linux/net/ipv4/tcp_fastopen.c
<<
>>
Prefs
   1#include <linux/err.h>
   2#include <linux/init.h>
   3#include <linux/kernel.h>
   4#include <linux/list.h>
   5#include <linux/tcp.h>
   6#include <linux/rcupdate.h>
   7#include <linux/rculist.h>
   8#include <net/inetpeer.h>
   9#include <net/tcp.h>
  10
  11int sysctl_tcp_fastopen __read_mostly = TFO_CLIENT_ENABLE;
  12
  13struct tcp_fastopen_context __rcu *tcp_fastopen_ctx;
  14
  15static DEFINE_SPINLOCK(tcp_fastopen_ctx_lock);
  16
  17void tcp_fastopen_init_key_once(bool publish)
  18{
  19        static u8 key[TCP_FASTOPEN_KEY_LENGTH];
  20
  21        /* tcp_fastopen_reset_cipher publishes the new context
  22         * atomically, so we allow this race happening here.
  23         *
  24         * All call sites of tcp_fastopen_cookie_gen also check
  25         * for a valid cookie, so this is an acceptable risk.
  26         */
  27        if (net_get_random_once(key, sizeof(key)) && publish)
  28                tcp_fastopen_reset_cipher(key, sizeof(key));
  29}
  30
  31static void tcp_fastopen_ctx_free(struct rcu_head *head)
  32{
  33        struct tcp_fastopen_context *ctx =
  34            container_of(head, struct tcp_fastopen_context, rcu);
  35        crypto_free_cipher(ctx->tfm);
  36        kfree(ctx);
  37}
  38
  39int tcp_fastopen_reset_cipher(void *key, unsigned int len)
  40{
  41        int err;
  42        struct tcp_fastopen_context *ctx, *octx;
  43
  44        ctx = kmalloc(sizeof(*ctx), GFP_KERNEL);
  45        if (!ctx)
  46                return -ENOMEM;
  47        ctx->tfm = crypto_alloc_cipher("aes", 0, 0);
  48
  49        if (IS_ERR(ctx->tfm)) {
  50                err = PTR_ERR(ctx->tfm);
  51error:          kfree(ctx);
  52                pr_err("TCP: TFO aes cipher alloc error: %d\n", err);
  53                return err;
  54        }
  55        err = crypto_cipher_setkey(ctx->tfm, key, len);
  56        if (err) {
  57                pr_err("TCP: TFO cipher key error: %d\n", err);
  58                crypto_free_cipher(ctx->tfm);
  59                goto error;
  60        }
  61        memcpy(ctx->key, key, len);
  62
  63        spin_lock(&tcp_fastopen_ctx_lock);
  64
  65        octx = rcu_dereference_protected(tcp_fastopen_ctx,
  66                                lockdep_is_held(&tcp_fastopen_ctx_lock));
  67        rcu_assign_pointer(tcp_fastopen_ctx, ctx);
  68        spin_unlock(&tcp_fastopen_ctx_lock);
  69
  70        if (octx)
  71                call_rcu(&octx->rcu, tcp_fastopen_ctx_free);
  72        return err;
  73}
  74
  75static bool __tcp_fastopen_cookie_gen(const void *path,
  76                                      struct tcp_fastopen_cookie *foc)
  77{
  78        struct tcp_fastopen_context *ctx;
  79        bool ok = false;
  80
  81        tcp_fastopen_init_key_once(true);
  82
  83        rcu_read_lock();
  84        ctx = rcu_dereference(tcp_fastopen_ctx);
  85        if (ctx) {
  86                crypto_cipher_encrypt_one(ctx->tfm, foc->val, path);
  87                foc->len = TCP_FASTOPEN_COOKIE_SIZE;
  88                ok = true;
  89        }
  90        rcu_read_unlock();
  91        return ok;
  92}
  93
  94/* Generate the fastopen cookie by doing aes128 encryption on both
  95 * the source and destination addresses. Pad 0s for IPv4 or IPv4-mapped-IPv6
  96 * addresses. For the longer IPv6 addresses use CBC-MAC.
  97 *
  98 * XXX (TFO) - refactor when TCP_FASTOPEN_COOKIE_SIZE != AES_BLOCK_SIZE.
  99 */
 100static bool tcp_fastopen_cookie_gen(struct request_sock *req,
 101                                    struct sk_buff *syn,
 102                                    struct tcp_fastopen_cookie *foc)
 103{
 104        if (req->rsk_ops->family == AF_INET) {
 105                const struct iphdr *iph = ip_hdr(syn);
 106
 107                __be32 path[4] = { iph->saddr, iph->daddr, 0, 0 };
 108                return __tcp_fastopen_cookie_gen(path, foc);
 109        }
 110
 111#if IS_ENABLED(CONFIG_IPV6)
 112        if (req->rsk_ops->family == AF_INET6) {
 113                const struct ipv6hdr *ip6h = ipv6_hdr(syn);
 114                struct tcp_fastopen_cookie tmp;
 115
 116                if (__tcp_fastopen_cookie_gen(&ip6h->saddr, &tmp)) {
 117                        struct in6_addr *buf = (struct in6_addr *) tmp.val;
 118                        int i;
 119
 120                        for (i = 0; i < 4; i++)
 121                                buf->s6_addr32[i] ^= ip6h->daddr.s6_addr32[i];
 122                        return __tcp_fastopen_cookie_gen(buf, foc);
 123                }
 124        }
 125#endif
 126        return false;
 127}
 128
 129static bool tcp_fastopen_create_child(struct sock *sk,
 130                                      struct sk_buff *skb,
 131                                      struct dst_entry *dst,
 132                                      struct request_sock *req)
 133{
 134        struct tcp_sock *tp;
 135        struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue;
 136        struct sock *child;
 137
 138        req->num_retrans = 0;
 139        req->num_timeout = 0;
 140        req->sk = NULL;
 141
 142        child = inet_csk(sk)->icsk_af_ops->syn_recv_sock(sk, skb, req, NULL);
 143        if (child == NULL)
 144                return false;
 145
 146        spin_lock(&queue->fastopenq->lock);
 147        queue->fastopenq->qlen++;
 148        spin_unlock(&queue->fastopenq->lock);
 149
 150        /* Initialize the child socket. Have to fix some values to take
 151         * into account the child is a Fast Open socket and is created
 152         * only out of the bits carried in the SYN packet.
 153         */
 154        tp = tcp_sk(child);
 155
 156        tp->fastopen_rsk = req;
 157        /* Do a hold on the listner sk so that if the listener is being
 158         * closed, the child that has been accepted can live on and still
 159         * access listen_lock.
 160         */
 161        sock_hold(sk);
 162        tcp_rsk(req)->listener = sk;
 163
 164        /* RFC1323: The window in SYN & SYN/ACK segments is never
 165         * scaled. So correct it appropriately.
 166         */
 167        tp->snd_wnd = ntohs(tcp_hdr(skb)->window);
 168
 169        /* Activate the retrans timer so that SYNACK can be retransmitted.
 170         * The request socket is not added to the SYN table of the parent
 171         * because it's been added to the accept queue directly.
 172         */
 173        inet_csk_reset_xmit_timer(child, ICSK_TIME_RETRANS,
 174                                  TCP_TIMEOUT_INIT, TCP_RTO_MAX);
 175
 176        /* Add the child socket directly into the accept queue */
 177        inet_csk_reqsk_queue_add(sk, req, child);
 178
 179        /* Now finish processing the fastopen child socket. */
 180        inet_csk(child)->icsk_af_ops->rebuild_header(child);
 181        tcp_init_congestion_control(child);
 182        tcp_mtup_init(child);
 183        tcp_init_metrics(child);
 184        tcp_init_buffer_space(child);
 185
 186        /* Queue the data carried in the SYN packet. We need to first
 187         * bump skb's refcnt because the caller will attempt to free it.
 188         *
 189         * XXX (TFO) - we honor a zero-payload TFO request for now,
 190         * (any reason not to?) but no need to queue the skb since
 191         * there is no data. How about SYN+FIN?
 192         */
 193        if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq + 1) {
 194                skb = skb_get(skb);
 195                skb_dst_drop(skb);
 196                __skb_pull(skb, tcp_hdr(skb)->doff * 4);
 197                skb_set_owner_r(skb, child);
 198                __skb_queue_tail(&child->sk_receive_queue, skb);
 199                tp->syn_data_acked = 1;
 200        }
 201        tcp_rsk(req)->rcv_nxt = tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
 202        sk->sk_data_ready(sk);
 203        bh_unlock_sock(child);
 204        sock_put(child);
 205        WARN_ON(req->sk == NULL);
 206        return true;
 207}
 208EXPORT_SYMBOL(tcp_fastopen_create_child);
 209
 210static bool tcp_fastopen_queue_check(struct sock *sk)
 211{
 212        struct fastopen_queue *fastopenq;
 213
 214        /* Make sure the listener has enabled fastopen, and we don't
 215         * exceed the max # of pending TFO requests allowed before trying
 216         * to validating the cookie in order to avoid burning CPU cycles
 217         * unnecessarily.
 218         *
 219         * XXX (TFO) - The implication of checking the max_qlen before
 220         * processing a cookie request is that clients can't differentiate
 221         * between qlen overflow causing Fast Open to be disabled
 222         * temporarily vs a server not supporting Fast Open at all.
 223         */
 224        fastopenq = inet_csk(sk)->icsk_accept_queue.fastopenq;
 225        if (fastopenq == NULL || fastopenq->max_qlen == 0)
 226                return false;
 227
 228        if (fastopenq->qlen >= fastopenq->max_qlen) {
 229                struct request_sock *req1;
 230                spin_lock(&fastopenq->lock);
 231                req1 = fastopenq->rskq_rst_head;
 232                if ((req1 == NULL) || time_after(req1->expires, jiffies)) {
 233                        spin_unlock(&fastopenq->lock);
 234                        NET_INC_STATS_BH(sock_net(sk),
 235                                         LINUX_MIB_TCPFASTOPENLISTENOVERFLOW);
 236                        return false;
 237                }
 238                fastopenq->rskq_rst_head = req1->dl_next;
 239                fastopenq->qlen--;
 240                spin_unlock(&fastopenq->lock);
 241                reqsk_free(req1);
 242        }
 243        return true;
 244}
 245
 246/* Returns true if we should perform Fast Open on the SYN. The cookie (foc)
 247 * may be updated and return the client in the SYN-ACK later. E.g., Fast Open
 248 * cookie request (foc->len == 0).
 249 */
 250bool tcp_try_fastopen(struct sock *sk, struct sk_buff *skb,
 251                      struct request_sock *req,
 252                      struct tcp_fastopen_cookie *foc,
 253                      struct dst_entry *dst)
 254{
 255        struct tcp_fastopen_cookie valid_foc = { .len = -1 };
 256        bool syn_data = TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq + 1;
 257
 258        if (!((sysctl_tcp_fastopen & TFO_SERVER_ENABLE) &&
 259              (syn_data || foc->len >= 0) &&
 260              tcp_fastopen_queue_check(sk))) {
 261                foc->len = -1;
 262                return false;
 263        }
 264
 265        if (syn_data && (sysctl_tcp_fastopen & TFO_SERVER_COOKIE_NOT_REQD))
 266                goto fastopen;
 267
 268        if (tcp_fastopen_cookie_gen(req, skb, &valid_foc) &&
 269            foc->len == TCP_FASTOPEN_COOKIE_SIZE &&
 270            foc->len == valid_foc.len &&
 271            !memcmp(foc->val, valid_foc.val, foc->len)) {
 272                /* Cookie is valid. Create a (full) child socket to accept
 273                 * the data in SYN before returning a SYN-ACK to ack the
 274                 * data. If we fail to create the socket, fall back and
 275                 * ack the ISN only but includes the same cookie.
 276                 *
 277                 * Note: Data-less SYN with valid cookie is allowed to send
 278                 * data in SYN_RECV state.
 279                 */
 280fastopen:
 281                if (tcp_fastopen_create_child(sk, skb, dst, req)) {
 282                        foc->len = -1;
 283                        NET_INC_STATS_BH(sock_net(sk),
 284                                         LINUX_MIB_TCPFASTOPENPASSIVE);
 285                        return true;
 286                }
 287        }
 288
 289        NET_INC_STATS_BH(sock_net(sk), foc->len ?
 290                         LINUX_MIB_TCPFASTOPENPASSIVEFAIL :
 291                         LINUX_MIB_TCPFASTOPENCOOKIEREQD);
 292        *foc = valid_foc;
 293        return false;
 294}
 295EXPORT_SYMBOL(tcp_try_fastopen);
 296