linux/net/core/skbuff.c
<<
>>
Prefs
   1/*
   2 *      Routines having to do with the 'struct sk_buff' memory handlers.
   3 *
   4 *      Authors:        Alan Cox <alan@lxorguk.ukuu.org.uk>
   5 *                      Florian La Roche <rzsfl@rz.uni-sb.de>
   6 *
   7 *      Fixes:
   8 *              Alan Cox        :       Fixed the worst of the load
   9 *                                      balancer bugs.
  10 *              Dave Platt      :       Interrupt stacking fix.
  11 *      Richard Kooijman        :       Timestamp fixes.
  12 *              Alan Cox        :       Changed buffer format.
  13 *              Alan Cox        :       destructor hook for AF_UNIX etc.
  14 *              Linus Torvalds  :       Better skb_clone.
  15 *              Alan Cox        :       Added skb_copy.
  16 *              Alan Cox        :       Added all the changed routines Linus
  17 *                                      only put in the headers
  18 *              Ray VanTassle   :       Fixed --skb->lock in free
  19 *              Alan Cox        :       skb_copy copy arp field
  20 *              Andi Kleen      :       slabified it.
  21 *              Robert Olsson   :       Removed skb_head_pool
  22 *
  23 *      NOTE:
  24 *              The __skb_ routines should be called with interrupts
  25 *      disabled, or you better be *real* sure that the operation is atomic
  26 *      with respect to whatever list is being frobbed (e.g. via lock_sock()
  27 *      or via disabling bottom half handlers, etc).
  28 *
  29 *      This program is free software; you can redistribute it and/or
  30 *      modify it under the terms of the GNU General Public License
  31 *      as published by the Free Software Foundation; either version
  32 *      2 of the License, or (at your option) any later version.
  33 */
  34
  35/*
  36 *      The functions in this file will not compile correctly with gcc 2.4.x
  37 */
  38
  39#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  40
  41#include <linux/module.h>
  42#include <linux/types.h>
  43#include <linux/kernel.h>
  44#include <linux/kmemcheck.h>
  45#include <linux/mm.h>
  46#include <linux/interrupt.h>
  47#include <linux/in.h>
  48#include <linux/inet.h>
  49#include <linux/slab.h>
  50#include <linux/tcp.h>
  51#include <linux/udp.h>
  52#include <linux/netdevice.h>
  53#ifdef CONFIG_NET_CLS_ACT
  54#include <net/pkt_sched.h>
  55#endif
  56#include <linux/string.h>
  57#include <linux/skbuff.h>
  58#include <linux/splice.h>
  59#include <linux/cache.h>
  60#include <linux/rtnetlink.h>
  61#include <linux/init.h>
  62#include <linux/scatterlist.h>
  63#include <linux/errqueue.h>
  64#include <linux/prefetch.h>
  65#include <linux/if_vlan.h>
  66
  67#include <net/protocol.h>
  68#include <net/dst.h>
  69#include <net/sock.h>
  70#include <net/checksum.h>
  71#include <net/ip6_checksum.h>
  72#include <net/xfrm.h>
  73
  74#include <asm/uaccess.h>
  75#include <trace/events/skb.h>
  76#include <linux/highmem.h>
  77
  78struct kmem_cache *skbuff_head_cache __read_mostly;
  79static struct kmem_cache *skbuff_fclone_cache __read_mostly;
  80
  81/**
  82 *      skb_panic - private function for out-of-line support
  83 *      @skb:   buffer
  84 *      @sz:    size
  85 *      @addr:  address
  86 *      @msg:   skb_over_panic or skb_under_panic
  87 *
  88 *      Out-of-line support for skb_put() and skb_push().
  89 *      Called via the wrapper skb_over_panic() or skb_under_panic().
  90 *      Keep out of line to prevent kernel bloat.
  91 *      __builtin_return_address is not used because it is not always reliable.
  92 */
  93static void skb_panic(struct sk_buff *skb, unsigned int sz, void *addr,
  94                      const char msg[])
  95{
  96        pr_emerg("%s: text:%p len:%d put:%d head:%p data:%p tail:%#lx end:%#lx dev:%s\n",
  97                 msg, addr, skb->len, sz, skb->head, skb->data,
  98                 (unsigned long)skb->tail, (unsigned long)skb->end,
  99                 skb->dev ? skb->dev->name : "<NULL>");
 100        BUG();
 101}
 102
 103static void skb_over_panic(struct sk_buff *skb, unsigned int sz, void *addr)
 104{
 105        skb_panic(skb, sz, addr, __func__);
 106}
 107
 108static void skb_under_panic(struct sk_buff *skb, unsigned int sz, void *addr)
 109{
 110        skb_panic(skb, sz, addr, __func__);
 111}
 112
 113/*
 114 * kmalloc_reserve is a wrapper around kmalloc_node_track_caller that tells
 115 * the caller if emergency pfmemalloc reserves are being used. If it is and
 116 * the socket is later found to be SOCK_MEMALLOC then PFMEMALLOC reserves
 117 * may be used. Otherwise, the packet data may be discarded until enough
 118 * memory is free
 119 */
 120#define kmalloc_reserve(size, gfp, node, pfmemalloc) \
 121         __kmalloc_reserve(size, gfp, node, _RET_IP_, pfmemalloc)
 122
 123static void *__kmalloc_reserve(size_t size, gfp_t flags, int node,
 124                               unsigned long ip, bool *pfmemalloc)
 125{
 126        void *obj;
 127        bool ret_pfmemalloc = false;
 128
 129        /*
 130         * Try a regular allocation, when that fails and we're not entitled
 131         * to the reserves, fail.
 132         */
 133        obj = kmalloc_node_track_caller(size,
 134                                        flags | __GFP_NOMEMALLOC | __GFP_NOWARN,
 135                                        node);
 136        if (obj || !(gfp_pfmemalloc_allowed(flags)))
 137                goto out;
 138
 139        /* Try again but now we are using pfmemalloc reserves */
 140        ret_pfmemalloc = true;
 141        obj = kmalloc_node_track_caller(size, flags, node);
 142
 143out:
 144        if (pfmemalloc)
 145                *pfmemalloc = ret_pfmemalloc;
 146
 147        return obj;
 148}
 149
 150/*      Allocate a new skbuff. We do this ourselves so we can fill in a few
 151 *      'private' fields and also do memory statistics to find all the
 152 *      [BEEP] leaks.
 153 *
 154 */
 155
 156struct sk_buff *__alloc_skb_head(gfp_t gfp_mask, int node)
 157{
 158        struct sk_buff *skb;
 159
 160        /* Get the HEAD */
 161        skb = kmem_cache_alloc_node(skbuff_head_cache,
 162                                    gfp_mask & ~__GFP_DMA, node);
 163        if (!skb)
 164                goto out;
 165
 166        /*
 167         * Only clear those fields we need to clear, not those that we will
 168         * actually initialise below. Hence, don't put any more fields after
 169         * the tail pointer in struct sk_buff!
 170         */
 171        memset(skb, 0, offsetof(struct sk_buff, tail));
 172        skb->head = NULL;
 173        skb->truesize = sizeof(struct sk_buff);
 174        atomic_set(&skb->users, 1);
 175
 176        skb->mac_header = (typeof(skb->mac_header))~0U;
 177out:
 178        return skb;
 179}
 180
 181/**
 182 *      __alloc_skb     -       allocate a network buffer
 183 *      @size: size to allocate
 184 *      @gfp_mask: allocation mask
 185 *      @flags: If SKB_ALLOC_FCLONE is set, allocate from fclone cache
 186 *              instead of head cache and allocate a cloned (child) skb.
 187 *              If SKB_ALLOC_RX is set, __GFP_MEMALLOC will be used for
 188 *              allocations in case the data is required for writeback
 189 *      @node: numa node to allocate memory on
 190 *
 191 *      Allocate a new &sk_buff. The returned buffer has no headroom and a
 192 *      tail room of at least size bytes. The object has a reference count
 193 *      of one. The return is the buffer. On a failure the return is %NULL.
 194 *
 195 *      Buffers may only be allocated from interrupts using a @gfp_mask of
 196 *      %GFP_ATOMIC.
 197 */
 198struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask,
 199                            int flags, int node)
 200{
 201        struct kmem_cache *cache;
 202        struct skb_shared_info *shinfo;
 203        struct sk_buff *skb;
 204        u8 *data;
 205        bool pfmemalloc;
 206
 207        cache = (flags & SKB_ALLOC_FCLONE)
 208                ? skbuff_fclone_cache : skbuff_head_cache;
 209
 210        if (sk_memalloc_socks() && (flags & SKB_ALLOC_RX))
 211                gfp_mask |= __GFP_MEMALLOC;
 212
 213        /* Get the HEAD */
 214        skb = kmem_cache_alloc_node(cache, gfp_mask & ~__GFP_DMA, node);
 215        if (!skb)
 216                goto out;
 217        prefetchw(skb);
 218
 219        /* We do our best to align skb_shared_info on a separate cache
 220         * line. It usually works because kmalloc(X > SMP_CACHE_BYTES) gives
 221         * aligned memory blocks, unless SLUB/SLAB debug is enabled.
 222         * Both skb->head and skb_shared_info are cache line aligned.
 223         */
 224        size = SKB_DATA_ALIGN(size);
 225        size += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
 226        data = kmalloc_reserve(size, gfp_mask, node, &pfmemalloc);
 227        if (!data)
 228                goto nodata;
 229        /* kmalloc(size) might give us more room than requested.
 230         * Put skb_shared_info exactly at the end of allocated zone,
 231         * to allow max possible filling before reallocation.
 232         */
 233        size = SKB_WITH_OVERHEAD(ksize(data));
 234        prefetchw(data + size);
 235
 236        /*
 237         * Only clear those fields we need to clear, not those that we will
 238         * actually initialise below. Hence, don't put any more fields after
 239         * the tail pointer in struct sk_buff!
 240         */
 241        memset(skb, 0, offsetof(struct sk_buff, tail));
 242        /* Account for allocated memory : skb + skb->head */
 243        skb->truesize = SKB_TRUESIZE(size);
 244        skb->pfmemalloc = pfmemalloc;
 245        atomic_set(&skb->users, 1);
 246        skb->head = data;
 247        skb->data = data;
 248        skb_reset_tail_pointer(skb);
 249        skb->end = skb->tail + size;
 250        skb->mac_header = (typeof(skb->mac_header))~0U;
 251        skb->transport_header = (typeof(skb->transport_header))~0U;
 252
 253        /* make sure we initialize shinfo sequentially */
 254        shinfo = skb_shinfo(skb);
 255        memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
 256        atomic_set(&shinfo->dataref, 1);
 257        kmemcheck_annotate_variable(shinfo->destructor_arg);
 258
 259        if (flags & SKB_ALLOC_FCLONE) {
 260                struct sk_buff_fclones *fclones;
 261
 262                fclones = container_of(skb, struct sk_buff_fclones, skb1);
 263
 264                kmemcheck_annotate_bitfield(&fclones->skb2, flags1);
 265                skb->fclone = SKB_FCLONE_ORIG;
 266                atomic_set(&fclones->fclone_ref, 1);
 267
 268                fclones->skb2.fclone = SKB_FCLONE_FREE;
 269                fclones->skb2.pfmemalloc = pfmemalloc;
 270        }
 271out:
 272        return skb;
 273nodata:
 274        kmem_cache_free(cache, skb);
 275        skb = NULL;
 276        goto out;
 277}
 278EXPORT_SYMBOL(__alloc_skb);
 279
 280/**
 281 * build_skb - build a network buffer
 282 * @data: data buffer provided by caller
 283 * @frag_size: size of fragment, or 0 if head was kmalloced
 284 *
 285 * Allocate a new &sk_buff. Caller provides space holding head and
 286 * skb_shared_info. @data must have been allocated by kmalloc() only if
 287 * @frag_size is 0, otherwise data should come from the page allocator.
 288 * The return is the new skb buffer.
 289 * On a failure the return is %NULL, and @data is not freed.
 290 * Notes :
 291 *  Before IO, driver allocates only data buffer where NIC put incoming frame
 292 *  Driver should add room at head (NET_SKB_PAD) and
 293 *  MUST add room at tail (SKB_DATA_ALIGN(skb_shared_info))
 294 *  After IO, driver calls build_skb(), to allocate sk_buff and populate it
 295 *  before giving packet to stack.
 296 *  RX rings only contains data buffers, not full skbs.
 297 */
 298struct sk_buff *build_skb(void *data, unsigned int frag_size)
 299{
 300        struct skb_shared_info *shinfo;
 301        struct sk_buff *skb;
 302        unsigned int size = frag_size ? : ksize(data);
 303
 304        skb = kmem_cache_alloc(skbuff_head_cache, GFP_ATOMIC);
 305        if (!skb)
 306                return NULL;
 307
 308        size -= SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
 309
 310        memset(skb, 0, offsetof(struct sk_buff, tail));
 311        skb->truesize = SKB_TRUESIZE(size);
 312        skb->head_frag = frag_size != 0;
 313        atomic_set(&skb->users, 1);
 314        skb->head = data;
 315        skb->data = data;
 316        skb_reset_tail_pointer(skb);
 317        skb->end = skb->tail + size;
 318        skb->mac_header = (typeof(skb->mac_header))~0U;
 319        skb->transport_header = (typeof(skb->transport_header))~0U;
 320
 321        /* make sure we initialize shinfo sequentially */
 322        shinfo = skb_shinfo(skb);
 323        memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
 324        atomic_set(&shinfo->dataref, 1);
 325        kmemcheck_annotate_variable(shinfo->destructor_arg);
 326
 327        return skb;
 328}
 329EXPORT_SYMBOL(build_skb);
 330
 331struct netdev_alloc_cache {
 332        struct page_frag        frag;
 333        /* we maintain a pagecount bias, so that we dont dirty cache line
 334         * containing page->_count every time we allocate a fragment.
 335         */
 336        unsigned int            pagecnt_bias;
 337};
 338static DEFINE_PER_CPU(struct netdev_alloc_cache, netdev_alloc_cache);
 339
 340static void *__netdev_alloc_frag(unsigned int fragsz, gfp_t gfp_mask)
 341{
 342        struct netdev_alloc_cache *nc;
 343        void *data = NULL;
 344        int order;
 345        unsigned long flags;
 346
 347        local_irq_save(flags);
 348        nc = this_cpu_ptr(&netdev_alloc_cache);
 349        if (unlikely(!nc->frag.page)) {
 350refill:
 351                for (order = NETDEV_FRAG_PAGE_MAX_ORDER; ;) {
 352                        gfp_t gfp = gfp_mask;
 353
 354                        if (order)
 355                                gfp |= __GFP_COMP | __GFP_NOWARN;
 356                        nc->frag.page = alloc_pages(gfp, order);
 357                        if (likely(nc->frag.page))
 358                                break;
 359                        if (--order < 0)
 360                                goto end;
 361                }
 362                nc->frag.size = PAGE_SIZE << order;
 363                /* Even if we own the page, we do not use atomic_set().
 364                 * This would break get_page_unless_zero() users.
 365                 */
 366                atomic_add(NETDEV_PAGECNT_MAX_BIAS - 1,
 367                           &nc->frag.page->_count);
 368                nc->pagecnt_bias = NETDEV_PAGECNT_MAX_BIAS;
 369                nc->frag.offset = 0;
 370        }
 371
 372        if (nc->frag.offset + fragsz > nc->frag.size) {
 373                if (atomic_read(&nc->frag.page->_count) != nc->pagecnt_bias) {
 374                        if (!atomic_sub_and_test(nc->pagecnt_bias,
 375                                                 &nc->frag.page->_count))
 376                                goto refill;
 377                        /* OK, page count is 0, we can safely set it */
 378                        atomic_set(&nc->frag.page->_count,
 379                                   NETDEV_PAGECNT_MAX_BIAS);
 380                } else {
 381                        atomic_add(NETDEV_PAGECNT_MAX_BIAS - nc->pagecnt_bias,
 382                                   &nc->frag.page->_count);
 383                }
 384                nc->pagecnt_bias = NETDEV_PAGECNT_MAX_BIAS;
 385                nc->frag.offset = 0;
 386        }
 387
 388        data = page_address(nc->frag.page) + nc->frag.offset;
 389        nc->frag.offset += fragsz;
 390        nc->pagecnt_bias--;
 391end:
 392        local_irq_restore(flags);
 393        return data;
 394}
 395
 396/**
 397 * netdev_alloc_frag - allocate a page fragment
 398 * @fragsz: fragment size
 399 *
 400 * Allocates a frag from a page for receive buffer.
 401 * Uses GFP_ATOMIC allocations.
 402 */
 403void *netdev_alloc_frag(unsigned int fragsz)
 404{
 405        return __netdev_alloc_frag(fragsz, GFP_ATOMIC | __GFP_COLD);
 406}
 407EXPORT_SYMBOL(netdev_alloc_frag);
 408
 409/**
 410 *      __netdev_alloc_skb - allocate an skbuff for rx on a specific device
 411 *      @dev: network device to receive on
 412 *      @length: length to allocate
 413 *      @gfp_mask: get_free_pages mask, passed to alloc_skb
 414 *
 415 *      Allocate a new &sk_buff and assign it a usage count of one. The
 416 *      buffer has unspecified headroom built in. Users should allocate
 417 *      the headroom they think they need without accounting for the
 418 *      built in space. The built in space is used for optimisations.
 419 *
 420 *      %NULL is returned if there is no free memory.
 421 */
 422struct sk_buff *__netdev_alloc_skb(struct net_device *dev,
 423                                   unsigned int length, gfp_t gfp_mask)
 424{
 425        struct sk_buff *skb = NULL;
 426        unsigned int fragsz = SKB_DATA_ALIGN(length + NET_SKB_PAD) +
 427                              SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
 428
 429        if (fragsz <= PAGE_SIZE && !(gfp_mask & (__GFP_WAIT | GFP_DMA))) {
 430                void *data;
 431
 432                if (sk_memalloc_socks())
 433                        gfp_mask |= __GFP_MEMALLOC;
 434
 435                data = __netdev_alloc_frag(fragsz, gfp_mask);
 436
 437                if (likely(data)) {
 438                        skb = build_skb(data, fragsz);
 439                        if (unlikely(!skb))
 440                                put_page(virt_to_head_page(data));
 441                }
 442        } else {
 443                skb = __alloc_skb(length + NET_SKB_PAD, gfp_mask,
 444                                  SKB_ALLOC_RX, NUMA_NO_NODE);
 445        }
 446        if (likely(skb)) {
 447                skb_reserve(skb, NET_SKB_PAD);
 448                skb->dev = dev;
 449        }
 450        return skb;
 451}
 452EXPORT_SYMBOL(__netdev_alloc_skb);
 453
 454void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
 455                     int size, unsigned int truesize)
 456{
 457        skb_fill_page_desc(skb, i, page, off, size);
 458        skb->len += size;
 459        skb->data_len += size;
 460        skb->truesize += truesize;
 461}
 462EXPORT_SYMBOL(skb_add_rx_frag);
 463
 464void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
 465                          unsigned int truesize)
 466{
 467        skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
 468
 469        skb_frag_size_add(frag, size);
 470        skb->len += size;
 471        skb->data_len += size;
 472        skb->truesize += truesize;
 473}
 474EXPORT_SYMBOL(skb_coalesce_rx_frag);
 475
 476static void skb_drop_list(struct sk_buff **listp)
 477{
 478        kfree_skb_list(*listp);
 479        *listp = NULL;
 480}
 481
 482static inline void skb_drop_fraglist(struct sk_buff *skb)
 483{
 484        skb_drop_list(&skb_shinfo(skb)->frag_list);
 485}
 486
 487static void skb_clone_fraglist(struct sk_buff *skb)
 488{
 489        struct sk_buff *list;
 490
 491        skb_walk_frags(skb, list)
 492                skb_get(list);
 493}
 494
 495static void skb_free_head(struct sk_buff *skb)
 496{
 497        if (skb->head_frag)
 498                put_page(virt_to_head_page(skb->head));
 499        else
 500                kfree(skb->head);
 501}
 502
 503static void skb_release_data(struct sk_buff *skb)
 504{
 505        struct skb_shared_info *shinfo = skb_shinfo(skb);
 506        int i;
 507
 508        if (skb->cloned &&
 509            atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1,
 510                              &shinfo->dataref))
 511                return;
 512
 513        for (i = 0; i < shinfo->nr_frags; i++)
 514                __skb_frag_unref(&shinfo->frags[i]);
 515
 516        /*
 517         * If skb buf is from userspace, we need to notify the caller
 518         * the lower device DMA has done;
 519         */
 520        if (shinfo->tx_flags & SKBTX_DEV_ZEROCOPY) {
 521                struct ubuf_info *uarg;
 522
 523                uarg = shinfo->destructor_arg;
 524                if (uarg->callback)
 525                        uarg->callback(uarg, true);
 526        }
 527
 528        if (shinfo->frag_list)
 529                kfree_skb_list(shinfo->frag_list);
 530
 531        skb_free_head(skb);
 532}
 533
 534/*
 535 *      Free an skbuff by memory without cleaning the state.
 536 */
 537static void kfree_skbmem(struct sk_buff *skb)
 538{
 539        struct sk_buff_fclones *fclones;
 540
 541        switch (skb->fclone) {
 542        case SKB_FCLONE_UNAVAILABLE:
 543                kmem_cache_free(skbuff_head_cache, skb);
 544                break;
 545
 546        case SKB_FCLONE_ORIG:
 547                fclones = container_of(skb, struct sk_buff_fclones, skb1);
 548                if (atomic_dec_and_test(&fclones->fclone_ref))
 549                        kmem_cache_free(skbuff_fclone_cache, fclones);
 550                break;
 551
 552        case SKB_FCLONE_CLONE:
 553                fclones = container_of(skb, struct sk_buff_fclones, skb2);
 554
 555                /* The clone portion is available for
 556                 * fast-cloning again.
 557                 */
 558                skb->fclone = SKB_FCLONE_FREE;
 559
 560                if (atomic_dec_and_test(&fclones->fclone_ref))
 561                        kmem_cache_free(skbuff_fclone_cache, fclones);
 562                break;
 563        }
 564}
 565
 566static void skb_release_head_state(struct sk_buff *skb)
 567{
 568        skb_dst_drop(skb);
 569#ifdef CONFIG_XFRM
 570        secpath_put(skb->sp);
 571#endif
 572        if (skb->destructor) {
 573                WARN_ON(in_irq());
 574                skb->destructor(skb);
 575        }
 576#if IS_ENABLED(CONFIG_NF_CONNTRACK)
 577        nf_conntrack_put(skb->nfct);
 578#endif
 579#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
 580        nf_bridge_put(skb->nf_bridge);
 581#endif
 582/* XXX: IS this still necessary? - JHS */
 583#ifdef CONFIG_NET_SCHED
 584        skb->tc_index = 0;
 585#ifdef CONFIG_NET_CLS_ACT
 586        skb->tc_verd = 0;
 587#endif
 588#endif
 589}
 590
 591/* Free everything but the sk_buff shell. */
 592static void skb_release_all(struct sk_buff *skb)
 593{
 594        skb_release_head_state(skb);
 595        if (likely(skb->head))
 596                skb_release_data(skb);
 597}
 598
 599/**
 600 *      __kfree_skb - private function
 601 *      @skb: buffer
 602 *
 603 *      Free an sk_buff. Release anything attached to the buffer.
 604 *      Clean the state. This is an internal helper function. Users should
 605 *      always call kfree_skb
 606 */
 607
 608void __kfree_skb(struct sk_buff *skb)
 609{
 610        skb_release_all(skb);
 611        kfree_skbmem(skb);
 612}
 613EXPORT_SYMBOL(__kfree_skb);
 614
 615/**
 616 *      kfree_skb - free an sk_buff
 617 *      @skb: buffer to free
 618 *
 619 *      Drop a reference to the buffer and free it if the usage count has
 620 *      hit zero.
 621 */
 622void kfree_skb(struct sk_buff *skb)
 623{
 624        if (unlikely(!skb))
 625                return;
 626        if (likely(atomic_read(&skb->users) == 1))
 627                smp_rmb();
 628        else if (likely(!atomic_dec_and_test(&skb->users)))
 629                return;
 630        trace_kfree_skb(skb, __builtin_return_address(0));
 631        __kfree_skb(skb);
 632}
 633EXPORT_SYMBOL(kfree_skb);
 634
 635void kfree_skb_list(struct sk_buff *segs)
 636{
 637        while (segs) {
 638                struct sk_buff *next = segs->next;
 639
 640                kfree_skb(segs);
 641                segs = next;
 642        }
 643}
 644EXPORT_SYMBOL(kfree_skb_list);
 645
 646/**
 647 *      skb_tx_error - report an sk_buff xmit error
 648 *      @skb: buffer that triggered an error
 649 *
 650 *      Report xmit error if a device callback is tracking this skb.
 651 *      skb must be freed afterwards.
 652 */
 653void skb_tx_error(struct sk_buff *skb)
 654{
 655        if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) {
 656                struct ubuf_info *uarg;
 657
 658                uarg = skb_shinfo(skb)->destructor_arg;
 659                if (uarg->callback)
 660                        uarg->callback(uarg, false);
 661                skb_shinfo(skb)->tx_flags &= ~SKBTX_DEV_ZEROCOPY;
 662        }
 663}
 664EXPORT_SYMBOL(skb_tx_error);
 665
 666/**
 667 *      consume_skb - free an skbuff
 668 *      @skb: buffer to free
 669 *
 670 *      Drop a ref to the buffer and free it if the usage count has hit zero
 671 *      Functions identically to kfree_skb, but kfree_skb assumes that the frame
 672 *      is being dropped after a failure and notes that
 673 */
 674void consume_skb(struct sk_buff *skb)
 675{
 676        if (unlikely(!skb))
 677                return;
 678        if (likely(atomic_read(&skb->users) == 1))
 679                smp_rmb();
 680        else if (likely(!atomic_dec_and_test(&skb->users)))
 681                return;
 682        trace_consume_skb(skb);
 683        __kfree_skb(skb);
 684}
 685EXPORT_SYMBOL(consume_skb);
 686
 687/* Make sure a field is enclosed inside headers_start/headers_end section */
 688#define CHECK_SKB_FIELD(field) \
 689        BUILD_BUG_ON(offsetof(struct sk_buff, field) <          \
 690                     offsetof(struct sk_buff, headers_start));  \
 691        BUILD_BUG_ON(offsetof(struct sk_buff, field) >          \
 692                     offsetof(struct sk_buff, headers_end));    \
 693
 694static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
 695{
 696        new->tstamp             = old->tstamp;
 697        /* We do not copy old->sk */
 698        new->dev                = old->dev;
 699        memcpy(new->cb, old->cb, sizeof(old->cb));
 700        skb_dst_copy(new, old);
 701#ifdef CONFIG_XFRM
 702        new->sp                 = secpath_get(old->sp);
 703#endif
 704        __nf_copy(new, old, false);
 705
 706        /* Note : this field could be in headers_start/headers_end section
 707         * It is not yet because we do not want to have a 16 bit hole
 708         */
 709        new->queue_mapping = old->queue_mapping;
 710
 711        memcpy(&new->headers_start, &old->headers_start,
 712               offsetof(struct sk_buff, headers_end) -
 713               offsetof(struct sk_buff, headers_start));
 714        CHECK_SKB_FIELD(protocol);
 715        CHECK_SKB_FIELD(csum);
 716        CHECK_SKB_FIELD(hash);
 717        CHECK_SKB_FIELD(priority);
 718        CHECK_SKB_FIELD(skb_iif);
 719        CHECK_SKB_FIELD(vlan_proto);
 720        CHECK_SKB_FIELD(vlan_tci);
 721        CHECK_SKB_FIELD(transport_header);
 722        CHECK_SKB_FIELD(network_header);
 723        CHECK_SKB_FIELD(mac_header);
 724        CHECK_SKB_FIELD(inner_protocol);
 725        CHECK_SKB_FIELD(inner_transport_header);
 726        CHECK_SKB_FIELD(inner_network_header);
 727        CHECK_SKB_FIELD(inner_mac_header);
 728        CHECK_SKB_FIELD(mark);
 729#ifdef CONFIG_NETWORK_SECMARK
 730        CHECK_SKB_FIELD(secmark);
 731#endif
 732#ifdef CONFIG_NET_RX_BUSY_POLL
 733        CHECK_SKB_FIELD(napi_id);
 734#endif
 735#ifdef CONFIG_NET_SCHED
 736        CHECK_SKB_FIELD(tc_index);
 737#ifdef CONFIG_NET_CLS_ACT
 738        CHECK_SKB_FIELD(tc_verd);
 739#endif
 740#endif
 741
 742}
 743
 744/*
 745 * You should not add any new code to this function.  Add it to
 746 * __copy_skb_header above instead.
 747 */
 748static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb)
 749{
 750#define C(x) n->x = skb->x
 751
 752        n->next = n->prev = NULL;
 753        n->sk = NULL;
 754        __copy_skb_header(n, skb);
 755
 756        C(len);
 757        C(data_len);
 758        C(mac_len);
 759        n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len;
 760        n->cloned = 1;
 761        n->nohdr = 0;
 762        n->destructor = NULL;
 763        C(tail);
 764        C(end);
 765        C(head);
 766        C(head_frag);
 767        C(data);
 768        C(truesize);
 769        atomic_set(&n->users, 1);
 770
 771        atomic_inc(&(skb_shinfo(skb)->dataref));
 772        skb->cloned = 1;
 773
 774        return n;
 775#undef C
 776}
 777
 778/**
 779 *      skb_morph       -       morph one skb into another
 780 *      @dst: the skb to receive the contents
 781 *      @src: the skb to supply the contents
 782 *
 783 *      This is identical to skb_clone except that the target skb is
 784 *      supplied by the user.
 785 *
 786 *      The target skb is returned upon exit.
 787 */
 788struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src)
 789{
 790        skb_release_all(dst);
 791        return __skb_clone(dst, src);
 792}
 793EXPORT_SYMBOL_GPL(skb_morph);
 794
 795/**
 796 *      skb_copy_ubufs  -       copy userspace skb frags buffers to kernel
 797 *      @skb: the skb to modify
 798 *      @gfp_mask: allocation priority
 799 *
 800 *      This must be called on SKBTX_DEV_ZEROCOPY skb.
 801 *      It will copy all frags into kernel and drop the reference
 802 *      to userspace pages.
 803 *
 804 *      If this function is called from an interrupt gfp_mask() must be
 805 *      %GFP_ATOMIC.
 806 *
 807 *      Returns 0 on success or a negative error code on failure
 808 *      to allocate kernel memory to copy to.
 809 */
 810int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask)
 811{
 812        int i;
 813        int num_frags = skb_shinfo(skb)->nr_frags;
 814        struct page *page, *head = NULL;
 815        struct ubuf_info *uarg = skb_shinfo(skb)->destructor_arg;
 816
 817        for (i = 0; i < num_frags; i++) {
 818                u8 *vaddr;
 819                skb_frag_t *f = &skb_shinfo(skb)->frags[i];
 820
 821                page = alloc_page(gfp_mask);
 822                if (!page) {
 823                        while (head) {
 824                                struct page *next = (struct page *)page_private(head);
 825                                put_page(head);
 826                                head = next;
 827                        }
 828                        return -ENOMEM;
 829                }
 830                vaddr = kmap_atomic(skb_frag_page(f));
 831                memcpy(page_address(page),
 832                       vaddr + f->page_offset, skb_frag_size(f));
 833                kunmap_atomic(vaddr);
 834                set_page_private(page, (unsigned long)head);
 835                head = page;
 836        }
 837
 838        /* skb frags release userspace buffers */
 839        for (i = 0; i < num_frags; i++)
 840                skb_frag_unref(skb, i);
 841
 842        uarg->callback(uarg, false);
 843
 844        /* skb frags point to kernel buffers */
 845        for (i = num_frags - 1; i >= 0; i--) {
 846                __skb_fill_page_desc(skb, i, head, 0,
 847                                     skb_shinfo(skb)->frags[i].size);
 848                head = (struct page *)page_private(head);
 849        }
 850
 851        skb_shinfo(skb)->tx_flags &= ~SKBTX_DEV_ZEROCOPY;
 852        return 0;
 853}
 854EXPORT_SYMBOL_GPL(skb_copy_ubufs);
 855
 856/**
 857 *      skb_clone       -       duplicate an sk_buff
 858 *      @skb: buffer to clone
 859 *      @gfp_mask: allocation priority
 860 *
 861 *      Duplicate an &sk_buff. The new one is not owned by a socket. Both
 862 *      copies share the same packet data but not structure. The new
 863 *      buffer has a reference count of 1. If the allocation fails the
 864 *      function returns %NULL otherwise the new buffer is returned.
 865 *
 866 *      If this function is called from an interrupt gfp_mask() must be
 867 *      %GFP_ATOMIC.
 868 */
 869
 870struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask)
 871{
 872        struct sk_buff_fclones *fclones = container_of(skb,
 873                                                       struct sk_buff_fclones,
 874                                                       skb1);
 875        struct sk_buff *n = &fclones->skb2;
 876
 877        if (skb_orphan_frags(skb, gfp_mask))
 878                return NULL;
 879
 880        if (skb->fclone == SKB_FCLONE_ORIG &&
 881            n->fclone == SKB_FCLONE_FREE) {
 882                n->fclone = SKB_FCLONE_CLONE;
 883                atomic_inc(&fclones->fclone_ref);
 884        } else {
 885                if (skb_pfmemalloc(skb))
 886                        gfp_mask |= __GFP_MEMALLOC;
 887
 888                n = kmem_cache_alloc(skbuff_head_cache, gfp_mask);
 889                if (!n)
 890                        return NULL;
 891
 892                kmemcheck_annotate_bitfield(n, flags1);
 893                n->fclone = SKB_FCLONE_UNAVAILABLE;
 894        }
 895
 896        return __skb_clone(n, skb);
 897}
 898EXPORT_SYMBOL(skb_clone);
 899
 900static void skb_headers_offset_update(struct sk_buff *skb, int off)
 901{
 902        /* Only adjust this if it actually is csum_start rather than csum */
 903        if (skb->ip_summed == CHECKSUM_PARTIAL)
 904                skb->csum_start += off;
 905        /* {transport,network,mac}_header and tail are relative to skb->head */
 906        skb->transport_header += off;
 907        skb->network_header   += off;
 908        if (skb_mac_header_was_set(skb))
 909                skb->mac_header += off;
 910        skb->inner_transport_header += off;
 911        skb->inner_network_header += off;
 912        skb->inner_mac_header += off;
 913}
 914
 915static void copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
 916{
 917        __copy_skb_header(new, old);
 918
 919        skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size;
 920        skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs;
 921        skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type;
 922}
 923
 924static inline int skb_alloc_rx_flag(const struct sk_buff *skb)
 925{
 926        if (skb_pfmemalloc(skb))
 927                return SKB_ALLOC_RX;
 928        return 0;
 929}
 930
 931/**
 932 *      skb_copy        -       create private copy of an sk_buff
 933 *      @skb: buffer to copy
 934 *      @gfp_mask: allocation priority
 935 *
 936 *      Make a copy of both an &sk_buff and its data. This is used when the
 937 *      caller wishes to modify the data and needs a private copy of the
 938 *      data to alter. Returns %NULL on failure or the pointer to the buffer
 939 *      on success. The returned buffer has a reference count of 1.
 940 *
 941 *      As by-product this function converts non-linear &sk_buff to linear
 942 *      one, so that &sk_buff becomes completely private and caller is allowed
 943 *      to modify all the data of returned buffer. This means that this
 944 *      function is not recommended for use in circumstances when only
 945 *      header is going to be modified. Use pskb_copy() instead.
 946 */
 947
 948struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask)
 949{
 950        int headerlen = skb_headroom(skb);
 951        unsigned int size = skb_end_offset(skb) + skb->data_len;
 952        struct sk_buff *n = __alloc_skb(size, gfp_mask,
 953                                        skb_alloc_rx_flag(skb), NUMA_NO_NODE);
 954
 955        if (!n)
 956                return NULL;
 957
 958        /* Set the data pointer */
 959        skb_reserve(n, headerlen);
 960        /* Set the tail pointer and length */
 961        skb_put(n, skb->len);
 962
 963        if (skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len))
 964                BUG();
 965
 966        copy_skb_header(n, skb);
 967        return n;
 968}
 969EXPORT_SYMBOL(skb_copy);
 970
 971/**
 972 *      __pskb_copy_fclone      -  create copy of an sk_buff with private head.
 973 *      @skb: buffer to copy
 974 *      @headroom: headroom of new skb
 975 *      @gfp_mask: allocation priority
 976 *      @fclone: if true allocate the copy of the skb from the fclone
 977 *      cache instead of the head cache; it is recommended to set this
 978 *      to true for the cases where the copy will likely be cloned
 979 *
 980 *      Make a copy of both an &sk_buff and part of its data, located
 981 *      in header. Fragmented data remain shared. This is used when
 982 *      the caller wishes to modify only header of &sk_buff and needs
 983 *      private copy of the header to alter. Returns %NULL on failure
 984 *      or the pointer to the buffer on success.
 985 *      The returned buffer has a reference count of 1.
 986 */
 987
 988struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
 989                                   gfp_t gfp_mask, bool fclone)
 990{
 991        unsigned int size = skb_headlen(skb) + headroom;
 992        int flags = skb_alloc_rx_flag(skb) | (fclone ? SKB_ALLOC_FCLONE : 0);
 993        struct sk_buff *n = __alloc_skb(size, gfp_mask, flags, NUMA_NO_NODE);
 994
 995        if (!n)
 996                goto out;
 997
 998        /* Set the data pointer */
 999        skb_reserve(n, headroom);
1000        /* Set the tail pointer and length */
1001        skb_put(n, skb_headlen(skb));
1002        /* Copy the bytes */
1003        skb_copy_from_linear_data(skb, n->data, n->len);
1004
1005        n->truesize += skb->data_len;
1006        n->data_len  = skb->data_len;
1007        n->len       = skb->len;
1008
1009        if (skb_shinfo(skb)->nr_frags) {
1010                int i;
1011
1012                if (skb_orphan_frags(skb, gfp_mask)) {
1013                        kfree_skb(n);
1014                        n = NULL;
1015                        goto out;
1016                }
1017                for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1018                        skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i];
1019                        skb_frag_ref(skb, i);
1020                }
1021                skb_shinfo(n)->nr_frags = i;
1022        }
1023
1024        if (skb_has_frag_list(skb)) {
1025                skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list;
1026                skb_clone_fraglist(n);
1027        }
1028
1029        copy_skb_header(n, skb);
1030out:
1031        return n;
1032}
1033EXPORT_SYMBOL(__pskb_copy_fclone);
1034
1035/**
1036 *      pskb_expand_head - reallocate header of &sk_buff
1037 *      @skb: buffer to reallocate
1038 *      @nhead: room to add at head
1039 *      @ntail: room to add at tail
1040 *      @gfp_mask: allocation priority
1041 *
1042 *      Expands (or creates identical copy, if @nhead and @ntail are zero)
1043 *      header of @skb. &sk_buff itself is not changed. &sk_buff MUST have
1044 *      reference count of 1. Returns zero in the case of success or error,
1045 *      if expansion failed. In the last case, &sk_buff is not changed.
1046 *
1047 *      All the pointers pointing into skb header may change and must be
1048 *      reloaded after call to this function.
1049 */
1050
1051int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail,
1052                     gfp_t gfp_mask)
1053{
1054        int i;
1055        u8 *data;
1056        int size = nhead + skb_end_offset(skb) + ntail;
1057        long off;
1058
1059        BUG_ON(nhead < 0);
1060
1061        if (skb_shared(skb))
1062                BUG();
1063
1064        size = SKB_DATA_ALIGN(size);
1065
1066        if (skb_pfmemalloc(skb))
1067                gfp_mask |= __GFP_MEMALLOC;
1068        data = kmalloc_reserve(size + SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
1069                               gfp_mask, NUMA_NO_NODE, NULL);
1070        if (!data)
1071                goto nodata;
1072        size = SKB_WITH_OVERHEAD(ksize(data));
1073
1074        /* Copy only real data... and, alas, header. This should be
1075         * optimized for the cases when header is void.
1076         */
1077        memcpy(data + nhead, skb->head, skb_tail_pointer(skb) - skb->head);
1078
1079        memcpy((struct skb_shared_info *)(data + size),
1080               skb_shinfo(skb),
1081               offsetof(struct skb_shared_info, frags[skb_shinfo(skb)->nr_frags]));
1082
1083        /*
1084         * if shinfo is shared we must drop the old head gracefully, but if it
1085         * is not we can just drop the old head and let the existing refcount
1086         * be since all we did is relocate the values
1087         */
1088        if (skb_cloned(skb)) {
1089                /* copy this zero copy skb frags */
1090                if (skb_orphan_frags(skb, gfp_mask))
1091                        goto nofrags;
1092                for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1093                        skb_frag_ref(skb, i);
1094
1095                if (skb_has_frag_list(skb))
1096                        skb_clone_fraglist(skb);
1097
1098                skb_release_data(skb);
1099        } else {
1100                skb_free_head(skb);
1101        }
1102        off = (data + nhead) - skb->head;
1103
1104        skb->head     = data;
1105        skb->head_frag = 0;
1106        skb->data    += off;
1107#ifdef NET_SKBUFF_DATA_USES_OFFSET
1108        skb->end      = size;
1109        off           = nhead;
1110#else
1111        skb->end      = skb->head + size;
1112#endif
1113        skb->tail             += off;
1114        skb_headers_offset_update(skb, nhead);
1115        skb->cloned   = 0;
1116        skb->hdr_len  = 0;
1117        skb->nohdr    = 0;
1118        atomic_set(&skb_shinfo(skb)->dataref, 1);
1119        return 0;
1120
1121nofrags:
1122        kfree(data);
1123nodata:
1124        return -ENOMEM;
1125}
1126EXPORT_SYMBOL(pskb_expand_head);
1127
1128/* Make private copy of skb with writable head and some headroom */
1129
1130struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom)
1131{
1132        struct sk_buff *skb2;
1133        int delta = headroom - skb_headroom(skb);
1134
1135        if (delta <= 0)
1136                skb2 = pskb_copy(skb, GFP_ATOMIC);
1137        else {
1138                skb2 = skb_clone(skb, GFP_ATOMIC);
1139                if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0,
1140                                             GFP_ATOMIC)) {
1141                        kfree_skb(skb2);
1142                        skb2 = NULL;
1143                }
1144        }
1145        return skb2;
1146}
1147EXPORT_SYMBOL(skb_realloc_headroom);
1148
1149/**
1150 *      skb_copy_expand -       copy and expand sk_buff
1151 *      @skb: buffer to copy
1152 *      @newheadroom: new free bytes at head
1153 *      @newtailroom: new free bytes at tail
1154 *      @gfp_mask: allocation priority
1155 *
1156 *      Make a copy of both an &sk_buff and its data and while doing so
1157 *      allocate additional space.
1158 *
1159 *      This is used when the caller wishes to modify the data and needs a
1160 *      private copy of the data to alter as well as more space for new fields.
1161 *      Returns %NULL on failure or the pointer to the buffer
1162 *      on success. The returned buffer has a reference count of 1.
1163 *
1164 *      You must pass %GFP_ATOMIC as the allocation priority if this function
1165 *      is called from an interrupt.
1166 */
1167struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
1168                                int newheadroom, int newtailroom,
1169                                gfp_t gfp_mask)
1170{
1171        /*
1172         *      Allocate the copy buffer
1173         */
1174        struct sk_buff *n = __alloc_skb(newheadroom + skb->len + newtailroom,
1175                                        gfp_mask, skb_alloc_rx_flag(skb),
1176                                        NUMA_NO_NODE);
1177        int oldheadroom = skb_headroom(skb);
1178        int head_copy_len, head_copy_off;
1179
1180        if (!n)
1181                return NULL;
1182
1183        skb_reserve(n, newheadroom);
1184
1185        /* Set the tail pointer and length */
1186        skb_put(n, skb->len);
1187
1188        head_copy_len = oldheadroom;
1189        head_copy_off = 0;
1190        if (newheadroom <= head_copy_len)
1191                head_copy_len = newheadroom;
1192        else
1193                head_copy_off = newheadroom - head_copy_len;
1194
1195        /* Copy the linear header and data. */
1196        if (skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off,
1197                          skb->len + head_copy_len))
1198                BUG();
1199
1200        copy_skb_header(n, skb);
1201
1202        skb_headers_offset_update(n, newheadroom - oldheadroom);
1203
1204        return n;
1205}
1206EXPORT_SYMBOL(skb_copy_expand);
1207
1208/**
1209 *      skb_pad                 -       zero pad the tail of an skb
1210 *      @skb: buffer to pad
1211 *      @pad: space to pad
1212 *
1213 *      Ensure that a buffer is followed by a padding area that is zero
1214 *      filled. Used by network drivers which may DMA or transfer data
1215 *      beyond the buffer end onto the wire.
1216 *
1217 *      May return error in out of memory cases. The skb is freed on error.
1218 */
1219
1220int skb_pad(struct sk_buff *skb, int pad)
1221{
1222        int err;
1223        int ntail;
1224
1225        /* If the skbuff is non linear tailroom is always zero.. */
1226        if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) {
1227                memset(skb->data+skb->len, 0, pad);
1228                return 0;
1229        }
1230
1231        ntail = skb->data_len + pad - (skb->end - skb->tail);
1232        if (likely(skb_cloned(skb) || ntail > 0)) {
1233                err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC);
1234                if (unlikely(err))
1235                        goto free_skb;
1236        }
1237
1238        /* FIXME: The use of this function with non-linear skb's really needs
1239         * to be audited.
1240         */
1241        err = skb_linearize(skb);
1242        if (unlikely(err))
1243                goto free_skb;
1244
1245        memset(skb->data + skb->len, 0, pad);
1246        return 0;
1247
1248free_skb:
1249        kfree_skb(skb);
1250        return err;
1251}
1252EXPORT_SYMBOL(skb_pad);
1253
1254/**
1255 *      pskb_put - add data to the tail of a potentially fragmented buffer
1256 *      @skb: start of the buffer to use
1257 *      @tail: tail fragment of the buffer to use
1258 *      @len: amount of data to add
1259 *
1260 *      This function extends the used data area of the potentially
1261 *      fragmented buffer. @tail must be the last fragment of @skb -- or
1262 *      @skb itself. If this would exceed the total buffer size the kernel
1263 *      will panic. A pointer to the first byte of the extra data is
1264 *      returned.
1265 */
1266
1267unsigned char *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len)
1268{
1269        if (tail != skb) {
1270                skb->data_len += len;
1271                skb->len += len;
1272        }
1273        return skb_put(tail, len);
1274}
1275EXPORT_SYMBOL_GPL(pskb_put);
1276
1277/**
1278 *      skb_put - add data to a buffer
1279 *      @skb: buffer to use
1280 *      @len: amount of data to add
1281 *
1282 *      This function extends the used data area of the buffer. If this would
1283 *      exceed the total buffer size the kernel will panic. A pointer to the
1284 *      first byte of the extra data is returned.
1285 */
1286unsigned char *skb_put(struct sk_buff *skb, unsigned int len)
1287{
1288        unsigned char *tmp = skb_tail_pointer(skb);
1289        SKB_LINEAR_ASSERT(skb);
1290        skb->tail += len;
1291        skb->len  += len;
1292        if (unlikely(skb->tail > skb->end))
1293                skb_over_panic(skb, len, __builtin_return_address(0));
1294        return tmp;
1295}
1296EXPORT_SYMBOL(skb_put);
1297
1298/**
1299 *      skb_push - add data to the start of a buffer
1300 *      @skb: buffer to use
1301 *      @len: amount of data to add
1302 *
1303 *      This function extends the used data area of the buffer at the buffer
1304 *      start. If this would exceed the total buffer headroom the kernel will
1305 *      panic. A pointer to the first byte of the extra data is returned.
1306 */
1307unsigned char *skb_push(struct sk_buff *skb, unsigned int len)
1308{
1309        skb->data -= len;
1310        skb->len  += len;
1311        if (unlikely(skb->data<skb->head))
1312                skb_under_panic(skb, len, __builtin_return_address(0));
1313        return skb->data;
1314}
1315EXPORT_SYMBOL(skb_push);
1316
1317/**
1318 *      skb_pull - remove data from the start of a buffer
1319 *      @skb: buffer to use
1320 *      @len: amount of data to remove
1321 *
1322 *      This function removes data from the start of a buffer, returning
1323 *      the memory to the headroom. A pointer to the next data in the buffer
1324 *      is returned. Once the data has been pulled future pushes will overwrite
1325 *      the old data.
1326 */
1327unsigned char *skb_pull(struct sk_buff *skb, unsigned int len)
1328{
1329        return skb_pull_inline(skb, len);
1330}
1331EXPORT_SYMBOL(skb_pull);
1332
1333/**
1334 *      skb_trim - remove end from a buffer
1335 *      @skb: buffer to alter
1336 *      @len: new length
1337 *
1338 *      Cut the length of a buffer down by removing data from the tail. If
1339 *      the buffer is already under the length specified it is not modified.
1340 *      The skb must be linear.
1341 */
1342void skb_trim(struct sk_buff *skb, unsigned int len)
1343{
1344        if (skb->len > len)
1345                __skb_trim(skb, len);
1346}
1347EXPORT_SYMBOL(skb_trim);
1348
1349/* Trims skb to length len. It can change skb pointers.
1350 */
1351
1352int ___pskb_trim(struct sk_buff *skb, unsigned int len)
1353{
1354        struct sk_buff **fragp;
1355        struct sk_buff *frag;
1356        int offset = skb_headlen(skb);
1357        int nfrags = skb_shinfo(skb)->nr_frags;
1358        int i;
1359        int err;
1360
1361        if (skb_cloned(skb) &&
1362            unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))))
1363                return err;
1364
1365        i = 0;
1366        if (offset >= len)
1367                goto drop_pages;
1368
1369        for (; i < nfrags; i++) {
1370                int end = offset + skb_frag_size(&skb_shinfo(skb)->frags[i]);
1371
1372                if (end < len) {
1373                        offset = end;
1374                        continue;
1375                }
1376
1377                skb_frag_size_set(&skb_shinfo(skb)->frags[i++], len - offset);
1378
1379drop_pages:
1380                skb_shinfo(skb)->nr_frags = i;
1381
1382                for (; i < nfrags; i++)
1383                        skb_frag_unref(skb, i);
1384
1385                if (skb_has_frag_list(skb))
1386                        skb_drop_fraglist(skb);
1387                goto done;
1388        }
1389
1390        for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp);
1391             fragp = &frag->next) {
1392                int end = offset + frag->len;
1393
1394                if (skb_shared(frag)) {
1395                        struct sk_buff *nfrag;
1396
1397                        nfrag = skb_clone(frag, GFP_ATOMIC);
1398                        if (unlikely(!nfrag))
1399                                return -ENOMEM;
1400
1401                        nfrag->next = frag->next;
1402                        consume_skb(frag);
1403                        frag = nfrag;
1404                        *fragp = frag;
1405                }
1406
1407                if (end < len) {
1408                        offset = end;
1409                        continue;
1410                }
1411
1412                if (end > len &&
1413                    unlikely((err = pskb_trim(frag, len - offset))))
1414                        return err;
1415
1416                if (frag->next)
1417                        skb_drop_list(&frag->next);
1418                break;
1419        }
1420
1421done:
1422        if (len > skb_headlen(skb)) {
1423                skb->data_len -= skb->len - len;
1424                skb->len       = len;
1425        } else {
1426                skb->len       = len;
1427                skb->data_len  = 0;
1428                skb_set_tail_pointer(skb, len);
1429        }
1430
1431        return 0;
1432}
1433EXPORT_SYMBOL(___pskb_trim);
1434
1435/**
1436 *      __pskb_pull_tail - advance tail of skb header
1437 *      @skb: buffer to reallocate
1438 *      @delta: number of bytes to advance tail
1439 *
1440 *      The function makes a sense only on a fragmented &sk_buff,
1441 *      it expands header moving its tail forward and copying necessary
1442 *      data from fragmented part.
1443 *
1444 *      &sk_buff MUST have reference count of 1.
1445 *
1446 *      Returns %NULL (and &sk_buff does not change) if pull failed
1447 *      or value of new tail of skb in the case of success.
1448 *
1449 *      All the pointers pointing into skb header may change and must be
1450 *      reloaded after call to this function.
1451 */
1452
1453/* Moves tail of skb head forward, copying data from fragmented part,
1454 * when it is necessary.
1455 * 1. It may fail due to malloc failure.
1456 * 2. It may change skb pointers.
1457 *
1458 * It is pretty complicated. Luckily, it is called only in exceptional cases.
1459 */
1460unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta)
1461{
1462        /* If skb has not enough free space at tail, get new one
1463         * plus 128 bytes for future expansions. If we have enough
1464         * room at tail, reallocate without expansion only if skb is cloned.
1465         */
1466        int i, k, eat = (skb->tail + delta) - skb->end;
1467
1468        if (eat > 0 || skb_cloned(skb)) {
1469                if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0,
1470                                     GFP_ATOMIC))
1471                        return NULL;
1472        }
1473
1474        if (skb_copy_bits(skb, skb_headlen(skb), skb_tail_pointer(skb), delta))
1475                BUG();
1476
1477        /* Optimization: no fragments, no reasons to preestimate
1478         * size of pulled pages. Superb.
1479         */
1480        if (!skb_has_frag_list(skb))
1481                goto pull_pages;
1482
1483        /* Estimate size of pulled pages. */
1484        eat = delta;
1485        for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1486                int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
1487
1488                if (size >= eat)
1489                        goto pull_pages;
1490                eat -= size;
1491        }
1492
1493        /* If we need update frag list, we are in troubles.
1494         * Certainly, it possible to add an offset to skb data,
1495         * but taking into account that pulling is expected to
1496         * be very rare operation, it is worth to fight against
1497         * further bloating skb head and crucify ourselves here instead.
1498         * Pure masohism, indeed. 8)8)
1499         */
1500        if (eat) {
1501                struct sk_buff *list = skb_shinfo(skb)->frag_list;
1502                struct sk_buff *clone = NULL;
1503                struct sk_buff *insp = NULL;
1504
1505                do {
1506                        BUG_ON(!list);
1507
1508                        if (list->len <= eat) {
1509                                /* Eaten as whole. */
1510                                eat -= list->len;
1511                                list = list->next;
1512                                insp = list;
1513                        } else {
1514                                /* Eaten partially. */
1515
1516                                if (skb_shared(list)) {
1517                                        /* Sucks! We need to fork list. :-( */
1518                                        clone = skb_clone(list, GFP_ATOMIC);
1519                                        if (!clone)
1520                                                return NULL;
1521                                        insp = list->next;
1522                                        list = clone;
1523                                } else {
1524                                        /* This may be pulled without
1525                                         * problems. */
1526                                        insp = list;
1527                                }
1528                                if (!pskb_pull(list, eat)) {
1529                                        kfree_skb(clone);
1530                                        return NULL;
1531                                }
1532                                break;
1533                        }
1534                } while (eat);
1535
1536                /* Free pulled out fragments. */
1537                while ((list = skb_shinfo(skb)->frag_list) != insp) {
1538                        skb_shinfo(skb)->frag_list = list->next;
1539                        kfree_skb(list);
1540                }
1541                /* And insert new clone at head. */
1542                if (clone) {
1543                        clone->next = list;
1544                        skb_shinfo(skb)->frag_list = clone;
1545                }
1546        }
1547        /* Success! Now we may commit changes to skb data. */
1548
1549pull_pages:
1550        eat = delta;
1551        k = 0;
1552        for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1553                int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
1554
1555                if (size <= eat) {
1556                        skb_frag_unref(skb, i);
1557                        eat -= size;
1558                } else {
1559                        skb_shinfo(skb)->frags[k] = skb_shinfo(skb)->frags[i];
1560                        if (eat) {
1561                                skb_shinfo(skb)->frags[k].page_offset += eat;
1562                                skb_frag_size_sub(&skb_shinfo(skb)->frags[k], eat);
1563                                eat = 0;
1564                        }
1565                        k++;
1566                }
1567        }
1568        skb_shinfo(skb)->nr_frags = k;
1569
1570        skb->tail     += delta;
1571        skb->data_len -= delta;
1572
1573        return skb_tail_pointer(skb);
1574}
1575EXPORT_SYMBOL(__pskb_pull_tail);
1576
1577/**
1578 *      skb_copy_bits - copy bits from skb to kernel buffer
1579 *      @skb: source skb
1580 *      @offset: offset in source
1581 *      @to: destination buffer
1582 *      @len: number of bytes to copy
1583 *
1584 *      Copy the specified number of bytes from the source skb to the
1585 *      destination buffer.
1586 *
1587 *      CAUTION ! :
1588 *              If its prototype is ever changed,
1589 *              check arch/{*}/net/{*}.S files,
1590 *              since it is called from BPF assembly code.
1591 */
1592int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len)
1593{
1594        int start = skb_headlen(skb);
1595        struct sk_buff *frag_iter;
1596        int i, copy;
1597
1598        if (offset > (int)skb->len - len)
1599                goto fault;
1600
1601        /* Copy header. */
1602        if ((copy = start - offset) > 0) {
1603                if (copy > len)
1604                        copy = len;
1605                skb_copy_from_linear_data_offset(skb, offset, to, copy);
1606                if ((len -= copy) == 0)
1607                        return 0;
1608                offset += copy;
1609                to     += copy;
1610        }
1611
1612        for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1613                int end;
1614                skb_frag_t *f = &skb_shinfo(skb)->frags[i];
1615
1616                WARN_ON(start > offset + len);
1617
1618                end = start + skb_frag_size(f);
1619                if ((copy = end - offset) > 0) {
1620                        u8 *vaddr;
1621
1622                        if (copy > len)
1623                                copy = len;
1624
1625                        vaddr = kmap_atomic(skb_frag_page(f));
1626                        memcpy(to,
1627                               vaddr + f->page_offset + offset - start,
1628                               copy);
1629                        kunmap_atomic(vaddr);
1630
1631                        if ((len -= copy) == 0)
1632                                return 0;
1633                        offset += copy;
1634                        to     += copy;
1635                }
1636                start = end;
1637        }
1638
1639        skb_walk_frags(skb, frag_iter) {
1640                int end;
1641
1642                WARN_ON(start > offset + len);
1643
1644                end = start + frag_iter->len;
1645                if ((copy = end - offset) > 0) {
1646                        if (copy > len)
1647                                copy = len;
1648                        if (skb_copy_bits(frag_iter, offset - start, to, copy))
1649                                goto fault;
1650                        if ((len -= copy) == 0)
1651                                return 0;
1652                        offset += copy;
1653                        to     += copy;
1654                }
1655                start = end;
1656        }
1657
1658        if (!len)
1659                return 0;
1660
1661fault:
1662        return -EFAULT;
1663}
1664EXPORT_SYMBOL(skb_copy_bits);
1665
1666/*
1667 * Callback from splice_to_pipe(), if we need to release some pages
1668 * at the end of the spd in case we error'ed out in filling the pipe.
1669 */
1670static void sock_spd_release(struct splice_pipe_desc *spd, unsigned int i)
1671{
1672        put_page(spd->pages[i]);
1673}
1674
1675static struct page *linear_to_page(struct page *page, unsigned int *len,
1676                                   unsigned int *offset,
1677                                   struct sock *sk)
1678{
1679        struct page_frag *pfrag = sk_page_frag(sk);
1680
1681        if (!sk_page_frag_refill(sk, pfrag))
1682                return NULL;
1683
1684        *len = min_t(unsigned int, *len, pfrag->size - pfrag->offset);
1685
1686        memcpy(page_address(pfrag->page) + pfrag->offset,
1687               page_address(page) + *offset, *len);
1688        *offset = pfrag->offset;
1689        pfrag->offset += *len;
1690
1691        return pfrag->page;
1692}
1693
1694static bool spd_can_coalesce(const struct splice_pipe_desc *spd,
1695                             struct page *page,
1696                             unsigned int offset)
1697{
1698        return  spd->nr_pages &&
1699                spd->pages[spd->nr_pages - 1] == page &&
1700                (spd->partial[spd->nr_pages - 1].offset +
1701                 spd->partial[spd->nr_pages - 1].len == offset);
1702}
1703
1704/*
1705 * Fill page/offset/length into spd, if it can hold more pages.
1706 */
1707static bool spd_fill_page(struct splice_pipe_desc *spd,
1708                          struct pipe_inode_info *pipe, struct page *page,
1709                          unsigned int *len, unsigned int offset,
1710                          bool linear,
1711                          struct sock *sk)
1712{
1713        if (unlikely(spd->nr_pages == MAX_SKB_FRAGS))
1714                return true;
1715
1716        if (linear) {
1717                page = linear_to_page(page, len, &offset, sk);
1718                if (!page)
1719                        return true;
1720        }
1721        if (spd_can_coalesce(spd, page, offset)) {
1722                spd->partial[spd->nr_pages - 1].len += *len;
1723                return false;
1724        }
1725        get_page(page);
1726        spd->pages[spd->nr_pages] = page;
1727        spd->partial[spd->nr_pages].len = *len;
1728        spd->partial[spd->nr_pages].offset = offset;
1729        spd->nr_pages++;
1730
1731        return false;
1732}
1733
1734static bool __splice_segment(struct page *page, unsigned int poff,
1735                             unsigned int plen, unsigned int *off,
1736                             unsigned int *len,
1737                             struct splice_pipe_desc *spd, bool linear,
1738                             struct sock *sk,
1739                             struct pipe_inode_info *pipe)
1740{
1741        if (!*len)
1742                return true;
1743
1744        /* skip this segment if already processed */
1745        if (*off >= plen) {
1746                *off -= plen;
1747                return false;
1748        }
1749
1750        /* ignore any bits we already processed */
1751        poff += *off;
1752        plen -= *off;
1753        *off = 0;
1754
1755        do {
1756                unsigned int flen = min(*len, plen);
1757
1758                if (spd_fill_page(spd, pipe, page, &flen, poff,
1759                                  linear, sk))
1760                        return true;
1761                poff += flen;
1762                plen -= flen;
1763                *len -= flen;
1764        } while (*len && plen);
1765
1766        return false;
1767}
1768
1769/*
1770 * Map linear and fragment data from the skb to spd. It reports true if the
1771 * pipe is full or if we already spliced the requested length.
1772 */
1773static bool __skb_splice_bits(struct sk_buff *skb, struct pipe_inode_info *pipe,
1774                              unsigned int *offset, unsigned int *len,
1775                              struct splice_pipe_desc *spd, struct sock *sk)
1776{
1777        int seg;
1778
1779        /* map the linear part :
1780         * If skb->head_frag is set, this 'linear' part is backed by a
1781         * fragment, and if the head is not shared with any clones then
1782         * we can avoid a copy since we own the head portion of this page.
1783         */
1784        if (__splice_segment(virt_to_page(skb->data),
1785                             (unsigned long) skb->data & (PAGE_SIZE - 1),
1786                             skb_headlen(skb),
1787                             offset, len, spd,
1788                             skb_head_is_locked(skb),
1789                             sk, pipe))
1790                return true;
1791
1792        /*
1793         * then map the fragments
1794         */
1795        for (seg = 0; seg < skb_shinfo(skb)->nr_frags; seg++) {
1796                const skb_frag_t *f = &skb_shinfo(skb)->frags[seg];
1797
1798                if (__splice_segment(skb_frag_page(f),
1799                                     f->page_offset, skb_frag_size(f),
1800                                     offset, len, spd, false, sk, pipe))
1801                        return true;
1802        }
1803
1804        return false;
1805}
1806
1807/*
1808 * Map data from the skb to a pipe. Should handle both the linear part,
1809 * the fragments, and the frag list. It does NOT handle frag lists within
1810 * the frag list, if such a thing exists. We'd probably need to recurse to
1811 * handle that cleanly.
1812 */
1813int skb_splice_bits(struct sk_buff *skb, unsigned int offset,
1814                    struct pipe_inode_info *pipe, unsigned int tlen,
1815                    unsigned int flags)
1816{
1817        struct partial_page partial[MAX_SKB_FRAGS];
1818        struct page *pages[MAX_SKB_FRAGS];
1819        struct splice_pipe_desc spd = {
1820                .pages = pages,
1821                .partial = partial,
1822                .nr_pages_max = MAX_SKB_FRAGS,
1823                .flags = flags,
1824                .ops = &nosteal_pipe_buf_ops,
1825                .spd_release = sock_spd_release,
1826        };
1827        struct sk_buff *frag_iter;
1828        struct sock *sk = skb->sk;
1829        int ret = 0;
1830
1831        /*
1832         * __skb_splice_bits() only fails if the output has no room left,
1833         * so no point in going over the frag_list for the error case.
1834         */
1835        if (__skb_splice_bits(skb, pipe, &offset, &tlen, &spd, sk))
1836                goto done;
1837        else if (!tlen)
1838                goto done;
1839
1840        /*
1841         * now see if we have a frag_list to map
1842         */
1843        skb_walk_frags(skb, frag_iter) {
1844                if (!tlen)
1845                        break;
1846                if (__skb_splice_bits(frag_iter, pipe, &offset, &tlen, &spd, sk))
1847                        break;
1848        }
1849
1850done:
1851        if (spd.nr_pages) {
1852                /*
1853                 * Drop the socket lock, otherwise we have reverse
1854                 * locking dependencies between sk_lock and i_mutex
1855                 * here as compared to sendfile(). We enter here
1856                 * with the socket lock held, and splice_to_pipe() will
1857                 * grab the pipe inode lock. For sendfile() emulation,
1858                 * we call into ->sendpage() with the i_mutex lock held
1859                 * and networking will grab the socket lock.
1860                 */
1861                release_sock(sk);
1862                ret = splice_to_pipe(pipe, &spd);
1863                lock_sock(sk);
1864        }
1865
1866        return ret;
1867}
1868
1869/**
1870 *      skb_store_bits - store bits from kernel buffer to skb
1871 *      @skb: destination buffer
1872 *      @offset: offset in destination
1873 *      @from: source buffer
1874 *      @len: number of bytes to copy
1875 *
1876 *      Copy the specified number of bytes from the source buffer to the
1877 *      destination skb.  This function handles all the messy bits of
1878 *      traversing fragment lists and such.
1879 */
1880
1881int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len)
1882{
1883        int start = skb_headlen(skb);
1884        struct sk_buff *frag_iter;
1885        int i, copy;
1886
1887        if (offset > (int)skb->len - len)
1888                goto fault;
1889
1890        if ((copy = start - offset) > 0) {
1891                if (copy > len)
1892                        copy = len;
1893                skb_copy_to_linear_data_offset(skb, offset, from, copy);
1894                if ((len -= copy) == 0)
1895                        return 0;
1896                offset += copy;
1897                from += copy;
1898        }
1899
1900        for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1901                skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1902                int end;
1903
1904                WARN_ON(start > offset + len);
1905
1906                end = start + skb_frag_size(frag);
1907                if ((copy = end - offset) > 0) {
1908                        u8 *vaddr;
1909
1910                        if (copy > len)
1911                                copy = len;
1912
1913                        vaddr = kmap_atomic(skb_frag_page(frag));
1914                        memcpy(vaddr + frag->page_offset + offset - start,
1915                               from, copy);
1916                        kunmap_atomic(vaddr);
1917
1918                        if ((len -= copy) == 0)
1919                                return 0;
1920                        offset += copy;
1921                        from += copy;
1922                }
1923                start = end;
1924        }
1925
1926        skb_walk_frags(skb, frag_iter) {
1927                int end;
1928
1929                WARN_ON(start > offset + len);
1930
1931                end = start + frag_iter->len;
1932                if ((copy = end - offset) > 0) {
1933                        if (copy > len)
1934                                copy = len;
1935                        if (skb_store_bits(frag_iter, offset - start,
1936                                           from, copy))
1937                                goto fault;
1938                        if ((len -= copy) == 0)
1939                                return 0;
1940                        offset += copy;
1941                        from += copy;
1942                }
1943                start = end;
1944        }
1945        if (!len)
1946                return 0;
1947
1948fault:
1949        return -EFAULT;
1950}
1951EXPORT_SYMBOL(skb_store_bits);
1952
1953/* Checksum skb data. */
1954__wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
1955                      __wsum csum, const struct skb_checksum_ops *ops)
1956{
1957        int start = skb_headlen(skb);
1958        int i, copy = start - offset;
1959        struct sk_buff *frag_iter;
1960        int pos = 0;
1961
1962        /* Checksum header. */
1963        if (copy > 0) {
1964                if (copy > len)
1965                        copy = len;
1966                csum = ops->update(skb->data + offset, copy, csum);
1967                if ((len -= copy) == 0)
1968                        return csum;
1969                offset += copy;
1970                pos     = copy;
1971        }
1972
1973        for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1974                int end;
1975                skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1976
1977                WARN_ON(start > offset + len);
1978
1979                end = start + skb_frag_size(frag);
1980                if ((copy = end - offset) > 0) {
1981                        __wsum csum2;
1982                        u8 *vaddr;
1983
1984                        if (copy > len)
1985                                copy = len;
1986                        vaddr = kmap_atomic(skb_frag_page(frag));
1987                        csum2 = ops->update(vaddr + frag->page_offset +
1988                                            offset - start, copy, 0);
1989                        kunmap_atomic(vaddr);
1990                        csum = ops->combine(csum, csum2, pos, copy);
1991                        if (!(len -= copy))
1992                                return csum;
1993                        offset += copy;
1994                        pos    += copy;
1995                }
1996                start = end;
1997        }
1998
1999        skb_walk_frags(skb, frag_iter) {
2000                int end;
2001
2002                WARN_ON(start > offset + len);
2003
2004                end = start + frag_iter->len;
2005                if ((copy = end - offset) > 0) {
2006                        __wsum csum2;
2007                        if (copy > len)
2008                                copy = len;
2009                        csum2 = __skb_checksum(frag_iter, offset - start,
2010                                               copy, 0, ops);
2011                        csum = ops->combine(csum, csum2, pos, copy);
2012                        if ((len -= copy) == 0)
2013                                return csum;
2014                        offset += copy;
2015                        pos    += copy;
2016                }
2017                start = end;
2018        }
2019        BUG_ON(len);
2020
2021        return csum;
2022}
2023EXPORT_SYMBOL(__skb_checksum);
2024
2025__wsum skb_checksum(const struct sk_buff *skb, int offset,
2026                    int len, __wsum csum)
2027{
2028        const struct skb_checksum_ops ops = {
2029                .update  = csum_partial_ext,
2030                .combine = csum_block_add_ext,
2031        };
2032
2033        return __skb_checksum(skb, offset, len, csum, &ops);
2034}
2035EXPORT_SYMBOL(skb_checksum);
2036
2037/* Both of above in one bottle. */
2038
2039__wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset,
2040                                    u8 *to, int len, __wsum csum)
2041{
2042        int start = skb_headlen(skb);
2043        int i, copy = start - offset;
2044        struct sk_buff *frag_iter;
2045        int pos = 0;
2046
2047        /* Copy header. */
2048        if (copy > 0) {
2049                if (copy > len)
2050                        copy = len;
2051                csum = csum_partial_copy_nocheck(skb->data + offset, to,
2052                                                 copy, csum);
2053                if ((len -= copy) == 0)
2054                        return csum;
2055                offset += copy;
2056                to     += copy;
2057                pos     = copy;
2058        }
2059
2060        for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2061                int end;
2062
2063                WARN_ON(start > offset + len);
2064
2065                end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
2066                if ((copy = end - offset) > 0) {
2067                        __wsum csum2;
2068                        u8 *vaddr;
2069                        skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2070
2071                        if (copy > len)
2072                                copy = len;
2073                        vaddr = kmap_atomic(skb_frag_page(frag));
2074                        csum2 = csum_partial_copy_nocheck(vaddr +
2075                                                          frag->page_offset +
2076                                                          offset - start, to,
2077                                                          copy, 0);
2078                        kunmap_atomic(vaddr);
2079                        csum = csum_block_add(csum, csum2, pos);
2080                        if (!(len -= copy))
2081                                return csum;
2082                        offset += copy;
2083                        to     += copy;
2084                        pos    += copy;
2085                }
2086                start = end;
2087        }
2088
2089        skb_walk_frags(skb, frag_iter) {
2090                __wsum csum2;
2091                int end;
2092
2093                WARN_ON(start > offset + len);
2094
2095                end = start + frag_iter->len;
2096                if ((copy = end - offset) > 0) {
2097                        if (copy > len)
2098                                copy = len;
2099                        csum2 = skb_copy_and_csum_bits(frag_iter,
2100                                                       offset - start,
2101                                                       to, copy, 0);
2102                        csum = csum_block_add(csum, csum2, pos);
2103                        if ((len -= copy) == 0)
2104                                return csum;
2105                        offset += copy;
2106                        to     += copy;
2107                        pos    += copy;
2108                }
2109                start = end;
2110        }
2111        BUG_ON(len);
2112        return csum;
2113}
2114EXPORT_SYMBOL(skb_copy_and_csum_bits);
2115
2116 /**
2117 *      skb_zerocopy_headlen - Calculate headroom needed for skb_zerocopy()
2118 *      @from: source buffer
2119 *
2120 *      Calculates the amount of linear headroom needed in the 'to' skb passed
2121 *      into skb_zerocopy().
2122 */
2123unsigned int
2124skb_zerocopy_headlen(const struct sk_buff *from)
2125{
2126        unsigned int hlen = 0;
2127
2128        if (!from->head_frag ||
2129            skb_headlen(from) < L1_CACHE_BYTES ||
2130            skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS)
2131                hlen = skb_headlen(from);
2132
2133        if (skb_has_frag_list(from))
2134                hlen = from->len;
2135
2136        return hlen;
2137}
2138EXPORT_SYMBOL_GPL(skb_zerocopy_headlen);
2139
2140/**
2141 *      skb_zerocopy - Zero copy skb to skb
2142 *      @to: destination buffer
2143 *      @from: source buffer
2144 *      @len: number of bytes to copy from source buffer
2145 *      @hlen: size of linear headroom in destination buffer
2146 *
2147 *      Copies up to `len` bytes from `from` to `to` by creating references
2148 *      to the frags in the source buffer.
2149 *
2150 *      The `hlen` as calculated by skb_zerocopy_headlen() specifies the
2151 *      headroom in the `to` buffer.
2152 *
2153 *      Return value:
2154 *      0: everything is OK
2155 *      -ENOMEM: couldn't orphan frags of @from due to lack of memory
2156 *      -EFAULT: skb_copy_bits() found some problem with skb geometry
2157 */
2158int
2159skb_zerocopy(struct sk_buff *to, struct sk_buff *from, int len, int hlen)
2160{
2161        int i, j = 0;
2162        int plen = 0; /* length of skb->head fragment */
2163        int ret;
2164        struct page *page;
2165        unsigned int offset;
2166
2167        BUG_ON(!from->head_frag && !hlen);
2168
2169        /* dont bother with small payloads */
2170        if (len <= skb_tailroom(to))
2171                return skb_copy_bits(from, 0, skb_put(to, len), len);
2172
2173        if (hlen) {
2174                ret = skb_copy_bits(from, 0, skb_put(to, hlen), hlen);
2175                if (unlikely(ret))
2176                        return ret;
2177                len -= hlen;
2178        } else {
2179                plen = min_t(int, skb_headlen(from), len);
2180                if (plen) {
2181                        page = virt_to_head_page(from->head);
2182                        offset = from->data - (unsigned char *)page_address(page);
2183                        __skb_fill_page_desc(to, 0, page, offset, plen);
2184                        get_page(page);
2185                        j = 1;
2186                        len -= plen;
2187                }
2188        }
2189
2190        to->truesize += len + plen;
2191        to->len += len + plen;
2192        to->data_len += len + plen;
2193
2194        if (unlikely(skb_orphan_frags(from, GFP_ATOMIC))) {
2195                skb_tx_error(from);
2196                return -ENOMEM;
2197        }
2198
2199        for (i = 0; i < skb_shinfo(from)->nr_frags; i++) {
2200                if (!len)
2201                        break;
2202                skb_shinfo(to)->frags[j] = skb_shinfo(from)->frags[i];
2203                skb_shinfo(to)->frags[j].size = min_t(int, skb_shinfo(to)->frags[j].size, len);
2204                len -= skb_shinfo(to)->frags[j].size;
2205                skb_frag_ref(to, j);
2206                j++;
2207        }
2208        skb_shinfo(to)->nr_frags = j;
2209
2210        return 0;
2211}
2212EXPORT_SYMBOL_GPL(skb_zerocopy);
2213
2214void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to)
2215{
2216        __wsum csum;
2217        long csstart;
2218
2219        if (skb->ip_summed == CHECKSUM_PARTIAL)
2220                csstart = skb_checksum_start_offset(skb);
2221        else
2222                csstart = skb_headlen(skb);
2223
2224        BUG_ON(csstart > skb_headlen(skb));
2225
2226        skb_copy_from_linear_data(skb, to, csstart);
2227
2228        csum = 0;
2229        if (csstart != skb->len)
2230                csum = skb_copy_and_csum_bits(skb, csstart, to + csstart,
2231                                              skb->len - csstart, 0);
2232
2233        if (skb->ip_summed == CHECKSUM_PARTIAL) {
2234                long csstuff = csstart + skb->csum_offset;
2235
2236                *((__sum16 *)(to + csstuff)) = csum_fold(csum);
2237        }
2238}
2239EXPORT_SYMBOL(skb_copy_and_csum_dev);
2240
2241/**
2242 *      skb_dequeue - remove from the head of the queue
2243 *      @list: list to dequeue from
2244 *
2245 *      Remove the head of the list. The list lock is taken so the function
2246 *      may be used safely with other locking list functions. The head item is
2247 *      returned or %NULL if the list is empty.
2248 */
2249
2250struct sk_buff *skb_dequeue(struct sk_buff_head *list)
2251{
2252        unsigned long flags;
2253        struct sk_buff *result;
2254
2255        spin_lock_irqsave(&list->lock, flags);
2256        result = __skb_dequeue(list);
2257        spin_unlock_irqrestore(&list->lock, flags);
2258        return result;
2259}
2260EXPORT_SYMBOL(skb_dequeue);
2261
2262/**
2263 *      skb_dequeue_tail - remove from the tail of the queue
2264 *      @list: list to dequeue from
2265 *
2266 *      Remove the tail of the list. The list lock is taken so the function
2267 *      may be used safely with other locking list functions. The tail item is
2268 *      returned or %NULL if the list is empty.
2269 */
2270struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list)
2271{
2272        unsigned long flags;
2273        struct sk_buff *result;
2274
2275        spin_lock_irqsave(&list->lock, flags);
2276        result = __skb_dequeue_tail(list);
2277        spin_unlock_irqrestore(&list->lock, flags);
2278        return result;
2279}
2280EXPORT_SYMBOL(skb_dequeue_tail);
2281
2282/**
2283 *      skb_queue_purge - empty a list
2284 *      @list: list to empty
2285 *
2286 *      Delete all buffers on an &sk_buff list. Each buffer is removed from
2287 *      the list and one reference dropped. This function takes the list
2288 *      lock and is atomic with respect to other list locking functions.
2289 */
2290void skb_queue_purge(struct sk_buff_head *list)
2291{
2292        struct sk_buff *skb;
2293        while ((skb = skb_dequeue(list)) != NULL)
2294                kfree_skb(skb);
2295}
2296EXPORT_SYMBOL(skb_queue_purge);
2297
2298/**
2299 *      skb_queue_head - queue a buffer at the list head
2300 *      @list: list to use
2301 *      @newsk: buffer to queue
2302 *
2303 *      Queue a buffer at the start of the list. This function takes the
2304 *      list lock and can be used safely with other locking &sk_buff functions
2305 *      safely.
2306 *
2307 *      A buffer cannot be placed on two lists at the same time.
2308 */
2309void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk)
2310{
2311        unsigned long flags;
2312
2313        spin_lock_irqsave(&list->lock, flags);
2314        __skb_queue_head(list, newsk);
2315        spin_unlock_irqrestore(&list->lock, flags);
2316}
2317EXPORT_SYMBOL(skb_queue_head);
2318
2319/**
2320 *      skb_queue_tail - queue a buffer at the list tail
2321 *      @list: list to use
2322 *      @newsk: buffer to queue
2323 *
2324 *      Queue a buffer at the tail of the list. This function takes the
2325 *      list lock and can be used safely with other locking &sk_buff functions
2326 *      safely.
2327 *
2328 *      A buffer cannot be placed on two lists at the same time.
2329 */
2330void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk)
2331{
2332        unsigned long flags;
2333
2334        spin_lock_irqsave(&list->lock, flags);
2335        __skb_queue_tail(list, newsk);
2336        spin_unlock_irqrestore(&list->lock, flags);
2337}
2338EXPORT_SYMBOL(skb_queue_tail);
2339
2340/**
2341 *      skb_unlink      -       remove a buffer from a list
2342 *      @skb: buffer to remove
2343 *      @list: list to use
2344 *
2345 *      Remove a packet from a list. The list locks are taken and this
2346 *      function is atomic with respect to other list locked calls
2347 *
2348 *      You must know what list the SKB is on.
2349 */
2350void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
2351{
2352        unsigned long flags;
2353
2354        spin_lock_irqsave(&list->lock, flags);
2355        __skb_unlink(skb, list);
2356        spin_unlock_irqrestore(&list->lock, flags);
2357}
2358EXPORT_SYMBOL(skb_unlink);
2359
2360/**
2361 *      skb_append      -       append a buffer
2362 *      @old: buffer to insert after
2363 *      @newsk: buffer to insert
2364 *      @list: list to use
2365 *
2366 *      Place a packet after a given packet in a list. The list locks are taken
2367 *      and this function is atomic with respect to other list locked calls.
2368 *      A buffer cannot be placed on two lists at the same time.
2369 */
2370void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
2371{
2372        unsigned long flags;
2373
2374        spin_lock_irqsave(&list->lock, flags);
2375        __skb_queue_after(list, old, newsk);
2376        spin_unlock_irqrestore(&list->lock, flags);
2377}
2378EXPORT_SYMBOL(skb_append);
2379
2380/**
2381 *      skb_insert      -       insert a buffer
2382 *      @old: buffer to insert before
2383 *      @newsk: buffer to insert
2384 *      @list: list to use
2385 *
2386 *      Place a packet before a given packet in a list. The list locks are
2387 *      taken and this function is atomic with respect to other list locked
2388 *      calls.
2389 *
2390 *      A buffer cannot be placed on two lists at the same time.
2391 */
2392void skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
2393{
2394        unsigned long flags;
2395
2396        spin_lock_irqsave(&list->lock, flags);
2397        __skb_insert(newsk, old->prev, old, list);
2398        spin_unlock_irqrestore(&list->lock, flags);
2399}
2400EXPORT_SYMBOL(skb_insert);
2401
2402static inline void skb_split_inside_header(struct sk_buff *skb,
2403                                           struct sk_buff* skb1,
2404                                           const u32 len, const int pos)
2405{
2406        int i;
2407
2408        skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len),
2409                                         pos - len);
2410        /* And move data appendix as is. */
2411        for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
2412                skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i];
2413
2414        skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags;
2415        skb_shinfo(skb)->nr_frags  = 0;
2416        skb1->data_len             = skb->data_len;
2417        skb1->len                  += skb1->data_len;
2418        skb->data_len              = 0;
2419        skb->len                   = len;
2420        skb_set_tail_pointer(skb, len);
2421}
2422
2423static inline void skb_split_no_header(struct sk_buff *skb,
2424                                       struct sk_buff* skb1,
2425                                       const u32 len, int pos)
2426{
2427        int i, k = 0;
2428        const int nfrags = skb_shinfo(skb)->nr_frags;
2429
2430        skb_shinfo(skb)->nr_frags = 0;
2431        skb1->len                 = skb1->data_len = skb->len - len;
2432        skb->len                  = len;
2433        skb->data_len             = len - pos;
2434
2435        for (i = 0; i < nfrags; i++) {
2436                int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
2437
2438                if (pos + size > len) {
2439                        skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i];
2440
2441                        if (pos < len) {
2442                                /* Split frag.
2443                                 * We have two variants in this case:
2444                                 * 1. Move all the frag to the second
2445                                 *    part, if it is possible. F.e.
2446                                 *    this approach is mandatory for TUX,
2447                                 *    where splitting is expensive.
2448                                 * 2. Split is accurately. We make this.
2449                                 */
2450                                skb_frag_ref(skb, i);
2451                                skb_shinfo(skb1)->frags[0].page_offset += len - pos;
2452                                skb_frag_size_sub(&skb_shinfo(skb1)->frags[0], len - pos);
2453                                skb_frag_size_set(&skb_shinfo(skb)->frags[i], len - pos);
2454                                skb_shinfo(skb)->nr_frags++;
2455                        }
2456                        k++;
2457                } else
2458                        skb_shinfo(skb)->nr_frags++;
2459                pos += size;
2460        }
2461        skb_shinfo(skb1)->nr_frags = k;
2462}
2463
2464/**
2465 * skb_split - Split fragmented skb to two parts at length len.
2466 * @skb: the buffer to split
2467 * @skb1: the buffer to receive the second part
2468 * @len: new length for skb
2469 */
2470void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len)
2471{
2472        int pos = skb_headlen(skb);
2473
2474        skb_shinfo(skb1)->tx_flags = skb_shinfo(skb)->tx_flags & SKBTX_SHARED_FRAG;
2475        if (len < pos)  /* Split line is inside header. */
2476                skb_split_inside_header(skb, skb1, len, pos);
2477        else            /* Second chunk has no header, nothing to copy. */
2478                skb_split_no_header(skb, skb1, len, pos);
2479}
2480EXPORT_SYMBOL(skb_split);
2481
2482/* Shifting from/to a cloned skb is a no-go.
2483 *
2484 * Caller cannot keep skb_shinfo related pointers past calling here!
2485 */
2486static int skb_prepare_for_shift(struct sk_buff *skb)
2487{
2488        return skb_cloned(skb) && pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2489}
2490
2491/**
2492 * skb_shift - Shifts paged data partially from skb to another
2493 * @tgt: buffer into which tail data gets added
2494 * @skb: buffer from which the paged data comes from
2495 * @shiftlen: shift up to this many bytes
2496 *
2497 * Attempts to shift up to shiftlen worth of bytes, which may be less than
2498 * the length of the skb, from skb to tgt. Returns number bytes shifted.
2499 * It's up to caller to free skb if everything was shifted.
2500 *
2501 * If @tgt runs out of frags, the whole operation is aborted.
2502 *
2503 * Skb cannot include anything else but paged data while tgt is allowed
2504 * to have non-paged data as well.
2505 *
2506 * TODO: full sized shift could be optimized but that would need
2507 * specialized skb free'er to handle frags without up-to-date nr_frags.
2508 */
2509int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen)
2510{
2511        int from, to, merge, todo;
2512        struct skb_frag_struct *fragfrom, *fragto;
2513
2514        BUG_ON(shiftlen > skb->len);
2515        BUG_ON(skb_headlen(skb));       /* Would corrupt stream */
2516
2517        todo = shiftlen;
2518        from = 0;
2519        to = skb_shinfo(tgt)->nr_frags;
2520        fragfrom = &skb_shinfo(skb)->frags[from];
2521
2522        /* Actual merge is delayed until the point when we know we can
2523         * commit all, so that we don't have to undo partial changes
2524         */
2525        if (!to ||
2526            !skb_can_coalesce(tgt, to, skb_frag_page(fragfrom),
2527                              fragfrom->page_offset)) {
2528                merge = -1;
2529        } else {
2530                merge = to - 1;
2531
2532                todo -= skb_frag_size(fragfrom);
2533                if (todo < 0) {
2534                        if (skb_prepare_for_shift(skb) ||
2535                            skb_prepare_for_shift(tgt))
2536                                return 0;
2537
2538                        /* All previous frag pointers might be stale! */
2539                        fragfrom = &skb_shinfo(skb)->frags[from];
2540                        fragto = &skb_shinfo(tgt)->frags[merge];
2541
2542                        skb_frag_size_add(fragto, shiftlen);
2543                        skb_frag_size_sub(fragfrom, shiftlen);
2544                        fragfrom->page_offset += shiftlen;
2545
2546                        goto onlymerged;
2547                }
2548
2549                from++;
2550        }
2551
2552        /* Skip full, not-fitting skb to avoid expensive operations */
2553        if ((shiftlen == skb->len) &&
2554            (skb_shinfo(skb)->nr_frags - from) > (MAX_SKB_FRAGS - to))
2555                return 0;
2556
2557        if (skb_prepare_for_shift(skb) || skb_prepare_for_shift(tgt))
2558                return 0;
2559
2560        while ((todo > 0) && (from < skb_shinfo(skb)->nr_frags)) {
2561                if (to == MAX_SKB_FRAGS)
2562                        return 0;
2563
2564                fragfrom = &skb_shinfo(skb)->frags[from];
2565                fragto = &skb_shinfo(tgt)->frags[to];
2566
2567                if (todo >= skb_frag_size(fragfrom)) {
2568                        *fragto = *fragfrom;
2569                        todo -= skb_frag_size(fragfrom);
2570                        from++;
2571                        to++;
2572
2573                } else {
2574                        __skb_frag_ref(fragfrom);
2575                        fragto->page = fragfrom->page;
2576                        fragto->page_offset = fragfrom->page_offset;
2577                        skb_frag_size_set(fragto, todo);
2578
2579                        fragfrom->page_offset += todo;
2580                        skb_frag_size_sub(fragfrom, todo);
2581                        todo = 0;
2582
2583                        to++;
2584                        break;
2585                }
2586        }
2587
2588        /* Ready to "commit" this state change to tgt */
2589        skb_shinfo(tgt)->nr_frags = to;
2590
2591        if (merge >= 0) {
2592                fragfrom = &skb_shinfo(skb)->frags[0];
2593                fragto = &skb_shinfo(tgt)->frags[merge];
2594
2595                skb_frag_size_add(fragto, skb_frag_size(fragfrom));
2596                __skb_frag_unref(fragfrom);
2597        }
2598
2599        /* Reposition in the original skb */
2600        to = 0;
2601        while (from < skb_shinfo(skb)->nr_frags)
2602                skb_shinfo(skb)->frags[to++] = skb_shinfo(skb)->frags[from++];
2603        skb_shinfo(skb)->nr_frags = to;
2604
2605        BUG_ON(todo > 0 && !skb_shinfo(skb)->nr_frags);
2606
2607onlymerged:
2608        /* Most likely the tgt won't ever need its checksum anymore, skb on
2609         * the other hand might need it if it needs to be resent
2610         */
2611        tgt->ip_summed = CHECKSUM_PARTIAL;
2612        skb->ip_summed = CHECKSUM_PARTIAL;
2613
2614        /* Yak, is it really working this way? Some helper please? */
2615        skb->len -= shiftlen;
2616        skb->data_len -= shiftlen;
2617        skb->truesize -= shiftlen;
2618        tgt->len += shiftlen;
2619        tgt->data_len += shiftlen;
2620        tgt->truesize += shiftlen;
2621
2622        return shiftlen;
2623}
2624
2625/**
2626 * skb_prepare_seq_read - Prepare a sequential read of skb data
2627 * @skb: the buffer to read
2628 * @from: lower offset of data to be read
2629 * @to: upper offset of data to be read
2630 * @st: state variable
2631 *
2632 * Initializes the specified state variable. Must be called before
2633 * invoking skb_seq_read() for the first time.
2634 */
2635void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
2636                          unsigned int to, struct skb_seq_state *st)
2637{
2638        st->lower_offset = from;
2639        st->upper_offset = to;
2640        st->root_skb = st->cur_skb = skb;
2641        st->frag_idx = st->stepped_offset = 0;
2642        st->frag_data = NULL;
2643}
2644EXPORT_SYMBOL(skb_prepare_seq_read);
2645
2646/**
2647 * skb_seq_read - Sequentially read skb data
2648 * @consumed: number of bytes consumed by the caller so far
2649 * @data: destination pointer for data to be returned
2650 * @st: state variable
2651 *
2652 * Reads a block of skb data at @consumed relative to the
2653 * lower offset specified to skb_prepare_seq_read(). Assigns
2654 * the head of the data block to @data and returns the length
2655 * of the block or 0 if the end of the skb data or the upper
2656 * offset has been reached.
2657 *
2658 * The caller is not required to consume all of the data
2659 * returned, i.e. @consumed is typically set to the number
2660 * of bytes already consumed and the next call to
2661 * skb_seq_read() will return the remaining part of the block.
2662 *
2663 * Note 1: The size of each block of data returned can be arbitrary,
2664 *       this limitation is the cost for zerocopy sequential
2665 *       reads of potentially non linear data.
2666 *
2667 * Note 2: Fragment lists within fragments are not implemented
2668 *       at the moment, state->root_skb could be replaced with
2669 *       a stack for this purpose.
2670 */
2671unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
2672                          struct skb_seq_state *st)
2673{
2674        unsigned int block_limit, abs_offset = consumed + st->lower_offset;
2675        skb_frag_t *frag;
2676
2677        if (unlikely(abs_offset >= st->upper_offset)) {
2678                if (st->frag_data) {
2679                        kunmap_atomic(st->frag_data);
2680                        st->frag_data = NULL;
2681                }
2682                return 0;
2683        }
2684
2685next_skb:
2686        block_limit = skb_headlen(st->cur_skb) + st->stepped_offset;
2687
2688        if (abs_offset < block_limit && !st->frag_data) {
2689                *data = st->cur_skb->data + (abs_offset - st->stepped_offset);
2690                return block_limit - abs_offset;
2691        }
2692
2693        if (st->frag_idx == 0 && !st->frag_data)
2694                st->stepped_offset += skb_headlen(st->cur_skb);
2695
2696        while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) {
2697                frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx];
2698                block_limit = skb_frag_size(frag) + st->stepped_offset;
2699
2700                if (abs_offset < block_limit) {
2701                        if (!st->frag_data)
2702                                st->frag_data = kmap_atomic(skb_frag_page(frag));
2703
2704                        *data = (u8 *) st->frag_data + frag->page_offset +
2705                                (abs_offset - st->stepped_offset);
2706
2707                        return block_limit - abs_offset;
2708                }
2709
2710                if (st->frag_data) {
2711                        kunmap_atomic(st->frag_data);
2712                        st->frag_data = NULL;
2713                }
2714
2715                st->frag_idx++;
2716                st->stepped_offset += skb_frag_size(frag);
2717        }
2718
2719        if (st->frag_data) {
2720                kunmap_atomic(st->frag_data);
2721                st->frag_data = NULL;
2722        }
2723
2724        if (st->root_skb == st->cur_skb && skb_has_frag_list(st->root_skb)) {
2725                st->cur_skb = skb_shinfo(st->root_skb)->frag_list;
2726                st->frag_idx = 0;
2727                goto next_skb;
2728        } else if (st->cur_skb->next) {
2729                st->cur_skb = st->cur_skb->next;
2730                st->frag_idx = 0;
2731                goto next_skb;
2732        }
2733
2734        return 0;
2735}
2736EXPORT_SYMBOL(skb_seq_read);
2737
2738/**
2739 * skb_abort_seq_read - Abort a sequential read of skb data
2740 * @st: state variable
2741 *
2742 * Must be called if skb_seq_read() was not called until it
2743 * returned 0.
2744 */
2745void skb_abort_seq_read(struct skb_seq_state *st)
2746{
2747        if (st->frag_data)
2748                kunmap_atomic(st->frag_data);
2749}
2750EXPORT_SYMBOL(skb_abort_seq_read);
2751
2752#define TS_SKB_CB(state)        ((struct skb_seq_state *) &((state)->cb))
2753
2754static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text,
2755                                          struct ts_config *conf,
2756                                          struct ts_state *state)
2757{
2758        return skb_seq_read(offset, text, TS_SKB_CB(state));
2759}
2760
2761static void skb_ts_finish(struct ts_config *conf, struct ts_state *state)
2762{
2763        skb_abort_seq_read(TS_SKB_CB(state));
2764}
2765
2766/**
2767 * skb_find_text - Find a text pattern in skb data
2768 * @skb: the buffer to look in
2769 * @from: search offset
2770 * @to: search limit
2771 * @config: textsearch configuration
2772 * @state: uninitialized textsearch state variable
2773 *
2774 * Finds a pattern in the skb data according to the specified
2775 * textsearch configuration. Use textsearch_next() to retrieve
2776 * subsequent occurrences of the pattern. Returns the offset
2777 * to the first occurrence or UINT_MAX if no match was found.
2778 */
2779unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
2780                           unsigned int to, struct ts_config *config,
2781                           struct ts_state *state)
2782{
2783        unsigned int ret;
2784
2785        config->get_next_block = skb_ts_get_next_block;
2786        config->finish = skb_ts_finish;
2787
2788        skb_prepare_seq_read(skb, from, to, TS_SKB_CB(state));
2789
2790        ret = textsearch_find(config, state);
2791        return (ret <= to - from ? ret : UINT_MAX);
2792}
2793EXPORT_SYMBOL(skb_find_text);
2794
2795/**
2796 * skb_append_datato_frags - append the user data to a skb
2797 * @sk: sock  structure
2798 * @skb: skb structure to be appended with user data.
2799 * @getfrag: call back function to be used for getting the user data
2800 * @from: pointer to user message iov
2801 * @length: length of the iov message
2802 *
2803 * Description: This procedure append the user data in the fragment part
2804 * of the skb if any page alloc fails user this procedure returns  -ENOMEM
2805 */
2806int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
2807                        int (*getfrag)(void *from, char *to, int offset,
2808                                        int len, int odd, struct sk_buff *skb),
2809                        void *from, int length)
2810{
2811        int frg_cnt = skb_shinfo(skb)->nr_frags;
2812        int copy;
2813        int offset = 0;
2814        int ret;
2815        struct page_frag *pfrag = &current->task_frag;
2816
2817        do {
2818                /* Return error if we don't have space for new frag */
2819                if (frg_cnt >= MAX_SKB_FRAGS)
2820                        return -EMSGSIZE;
2821
2822                if (!sk_page_frag_refill(sk, pfrag))
2823                        return -ENOMEM;
2824
2825                /* copy the user data to page */
2826                copy = min_t(int, length, pfrag->size - pfrag->offset);
2827
2828                ret = getfrag(from, page_address(pfrag->page) + pfrag->offset,
2829                              offset, copy, 0, skb);
2830                if (ret < 0)
2831                        return -EFAULT;
2832
2833                /* copy was successful so update the size parameters */
2834                skb_fill_page_desc(skb, frg_cnt, pfrag->page, pfrag->offset,
2835                                   copy);
2836                frg_cnt++;
2837                pfrag->offset += copy;
2838                get_page(pfrag->page);
2839
2840                skb->truesize += copy;
2841                atomic_add(copy, &sk->sk_wmem_alloc);
2842                skb->len += copy;
2843                skb->data_len += copy;
2844                offset += copy;
2845                length -= copy;
2846
2847        } while (length > 0);
2848
2849        return 0;
2850}
2851EXPORT_SYMBOL(skb_append_datato_frags);
2852
2853/**
2854 *      skb_pull_rcsum - pull skb and update receive checksum
2855 *      @skb: buffer to update
2856 *      @len: length of data pulled
2857 *
2858 *      This function performs an skb_pull on the packet and updates
2859 *      the CHECKSUM_COMPLETE checksum.  It should be used on
2860 *      receive path processing instead of skb_pull unless you know
2861 *      that the checksum difference is zero (e.g., a valid IP header)
2862 *      or you are setting ip_summed to CHECKSUM_NONE.
2863 */
2864unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len)
2865{
2866        BUG_ON(len > skb->len);
2867        skb->len -= len;
2868        BUG_ON(skb->len < skb->data_len);
2869        skb_postpull_rcsum(skb, skb->data, len);
2870        return skb->data += len;
2871}
2872EXPORT_SYMBOL_GPL(skb_pull_rcsum);
2873
2874/**
2875 *      skb_segment - Perform protocol segmentation on skb.
2876 *      @head_skb: buffer to segment
2877 *      @features: features for the output path (see dev->features)
2878 *
2879 *      This function performs segmentation on the given skb.  It returns
2880 *      a pointer to the first in a list of new skbs for the segments.
2881 *      In case of error it returns ERR_PTR(err).
2882 */
2883struct sk_buff *skb_segment(struct sk_buff *head_skb,
2884                            netdev_features_t features)
2885{
2886        struct sk_buff *segs = NULL;
2887        struct sk_buff *tail = NULL;
2888        struct sk_buff *list_skb = skb_shinfo(head_skb)->frag_list;
2889        skb_frag_t *frag = skb_shinfo(head_skb)->frags;
2890        unsigned int mss = skb_shinfo(head_skb)->gso_size;
2891        unsigned int doffset = head_skb->data - skb_mac_header(head_skb);
2892        struct sk_buff *frag_skb = head_skb;
2893        unsigned int offset = doffset;
2894        unsigned int tnl_hlen = skb_tnl_header_len(head_skb);
2895        unsigned int headroom;
2896        unsigned int len;
2897        __be16 proto;
2898        bool csum;
2899        int sg = !!(features & NETIF_F_SG);
2900        int nfrags = skb_shinfo(head_skb)->nr_frags;
2901        int err = -ENOMEM;
2902        int i = 0;
2903        int pos;
2904        int dummy;
2905
2906        __skb_push(head_skb, doffset);
2907        proto = skb_network_protocol(head_skb, &dummy);
2908        if (unlikely(!proto))
2909                return ERR_PTR(-EINVAL);
2910
2911        csum = !head_skb->encap_hdr_csum &&
2912            !!can_checksum_protocol(features, proto);
2913
2914        headroom = skb_headroom(head_skb);
2915        pos = skb_headlen(head_skb);
2916
2917        do {
2918                struct sk_buff *nskb;
2919                skb_frag_t *nskb_frag;
2920                int hsize;
2921                int size;
2922
2923                len = head_skb->len - offset;
2924                if (len > mss)
2925                        len = mss;
2926
2927                hsize = skb_headlen(head_skb) - offset;
2928                if (hsize < 0)
2929                        hsize = 0;
2930                if (hsize > len || !sg)
2931                        hsize = len;
2932
2933                if (!hsize && i >= nfrags && skb_headlen(list_skb) &&
2934                    (skb_headlen(list_skb) == len || sg)) {
2935                        BUG_ON(skb_headlen(list_skb) > len);
2936
2937                        i = 0;
2938                        nfrags = skb_shinfo(list_skb)->nr_frags;
2939                        frag = skb_shinfo(list_skb)->frags;
2940                        frag_skb = list_skb;
2941                        pos += skb_headlen(list_skb);
2942
2943                        while (pos < offset + len) {
2944                                BUG_ON(i >= nfrags);
2945
2946                                size = skb_frag_size(frag);
2947                                if (pos + size > offset + len)
2948                                        break;
2949
2950                                i++;
2951                                pos += size;
2952                                frag++;
2953                        }
2954
2955                        nskb = skb_clone(list_skb, GFP_ATOMIC);
2956                        list_skb = list_skb->next;
2957
2958                        if (unlikely(!nskb))
2959                                goto err;
2960
2961                        if (unlikely(pskb_trim(nskb, len))) {
2962                                kfree_skb(nskb);
2963                                goto err;
2964                        }
2965
2966                        hsize = skb_end_offset(nskb);
2967                        if (skb_cow_head(nskb, doffset + headroom)) {
2968                                kfree_skb(nskb);
2969                                goto err;
2970                        }
2971
2972                        nskb->truesize += skb_end_offset(nskb) - hsize;
2973                        skb_release_head_state(nskb);
2974                        __skb_push(nskb, doffset);
2975                } else {
2976                        nskb = __alloc_skb(hsize + doffset + headroom,
2977                                           GFP_ATOMIC, skb_alloc_rx_flag(head_skb),
2978                                           NUMA_NO_NODE);
2979
2980                        if (unlikely(!nskb))
2981                                goto err;
2982
2983                        skb_reserve(nskb, headroom);
2984                        __skb_put(nskb, doffset);
2985                }
2986
2987                if (segs)
2988                        tail->next = nskb;
2989                else
2990                        segs = nskb;
2991                tail = nskb;
2992
2993                __copy_skb_header(nskb, head_skb);
2994
2995                skb_headers_offset_update(nskb, skb_headroom(nskb) - headroom);
2996                skb_reset_mac_len(nskb);
2997
2998                skb_copy_from_linear_data_offset(head_skb, -tnl_hlen,
2999                                                 nskb->data - tnl_hlen,
3000                                                 doffset + tnl_hlen);
3001
3002                if (nskb->len == len + doffset)
3003                        goto perform_csum_check;
3004
3005                if (!sg) {
3006                        nskb->ip_summed = CHECKSUM_NONE;
3007                        nskb->csum = skb_copy_and_csum_bits(head_skb, offset,
3008                                                            skb_put(nskb, len),
3009                                                            len, 0);
3010                        SKB_GSO_CB(nskb)->csum_start =
3011                            skb_headroom(nskb) + doffset;
3012                        continue;
3013                }
3014
3015                nskb_frag = skb_shinfo(nskb)->frags;
3016
3017                skb_copy_from_linear_data_offset(head_skb, offset,
3018                                                 skb_put(nskb, hsize), hsize);
3019
3020                skb_shinfo(nskb)->tx_flags = skb_shinfo(head_skb)->tx_flags &
3021                        SKBTX_SHARED_FRAG;
3022
3023                while (pos < offset + len) {
3024                        if (i >= nfrags) {
3025                                BUG_ON(skb_headlen(list_skb));
3026
3027                                i = 0;
3028                                nfrags = skb_shinfo(list_skb)->nr_frags;
3029                                frag = skb_shinfo(list_skb)->frags;
3030                                frag_skb = list_skb;
3031
3032                                BUG_ON(!nfrags);
3033
3034                                list_skb = list_skb->next;
3035                        }
3036
3037                        if (unlikely(skb_shinfo(nskb)->nr_frags >=
3038                                     MAX_SKB_FRAGS)) {
3039                                net_warn_ratelimited(
3040                                        "skb_segment: too many frags: %u %u\n",
3041                                        pos, mss);
3042                                goto err;
3043                        }
3044
3045                        if (unlikely(skb_orphan_frags(frag_skb, GFP_ATOMIC)))
3046                                goto err;
3047
3048                        *nskb_frag = *frag;
3049                        __skb_frag_ref(nskb_frag);
3050                        size = skb_frag_size(nskb_frag);
3051
3052                        if (pos < offset) {
3053                                nskb_frag->page_offset += offset - pos;
3054                                skb_frag_size_sub(nskb_frag, offset - pos);
3055                        }
3056
3057                        skb_shinfo(nskb)->nr_frags++;
3058
3059                        if (pos + size <= offset + len) {
3060                                i++;
3061                                frag++;
3062                                pos += size;
3063                        } else {
3064                                skb_frag_size_sub(nskb_frag, pos + size - (offset + len));
3065                                goto skip_fraglist;
3066                        }
3067
3068                        nskb_frag++;
3069                }
3070
3071skip_fraglist:
3072                nskb->data_len = len - hsize;
3073                nskb->len += nskb->data_len;
3074                nskb->truesize += nskb->data_len;
3075
3076perform_csum_check:
3077                if (!csum) {
3078                        nskb->csum = skb_checksum(nskb, doffset,
3079                                                  nskb->len - doffset, 0);
3080                        nskb->ip_summed = CHECKSUM_NONE;
3081                        SKB_GSO_CB(nskb)->csum_start =
3082                            skb_headroom(nskb) + doffset;
3083                }
3084        } while ((offset += len) < head_skb->len);
3085
3086        /* Some callers want to get the end of the list.
3087         * Put it in segs->prev to avoid walking the list.
3088         * (see validate_xmit_skb_list() for example)
3089         */
3090        segs->prev = tail;
3091        return segs;
3092
3093err:
3094        kfree_skb_list(segs);
3095        return ERR_PTR(err);
3096}
3097EXPORT_SYMBOL_GPL(skb_segment);
3098
3099int skb_gro_receive(struct sk_buff **head, struct sk_buff *skb)
3100{
3101        struct skb_shared_info *pinfo, *skbinfo = skb_shinfo(skb);
3102        unsigned int offset = skb_gro_offset(skb);
3103        unsigned int headlen = skb_headlen(skb);
3104        struct sk_buff *nskb, *lp, *p = *head;
3105        unsigned int len = skb_gro_len(skb);
3106        unsigned int delta_truesize;
3107        unsigned int headroom;
3108
3109        if (unlikely(p->len + len >= 65536))
3110                return -E2BIG;
3111
3112        lp = NAPI_GRO_CB(p)->last;
3113        pinfo = skb_shinfo(lp);
3114
3115        if (headlen <= offset) {
3116                skb_frag_t *frag;
3117                skb_frag_t *frag2;
3118                int i = skbinfo->nr_frags;
3119                int nr_frags = pinfo->nr_frags + i;
3120
3121                if (nr_frags > MAX_SKB_FRAGS)
3122                        goto merge;
3123
3124                offset -= headlen;
3125                pinfo->nr_frags = nr_frags;
3126                skbinfo->nr_frags = 0;
3127
3128                frag = pinfo->frags + nr_frags;
3129                frag2 = skbinfo->frags + i;
3130                do {
3131                        *--frag = *--frag2;
3132                } while (--i);
3133
3134                frag->page_offset += offset;
3135                skb_frag_size_sub(frag, offset);
3136
3137                /* all fragments truesize : remove (head size + sk_buff) */
3138                delta_truesize = skb->truesize -
3139                                 SKB_TRUESIZE(skb_end_offset(skb));
3140
3141                skb->truesize -= skb->data_len;
3142                skb->len -= skb->data_len;
3143                skb->data_len = 0;
3144
3145                NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE;
3146                goto done;
3147        } else if (skb->head_frag) {
3148                int nr_frags = pinfo->nr_frags;
3149                skb_frag_t *frag = pinfo->frags + nr_frags;
3150                struct page *page = virt_to_head_page(skb->head);
3151                unsigned int first_size = headlen - offset;
3152                unsigned int first_offset;
3153
3154                if (nr_frags + 1 + skbinfo->nr_frags > MAX_SKB_FRAGS)
3155                        goto merge;
3156
3157                first_offset = skb->data -
3158                               (unsigned char *)page_address(page) +
3159                               offset;
3160
3161                pinfo->nr_frags = nr_frags + 1 + skbinfo->nr_frags;
3162
3163                frag->page.p      = page;
3164                frag->page_offset = first_offset;
3165                skb_frag_size_set(frag, first_size);
3166
3167                memcpy(frag + 1, skbinfo->frags, sizeof(*frag) * skbinfo->nr_frags);
3168                /* We dont need to clear skbinfo->nr_frags here */
3169
3170                delta_truesize = skb->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff));
3171                NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE_STOLEN_HEAD;
3172                goto done;
3173        }
3174        /* switch back to head shinfo */
3175        pinfo = skb_shinfo(p);
3176
3177        if (pinfo->frag_list)
3178                goto merge;
3179        if (skb_gro_len(p) != pinfo->gso_size)
3180                return -E2BIG;
3181
3182        headroom = skb_headroom(p);
3183        nskb = alloc_skb(headroom + skb_gro_offset(p), GFP_ATOMIC);
3184        if (unlikely(!nskb))
3185                return -ENOMEM;
3186
3187        __copy_skb_header(nskb, p);
3188        nskb->mac_len = p->mac_len;
3189
3190        skb_reserve(nskb, headroom);
3191        __skb_put(nskb, skb_gro_offset(p));
3192
3193        skb_set_mac_header(nskb, skb_mac_header(p) - p->data);
3194        skb_set_network_header(nskb, skb_network_offset(p));
3195        skb_set_transport_header(nskb, skb_transport_offset(p));
3196
3197        __skb_pull(p, skb_gro_offset(p));
3198        memcpy(skb_mac_header(nskb), skb_mac_header(p),
3199               p->data - skb_mac_header(p));
3200
3201        skb_shinfo(nskb)->frag_list = p;
3202        skb_shinfo(nskb)->gso_size = pinfo->gso_size;
3203        pinfo->gso_size = 0;
3204        __skb_header_release(p);
3205        NAPI_GRO_CB(nskb)->last = p;
3206
3207        nskb->data_len += p->len;
3208        nskb->truesize += p->truesize;
3209        nskb->len += p->len;
3210
3211        *head = nskb;
3212        nskb->next = p->next;
3213        p->next = NULL;
3214
3215        p = nskb;
3216
3217merge:
3218        delta_truesize = skb->truesize;
3219        if (offset > headlen) {
3220                unsigned int eat = offset - headlen;
3221
3222                skbinfo->frags[0].page_offset += eat;
3223                skb_frag_size_sub(&skbinfo->frags[0], eat);
3224                skb->data_len -= eat;
3225                skb->len -= eat;
3226                offset = headlen;
3227        }
3228
3229        __skb_pull(skb, offset);
3230
3231        if (NAPI_GRO_CB(p)->last == p)
3232                skb_shinfo(p)->frag_list = skb;
3233        else
3234                NAPI_GRO_CB(p)->last->next = skb;
3235        NAPI_GRO_CB(p)->last = skb;
3236        __skb_header_release(skb);
3237        lp = p;
3238
3239done:
3240        NAPI_GRO_CB(p)->count++;
3241        p->data_len += len;
3242        p->truesize += delta_truesize;
3243        p->len += len;
3244        if (lp != p) {
3245                lp->data_len += len;
3246                lp->truesize += delta_truesize;
3247                lp->len += len;
3248        }
3249        NAPI_GRO_CB(skb)->same_flow = 1;
3250        return 0;
3251}
3252
3253void __init skb_init(void)
3254{
3255        skbuff_head_cache = kmem_cache_create("skbuff_head_cache",
3256                                              sizeof(struct sk_buff),
3257                                              0,
3258                                              SLAB_HWCACHE_ALIGN|SLAB_PANIC,
3259                                              NULL);
3260        skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache",
3261                                                sizeof(struct sk_buff_fclones),
3262                                                0,
3263                                                SLAB_HWCACHE_ALIGN|SLAB_PANIC,
3264                                                NULL);
3265}
3266
3267/**
3268 *      skb_to_sgvec - Fill a scatter-gather list from a socket buffer
3269 *      @skb: Socket buffer containing the buffers to be mapped
3270 *      @sg: The scatter-gather list to map into
3271 *      @offset: The offset into the buffer's contents to start mapping
3272 *      @len: Length of buffer space to be mapped
3273 *
3274 *      Fill the specified scatter-gather list with mappings/pointers into a
3275 *      region of the buffer space attached to a socket buffer.
3276 */
3277static int
3278__skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
3279{
3280        int start = skb_headlen(skb);
3281        int i, copy = start - offset;
3282        struct sk_buff *frag_iter;
3283        int elt = 0;
3284
3285        if (copy > 0) {
3286                if (copy > len)
3287                        copy = len;
3288                sg_set_buf(sg, skb->data + offset, copy);
3289                elt++;
3290                if ((len -= copy) == 0)
3291                        return elt;
3292                offset += copy;
3293        }
3294
3295        for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3296                int end;
3297
3298                WARN_ON(start > offset + len);
3299
3300                end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
3301                if ((copy = end - offset) > 0) {
3302                        skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3303
3304                        if (copy > len)
3305                                copy = len;
3306                        sg_set_page(&sg[elt], skb_frag_page(frag), copy,
3307                                        frag->page_offset+offset-start);
3308                        elt++;
3309                        if (!(len -= copy))
3310                                return elt;
3311                        offset += copy;
3312                }
3313                start = end;
3314        }
3315
3316        skb_walk_frags(skb, frag_iter) {
3317                int end;
3318
3319                WARN_ON(start > offset + len);
3320
3321                end = start + frag_iter->len;
3322                if ((copy = end - offset) > 0) {
3323                        if (copy > len)
3324                                copy = len;
3325                        elt += __skb_to_sgvec(frag_iter, sg+elt, offset - start,
3326                                              copy);
3327                        if ((len -= copy) == 0)
3328                                return elt;
3329                        offset += copy;
3330                }
3331                start = end;
3332        }
3333        BUG_ON(len);
3334        return elt;
3335}
3336
3337/* As compared with skb_to_sgvec, skb_to_sgvec_nomark only map skb to given
3338 * sglist without mark the sg which contain last skb data as the end.
3339 * So the caller can mannipulate sg list as will when padding new data after
3340 * the first call without calling sg_unmark_end to expend sg list.
3341 *
3342 * Scenario to use skb_to_sgvec_nomark:
3343 * 1. sg_init_table
3344 * 2. skb_to_sgvec_nomark(payload1)
3345 * 3. skb_to_sgvec_nomark(payload2)
3346 *
3347 * This is equivalent to:
3348 * 1. sg_init_table
3349 * 2. skb_to_sgvec(payload1)
3350 * 3. sg_unmark_end
3351 * 4. skb_to_sgvec(payload2)
3352 *
3353 * When mapping mutilple payload conditionally, skb_to_sgvec_nomark
3354 * is more preferable.
3355 */
3356int skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
3357                        int offset, int len)
3358{
3359        return __skb_to_sgvec(skb, sg, offset, len);
3360}
3361EXPORT_SYMBOL_GPL(skb_to_sgvec_nomark);
3362
3363int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
3364{
3365        int nsg = __skb_to_sgvec(skb, sg, offset, len);
3366
3367        sg_mark_end(&sg[nsg - 1]);
3368
3369        return nsg;
3370}
3371EXPORT_SYMBOL_GPL(skb_to_sgvec);
3372
3373/**
3374 *      skb_cow_data - Check that a socket buffer's data buffers are writable
3375 *      @skb: The socket buffer to check.
3376 *      @tailbits: Amount of trailing space to be added
3377 *      @trailer: Returned pointer to the skb where the @tailbits space begins
3378 *
3379 *      Make sure that the data buffers attached to a socket buffer are
3380 *      writable. If they are not, private copies are made of the data buffers
3381 *      and the socket buffer is set to use these instead.
3382 *
3383 *      If @tailbits is given, make sure that there is space to write @tailbits
3384 *      bytes of data beyond current end of socket buffer.  @trailer will be
3385 *      set to point to the skb in which this space begins.
3386 *
3387 *      The number of scatterlist elements required to completely map the
3388 *      COW'd and extended socket buffer will be returned.
3389 */
3390int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer)
3391{
3392        int copyflag;
3393        int elt;
3394        struct sk_buff *skb1, **skb_p;
3395
3396        /* If skb is cloned or its head is paged, reallocate
3397         * head pulling out all the pages (pages are considered not writable
3398         * at the moment even if they are anonymous).
3399         */
3400        if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) &&
3401            __pskb_pull_tail(skb, skb_pagelen(skb)-skb_headlen(skb)) == NULL)
3402                return -ENOMEM;
3403
3404        /* Easy case. Most of packets will go this way. */
3405        if (!skb_has_frag_list(skb)) {
3406                /* A little of trouble, not enough of space for trailer.
3407                 * This should not happen, when stack is tuned to generate
3408                 * good frames. OK, on miss we reallocate and reserve even more
3409                 * space, 128 bytes is fair. */
3410
3411                if (skb_tailroom(skb) < tailbits &&
3412                    pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC))
3413                        return -ENOMEM;
3414
3415                /* Voila! */
3416                *trailer = skb;
3417                return 1;
3418        }
3419
3420        /* Misery. We are in troubles, going to mincer fragments... */
3421
3422        elt = 1;
3423        skb_p = &skb_shinfo(skb)->frag_list;
3424        copyflag = 0;
3425
3426        while ((skb1 = *skb_p) != NULL) {
3427                int ntail = 0;
3428
3429                /* The fragment is partially pulled by someone,
3430                 * this can happen on input. Copy it and everything
3431                 * after it. */
3432
3433                if (skb_shared(skb1))
3434                        copyflag = 1;
3435
3436                /* If the skb is the last, worry about trailer. */
3437
3438                if (skb1->next == NULL && tailbits) {
3439                        if (skb_shinfo(skb1)->nr_frags ||
3440                            skb_has_frag_list(skb1) ||
3441                            skb_tailroom(skb1) < tailbits)
3442                                ntail = tailbits + 128;
3443                }
3444
3445                if (copyflag ||
3446                    skb_cloned(skb1) ||
3447                    ntail ||
3448                    skb_shinfo(skb1)->nr_frags ||
3449                    skb_has_frag_list(skb1)) {
3450                        struct sk_buff *skb2;
3451
3452                        /* Fuck, we are miserable poor guys... */
3453                        if (ntail == 0)
3454                                skb2 = skb_copy(skb1, GFP_ATOMIC);
3455                        else
3456                                skb2 = skb_copy_expand(skb1,
3457                                                       skb_headroom(skb1),
3458                                                       ntail,
3459                                                       GFP_ATOMIC);
3460                        if (unlikely(skb2 == NULL))
3461                                return -ENOMEM;
3462
3463                        if (skb1->sk)
3464                                skb_set_owner_w(skb2, skb1->sk);
3465
3466                        /* Looking around. Are we still alive?
3467                         * OK, link new skb, drop old one */
3468
3469                        skb2->next = skb1->next;
3470                        *skb_p = skb2;
3471                        kfree_skb(skb1);
3472                        skb1 = skb2;
3473                }
3474                elt++;
3475                *trailer = skb1;
3476                skb_p = &skb1->next;
3477        }
3478
3479        return elt;
3480}
3481EXPORT_SYMBOL_GPL(skb_cow_data);
3482
3483static void sock_rmem_free(struct sk_buff *skb)
3484{
3485        struct sock *sk = skb->sk;
3486
3487        atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
3488}
3489
3490/*
3491 * Note: We dont mem charge error packets (no sk_forward_alloc changes)
3492 */
3493int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb)
3494{
3495        if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >=
3496            (unsigned int)sk->sk_rcvbuf)
3497                return -ENOMEM;
3498
3499        skb_orphan(skb);
3500        skb->sk = sk;
3501        skb->destructor = sock_rmem_free;
3502        atomic_add(skb->truesize, &sk->sk_rmem_alloc);
3503
3504        /* before exiting rcu section, make sure dst is refcounted */
3505        skb_dst_force(skb);
3506
3507        skb_queue_tail(&sk->sk_error_queue, skb);
3508        if (!sock_flag(sk, SOCK_DEAD))
3509                sk->sk_data_ready(sk);
3510        return 0;
3511}
3512EXPORT_SYMBOL(sock_queue_err_skb);
3513
3514struct sk_buff *sock_dequeue_err_skb(struct sock *sk)
3515{
3516        struct sk_buff_head *q = &sk->sk_error_queue;
3517        struct sk_buff *skb, *skb_next;
3518        int err = 0;
3519
3520        spin_lock_bh(&q->lock);
3521        skb = __skb_dequeue(q);
3522        if (skb && (skb_next = skb_peek(q)))
3523                err = SKB_EXT_ERR(skb_next)->ee.ee_errno;
3524        spin_unlock_bh(&q->lock);
3525
3526        sk->sk_err = err;
3527        if (err)
3528                sk->sk_error_report(sk);
3529
3530        return skb;
3531}
3532EXPORT_SYMBOL(sock_dequeue_err_skb);
3533
3534/**
3535 * skb_clone_sk - create clone of skb, and take reference to socket
3536 * @skb: the skb to clone
3537 *
3538 * This function creates a clone of a buffer that holds a reference on
3539 * sk_refcnt.  Buffers created via this function are meant to be
3540 * returned using sock_queue_err_skb, or free via kfree_skb.
3541 *
3542 * When passing buffers allocated with this function to sock_queue_err_skb
3543 * it is necessary to wrap the call with sock_hold/sock_put in order to
3544 * prevent the socket from being released prior to being enqueued on
3545 * the sk_error_queue.
3546 */
3547struct sk_buff *skb_clone_sk(struct sk_buff *skb)
3548{
3549        struct sock *sk = skb->sk;
3550        struct sk_buff *clone;
3551
3552        if (!sk || !atomic_inc_not_zero(&sk->sk_refcnt))
3553                return NULL;
3554
3555        clone = skb_clone(skb, GFP_ATOMIC);
3556        if (!clone) {
3557                sock_put(sk);
3558                return NULL;
3559        }
3560
3561        clone->sk = sk;
3562        clone->destructor = sock_efree;
3563
3564        return clone;
3565}
3566EXPORT_SYMBOL(skb_clone_sk);
3567
3568static void __skb_complete_tx_timestamp(struct sk_buff *skb,
3569                                        struct sock *sk,
3570                                        int tstype)
3571{
3572        struct sock_exterr_skb *serr;
3573        int err;
3574
3575        serr = SKB_EXT_ERR(skb);
3576        memset(serr, 0, sizeof(*serr));
3577        serr->ee.ee_errno = ENOMSG;
3578        serr->ee.ee_origin = SO_EE_ORIGIN_TIMESTAMPING;
3579        serr->ee.ee_info = tstype;
3580        if (sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID) {
3581                serr->ee.ee_data = skb_shinfo(skb)->tskey;
3582                if (sk->sk_protocol == IPPROTO_TCP)
3583                        serr->ee.ee_data -= sk->sk_tskey;
3584        }
3585
3586        err = sock_queue_err_skb(sk, skb);
3587
3588        if (err)
3589                kfree_skb(skb);
3590}
3591
3592void skb_complete_tx_timestamp(struct sk_buff *skb,
3593                               struct skb_shared_hwtstamps *hwtstamps)
3594{
3595        struct sock *sk = skb->sk;
3596
3597        /* take a reference to prevent skb_orphan() from freeing the socket */
3598        sock_hold(sk);
3599
3600        *skb_hwtstamps(skb) = *hwtstamps;
3601        __skb_complete_tx_timestamp(skb, sk, SCM_TSTAMP_SND);
3602
3603        sock_put(sk);
3604}
3605EXPORT_SYMBOL_GPL(skb_complete_tx_timestamp);
3606
3607void __skb_tstamp_tx(struct sk_buff *orig_skb,
3608                     struct skb_shared_hwtstamps *hwtstamps,
3609                     struct sock *sk, int tstype)
3610{
3611        struct sk_buff *skb;
3612
3613        if (!sk)
3614                return;
3615
3616        if (hwtstamps)
3617                *skb_hwtstamps(orig_skb) = *hwtstamps;
3618        else
3619                orig_skb->tstamp = ktime_get_real();
3620
3621        skb = skb_clone(orig_skb, GFP_ATOMIC);
3622        if (!skb)
3623                return;
3624
3625        __skb_complete_tx_timestamp(skb, sk, tstype);
3626}
3627EXPORT_SYMBOL_GPL(__skb_tstamp_tx);
3628
3629void skb_tstamp_tx(struct sk_buff *orig_skb,
3630                   struct skb_shared_hwtstamps *hwtstamps)
3631{
3632        return __skb_tstamp_tx(orig_skb, hwtstamps, orig_skb->sk,
3633                               SCM_TSTAMP_SND);
3634}
3635EXPORT_SYMBOL_GPL(skb_tstamp_tx);
3636
3637void skb_complete_wifi_ack(struct sk_buff *skb, bool acked)
3638{
3639        struct sock *sk = skb->sk;
3640        struct sock_exterr_skb *serr;
3641        int err;
3642
3643        skb->wifi_acked_valid = 1;
3644        skb->wifi_acked = acked;
3645
3646        serr = SKB_EXT_ERR(skb);
3647        memset(serr, 0, sizeof(*serr));
3648        serr->ee.ee_errno = ENOMSG;
3649        serr->ee.ee_origin = SO_EE_ORIGIN_TXSTATUS;
3650
3651        /* take a reference to prevent skb_orphan() from freeing the socket */
3652        sock_hold(sk);
3653
3654        err = sock_queue_err_skb(sk, skb);
3655        if (err)
3656                kfree_skb(skb);
3657
3658        sock_put(sk);
3659}
3660EXPORT_SYMBOL_GPL(skb_complete_wifi_ack);
3661
3662
3663/**
3664 * skb_partial_csum_set - set up and verify partial csum values for packet
3665 * @skb: the skb to set
3666 * @start: the number of bytes after skb->data to start checksumming.
3667 * @off: the offset from start to place the checksum.
3668 *
3669 * For untrusted partially-checksummed packets, we need to make sure the values
3670 * for skb->csum_start and skb->csum_offset are valid so we don't oops.
3671 *
3672 * This function checks and sets those values and skb->ip_summed: if this
3673 * returns false you should drop the packet.
3674 */
3675bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off)
3676{
3677        if (unlikely(start > skb_headlen(skb)) ||
3678            unlikely((int)start + off > skb_headlen(skb) - 2)) {
3679                net_warn_ratelimited("bad partial csum: csum=%u/%u len=%u\n",
3680                                     start, off, skb_headlen(skb));
3681                return false;
3682        }
3683        skb->ip_summed = CHECKSUM_PARTIAL;
3684        skb->csum_start = skb_headroom(skb) + start;
3685        skb->csum_offset = off;
3686        skb_set_transport_header(skb, start);
3687        return true;
3688}
3689EXPORT_SYMBOL_GPL(skb_partial_csum_set);
3690
3691static int skb_maybe_pull_tail(struct sk_buff *skb, unsigned int len,
3692                               unsigned int max)
3693{
3694        if (skb_headlen(skb) >= len)
3695                return 0;
3696
3697        /* If we need to pullup then pullup to the max, so we
3698         * won't need to do it again.
3699         */
3700        if (max > skb->len)
3701                max = skb->len;
3702
3703        if (__pskb_pull_tail(skb, max - skb_headlen(skb)) == NULL)
3704                return -ENOMEM;
3705
3706        if (skb_headlen(skb) < len)
3707                return -EPROTO;
3708
3709        return 0;
3710}
3711
3712#define MAX_TCP_HDR_LEN (15 * 4)
3713
3714static __sum16 *skb_checksum_setup_ip(struct sk_buff *skb,
3715                                      typeof(IPPROTO_IP) proto,
3716                                      unsigned int off)
3717{
3718        switch (proto) {
3719                int err;
3720
3721        case IPPROTO_TCP:
3722                err = skb_maybe_pull_tail(skb, off + sizeof(struct tcphdr),
3723                                          off + MAX_TCP_HDR_LEN);
3724                if (!err && !skb_partial_csum_set(skb, off,
3725                                                  offsetof(struct tcphdr,
3726                                                           check)))
3727                        err = -EPROTO;
3728                return err ? ERR_PTR(err) : &tcp_hdr(skb)->check;
3729
3730        case IPPROTO_UDP:
3731                err = skb_maybe_pull_tail(skb, off + sizeof(struct udphdr),
3732                                          off + sizeof(struct udphdr));
3733                if (!err && !skb_partial_csum_set(skb, off,
3734                                                  offsetof(struct udphdr,
3735                                                           check)))
3736                        err = -EPROTO;
3737                return err ? ERR_PTR(err) : &udp_hdr(skb)->check;
3738        }
3739
3740        return ERR_PTR(-EPROTO);
3741}
3742
3743/* This value should be large enough to cover a tagged ethernet header plus
3744 * maximally sized IP and TCP or UDP headers.
3745 */
3746#define MAX_IP_HDR_LEN 128
3747
3748static int skb_checksum_setup_ipv4(struct sk_buff *skb, bool recalculate)
3749{
3750        unsigned int off;
3751        bool fragment;
3752        __sum16 *csum;
3753        int err;
3754
3755        fragment = false;
3756
3757        err = skb_maybe_pull_tail(skb,
3758                                  sizeof(struct iphdr),
3759                                  MAX_IP_HDR_LEN);
3760        if (err < 0)
3761                goto out;
3762
3763        if (ip_hdr(skb)->frag_off & htons(IP_OFFSET | IP_MF))
3764                fragment = true;
3765
3766        off = ip_hdrlen(skb);
3767
3768        err = -EPROTO;
3769
3770        if (fragment)
3771                goto out;
3772
3773        csum = skb_checksum_setup_ip(skb, ip_hdr(skb)->protocol, off);
3774        if (IS_ERR(csum))
3775                return PTR_ERR(csum);
3776
3777        if (recalculate)
3778                *csum = ~csum_tcpudp_magic(ip_hdr(skb)->saddr,
3779                                           ip_hdr(skb)->daddr,
3780                                           skb->len - off,
3781                                           ip_hdr(skb)->protocol, 0);
3782        err = 0;
3783
3784out:
3785        return err;
3786}
3787
3788/* This value should be large enough to cover a tagged ethernet header plus
3789 * an IPv6 header, all options, and a maximal TCP or UDP header.
3790 */
3791#define MAX_IPV6_HDR_LEN 256
3792
3793#define OPT_HDR(type, skb, off) \
3794        (type *)(skb_network_header(skb) + (off))
3795
3796static int skb_checksum_setup_ipv6(struct sk_buff *skb, bool recalculate)
3797{
3798        int err;
3799        u8 nexthdr;
3800        unsigned int off;
3801        unsigned int len;
3802        bool fragment;
3803        bool done;
3804        __sum16 *csum;
3805
3806        fragment = false;
3807        done = false;
3808
3809        off = sizeof(struct ipv6hdr);
3810
3811        err = skb_maybe_pull_tail(skb, off, MAX_IPV6_HDR_LEN);
3812        if (err < 0)
3813                goto out;
3814
3815        nexthdr = ipv6_hdr(skb)->nexthdr;
3816
3817        len = sizeof(struct ipv6hdr) + ntohs(ipv6_hdr(skb)->payload_len);
3818        while (off <= len && !done) {
3819                switch (nexthdr) {
3820                case IPPROTO_DSTOPTS:
3821                case IPPROTO_HOPOPTS:
3822                case IPPROTO_ROUTING: {
3823                        struct ipv6_opt_hdr *hp;
3824
3825                        err = skb_maybe_pull_tail(skb,
3826                                                  off +
3827                                                  sizeof(struct ipv6_opt_hdr),
3828                                                  MAX_IPV6_HDR_LEN);
3829                        if (err < 0)
3830                                goto out;
3831
3832                        hp = OPT_HDR(struct ipv6_opt_hdr, skb, off);
3833                        nexthdr = hp->nexthdr;
3834                        off += ipv6_optlen(hp);
3835                        break;
3836                }
3837                case IPPROTO_AH: {
3838                        struct ip_auth_hdr *hp;
3839
3840                        err = skb_maybe_pull_tail(skb,
3841                                                  off +
3842                                                  sizeof(struct ip_auth_hdr),
3843                                                  MAX_IPV6_HDR_LEN);
3844                        if (err < 0)
3845                                goto out;
3846
3847                        hp = OPT_HDR(struct ip_auth_hdr, skb, off);
3848                        nexthdr = hp->nexthdr;
3849                        off += ipv6_authlen(hp);
3850                        break;
3851                }
3852                case IPPROTO_FRAGMENT: {
3853                        struct frag_hdr *hp;
3854
3855                        err = skb_maybe_pull_tail(skb,
3856                                                  off +
3857                                                  sizeof(struct frag_hdr),
3858                                                  MAX_IPV6_HDR_LEN);
3859                        if (err < 0)
3860                                goto out;
3861
3862                        hp = OPT_HDR(struct frag_hdr, skb, off);
3863
3864                        if (hp->frag_off & htons(IP6_OFFSET | IP6_MF))
3865                                fragment = true;
3866
3867                        nexthdr = hp->nexthdr;
3868                        off += sizeof(struct frag_hdr);
3869                        break;
3870                }
3871                default:
3872                        done = true;
3873                        break;
3874                }
3875        }
3876
3877        err = -EPROTO;
3878
3879        if (!done || fragment)
3880                goto out;
3881
3882        csum = skb_checksum_setup_ip(skb, nexthdr, off);
3883        if (IS_ERR(csum))
3884                return PTR_ERR(csum);
3885
3886        if (recalculate)
3887                *csum = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
3888                                         &ipv6_hdr(skb)->daddr,
3889                                         skb->len - off, nexthdr, 0);
3890        err = 0;
3891
3892out:
3893        return err;
3894}
3895
3896/**
3897 * skb_checksum_setup - set up partial checksum offset
3898 * @skb: the skb to set up
3899 * @recalculate: if true the pseudo-header checksum will be recalculated
3900 */
3901int skb_checksum_setup(struct sk_buff *skb, bool recalculate)
3902{
3903        int err;
3904
3905        switch (skb->protocol) {
3906        case htons(ETH_P_IP):
3907                err = skb_checksum_setup_ipv4(skb, recalculate);
3908                break;
3909
3910        case htons(ETH_P_IPV6):
3911                err = skb_checksum_setup_ipv6(skb, recalculate);
3912                break;
3913
3914        default:
3915                err = -EPROTO;
3916                break;
3917        }
3918
3919        return err;
3920}
3921EXPORT_SYMBOL(skb_checksum_setup);
3922
3923void __skb_warn_lro_forwarding(const struct sk_buff *skb)
3924{
3925        net_warn_ratelimited("%s: received packets cannot be forwarded while LRO is enabled\n",
3926                             skb->dev->name);
3927}
3928EXPORT_SYMBOL(__skb_warn_lro_forwarding);
3929
3930void kfree_skb_partial(struct sk_buff *skb, bool head_stolen)
3931{
3932        if (head_stolen) {
3933                skb_release_head_state(skb);
3934                kmem_cache_free(skbuff_head_cache, skb);
3935        } else {
3936                __kfree_skb(skb);
3937        }
3938}
3939EXPORT_SYMBOL(kfree_skb_partial);
3940
3941/**
3942 * skb_try_coalesce - try to merge skb to prior one
3943 * @to: prior buffer
3944 * @from: buffer to add
3945 * @fragstolen: pointer to boolean
3946 * @delta_truesize: how much more was allocated than was requested
3947 */
3948bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
3949                      bool *fragstolen, int *delta_truesize)
3950{
3951        int i, delta, len = from->len;
3952
3953        *fragstolen = false;
3954
3955        if (skb_cloned(to))
3956                return false;
3957
3958        if (len <= skb_tailroom(to)) {
3959                if (len)
3960                        BUG_ON(skb_copy_bits(from, 0, skb_put(to, len), len));
3961                *delta_truesize = 0;
3962                return true;
3963        }
3964
3965        if (skb_has_frag_list(to) || skb_has_frag_list(from))
3966                return false;
3967
3968        if (skb_headlen(from) != 0) {
3969                struct page *page;
3970                unsigned int offset;
3971
3972                if (skb_shinfo(to)->nr_frags +
3973                    skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS)
3974                        return false;
3975
3976                if (skb_head_is_locked(from))
3977                        return false;
3978
3979                delta = from->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff));
3980
3981                page = virt_to_head_page(from->head);
3982                offset = from->data - (unsigned char *)page_address(page);
3983
3984                skb_fill_page_desc(to, skb_shinfo(to)->nr_frags,
3985                                   page, offset, skb_headlen(from));
3986                *fragstolen = true;
3987        } else {
3988                if (skb_shinfo(to)->nr_frags +
3989                    skb_shinfo(from)->nr_frags > MAX_SKB_FRAGS)
3990                        return false;
3991
3992                delta = from->truesize - SKB_TRUESIZE(skb_end_offset(from));
3993        }
3994
3995        WARN_ON_ONCE(delta < len);
3996
3997        memcpy(skb_shinfo(to)->frags + skb_shinfo(to)->nr_frags,
3998               skb_shinfo(from)->frags,
3999               skb_shinfo(from)->nr_frags * sizeof(skb_frag_t));
4000        skb_shinfo(to)->nr_frags += skb_shinfo(from)->nr_frags;
4001
4002        if (!skb_cloned(from))
4003                skb_shinfo(from)->nr_frags = 0;
4004
4005        /* if the skb is not cloned this does nothing
4006         * since we set nr_frags to 0.
4007         */
4008        for (i = 0; i < skb_shinfo(from)->nr_frags; i++)
4009                skb_frag_ref(from, i);
4010
4011        to->truesize += delta;
4012        to->len += len;
4013        to->data_len += len;
4014
4015        *delta_truesize = delta;
4016        return true;
4017}
4018EXPORT_SYMBOL(skb_try_coalesce);
4019
4020/**
4021 * skb_scrub_packet - scrub an skb
4022 *
4023 * @skb: buffer to clean
4024 * @xnet: packet is crossing netns
4025 *
4026 * skb_scrub_packet can be used after encapsulating or decapsulting a packet
4027 * into/from a tunnel. Some information have to be cleared during these
4028 * operations.
4029 * skb_scrub_packet can also be used to clean a skb before injecting it in
4030 * another namespace (@xnet == true). We have to clear all information in the
4031 * skb that could impact namespace isolation.
4032 */
4033void skb_scrub_packet(struct sk_buff *skb, bool xnet)
4034{
4035        if (xnet)
4036                skb_orphan(skb);
4037        skb->tstamp.tv64 = 0;
4038        skb->pkt_type = PACKET_HOST;
4039        skb->skb_iif = 0;
4040        skb->ignore_df = 0;
4041        skb_dst_drop(skb);
4042        skb->mark = 0;
4043        secpath_reset(skb);
4044        nf_reset(skb);
4045        nf_reset_trace(skb);
4046}
4047EXPORT_SYMBOL_GPL(skb_scrub_packet);
4048
4049/**
4050 * skb_gso_transport_seglen - Return length of individual segments of a gso packet
4051 *
4052 * @skb: GSO skb
4053 *
4054 * skb_gso_transport_seglen is used to determine the real size of the
4055 * individual segments, including Layer4 headers (TCP/UDP).
4056 *
4057 * The MAC/L2 or network (IP, IPv6) headers are not accounted for.
4058 */
4059unsigned int skb_gso_transport_seglen(const struct sk_buff *skb)
4060{
4061        const struct skb_shared_info *shinfo = skb_shinfo(skb);
4062        unsigned int thlen = 0;
4063
4064        if (skb->encapsulation) {
4065                thlen = skb_inner_transport_header(skb) -
4066                        skb_transport_header(skb);
4067
4068                if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
4069                        thlen += inner_tcp_hdrlen(skb);
4070        } else if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
4071                thlen = tcp_hdrlen(skb);
4072        }
4073        /* UFO sets gso_size to the size of the fragmentation
4074         * payload, i.e. the size of the L4 (UDP) header is already
4075         * accounted for.
4076         */
4077        return thlen + shinfo->gso_size;
4078}
4079EXPORT_SYMBOL_GPL(skb_gso_transport_seglen);
4080
4081static struct sk_buff *skb_reorder_vlan_header(struct sk_buff *skb)
4082{
4083        if (skb_cow(skb, skb_headroom(skb)) < 0) {
4084                kfree_skb(skb);
4085                return NULL;
4086        }
4087
4088        memmove(skb->data - ETH_HLEN, skb->data - VLAN_ETH_HLEN, 2 * ETH_ALEN);
4089        skb->mac_header += VLAN_HLEN;
4090        return skb;
4091}
4092
4093struct sk_buff *skb_vlan_untag(struct sk_buff *skb)
4094{
4095        struct vlan_hdr *vhdr;
4096        u16 vlan_tci;
4097
4098        if (unlikely(vlan_tx_tag_present(skb))) {
4099                /* vlan_tci is already set-up so leave this for another time */
4100                return skb;
4101        }
4102
4103        skb = skb_share_check(skb, GFP_ATOMIC);
4104        if (unlikely(!skb))
4105                goto err_free;
4106
4107        if (unlikely(!pskb_may_pull(skb, VLAN_HLEN)))
4108                goto err_free;
4109
4110        vhdr = (struct vlan_hdr *)skb->data;
4111        vlan_tci = ntohs(vhdr->h_vlan_TCI);
4112        __vlan_hwaccel_put_tag(skb, skb->protocol, vlan_tci);
4113
4114        skb_pull_rcsum(skb, VLAN_HLEN);
4115        vlan_set_encap_proto(skb, vhdr);
4116
4117        skb = skb_reorder_vlan_header(skb);
4118        if (unlikely(!skb))
4119                goto err_free;
4120
4121        skb_reset_network_header(skb);
4122        skb_reset_transport_header(skb);
4123        skb_reset_mac_len(skb);
4124
4125        return skb;
4126
4127err_free:
4128        kfree_skb(skb);
4129        return NULL;
4130}
4131EXPORT_SYMBOL(skb_vlan_untag);
4132
4133/**
4134 * alloc_skb_with_frags - allocate skb with page frags
4135 *
4136 * @header_len: size of linear part
4137 * @data_len: needed length in frags
4138 * @max_page_order: max page order desired.
4139 * @errcode: pointer to error code if any
4140 * @gfp_mask: allocation mask
4141 *
4142 * This can be used to allocate a paged skb, given a maximal order for frags.
4143 */
4144struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
4145                                     unsigned long data_len,
4146                                     int max_page_order,
4147                                     int *errcode,
4148                                     gfp_t gfp_mask)
4149{
4150        int npages = (data_len + (PAGE_SIZE - 1)) >> PAGE_SHIFT;
4151        unsigned long chunk;
4152        struct sk_buff *skb;
4153        struct page *page;
4154        gfp_t gfp_head;
4155        int i;
4156
4157        *errcode = -EMSGSIZE;
4158        /* Note this test could be relaxed, if we succeed to allocate
4159         * high order pages...
4160         */
4161        if (npages > MAX_SKB_FRAGS)
4162                return NULL;
4163
4164        gfp_head = gfp_mask;
4165        if (gfp_head & __GFP_WAIT)
4166                gfp_head |= __GFP_REPEAT;
4167
4168        *errcode = -ENOBUFS;
4169        skb = alloc_skb(header_len, gfp_head);
4170        if (!skb)
4171                return NULL;
4172
4173        skb->truesize += npages << PAGE_SHIFT;
4174
4175        for (i = 0; npages > 0; i++) {
4176                int order = max_page_order;
4177
4178                while (order) {
4179                        if (npages >= 1 << order) {
4180                                page = alloc_pages(gfp_mask |
4181                                                   __GFP_COMP |
4182                                                   __GFP_NOWARN |
4183                                                   __GFP_NORETRY,
4184                                                   order);
4185                                if (page)
4186                                        goto fill_page;
4187                                /* Do not retry other high order allocations */
4188                                order = 1;
4189                                max_page_order = 0;
4190                        }
4191                        order--;
4192                }
4193                page = alloc_page(gfp_mask);
4194                if (!page)
4195                        goto failure;
4196fill_page:
4197                chunk = min_t(unsigned long, data_len,
4198                              PAGE_SIZE << order);
4199                skb_fill_page_desc(skb, i, page, 0, chunk);
4200                data_len -= chunk;
4201                npages -= 1 << order;
4202        }
4203        return skb;
4204
4205failure:
4206        kfree_skb(skb);
4207        return NULL;
4208}
4209EXPORT_SYMBOL(alloc_skb_with_frags);
4210