pvec->nr = find_get_entries(mapping, start, nr_pages,
1074                                    pvec->pages, indices);
1075        return pagevec_count(pvec);
1076}
1077
1078/**
1079 * pagevec_remove_exceptionals - pagevec exceptionals pruning
1080 * @pvec:       The pagevec to prune
1081 *
1082 * pagevec_lookup_entries() fills both pages and exceptional radix
1083 * tree entries into the pagevec.  This function prunes all
1084 * exceptionals from @pvec without leaving holes, so that it can be
1085 * passed on to page-only pagevec operations.
1086 */
1087void pagevec_remove_exceptionals(struct pagevec *pvec)
1088{
1089        int i, j;
1090
1091        for (i = 0, j = 0; i < pagevec_count(pvec); i++) {
1092                struct page *page = pvec->pages[i];
1093                if (!radix_tree_exceptional_entry(page))
1094                        pvec->pages[j++] = page;
1095        }
1096        pvec->nr = j;
1097}
1098
1099/**
1100 * pagevec_lookup - gang pagecache lookup
1101 * @pvec:       Where the resulting pages are placed
1102 * @mapping:    The address_space to search
1103 * @start:      The starting page index
1104 * @nr_pages:   The maximum number of pages
1105 *
1106 * pagevec_lookup() will search for and return a group of up to @nr_pages pages
1107 * in the mapping.  The pages are placed in @pvec.  pagevec_lookup() takes a
1108 * reference against the pages in @pvec.
1109 *
1110 * The search returns a group of mapping-contiguous pages with ascending
1111 * indexes.  There may be holes in the indices due to not-present pages.
1112 *
1113 * pagevec_lookup() returns the number of pages which were found.
1114 */
1115unsigned pagevec_lookup(struct pagevec *pvec, struct address_space *mapping,
1116                pgoff_t start, unsigned nr_pages)
1117{
1118        pvec->nr = find_get_pages(mapping, start, nr_pages, pvec->pages);
1119        return pagevec_count(pvec);
1120}
1121EXPORT_SYMBOL(pagevec_lookup);
1122
1123unsigned pagevec_lookup_tag(struct pagevec *pvec, struct address_space *mapping,
1124                pgoff_t *index, int tag, unsigned nr_pages)
1125{
1126        pvec->nr = find_get_pages_tag(mapping, index, tag,
1127                                        nr_pages, pvec->pages);
1128        return pagevec_count(pvec);
1129}
1130EXPORT_SYMBOL(pagevec_lookup_tag);
1131
1132/*
1133 * Perform any setup for the swap system
1134 */
1135void __init swap_setup(void)
1136{
1137        unsigned long megs = totalram_pages >> (20 - PAGE_SHIFT);
1138#ifdef CONFIG_SWAP
1139        int i;
1140
1141        if (bdi_init(swapper_spaces[0].backing_dev_info))
1142                panic("Failed to init swap bdi");
1143        for (i = 0; i < MAX_SWAPFILES; i++) {
1144                spin_lock_init(&swapper_spaces[i].tree_lock);
1145                INIT_LIST_HEAD(&swapper_spaces[i].i_mmap_nonlinear);
1146        }
1147#endif
1148
1149        /* Use a smaller cluster for small-memory machines */
1150        if (megs < 16)
1151                page_cluster = 2;
1152        else
1153                page_cluster = 3;
1154        /*
1155         * Right now other parts of the system means that we
1156         * _really_ don't want to cluster much more
1157         */
1158}
1159