linux/net/ipv4/tcp_input.c
<<
>>
Prefs
   1/*
   2 * INET         An implementation of the TCP/IP protocol suite for the LINUX
   3 *              operating system.  INET is implemented using the  BSD Socket
   4 *              interface as the means of communication with the user level.
   5 *
   6 *              Implementation of the Transmission Control Protocol(TCP).
   7 *
   8 * Authors:     Ross Biro
   9 *              Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
  10 *              Mark Evans, <evansmp@uhura.aston.ac.uk>
  11 *              Corey Minyard <wf-rch!minyard@relay.EU.net>
  12 *              Florian La Roche, <flla@stud.uni-sb.de>
  13 *              Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
  14 *              Linus Torvalds, <torvalds@cs.helsinki.fi>
  15 *              Alan Cox, <gw4pts@gw4pts.ampr.org>
  16 *              Matthew Dillon, <dillon@apollo.west.oic.com>
  17 *              Arnt Gulbrandsen, <agulbra@nvg.unit.no>
  18 *              Jorge Cwik, <jorge@laser.satlink.net>
  19 */
  20
  21/*
  22 * Changes:
  23 *              Pedro Roque     :       Fast Retransmit/Recovery.
  24 *                                      Two receive queues.
  25 *                                      Retransmit queue handled by TCP.
  26 *                                      Better retransmit timer handling.
  27 *                                      New congestion avoidance.
  28 *                                      Header prediction.
  29 *                                      Variable renaming.
  30 *
  31 *              Eric            :       Fast Retransmit.
  32 *              Randy Scott     :       MSS option defines.
  33 *              Eric Schenk     :       Fixes to slow start algorithm.
  34 *              Eric Schenk     :       Yet another double ACK bug.
  35 *              Eric Schenk     :       Delayed ACK bug fixes.
  36 *              Eric Schenk     :       Floyd style fast retrans war avoidance.
  37 *              David S. Miller :       Don't allow zero congestion window.
  38 *              Eric Schenk     :       Fix retransmitter so that it sends
  39 *                                      next packet on ack of previous packet.
  40 *              Andi Kleen      :       Moved open_request checking here
  41 *                                      and process RSTs for open_requests.
  42 *              Andi Kleen      :       Better prune_queue, and other fixes.
  43 *              Andrey Savochkin:       Fix RTT measurements in the presence of
  44 *                                      timestamps.
  45 *              Andrey Savochkin:       Check sequence numbers correctly when
  46 *                                      removing SACKs due to in sequence incoming
  47 *                                      data segments.
  48 *              Andi Kleen:             Make sure we never ack data there is not
  49 *                                      enough room for. Also make this condition
  50 *                                      a fatal error if it might still happen.
  51 *              Andi Kleen:             Add tcp_measure_rcv_mss to make
  52 *                                      connections with MSS<min(MTU,ann. MSS)
  53 *                                      work without delayed acks.
  54 *              Andi Kleen:             Process packets with PSH set in the
  55 *                                      fast path.
  56 *              J Hadi Salim:           ECN support
  57 *              Andrei Gurtov,
  58 *              Pasi Sarolahti,
  59 *              Panu Kuhlberg:          Experimental audit of TCP (re)transmission
  60 *                                      engine. Lots of bugs are found.
  61 *              Pasi Sarolahti:         F-RTO for dealing with spurious RTOs
  62 */
  63
  64#define pr_fmt(fmt) "TCP: " fmt
  65
  66#include <linux/mm.h>
  67#include <linux/slab.h>
  68#include <linux/module.h>
  69#include <linux/sysctl.h>
  70#include <linux/kernel.h>
  71#include <linux/prefetch.h>
  72#include <net/dst.h>
  73#include <net/tcp.h>
  74#include <net/inet_common.h>
  75#include <linux/ipsec.h>
  76#include <asm/unaligned.h>
  77#include <linux/errqueue.h>
  78
  79int sysctl_tcp_timestamps __read_mostly = 1;
  80int sysctl_tcp_window_scaling __read_mostly = 1;
  81int sysctl_tcp_sack __read_mostly = 1;
  82int sysctl_tcp_fack __read_mostly = 1;
  83int sysctl_tcp_reordering __read_mostly = TCP_FASTRETRANS_THRESH;
  84EXPORT_SYMBOL(sysctl_tcp_reordering);
  85int sysctl_tcp_dsack __read_mostly = 1;
  86int sysctl_tcp_app_win __read_mostly = 31;
  87int sysctl_tcp_adv_win_scale __read_mostly = 1;
  88EXPORT_SYMBOL(sysctl_tcp_adv_win_scale);
  89
  90/* rfc5961 challenge ack rate limiting */
  91int sysctl_tcp_challenge_ack_limit = 100;
  92
  93int sysctl_tcp_stdurg __read_mostly;
  94int sysctl_tcp_rfc1337 __read_mostly;
  95int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
  96int sysctl_tcp_frto __read_mostly = 2;
  97
  98int sysctl_tcp_thin_dupack __read_mostly;
  99
 100int sysctl_tcp_moderate_rcvbuf __read_mostly = 1;
 101int sysctl_tcp_early_retrans __read_mostly = 3;
 102
 103#define FLAG_DATA               0x01 /* Incoming frame contained data.          */
 104#define FLAG_WIN_UPDATE         0x02 /* Incoming ACK was a window update.       */
 105#define FLAG_DATA_ACKED         0x04 /* This ACK acknowledged new data.         */
 106#define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted.  */
 107#define FLAG_SYN_ACKED          0x10 /* This ACK acknowledged SYN.              */
 108#define FLAG_DATA_SACKED        0x20 /* New SACK.                               */
 109#define FLAG_ECE                0x40 /* ECE in this ACK                         */
 110#define FLAG_SLOWPATH           0x100 /* Do not skip RFC checks for window update.*/
 111#define FLAG_ORIG_SACK_ACKED    0x200 /* Never retransmitted data are (s)acked  */
 112#define FLAG_SND_UNA_ADVANCED   0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
 113#define FLAG_DSACKING_ACK       0x800 /* SACK blocks contained D-SACK info */
 114#define FLAG_SACK_RENEGING      0x2000 /* snd_una advanced to a sacked seq */
 115#define FLAG_UPDATE_TS_RECENT   0x4000 /* tcp_replace_ts_recent() */
 116
 117#define FLAG_ACKED              (FLAG_DATA_ACKED|FLAG_SYN_ACKED)
 118#define FLAG_NOT_DUP            (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
 119#define FLAG_CA_ALERT           (FLAG_DATA_SACKED|FLAG_ECE)
 120#define FLAG_FORWARD_PROGRESS   (FLAG_ACKED|FLAG_DATA_SACKED)
 121
 122#define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
 123#define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
 124
 125/* Adapt the MSS value used to make delayed ack decision to the
 126 * real world.
 127 */
 128static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
 129{
 130        struct inet_connection_sock *icsk = inet_csk(sk);
 131        const unsigned int lss = icsk->icsk_ack.last_seg_size;
 132        unsigned int len;
 133
 134        icsk->icsk_ack.last_seg_size = 0;
 135
 136        /* skb->len may jitter because of SACKs, even if peer
 137         * sends good full-sized frames.
 138         */
 139        len = skb_shinfo(skb)->gso_size ? : skb->len;
 140        if (len >= icsk->icsk_ack.rcv_mss) {
 141                icsk->icsk_ack.rcv_mss = len;
 142        } else {
 143                /* Otherwise, we make more careful check taking into account,
 144                 * that SACKs block is variable.
 145                 *
 146                 * "len" is invariant segment length, including TCP header.
 147                 */
 148                len += skb->data - skb_transport_header(skb);
 149                if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) ||
 150                    /* If PSH is not set, packet should be
 151                     * full sized, provided peer TCP is not badly broken.
 152                     * This observation (if it is correct 8)) allows
 153                     * to handle super-low mtu links fairly.
 154                     */
 155                    (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
 156                     !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
 157                        /* Subtract also invariant (if peer is RFC compliant),
 158                         * tcp header plus fixed timestamp option length.
 159                         * Resulting "len" is MSS free of SACK jitter.
 160                         */
 161                        len -= tcp_sk(sk)->tcp_header_len;
 162                        icsk->icsk_ack.last_seg_size = len;
 163                        if (len == lss) {
 164                                icsk->icsk_ack.rcv_mss = len;
 165                                return;
 166                        }
 167                }
 168                if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
 169                        icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
 170                icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
 171        }
 172}
 173
 174static void tcp_incr_quickack(struct sock *sk)
 175{
 176        struct inet_connection_sock *icsk = inet_csk(sk);
 177        unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
 178
 179        if (quickacks == 0)
 180                quickacks = 2;
 181        if (quickacks > icsk->icsk_ack.quick)
 182                icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
 183}
 184
 185static void tcp_enter_quickack_mode(struct sock *sk)
 186{
 187        struct inet_connection_sock *icsk = inet_csk(sk);
 188        tcp_incr_quickack(sk);
 189        icsk->icsk_ack.pingpong = 0;
 190        icsk->icsk_ack.ato = TCP_ATO_MIN;
 191}
 192
 193/* Send ACKs quickly, if "quick" count is not exhausted
 194 * and the session is not interactive.
 195 */
 196
 197static inline bool tcp_in_quickack_mode(const struct sock *sk)
 198{
 199        const struct inet_connection_sock *icsk = inet_csk(sk);
 200
 201        return icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong;
 202}
 203
 204static void tcp_ecn_queue_cwr(struct tcp_sock *tp)
 205{
 206        if (tp->ecn_flags & TCP_ECN_OK)
 207                tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
 208}
 209
 210static void tcp_ecn_accept_cwr(struct tcp_sock *tp, const struct sk_buff *skb)
 211{
 212        if (tcp_hdr(skb)->cwr)
 213                tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
 214}
 215
 216static void tcp_ecn_withdraw_cwr(struct tcp_sock *tp)
 217{
 218        tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
 219}
 220
 221static void __tcp_ecn_check_ce(struct tcp_sock *tp, const struct sk_buff *skb)
 222{
 223        switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) {
 224        case INET_ECN_NOT_ECT:
 225                /* Funny extension: if ECT is not set on a segment,
 226                 * and we already seen ECT on a previous segment,
 227                 * it is probably a retransmit.
 228                 */
 229                if (tp->ecn_flags & TCP_ECN_SEEN)
 230                        tcp_enter_quickack_mode((struct sock *)tp);
 231                break;
 232        case INET_ECN_CE:
 233                if (tcp_ca_needs_ecn((struct sock *)tp))
 234                        tcp_ca_event((struct sock *)tp, CA_EVENT_ECN_IS_CE);
 235
 236                if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR)) {
 237                        /* Better not delay acks, sender can have a very low cwnd */
 238                        tcp_enter_quickack_mode((struct sock *)tp);
 239                        tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
 240                }
 241                tp->ecn_flags |= TCP_ECN_SEEN;
 242                break;
 243        default:
 244                if (tcp_ca_needs_ecn((struct sock *)tp))
 245                        tcp_ca_event((struct sock *)tp, CA_EVENT_ECN_NO_CE);
 246                tp->ecn_flags |= TCP_ECN_SEEN;
 247                break;
 248        }
 249}
 250
 251static void tcp_ecn_check_ce(struct tcp_sock *tp, const struct sk_buff *skb)
 252{
 253        if (tp->ecn_flags & TCP_ECN_OK)
 254                __tcp_ecn_check_ce(tp, skb);
 255}
 256
 257static void tcp_ecn_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th)
 258{
 259        if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
 260                tp->ecn_flags &= ~TCP_ECN_OK;
 261}
 262
 263static void tcp_ecn_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th)
 264{
 265        if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
 266                tp->ecn_flags &= ~TCP_ECN_OK;
 267}
 268
 269static bool tcp_ecn_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th)
 270{
 271        if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
 272                return true;
 273        return false;
 274}
 275
 276/* Buffer size and advertised window tuning.
 277 *
 278 * 1. Tuning sk->sk_sndbuf, when connection enters established state.
 279 */
 280
 281static void tcp_sndbuf_expand(struct sock *sk)
 282{
 283        const struct tcp_sock *tp = tcp_sk(sk);
 284        int sndmem, per_mss;
 285        u32 nr_segs;
 286
 287        /* Worst case is non GSO/TSO : each frame consumes one skb
 288         * and skb->head is kmalloced using power of two area of memory
 289         */
 290        per_mss = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
 291                  MAX_TCP_HEADER +
 292                  SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
 293
 294        per_mss = roundup_pow_of_two(per_mss) +
 295                  SKB_DATA_ALIGN(sizeof(struct sk_buff));
 296
 297        nr_segs = max_t(u32, TCP_INIT_CWND, tp->snd_cwnd);
 298        nr_segs = max_t(u32, nr_segs, tp->reordering + 1);
 299
 300        /* Fast Recovery (RFC 5681 3.2) :
 301         * Cubic needs 1.7 factor, rounded to 2 to include
 302         * extra cushion (application might react slowly to POLLOUT)
 303         */
 304        sndmem = 2 * nr_segs * per_mss;
 305
 306        if (sk->sk_sndbuf < sndmem)
 307                sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
 308}
 309
 310/* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
 311 *
 312 * All tcp_full_space() is split to two parts: "network" buffer, allocated
 313 * forward and advertised in receiver window (tp->rcv_wnd) and
 314 * "application buffer", required to isolate scheduling/application
 315 * latencies from network.
 316 * window_clamp is maximal advertised window. It can be less than
 317 * tcp_full_space(), in this case tcp_full_space() - window_clamp
 318 * is reserved for "application" buffer. The less window_clamp is
 319 * the smoother our behaviour from viewpoint of network, but the lower
 320 * throughput and the higher sensitivity of the connection to losses. 8)
 321 *
 322 * rcv_ssthresh is more strict window_clamp used at "slow start"
 323 * phase to predict further behaviour of this connection.
 324 * It is used for two goals:
 325 * - to enforce header prediction at sender, even when application
 326 *   requires some significant "application buffer". It is check #1.
 327 * - to prevent pruning of receive queue because of misprediction
 328 *   of receiver window. Check #2.
 329 *
 330 * The scheme does not work when sender sends good segments opening
 331 * window and then starts to feed us spaghetti. But it should work
 332 * in common situations. Otherwise, we have to rely on queue collapsing.
 333 */
 334
 335/* Slow part of check#2. */
 336static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
 337{
 338        struct tcp_sock *tp = tcp_sk(sk);
 339        /* Optimize this! */
 340        int truesize = tcp_win_from_space(skb->truesize) >> 1;
 341        int window = tcp_win_from_space(sysctl_tcp_rmem[2]) >> 1;
 342
 343        while (tp->rcv_ssthresh <= window) {
 344                if (truesize <= skb->len)
 345                        return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
 346
 347                truesize >>= 1;
 348                window >>= 1;
 349        }
 350        return 0;
 351}
 352
 353static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb)
 354{
 355        struct tcp_sock *tp = tcp_sk(sk);
 356
 357        /* Check #1 */
 358        if (tp->rcv_ssthresh < tp->window_clamp &&
 359            (int)tp->rcv_ssthresh < tcp_space(sk) &&
 360            !sk_under_memory_pressure(sk)) {
 361                int incr;
 362
 363                /* Check #2. Increase window, if skb with such overhead
 364                 * will fit to rcvbuf in future.
 365                 */
 366                if (tcp_win_from_space(skb->truesize) <= skb->len)
 367                        incr = 2 * tp->advmss;
 368                else
 369                        incr = __tcp_grow_window(sk, skb);
 370
 371                if (incr) {
 372                        incr = max_t(int, incr, 2 * skb->len);
 373                        tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr,
 374                                               tp->window_clamp);
 375                        inet_csk(sk)->icsk_ack.quick |= 1;
 376                }
 377        }
 378}
 379
 380/* 3. Tuning rcvbuf, when connection enters established state. */
 381static void tcp_fixup_rcvbuf(struct sock *sk)
 382{
 383        u32 mss = tcp_sk(sk)->advmss;
 384        int rcvmem;
 385
 386        rcvmem = 2 * SKB_TRUESIZE(mss + MAX_TCP_HEADER) *
 387                 tcp_default_init_rwnd(mss);
 388
 389        /* Dynamic Right Sizing (DRS) has 2 to 3 RTT latency
 390         * Allow enough cushion so that sender is not limited by our window
 391         */
 392        if (sysctl_tcp_moderate_rcvbuf)
 393                rcvmem <<= 2;
 394
 395        if (sk->sk_rcvbuf < rcvmem)
 396                sk->sk_rcvbuf = min(rcvmem, sysctl_tcp_rmem[2]);
 397}
 398
 399/* 4. Try to fixup all. It is made immediately after connection enters
 400 *    established state.
 401 */
 402void tcp_init_buffer_space(struct sock *sk)
 403{
 404        struct tcp_sock *tp = tcp_sk(sk);
 405        int maxwin;
 406
 407        if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
 408                tcp_fixup_rcvbuf(sk);
 409        if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
 410                tcp_sndbuf_expand(sk);
 411
 412        tp->rcvq_space.space = tp->rcv_wnd;
 413        tp->rcvq_space.time = tcp_time_stamp;
 414        tp->rcvq_space.seq = tp->copied_seq;
 415
 416        maxwin = tcp_full_space(sk);
 417
 418        if (tp->window_clamp >= maxwin) {
 419                tp->window_clamp = maxwin;
 420
 421                if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
 422                        tp->window_clamp = max(maxwin -
 423                                               (maxwin >> sysctl_tcp_app_win),
 424                                               4 * tp->advmss);
 425        }
 426
 427        /* Force reservation of one segment. */
 428        if (sysctl_tcp_app_win &&
 429            tp->window_clamp > 2 * tp->advmss &&
 430            tp->window_clamp + tp->advmss > maxwin)
 431                tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
 432
 433        tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
 434        tp->snd_cwnd_stamp = tcp_time_stamp;
 435}
 436
 437/* 5. Recalculate window clamp after socket hit its memory bounds. */
 438static void tcp_clamp_window(struct sock *sk)
 439{
 440        struct tcp_sock *tp = tcp_sk(sk);
 441        struct inet_connection_sock *icsk = inet_csk(sk);
 442
 443        icsk->icsk_ack.quick = 0;
 444
 445        if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
 446            !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
 447            !sk_under_memory_pressure(sk) &&
 448            sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) {
 449                sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
 450                                    sysctl_tcp_rmem[2]);
 451        }
 452        if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
 453                tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
 454}
 455
 456/* Initialize RCV_MSS value.
 457 * RCV_MSS is an our guess about MSS used by the peer.
 458 * We haven't any direct information about the MSS.
 459 * It's better to underestimate the RCV_MSS rather than overestimate.
 460 * Overestimations make us ACKing less frequently than needed.
 461 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
 462 */
 463void tcp_initialize_rcv_mss(struct sock *sk)
 464{
 465        const struct tcp_sock *tp = tcp_sk(sk);
 466        unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
 467
 468        hint = min(hint, tp->rcv_wnd / 2);
 469        hint = min(hint, TCP_MSS_DEFAULT);
 470        hint = max(hint, TCP_MIN_MSS);
 471
 472        inet_csk(sk)->icsk_ack.rcv_mss = hint;
 473}
 474EXPORT_SYMBOL(tcp_initialize_rcv_mss);
 475
 476/* Receiver "autotuning" code.
 477 *
 478 * The algorithm for RTT estimation w/o timestamps is based on
 479 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
 480 * <http://public.lanl.gov/radiant/pubs.html#DRS>
 481 *
 482 * More detail on this code can be found at
 483 * <http://staff.psc.edu/jheffner/>,
 484 * though this reference is out of date.  A new paper
 485 * is pending.
 486 */
 487static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
 488{
 489        u32 new_sample = tp->rcv_rtt_est.rtt;
 490        long m = sample;
 491
 492        if (m == 0)
 493                m = 1;
 494
 495        if (new_sample != 0) {
 496                /* If we sample in larger samples in the non-timestamp
 497                 * case, we could grossly overestimate the RTT especially
 498                 * with chatty applications or bulk transfer apps which
 499                 * are stalled on filesystem I/O.
 500                 *
 501                 * Also, since we are only going for a minimum in the
 502                 * non-timestamp case, we do not smooth things out
 503                 * else with timestamps disabled convergence takes too
 504                 * long.
 505                 */
 506                if (!win_dep) {
 507                        m -= (new_sample >> 3);
 508                        new_sample += m;
 509                } else {
 510                        m <<= 3;
 511                        if (m < new_sample)
 512                                new_sample = m;
 513                }
 514        } else {
 515                /* No previous measure. */
 516                new_sample = m << 3;
 517        }
 518
 519        if (tp->rcv_rtt_est.rtt != new_sample)
 520                tp->rcv_rtt_est.rtt = new_sample;
 521}
 522
 523static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
 524{
 525        if (tp->rcv_rtt_est.time == 0)
 526                goto new_measure;
 527        if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
 528                return;
 529        tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rcv_rtt_est.time, 1);
 530
 531new_measure:
 532        tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
 533        tp->rcv_rtt_est.time = tcp_time_stamp;
 534}
 535
 536static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
 537                                          const struct sk_buff *skb)
 538{
 539        struct tcp_sock *tp = tcp_sk(sk);
 540        if (tp->rx_opt.rcv_tsecr &&
 541            (TCP_SKB_CB(skb)->end_seq -
 542             TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss))
 543                tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0);
 544}
 545
 546/*
 547 * This function should be called every time data is copied to user space.
 548 * It calculates the appropriate TCP receive buffer space.
 549 */
 550void tcp_rcv_space_adjust(struct sock *sk)
 551{
 552        struct tcp_sock *tp = tcp_sk(sk);
 553        int time;
 554        int copied;
 555
 556        time = tcp_time_stamp - tp->rcvq_space.time;
 557        if (time < (tp->rcv_rtt_est.rtt >> 3) || tp->rcv_rtt_est.rtt == 0)
 558                return;
 559
 560        /* Number of bytes copied to user in last RTT */
 561        copied = tp->copied_seq - tp->rcvq_space.seq;
 562        if (copied <= tp->rcvq_space.space)
 563                goto new_measure;
 564
 565        /* A bit of theory :
 566         * copied = bytes received in previous RTT, our base window
 567         * To cope with packet losses, we need a 2x factor
 568         * To cope with slow start, and sender growing its cwin by 100 %
 569         * every RTT, we need a 4x factor, because the ACK we are sending
 570         * now is for the next RTT, not the current one :
 571         * <prev RTT . ><current RTT .. ><next RTT .... >
 572         */
 573
 574        if (sysctl_tcp_moderate_rcvbuf &&
 575            !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
 576                int rcvwin, rcvmem, rcvbuf;
 577
 578                /* minimal window to cope with packet losses, assuming
 579                 * steady state. Add some cushion because of small variations.
 580                 */
 581                rcvwin = (copied << 1) + 16 * tp->advmss;
 582
 583                /* If rate increased by 25%,
 584                 *      assume slow start, rcvwin = 3 * copied
 585                 * If rate increased by 50%,
 586                 *      assume sender can use 2x growth, rcvwin = 4 * copied
 587                 */
 588                if (copied >=
 589                    tp->rcvq_space.space + (tp->rcvq_space.space >> 2)) {
 590                        if (copied >=
 591                            tp->rcvq_space.space + (tp->rcvq_space.space >> 1))
 592                                rcvwin <<= 1;
 593                        else
 594                                rcvwin += (rcvwin >> 1);
 595                }
 596
 597                rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER);
 598                while (tcp_win_from_space(rcvmem) < tp->advmss)
 599                        rcvmem += 128;
 600
 601                rcvbuf = min(rcvwin / tp->advmss * rcvmem, sysctl_tcp_rmem[2]);
 602                if (rcvbuf > sk->sk_rcvbuf) {
 603                        sk->sk_rcvbuf = rcvbuf;
 604
 605                        /* Make the window clamp follow along.  */
 606                        tp->window_clamp = rcvwin;
 607                }
 608        }
 609        tp->rcvq_space.space = copied;
 610
 611new_measure:
 612        tp->rcvq_space.seq = tp->copied_seq;
 613        tp->rcvq_space.time = tcp_time_stamp;
 614}
 615
 616/* There is something which you must keep in mind when you analyze the
 617 * behavior of the tp->ato delayed ack timeout interval.  When a
 618 * connection starts up, we want to ack as quickly as possible.  The
 619 * problem is that "good" TCP's do slow start at the beginning of data
 620 * transmission.  The means that until we send the first few ACK's the
 621 * sender will sit on his end and only queue most of his data, because
 622 * he can only send snd_cwnd unacked packets at any given time.  For
 623 * each ACK we send, he increments snd_cwnd and transmits more of his
 624 * queue.  -DaveM
 625 */
 626static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
 627{
 628        struct tcp_sock *tp = tcp_sk(sk);
 629        struct inet_connection_sock *icsk = inet_csk(sk);
 630        u32 now;
 631
 632        inet_csk_schedule_ack(sk);
 633
 634        tcp_measure_rcv_mss(sk, skb);
 635
 636        tcp_rcv_rtt_measure(tp);
 637
 638        now = tcp_time_stamp;
 639
 640        if (!icsk->icsk_ack.ato) {
 641                /* The _first_ data packet received, initialize
 642                 * delayed ACK engine.
 643                 */
 644                tcp_incr_quickack(sk);
 645                icsk->icsk_ack.ato = TCP_ATO_MIN;
 646        } else {
 647                int m = now - icsk->icsk_ack.lrcvtime;
 648
 649                if (m <= TCP_ATO_MIN / 2) {
 650                        /* The fastest case is the first. */
 651                        icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
 652                } else if (m < icsk->icsk_ack.ato) {
 653                        icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
 654                        if (icsk->icsk_ack.ato > icsk->icsk_rto)
 655                                icsk->icsk_ack.ato = icsk->icsk_rto;
 656                } else if (m > icsk->icsk_rto) {
 657                        /* Too long gap. Apparently sender failed to
 658                         * restart window, so that we send ACKs quickly.
 659                         */
 660                        tcp_incr_quickack(sk);
 661                        sk_mem_reclaim(sk);
 662                }
 663        }
 664        icsk->icsk_ack.lrcvtime = now;
 665
 666        tcp_ecn_check_ce(tp, skb);
 667
 668        if (skb->len >= 128)
 669                tcp_grow_window(sk, skb);
 670}
 671
 672/* Called to compute a smoothed rtt estimate. The data fed to this
 673 * routine either comes from timestamps, or from segments that were
 674 * known _not_ to have been retransmitted [see Karn/Partridge
 675 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
 676 * piece by Van Jacobson.
 677 * NOTE: the next three routines used to be one big routine.
 678 * To save cycles in the RFC 1323 implementation it was better to break
 679 * it up into three procedures. -- erics
 680 */
 681static void tcp_rtt_estimator(struct sock *sk, long mrtt_us)
 682{
 683        struct tcp_sock *tp = tcp_sk(sk);
 684        long m = mrtt_us; /* RTT */
 685        u32 srtt = tp->srtt_us;
 686
 687        /*      The following amusing code comes from Jacobson's
 688         *      article in SIGCOMM '88.  Note that rtt and mdev
 689         *      are scaled versions of rtt and mean deviation.
 690         *      This is designed to be as fast as possible
 691         *      m stands for "measurement".
 692         *
 693         *      On a 1990 paper the rto value is changed to:
 694         *      RTO = rtt + 4 * mdev
 695         *
 696         * Funny. This algorithm seems to be very broken.
 697         * These formulae increase RTO, when it should be decreased, increase
 698         * too slowly, when it should be increased quickly, decrease too quickly
 699         * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
 700         * does not matter how to _calculate_ it. Seems, it was trap
 701         * that VJ failed to avoid. 8)
 702         */
 703        if (srtt != 0) {
 704                m -= (srtt >> 3);       /* m is now error in rtt est */
 705                srtt += m;              /* rtt = 7/8 rtt + 1/8 new */
 706                if (m < 0) {
 707                        m = -m;         /* m is now abs(error) */
 708                        m -= (tp->mdev_us >> 2);   /* similar update on mdev */
 709                        /* This is similar to one of Eifel findings.
 710                         * Eifel blocks mdev updates when rtt decreases.
 711                         * This solution is a bit different: we use finer gain
 712                         * for mdev in this case (alpha*beta).
 713                         * Like Eifel it also prevents growth of rto,
 714                         * but also it limits too fast rto decreases,
 715                         * happening in pure Eifel.
 716                         */
 717                        if (m > 0)
 718                                m >>= 3;
 719                } else {
 720                        m -= (tp->mdev_us >> 2);   /* similar update on mdev */
 721                }
 722                tp->mdev_us += m;               /* mdev = 3/4 mdev + 1/4 new */
 723                if (tp->mdev_us > tp->mdev_max_us) {
 724                        tp->mdev_max_us = tp->mdev_us;
 725                        if (tp->mdev_max_us > tp->rttvar_us)
 726                                tp->rttvar_us = tp->mdev_max_us;
 727                }
 728                if (after(tp->snd_una, tp->rtt_seq)) {
 729                        if (tp->mdev_max_us < tp->rttvar_us)
 730                                tp->rttvar_us -= (tp->rttvar_us - tp->mdev_max_us) >> 2;
 731                        tp->rtt_seq = tp->snd_nxt;
 732                        tp->mdev_max_us = tcp_rto_min_us(sk);
 733                }
 734        } else {
 735                /* no previous measure. */
 736                srtt = m << 3;          /* take the measured time to be rtt */
 737                tp->mdev_us = m << 1;   /* make sure rto = 3*rtt */
 738                tp->rttvar_us = max(tp->mdev_us, tcp_rto_min_us(sk));
 739                tp->mdev_max_us = tp->rttvar_us;
 740                tp->rtt_seq = tp->snd_nxt;
 741        }
 742        tp->srtt_us = max(1U, srtt);
 743}
 744
 745/* Set the sk_pacing_rate to allow proper sizing of TSO packets.
 746 * Note: TCP stack does not yet implement pacing.
 747 * FQ packet scheduler can be used to implement cheap but effective
 748 * TCP pacing, to smooth the burst on large writes when packets
 749 * in flight is significantly lower than cwnd (or rwin)
 750 */
 751static void tcp_update_pacing_rate(struct sock *sk)
 752{
 753        const struct tcp_sock *tp = tcp_sk(sk);
 754        u64 rate;
 755
 756        /* set sk_pacing_rate to 200 % of current rate (mss * cwnd / srtt) */
 757        rate = (u64)tp->mss_cache * 2 * (USEC_PER_SEC << 3);
 758
 759        rate *= max(tp->snd_cwnd, tp->packets_out);
 760
 761        if (likely(tp->srtt_us))
 762                do_div(rate, tp->srtt_us);
 763
 764        /* ACCESS_ONCE() is needed because sch_fq fetches sk_pacing_rate
 765         * without any lock. We want to make sure compiler wont store
 766         * intermediate values in this location.
 767         */
 768        ACCESS_ONCE(sk->sk_pacing_rate) = min_t(u64, rate,
 769                                                sk->sk_max_pacing_rate);
 770}
 771
 772/* Calculate rto without backoff.  This is the second half of Van Jacobson's
 773 * routine referred to above.
 774 */
 775static void tcp_set_rto(struct sock *sk)
 776{
 777        const struct tcp_sock *tp = tcp_sk(sk);
 778        /* Old crap is replaced with new one. 8)
 779         *
 780         * More seriously:
 781         * 1. If rtt variance happened to be less 50msec, it is hallucination.
 782         *    It cannot be less due to utterly erratic ACK generation made
 783         *    at least by solaris and freebsd. "Erratic ACKs" has _nothing_
 784         *    to do with delayed acks, because at cwnd>2 true delack timeout
 785         *    is invisible. Actually, Linux-2.4 also generates erratic
 786         *    ACKs in some circumstances.
 787         */
 788        inet_csk(sk)->icsk_rto = __tcp_set_rto(tp);
 789
 790        /* 2. Fixups made earlier cannot be right.
 791         *    If we do not estimate RTO correctly without them,
 792         *    all the algo is pure shit and should be replaced
 793         *    with correct one. It is exactly, which we pretend to do.
 794         */
 795
 796        /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
 797         * guarantees that rto is higher.
 798         */
 799        tcp_bound_rto(sk);
 800}
 801
 802__u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst)
 803{
 804        __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
 805
 806        if (!cwnd)
 807                cwnd = TCP_INIT_CWND;
 808        return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
 809}
 810
 811/*
 812 * Packet counting of FACK is based on in-order assumptions, therefore TCP
 813 * disables it when reordering is detected
 814 */
 815void tcp_disable_fack(struct tcp_sock *tp)
 816{
 817        /* RFC3517 uses different metric in lost marker => reset on change */
 818        if (tcp_is_fack(tp))
 819                tp->lost_skb_hint = NULL;
 820        tp->rx_opt.sack_ok &= ~TCP_FACK_ENABLED;
 821}
 822
 823/* Take a notice that peer is sending D-SACKs */
 824static void tcp_dsack_seen(struct tcp_sock *tp)
 825{
 826        tp->rx_opt.sack_ok |= TCP_DSACK_SEEN;
 827}
 828
 829static void tcp_update_reordering(struct sock *sk, const int metric,
 830                                  const int ts)
 831{
 832        struct tcp_sock *tp = tcp_sk(sk);
 833        if (metric > tp->reordering) {
 834                int mib_idx;
 835
 836                tp->reordering = min(TCP_MAX_REORDERING, metric);
 837
 838                /* This exciting event is worth to be remembered. 8) */
 839                if (ts)
 840                        mib_idx = LINUX_MIB_TCPTSREORDER;
 841                else if (tcp_is_reno(tp))
 842                        mib_idx = LINUX_MIB_TCPRENOREORDER;
 843                else if (tcp_is_fack(tp))
 844                        mib_idx = LINUX_MIB_TCPFACKREORDER;
 845                else
 846                        mib_idx = LINUX_MIB_TCPSACKREORDER;
 847
 848                NET_INC_STATS_BH(sock_net(sk), mib_idx);
 849#if FASTRETRANS_DEBUG > 1
 850                pr_debug("Disorder%d %d %u f%u s%u rr%d\n",
 851                         tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
 852                         tp->reordering,
 853                         tp->fackets_out,
 854                         tp->sacked_out,
 855                         tp->undo_marker ? tp->undo_retrans : 0);
 856#endif
 857                tcp_disable_fack(tp);
 858        }
 859
 860        if (metric > 0)
 861                tcp_disable_early_retrans(tp);
 862}
 863
 864/* This must be called before lost_out is incremented */
 865static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
 866{
 867        if ((tp->retransmit_skb_hint == NULL) ||
 868            before(TCP_SKB_CB(skb)->seq,
 869                   TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
 870                tp->retransmit_skb_hint = skb;
 871
 872        if (!tp->lost_out ||
 873            after(TCP_SKB_CB(skb)->end_seq, tp->retransmit_high))
 874                tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
 875}
 876
 877static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb)
 878{
 879        if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
 880                tcp_verify_retransmit_hint(tp, skb);
 881
 882                tp->lost_out += tcp_skb_pcount(skb);
 883                TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
 884        }
 885}
 886
 887static void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp,
 888                                            struct sk_buff *skb)
 889{
 890        tcp_verify_retransmit_hint(tp, skb);
 891
 892        if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
 893                tp->lost_out += tcp_skb_pcount(skb);
 894                TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
 895        }
 896}
 897
 898/* This procedure tags the retransmission queue when SACKs arrive.
 899 *
 900 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
 901 * Packets in queue with these bits set are counted in variables
 902 * sacked_out, retrans_out and lost_out, correspondingly.
 903 *
 904 * Valid combinations are:
 905 * Tag  InFlight        Description
 906 * 0    1               - orig segment is in flight.
 907 * S    0               - nothing flies, orig reached receiver.
 908 * L    0               - nothing flies, orig lost by net.
 909 * R    2               - both orig and retransmit are in flight.
 910 * L|R  1               - orig is lost, retransmit is in flight.
 911 * S|R  1               - orig reached receiver, retrans is still in flight.
 912 * (L|S|R is logically valid, it could occur when L|R is sacked,
 913 *  but it is equivalent to plain S and code short-curcuits it to S.
 914 *  L|S is logically invalid, it would mean -1 packet in flight 8))
 915 *
 916 * These 6 states form finite state machine, controlled by the following events:
 917 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
 918 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
 919 * 3. Loss detection event of two flavors:
 920 *      A. Scoreboard estimator decided the packet is lost.
 921 *         A'. Reno "three dupacks" marks head of queue lost.
 922 *         A''. Its FACK modification, head until snd.fack is lost.
 923 *      B. SACK arrives sacking SND.NXT at the moment, when the
 924 *         segment was retransmitted.
 925 * 4. D-SACK added new rule: D-SACK changes any tag to S.
 926 *
 927 * It is pleasant to note, that state diagram turns out to be commutative,
 928 * so that we are allowed not to be bothered by order of our actions,
 929 * when multiple events arrive simultaneously. (see the function below).
 930 *
 931 * Reordering detection.
 932 * --------------------
 933 * Reordering metric is maximal distance, which a packet can be displaced
 934 * in packet stream. With SACKs we can estimate it:
 935 *
 936 * 1. SACK fills old hole and the corresponding segment was not
 937 *    ever retransmitted -> reordering. Alas, we cannot use it
 938 *    when segment was retransmitted.
 939 * 2. The last flaw is solved with D-SACK. D-SACK arrives
 940 *    for retransmitted and already SACKed segment -> reordering..
 941 * Both of these heuristics are not used in Loss state, when we cannot
 942 * account for retransmits accurately.
 943 *
 944 * SACK block validation.
 945 * ----------------------
 946 *
 947 * SACK block range validation checks that the received SACK block fits to
 948 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
 949 * Note that SND.UNA is not included to the range though being valid because
 950 * it means that the receiver is rather inconsistent with itself reporting
 951 * SACK reneging when it should advance SND.UNA. Such SACK block this is
 952 * perfectly valid, however, in light of RFC2018 which explicitly states
 953 * that "SACK block MUST reflect the newest segment.  Even if the newest
 954 * segment is going to be discarded ...", not that it looks very clever
 955 * in case of head skb. Due to potentional receiver driven attacks, we
 956 * choose to avoid immediate execution of a walk in write queue due to
 957 * reneging and defer head skb's loss recovery to standard loss recovery
 958 * procedure that will eventually trigger (nothing forbids us doing this).
 959 *
 960 * Implements also blockage to start_seq wrap-around. Problem lies in the
 961 * fact that though start_seq (s) is before end_seq (i.e., not reversed),
 962 * there's no guarantee that it will be before snd_nxt (n). The problem
 963 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
 964 * wrap (s_w):
 965 *
 966 *         <- outs wnd ->                          <- wrapzone ->
 967 *         u     e      n                         u_w   e_w  s n_w
 968 *         |     |      |                          |     |   |  |
 969 * |<------------+------+----- TCP seqno space --------------+---------->|
 970 * ...-- <2^31 ->|                                           |<--------...
 971 * ...---- >2^31 ------>|                                    |<--------...
 972 *
 973 * Current code wouldn't be vulnerable but it's better still to discard such
 974 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
 975 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
 976 * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
 977 * equal to the ideal case (infinite seqno space without wrap caused issues).
 978 *
 979 * With D-SACK the lower bound is extended to cover sequence space below
 980 * SND.UNA down to undo_marker, which is the last point of interest. Yet
 981 * again, D-SACK block must not to go across snd_una (for the same reason as
 982 * for the normal SACK blocks, explained above). But there all simplicity
 983 * ends, TCP might receive valid D-SACKs below that. As long as they reside
 984 * fully below undo_marker they do not affect behavior in anyway and can
 985 * therefore be safely ignored. In rare cases (which are more or less
 986 * theoretical ones), the D-SACK will nicely cross that boundary due to skb
 987 * fragmentation and packet reordering past skb's retransmission. To consider
 988 * them correctly, the acceptable range must be extended even more though
 989 * the exact amount is rather hard to quantify. However, tp->max_window can
 990 * be used as an exaggerated estimate.
 991 */
 992static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack,
 993                                   u32 start_seq, u32 end_seq)
 994{
 995        /* Too far in future, or reversed (interpretation is ambiguous) */
 996        if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
 997                return false;
 998
 999        /* Nasty start_seq wrap-around check (see comments above) */
1000        if (!before(start_seq, tp->snd_nxt))
1001                return false;
1002
1003        /* In outstanding window? ...This is valid exit for D-SACKs too.
1004         * start_seq == snd_una is non-sensical (see comments above)
1005         */
1006        if (after(start_seq, tp->snd_una))
1007                return true;
1008
1009        if (!is_dsack || !tp->undo_marker)
1010                return false;
1011
1012        /* ...Then it's D-SACK, and must reside below snd_una completely */
1013        if (after(end_seq, tp->snd_una))
1014                return false;
1015
1016        if (!before(start_seq, tp->undo_marker))
1017                return true;
1018
1019        /* Too old */
1020        if (!after(end_seq, tp->undo_marker))
1021                return false;
1022
1023        /* Undo_marker boundary crossing (overestimates a lot). Known already:
1024         *   start_seq < undo_marker and end_seq >= undo_marker.
1025         */
1026        return !before(start_seq, end_seq - tp->max_window);
1027}
1028
1029/* Check for lost retransmit. This superb idea is borrowed from "ratehalving".
1030 * Event "B". Later note: FACK people cheated me again 8), we have to account
1031 * for reordering! Ugly, but should help.
1032 *
1033 * Search retransmitted skbs from write_queue that were sent when snd_nxt was
1034 * less than what is now known to be received by the other end (derived from
1035 * highest SACK block). Also calculate the lowest snd_nxt among the remaining
1036 * retransmitted skbs to avoid some costly processing per ACKs.
1037 */
1038static void tcp_mark_lost_retrans(struct sock *sk)
1039{
1040        const struct inet_connection_sock *icsk = inet_csk(sk);
1041        struct tcp_sock *tp = tcp_sk(sk);
1042        struct sk_buff *skb;
1043        int cnt = 0;
1044        u32 new_low_seq = tp->snd_nxt;
1045        u32 received_upto = tcp_highest_sack_seq(tp);
1046
1047        if (!tcp_is_fack(tp) || !tp->retrans_out ||
1048            !after(received_upto, tp->lost_retrans_low) ||
1049            icsk->icsk_ca_state != TCP_CA_Recovery)
1050                return;
1051
1052        tcp_for_write_queue(skb, sk) {
1053                u32 ack_seq = TCP_SKB_CB(skb)->ack_seq;
1054
1055                if (skb == tcp_send_head(sk))
1056                        break;
1057                if (cnt == tp->retrans_out)
1058                        break;
1059                if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1060                        continue;
1061
1062                if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS))
1063                        continue;
1064
1065                /* TODO: We would like to get rid of tcp_is_fack(tp) only
1066                 * constraint here (see above) but figuring out that at
1067                 * least tp->reordering SACK blocks reside between ack_seq
1068                 * and received_upto is not easy task to do cheaply with
1069                 * the available datastructures.
1070                 *
1071                 * Whether FACK should check here for tp->reordering segs
1072                 * in-between one could argue for either way (it would be
1073                 * rather simple to implement as we could count fack_count
1074                 * during the walk and do tp->fackets_out - fack_count).
1075                 */
1076                if (after(received_upto, ack_seq)) {
1077                        TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1078                        tp->retrans_out -= tcp_skb_pcount(skb);
1079
1080                        tcp_skb_mark_lost_uncond_verify(tp, skb);
1081                        NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSTRETRANSMIT);
1082                } else {
1083                        if (before(ack_seq, new_low_seq))
1084                                new_low_seq = ack_seq;
1085                        cnt += tcp_skb_pcount(skb);
1086                }
1087        }
1088
1089        if (tp->retrans_out)
1090                tp->lost_retrans_low = new_low_seq;
1091}
1092
1093static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb,
1094                            struct tcp_sack_block_wire *sp, int num_sacks,
1095                            u32 prior_snd_una)
1096{
1097        struct tcp_sock *tp = tcp_sk(sk);
1098        u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
1099        u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
1100        bool dup_sack = false;
1101
1102        if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
1103                dup_sack = true;
1104                tcp_dsack_seen(tp);
1105                NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
1106        } else if (num_sacks > 1) {
1107                u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
1108                u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
1109
1110                if (!after(end_seq_0, end_seq_1) &&
1111                    !before(start_seq_0, start_seq_1)) {
1112                        dup_sack = true;
1113                        tcp_dsack_seen(tp);
1114                        NET_INC_STATS_BH(sock_net(sk),
1115                                        LINUX_MIB_TCPDSACKOFORECV);
1116                }
1117        }
1118
1119        /* D-SACK for already forgotten data... Do dumb counting. */
1120        if (dup_sack && tp->undo_marker && tp->undo_retrans > 0 &&
1121            !after(end_seq_0, prior_snd_una) &&
1122            after(end_seq_0, tp->undo_marker))
1123                tp->undo_retrans--;
1124
1125        return dup_sack;
1126}
1127
1128struct tcp_sacktag_state {
1129        int     reord;
1130        int     fack_count;
1131        long    rtt_us; /* RTT measured by SACKing never-retransmitted data */
1132        int     flag;
1133};
1134
1135/* Check if skb is fully within the SACK block. In presence of GSO skbs,
1136 * the incoming SACK may not exactly match but we can find smaller MSS
1137 * aligned portion of it that matches. Therefore we might need to fragment
1138 * which may fail and creates some hassle (caller must handle error case
1139 * returns).
1140 *
1141 * FIXME: this could be merged to shift decision code
1142 */
1143static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
1144                                  u32 start_seq, u32 end_seq)
1145{
1146        int err;
1147        bool in_sack;
1148        unsigned int pkt_len;
1149        unsigned int mss;
1150
1151        in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1152                  !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1153
1154        if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1155            after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1156                mss = tcp_skb_mss(skb);
1157                in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1158
1159                if (!in_sack) {
1160                        pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
1161                        if (pkt_len < mss)
1162                                pkt_len = mss;
1163                } else {
1164                        pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
1165                        if (pkt_len < mss)
1166                                return -EINVAL;
1167                }
1168
1169                /* Round if necessary so that SACKs cover only full MSSes
1170                 * and/or the remaining small portion (if present)
1171                 */
1172                if (pkt_len > mss) {
1173                        unsigned int new_len = (pkt_len / mss) * mss;
1174                        if (!in_sack && new_len < pkt_len) {
1175                                new_len += mss;
1176                                if (new_len >= skb->len)
1177                                        return 0;
1178                        }
1179                        pkt_len = new_len;
1180                }
1181                err = tcp_fragment(sk, skb, pkt_len, mss, GFP_ATOMIC);
1182                if (err < 0)
1183                        return err;
1184        }
1185
1186        return in_sack;
1187}
1188
1189/* Mark the given newly-SACKed range as such, adjusting counters and hints. */
1190static u8 tcp_sacktag_one(struct sock *sk,
1191                          struct tcp_sacktag_state *state, u8 sacked,
1192                          u32 start_seq, u32 end_seq,
1193                          int dup_sack, int pcount,
1194                          const struct skb_mstamp *xmit_time)
1195{
1196        struct tcp_sock *tp = tcp_sk(sk);
1197        int fack_count = state->fack_count;
1198
1199        /* Account D-SACK for retransmitted packet. */
1200        if (dup_sack && (sacked & TCPCB_RETRANS)) {
1201                if (tp->undo_marker && tp->undo_retrans > 0 &&
1202                    after(end_seq, tp->undo_marker))
1203                        tp->undo_retrans--;
1204                if (sacked & TCPCB_SACKED_ACKED)
1205                        state->reord = min(fack_count, state->reord);
1206        }
1207
1208        /* Nothing to do; acked frame is about to be dropped (was ACKed). */
1209        if (!after(end_seq, tp->snd_una))
1210                return sacked;
1211
1212        if (!(sacked & TCPCB_SACKED_ACKED)) {
1213                if (sacked & TCPCB_SACKED_RETRANS) {
1214                        /* If the segment is not tagged as lost,
1215                         * we do not clear RETRANS, believing
1216                         * that retransmission is still in flight.
1217                         */
1218                        if (sacked & TCPCB_LOST) {
1219                                sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1220                                tp->lost_out -= pcount;
1221                                tp->retrans_out -= pcount;
1222                        }
1223                } else {
1224                        if (!(sacked & TCPCB_RETRANS)) {
1225                                /* New sack for not retransmitted frame,
1226                                 * which was in hole. It is reordering.
1227                                 */
1228                                if (before(start_seq,
1229                                           tcp_highest_sack_seq(tp)))
1230                                        state->reord = min(fack_count,
1231                                                           state->reord);
1232                                if (!after(end_seq, tp->high_seq))
1233                                        state->flag |= FLAG_ORIG_SACK_ACKED;
1234                                /* Pick the earliest sequence sacked for RTT */
1235                                if (state->rtt_us < 0) {
1236                                        struct skb_mstamp now;
1237
1238                                        skb_mstamp_get(&now);
1239                                        state->rtt_us = skb_mstamp_us_delta(&now,
1240                                                                xmit_time);
1241                                }
1242                        }
1243
1244                        if (sacked & TCPCB_LOST) {
1245                                sacked &= ~TCPCB_LOST;
1246                                tp->lost_out -= pcount;
1247                        }
1248                }
1249
1250                sacked |= TCPCB_SACKED_ACKED;
1251                state->flag |= FLAG_DATA_SACKED;
1252                tp->sacked_out += pcount;
1253
1254                fack_count += pcount;
1255
1256                /* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1257                if (!tcp_is_fack(tp) && (tp->lost_skb_hint != NULL) &&
1258                    before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq))
1259                        tp->lost_cnt_hint += pcount;
1260
1261                if (fack_count > tp->fackets_out)
1262                        tp->fackets_out = fack_count;
1263        }
1264
1265        /* D-SACK. We can detect redundant retransmission in S|R and plain R
1266         * frames and clear it. undo_retrans is decreased above, L|R frames
1267         * are accounted above as well.
1268         */
1269        if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
1270                sacked &= ~TCPCB_SACKED_RETRANS;
1271                tp->retrans_out -= pcount;
1272        }
1273
1274        return sacked;
1275}
1276
1277/* Shift newly-SACKed bytes from this skb to the immediately previous
1278 * already-SACKed sk_buff. Mark the newly-SACKed bytes as such.
1279 */
1280static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *skb,
1281                            struct tcp_sacktag_state *state,
1282                            unsigned int pcount, int shifted, int mss,
1283                            bool dup_sack)
1284{
1285        struct tcp_sock *tp = tcp_sk(sk);
1286        struct sk_buff *prev = tcp_write_queue_prev(sk, skb);
1287        u32 start_seq = TCP_SKB_CB(skb)->seq;   /* start of newly-SACKed */
1288        u32 end_seq = start_seq + shifted;      /* end of newly-SACKed */
1289
1290        BUG_ON(!pcount);
1291
1292        /* Adjust counters and hints for the newly sacked sequence
1293         * range but discard the return value since prev is already
1294         * marked. We must tag the range first because the seq
1295         * advancement below implicitly advances
1296         * tcp_highest_sack_seq() when skb is highest_sack.
1297         */
1298        tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked,
1299                        start_seq, end_seq, dup_sack, pcount,
1300                        &skb->skb_mstamp);
1301
1302        if (skb == tp->lost_skb_hint)
1303                tp->lost_cnt_hint += pcount;
1304
1305        TCP_SKB_CB(prev)->end_seq += shifted;
1306        TCP_SKB_CB(skb)->seq += shifted;
1307
1308        tcp_skb_pcount_add(prev, pcount);
1309        BUG_ON(tcp_skb_pcount(skb) < pcount);
1310        tcp_skb_pcount_add(skb, -pcount);
1311
1312        /* When we're adding to gso_segs == 1, gso_size will be zero,
1313         * in theory this shouldn't be necessary but as long as DSACK
1314         * code can come after this skb later on it's better to keep
1315         * setting gso_size to something.
1316         */
1317        if (!skb_shinfo(prev)->gso_size) {
1318                skb_shinfo(prev)->gso_size = mss;
1319                skb_shinfo(prev)->gso_type = sk->sk_gso_type;
1320        }
1321
1322        /* CHECKME: To clear or not to clear? Mimics normal skb currently */
1323        if (tcp_skb_pcount(skb) <= 1) {
1324                skb_shinfo(skb)->gso_size = 0;
1325                skb_shinfo(skb)->gso_type = 0;
1326        }
1327
1328        /* Difference in this won't matter, both ACKed by the same cumul. ACK */
1329        TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
1330
1331        if (skb->len > 0) {
1332                BUG_ON(!tcp_skb_pcount(skb));
1333                NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTED);
1334                return false;
1335        }
1336
1337        /* Whole SKB was eaten :-) */
1338
1339        if (skb == tp->retransmit_skb_hint)
1340                tp->retransmit_skb_hint = prev;
1341        if (skb == tp->lost_skb_hint) {
1342                tp->lost_skb_hint = prev;
1343                tp->lost_cnt_hint -= tcp_skb_pcount(prev);
1344        }
1345
1346        TCP_SKB_CB(prev)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
1347        if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1348                TCP_SKB_CB(prev)->end_seq++;
1349
1350        if (skb == tcp_highest_sack(sk))
1351                tcp_advance_highest_sack(sk, skb);
1352
1353        tcp_unlink_write_queue(skb, sk);
1354        sk_wmem_free_skb(sk, skb);
1355
1356        NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKMERGED);
1357
1358        return true;
1359}
1360
1361/* I wish gso_size would have a bit more sane initialization than
1362 * something-or-zero which complicates things
1363 */
1364static int tcp_skb_seglen(const struct sk_buff *skb)
1365{
1366        return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
1367}
1368
1369/* Shifting pages past head area doesn't work */
1370static int skb_can_shift(const struct sk_buff *skb)
1371{
1372        return !skb_headlen(skb) && skb_is_nonlinear(skb);
1373}
1374
1375/* Try collapsing SACK blocks spanning across multiple skbs to a single
1376 * skb.
1377 */
1378static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
1379                                          struct tcp_sacktag_state *state,
1380                                          u32 start_seq, u32 end_seq,
1381                                          bool dup_sack)
1382{
1383        struct tcp_sock *tp = tcp_sk(sk);
1384        struct sk_buff *prev;
1385        int mss;
1386        int pcount = 0;
1387        int len;
1388        int in_sack;
1389
1390        if (!sk_can_gso(sk))
1391                goto fallback;
1392
1393        /* Normally R but no L won't result in plain S */
1394        if (!dup_sack &&
1395            (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
1396                goto fallback;
1397        if (!skb_can_shift(skb))
1398                goto fallback;
1399        /* This frame is about to be dropped (was ACKed). */
1400        if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1401                goto fallback;
1402
1403        /* Can only happen with delayed DSACK + discard craziness */
1404        if (unlikely(skb == tcp_write_queue_head(sk)))
1405                goto fallback;
1406        prev = tcp_write_queue_prev(sk, skb);
1407
1408        if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
1409                goto fallback;
1410
1411        in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1412                  !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1413
1414        if (in_sack) {
1415                len = skb->len;
1416                pcount = tcp_skb_pcount(skb);
1417                mss = tcp_skb_seglen(skb);
1418
1419                /* TODO: Fix DSACKs to not fragment already SACKed and we can
1420                 * drop this restriction as unnecessary
1421                 */
1422                if (mss != tcp_skb_seglen(prev))
1423                        goto fallback;
1424        } else {
1425                if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
1426                        goto noop;
1427                /* CHECKME: This is non-MSS split case only?, this will
1428                 * cause skipped skbs due to advancing loop btw, original
1429                 * has that feature too
1430                 */
1431                if (tcp_skb_pcount(skb) <= 1)
1432                        goto noop;
1433
1434                in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1435                if (!in_sack) {
1436                        /* TODO: head merge to next could be attempted here
1437                         * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1438                         * though it might not be worth of the additional hassle
1439                         *
1440                         * ...we can probably just fallback to what was done
1441                         * previously. We could try merging non-SACKed ones
1442                         * as well but it probably isn't going to buy off
1443                         * because later SACKs might again split them, and
1444                         * it would make skb timestamp tracking considerably
1445                         * harder problem.
1446                         */
1447                        goto fallback;
1448                }
1449
1450                len = end_seq - TCP_SKB_CB(skb)->seq;
1451                BUG_ON(len < 0);
1452                BUG_ON(len > skb->len);
1453
1454                /* MSS boundaries should be honoured or else pcount will
1455                 * severely break even though it makes things bit trickier.
1456                 * Optimize common case to avoid most of the divides
1457                 */
1458                mss = tcp_skb_mss(skb);
1459
1460                /* TODO: Fix DSACKs to not fragment already SACKed and we can
1461                 * drop this restriction as unnecessary
1462                 */
1463                if (mss != tcp_skb_seglen(prev))
1464                        goto fallback;
1465
1466                if (len == mss) {
1467                        pcount = 1;
1468                } else if (len < mss) {
1469                        goto noop;
1470                } else {
1471                        pcount = len / mss;
1472                        len = pcount * mss;
1473                }
1474        }
1475
1476        /* tcp_sacktag_one() won't SACK-tag ranges below snd_una */
1477        if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una))
1478                goto fallback;
1479
1480        if (!skb_shift(prev, skb, len))
1481                goto fallback;
1482        if (!tcp_shifted_skb(sk, skb, state, pcount, len, mss, dup_sack))
1483                goto out;
1484
1485        /* Hole filled allows collapsing with the next as well, this is very
1486         * useful when hole on every nth skb pattern happens
1487         */
1488        if (prev == tcp_write_queue_tail(sk))
1489                goto out;
1490        skb = tcp_write_queue_next(sk, prev);
1491
1492        if (!skb_can_shift(skb) ||
1493            (skb == tcp_send_head(sk)) ||
1494            ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
1495            (mss != tcp_skb_seglen(skb)))
1496                goto out;
1497
1498        len = skb->len;
1499        if (skb_shift(prev, skb, len)) {
1500                pcount += tcp_skb_pcount(skb);
1501                tcp_shifted_skb(sk, skb, state, tcp_skb_pcount(skb), len, mss, 0);
1502        }
1503
1504out:
1505        state->fack_count += pcount;
1506        return prev;
1507
1508noop:
1509        return skb;
1510
1511fallback:
1512        NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
1513        return NULL;
1514}
1515
1516static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1517                                        struct tcp_sack_block *next_dup,
1518                                        struct tcp_sacktag_state *state,
1519                                        u32 start_seq, u32 end_seq,
1520                                        bool dup_sack_in)
1521{
1522        struct tcp_sock *tp = tcp_sk(sk);
1523        struct sk_buff *tmp;
1524
1525        tcp_for_write_queue_from(skb, sk) {
1526                int in_sack = 0;
1527                bool dup_sack = dup_sack_in;
1528
1529                if (skb == tcp_send_head(sk))
1530                        break;
1531
1532                /* queue is in-order => we can short-circuit the walk early */
1533                if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1534                        break;
1535
1536                if ((next_dup != NULL) &&
1537                    before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1538                        in_sack = tcp_match_skb_to_sack(sk, skb,
1539                                                        next_dup->start_seq,
1540                                                        next_dup->end_seq);
1541                        if (in_sack > 0)
1542                                dup_sack = true;
1543                }
1544
1545                /* skb reference here is a bit tricky to get right, since
1546                 * shifting can eat and free both this skb and the next,
1547                 * so not even _safe variant of the loop is enough.
1548                 */
1549                if (in_sack <= 0) {
1550                        tmp = tcp_shift_skb_data(sk, skb, state,
1551                                                 start_seq, end_seq, dup_sack);
1552                        if (tmp != NULL) {
1553                                if (tmp != skb) {
1554                                        skb = tmp;
1555                                        continue;
1556                                }
1557
1558                                in_sack = 0;
1559                        } else {
1560                                in_sack = tcp_match_skb_to_sack(sk, skb,
1561                                                                start_seq,
1562                                                                end_seq);
1563                        }
1564                }
1565
1566                if (unlikely(in_sack < 0))
1567                        break;
1568
1569                if (in_sack) {
1570                        TCP_SKB_CB(skb)->sacked =
1571                                tcp_sacktag_one(sk,
1572                                                state,
1573                                                TCP_SKB_CB(skb)->sacked,
1574                                                TCP_SKB_CB(skb)->seq,
1575                                                TCP_SKB_CB(skb)->end_seq,
1576                                                dup_sack,
1577                                                tcp_skb_pcount(skb),
1578                                                &skb->skb_mstamp);
1579
1580                        if (!before(TCP_SKB_CB(skb)->seq,
1581                                    tcp_highest_sack_seq(tp)))
1582                                tcp_advance_highest_sack(sk, skb);
1583                }
1584
1585                state->fack_count += tcp_skb_pcount(skb);
1586        }
1587        return skb;
1588}
1589
1590/* Avoid all extra work that is being done by sacktag while walking in
1591 * a normal way
1592 */
1593static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
1594                                        struct tcp_sacktag_state *state,
1595                                        u32 skip_to_seq)
1596{
1597        tcp_for_write_queue_from(skb, sk) {
1598                if (skb == tcp_send_head(sk))
1599                        break;
1600
1601                if (after(TCP_SKB_CB(skb)->end_seq, skip_to_seq))
1602                        break;
1603
1604                state->fack_count += tcp_skb_pcount(skb);
1605        }
1606        return skb;
1607}
1608
1609static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1610                                                struct sock *sk,
1611                                                struct tcp_sack_block *next_dup,
1612                                                struct tcp_sacktag_state *state,
1613                                                u32 skip_to_seq)
1614{
1615        if (next_dup == NULL)
1616                return skb;
1617
1618        if (before(next_dup->start_seq, skip_to_seq)) {
1619                skb = tcp_sacktag_skip(skb, sk, state, next_dup->start_seq);
1620                skb = tcp_sacktag_walk(skb, sk, NULL, state,
1621                                       next_dup->start_seq, next_dup->end_seq,
1622                                       1);
1623        }
1624
1625        return skb;
1626}
1627
1628static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache)
1629{
1630        return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1631}
1632
1633static int
1634tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb,
1635                        u32 prior_snd_una, long *sack_rtt_us)
1636{
1637        struct tcp_sock *tp = tcp_sk(sk);
1638        const unsigned char *ptr = (skb_transport_header(ack_skb) +
1639                                    TCP_SKB_CB(ack_skb)->sacked);
1640        struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
1641        struct tcp_sack_block sp[TCP_NUM_SACKS];
1642        struct tcp_sack_block *cache;
1643        struct tcp_sacktag_state state;
1644        struct sk_buff *skb;
1645        int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
1646        int used_sacks;
1647        bool found_dup_sack = false;
1648        int i, j;
1649        int first_sack_index;
1650
1651        state.flag = 0;
1652        state.reord = tp->packets_out;
1653        state.rtt_us = -1L;
1654
1655        if (!tp->sacked_out) {
1656                if (WARN_ON(tp->fackets_out))
1657                        tp->fackets_out = 0;
1658                tcp_highest_sack_reset(sk);
1659        }
1660
1661        found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
1662                                         num_sacks, prior_snd_una);
1663        if (found_dup_sack)
1664                state.flag |= FLAG_DSACKING_ACK;
1665
1666        /* Eliminate too old ACKs, but take into
1667         * account more or less fresh ones, they can
1668         * contain valid SACK info.
1669         */
1670        if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1671                return 0;
1672
1673        if (!tp->packets_out)
1674                goto out;
1675
1676        used_sacks = 0;
1677        first_sack_index = 0;
1678        for (i = 0; i < num_sacks; i++) {
1679                bool dup_sack = !i && found_dup_sack;
1680
1681                sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
1682                sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
1683
1684                if (!tcp_is_sackblock_valid(tp, dup_sack,
1685                                            sp[used_sacks].start_seq,
1686                                            sp[used_sacks].end_seq)) {
1687                        int mib_idx;
1688
1689                        if (dup_sack) {
1690                                if (!tp->undo_marker)
1691                                        mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO;
1692                                else
1693                                        mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD;
1694                        } else {
1695                                /* Don't count olds caused by ACK reordering */
1696                                if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
1697                                    !after(sp[used_sacks].end_seq, tp->snd_una))
1698                                        continue;
1699                                mib_idx = LINUX_MIB_TCPSACKDISCARD;
1700                        }
1701
1702                        NET_INC_STATS_BH(sock_net(sk), mib_idx);
1703                        if (i == 0)
1704                                first_sack_index = -1;
1705                        continue;
1706                }
1707
1708                /* Ignore very old stuff early */
1709                if (!after(sp[used_sacks].end_seq, prior_snd_una))
1710                        continue;
1711
1712                used_sacks++;
1713        }
1714
1715        /* order SACK blocks to allow in order walk of the retrans queue */
1716        for (i = used_sacks - 1; i > 0; i--) {
1717                for (j = 0; j < i; j++) {
1718                        if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
1719                                swap(sp[j], sp[j + 1]);
1720
1721                                /* Track where the first SACK block goes to */
1722                                if (j == first_sack_index)
1723                                        first_sack_index = j + 1;
1724                        }
1725                }
1726        }
1727
1728        skb = tcp_write_queue_head(sk);
1729        state.fack_count = 0;
1730        i = 0;
1731
1732        if (!tp->sacked_out) {
1733                /* It's already past, so skip checking against it */
1734                cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1735        } else {
1736                cache = tp->recv_sack_cache;
1737                /* Skip empty blocks in at head of the cache */
1738                while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
1739                       !cache->end_seq)
1740                        cache++;
1741        }
1742
1743        while (i < used_sacks) {
1744                u32 start_seq = sp[i].start_seq;
1745                u32 end_seq = sp[i].end_seq;
1746                bool dup_sack = (found_dup_sack && (i == first_sack_index));
1747                struct tcp_sack_block *next_dup = NULL;
1748
1749                if (found_dup_sack && ((i + 1) == first_sack_index))
1750                        next_dup = &sp[i + 1];
1751
1752                /* Skip too early cached blocks */
1753                while (tcp_sack_cache_ok(tp, cache) &&
1754                       !before(start_seq, cache->end_seq))
1755                        cache++;
1756
1757                /* Can skip some work by looking recv_sack_cache? */
1758                if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
1759                    after(end_seq, cache->start_seq)) {
1760
1761                        /* Head todo? */
1762                        if (before(start_seq, cache->start_seq)) {
1763                                skb = tcp_sacktag_skip(skb, sk, &state,
1764                                                       start_seq);
1765                                skb = tcp_sacktag_walk(skb, sk, next_dup,
1766                                                       &state,
1767                                                       start_seq,
1768                                                       cache->start_seq,
1769                                                       dup_sack);
1770                        }
1771
1772                        /* Rest of the block already fully processed? */
1773                        if (!after(end_seq, cache->end_seq))
1774                                goto advance_sp;
1775
1776                        skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
1777                                                       &state,
1778                                                       cache->end_seq);
1779
1780                        /* ...tail remains todo... */
1781                        if (tcp_highest_sack_seq(tp) == cache->end_seq) {
1782                                /* ...but better entrypoint exists! */
1783                                skb = tcp_highest_sack(sk);
1784                                if (skb == NULL)
1785                                        break;
1786                                state.fack_count = tp->fackets_out;
1787                                cache++;
1788                                goto walk;
1789                        }
1790
1791                        skb = tcp_sacktag_skip(skb, sk, &state, cache->end_seq);
1792                        /* Check overlap against next cached too (past this one already) */
1793                        cache++;
1794                        continue;
1795                }
1796
1797                if (!before(start_seq, tcp_highest_sack_seq(tp))) {
1798                        skb = tcp_highest_sack(sk);
1799                        if (skb == NULL)
1800                                break;
1801                        state.fack_count = tp->fackets_out;
1802                }
1803                skb = tcp_sacktag_skip(skb, sk, &state, start_seq);
1804
1805walk:
1806                skb = tcp_sacktag_walk(skb, sk, next_dup, &state,
1807                                       start_seq, end_seq, dup_sack);
1808
1809advance_sp:
1810                i++;
1811        }
1812
1813        /* Clear the head of the cache sack blocks so we can skip it next time */
1814        for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
1815                tp->recv_sack_cache[i].start_seq = 0;
1816                tp->recv_sack_cache[i].end_seq = 0;
1817        }
1818        for (j = 0; j < used_sacks; j++)
1819                tp->recv_sack_cache[i++] = sp[j];
1820
1821        tcp_mark_lost_retrans(sk);
1822
1823        tcp_verify_left_out(tp);
1824
1825        if ((state.reord < tp->fackets_out) &&
1826            ((inet_csk(sk)->icsk_ca_state != TCP_CA_Loss) || tp->undo_marker))
1827                tcp_update_reordering(sk, tp->fackets_out - state.reord, 0);
1828
1829out:
1830
1831#if FASTRETRANS_DEBUG > 0
1832        WARN_ON((int)tp->sacked_out < 0);
1833        WARN_ON((int)tp->lost_out < 0);
1834        WARN_ON((int)tp->retrans_out < 0);
1835        WARN_ON((int)tcp_packets_in_flight(tp) < 0);
1836#endif
1837        *sack_rtt_us = state.rtt_us;
1838        return state.flag;
1839}
1840
1841/* Limits sacked_out so that sum with lost_out isn't ever larger than
1842 * packets_out. Returns false if sacked_out adjustement wasn't necessary.
1843 */
1844static bool tcp_limit_reno_sacked(struct tcp_sock *tp)
1845{
1846        u32 holes;
1847
1848        holes = max(tp->lost_out, 1U);
1849        holes = min(holes, tp->packets_out);
1850
1851        if ((tp->sacked_out + holes) > tp->packets_out) {
1852                tp->sacked_out = tp->packets_out - holes;
1853                return true;
1854        }
1855        return false;
1856}
1857
1858/* If we receive more dupacks than we expected counting segments
1859 * in assumption of absent reordering, interpret this as reordering.
1860 * The only another reason could be bug in receiver TCP.
1861 */
1862static void tcp_check_reno_reordering(struct sock *sk, const int addend)
1863{
1864        struct tcp_sock *tp = tcp_sk(sk);
1865        if (tcp_limit_reno_sacked(tp))
1866                tcp_update_reordering(sk, tp->packets_out + addend, 0);
1867}
1868
1869/* Emulate SACKs for SACKless connection: account for a new dupack. */
1870
1871static void tcp_add_reno_sack(struct sock *sk)
1872{
1873        struct tcp_sock *tp = tcp_sk(sk);
1874        tp->sacked_out++;
1875        tcp_check_reno_reordering(sk, 0);
1876        tcp_verify_left_out(tp);
1877}
1878
1879/* Account for ACK, ACKing some data in Reno Recovery phase. */
1880
1881static void tcp_remove_reno_sacks(struct sock *sk, int acked)
1882{
1883        struct tcp_sock *tp = tcp_sk(sk);
1884
1885        if (acked > 0) {
1886                /* One ACK acked hole. The rest eat duplicate ACKs. */
1887                if (acked - 1 >= tp->sacked_out)
1888                        tp->sacked_out = 0;
1889                else
1890                        tp->sacked_out -= acked - 1;
1891        }
1892        tcp_check_reno_reordering(sk, acked);
1893        tcp_verify_left_out(tp);
1894}
1895
1896static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
1897{
1898        tp->sacked_out = 0;
1899}
1900
1901void tcp_clear_retrans(struct tcp_sock *tp)
1902{
1903        tp->retrans_out = 0;
1904        tp->lost_out = 0;
1905        tp->undo_marker = 0;
1906        tp->undo_retrans = -1;
1907        tp->fackets_out = 0;
1908        tp->sacked_out = 0;
1909}
1910
1911static inline void tcp_init_undo(struct tcp_sock *tp)
1912{
1913        tp->undo_marker = tp->snd_una;
1914        /* Retransmission still in flight may cause DSACKs later. */
1915        tp->undo_retrans = tp->retrans_out ? : -1;
1916}
1917
1918/* Enter Loss state. If we detect SACK reneging, forget all SACK information
1919 * and reset tags completely, otherwise preserve SACKs. If receiver
1920 * dropped its ofo queue, we will know this due to reneging detection.
1921 */
1922void tcp_enter_loss(struct sock *sk)
1923{
1924        const struct inet_connection_sock *icsk = inet_csk(sk);
1925        struct tcp_sock *tp = tcp_sk(sk);
1926        struct sk_buff *skb;
1927        bool new_recovery = false;
1928        bool is_reneg;                  /* is receiver reneging on SACKs? */
1929
1930        /* Reduce ssthresh if it has not yet been made inside this window. */
1931        if (icsk->icsk_ca_state <= TCP_CA_Disorder ||
1932            !after(tp->high_seq, tp->snd_una) ||
1933            (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
1934                new_recovery = true;
1935                tp->prior_ssthresh = tcp_current_ssthresh(sk);
1936                tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1937                tcp_ca_event(sk, CA_EVENT_LOSS);
1938                tcp_init_undo(tp);
1939        }
1940        tp->snd_cwnd       = 1;
1941        tp->snd_cwnd_cnt   = 0;
1942        tp->snd_cwnd_stamp = tcp_time_stamp;
1943
1944        tp->retrans_out = 0;
1945        tp->lost_out = 0;
1946
1947        if (tcp_is_reno(tp))
1948                tcp_reset_reno_sack(tp);
1949
1950        skb = tcp_write_queue_head(sk);
1951        is_reneg = skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED);
1952        if (is_reneg) {
1953                NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSACKRENEGING);
1954                tp->sacked_out = 0;
1955                tp->fackets_out = 0;
1956        }
1957        tcp_clear_all_retrans_hints(tp);
1958
1959        tcp_for_write_queue(skb, sk) {
1960                if (skb == tcp_send_head(sk))
1961                        break;
1962
1963                TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED;
1964                if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) || is_reneg) {
1965                        TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
1966                        TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1967                        tp->lost_out += tcp_skb_pcount(skb);
1968                        tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
1969                }
1970        }
1971        tcp_verify_left_out(tp);
1972
1973        /* Timeout in disordered state after receiving substantial DUPACKs
1974         * suggests that the degree of reordering is over-estimated.
1975         */
1976        if (icsk->icsk_ca_state <= TCP_CA_Disorder &&
1977            tp->sacked_out >= sysctl_tcp_reordering)
1978                tp->reordering = min_t(unsigned int, tp->reordering,
1979                                       sysctl_tcp_reordering);
1980        tcp_set_ca_state(sk, TCP_CA_Loss);
1981        tp->high_seq = tp->snd_nxt;
1982        tcp_ecn_queue_cwr(tp);
1983
1984        /* F-RTO RFC5682 sec 3.1 step 1: retransmit SND.UNA if no previous
1985         * loss recovery is underway except recurring timeout(s) on
1986         * the same SND.UNA (sec 3.2). Disable F-RTO on path MTU probing
1987         */
1988        tp->frto = sysctl_tcp_frto &&
1989                   (new_recovery || icsk->icsk_retransmits) &&
1990                   !inet_csk(sk)->icsk_mtup.probe_size;
1991}
1992
1993/* If ACK arrived pointing to a remembered SACK, it means that our
1994 * remembered SACKs do not reflect real state of receiver i.e.
1995 * receiver _host_ is heavily congested (or buggy).
1996 *
1997 * To avoid big spurious retransmission bursts due to transient SACK
1998 * scoreboard oddities that look like reneging, we give the receiver a
1999 * little time (max(RTT/2, 10ms)) to send us some more ACKs that will
2000 * restore sanity to the SACK scoreboard. If the apparent reneging
2001 * persists until this RTO then we'll clear the SACK scoreboard.
2002 */
2003static bool tcp_check_sack_reneging(struct sock *sk, int flag)
2004{
2005        if (flag & FLAG_SACK_RENEGING) {
2006                struct tcp_sock *tp = tcp_sk(sk);
2007                unsigned long delay = max(usecs_to_jiffies(tp->srtt_us >> 4),
2008                                          msecs_to_jiffies(10));
2009
2010                inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2011                                          delay, TCP_RTO_MAX);
2012                return true;
2013        }
2014        return false;
2015}
2016
2017static inline int tcp_fackets_out(const struct tcp_sock *tp)
2018{
2019        return tcp_is_reno(tp) ? tp->sacked_out + 1 : tp->fackets_out;
2020}
2021
2022/* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
2023 * counter when SACK is enabled (without SACK, sacked_out is used for
2024 * that purpose).
2025 *
2026 * Instead, with FACK TCP uses fackets_out that includes both SACKed
2027 * segments up to the highest received SACK block so far and holes in
2028 * between them.
2029 *
2030 * With reordering, holes may still be in flight, so RFC3517 recovery
2031 * uses pure sacked_out (total number of SACKed segments) even though
2032 * it violates the RFC that uses duplicate ACKs, often these are equal
2033 * but when e.g. out-of-window ACKs or packet duplication occurs,
2034 * they differ. Since neither occurs due to loss, TCP should really
2035 * ignore them.
2036 */
2037static inline int tcp_dupack_heuristics(const struct tcp_sock *tp)
2038{
2039        return tcp_is_fack(tp) ? tp->fackets_out : tp->sacked_out + 1;
2040}
2041
2042static bool tcp_pause_early_retransmit(struct sock *sk, int flag)
2043{
2044        struct tcp_sock *tp = tcp_sk(sk);
2045        unsigned long delay;
2046
2047        /* Delay early retransmit and entering fast recovery for
2048         * max(RTT/4, 2msec) unless ack has ECE mark, no RTT samples
2049         * available, or RTO is scheduled to fire first.
2050         */
2051        if (sysctl_tcp_early_retrans < 2 || sysctl_tcp_early_retrans > 3 ||
2052            (flag & FLAG_ECE) || !tp->srtt_us)
2053                return false;
2054
2055        delay = max(usecs_to_jiffies(tp->srtt_us >> 5),
2056                    msecs_to_jiffies(2));
2057
2058        if (!time_after(inet_csk(sk)->icsk_timeout, (jiffies + delay)))
2059                return false;
2060
2061        inet_csk_reset_xmit_timer(sk, ICSK_TIME_EARLY_RETRANS, delay,
2062                                  TCP_RTO_MAX);
2063        return true;
2064}
2065
2066/* Linux NewReno/SACK/FACK/ECN state machine.
2067 * --------------------------------------
2068 *
2069 * "Open"       Normal state, no dubious events, fast path.
2070 * "Disorder"   In all the respects it is "Open",
2071 *              but requires a bit more attention. It is entered when
2072 *              we see some SACKs or dupacks. It is split of "Open"
2073 *              mainly to move some processing from fast path to slow one.
2074 * "CWR"        CWND was reduced due to some Congestion Notification event.
2075 *              It can be ECN, ICMP source quench, local device congestion.
2076 * "Recovery"   CWND was reduced, we are fast-retransmitting.
2077 * "Loss"       CWND was reduced due to RTO timeout or SACK reneging.
2078 *
2079 * tcp_fastretrans_alert() is entered:
2080 * - each incoming ACK, if state is not "Open"
2081 * - when arrived ACK is unusual, namely:
2082 *      * SACK
2083 *      * Duplicate ACK.
2084 *      * ECN ECE.
2085 *
2086 * Counting packets in flight is pretty simple.
2087 *
2088 *      in_flight = packets_out - left_out + retrans_out
2089 *
2090 *      packets_out is SND.NXT-SND.UNA counted in packets.
2091 *
2092 *      retrans_out is number of retransmitted segments.
2093 *
2094 *      left_out is number of segments left network, but not ACKed yet.
2095 *
2096 *              left_out = sacked_out + lost_out
2097 *
2098 *     sacked_out: Packets, which arrived to receiver out of order
2099 *                 and hence not ACKed. With SACKs this number is simply
2100 *                 amount of SACKed data. Even without SACKs
2101 *                 it is easy to give pretty reliable estimate of this number,
2102 *                 counting duplicate ACKs.
2103 *
2104 *       lost_out: Packets lost by network. TCP has no explicit
2105 *                 "loss notification" feedback from network (for now).
2106 *                 It means that this number can be only _guessed_.
2107 *                 Actually, it is the heuristics to predict lossage that
2108 *                 distinguishes different algorithms.
2109 *
2110 *      F.e. after RTO, when all the queue is considered as lost,
2111 *      lost_out = packets_out and in_flight = retrans_out.
2112 *
2113 *              Essentially, we have now two algorithms counting
2114 *              lost packets.
2115 *
2116 *              FACK: It is the simplest heuristics. As soon as we decided
2117 *              that something is lost, we decide that _all_ not SACKed
2118 *              packets until the most forward SACK are lost. I.e.
2119 *              lost_out = fackets_out - sacked_out and left_out = fackets_out.
2120 *              It is absolutely correct estimate, if network does not reorder
2121 *              packets. And it loses any connection to reality when reordering
2122 *              takes place. We use FACK by default until reordering
2123 *              is suspected on the path to this destination.
2124 *
2125 *              NewReno: when Recovery is entered, we assume that one segment
2126 *              is lost (classic Reno). While we are in Recovery and
2127 *              a partial ACK arrives, we assume that one more packet
2128 *              is lost (NewReno). This heuristics are the same in NewReno
2129 *              and SACK.
2130 *
2131 *  Imagine, that's all! Forget about all this shamanism about CWND inflation
2132 *  deflation etc. CWND is real congestion window, never inflated, changes
2133 *  only according to classic VJ rules.
2134 *
2135 * Really tricky (and requiring careful tuning) part of algorithm
2136 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
2137 * The first determines the moment _when_ we should reduce CWND and,
2138 * hence, slow down forward transmission. In fact, it determines the moment
2139 * when we decide that hole is caused by loss, rather than by a reorder.
2140 *
2141 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2142 * holes, caused by lost packets.
2143 *
2144 * And the most logically complicated part of algorithm is undo
2145 * heuristics. We detect false retransmits due to both too early
2146 * fast retransmit (reordering) and underestimated RTO, analyzing
2147 * timestamps and D-SACKs. When we detect that some segments were
2148 * retransmitted by mistake and CWND reduction was wrong, we undo
2149 * window reduction and abort recovery phase. This logic is hidden
2150 * inside several functions named tcp_try_undo_<something>.
2151 */
2152
2153/* This function decides, when we should leave Disordered state
2154 * and enter Recovery phase, reducing congestion window.
2155 *
2156 * Main question: may we further continue forward transmission
2157 * with the same cwnd?
2158 */
2159static bool tcp_time_to_recover(struct sock *sk, int flag)
2160{
2161        struct tcp_sock *tp = tcp_sk(sk);
2162        __u32 packets_out;
2163
2164        /* Trick#1: The loss is proven. */
2165        if (tp->lost_out)
2166                return true;
2167
2168        /* Not-A-Trick#2 : Classic rule... */
2169        if (tcp_dupack_heuristics(tp) > tp->reordering)
2170                return true;
2171
2172        /* Trick#4: It is still not OK... But will it be useful to delay
2173         * recovery more?
2174         */
2175        packets_out = tp->packets_out;
2176        if (packets_out <= tp->reordering &&
2177            tp->sacked_out >= max_t(__u32, packets_out/2, sysctl_tcp_reordering) &&
2178            !tcp_may_send_now(sk)) {
2179                /* We have nothing to send. This connection is limited
2180                 * either by receiver window or by application.
2181                 */
2182                return true;
2183        }
2184
2185        /* If a thin stream is detected, retransmit after first
2186         * received dupack. Employ only if SACK is supported in order
2187         * to avoid possible corner-case series of spurious retransmissions
2188         * Use only if there are no unsent data.
2189         */
2190        if ((tp->thin_dupack || sysctl_tcp_thin_dupack) &&
2191            tcp_stream_is_thin(tp) && tcp_dupack_heuristics(tp) > 1 &&
2192            tcp_is_sack(tp) && !tcp_send_head(sk))
2193                return true;
2194
2195        /* Trick#6: TCP early retransmit, per RFC5827.  To avoid spurious
2196         * retransmissions due to small network reorderings, we implement
2197         * Mitigation A.3 in the RFC and delay the retransmission for a short
2198         * interval if appropriate.
2199         */
2200        if (tp->do_early_retrans && !tp->retrans_out && tp->sacked_out &&
2201            (tp->packets_out >= (tp->sacked_out + 1) && tp->packets_out < 4) &&
2202            !tcp_may_send_now(sk))
2203                return !tcp_pause_early_retransmit(sk, flag);
2204
2205        return false;
2206}
2207
2208/* Detect loss in event "A" above by marking head of queue up as lost.
2209 * For FACK or non-SACK(Reno) senders, the first "packets" number of segments
2210 * are considered lost. For RFC3517 SACK, a segment is considered lost if it
2211 * has at least tp->reordering SACKed seqments above it; "packets" refers to
2212 * the maximum SACKed segments to pass before reaching this limit.
2213 */
2214static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head)
2215{
2216        struct tcp_sock *tp = tcp_sk(sk);
2217        struct sk_buff *skb;
2218        int cnt, oldcnt;
2219        int err;
2220        unsigned int mss;
2221        /* Use SACK to deduce losses of new sequences sent during recovery */
2222        const u32 loss_high = tcp_is_sack(tp) ?  tp->snd_nxt : tp->high_seq;
2223
2224        WARN_ON(packets > tp->packets_out);
2225        if (tp->lost_skb_hint) {
2226                skb = tp->lost_skb_hint;
2227                cnt = tp->lost_cnt_hint;
2228                /* Head already handled? */
2229                if (mark_head && skb != tcp_write_queue_head(sk))
2230                        return;
2231        } else {
2232                skb = tcp_write_queue_head(sk);
2233                cnt = 0;
2234        }
2235
2236        tcp_for_write_queue_from(skb, sk) {
2237                if (skb == tcp_send_head(sk))
2238                        break;
2239                /* TODO: do this better */
2240                /* this is not the most efficient way to do this... */
2241                tp->lost_skb_hint = skb;
2242                tp->lost_cnt_hint = cnt;
2243
2244                if (after(TCP_SKB_CB(skb)->end_seq, loss_high))
2245                        break;
2246
2247                oldcnt = cnt;
2248                if (tcp_is_fack(tp) || tcp_is_reno(tp) ||
2249                    (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2250                        cnt += tcp_skb_pcount(skb);
2251
2252                if (cnt > packets) {
2253                        if ((tcp_is_sack(tp) && !tcp_is_fack(tp)) ||
2254                            (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) ||
2255                            (oldcnt >= packets))
2256                                break;
2257
2258                        mss = skb_shinfo(skb)->gso_size;
2259                        err = tcp_fragment(sk, skb, (packets - oldcnt) * mss,
2260                                           mss, GFP_ATOMIC);
2261                        if (err < 0)
2262                                break;
2263                        cnt = packets;
2264                }
2265
2266                tcp_skb_mark_lost(tp, skb);
2267
2268                if (mark_head)
2269                        break;
2270        }
2271        tcp_verify_left_out(tp);
2272}
2273
2274/* Account newly detected lost packet(s) */
2275
2276static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
2277{
2278        struct tcp_sock *tp = tcp_sk(sk);
2279
2280        if (tcp_is_reno(tp)) {
2281                tcp_mark_head_lost(sk, 1, 1);
2282        } else if (tcp_is_fack(tp)) {
2283                int lost = tp->fackets_out - tp->reordering;
2284                if (lost <= 0)
2285                        lost = 1;
2286                tcp_mark_head_lost(sk, lost, 0);
2287        } else {
2288                int sacked_upto = tp->sacked_out - tp->reordering;
2289                if (sacked_upto >= 0)
2290                        tcp_mark_head_lost(sk, sacked_upto, 0);
2291                else if (fast_rexmit)
2292                        tcp_mark_head_lost(sk, 1, 1);
2293        }
2294}
2295
2296/* CWND moderation, preventing bursts due to too big ACKs
2297 * in dubious situations.
2298 */
2299static inline void tcp_moderate_cwnd(struct tcp_sock *tp)
2300{
2301        tp->snd_cwnd = min(tp->snd_cwnd,
2302                           tcp_packets_in_flight(tp) + tcp_max_burst(tp));
2303        tp->snd_cwnd_stamp = tcp_time_stamp;
2304}
2305
2306/* Nothing was retransmitted or returned timestamp is less
2307 * than timestamp of the first retransmission.
2308 */
2309static inline bool tcp_packet_delayed(const struct tcp_sock *tp)
2310{
2311        return !tp->retrans_stamp ||
2312                (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2313                 before(tp->rx_opt.rcv_tsecr, tp->retrans_stamp));
2314}
2315
2316/* Undo procedures. */
2317
2318/* We can clear retrans_stamp when there are no retransmissions in the
2319 * window. It would seem that it is trivially available for us in
2320 * tp->retrans_out, however, that kind of assumptions doesn't consider
2321 * what will happen if errors occur when sending retransmission for the
2322 * second time. ...It could the that such segment has only
2323 * TCPCB_EVER_RETRANS set at the present time. It seems that checking
2324 * the head skb is enough except for some reneging corner cases that
2325 * are not worth the effort.
2326 *
2327 * Main reason for all this complexity is the fact that connection dying
2328 * time now depends on the validity of the retrans_stamp, in particular,
2329 * that successive retransmissions of a segment must not advance
2330 * retrans_stamp under any conditions.
2331 */
2332static bool tcp_any_retrans_done(const struct sock *sk)
2333{
2334        const struct tcp_sock *tp = tcp_sk(sk);
2335        struct sk_buff *skb;
2336
2337        if (tp->retrans_out)
2338                return true;
2339
2340        skb = tcp_write_queue_head(sk);
2341        if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS))
2342                return true;
2343
2344        return false;
2345}
2346
2347#if FASTRETRANS_DEBUG > 1
2348static void DBGUNDO(struct sock *sk, const char *msg)
2349{
2350        struct tcp_sock *tp = tcp_sk(sk);
2351        struct inet_sock *inet = inet_sk(sk);
2352
2353        if (sk->sk_family == AF_INET) {
2354                pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
2355                         msg,
2356                         &inet->inet_daddr, ntohs(inet->inet_dport),
2357                         tp->snd_cwnd, tcp_left_out(tp),
2358                         tp->snd_ssthresh, tp->prior_ssthresh,
2359                         tp->packets_out);
2360        }
2361#if IS_ENABLED(CONFIG_IPV6)
2362        else if (sk->sk_family == AF_INET6) {
2363                struct ipv6_pinfo *np = inet6_sk(sk);
2364                pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
2365                         msg,
2366                         &np->daddr, ntohs(inet->inet_dport),
2367                         tp->snd_cwnd, tcp_left_out(tp),
2368                         tp->snd_ssthresh, tp->prior_ssthresh,
2369                         tp->packets_out);
2370        }
2371#endif
2372}
2373#else
2374#define DBGUNDO(x...) do { } while (0)
2375#endif
2376
2377static void tcp_undo_cwnd_reduction(struct sock *sk, bool unmark_loss)
2378{
2379        struct tcp_sock *tp = tcp_sk(sk);
2380
2381        if (unmark_loss) {
2382                struct sk_buff *skb;
2383
2384                tcp_for_write_queue(skb, sk) {
2385                        if (skb == tcp_send_head(sk))
2386                                break;
2387                        TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2388                }
2389                tp->lost_out = 0;
2390                tcp_clear_all_retrans_hints(tp);
2391        }
2392
2393        if (tp->prior_ssthresh) {
2394                const struct inet_connection_sock *icsk = inet_csk(sk);
2395
2396                if (icsk->icsk_ca_ops->undo_cwnd)
2397                        tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
2398                else
2399                        tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh << 1);
2400
2401                if (tp->prior_ssthresh > tp->snd_ssthresh) {
2402                        tp->snd_ssthresh = tp->prior_ssthresh;
2403                        tcp_ecn_withdraw_cwr(tp);
2404                }
2405        } else {
2406                tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh);
2407        }
2408        tp->snd_cwnd_stamp = tcp_time_stamp;
2409        tp->undo_marker = 0;
2410}
2411
2412static inline bool tcp_may_undo(const struct tcp_sock *tp)
2413{
2414        return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
2415}
2416
2417/* People celebrate: "We love our President!" */
2418static bool tcp_try_undo_recovery(struct sock *sk)
2419{
2420        struct tcp_sock *tp = tcp_sk(sk);
2421
2422        if (tcp_may_undo(tp)) {
2423                int mib_idx;
2424
2425                /* Happy end! We did not retransmit anything
2426                 * or our original transmission succeeded.
2427                 */
2428                DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
2429                tcp_undo_cwnd_reduction(sk, false);
2430                if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
2431                        mib_idx = LINUX_MIB_TCPLOSSUNDO;
2432                else
2433                        mib_idx = LINUX_MIB_TCPFULLUNDO;
2434
2435                NET_INC_STATS_BH(sock_net(sk), mib_idx);
2436        }
2437        if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
2438                /* Hold old state until something *above* high_seq
2439                 * is ACKed. For Reno it is MUST to prevent false
2440                 * fast retransmits (RFC2582). SACK TCP is safe. */
2441                tcp_moderate_cwnd(tp);
2442                if (!tcp_any_retrans_done(sk))
2443                        tp->retrans_stamp = 0;
2444                return true;
2445        }
2446        tcp_set_ca_state(sk, TCP_CA_Open);
2447        return false;
2448}
2449
2450/* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
2451static bool tcp_try_undo_dsack(struct sock *sk)
2452{
2453        struct tcp_sock *tp = tcp_sk(sk);
2454
2455        if (tp->undo_marker && !tp->undo_retrans) {
2456                DBGUNDO(sk, "D-SACK");
2457                tcp_undo_cwnd_reduction(sk, false);
2458                NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKUNDO);
2459                return true;
2460        }
2461        return false;
2462}
2463
2464/* Undo during loss recovery after partial ACK or using F-RTO. */
2465static bool tcp_try_undo_loss(struct sock *sk, bool frto_undo)
2466{
2467        struct tcp_sock *tp = tcp_sk(sk);
2468
2469        if (frto_undo || tcp_may_undo(tp)) {
2470                tcp_undo_cwnd_reduction(sk, true);
2471
2472                DBGUNDO(sk, "partial loss");
2473                NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSSUNDO);
2474                if (frto_undo)
2475                        NET_INC_STATS_BH(sock_net(sk),
2476                                         LINUX_MIB_TCPSPURIOUSRTOS);
2477                inet_csk(sk)->icsk_retransmits = 0;
2478                if (frto_undo || tcp_is_sack(tp))
2479                        tcp_set_ca_state(sk, TCP_CA_Open);
2480                return true;
2481        }
2482        return false;
2483}
2484
2485/* The cwnd reduction in CWR and Recovery use the PRR algorithm
2486 * https://datatracker.ietf.org/doc/draft-ietf-tcpm-proportional-rate-reduction/
2487 * It computes the number of packets to send (sndcnt) based on packets newly
2488 * delivered:
2489 *   1) If the packets in flight is larger than ssthresh, PRR spreads the
2490 *      cwnd reductions across a full RTT.
2491 *   2) If packets in flight is lower than ssthresh (such as due to excess
2492 *      losses and/or application stalls), do not perform any further cwnd
2493 *      reductions, but instead slow start up to ssthresh.
2494 */
2495static void tcp_init_cwnd_reduction(struct sock *sk)
2496{
2497        struct tcp_sock *tp = tcp_sk(sk);
2498
2499        tp->high_seq = tp->snd_nxt;
2500        tp->tlp_high_seq = 0;
2501        tp->snd_cwnd_cnt = 0;
2502        tp->prior_cwnd = tp->snd_cwnd;
2503        tp->prr_delivered = 0;
2504        tp->prr_out = 0;
2505        tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk);
2506        tcp_ecn_queue_cwr(tp);
2507}
2508
2509static void tcp_cwnd_reduction(struct sock *sk, const int prior_unsacked,
2510                               int fast_rexmit)
2511{
2512        struct tcp_sock *tp = tcp_sk(sk);
2513        int sndcnt = 0;
2514        int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp);
2515        int newly_acked_sacked = prior_unsacked -
2516                                 (tp->packets_out - tp->sacked_out);
2517
2518        tp->prr_delivered += newly_acked_sacked;
2519        if (tcp_packets_in_flight(tp) > tp->snd_ssthresh) {
2520                u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered +
2521                               tp->prior_cwnd - 1;
2522                sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out;
2523        } else {
2524                sndcnt = min_t(int, delta,
2525                               max_t(int, tp->prr_delivered - tp->prr_out,
2526                                     newly_acked_sacked) + 1);
2527        }
2528
2529        sndcnt = max(sndcnt, (fast_rexmit ? 1 : 0));
2530        tp->snd_cwnd = tcp_packets_in_flight(tp) + sndcnt;
2531}
2532
2533static inline void tcp_end_cwnd_reduction(struct sock *sk)
2534{
2535        struct tcp_sock *tp = tcp_sk(sk);
2536
2537        /* Reset cwnd to ssthresh in CWR or Recovery (unless it's undone) */
2538        if (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR ||
2539            (tp->undo_marker && tp->snd_ssthresh < TCP_INFINITE_SSTHRESH)) {
2540                tp->snd_cwnd = tp->snd_ssthresh;
2541                tp->snd_cwnd_stamp = tcp_time_stamp;
2542        }
2543        tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
2544}
2545
2546/* Enter CWR state. Disable cwnd undo since congestion is proven with ECN */
2547void tcp_enter_cwr(struct sock *sk)
2548{
2549        struct tcp_sock *tp = tcp_sk(sk);
2550
2551        tp->prior_ssthresh = 0;
2552        if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) {
2553                tp->undo_marker = 0;
2554                tcp_init_cwnd_reduction(sk);
2555                tcp_set_ca_state(sk, TCP_CA_CWR);
2556        }
2557}
2558
2559static void tcp_try_keep_open(struct sock *sk)
2560{
2561        struct tcp_sock *tp = tcp_sk(sk);
2562        int state = TCP_CA_Open;
2563
2564        if (tcp_left_out(tp) || tcp_any_retrans_done(sk))
2565                state = TCP_CA_Disorder;
2566
2567        if (inet_csk(sk)->icsk_ca_state != state) {
2568                tcp_set_ca_state(sk, state);
2569                tp->high_seq = tp->snd_nxt;
2570        }
2571}
2572
2573static void tcp_try_to_open(struct sock *sk, int flag, const int prior_unsacked)
2574{
2575        struct tcp_sock *tp = tcp_sk(sk);
2576
2577        tcp_verify_left_out(tp);
2578
2579        if (!tcp_any_retrans_done(sk))
2580                tp->retrans_stamp = 0;
2581
2582        if (flag & FLAG_ECE)
2583                tcp_enter_cwr(sk);
2584
2585        if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
2586                tcp_try_keep_open(sk);
2587        } else {
2588                tcp_cwnd_reduction(sk, prior_unsacked, 0);
2589        }
2590}
2591
2592static void tcp_mtup_probe_failed(struct sock *sk)
2593{
2594        struct inet_connection_sock *icsk = inet_csk(sk);
2595
2596        icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2597        icsk->icsk_mtup.probe_size = 0;
2598}
2599
2600static void tcp_mtup_probe_success(struct sock *sk)
2601{
2602        struct tcp_sock *tp = tcp_sk(sk);
2603        struct inet_connection_sock *icsk = inet_csk(sk);
2604
2605        /* FIXME: breaks with very large cwnd */
2606        tp->prior_ssthresh = tcp_current_ssthresh(sk);
2607        tp->snd_cwnd = tp->snd_cwnd *
2608                       tcp_mss_to_mtu(sk, tp->mss_cache) /
2609                       icsk->icsk_mtup.probe_size;
2610        tp->snd_cwnd_cnt = 0;
2611        tp->snd_cwnd_stamp = tcp_time_stamp;
2612        tp->snd_ssthresh = tcp_current_ssthresh(sk);
2613
2614        icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2615        icsk->icsk_mtup.probe_size = 0;
2616        tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2617}
2618
2619/* Do a simple retransmit without using the backoff mechanisms in
2620 * tcp_timer. This is used for path mtu discovery.
2621 * The socket is already locked here.
2622 */
2623void tcp_simple_retransmit(struct sock *sk)
2624{
2625        const struct inet_connection_sock *icsk = inet_csk(sk);
2626        struct tcp_sock *tp = tcp_sk(sk);
2627        struct sk_buff *skb;
2628        unsigned int mss = tcp_current_mss(sk);
2629        u32 prior_lost = tp->lost_out;
2630
2631        tcp_for_write_queue(skb, sk) {
2632                if (skb == tcp_send_head(sk))
2633                        break;
2634                if (tcp_skb_seglen(skb) > mss &&
2635                    !(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
2636                        if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2637                                TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2638                                tp->retrans_out -= tcp_skb_pcount(skb);
2639                        }
2640                        tcp_skb_mark_lost_uncond_verify(tp, skb);
2641                }
2642        }
2643
2644        tcp_clear_retrans_hints_partial(tp);
2645
2646        if (prior_lost == tp->lost_out)
2647                return;
2648
2649        if (tcp_is_reno(tp))
2650                tcp_limit_reno_sacked(tp);
2651
2652        tcp_verify_left_out(tp);
2653
2654        /* Don't muck with the congestion window here.
2655         * Reason is that we do not increase amount of _data_
2656         * in network, but units changed and effective
2657         * cwnd/ssthresh really reduced now.
2658         */
2659        if (icsk->icsk_ca_state != TCP_CA_Loss) {
2660                tp->high_seq = tp->snd_nxt;
2661                tp->snd_ssthresh = tcp_current_ssthresh(sk);
2662                tp->prior_ssthresh = 0;
2663                tp->undo_marker = 0;
2664                tcp_set_ca_state(sk, TCP_CA_Loss);
2665        }
2666        tcp_xmit_retransmit_queue(sk);
2667}
2668EXPORT_SYMBOL(tcp_simple_retransmit);
2669
2670static void tcp_enter_recovery(struct sock *sk, bool ece_ack)
2671{
2672        struct tcp_sock *tp = tcp_sk(sk);
2673        int mib_idx;
2674
2675        if (tcp_is_reno(tp))
2676                mib_idx = LINUX_MIB_TCPRENORECOVERY;
2677        else
2678                mib_idx = LINUX_MIB_TCPSACKRECOVERY;
2679
2680        NET_INC_STATS_BH(sock_net(sk), mib_idx);
2681
2682        tp->prior_ssthresh = 0;
2683        tcp_init_undo(tp);
2684
2685        if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) {
2686                if (!ece_ack)
2687                        tp->prior_ssthresh = tcp_current_ssthresh(sk);
2688                tcp_init_cwnd_reduction(sk);
2689        }
2690        tcp_set_ca_state(sk, TCP_CA_Recovery);
2691}
2692
2693/* Process an ACK in CA_Loss state. Move to CA_Open if lost data are
2694 * recovered or spurious. Otherwise retransmits more on partial ACKs.
2695 */
2696static void tcp_process_loss(struct sock *sk, int flag, bool is_dupack)
2697{
2698        struct tcp_sock *tp = tcp_sk(sk);
2699        bool recovered = !before(tp->snd_una, tp->high_seq);
2700
2701        if (tp->frto) { /* F-RTO RFC5682 sec 3.1 (sack enhanced version). */
2702                /* Step 3.b. A timeout is spurious if not all data are
2703                 * lost, i.e., never-retransmitted data are (s)acked.
2704                 */
2705                if (tcp_try_undo_loss(sk, flag & FLAG_ORIG_SACK_ACKED))
2706                        return;
2707
2708                if (after(tp->snd_nxt, tp->high_seq) &&
2709                    (flag & FLAG_DATA_SACKED || is_dupack)) {
2710                        tp->frto = 0; /* Loss was real: 2nd part of step 3.a */
2711                } else if (flag & FLAG_SND_UNA_ADVANCED && !recovered) {
2712                        tp->high_seq = tp->snd_nxt;
2713                        __tcp_push_pending_frames(sk, tcp_current_mss(sk),
2714                                                  TCP_NAGLE_OFF);
2715                        if (after(tp->snd_nxt, tp->high_seq))
2716                                return; /* Step 2.b */
2717                        tp->frto = 0;
2718                }
2719        }
2720
2721        if (recovered) {
2722                /* F-RTO RFC5682 sec 3.1 step 2.a and 1st part of step 3.a */
2723                tcp_try_undo_recovery(sk);
2724                return;
2725        }
2726        if (tcp_is_reno(tp)) {
2727                /* A Reno DUPACK means new data in F-RTO step 2.b above are
2728                 * delivered. Lower inflight to clock out (re)tranmissions.
2729                 */
2730                if (after(tp->snd_nxt, tp->high_seq) && is_dupack)
2731                        tcp_add_reno_sack(sk);
2732                else if (flag & FLAG_SND_UNA_ADVANCED)
2733                        tcp_reset_reno_sack(tp);
2734        }
2735        if (tcp_try_undo_loss(sk, false))
2736                return;
2737        tcp_xmit_retransmit_queue(sk);
2738}
2739
2740/* Undo during fast recovery after partial ACK. */
2741static bool tcp_try_undo_partial(struct sock *sk, const int acked,
2742                                 const int prior_unsacked)
2743{
2744        struct tcp_sock *tp = tcp_sk(sk);
2745
2746        if (tp->undo_marker && tcp_packet_delayed(tp)) {
2747                /* Plain luck! Hole if filled with delayed
2748                 * packet, rather than with a retransmit.
2749                 */
2750                tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1);
2751
2752                /* We are getting evidence that the reordering degree is higher
2753                 * than we realized. If there are no retransmits out then we
2754                 * can undo. Otherwise we clock out new packets but do not
2755                 * mark more packets lost or retransmit more.
2756                 */
2757                if (tp->retrans_out) {
2758                        tcp_cwnd_reduction(sk, prior_unsacked, 0);
2759                        return true;
2760                }
2761
2762                if (!tcp_any_retrans_done(sk))
2763                        tp->retrans_stamp = 0;
2764
2765                DBGUNDO(sk, "partial recovery");
2766                tcp_undo_cwnd_reduction(sk, true);
2767                NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO);
2768                tcp_try_keep_open(sk);
2769                return true;
2770        }
2771        return false;
2772}
2773
2774/* Process an event, which can update packets-in-flight not trivially.
2775 * Main goal of this function is to calculate new estimate for left_out,
2776 * taking into account both packets sitting in receiver's buffer and
2777 * packets lost by network.
2778 *
2779 * Besides that it does CWND reduction, when packet loss is detected
2780 * and changes state of machine.
2781 *
2782 * It does _not_ decide what to send, it is made in function
2783 * tcp_xmit_retransmit_queue().
2784 */
2785static void tcp_fastretrans_alert(struct sock *sk, const int acked,
2786                                  const int prior_unsacked,
2787                                  bool is_dupack, int flag)
2788{
2789        struct inet_connection_sock *icsk = inet_csk(sk);
2790        struct tcp_sock *tp = tcp_sk(sk);
2791        bool do_lost = is_dupack || ((flag & FLAG_DATA_SACKED) &&
2792                                    (tcp_fackets_out(tp) > tp->reordering));
2793        int fast_rexmit = 0;
2794
2795        if (WARN_ON(!tp->packets_out && tp->sacked_out))
2796                tp->sacked_out = 0;
2797        if (WARN_ON(!tp->sacked_out && tp->fackets_out))
2798                tp->fackets_out = 0;
2799
2800        /* Now state machine starts.
2801         * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
2802        if (flag & FLAG_ECE)
2803                tp->prior_ssthresh = 0;
2804
2805        /* B. In all the states check for reneging SACKs. */
2806        if (tcp_check_sack_reneging(sk, flag))
2807                return;
2808
2809        /* C. Check consistency of the current state. */
2810        tcp_verify_left_out(tp);
2811
2812        /* D. Check state exit conditions. State can be terminated
2813         *    when high_seq is ACKed. */
2814        if (icsk->icsk_ca_state == TCP_CA_Open) {
2815                WARN_ON(tp->retrans_out != 0);
2816                tp->retrans_stamp = 0;
2817        } else if (!before(tp->snd_una, tp->high_seq)) {
2818                switch (icsk->icsk_ca_state) {
2819                case TCP_CA_CWR:
2820                        /* CWR is to be held something *above* high_seq
2821                         * is ACKed for CWR bit to reach receiver. */
2822                        if (tp->snd_una != tp->high_seq) {
2823                                tcp_end_cwnd_reduction(sk);
2824                                tcp_set_ca_state(sk, TCP_CA_Open);
2825                        }
2826                        break;
2827
2828                case TCP_CA_Recovery:
2829                        if (tcp_is_reno(tp))
2830                                tcp_reset_reno_sack(tp);
2831                        if (tcp_try_undo_recovery(sk))
2832                                return;
2833                        tcp_end_cwnd_reduction(sk);
2834                        break;
2835                }
2836        }
2837
2838        /* E. Process state. */
2839        switch (icsk->icsk_ca_state) {
2840        case TCP_CA_Recovery:
2841                if (!(flag & FLAG_SND_UNA_ADVANCED)) {
2842                        if (tcp_is_reno(tp) && is_dupack)
2843                                tcp_add_reno_sack(sk);
2844                } else {
2845                        if (tcp_try_undo_partial(sk, acked, prior_unsacked))
2846                                return;
2847                        /* Partial ACK arrived. Force fast retransmit. */
2848                        do_lost = tcp_is_reno(tp) ||
2849                                  tcp_fackets_out(tp) > tp->reordering;
2850                }
2851                if (tcp_try_undo_dsack(sk)) {
2852                        tcp_try_keep_open(sk);
2853                        return;
2854                }
2855                break;
2856        case TCP_CA_Loss:
2857                tcp_process_loss(sk, flag, is_dupack);
2858                if (icsk->icsk_ca_state != TCP_CA_Open)
2859                        return;
2860                /* Fall through to processing in Open state. */
2861        default:
2862                if (tcp_is_reno(tp)) {
2863                        if (flag & FLAG_SND_UNA_ADVANCED)
2864                                tcp_reset_reno_sack(tp);
2865                        if (is_dupack)
2866                                tcp_add_reno_sack(sk);
2867                }
2868
2869                if (icsk->icsk_ca_state <= TCP_CA_Disorder)
2870                        tcp_try_undo_dsack(sk);
2871
2872                if (!tcp_time_to_recover(sk, flag)) {
2873                        tcp_try_to_open(sk, flag, prior_unsacked);
2874                        return;
2875                }
2876
2877                /* MTU probe failure: don't reduce cwnd */
2878                if (icsk->icsk_ca_state < TCP_CA_CWR &&
2879                    icsk->icsk_mtup.probe_size &&
2880                    tp->snd_una == tp->mtu_probe.probe_seq_start) {
2881                        tcp_mtup_probe_failed(sk);
2882                        /* Restores the reduction we did in tcp_mtup_probe() */
2883                        tp->snd_cwnd++;
2884                        tcp_simple_retransmit(sk);
2885                        return;
2886                }
2887
2888                /* Otherwise enter Recovery state */
2889                tcp_enter_recovery(sk, (flag & FLAG_ECE));
2890                fast_rexmit = 1;
2891        }
2892
2893        if (do_lost)
2894                tcp_update_scoreboard(sk, fast_rexmit);
2895        tcp_cwnd_reduction(sk, prior_unsacked, fast_rexmit);
2896        tcp_xmit_retransmit_queue(sk);
2897}
2898
2899static inline bool tcp_ack_update_rtt(struct sock *sk, const int flag,
2900                                      long seq_rtt_us, long sack_rtt_us)
2901{
2902        const struct tcp_sock *tp = tcp_sk(sk);
2903
2904        /* Prefer RTT measured from ACK's timing to TS-ECR. This is because
2905         * broken middle-boxes or peers may corrupt TS-ECR fields. But
2906         * Karn's algorithm forbids taking RTT if some retransmitted data
2907         * is acked (RFC6298).
2908         */
2909        if (flag & FLAG_RETRANS_DATA_ACKED)
2910                seq_rtt_us = -1L;
2911
2912        if (seq_rtt_us < 0)
2913                seq_rtt_us = sack_rtt_us;
2914
2915        /* RTTM Rule: A TSecr value received in a segment is used to
2916         * update the averaged RTT measurement only if the segment
2917         * acknowledges some new data, i.e., only if it advances the
2918         * left edge of the send window.
2919         * See draft-ietf-tcplw-high-performance-00, section 3.3.
2920         */
2921        if (seq_rtt_us < 0 && tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2922            flag & FLAG_ACKED)
2923                seq_rtt_us = jiffies_to_usecs(tcp_time_stamp - tp->rx_opt.rcv_tsecr);
2924
2925        if (seq_rtt_us < 0)
2926                return false;
2927
2928        tcp_rtt_estimator(sk, seq_rtt_us);
2929        tcp_set_rto(sk);
2930
2931        /* RFC6298: only reset backoff on valid RTT measurement. */
2932        inet_csk(sk)->icsk_backoff = 0;
2933        return true;
2934}
2935
2936/* Compute time elapsed between (last) SYNACK and the ACK completing 3WHS. */
2937static void tcp_synack_rtt_meas(struct sock *sk, const u32 synack_stamp)
2938{
2939        struct tcp_sock *tp = tcp_sk(sk);
2940        long seq_rtt_us = -1L;
2941
2942        if (synack_stamp && !tp->total_retrans)
2943                seq_rtt_us = jiffies_to_usecs(tcp_time_stamp - synack_stamp);
2944
2945        /* If the ACK acks both the SYNACK and the (Fast Open'd) data packets
2946         * sent in SYN_RECV, SYNACK RTT is the smooth RTT computed in tcp_ack()
2947         */
2948        if (!tp->srtt_us)
2949                tcp_ack_update_rtt(sk, FLAG_SYN_ACKED, seq_rtt_us, -1L);
2950}
2951
2952static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 acked)
2953{
2954        const struct inet_connection_sock *icsk = inet_csk(sk);
2955
2956        icsk->icsk_ca_ops->cong_avoid(sk, ack, acked);
2957        tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp;
2958}
2959
2960/* Restart timer after forward progress on connection.
2961 * RFC2988 recommends to restart timer to now+rto.
2962 */
2963void tcp_rearm_rto(struct sock *sk)
2964{
2965        const struct inet_connection_sock *icsk = inet_csk(sk);
2966        struct tcp_sock *tp = tcp_sk(sk);
2967
2968        /* If the retrans timer is currently being used by Fast Open
2969         * for SYN-ACK retrans purpose, stay put.
2970         */
2971        if (tp->fastopen_rsk)
2972                return;
2973
2974        if (!tp->packets_out) {
2975                inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
2976        } else {
2977                u32 rto = inet_csk(sk)->icsk_rto;
2978                /* Offset the time elapsed after installing regular RTO */
2979                if (icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS ||
2980                    icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) {
2981                        struct sk_buff *skb = tcp_write_queue_head(sk);
2982                        const u32 rto_time_stamp =
2983                                tcp_skb_timestamp(skb) + rto;
2984                        s32 delta = (s32)(rto_time_stamp - tcp_time_stamp);
2985                        /* delta may not be positive if the socket is locked
2986                         * when the retrans timer fires and is rescheduled.
2987                         */
2988                        if (delta > 0)
2989                                rto = delta;
2990                }
2991                inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, rto,
2992                                          TCP_RTO_MAX);
2993        }
2994}
2995
2996/* This function is called when the delayed ER timer fires. TCP enters
2997 * fast recovery and performs fast-retransmit.
2998 */
2999void tcp_resume_early_retransmit(struct sock *sk)
3000{
3001        struct tcp_sock *tp = tcp_sk(sk);
3002
3003        tcp_rearm_rto(sk);
3004
3005        /* Stop if ER is disabled after the delayed ER timer is scheduled */
3006        if (!tp->do_early_retrans)
3007                return;
3008
3009        tcp_enter_recovery(sk, false);
3010        tcp_update_scoreboard(sk, 1);
3011        tcp_xmit_retransmit_queue(sk);
3012}
3013
3014/* If we get here, the whole TSO packet has not been acked. */
3015static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
3016{
3017        struct tcp_sock *tp = tcp_sk(sk);
3018        u32 packets_acked;
3019
3020        BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
3021
3022        packets_acked = tcp_skb_pcount(skb);
3023        if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
3024                return 0;
3025        packets_acked -= tcp_skb_pcount(skb);
3026
3027        if (packets_acked) {
3028                BUG_ON(tcp_skb_pcount(skb) == 0);
3029                BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
3030        }
3031
3032        return packets_acked;
3033}
3034
3035static void tcp_ack_tstamp(struct sock *sk, struct sk_buff *skb,
3036                           u32 prior_snd_una)
3037{
3038        const struct skb_shared_info *shinfo;
3039
3040        /* Avoid cache line misses to get skb_shinfo() and shinfo->tx_flags */
3041        if (likely(!(sk->sk_tsflags & SOF_TIMESTAMPING_TX_ACK)))
3042                return;
3043
3044        shinfo = skb_shinfo(skb);
3045        if ((shinfo->tx_flags & SKBTX_ACK_TSTAMP) &&
3046            between(shinfo->tskey, prior_snd_una, tcp_sk(sk)->snd_una - 1))
3047                __skb_tstamp_tx(skb, NULL, sk, SCM_TSTAMP_ACK);
3048}
3049
3050/* Remove acknowledged frames from the retransmission queue. If our packet
3051 * is before the ack sequence we can discard it as it's confirmed to have
3052 * arrived at the other end.
3053 */
3054static int tcp_clean_rtx_queue(struct sock *sk, int prior_fackets,
3055                               u32 prior_snd_una, long sack_rtt_us)
3056{
3057        const struct inet_connection_sock *icsk = inet_csk(sk);
3058        struct skb_mstamp first_ackt, last_ackt, now;
3059        struct tcp_sock *tp = tcp_sk(sk);
3060        u32 prior_sacked = tp->sacked_out;
3061        u32 reord = tp->packets_out;
3062        bool fully_acked = true;
3063        long ca_seq_rtt_us = -1L;
3064        long seq_rtt_us = -1L;
3065        struct sk_buff *skb;
3066        u32 pkts_acked = 0;
3067        bool rtt_update;
3068        int flag = 0;
3069
3070        first_ackt.v64 = 0;
3071
3072        while ((skb = tcp_write_queue_head(sk)) && skb != tcp_send_head(sk)) {
3073                struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
3074                u8 sacked = scb->sacked;
3075                u32 acked_pcount;
3076
3077                tcp_ack_tstamp(sk, skb, prior_snd_una);
3078
3079                /* Determine how many packets and what bytes were acked, tso and else */
3080                if (after(scb->end_seq, tp->snd_una)) {
3081                        if (tcp_skb_pcount(skb) == 1 ||
3082                            !after(tp->snd_una, scb->seq))
3083                                break;
3084
3085                        acked_pcount = tcp_tso_acked(sk, skb);
3086                        if (!acked_pcount)
3087                                break;
3088
3089                        fully_acked = false;
3090                } else {
3091                        /* Speedup tcp_unlink_write_queue() and next loop */
3092                        prefetchw(skb->next);
3093                        acked_pcount = tcp_skb_pcount(skb);
3094                }
3095
3096                if (unlikely(sacked & TCPCB_RETRANS)) {
3097                        if (sacked & TCPCB_SACKED_RETRANS)
3098                                tp->retrans_out -= acked_pcount;
3099                        flag |= FLAG_RETRANS_DATA_ACKED;
3100                } else {
3101                        last_ackt = skb->skb_mstamp;
3102                        WARN_ON_ONCE(last_ackt.v64 == 0);
3103                        if (!first_ackt.v64)
3104                                first_ackt = last_ackt;
3105
3106                        if (!(sacked & TCPCB_SACKED_ACKED))
3107                                reord = min(pkts_acked, reord);
3108                        if (!after(scb->end_seq, tp->high_seq))
3109                                flag |= FLAG_ORIG_SACK_ACKED;
3110                }
3111
3112                if (sacked & TCPCB_SACKED_ACKED)
3113                        tp->sacked_out -= acked_pcount;
3114                if (sacked & TCPCB_LOST)
3115                        tp->lost_out -= acked_pcount;
3116
3117                tp->packets_out -= acked_pcount;
3118                pkts_acked += acked_pcount;
3119
3120                /* Initial outgoing SYN's get put onto the write_queue
3121                 * just like anything else we transmit.  It is not
3122                 * true data, and if we misinform our callers that
3123                 * this ACK acks real data, we will erroneously exit
3124                 * connection startup slow start one packet too
3125                 * quickly.  This is severely frowned upon behavior.
3126                 */
3127                if (likely(!(scb->tcp_flags & TCPHDR_SYN))) {
3128                        flag |= FLAG_DATA_ACKED;
3129                } else {
3130                        flag |= FLAG_SYN_ACKED;
3131                        tp->retrans_stamp = 0;
3132                }
3133
3134                if (!fully_acked)
3135                        break;
3136
3137                tcp_unlink_write_queue(skb, sk);
3138                sk_wmem_free_skb(sk, skb);
3139                if (unlikely(skb == tp->retransmit_skb_hint))
3140                        tp->retransmit_skb_hint = NULL;
3141                if (unlikely(skb == tp->lost_skb_hint))
3142                        tp->lost_skb_hint = NULL;
3143        }
3144
3145        if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una)))
3146                tp->snd_up = tp->snd_una;
3147
3148        if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
3149                flag |= FLAG_SACK_RENEGING;
3150
3151        skb_mstamp_get(&now);
3152        if (likely(first_ackt.v64)) {
3153                seq_rtt_us = skb_mstamp_us_delta(&now, &first_ackt);
3154                ca_seq_rtt_us = skb_mstamp_us_delta(&now, &last_ackt);
3155        }
3156
3157        rtt_update = tcp_ack_update_rtt(sk, flag, seq_rtt_us, sack_rtt_us);
3158
3159        if (flag & FLAG_ACKED) {
3160                const struct tcp_congestion_ops *ca_ops
3161                        = inet_csk(sk)->icsk_ca_ops;
3162
3163                tcp_rearm_rto(sk);
3164                if (unlikely(icsk->icsk_mtup.probe_size &&
3165                             !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) {
3166                        tcp_mtup_probe_success(sk);
3167                }
3168
3169                if (tcp_is_reno(tp)) {
3170                        tcp_remove_reno_sacks(sk, pkts_acked);
3171                } else {
3172                        int delta;
3173
3174                        /* Non-retransmitted hole got filled? That's reordering */
3175                        if (reord < prior_fackets)
3176                                tcp_update_reordering(sk, tp->fackets_out - reord, 0);
3177
3178                        delta = tcp_is_fack(tp) ? pkts_acked :
3179                                                  prior_sacked - tp->sacked_out;
3180                        tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta);
3181                }
3182
3183                tp->fackets_out -= min(pkts_acked, tp->fackets_out);
3184
3185                if (ca_ops->pkts_acked)
3186                        ca_ops->pkts_acked(sk, pkts_acked, ca_seq_rtt_us);
3187
3188        } else if (skb && rtt_update && sack_rtt_us >= 0 &&
3189                   sack_rtt_us > skb_mstamp_us_delta(&now, &skb->skb_mstamp)) {
3190                /* Do not re-arm RTO if the sack RTT is measured from data sent
3191                 * after when the head was last (re)transmitted. Otherwise the
3192                 * timeout may continue to extend in loss recovery.
3193                 */
3194                tcp_rearm_rto(sk);
3195        }
3196
3197#if FASTRETRANS_DEBUG > 0
3198        WARN_ON((int)tp->sacked_out < 0);
3199        WARN_ON((int)tp->lost_out < 0);
3200        WARN_ON((int)tp->retrans_out < 0);
3201        if (!tp->packets_out && tcp_is_sack(tp)) {
3202                icsk = inet_csk(sk);
3203                if (tp->lost_out) {
3204                        pr_debug("Leak l=%u %d\n",
3205                                 tp->lost_out, icsk->icsk_ca_state);
3206                        tp->lost_out = 0;
3207                }
3208                if (tp->sacked_out) {
3209                        pr_debug("Leak s=%u %d\n",
3210                                 tp->sacked_out, icsk->icsk_ca_state);
3211                        tp->sacked_out = 0;
3212                }
3213                if (tp->retrans_out) {
3214                        pr_debug("Leak r=%u %d\n",
3215                                 tp->retrans_out, icsk->icsk_ca_state);
3216                        tp->retrans_out = 0;
3217                }
3218        }
3219#endif
3220        return flag;
3221}
3222
3223static void tcp_ack_probe(struct sock *sk)
3224{
3225        const struct tcp_sock *tp = tcp_sk(sk);
3226        struct inet_connection_sock *icsk = inet_csk(sk);
3227
3228        /* Was it a usable window open? */
3229
3230        if (!after(TCP_SKB_CB(tcp_send_head(sk))->end_seq, tcp_wnd_end(tp))) {
3231                icsk->icsk_backoff = 0;
3232                inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
3233                /* Socket must be waked up by subsequent tcp_data_snd_check().
3234                 * This function is not for random using!
3235                 */
3236        } else {
3237                unsigned long when = inet_csk_rto_backoff(icsk, TCP_RTO_MAX);
3238
3239                inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3240                                          when, TCP_RTO_MAX);
3241        }
3242}
3243
3244static inline bool tcp_ack_is_dubious(const struct sock *sk, const int flag)
3245{
3246        return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
3247                inet_csk(sk)->icsk_ca_state != TCP_CA_Open;
3248}
3249
3250/* Decide wheather to run the increase function of congestion control. */
3251static inline bool tcp_may_raise_cwnd(const struct sock *sk, const int flag)
3252{
3253        if (tcp_in_cwnd_reduction(sk))
3254                return false;
3255
3256        /* If reordering is high then always grow cwnd whenever data is
3257         * delivered regardless of its ordering. Otherwise stay conservative
3258         * and only grow cwnd on in-order delivery (RFC5681). A stretched ACK w/
3259         * new SACK or ECE mark may first advance cwnd here and later reduce
3260         * cwnd in tcp_fastretrans_alert() based on more states.
3261         */
3262        if (tcp_sk(sk)->reordering > sysctl_tcp_reordering)
3263                return flag & FLAG_FORWARD_PROGRESS;
3264
3265        return flag & FLAG_DATA_ACKED;
3266}
3267
3268/* Check that window update is acceptable.
3269 * The function assumes that snd_una<=ack<=snd_next.
3270 */
3271static inline bool tcp_may_update_window(const struct tcp_sock *tp,
3272                                        const u32 ack, const u32 ack_seq,
3273                                        const u32 nwin)
3274{
3275        return  after(ack, tp->snd_una) ||
3276                after(ack_seq, tp->snd_wl1) ||
3277                (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd);
3278}
3279
3280/* Update our send window.
3281 *
3282 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
3283 * and in FreeBSD. NetBSD's one is even worse.) is wrong.
3284 */
3285static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack,
3286                                 u32 ack_seq)
3287{
3288        struct tcp_sock *tp = tcp_sk(sk);
3289        int flag = 0;
3290        u32 nwin = ntohs(tcp_hdr(skb)->window);
3291
3292        if (likely(!tcp_hdr(skb)->syn))
3293                nwin <<= tp->rx_opt.snd_wscale;
3294
3295        if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
3296                flag |= FLAG_WIN_UPDATE;
3297                tcp_update_wl(tp, ack_seq);
3298
3299                if (tp->snd_wnd != nwin) {
3300                        tp->snd_wnd = nwin;
3301
3302                        /* Note, it is the only place, where
3303                         * fast path is recovered for sending TCP.
3304                         */
3305                        tp->pred_flags = 0;
3306                        tcp_fast_path_check(sk);
3307
3308                        if (nwin > tp->max_window) {
3309                                tp->max_window = nwin;
3310                                tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
3311                        }
3312                }
3313        }
3314
3315        tp->snd_una = ack;
3316
3317        return flag;
3318}
3319
3320/* RFC 5961 7 [ACK Throttling] */
3321static void tcp_send_challenge_ack(struct sock *sk)
3322{
3323        /* unprotected vars, we dont care of overwrites */
3324        static u32 challenge_timestamp;
3325        static unsigned int challenge_count;
3326        u32 now = jiffies / HZ;
3327
3328        if (now != challenge_timestamp) {
3329                challenge_timestamp = now;
3330                challenge_count = 0;
3331        }
3332        if (++challenge_count <= sysctl_tcp_challenge_ack_limit) {
3333                NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPCHALLENGEACK);
3334                tcp_send_ack(sk);
3335        }
3336}
3337
3338static void tcp_store_ts_recent(struct tcp_sock *tp)
3339{
3340        tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
3341        tp->rx_opt.ts_recent_stamp = get_seconds();
3342}
3343
3344static void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
3345{
3346        if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
3347                /* PAWS bug workaround wrt. ACK frames, the PAWS discard
3348                 * extra check below makes sure this can only happen
3349                 * for pure ACK frames.  -DaveM
3350                 *
3351                 * Not only, also it occurs for expired timestamps.
3352                 */
3353
3354                if (tcp_paws_check(&tp->rx_opt, 0))
3355                        tcp_store_ts_recent(tp);
3356        }
3357}
3358
3359/* This routine deals with acks during a TLP episode.
3360 * Ref: loss detection algorithm in draft-dukkipati-tcpm-tcp-loss-probe.
3361 */
3362static void tcp_process_tlp_ack(struct sock *sk, u32 ack, int flag)
3363{
3364        struct tcp_sock *tp = tcp_sk(sk);
3365        bool is_tlp_dupack = (ack == tp->tlp_high_seq) &&
3366                             !(flag & (FLAG_SND_UNA_ADVANCED |
3367                                       FLAG_NOT_DUP | FLAG_DATA_SACKED));
3368
3369        /* Mark the end of TLP episode on receiving TLP dupack or when
3370         * ack is after tlp_high_seq.
3371         */
3372        if (is_tlp_dupack) {
3373                tp->tlp_high_seq = 0;
3374                return;
3375        }
3376
3377        if (after(ack, tp->tlp_high_seq)) {
3378                tp->tlp_high_seq = 0;
3379                /* Don't reduce cwnd if DSACK arrives for TLP retrans. */
3380                if (!(flag & FLAG_DSACKING_ACK)) {
3381                        tcp_init_cwnd_reduction(sk);
3382                        tcp_set_ca_state(sk, TCP_CA_CWR);
3383                        tcp_end_cwnd_reduction(sk);
3384                        tcp_try_keep_open(sk);
3385                        NET_INC_STATS_BH(sock_net(sk),
3386                                         LINUX_MIB_TCPLOSSPROBERECOVERY);
3387                }
3388        }
3389}
3390
3391static inline void tcp_in_ack_event(struct sock *sk, u32 flags)
3392{
3393        const struct inet_connection_sock *icsk = inet_csk(sk);
3394
3395        if (icsk->icsk_ca_ops->in_ack_event)
3396                icsk->icsk_ca_ops->in_ack_event(sk, flags);
3397}
3398
3399/* This routine deals with incoming acks, but not outgoing ones. */
3400static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag)
3401{
3402        struct inet_connection_sock *icsk = inet_csk(sk);
3403        struct tcp_sock *tp = tcp_sk(sk);
3404        u32 prior_snd_una = tp->snd_una;
3405        u32 ack_seq = TCP_SKB_CB(skb)->seq;
3406        u32 ack = TCP_SKB_CB(skb)->ack_seq;
3407        bool is_dupack = false;
3408        u32 prior_fackets;
3409        int prior_packets = tp->packets_out;
3410        const int prior_unsacked = tp->packets_out - tp->sacked_out;
3411        int acked = 0; /* Number of packets newly acked */
3412        long sack_rtt_us = -1L;
3413
3414        /* We very likely will need to access write queue head. */
3415        prefetchw(sk->sk_write_queue.next);
3416
3417        /* If the ack is older than previous acks
3418         * then we can probably ignore it.
3419         */
3420        if (before(ack, prior_snd_una)) {
3421                /* RFC 5961 5.2 [Blind Data Injection Attack].[Mitigation] */
3422                if (before(ack, prior_snd_una - tp->max_window)) {
3423                        tcp_send_challenge_ack(sk);
3424                        return -1;
3425                }
3426                goto old_ack;
3427        }
3428
3429        /* If the ack includes data we haven't sent yet, discard
3430         * this segment (RFC793 Section 3.9).
3431         */
3432        if (after(ack, tp->snd_nxt))
3433                goto invalid_ack;
3434
3435        if (icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS ||
3436            icsk->icsk_pending == ICSK_TIME_LOSS_PROBE)
3437                tcp_rearm_rto(sk);
3438
3439        if (after(ack, prior_snd_una)) {
3440                flag |= FLAG_SND_UNA_ADVANCED;
3441                icsk->icsk_retransmits = 0;
3442        }
3443
3444        prior_fackets = tp->fackets_out;
3445
3446        /* ts_recent update must be made after we are sure that the packet
3447         * is in window.
3448         */
3449        if (flag & FLAG_UPDATE_TS_RECENT)
3450                tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
3451
3452        if (!(flag & FLAG_SLOWPATH) && after(ack, prior_snd_una)) {
3453                /* Window is constant, pure forward advance.
3454                 * No more checks are required.
3455                 * Note, we use the fact that SND.UNA>=SND.WL2.
3456                 */
3457                tcp_update_wl(tp, ack_seq);
3458                tp->snd_una = ack;
3459                flag |= FLAG_WIN_UPDATE;
3460
3461                tcp_in_ack_event(sk, CA_ACK_WIN_UPDATE);
3462
3463                NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPACKS);
3464        } else {
3465                u32 ack_ev_flags = CA_ACK_SLOWPATH;
3466
3467                if (ack_seq != TCP_SKB_CB(skb)->end_seq)
3468                        flag |= FLAG_DATA;
3469                else
3470                        NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPUREACKS);
3471
3472                flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
3473
3474                if (TCP_SKB_CB(skb)->sacked)
3475                        flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
3476                                                        &sack_rtt_us);
3477
3478                if (tcp_ecn_rcv_ecn_echo(tp, tcp_hdr(skb))) {
3479                        flag |= FLAG_ECE;
3480                        ack_ev_flags |= CA_ACK_ECE;
3481                }
3482
3483                if (flag & FLAG_WIN_UPDATE)
3484                        ack_ev_flags |= CA_ACK_WIN_UPDATE;
3485
3486                tcp_in_ack_event(sk, ack_ev_flags);
3487        }
3488
3489        /* We passed data and got it acked, remove any soft error
3490         * log. Something worked...
3491         */
3492        sk->sk_err_soft = 0;
3493        icsk->icsk_probes_out = 0;
3494        tp->rcv_tstamp = tcp_time_stamp;
3495        if (!prior_packets)
3496                goto no_queue;
3497
3498        /* See if we can take anything off of the retransmit queue. */
3499        acked = tp->packets_out;
3500        flag |= tcp_clean_rtx_queue(sk, prior_fackets, prior_snd_una,
3501                                    sack_rtt_us);
3502        acked -= tp->packets_out;
3503
3504        /* Advance cwnd if state allows */
3505        if (tcp_may_raise_cwnd(sk, flag))
3506                tcp_cong_avoid(sk, ack, acked);
3507
3508        if (tcp_ack_is_dubious(sk, flag)) {
3509                is_dupack = !(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP));
3510                tcp_fastretrans_alert(sk, acked, prior_unsacked,
3511                                      is_dupack, flag);
3512        }
3513        if (tp->tlp_high_seq)
3514                tcp_process_tlp_ack(sk, ack, flag);
3515
3516        if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP)) {
3517                struct dst_entry *dst = __sk_dst_get(sk);
3518                if (dst)
3519                        dst_confirm(dst);
3520        }
3521
3522        if (icsk->icsk_pending == ICSK_TIME_RETRANS)
3523                tcp_schedule_loss_probe(sk);
3524        tcp_update_pacing_rate(sk);
3525        return 1;
3526
3527no_queue:
3528        /* If data was DSACKed, see if we can undo a cwnd reduction. */
3529        if (flag & FLAG_DSACKING_ACK)
3530                tcp_fastretrans_alert(sk, acked, prior_unsacked,
3531                                      is_dupack, flag);
3532        /* If this ack opens up a zero window, clear backoff.  It was
3533         * being used to time the probes, and is probably far higher than
3534         * it needs to be for normal retransmission.
3535         */
3536        if (tcp_send_head(sk))
3537                tcp_ack_probe(sk);
3538
3539        if (tp->tlp_high_seq)
3540                tcp_process_tlp_ack(sk, ack, flag);
3541        return 1;
3542
3543invalid_ack:
3544        SOCK_DEBUG(sk, "Ack %u after %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3545        return -1;
3546
3547old_ack:
3548        /* If data was SACKed, tag it and see if we should send more data.
3549         * If data was DSACKed, see if we can undo a cwnd reduction.
3550         */
3551        if (TCP_SKB_CB(skb)->sacked) {
3552                flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
3553                                                &sack_rtt_us);
3554                tcp_fastretrans_alert(sk, acked, prior_unsacked,
3555                                      is_dupack, flag);
3556        }
3557
3558        SOCK_DEBUG(sk, "Ack %u before %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3559        return 0;
3560}
3561
3562/* Look for tcp options. Normally only called on SYN and SYNACK packets.
3563 * But, this can also be called on packets in the established flow when
3564 * the fast version below fails.
3565 */
3566void tcp_parse_options(const struct sk_buff *skb,
3567                       struct tcp_options_received *opt_rx, int estab,
3568                       struct tcp_fastopen_cookie *foc)
3569{
3570        const unsigned char *ptr;
3571        const struct tcphdr *th = tcp_hdr(skb);
3572        int length = (th->doff * 4) - sizeof(struct tcphdr);
3573
3574        ptr = (const unsigned char *)(th + 1);
3575        opt_rx->saw_tstamp = 0;
3576
3577        while (length > 0) {
3578                int opcode = *ptr++;
3579                int opsize;
3580
3581                switch (opcode) {
3582                case TCPOPT_EOL:
3583                        return;
3584                case TCPOPT_NOP:        /* Ref: RFC 793 section 3.1 */
3585                        length--;
3586                        continue;
3587                default:
3588                        opsize = *ptr++;
3589                        if (opsize < 2) /* "silly options" */
3590                                return;
3591                        if (opsize > length)
3592                                return; /* don't parse partial options */
3593                        switch (opcode) {
3594                        case TCPOPT_MSS:
3595                                if (opsize == TCPOLEN_MSS && th->syn && !estab) {
3596                                        u16 in_mss = get_unaligned_be16(ptr);
3597                                        if (in_mss) {
3598                                                if (opt_rx->user_mss &&
3599                                                    opt_rx->user_mss < in_mss)
3600                                                        in_mss = opt_rx->user_mss;
3601                                                opt_rx->mss_clamp = in_mss;
3602                                        }
3603                                }
3604                                break;
3605                        case TCPOPT_WINDOW:
3606                                if (opsize == TCPOLEN_WINDOW && th->syn &&
3607                                    !estab && sysctl_tcp_window_scaling) {
3608                                        __u8 snd_wscale = *(__u8 *)ptr;
3609                                        opt_rx->wscale_ok = 1;
3610                                        if (snd_wscale > 14) {
3611                                                net_info_ratelimited("%s: Illegal window scaling value %d >14 received\n",
3612                                                                     __func__,
3613                                                                     snd_wscale);
3614                                                snd_wscale = 14;
3615                                        }
3616                                        opt_rx->snd_wscale = snd_wscale;
3617                                }
3618                                break;
3619                        case TCPOPT_TIMESTAMP:
3620                                if ((opsize == TCPOLEN_TIMESTAMP) &&
3621                                    ((estab && opt_rx->tstamp_ok) ||
3622                                     (!estab && sysctl_tcp_timestamps))) {
3623                                        opt_rx->saw_tstamp = 1;
3624                                        opt_rx->rcv_tsval = get_unaligned_be32(ptr);
3625                                        opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4);
3626                                }
3627                                break;
3628                        case TCPOPT_SACK_PERM:
3629                                if (opsize == TCPOLEN_SACK_PERM && th->syn &&
3630                                    !estab && sysctl_tcp_sack) {
3631                                        opt_rx->sack_ok = TCP_SACK_SEEN;
3632                                        tcp_sack_reset(opt_rx);
3633                                }
3634                                break;
3635
3636                        case TCPOPT_SACK:
3637                                if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
3638                                   !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
3639                                   opt_rx->sack_ok) {
3640                                        TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
3641                                }
3642                                break;
3643#ifdef CONFIG_TCP_MD5SIG
3644                        case TCPOPT_MD5SIG:
3645                                /*
3646                                 * The MD5 Hash has already been
3647                                 * checked (see tcp_v{4,6}_do_rcv()).
3648                                 */
3649                                break;
3650#endif
3651                        case TCPOPT_EXP:
3652                                /* Fast Open option shares code 254 using a
3653                                 * 16 bits magic number. It's valid only in
3654                                 * SYN or SYN-ACK with an even size.
3655                                 */
3656                                if (opsize < TCPOLEN_EXP_FASTOPEN_BASE ||
3657                                    get_unaligned_be16(ptr) != TCPOPT_FASTOPEN_MAGIC ||
3658                                    foc == NULL || !th->syn || (opsize & 1))
3659                                        break;
3660                                foc->len = opsize - TCPOLEN_EXP_FASTOPEN_BASE;
3661                                if (foc->len >= TCP_FASTOPEN_COOKIE_MIN &&
3662                                    foc->len <= TCP_FASTOPEN_COOKIE_MAX)
3663                                        memcpy(foc->val, ptr + 2, foc->len);
3664                                else if (foc->len != 0)
3665                                        foc->len = -1;
3666                                break;
3667
3668                        }
3669                        ptr += opsize-2;
3670                        length -= opsize;
3671                }
3672        }
3673}
3674EXPORT_SYMBOL(tcp_parse_options);
3675
3676static bool tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th)
3677{
3678        const __be32 *ptr = (const __be32 *)(th + 1);
3679
3680        if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
3681                          | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
3682                tp->rx_opt.saw_tstamp = 1;
3683                ++ptr;
3684                tp->rx_opt.rcv_tsval = ntohl(*ptr);
3685                ++ptr;
3686                if (*ptr)
3687                        tp->rx_opt.rcv_tsecr = ntohl(*ptr) - tp->tsoffset;
3688                else
3689                        tp->rx_opt.rcv_tsecr = 0;
3690                return true;
3691        }
3692        return false;
3693}
3694
3695/* Fast parse options. This hopes to only see timestamps.
3696 * If it is wrong it falls back on tcp_parse_options().
3697 */
3698static bool tcp_fast_parse_options(const struct sk_buff *skb,
3699                                   const struct tcphdr *th, struct tcp_sock *tp)
3700{
3701        /* In the spirit of fast parsing, compare doff directly to constant
3702         * values.  Because equality is used, short doff can be ignored here.
3703         */
3704        if (th->doff == (sizeof(*th) / 4)) {
3705                tp->rx_opt.saw_tstamp = 0;
3706                return false;
3707        } else if (tp->rx_opt.tstamp_ok &&
3708                   th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) {
3709                if (tcp_parse_aligned_timestamp(tp, th))
3710                        return true;
3711        }
3712
3713        tcp_parse_options(skb, &tp->rx_opt, 1, NULL);
3714        if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
3715                tp->rx_opt.rcv_tsecr -= tp->tsoffset;
3716
3717        return true;
3718}
3719
3720#ifdef CONFIG_TCP_MD5SIG
3721/*
3722 * Parse MD5 Signature option
3723 */
3724const u8 *tcp_parse_md5sig_option(const struct tcphdr *th)
3725{
3726        int length = (th->doff << 2) - sizeof(*th);
3727        const u8 *ptr = (const u8 *)(th + 1);
3728
3729        /* If the TCP option is too short, we can short cut */
3730        if (length < TCPOLEN_MD5SIG)
3731                return NULL;
3732
3733        while (length > 0) {
3734                int opcode = *ptr++;
3735                int opsize;
3736
3737                switch (opcode) {
3738                case TCPOPT_EOL:
3739                        return NULL;
3740                case TCPOPT_NOP:
3741                        length--;
3742                        continue;
3743                default:
3744                        opsize = *ptr++;
3745                        if (opsize < 2 || opsize > length)
3746                                return NULL;
3747                        if (opcode == TCPOPT_MD5SIG)
3748                                return opsize == TCPOLEN_MD5SIG ? ptr : NULL;
3749                }
3750                ptr += opsize - 2;
3751                length -= opsize;
3752        }
3753        return NULL;
3754}
3755EXPORT_SYMBOL(tcp_parse_md5sig_option);
3756#endif
3757
3758/* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
3759 *
3760 * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
3761 * it can pass through stack. So, the following predicate verifies that
3762 * this segment is not used for anything but congestion avoidance or
3763 * fast retransmit. Moreover, we even are able to eliminate most of such
3764 * second order effects, if we apply some small "replay" window (~RTO)
3765 * to timestamp space.
3766 *
3767 * All these measures still do not guarantee that we reject wrapped ACKs
3768 * on networks with high bandwidth, when sequence space is recycled fastly,
3769 * but it guarantees that such events will be very rare and do not affect
3770 * connection seriously. This doesn't look nice, but alas, PAWS is really
3771 * buggy extension.
3772 *
3773 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
3774 * states that events when retransmit arrives after original data are rare.
3775 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
3776 * the biggest problem on large power networks even with minor reordering.
3777 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
3778 * up to bandwidth of 18Gigabit/sec. 8) ]
3779 */
3780
3781static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
3782{
3783        const struct tcp_sock *tp = tcp_sk(sk);
3784        const struct tcphdr *th = tcp_hdr(skb);
3785        u32 seq = TCP_SKB_CB(skb)->seq;
3786        u32 ack = TCP_SKB_CB(skb)->ack_seq;
3787
3788        return (/* 1. Pure ACK with correct sequence number. */
3789                (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
3790
3791                /* 2. ... and duplicate ACK. */
3792                ack == tp->snd_una &&
3793
3794                /* 3. ... and does not update window. */
3795                !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
3796
3797                /* 4. ... and sits in replay window. */
3798                (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
3799}
3800
3801static inline bool tcp_paws_discard(const struct sock *sk,
3802                                   const struct sk_buff *skb)
3803{
3804        const struct tcp_sock *tp = tcp_sk(sk);
3805
3806        return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) &&
3807               !tcp_disordered_ack(sk, skb);
3808}
3809
3810/* Check segment sequence number for validity.
3811 *
3812 * Segment controls are considered valid, if the segment
3813 * fits to the window after truncation to the window. Acceptability
3814 * of data (and SYN, FIN, of course) is checked separately.
3815 * See tcp_data_queue(), for example.
3816 *
3817 * Also, controls (RST is main one) are accepted using RCV.WUP instead
3818 * of RCV.NXT. Peer still did not advance his SND.UNA when we
3819 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
3820 * (borrowed from freebsd)
3821 */
3822
3823static inline bool tcp_sequence(const struct tcp_sock *tp, u32 seq, u32 end_seq)
3824{
3825        return  !before(end_seq, tp->rcv_wup) &&
3826                !after(seq, tp->rcv_nxt + tcp_receive_window(tp));
3827}
3828
3829/* When we get a reset we do this. */
3830void tcp_reset(struct sock *sk)
3831{
3832        /* We want the right error as BSD sees it (and indeed as we do). */
3833        switch (sk->sk_state) {
3834        case TCP_SYN_SENT:
3835                sk->sk_err = ECONNREFUSED;
3836                break;
3837        case TCP_CLOSE_WAIT:
3838                sk->sk_err = EPIPE;
3839                break;
3840        case TCP_CLOSE:
3841                return;
3842        default:
3843                sk->sk_err = ECONNRESET;
3844        }
3845        /* This barrier is coupled with smp_rmb() in tcp_poll() */
3846        smp_wmb();
3847
3848        if (!sock_flag(sk, SOCK_DEAD))
3849                sk->sk_error_report(sk);
3850
3851        tcp_done(sk);
3852}
3853
3854/*
3855 *      Process the FIN bit. This now behaves as it is supposed to work
3856 *      and the FIN takes effect when it is validly part of sequence
3857 *      space. Not before when we get holes.
3858 *
3859 *      If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
3860 *      (and thence onto LAST-ACK and finally, CLOSE, we never enter
3861 *      TIME-WAIT)
3862 *
3863 *      If we are in FINWAIT-1, a received FIN indicates simultaneous
3864 *      close and we go into CLOSING (and later onto TIME-WAIT)
3865 *
3866 *      If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
3867 */
3868static void tcp_fin(struct sock *sk)
3869{
3870        struct tcp_sock *tp = tcp_sk(sk);
3871        const struct dst_entry *dst;
3872
3873        inet_csk_schedule_ack(sk);
3874
3875        sk->sk_shutdown |= RCV_SHUTDOWN;
3876        sock_set_flag(sk, SOCK_DONE);
3877
3878        switch (sk->sk_state) {
3879        case TCP_SYN_RECV:
3880        case TCP_ESTABLISHED:
3881                /* Move to CLOSE_WAIT */
3882                tcp_set_state(sk, TCP_CLOSE_WAIT);
3883                dst = __sk_dst_get(sk);
3884                if (!dst || !dst_metric(dst, RTAX_QUICKACK))
3885                        inet_csk(sk)->icsk_ack.pingpong = 1;
3886                break;
3887
3888        case TCP_CLOSE_WAIT:
3889        case TCP_CLOSING:
3890                /* Received a retransmission of the FIN, do
3891                 * nothing.
3892                 */
3893                break;
3894        case TCP_LAST_ACK:
3895                /* RFC793: Remain in the LAST-ACK state. */
3896                break;
3897
3898        case TCP_FIN_WAIT1:
3899                /* This case occurs when a simultaneous close
3900                 * happens, we must ack the received FIN and
3901                 * enter the CLOSING state.
3902                 */
3903                tcp_send_ack(sk);
3904                tcp_set_state(sk, TCP_CLOSING);
3905                break;
3906        case TCP_FIN_WAIT2:
3907                /* Received a FIN -- send ACK and enter TIME_WAIT. */
3908                tcp_send_ack(sk);
3909                tcp_time_wait(sk, TCP_TIME_WAIT, 0);
3910                break;
3911        default:
3912                /* Only TCP_LISTEN and TCP_CLOSE are left, in these
3913                 * cases we should never reach this piece of code.
3914                 */
3915                pr_err("%s: Impossible, sk->sk_state=%d\n",
3916                       __func__, sk->sk_state);
3917                break;
3918        }
3919
3920        /* It _is_ possible, that we have something out-of-order _after_ FIN.
3921         * Probably, we should reset in this case. For now drop them.
3922         */
3923        __skb_queue_purge(&tp->out_of_order_queue);
3924        if (tcp_is_sack(tp))
3925                tcp_sack_reset(&tp->rx_opt);
3926        sk_mem_reclaim(sk);
3927
3928        if (!sock_flag(sk, SOCK_DEAD)) {
3929                sk->sk_state_change(sk);
3930
3931                /* Do not send POLL_HUP for half duplex close. */
3932                if (sk->sk_shutdown == SHUTDOWN_MASK ||
3933                    sk->sk_state == TCP_CLOSE)
3934                        sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
3935                else
3936                        sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
3937        }
3938}
3939
3940static inline bool tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
3941                                  u32 end_seq)
3942{
3943        if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
3944                if (before(seq, sp->start_seq))
3945                        sp->start_seq = seq;
3946                if (after(end_seq, sp->end_seq))
3947                        sp->end_seq = end_seq;
3948                return true;
3949        }
3950        return false;
3951}
3952
3953static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq)
3954{
3955        struct tcp_sock *tp = tcp_sk(sk);
3956
3957        if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
3958                int mib_idx;
3959
3960                if (before(seq, tp->rcv_nxt))
3961                        mib_idx = LINUX_MIB_TCPDSACKOLDSENT;
3962                else
3963                        mib_idx = LINUX_MIB_TCPDSACKOFOSENT;
3964
3965                NET_INC_STATS_BH(sock_net(sk), mib_idx);
3966
3967                tp->rx_opt.dsack = 1;
3968                tp->duplicate_sack[0].start_seq = seq;
3969                tp->duplicate_sack[0].end_seq = end_seq;
3970        }
3971}
3972
3973static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq)
3974{
3975        struct tcp_sock *tp = tcp_sk(sk);
3976
3977        if (!tp->rx_opt.dsack)
3978                tcp_dsack_set(sk, seq, end_seq);
3979        else
3980                tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
3981}
3982
3983static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb)
3984{
3985        struct tcp_sock *tp = tcp_sk(sk);
3986
3987        if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
3988            before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
3989                NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
3990                tcp_enter_quickack_mode(sk);
3991
3992                if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
3993                        u32 end_seq = TCP_SKB_CB(skb)->end_seq;
3994
3995                        if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
3996                                end_seq = tp->rcv_nxt;
3997                        tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq);
3998                }
3999        }
4000
4001        tcp_send_ack(sk);
4002}
4003
4004/* These routines update the SACK block as out-of-order packets arrive or
4005 * in-order packets close up the sequence space.
4006 */
4007static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
4008{
4009        int this_sack;
4010        struct tcp_sack_block *sp = &tp->selective_acks[0];
4011        struct tcp_sack_block *swalk = sp + 1;
4012
4013        /* See if the recent change to the first SACK eats into
4014         * or hits the sequence space of other SACK blocks, if so coalesce.
4015         */
4016        for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
4017                if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
4018                        int i;
4019
4020                        /* Zap SWALK, by moving every further SACK up by one slot.
4021                         * Decrease num_sacks.
4022                         */
4023                        tp->rx_opt.num_sacks--;
4024                        for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
4025                                sp[i] = sp[i + 1];
4026                        continue;
4027                }
4028                this_sack++, swalk++;
4029        }
4030}
4031
4032static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
4033{
4034        struct tcp_sock *tp = tcp_sk(sk);
4035        struct tcp_sack_block *sp = &tp->selective_acks[0];
4036        int cur_sacks = tp->rx_opt.num_sacks;
4037        int this_sack;
4038
4039        if (!cur_sacks)
4040                goto new_sack;
4041
4042        for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
4043                if (tcp_sack_extend(sp, seq, end_seq)) {
4044                        /* Rotate this_sack to the first one. */
4045                        for (; this_sack > 0; this_sack--, sp--)
4046                                swap(*sp, *(sp - 1));
4047                        if (cur_sacks > 1)
4048                                tcp_sack_maybe_coalesce(tp);
4049                        return;
4050                }
4051        }
4052
4053        /* Could not find an adjacent existing SACK, build a new one,
4054         * put it at the front, and shift everyone else down.  We
4055         * always know there is at least one SACK present already here.
4056         *
4057         * If the sack array is full, forget about the last one.
4058         */
4059        if (this_sack >= TCP_NUM_SACKS) {
4060                this_sack--;
4061                tp->rx_opt.num_sacks--;
4062                sp--;
4063        }
4064        for (; this_sack > 0; this_sack--, sp--)
4065                *sp = *(sp - 1);
4066
4067new_sack:
4068        /* Build the new head SACK, and we're done. */
4069        sp->start_seq = seq;
4070        sp->end_seq = end_seq;
4071        tp->rx_opt.num_sacks++;
4072}
4073
4074/* RCV.NXT advances, some SACKs should be eaten. */
4075
4076static void tcp_sack_remove(struct tcp_sock *tp)
4077{
4078        struct tcp_sack_block *sp = &tp->selective_acks[0];
4079        int num_sacks = tp->rx_opt.num_sacks;
4080        int this_sack;
4081
4082        /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
4083        if (skb_queue_empty(&tp->out_of_order_queue)) {
4084                tp->rx_opt.num_sacks = 0;
4085                return;
4086        }
4087
4088        for (this_sack = 0; this_sack < num_sacks;) {
4089                /* Check if the start of the sack is covered by RCV.NXT. */
4090                if (!before(tp->rcv_nxt, sp->start_seq)) {
4091                        int i;
4092
4093                        /* RCV.NXT must cover all the block! */
4094                        WARN_ON(before(tp->rcv_nxt, sp->end_seq));
4095
4096                        /* Zap this SACK, by moving forward any other SACKS. */
4097                        for (i = this_sack+1; i < num_sacks; i++)
4098                                tp->selective_acks[i-1] = tp->selective_acks[i];
4099                        num_sacks--;
4100                        continue;
4101                }
4102                this_sack++;
4103                sp++;
4104        }
4105        tp->rx_opt.num_sacks = num_sacks;
4106}
4107
4108/**
4109 * tcp_try_coalesce - try to merge skb to prior one
4110 * @sk: socket
4111 * @to: prior buffer
4112 * @from: buffer to add in queue
4113 * @fragstolen: pointer to boolean
4114 *
4115 * Before queueing skb @from after @to, try to merge them
4116 * to reduce overall memory use and queue lengths, if cost is small.
4117 * Packets in ofo or receive queues can stay a long time.
4118 * Better try to coalesce them right now to avoid future collapses.
4119 * Returns true if caller should free @from instead of queueing it
4120 */
4121static bool tcp_try_coalesce(struct sock *sk,
4122                             struct sk_buff *to,
4123                             struct sk_buff *from,
4124                             bool *fragstolen)
4125{
4126        int delta;
4127
4128        *fragstolen = false;
4129
4130        /* Its possible this segment overlaps with prior segment in queue */
4131        if (TCP_SKB_CB(from)->seq != TCP_SKB_CB(to)->end_seq)
4132                return false;
4133
4134        if (!skb_try_coalesce(to, from, fragstolen, &delta))
4135                return false;
4136
4137        atomic_add(delta, &sk->sk_rmem_alloc);
4138        sk_mem_charge(sk, delta);
4139        NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRCVCOALESCE);
4140        TCP_SKB_CB(to)->end_seq = TCP_SKB_CB(from)->end_seq;
4141        TCP_SKB_CB(to)->ack_seq = TCP_SKB_CB(from)->ack_seq;
4142        TCP_SKB_CB(to)->tcp_flags |= TCP_SKB_CB(from)->tcp_flags;
4143        return true;
4144}
4145
4146/* This one checks to see if we can put data from the
4147 * out_of_order queue into the receive_queue.
4148 */
4149static void tcp_ofo_queue(struct sock *sk)
4150{
4151        struct tcp_sock *tp = tcp_sk(sk);
4152        __u32 dsack_high = tp->rcv_nxt;
4153        struct sk_buff *skb, *tail;
4154        bool fragstolen, eaten;
4155
4156        while ((skb = skb_peek(&tp->out_of_order_queue)) != NULL) {
4157                if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
4158                        break;
4159
4160                if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
4161                        __u32 dsack = dsack_high;
4162                        if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
4163                                dsack_high = TCP_SKB_CB(skb)->end_seq;
4164                        tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack);
4165                }
4166
4167                __skb_unlink(skb, &tp->out_of_order_queue);
4168                if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4169                        SOCK_DEBUG(sk, "ofo packet was already received\n");
4170                        __kfree_skb(skb);
4171                        continue;
4172                }
4173                SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n",
4174                           tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4175                           TCP_SKB_CB(skb)->end_seq);
4176
4177                tail = skb_peek_tail(&sk->sk_receive_queue);
4178                eaten = tail && tcp_try_coalesce(sk, tail, skb, &fragstolen);
4179                tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4180                if (!eaten)
4181                        __skb_queue_tail(&sk->sk_receive_queue, skb);
4182                if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
4183                        tcp_fin(sk);
4184                if (eaten)
4185                        kfree_skb_partial(skb, fragstolen);
4186        }
4187}
4188
4189static bool tcp_prune_ofo_queue(struct sock *sk);
4190static int tcp_prune_queue(struct sock *sk);
4191
4192static int tcp_try_rmem_schedule(struct sock *sk, struct sk_buff *skb,
4193                                 unsigned int size)
4194{
4195        if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
4196            !sk_rmem_schedule(sk, skb, size)) {
4197
4198                if (tcp_prune_queue(sk) < 0)
4199                        return -1;
4200
4201                if (!sk_rmem_schedule(sk, skb, size)) {
4202                        if (!tcp_prune_ofo_queue(sk))
4203                                return -1;
4204
4205                        if (!sk_rmem_schedule(sk, skb, size))
4206                                return -1;
4207                }
4208        }
4209        return 0;
4210}
4211
4212static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb)
4213{
4214        struct tcp_sock *tp = tcp_sk(sk);
4215        struct sk_buff *skb1;
4216        u32 seq, end_seq;
4217
4218        tcp_ecn_check_ce(tp, skb);
4219
4220        if (unlikely(tcp_try_rmem_schedule(sk, skb, skb->truesize))) {
4221                NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFODROP);
4222                __kfree_skb(skb);
4223                return;
4224        }
4225
4226        /* Disable header prediction. */
4227        tp->pred_flags = 0;
4228        inet_csk_schedule_ack(sk);
4229
4230        NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFOQUEUE);
4231        SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n",
4232                   tp->rcv_nxt, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4233
4234        skb1 = skb_peek_tail(&tp->out_of_order_queue);
4235        if (!skb1) {
4236                /* Initial out of order segment, build 1 SACK. */
4237                if (tcp_is_sack(tp)) {
4238                        tp->rx_opt.num_sacks = 1;
4239                        tp->selective_acks[0].start_seq = TCP_SKB_CB(skb)->seq;
4240                        tp->selective_acks[0].end_seq =
4241                                                TCP_SKB_CB(skb)->end_seq;
4242                }
4243                __skb_queue_head(&tp->out_of_order_queue, skb);
4244                goto end;
4245        }
4246
4247        seq = TCP_SKB_CB(skb)->seq;
4248        end_seq = TCP_SKB_CB(skb)->end_seq;
4249
4250        if (seq == TCP_SKB_CB(skb1)->end_seq) {
4251                bool fragstolen;
4252
4253                if (!tcp_try_coalesce(sk, skb1, skb, &fragstolen)) {
4254                        __skb_queue_after(&tp->out_of_order_queue, skb1, skb);
4255                } else {
4256                        tcp_grow_window(sk, skb);
4257                        kfree_skb_partial(skb, fragstolen);
4258                        skb = NULL;
4259                }
4260
4261                if (!tp->rx_opt.num_sacks ||
4262                    tp->selective_acks[0].end_seq != seq)
4263                        goto add_sack;
4264
4265                /* Common case: data arrive in order after hole. */
4266                tp->selective_acks[0].end_seq = end_seq;
4267                goto end;
4268        }
4269
4270        /* Find place to insert this segment. */
4271        while (1) {
4272                if (!after(TCP_SKB_CB(skb1)->seq, seq))
4273                        break;
4274                if (skb_queue_is_first(&tp->out_of_order_queue, skb1)) {
4275                        skb1 = NULL;
4276                        break;
4277                }
4278                skb1 = skb_queue_prev(&tp->out_of_order_queue, skb1);
4279        }
4280
4281        /* Do skb overlap to previous one? */
4282        if (skb1 && before(seq, TCP_SKB_CB(skb1)->end_seq)) {
4283                if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4284                        /* All the bits are present. Drop. */
4285                        NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFOMERGE);
4286                        __kfree_skb(skb);
4287                        skb = NULL;
4288                        tcp_dsack_set(sk, seq, end_seq);
4289                        goto add_sack;
4290                }
4291                if (after(seq, TCP_SKB_CB(skb1)->seq)) {
4292                        /* Partial overlap. */
4293                        tcp_dsack_set(sk, seq,
4294                                      TCP_SKB_CB(skb1)->end_seq);
4295                } else {
4296                        if (skb_queue_is_first(&tp->out_of_order_queue,
4297                                               skb1))
4298                                skb1 = NULL;
4299                        else
4300                                skb1 = skb_queue_prev(
4301                                        &tp->out_of_order_queue,
4302                                        skb1);
4303                }
4304        }
4305        if (!skb1)
4306                __skb_queue_head(&tp->out_of_order_queue, skb);
4307        else
4308                __skb_queue_after(&tp->out_of_order_queue, skb1, skb);
4309
4310        /* And clean segments covered by new one as whole. */
4311        while (!skb_queue_is_last(&tp->out_of_order_queue, skb)) {
4312                skb1 = skb_queue_next(&tp->out_of_order_queue, skb);
4313
4314                if (!after(end_seq, TCP_SKB_CB(skb1)->seq))
4315                        break;
4316                if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4317                        tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4318                                         end_seq);
4319                        break;
4320                }
4321                __skb_unlink(skb1, &tp->out_of_order_queue);
4322                tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4323                                 TCP_SKB_CB(skb1)->end_seq);
4324                NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFOMERGE);
4325                __kfree_skb(skb1);
4326        }
4327
4328add_sack:
4329        if (tcp_is_sack(tp))
4330                tcp_sack_new_ofo_skb(sk, seq, end_seq);
4331end:
4332        if (skb) {
4333                tcp_grow_window(sk, skb);
4334                skb_set_owner_r(skb, sk);
4335        }
4336}
4337
4338static int __must_check tcp_queue_rcv(struct sock *sk, struct sk_buff *skb, int hdrlen,
4339                  bool *fragstolen)
4340{
4341        int eaten;
4342        struct sk_buff *tail = skb_peek_tail(&sk->sk_receive_queue);
4343
4344        __skb_pull(skb, hdrlen);
4345        eaten = (tail &&
4346                 tcp_try_coalesce(sk, tail, skb, fragstolen)) ? 1 : 0;
4347        tcp_sk(sk)->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4348        if (!eaten) {
4349                __skb_queue_tail(&sk->sk_receive_queue, skb);
4350                skb_set_owner_r(skb, sk);
4351        }
4352        return eaten;
4353}
4354
4355int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size)
4356{
4357        struct sk_buff *skb;
4358        bool fragstolen;
4359
4360        if (size == 0)
4361                return 0;
4362
4363        skb = alloc_skb(size, sk->sk_allocation);
4364        if (!skb)
4365                goto err;
4366
4367        if (tcp_try_rmem_schedule(sk, skb, skb->truesize))
4368                goto err_free;
4369
4370        if (memcpy_fromiovec(skb_put(skb, size), msg->msg_iov, size))
4371                goto err_free;
4372
4373        TCP_SKB_CB(skb)->seq = tcp_sk(sk)->rcv_nxt;
4374        TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + size;
4375        TCP_SKB_CB(skb)->ack_seq = tcp_sk(sk)->snd_una - 1;
4376
4377        if (tcp_queue_rcv(sk, skb, 0, &fragstolen)) {
4378                WARN_ON_ONCE(fragstolen); /* should not happen */
4379                __kfree_skb(skb);
4380        }
4381        return size;
4382
4383err_free:
4384        kfree_skb(skb);
4385err:
4386        return -ENOMEM;
4387}
4388
4389static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
4390{
4391        struct tcp_sock *tp = tcp_sk(sk);
4392        int eaten = -1;
4393        bool fragstolen = false;
4394
4395        if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq)
4396                goto drop;
4397
4398        skb_dst_drop(skb);
4399        __skb_pull(skb, tcp_hdr(skb)->doff * 4);
4400
4401        tcp_ecn_accept_cwr(tp, skb);
4402
4403        tp->rx_opt.dsack = 0;
4404
4405        /*  Queue data for delivery to the user.
4406         *  Packets in sequence go to the receive queue.
4407         *  Out of sequence packets to the out_of_order_queue.
4408         */
4409        if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
4410                if (tcp_receive_window(tp) == 0)
4411                        goto out_of_window;
4412
4413                /* Ok. In sequence. In window. */
4414                if (tp->ucopy.task == current &&
4415                    tp->copied_seq == tp->rcv_nxt && tp->ucopy.len &&
4416                    sock_owned_by_user(sk) && !tp->urg_data) {
4417                        int chunk = min_t(unsigned int, skb->len,
4418                                          tp->ucopy.len);
4419
4420                        __set_current_state(TASK_RUNNING);
4421
4422                        local_bh_enable();
4423                        if (!skb_copy_datagram_iovec(skb, 0, tp->ucopy.iov, chunk)) {
4424                                tp->ucopy.len -= chunk;
4425                                tp->copied_seq += chunk;
4426                                eaten = (chunk == skb->len);
4427                                tcp_rcv_space_adjust(sk);
4428                        }
4429                        local_bh_disable();
4430                }
4431
4432                if (eaten <= 0) {
4433queue_and_out:
4434                        if (eaten < 0 &&
4435                            tcp_try_rmem_schedule(sk, skb, skb->truesize))
4436                                goto drop;
4437
4438                        eaten = tcp_queue_rcv(sk, skb, 0, &fragstolen);
4439                }
4440                tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4441                if (skb->len)
4442                        tcp_event_data_recv(sk, skb);
4443                if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
4444                        tcp_fin(sk);
4445
4446                if (!skb_queue_empty(&tp->out_of_order_queue)) {
4447                        tcp_ofo_queue(sk);
4448
4449                        /* RFC2581. 4.2. SHOULD send immediate ACK, when
4450                         * gap in queue is filled.
4451                         */
4452                        if (skb_queue_empty(&tp->out_of_order_queue))
4453                                inet_csk(sk)->icsk_ack.pingpong = 0;
4454                }
4455
4456                if (tp->rx_opt.num_sacks)
4457                        tcp_sack_remove(tp);
4458
4459                tcp_fast_path_check(sk);
4460
4461                if (eaten > 0)
4462                        kfree_skb_partial(skb, fragstolen);
4463                if (!sock_flag(sk, SOCK_DEAD))
4464                        sk->sk_data_ready(sk);
4465                return;
4466        }
4467
4468        if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4469                /* A retransmit, 2nd most common case.  Force an immediate ack. */
4470                NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4471                tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4472
4473out_of_window:
4474                tcp_enter_quickack_mode(sk);
4475                inet_csk_schedule_ack(sk);
4476drop:
4477                __kfree_skb(skb);
4478                return;
4479        }
4480
4481        /* Out of window. F.e. zero window probe. */
4482        if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
4483                goto out_of_window;
4484
4485        tcp_enter_quickack_mode(sk);
4486
4487        if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4488                /* Partial packet, seq < rcv_next < end_seq */
4489                SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n",
4490                           tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4491                           TCP_SKB_CB(skb)->end_seq);
4492
4493                tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
4494
4495                /* If window is closed, drop tail of packet. But after
4496                 * remembering D-SACK for its head made in previous line.
4497                 */
4498                if (!tcp_receive_window(tp))
4499                        goto out_of_window;
4500                goto queue_and_out;
4501        }
4502
4503        tcp_data_queue_ofo(sk, skb);
4504}
4505
4506static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb,
4507                                        struct sk_buff_head *list)
4508{
4509        struct sk_buff *next = NULL;
4510
4511        if (!skb_queue_is_last(list, skb))
4512                next = skb_queue_next(list, skb);
4513
4514        __skb_unlink(skb, list);
4515        __kfree_skb(skb);
4516        NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED);
4517
4518        return next;
4519}
4520
4521/* Collapse contiguous sequence of skbs head..tail with
4522 * sequence numbers start..end.
4523 *
4524 * If tail is NULL, this means until the end of the list.
4525 *
4526 * Segments with FIN/SYN are not collapsed (only because this
4527 * simplifies code)
4528 */
4529static void
4530tcp_collapse(struct sock *sk, struct sk_buff_head *list,
4531             struct sk_buff *head, struct sk_buff *tail,
4532             u32 start, u32 end)
4533{
4534        struct sk_buff *skb, *n;
4535        bool end_of_skbs;
4536
4537        /* First, check that queue is collapsible and find
4538         * the point where collapsing can be useful. */
4539        skb = head;
4540restart:
4541        end_of_skbs = true;
4542        skb_queue_walk_from_safe(list, skb, n) {
4543                if (skb == tail)
4544                        break;
4545                /* No new bits? It is possible on ofo queue. */
4546                if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4547                        skb = tcp_collapse_one(sk, skb, list);
4548                        if (!skb)
4549                                break;
4550                        goto restart;
4551                }
4552
4553                /* The first skb to collapse is:
4554                 * - not SYN/FIN and
4555                 * - bloated or contains data before "start" or
4556                 *   overlaps to the next one.
4557                 */
4558                if (!(TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)) &&
4559                    (tcp_win_from_space(skb->truesize) > skb->len ||
4560                     before(TCP_SKB_CB(skb)->seq, start))) {
4561                        end_of_skbs = false;
4562                        break;
4563                }
4564
4565                if (!skb_queue_is_last(list, skb)) {
4566                        struct sk_buff *next = skb_queue_next(list, skb);
4567                        if (next != tail &&
4568                            TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(next)->seq) {
4569                                end_of_skbs = false;
4570                                break;
4571                        }
4572                }
4573
4574                /* Decided to skip this, advance start seq. */
4575                start = TCP_SKB_CB(skb)->end_seq;
4576        }
4577        if (end_of_skbs ||
4578            (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)))
4579                return;
4580
4581        while (before(start, end)) {
4582                int copy = min_t(int, SKB_MAX_ORDER(0, 0), end - start);
4583                struct sk_buff *nskb;
4584
4585                nskb = alloc_skb(copy, GFP_ATOMIC);
4586                if (!nskb)
4587                        return;
4588
4589                memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
4590                TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
4591                __skb_queue_before(list, skb, nskb);
4592                skb_set_owner_r(nskb, sk);
4593
4594                /* Copy data, releasing collapsed skbs. */
4595                while (copy > 0) {
4596                        int offset = start - TCP_SKB_CB(skb)->seq;
4597                        int size = TCP_SKB_CB(skb)->end_seq - start;
4598
4599                        BUG_ON(offset < 0);
4600                        if (size > 0) {
4601                                size = min(copy, size);
4602                                if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
4603                                        BUG();
4604                                TCP_SKB_CB(nskb)->end_seq += size;
4605                                copy -= size;
4606                                start += size;
4607                        }
4608                        if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4609                                skb = tcp_collapse_one(sk, skb, list);
4610                                if (!skb ||
4611                                    skb == tail ||
4612                                    (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)))
4613                                        return;
4614                        }
4615                }
4616        }
4617}
4618
4619/* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
4620 * and tcp_collapse() them until all the queue is collapsed.
4621 */
4622static void tcp_collapse_ofo_queue(struct sock *sk)
4623{
4624        struct tcp_sock *tp = tcp_sk(sk);
4625        struct sk_buff *skb = skb_peek(&tp->out_of_order_queue);
4626        struct sk_buff *head;
4627        u32 start, end;
4628
4629        if (skb == NULL)
4630                return;
4631
4632        start = TCP_SKB_CB(skb)->seq;
4633        end = TCP_SKB_CB(skb)->end_seq;
4634        head = skb;
4635
4636        for (;;) {
4637                struct sk_buff *next = NULL;
4638
4639                if (!skb_queue_is_last(&tp->out_of_order_queue, skb))
4640                        next = skb_queue_next(&tp->out_of_order_queue, skb);
4641                skb = next;
4642
4643                /* Segment is terminated when we see gap or when
4644                 * we are at the end of all the queue. */
4645                if (!skb ||
4646                    after(TCP_SKB_CB(skb)->seq, end) ||
4647                    before(TCP_SKB_CB(skb)->end_seq, start)) {
4648                        tcp_collapse(sk, &tp->out_of_order_queue,
4649                                     head, skb, start, end);
4650                        head = skb;
4651                        if (!skb)
4652                                break;
4653                        /* Start new segment */
4654                        start = TCP_SKB_CB(skb)->seq;
4655                        end = TCP_SKB_CB(skb)->end_seq;
4656                } else {
4657                        if (before(TCP_SKB_CB(skb)->seq, start))
4658                                start = TCP_SKB_CB(skb)->seq;
4659                        if (after(TCP_SKB_CB(skb)->end_seq, end))
4660                                end = TCP_SKB_CB(skb)->end_seq;
4661                }
4662        }
4663}
4664
4665/*
4666 * Purge the out-of-order queue.
4667 * Return true if queue was pruned.
4668 */
4669static bool tcp_prune_ofo_queue(struct sock *sk)
4670{
4671        struct tcp_sock *tp = tcp_sk(sk);
4672        bool res = false;
4673
4674        if (!skb_queue_empty(&tp->out_of_order_queue)) {
4675                NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_OFOPRUNED);
4676                __skb_queue_purge(&tp->out_of_order_queue);
4677
4678                /* Reset SACK state.  A conforming SACK implementation will
4679                 * do the same at a timeout based retransmit.  When a connection
4680                 * is in a sad state like this, we care only about integrity
4681                 * of the connection not performance.
4682                 */
4683                if (tp->rx_opt.sack_ok)
4684                        tcp_sack_reset(&tp->rx_opt);
4685                sk_mem_reclaim(sk);
4686                res = true;
4687        }
4688        return res;
4689}
4690
4691/* Reduce allocated memory if we can, trying to get
4692 * the socket within its memory limits again.
4693 *
4694 * Return less than zero if we should start dropping frames
4695 * until the socket owning process reads some of the data
4696 * to stabilize the situation.
4697 */
4698static int tcp_prune_queue(struct sock *sk)
4699{
4700        struct tcp_sock *tp = tcp_sk(sk);
4701
4702        SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq);
4703
4704        NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PRUNECALLED);
4705
4706        if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
4707                tcp_clamp_window(sk);
4708        else if (sk_under_memory_pressure(sk))
4709                tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
4710
4711        tcp_collapse_ofo_queue(sk);
4712        if (!skb_queue_empty(&sk->sk_receive_queue))
4713                tcp_collapse(sk, &sk->sk_receive_queue,
4714                             skb_peek(&sk->sk_receive_queue),
4715                             NULL,
4716                             tp->copied_seq, tp->rcv_nxt);
4717        sk_mem_reclaim(sk);
4718
4719        if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4720                return 0;
4721
4722        /* Collapsing did not help, destructive actions follow.
4723         * This must not ever occur. */
4724
4725        tcp_prune_ofo_queue(sk);
4726
4727        if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4728                return 0;
4729
4730        /* If we are really being abused, tell the caller to silently
4731         * drop receive data on the floor.  It will get retransmitted
4732         * and hopefully then we'll have sufficient space.
4733         */
4734        NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_RCVPRUNED);
4735
4736        /* Massive buffer overcommit. */
4737        tp->pred_flags = 0;
4738        return -1;
4739}
4740
4741static bool tcp_should_expand_sndbuf(const struct sock *sk)
4742{
4743        const struct tcp_sock *tp = tcp_sk(sk);
4744
4745        /* If the user specified a specific send buffer setting, do
4746         * not modify it.
4747         */
4748        if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
4749                return false;
4750
4751        /* If we are under global TCP memory pressure, do not expand.  */
4752        if (sk_under_memory_pressure(sk))
4753                return false;
4754
4755        /* If we are under soft global TCP memory pressure, do not expand.  */
4756        if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0))
4757                return false;
4758
4759        /* If we filled the congestion window, do not expand.  */
4760        if (tp->packets_out >= tp->snd_cwnd)
4761                return false;
4762
4763        return true;
4764}
4765
4766/* When incoming ACK allowed to free some skb from write_queue,
4767 * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
4768 * on the exit from tcp input handler.
4769 *
4770 * PROBLEM: sndbuf expansion does not work well with largesend.
4771 */
4772static void tcp_new_space(struct sock *sk)
4773{
4774        struct tcp_sock *tp = tcp_sk(sk);
4775
4776        if (tcp_should_expand_sndbuf(sk)) {
4777                tcp_sndbuf_expand(sk);
4778                tp->snd_cwnd_stamp = tcp_time_stamp;
4779        }
4780
4781        sk->sk_write_space(sk);
4782}
4783
4784static void tcp_check_space(struct sock *sk)
4785{
4786        if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
4787                sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
4788                if (sk->sk_socket &&
4789                    test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
4790                        tcp_new_space(sk);
4791        }
4792}
4793
4794static inline void tcp_data_snd_check(struct sock *sk)
4795{
4796        tcp_push_pending_frames(sk);
4797        tcp_check_space(sk);
4798}
4799
4800/*
4801 * Check if sending an ack is needed.
4802 */
4803static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
4804{
4805        struct tcp_sock *tp = tcp_sk(sk);
4806
4807            /* More than one full frame received... */
4808        if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss &&
4809             /* ... and right edge of window advances far enough.
4810              * (tcp_recvmsg() will send ACK otherwise). Or...
4811              */
4812             __tcp_select_window(sk) >= tp->rcv_wnd) ||
4813            /* We ACK each frame or... */
4814            tcp_in_quickack_mode(sk) ||
4815            /* We have out of order data. */
4816            (ofo_possible && skb_peek(&tp->out_of_order_queue))) {
4817                /* Then ack it now */
4818                tcp_send_ack(sk);
4819        } else {
4820                /* Else, send delayed ack. */
4821                tcp_send_delayed_ack(sk);
4822        }
4823}
4824
4825static inline void tcp_ack_snd_check(struct sock *sk)
4826{
4827        if (!inet_csk_ack_scheduled(sk)) {
4828                /* We sent a data segment already. */
4829                return;
4830        }
4831        __tcp_ack_snd_check(sk, 1);
4832}
4833
4834/*
4835 *      This routine is only called when we have urgent data
4836 *      signaled. Its the 'slow' part of tcp_urg. It could be
4837 *      moved inline now as tcp_urg is only called from one
4838 *      place. We handle URGent data wrong. We have to - as
4839 *      BSD still doesn't use the correction from RFC961.
4840 *      For 1003.1g we should support a new option TCP_STDURG to permit
4841 *      either form (or just set the sysctl tcp_stdurg).
4842 */
4843
4844static void tcp_check_urg(struct sock *sk, const struct tcphdr *th)
4845{
4846        struct tcp_sock *tp = tcp_sk(sk);
4847        u32 ptr = ntohs(th->urg_ptr);
4848
4849        if (ptr && !sysctl_tcp_stdurg)
4850                ptr--;
4851        ptr += ntohl(th->seq);
4852
4853        /* Ignore urgent data that we've already seen and read. */
4854        if (after(tp->copied_seq, ptr))
4855                return;
4856
4857        /* Do not replay urg ptr.
4858         *
4859         * NOTE: interesting situation not covered by specs.
4860         * Misbehaving sender may send urg ptr, pointing to segment,
4861         * which we already have in ofo queue. We are not able to fetch
4862         * such data and will stay in TCP_URG_NOTYET until will be eaten
4863         * by recvmsg(). Seems, we are not obliged to handle such wicked
4864         * situations. But it is worth to think about possibility of some
4865         * DoSes using some hypothetical application level deadlock.
4866         */
4867        if (before(ptr, tp->rcv_nxt))
4868                return;
4869
4870        /* Do we already have a newer (or duplicate) urgent pointer? */
4871        if (tp->urg_data && !after(ptr, tp->urg_seq))
4872                return;
4873
4874        /* Tell the world about our new urgent pointer. */
4875        sk_send_sigurg(sk);
4876
4877        /* We may be adding urgent data when the last byte read was
4878         * urgent. To do this requires some care. We cannot just ignore
4879         * tp->copied_seq since we would read the last urgent byte again
4880         * as data, nor can we alter copied_seq until this data arrives
4881         * or we break the semantics of SIOCATMARK (and thus sockatmark())
4882         *
4883         * NOTE. Double Dutch. Rendering to plain English: author of comment
4884         * above did something sort of  send("A", MSG_OOB); send("B", MSG_OOB);
4885         * and expect that both A and B disappear from stream. This is _wrong_.
4886         * Though this happens in BSD with high probability, this is occasional.
4887         * Any application relying on this is buggy. Note also, that fix "works"
4888         * only in this artificial test. Insert some normal data between A and B and we will
4889         * decline of BSD again. Verdict: it is better to remove to trap
4890         * buggy users.
4891         */
4892        if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
4893            !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
4894                struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
4895                tp->copied_seq++;
4896                if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
4897                        __skb_unlink(skb, &sk->sk_receive_queue);
4898                        __kfree_skb(skb);
4899                }
4900        }
4901
4902        tp->urg_data = TCP_URG_NOTYET;
4903        tp->urg_seq = ptr;
4904
4905        /* Disable header prediction. */
4906        tp->pred_flags = 0;
4907}
4908
4909/* This is the 'fast' part of urgent handling. */
4910static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th)
4911{
4912        struct tcp_sock *tp = tcp_sk(sk);
4913
4914        /* Check if we get a new urgent pointer - normally not. */
4915        if (th->urg)
4916                tcp_check_urg(sk, th);
4917
4918        /* Do we wait for any urgent data? - normally not... */
4919        if (tp->urg_data == TCP_URG_NOTYET) {
4920                u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
4921                          th->syn;
4922
4923                /* Is the urgent pointer pointing into this packet? */
4924                if (ptr < skb->len) {
4925                        u8 tmp;
4926                        if (skb_copy_bits(skb, ptr, &tmp, 1))
4927                                BUG();
4928                        tp->urg_data = TCP_URG_VALID | tmp;
4929                        if (!sock_flag(sk, SOCK_DEAD))
4930                                sk->sk_data_ready(sk);
4931                }
4932        }
4933}
4934
4935static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen)
4936{
4937        struct tcp_sock *tp = tcp_sk(sk);
4938        int chunk = skb->len - hlen;
4939        int err;
4940
4941        local_bh_enable();
4942        if (skb_csum_unnecessary(skb))
4943                err = skb_copy_datagram_iovec(skb, hlen, tp->ucopy.iov, chunk);
4944        else
4945                err = skb_copy_and_csum_datagram_iovec(skb, hlen,
4946                                                       tp->ucopy.iov);
4947
4948        if (!err) {
4949                tp->ucopy.len -= chunk;
4950                tp->copied_seq += chunk;
4951                tcp_rcv_space_adjust(sk);
4952        }
4953
4954        local_bh_disable();
4955        return err;
4956}
4957
4958static __sum16 __tcp_checksum_complete_user(struct sock *sk,
4959                                            struct sk_buff *skb)
4960{
4961        __sum16 result;
4962
4963        if (sock_owned_by_user(sk)) {
4964                local_bh_enable();
4965                result = __tcp_checksum_complete(skb);
4966                local_bh_disable();
4967        } else {
4968                result = __tcp_checksum_complete(skb);
4969        }
4970        return result;
4971}
4972
4973static inline bool tcp_checksum_complete_user(struct sock *sk,
4974                                             struct sk_buff *skb)
4975{
4976        return !skb_csum_unnecessary(skb) &&
4977               __tcp_checksum_complete_user(sk, skb);
4978}
4979
4980/* Does PAWS and seqno based validation of an incoming segment, flags will
4981 * play significant role here.
4982 */
4983static bool tcp_validate_incoming(struct sock *sk, struct sk_buff *skb,
4984                                  const struct tcphdr *th, int syn_inerr)
4985{
4986        struct tcp_sock *tp = tcp_sk(sk);
4987
4988        /* RFC1323: H1. Apply PAWS check first. */
4989        if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp &&
4990            tcp_paws_discard(sk, skb)) {
4991                if (!th->rst) {
4992                        NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
4993                        tcp_send_dupack(sk, skb);
4994                        goto discard;
4995                }
4996                /* Reset is accepted even if it did not pass PAWS. */
4997        }
4998
4999        /* Step 1: check sequence number */
5000        if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
5001                /* RFC793, page 37: "In all states except SYN-SENT, all reset
5002                 * (RST) segments are validated by checking their SEQ-fields."
5003                 * And page 69: "If an incoming segment is not acceptable,
5004                 * an acknowledgment should be sent in reply (unless the RST
5005                 * bit is set, if so drop the segment and return)".
5006                 */
5007                if (!th->rst) {
5008                        if (th->syn)
5009                                goto syn_challenge;
5010                        tcp_send_dupack(sk, skb);
5011                }
5012                goto discard;
5013        }
5014
5015        /* Step 2: check RST bit */
5016        if (th->rst) {
5017                /* RFC 5961 3.2 :
5018                 * If sequence number exactly matches RCV.NXT, then
5019                 *     RESET the connection
5020                 * else
5021                 *     Send a challenge ACK
5022                 */
5023                if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt)
5024                        tcp_reset(sk);
5025                else
5026                        tcp_send_challenge_ack(sk);
5027                goto discard;
5028        }
5029
5030        /* step 3: check security and precedence [ignored] */
5031
5032        /* step 4: Check for a SYN
5033         * RFC 5691 4.2 : Send a challenge ack
5034         */
5035        if (th->syn) {
5036syn_challenge:
5037                if (syn_inerr)
5038                        TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5039                NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSYNCHALLENGE);
5040                tcp_send_challenge_ack(sk);
5041                goto discard;
5042        }
5043
5044        return true;
5045
5046discard:
5047        __kfree_skb(skb);
5048        return false;
5049}
5050
5051/*
5052 *      TCP receive function for the ESTABLISHED state.
5053 *
5054 *      It is split into a fast path and a slow path. The fast path is
5055 *      disabled when:
5056 *      - A zero window was announced from us - zero window probing
5057 *        is only handled properly in the slow path.
5058 *      - Out of order segments arrived.
5059 *      - Urgent data is expected.
5060 *      - There is no buffer space left
5061 *      - Unexpected TCP flags/window values/header lengths are received
5062 *        (detected by checking the TCP header against pred_flags)
5063 *      - Data is sent in both directions. Fast path only supports pure senders
5064 *        or pure receivers (this means either the sequence number or the ack
5065 *        value must stay constant)
5066 *      - Unexpected TCP option.
5067 *
5068 *      When these conditions are not satisfied it drops into a standard
5069 *      receive procedure patterned after RFC793 to handle all cases.
5070 *      The first three cases are guaranteed by proper pred_flags setting,
5071 *      the rest is checked inline. Fast processing is turned on in
5072 *      tcp_data_queue when everything is OK.
5073 */
5074void tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
5075                         const struct tcphdr *th, unsigned int len)
5076{
5077        struct tcp_sock *tp = tcp_sk(sk);
5078
5079        if (unlikely(sk->sk_rx_dst == NULL))
5080                inet_csk(sk)->icsk_af_ops->sk_rx_dst_set(sk, skb);
5081        /*
5082         *      Header prediction.
5083         *      The code loosely follows the one in the famous
5084         *      "30 instruction TCP receive" Van Jacobson mail.
5085         *
5086         *      Van's trick is to deposit buffers into socket queue
5087         *      on a device interrupt, to call tcp_recv function
5088         *      on the receive process context and checksum and copy
5089         *      the buffer to user space. smart...
5090         *
5091         *      Our current scheme is not silly either but we take the
5092         *      extra cost of the net_bh soft interrupt processing...
5093         *      We do checksum and copy also but from device to kernel.
5094         */
5095
5096        tp->rx_opt.saw_tstamp = 0;
5097
5098        /*      pred_flags is 0xS?10 << 16 + snd_wnd
5099         *      if header_prediction is to be made
5100         *      'S' will always be tp->tcp_header_len >> 2
5101         *      '?' will be 0 for the fast path, otherwise pred_flags is 0 to
5102         *  turn it off (when there are holes in the receive
5103         *       space for instance)
5104         *      PSH flag is ignored.
5105         */
5106
5107        if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
5108            TCP_SKB_CB(skb)->seq == tp->rcv_nxt &&
5109            !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
5110                int tcp_header_len = tp->tcp_header_len;
5111
5112                /* Timestamp header prediction: tcp_header_len
5113                 * is automatically equal to th->doff*4 due to pred_flags
5114                 * match.
5115                 */
5116
5117                /* Check timestamp */
5118                if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
5119                        /* No? Slow path! */
5120                        if (!tcp_parse_aligned_timestamp(tp, th))
5121                                goto slow_path;
5122
5123                        /* If PAWS failed, check it more carefully in slow path */
5124                        if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
5125                                goto slow_path;
5126
5127                        /* DO NOT update ts_recent here, if checksum fails
5128                         * and timestamp was corrupted part, it will result
5129                         * in a hung connection since we will drop all
5130                         * future packets due to the PAWS test.
5131                         */
5132                }
5133
5134                if (len <= tcp_header_len) {
5135                        /* Bulk data transfer: sender */
5136                        if (len == tcp_header_len) {
5137                                /* Predicted packet is in window by definition.
5138                                 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5139                                 * Hence, check seq<=rcv_wup reduces to:
5140                                 */
5141                                if (tcp_header_len ==
5142                                    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5143                                    tp->rcv_nxt == tp->rcv_wup)
5144                                        tcp_store_ts_recent(tp);
5145
5146                                /* We know that such packets are checksummed
5147                                 * on entry.
5148                                 */
5149                                tcp_ack(sk, skb, 0);
5150                                __kfree_skb(skb);
5151                                tcp_data_snd_check(sk);
5152                                return;
5153                        } else { /* Header too small */
5154                                TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5155                                goto discard;
5156                        }
5157                } else {
5158                        int eaten = 0;
5159                        bool fragstolen = false;
5160
5161                        if (tp->ucopy.task == current &&
5162                            tp->copied_seq == tp->rcv_nxt &&
5163                            len - tcp_header_len <= tp->ucopy.len &&
5164                            sock_owned_by_user(sk)) {
5165                                __set_current_state(TASK_RUNNING);
5166
5167                                if (!tcp_copy_to_iovec(sk, skb, tcp_header_len)) {
5168                                        /* Predicted packet is in window by definition.
5169                                         * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5170                                         * Hence, check seq<=rcv_wup reduces to:
5171                                         */
5172                                        if (tcp_header_len ==
5173                                            (sizeof(struct tcphdr) +
5174                                             TCPOLEN_TSTAMP_ALIGNED) &&
5175                                            tp->rcv_nxt == tp->rcv_wup)
5176                                                tcp_store_ts_recent(tp);
5177
5178                                        tcp_rcv_rtt_measure_ts(sk, skb);
5179
5180                                        __skb_pull(skb, tcp_header_len);
5181                                        tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
5182                                        NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITSTOUSER);
5183                                        eaten = 1;
5184                                }
5185                        }
5186                        if (!eaten) {
5187                                if (tcp_checksum_complete_user(sk, skb))
5188                                        goto csum_error;
5189
5190                                if ((int)skb->truesize > sk->sk_forward_alloc)
5191                                        goto step5;
5192
5193                                /* Predicted packet is in window by definition.
5194                                 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5195                                 * Hence, check seq<=rcv_wup reduces to:
5196                                 */
5197                                if (tcp_header_len ==
5198                                    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5199                                    tp->rcv_nxt == tp->rcv_wup)
5200                                        tcp_store_ts_recent(tp);
5201
5202                                tcp_rcv_rtt_measure_ts(sk, skb);
5203
5204                                NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITS);
5205
5206                                /* Bulk data transfer: receiver */
5207                                eaten = tcp_queue_rcv(sk, skb, tcp_header_len,
5208                                                      &fragstolen);
5209                        }
5210
5211                        tcp_event_data_recv(sk, skb);
5212
5213                        if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
5214                                /* Well, only one small jumplet in fast path... */
5215                                tcp_ack(sk, skb, FLAG_DATA);
5216                                tcp_data_snd_check(sk);
5217                                if (!inet_csk_ack_scheduled(sk))
5218                                        goto no_ack;
5219                        }
5220
5221                        __tcp_ack_snd_check(sk, 0);
5222no_ack:
5223                        if (eaten)
5224                                kfree_skb_partial(skb, fragstolen);
5225                        sk->sk_data_ready(sk);
5226                        return;
5227                }
5228        }
5229
5230slow_path:
5231        if (len < (th->doff << 2) || tcp_checksum_complete_user(sk, skb))
5232                goto csum_error;
5233
5234        if (!th->ack && !th->rst && !th->syn)
5235                goto discard;
5236
5237        /*
5238         *      Standard slow path.
5239         */
5240
5241        if (!tcp_validate_incoming(sk, skb, th, 1))
5242                return;
5243
5244step5:
5245        if (tcp_ack(sk, skb, FLAG_SLOWPATH | FLAG_UPDATE_TS_RECENT) < 0)
5246                goto discard;
5247
5248        tcp_rcv_rtt_measure_ts(sk, skb);
5249
5250        /* Process urgent data. */
5251        tcp_urg(sk, skb, th);
5252
5253        /* step 7: process the segment text */
5254        tcp_data_queue(sk, skb);
5255
5256        tcp_data_snd_check(sk);
5257        tcp_ack_snd_check(sk);
5258        return;
5259
5260csum_error:
5261        TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_CSUMERRORS);
5262        TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5263
5264discard:
5265        __kfree_skb(skb);
5266}
5267EXPORT_SYMBOL(tcp_rcv_established);
5268
5269void tcp_finish_connect(struct sock *sk, struct sk_buff *skb)
5270{
5271        struct tcp_sock *tp = tcp_sk(sk);
5272        struct inet_connection_sock *icsk = inet_csk(sk);
5273
5274        tcp_set_state(sk, TCP_ESTABLISHED);
5275
5276        if (skb != NULL) {
5277                icsk->icsk_af_ops->sk_rx_dst_set(sk, skb);
5278                security_inet_conn_established(sk, skb);
5279        }
5280
5281        /* Make sure socket is routed, for correct metrics.  */
5282        icsk->icsk_af_ops->rebuild_header(sk);
5283
5284        tcp_init_metrics(sk);
5285
5286        tcp_init_congestion_control(sk);
5287
5288        /* Prevent spurious tcp_cwnd_restart() on first data
5289         * packet.
5290         */
5291        tp->lsndtime = tcp_time_stamp;
5292
5293        tcp_init_buffer_space(sk);
5294
5295        if (sock_flag(sk, SOCK_KEEPOPEN))
5296                inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
5297
5298        if (!tp->rx_opt.snd_wscale)
5299                __tcp_fast_path_on(tp, tp->snd_wnd);
5300        else
5301                tp->pred_flags = 0;
5302
5303        if (!sock_flag(sk, SOCK_DEAD)) {
5304                sk->sk_state_change(sk);
5305                sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
5306        }
5307}
5308
5309static bool tcp_rcv_fastopen_synack(struct sock *sk, struct sk_buff *synack,
5310                                    struct tcp_fastopen_cookie *cookie)
5311{
5312        struct tcp_sock *tp = tcp_sk(sk);
5313        struct sk_buff *data = tp->syn_data ? tcp_write_queue_head(sk) : NULL;
5314        u16 mss = tp->rx_opt.mss_clamp;
5315        bool syn_drop;
5316
5317        if (mss == tp->rx_opt.user_mss) {
5318                struct tcp_options_received opt;
5319
5320                /* Get original SYNACK MSS value if user MSS sets mss_clamp */
5321                tcp_clear_options(&opt);
5322                opt.user_mss = opt.mss_clamp = 0;
5323                tcp_parse_options(synack, &opt, 0, NULL);
5324                mss = opt.mss_clamp;
5325        }
5326
5327        if (!tp->syn_fastopen)  /* Ignore an unsolicited cookie */
5328                cookie->len = -1;
5329
5330        /* The SYN-ACK neither has cookie nor acknowledges the data. Presumably
5331         * the remote receives only the retransmitted (regular) SYNs: either
5332         * the original SYN-data or the corresponding SYN-ACK is lost.
5333         */
5334        syn_drop = (cookie->len <= 0 && data && tp->total_retrans);
5335
5336        tcp_fastopen_cache_set(sk, mss, cookie, syn_drop);
5337
5338        if (data) { /* Retransmit unacked data in SYN */
5339                tcp_for_write_queue_from(data, sk) {
5340                        if (data == tcp_send_head(sk) ||
5341                            __tcp_retransmit_skb(sk, data))
5342                                break;
5343                }
5344                tcp_rearm_rto(sk);
5345                NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPFASTOPENACTIVEFAIL);
5346                return true;
5347        }
5348        tp->syn_data_acked = tp->syn_data;
5349        if (tp->syn_data_acked)
5350                NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPFASTOPENACTIVE);
5351        return false;
5352}
5353
5354static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
5355                                         const struct tcphdr *th, unsigned int len)
5356{
5357        struct inet_connection_sock *icsk = inet_csk(sk);
5358        struct tcp_sock *tp = tcp_sk(sk);
5359        struct tcp_fastopen_cookie foc = { .len = -1 };
5360        int saved_clamp = tp->rx_opt.mss_clamp;
5361
5362        tcp_parse_options(skb, &tp->rx_opt, 0, &foc);
5363        if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
5364                tp->rx_opt.rcv_tsecr -= tp->tsoffset;
5365
5366        if (th->ack) {
5367                /* rfc793:
5368                 * "If the state is SYN-SENT then
5369                 *    first check the ACK bit
5370                 *      If the ACK bit is set
5371                 *        If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
5372                 *        a reset (unless the RST bit is set, if so drop
5373                 *        the segment and return)"
5374                 */
5375                if (!after(TCP_SKB_CB(skb)->ack_seq, tp->snd_una) ||
5376                    after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt))
5377                        goto reset_and_undo;
5378
5379                if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
5380                    !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
5381                             tcp_time_stamp)) {
5382                        NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSACTIVEREJECTED);
5383                        goto reset_and_undo;
5384                }
5385
5386                /* Now ACK is acceptable.
5387                 *
5388                 * "If the RST bit is set
5389                 *    If the ACK was acceptable then signal the user "error:
5390                 *    connection reset", drop the segment, enter CLOSED state,
5391                 *    delete TCB, and return."
5392                 */
5393
5394                if (th->rst) {
5395                        tcp_reset(sk);
5396                        goto discard;
5397                }
5398
5399                /* rfc793:
5400                 *   "fifth, if neither of the SYN or RST bits is set then
5401                 *    drop the segment and return."
5402                 *
5403                 *    See note below!
5404                 *                                        --ANK(990513)
5405                 */
5406                if (!th->syn)
5407                        goto discard_and_undo;
5408
5409                /* rfc793:
5410                 *   "If the SYN bit is on ...
5411                 *    are acceptable then ...
5412                 *    (our SYN has been ACKed), change the connection
5413                 *    state to ESTABLISHED..."
5414                 */
5415
5416                tcp_ecn_rcv_synack(tp, th);
5417
5418                tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
5419                tcp_ack(sk, skb, FLAG_SLOWPATH);
5420
5421                /* Ok.. it's good. Set up sequence numbers and
5422                 * move to established.
5423                 */
5424                tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5425                tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5426
5427                /* RFC1323: The window in SYN & SYN/ACK segments is
5428                 * never scaled.
5429                 */
5430                tp->snd_wnd = ntohs(th->window);
5431
5432                if (!tp->rx_opt.wscale_ok) {
5433                        tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
5434                        tp->window_clamp = min(tp->window_clamp, 65535U);
5435                }
5436
5437                if (tp->rx_opt.saw_tstamp) {
5438                        tp->rx_opt.tstamp_ok       = 1;
5439                        tp->tcp_header_len =
5440                                sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5441                        tp->advmss          -= TCPOLEN_TSTAMP_ALIGNED;
5442                        tcp_store_ts_recent(tp);
5443                } else {
5444                        tp->tcp_header_len = sizeof(struct tcphdr);
5445                }
5446
5447                if (tcp_is_sack(tp) && sysctl_tcp_fack)
5448                        tcp_enable_fack(tp);
5449
5450                tcp_mtup_init(sk);
5451                tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5452                tcp_initialize_rcv_mss(sk);
5453
5454                /* Remember, tcp_poll() does not lock socket!
5455                 * Change state from SYN-SENT only after copied_seq
5456                 * is initialized. */
5457                tp->copied_seq = tp->rcv_nxt;
5458
5459                smp_mb();
5460
5461                tcp_finish_connect(sk, skb);
5462
5463                if ((tp->syn_fastopen || tp->syn_data) &&
5464                    tcp_rcv_fastopen_synack(sk, skb, &foc))
5465                        return -1;
5466
5467                if (sk->sk_write_pending ||
5468                    icsk->icsk_accept_queue.rskq_defer_accept ||
5469                    icsk->icsk_ack.pingpong) {
5470                        /* Save one ACK. Data will be ready after
5471                         * several ticks, if write_pending is set.
5472                         *
5473                         * It may be deleted, but with this feature tcpdumps
5474                         * look so _wonderfully_ clever, that I was not able
5475                         * to stand against the temptation 8)     --ANK
5476                         */
5477                        inet_csk_schedule_ack(sk);
5478                        icsk->icsk_ack.lrcvtime = tcp_time_stamp;
5479                        tcp_enter_quickack_mode(sk);
5480                        inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
5481                                                  TCP_DELACK_MAX, TCP_RTO_MAX);
5482
5483discard:
5484                        __kfree_skb(skb);
5485                        return 0;
5486                } else {
5487                        tcp_send_ack(sk);
5488                }
5489                return -1;
5490        }
5491
5492        /* No ACK in the segment */
5493
5494        if (th->rst) {
5495                /* rfc793:
5496                 * "If the RST bit is set
5497                 *
5498                 *      Otherwise (no ACK) drop the segment and return."
5499                 */
5500
5501                goto discard_and_undo;
5502        }
5503
5504        /* PAWS check. */
5505        if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp &&
5506            tcp_paws_reject(&tp->rx_opt, 0))
5507                goto discard_and_undo;
5508
5509        if (th->syn) {
5510                /* We see SYN without ACK. It is attempt of
5511                 * simultaneous connect with crossed SYNs.
5512                 * Particularly, it can be connect to self.
5513                 */
5514                tcp_set_state(sk, TCP_SYN_RECV);
5515
5516                if (tp->rx_opt.saw_tstamp) {
5517                        tp->rx_opt.tstamp_ok = 1;
5518                        tcp_store_ts_recent(tp);
5519                        tp->tcp_header_len =
5520                                sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5521                } else {
5522                        tp->tcp_header_len = sizeof(struct tcphdr);
5523                }
5524
5525                tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5526                tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5527
5528                /* RFC1323: The window in SYN & SYN/ACK segments is
5529                 * never scaled.
5530                 */
5531                tp->snd_wnd    = ntohs(th->window);
5532                tp->snd_wl1    = TCP_SKB_CB(skb)->seq;
5533                tp->max_window = tp->snd_wnd;
5534
5535                tcp_ecn_rcv_syn(tp, th);
5536
5537                tcp_mtup_init(sk);
5538                tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5539                tcp_initialize_rcv_mss(sk);
5540
5541                tcp_send_synack(sk);
5542#if 0
5543                /* Note, we could accept data and URG from this segment.
5544                 * There are no obstacles to make this (except that we must
5545                 * either change tcp_recvmsg() to prevent it from returning data
5546                 * before 3WHS completes per RFC793, or employ TCP Fast Open).
5547                 *
5548                 * However, if we ignore data in ACKless segments sometimes,
5549                 * we have no reasons to accept it sometimes.
5550                 * Also, seems the code doing it in step6 of tcp_rcv_state_process
5551                 * is not flawless. So, discard packet for sanity.
5552                 * Uncomment this return to process the data.
5553                 */
5554                return -1;
5555#else
5556                goto discard;
5557#endif
5558        }
5559        /* "fifth, if neither of the SYN or RST bits is set then
5560         * drop the segment and return."
5561         */
5562
5563discard_and_undo:
5564        tcp_clear_options(&tp->rx_opt);
5565        tp->rx_opt.mss_clamp = saved_clamp;
5566        goto discard;
5567
5568reset_and_undo:
5569        tcp_clear_options(&tp->rx_opt);
5570        tp->rx_opt.mss_clamp = saved_clamp;
5571        return 1;
5572}
5573
5574/*
5575 *      This function implements the receiving procedure of RFC 793 for
5576 *      all states except ESTABLISHED and TIME_WAIT.
5577 *      It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
5578 *      address independent.
5579 */
5580
5581int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb,
5582                          const struct tcphdr *th, unsigned int len)
5583{
5584        struct tcp_sock *tp = tcp_sk(sk);
5585        struct inet_connection_sock *icsk = inet_csk(sk);
5586        struct request_sock *req;
5587        int queued = 0;
5588        bool acceptable;
5589        u32 synack_stamp;
5590
5591        tp->rx_opt.saw_tstamp = 0;
5592
5593        switch (sk->sk_state) {
5594        case TCP_CLOSE:
5595                goto discard;
5596
5597        case TCP_LISTEN:
5598                if (th->ack)
5599                        return 1;
5600
5601                if (th->rst)
5602                        goto discard;
5603
5604                if (th->syn) {
5605                        if (th->fin)
5606                                goto discard;
5607                        if (icsk->icsk_af_ops->conn_request(sk, skb) < 0)
5608                                return 1;
5609
5610                        /* Now we have several options: In theory there is
5611                         * nothing else in the frame. KA9Q has an option to
5612                         * send data with the syn, BSD accepts data with the
5613                         * syn up to the [to be] advertised window and
5614                         * Solaris 2.1 gives you a protocol error. For now
5615                         * we just ignore it, that fits the spec precisely
5616                         * and avoids incompatibilities. It would be nice in
5617                         * future to drop through and process the data.
5618                         *
5619                         * Now that TTCP is starting to be used we ought to
5620                         * queue this data.
5621                         * But, this leaves one open to an easy denial of
5622                         * service attack, and SYN cookies can't defend
5623                         * against this problem. So, we drop the data
5624                         * in the interest of security over speed unless
5625                         * it's still in use.
5626                         */
5627                        kfree_skb(skb);
5628                        return 0;
5629                }
5630                goto discard;
5631
5632        case TCP_SYN_SENT:
5633                queued = tcp_rcv_synsent_state_process(sk, skb, th, len);
5634                if (queued >= 0)
5635                        return queued;
5636
5637                /* Do step6 onward by hand. */
5638                tcp_urg(sk, skb, th);
5639                __kfree_skb(skb);
5640                tcp_data_snd_check(sk);
5641                return 0;
5642        }
5643
5644        req = tp->fastopen_rsk;
5645        if (req != NULL) {
5646                WARN_ON_ONCE(sk->sk_state != TCP_SYN_RECV &&
5647                    sk->sk_state != TCP_FIN_WAIT1);
5648
5649                if (tcp_check_req(sk, skb, req, NULL, true) == NULL)
5650                        goto discard;
5651        }
5652
5653        if (!th->ack && !th->rst && !th->syn)
5654                goto discard;
5655
5656        if (!tcp_validate_incoming(sk, skb, th, 0))
5657                return 0;
5658
5659        /* step 5: check the ACK field */
5660        acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH |
5661                                      FLAG_UPDATE_TS_RECENT) > 0;
5662
5663        switch (sk->sk_state) {
5664        case TCP_SYN_RECV:
5665                if (!acceptable)
5666                        return 1;
5667
5668                /* Once we leave TCP_SYN_RECV, we no longer need req
5669                 * so release it.
5670                 */
5671                if (req) {
5672                        synack_stamp = tcp_rsk(req)->snt_synack;
5673                        tp->total_retrans = req->num_retrans;
5674                        reqsk_fastopen_remove(sk, req, false);
5675                } else {
5676                        synack_stamp = tp->lsndtime;
5677                        /* Make sure socket is routed, for correct metrics. */
5678                        icsk->icsk_af_ops->rebuild_header(sk);
5679                        tcp_init_congestion_control(sk);
5680
5681                        tcp_mtup_init(sk);
5682                        tp->copied_seq = tp->rcv_nxt;
5683                        tcp_init_buffer_space(sk);
5684                }
5685                smp_mb();
5686                tcp_set_state(sk, TCP_ESTABLISHED);
5687                sk->sk_state_change(sk);
5688
5689                /* Note, that this wakeup is only for marginal crossed SYN case.
5690                 * Passively open sockets are not waked up, because
5691                 * sk->sk_sleep == NULL and sk->sk_socket == NULL.
5692                 */
5693                if (sk->sk_socket)
5694                        sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
5695
5696                tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
5697                tp->snd_wnd = ntohs(th->window) << tp->rx_opt.snd_wscale;
5698                tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
5699                tcp_synack_rtt_meas(sk, synack_stamp);
5700
5701                if (tp->rx_opt.tstamp_ok)
5702                        tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
5703
5704                if (req) {
5705                        /* Re-arm the timer because data may have been sent out.
5706                         * This is similar to the regular data transmission case
5707                         * when new data has just been ack'ed.
5708                         *
5709                         * (TFO) - we could try to be more aggressive and
5710                         * retransmitting any data sooner based on when they
5711                         * are sent out.
5712                         */
5713                        tcp_rearm_rto(sk);
5714                } else
5715                        tcp_init_metrics(sk);
5716
5717                tcp_update_pacing_rate(sk);
5718
5719                /* Prevent spurious tcp_cwnd_restart() on first data packet */
5720                tp->lsndtime = tcp_time_stamp;
5721
5722                tcp_initialize_rcv_mss(sk);
5723                tcp_fast_path_on(tp);
5724                break;
5725
5726        case TCP_FIN_WAIT1: {
5727                struct dst_entry *dst;
5728                int tmo;
5729
5730                /* If we enter the TCP_FIN_WAIT1 state and we are a
5731                 * Fast Open socket and this is the first acceptable
5732                 * ACK we have received, this would have acknowledged
5733                 * our SYNACK so stop the SYNACK timer.
5734                 */
5735                if (req != NULL) {
5736                        /* Return RST if ack_seq is invalid.
5737                         * Note that RFC793 only says to generate a
5738                         * DUPACK for it but for TCP Fast Open it seems
5739                         * better to treat this case like TCP_SYN_RECV
5740                         * above.
5741                         */
5742                        if (!acceptable)
5743                                return 1;
5744                        /* We no longer need the request sock. */
5745                        reqsk_fastopen_remove(sk, req, false);
5746                        tcp_rearm_rto(sk);
5747                }
5748                if (tp->snd_una != tp->write_seq)
5749                        break;
5750
5751                tcp_set_state(sk, TCP_FIN_WAIT2);
5752                sk->sk_shutdown |= SEND_SHUTDOWN;
5753
5754                dst = __sk_dst_get(sk);
5755                if (dst)
5756                        dst_confirm(dst);
5757
5758                if (!sock_flag(sk, SOCK_DEAD)) {
5759                        /* Wake up lingering close() */
5760                        sk->sk_state_change(sk);
5761                        break;
5762                }
5763
5764                if (tp->linger2 < 0 ||
5765                    (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
5766                     after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) {
5767                        tcp_done(sk);
5768                        NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
5769                        return 1;
5770                }
5771
5772                tmo = tcp_fin_time(sk);
5773                if (tmo > TCP_TIMEWAIT_LEN) {
5774                        inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
5775                } else if (th->fin || sock_owned_by_user(sk)) {
5776                        /* Bad case. We could lose such FIN otherwise.
5777                         * It is not a big problem, but it looks confusing
5778                         * and not so rare event. We still can lose it now,
5779                         * if it spins in bh_lock_sock(), but it is really
5780                         * marginal case.
5781                         */
5782                        inet_csk_reset_keepalive_timer(sk, tmo);
5783                } else {
5784                        tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
5785                        goto discard;
5786                }
5787                break;
5788        }
5789
5790        case TCP_CLOSING:
5791                if (tp->snd_una == tp->write_seq) {
5792                        tcp_time_wait(sk, TCP_TIME_WAIT, 0);
5793                        goto discard;
5794                }
5795                break;
5796
5797        case TCP_LAST_ACK:
5798                if (tp->snd_una == tp->write_seq) {
5799                        tcp_update_metrics(sk);
5800                        tcp_done(sk);
5801                        goto discard;
5802                }
5803                break;
5804        }
5805
5806        /* step 6: check the URG bit */
5807        tcp_urg(sk, skb, th);
5808
5809        /* step 7: process the segment text */
5810        switch (sk->sk_state) {
5811        case TCP_CLOSE_WAIT:
5812        case TCP_CLOSING:
5813        case TCP_LAST_ACK:
5814                if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
5815                        break;
5816        case TCP_FIN_WAIT1:
5817        case TCP_FIN_WAIT2:
5818                /* RFC 793 says to queue data in these states,
5819                 * RFC 1122 says we MUST send a reset.
5820                 * BSD 4.4 also does reset.
5821                 */
5822                if (sk->sk_shutdown & RCV_SHUTDOWN) {
5823                        if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
5824                            after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
5825                                NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
5826                                tcp_reset(sk);
5827                                return 1;
5828                        }
5829                }
5830                /* Fall through */
5831        case TCP_ESTABLISHED:
5832                tcp_data_queue(sk, skb);
5833                queued = 1;
5834                break;
5835        }
5836
5837        /* tcp_data could move socket to TIME-WAIT */
5838        if (sk->sk_state != TCP_CLOSE) {
5839                tcp_data_snd_check(sk);
5840                tcp_ack_snd_check(sk);
5841        }
5842
5843        if (!queued) {
5844discard:
5845                __kfree_skb(skb);
5846        }
5847        return 0;
5848}
5849EXPORT_SYMBOL(tcp_rcv_state_process);
5850
5851static inline void pr_drop_req(struct request_sock *req, __u16 port, int family)
5852{
5853        struct inet_request_sock *ireq = inet_rsk(req);
5854
5855        if (family == AF_INET)
5856                LIMIT_NETDEBUG(KERN_DEBUG pr_fmt("drop open request from %pI4/%u\n"),
5857                               &ireq->ir_rmt_addr, port);
5858#if IS_ENABLED(CONFIG_IPV6)
5859        else if (family == AF_INET6)
5860                LIMIT_NETDEBUG(KERN_DEBUG pr_fmt("drop open request from %pI6/%u\n"),
5861                               &ireq->ir_v6_rmt_addr, port);
5862#endif
5863}
5864
5865/* RFC3168 : 6.1.1 SYN packets must not have ECT/ECN bits set
5866 *
5867 * If we receive a SYN packet with these bits set, it means a
5868 * network is playing bad games with TOS bits. In order to
5869 * avoid possible false congestion notifications, we disable
5870 * TCP ECN negociation.
5871 *
5872 * Exception: tcp_ca wants ECN. This is required for DCTCP
5873 * congestion control; it requires setting ECT on all packets,
5874 * including SYN. We inverse the test in this case: If our
5875 * local socket wants ECN, but peer only set ece/cwr (but not
5876 * ECT in IP header) its probably a non-DCTCP aware sender.
5877 */
5878static void tcp_ecn_create_request(struct request_sock *req,
5879                                   const struct sk_buff *skb,
5880                                   const struct sock *listen_sk)
5881{
5882        const struct tcphdr *th = tcp_hdr(skb);
5883        const struct net *net = sock_net(listen_sk);
5884        bool th_ecn = th->ece && th->cwr;
5885        bool ect, need_ecn;
5886
5887        if (!th_ecn)
5888                return;
5889
5890        ect = !INET_ECN_is_not_ect(TCP_SKB_CB(skb)->ip_dsfield);
5891        need_ecn = tcp_ca_needs_ecn(listen_sk);
5892
5893        if (!ect && !need_ecn && net->ipv4.sysctl_tcp_ecn)
5894                inet_rsk(req)->ecn_ok = 1;
5895        else if (ect && need_ecn)
5896                inet_rsk(req)->ecn_ok = 1;
5897}
5898
5899int tcp_conn_request(struct request_sock_ops *rsk_ops,
5900                     const struct tcp_request_sock_ops *af_ops,
5901                     struct sock *sk, struct sk_buff *skb)
5902{
5903        struct tcp_options_received tmp_opt;
5904        struct request_sock *req;
5905        struct tcp_sock *tp = tcp_sk(sk);
5906        struct dst_entry *dst = NULL;
5907        __u32 isn = TCP_SKB_CB(skb)->tcp_tw_isn;
5908        bool want_cookie = false, fastopen;
5909        struct flowi fl;
5910        struct tcp_fastopen_cookie foc = { .len = -1 };
5911        int err;
5912
5913
5914        /* TW buckets are converted to open requests without
5915         * limitations, they conserve resources and peer is
5916         * evidently real one.
5917         */
5918        if ((sysctl_tcp_syncookies == 2 ||
5919             inet_csk_reqsk_queue_is_full(sk)) && !isn) {
5920                want_cookie = tcp_syn_flood_action(sk, skb, rsk_ops->slab_name);
5921                if (!want_cookie)
5922                        goto drop;
5923        }
5924
5925
5926        /* Accept backlog is full. If we have already queued enough
5927         * of warm entries in syn queue, drop request. It is better than
5928         * clogging syn queue with openreqs with exponentially increasing
5929         * timeout.
5930         */
5931        if (sk_acceptq_is_full(sk) && inet_csk_reqsk_queue_young(sk) > 1) {
5932                NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
5933                goto drop;
5934        }
5935
5936        req = inet_reqsk_alloc(rsk_ops);
5937        if (!req)
5938                goto drop;
5939
5940        tcp_rsk(req)->af_specific = af_ops;
5941
5942        tcp_clear_options(&tmp_opt);
5943        tmp_opt.mss_clamp = af_ops->mss_clamp;
5944        tmp_opt.user_mss  = tp->rx_opt.user_mss;
5945        tcp_parse_options(skb, &tmp_opt, 0, want_cookie ? NULL : &foc);
5946
5947        if (want_cookie && !tmp_opt.saw_tstamp)
5948                tcp_clear_options(&tmp_opt);
5949
5950        tmp_opt.tstamp_ok = tmp_opt.saw_tstamp;
5951        tcp_openreq_init(req, &tmp_opt, skb, sk);
5952
5953        af_ops->init_req(req, sk, skb);
5954
5955        if (security_inet_conn_request(sk, skb, req))
5956                goto drop_and_free;
5957
5958        if (!want_cookie || tmp_opt.tstamp_ok)
5959                tcp_ecn_create_request(req, skb, sk);
5960
5961        if (want_cookie) {
5962                isn = cookie_init_sequence(af_ops, sk, skb, &req->mss);
5963                req->cookie_ts = tmp_opt.tstamp_ok;
5964        } else if (!isn) {
5965                /* VJ's idea. We save last timestamp seen
5966                 * from the destination in peer table, when entering
5967                 * state TIME-WAIT, and check against it before
5968                 * accepting new connection request.
5969                 *
5970                 * If "isn" is not zero, this request hit alive
5971                 * timewait bucket, so that all the necessary checks
5972                 * are made in the function processing timewait state.
5973                 */
5974                if (tcp_death_row.sysctl_tw_recycle) {
5975                        bool strict;
5976
5977                        dst = af_ops->route_req(sk, &fl, req, &strict);
5978
5979                        if (dst && strict &&
5980                            !tcp_peer_is_proven(req, dst, true,
5981                                                tmp_opt.saw_tstamp)) {
5982                                NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSPASSIVEREJECTED);
5983                                goto drop_and_release;
5984                        }
5985                }
5986                /* Kill the following clause, if you dislike this way. */
5987                else if (!sysctl_tcp_syncookies &&
5988                         (sysctl_max_syn_backlog - inet_csk_reqsk_queue_len(sk) <
5989                          (sysctl_max_syn_backlog >> 2)) &&
5990                         !tcp_peer_is_proven(req, dst, false,
5991                                             tmp_opt.saw_tstamp)) {
5992                        /* Without syncookies last quarter of
5993                         * backlog is filled with destinations,
5994                         * proven to be alive.
5995                         * It means that we continue to communicate
5996                         * to destinations, already remembered
5997                         * to the moment of synflood.
5998                         */
5999                        pr_drop_req(req, ntohs(tcp_hdr(skb)->source),
6000                                    rsk_ops->family);
6001                        goto drop_and_release;
6002                }
6003
6004                isn = af_ops->init_seq(skb);
6005        }
6006        if (!dst) {
6007                dst = af_ops->route_req(sk, &fl, req, NULL);
6008                if (!dst)
6009                        goto drop_and_free;
6010        }
6011
6012        tcp_rsk(req)->snt_isn = isn;
6013        tcp_openreq_init_rwin(req, sk, dst);
6014        fastopen = !want_cookie &&
6015                   tcp_try_fastopen(sk, skb, req, &foc, dst);
6016        err = af_ops->send_synack(sk, dst, &fl, req,
6017                                  skb_get_queue_mapping(skb), &foc);
6018        if (!fastopen) {
6019                if (err || want_cookie)
6020                        goto drop_and_free;
6021
6022                tcp_rsk(req)->listener = NULL;
6023                af_ops->queue_hash_add(sk, req, TCP_TIMEOUT_INIT);
6024        }
6025
6026        return 0;
6027
6028drop_and_release:
6029        dst_release(dst);
6030drop_and_free:
6031        reqsk_free(req);
6032drop:
6033        NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENDROPS);
6034        return 0;
6035}
6036EXPORT_SYMBOL(tcp_conn_request);
6037