linux/security/keys/keyring.c
<<
>>
Prefs
   1/* Keyring handling
   2 *
   3 * Copyright (C) 2004-2005, 2008, 2013 Red Hat, Inc. All Rights Reserved.
   4 * Written by David Howells (dhowells@redhat.com)
   5 *
   6 * This program is free software; you can redistribute it and/or
   7 * modify it under the terms of the GNU General Public License
   8 * as published by the Free Software Foundation; either version
   9 * 2 of the License, or (at your option) any later version.
  10 */
  11
  12#include <linux/module.h>
  13#include <linux/init.h>
  14#include <linux/sched.h>
  15#include <linux/slab.h>
  16#include <linux/security.h>
  17#include <linux/seq_file.h>
  18#include <linux/err.h>
  19#include <keys/keyring-type.h>
  20#include <keys/user-type.h>
  21#include <linux/assoc_array_priv.h>
  22#include <linux/uaccess.h>
  23#include "internal.h"
  24
  25/*
  26 * When plumbing the depths of the key tree, this sets a hard limit
  27 * set on how deep we're willing to go.
  28 */
  29#define KEYRING_SEARCH_MAX_DEPTH 6
  30
  31/*
  32 * We keep all named keyrings in a hash to speed looking them up.
  33 */
  34#define KEYRING_NAME_HASH_SIZE  (1 << 5)
  35
  36/*
  37 * We mark pointers we pass to the associative array with bit 1 set if
  38 * they're keyrings and clear otherwise.
  39 */
  40#define KEYRING_PTR_SUBTYPE     0x2UL
  41
  42static inline bool keyring_ptr_is_keyring(const struct assoc_array_ptr *x)
  43{
  44        return (unsigned long)x & KEYRING_PTR_SUBTYPE;
  45}
  46static inline struct key *keyring_ptr_to_key(const struct assoc_array_ptr *x)
  47{
  48        void *object = assoc_array_ptr_to_leaf(x);
  49        return (struct key *)((unsigned long)object & ~KEYRING_PTR_SUBTYPE);
  50}
  51static inline void *keyring_key_to_ptr(struct key *key)
  52{
  53        if (key->type == &key_type_keyring)
  54                return (void *)((unsigned long)key | KEYRING_PTR_SUBTYPE);
  55        return key;
  56}
  57
  58static struct list_head keyring_name_hash[KEYRING_NAME_HASH_SIZE];
  59static DEFINE_RWLOCK(keyring_name_lock);
  60
  61static inline unsigned keyring_hash(const char *desc)
  62{
  63        unsigned bucket = 0;
  64
  65        for (; *desc; desc++)
  66                bucket += (unsigned char)*desc;
  67
  68        return bucket & (KEYRING_NAME_HASH_SIZE - 1);
  69}
  70
  71/*
  72 * The keyring key type definition.  Keyrings are simply keys of this type and
  73 * can be treated as ordinary keys in addition to having their own special
  74 * operations.
  75 */
  76static int keyring_preparse(struct key_preparsed_payload *prep);
  77static void keyring_free_preparse(struct key_preparsed_payload *prep);
  78static int keyring_instantiate(struct key *keyring,
  79                               struct key_preparsed_payload *prep);
  80static void keyring_revoke(struct key *keyring);
  81static void keyring_destroy(struct key *keyring);
  82static void keyring_describe(const struct key *keyring, struct seq_file *m);
  83static long keyring_read(const struct key *keyring,
  84                         char __user *buffer, size_t buflen);
  85
  86struct key_type key_type_keyring = {
  87        .name           = "keyring",
  88        .def_datalen    = 0,
  89        .preparse       = keyring_preparse,
  90        .free_preparse  = keyring_free_preparse,
  91        .instantiate    = keyring_instantiate,
  92        .revoke         = keyring_revoke,
  93        .destroy        = keyring_destroy,
  94        .describe       = keyring_describe,
  95        .read           = keyring_read,
  96};
  97EXPORT_SYMBOL(key_type_keyring);
  98
  99/*
 100 * Semaphore to serialise link/link calls to prevent two link calls in parallel
 101 * introducing a cycle.
 102 */
 103static DECLARE_RWSEM(keyring_serialise_link_sem);
 104
 105/*
 106 * Publish the name of a keyring so that it can be found by name (if it has
 107 * one).
 108 */
 109static void keyring_publish_name(struct key *keyring)
 110{
 111        int bucket;
 112
 113        if (keyring->description) {
 114                bucket = keyring_hash(keyring->description);
 115
 116                write_lock(&keyring_name_lock);
 117
 118                if (!keyring_name_hash[bucket].next)
 119                        INIT_LIST_HEAD(&keyring_name_hash[bucket]);
 120
 121                list_add_tail(&keyring->type_data.link,
 122                              &keyring_name_hash[bucket]);
 123
 124                write_unlock(&keyring_name_lock);
 125        }
 126}
 127
 128/*
 129 * Preparse a keyring payload
 130 */
 131static int keyring_preparse(struct key_preparsed_payload *prep)
 132{
 133        return prep->datalen != 0 ? -EINVAL : 0;
 134}
 135
 136/*
 137 * Free a preparse of a user defined key payload
 138 */
 139static void keyring_free_preparse(struct key_preparsed_payload *prep)
 140{
 141}
 142
 143/*
 144 * Initialise a keyring.
 145 *
 146 * Returns 0 on success, -EINVAL if given any data.
 147 */
 148static int keyring_instantiate(struct key *keyring,
 149                               struct key_preparsed_payload *prep)
 150{
 151        assoc_array_init(&keyring->keys);
 152        /* make the keyring available by name if it has one */
 153        keyring_publish_name(keyring);
 154        return 0;
 155}
 156
 157/*
 158 * Multiply 64-bits by 32-bits to 96-bits and fold back to 64-bit.  Ideally we'd
 159 * fold the carry back too, but that requires inline asm.
 160 */
 161static u64 mult_64x32_and_fold(u64 x, u32 y)
 162{
 163        u64 hi = (u64)(u32)(x >> 32) * y;
 164        u64 lo = (u64)(u32)(x) * y;
 165        return lo + ((u64)(u32)hi << 32) + (u32)(hi >> 32);
 166}
 167
 168/*
 169 * Hash a key type and description.
 170 */
 171static unsigned long hash_key_type_and_desc(const struct keyring_index_key *index_key)
 172{
 173        const unsigned level_shift = ASSOC_ARRAY_LEVEL_STEP;
 174        const unsigned long fan_mask = ASSOC_ARRAY_FAN_MASK;
 175        const char *description = index_key->description;
 176        unsigned long hash, type;
 177        u32 piece;
 178        u64 acc;
 179        int n, desc_len = index_key->desc_len;
 180
 181        type = (unsigned long)index_key->type;
 182
 183        acc = mult_64x32_and_fold(type, desc_len + 13);
 184        acc = mult_64x32_and_fold(acc, 9207);
 185        for (;;) {
 186                n = desc_len;
 187                if (n <= 0)
 188                        break;
 189                if (n > 4)
 190                        n = 4;
 191                piece = 0;
 192                memcpy(&piece, description, n);
 193                description += n;
 194                desc_len -= n;
 195                acc = mult_64x32_and_fold(acc, piece);
 196                acc = mult_64x32_and_fold(acc, 9207);
 197        }
 198
 199        /* Fold the hash down to 32 bits if need be. */
 200        hash = acc;
 201        if (ASSOC_ARRAY_KEY_CHUNK_SIZE == 32)
 202                hash ^= acc >> 32;
 203
 204        /* Squidge all the keyrings into a separate part of the tree to
 205         * ordinary keys by making sure the lowest level segment in the hash is
 206         * zero for keyrings and non-zero otherwise.
 207         */
 208        if (index_key->type != &key_type_keyring && (hash & fan_mask) == 0)
 209                return hash | (hash >> (ASSOC_ARRAY_KEY_CHUNK_SIZE - level_shift)) | 1;
 210        if (index_key->type == &key_type_keyring && (hash & fan_mask) != 0)
 211                return (hash + (hash << level_shift)) & ~fan_mask;
 212        return hash;
 213}
 214
 215/*
 216 * Build the next index key chunk.
 217 *
 218 * On 32-bit systems the index key is laid out as:
 219 *
 220 *      0       4       5       9...
 221 *      hash    desclen typeptr desc[]
 222 *
 223 * On 64-bit systems:
 224 *
 225 *      0       8       9       17...
 226 *      hash    desclen typeptr desc[]
 227 *
 228 * We return it one word-sized chunk at a time.
 229 */
 230static unsigned long keyring_get_key_chunk(const void *data, int level)
 231{
 232        const struct keyring_index_key *index_key = data;
 233        unsigned long chunk = 0;
 234        long offset = 0;
 235        int desc_len = index_key->desc_len, n = sizeof(chunk);
 236
 237        level /= ASSOC_ARRAY_KEY_CHUNK_SIZE;
 238        switch (level) {
 239        case 0:
 240                return hash_key_type_and_desc(index_key);
 241        case 1:
 242                return ((unsigned long)index_key->type << 8) | desc_len;
 243        case 2:
 244                if (desc_len == 0)
 245                        return (u8)((unsigned long)index_key->type >>
 246                                    (ASSOC_ARRAY_KEY_CHUNK_SIZE - 8));
 247                n--;
 248                offset = 1;
 249        default:
 250                offset += sizeof(chunk) - 1;
 251                offset += (level - 3) * sizeof(chunk);
 252                if (offset >= desc_len)
 253                        return 0;
 254                desc_len -= offset;
 255                if (desc_len > n)
 256                        desc_len = n;
 257                offset += desc_len;
 258                do {
 259                        chunk <<= 8;
 260                        chunk |= ((u8*)index_key->description)[--offset];
 261                } while (--desc_len > 0);
 262
 263                if (level == 2) {
 264                        chunk <<= 8;
 265                        chunk |= (u8)((unsigned long)index_key->type >>
 266                                      (ASSOC_ARRAY_KEY_CHUNK_SIZE - 8));
 267                }
 268                return chunk;
 269        }
 270}
 271
 272static unsigned long keyring_get_object_key_chunk(const void *object, int level)
 273{
 274        const struct key *key = keyring_ptr_to_key(object);
 275        return keyring_get_key_chunk(&key->index_key, level);
 276}
 277
 278static bool keyring_compare_object(const void *object, const void *data)
 279{
 280        const struct keyring_index_key *index_key = data;
 281        const struct key *key = keyring_ptr_to_key(object);
 282
 283        return key->index_key.type == index_key->type &&
 284                key->index_key.desc_len == index_key->desc_len &&
 285                memcmp(key->index_key.description, index_key->description,
 286                       index_key->desc_len) == 0;
 287}
 288
 289/*
 290 * Compare the index keys of a pair of objects and determine the bit position
 291 * at which they differ - if they differ.
 292 */
 293static int keyring_diff_objects(const void *object, const void *data)
 294{
 295        const struct key *key_a = keyring_ptr_to_key(object);
 296        const struct keyring_index_key *a = &key_a->index_key;
 297        const struct keyring_index_key *b = data;
 298        unsigned long seg_a, seg_b;
 299        int level, i;
 300
 301        level = 0;
 302        seg_a = hash_key_type_and_desc(a);
 303        seg_b = hash_key_type_and_desc(b);
 304        if ((seg_a ^ seg_b) != 0)
 305                goto differ;
 306
 307        /* The number of bits contributed by the hash is controlled by a
 308         * constant in the assoc_array headers.  Everything else thereafter we
 309         * can deal with as being machine word-size dependent.
 310         */
 311        level += ASSOC_ARRAY_KEY_CHUNK_SIZE / 8;
 312        seg_a = a->desc_len;
 313        seg_b = b->desc_len;
 314        if ((seg_a ^ seg_b) != 0)
 315                goto differ;
 316
 317        /* The next bit may not work on big endian */
 318        level++;
 319        seg_a = (unsigned long)a->type;
 320        seg_b = (unsigned long)b->type;
 321        if ((seg_a ^ seg_b) != 0)
 322                goto differ;
 323
 324        level += sizeof(unsigned long);
 325        if (a->desc_len == 0)
 326                goto same;
 327
 328        i = 0;
 329        if (((unsigned long)a->description | (unsigned long)b->description) &
 330            (sizeof(unsigned long) - 1)) {
 331                do {
 332                        seg_a = *(unsigned long *)(a->description + i);
 333                        seg_b = *(unsigned long *)(b->description + i);
 334                        if ((seg_a ^ seg_b) != 0)
 335                                goto differ_plus_i;
 336                        i += sizeof(unsigned long);
 337                } while (i < (a->desc_len & (sizeof(unsigned long) - 1)));
 338        }
 339
 340        for (; i < a->desc_len; i++) {
 341                seg_a = *(unsigned char *)(a->description + i);
 342                seg_b = *(unsigned char *)(b->description + i);
 343                if ((seg_a ^ seg_b) != 0)
 344                        goto differ_plus_i;
 345        }
 346
 347same:
 348        return -1;
 349
 350differ_plus_i:
 351        level += i;
 352differ:
 353        i = level * 8 + __ffs(seg_a ^ seg_b);
 354        return i;
 355}
 356
 357/*
 358 * Free an object after stripping the keyring flag off of the pointer.
 359 */
 360static void keyring_free_object(void *object)
 361{
 362        key_put(keyring_ptr_to_key(object));
 363}
 364
 365/*
 366 * Operations for keyring management by the index-tree routines.
 367 */
 368static const struct assoc_array_ops keyring_assoc_array_ops = {
 369        .get_key_chunk          = keyring_get_key_chunk,
 370        .get_object_key_chunk   = keyring_get_object_key_chunk,
 371        .compare_object         = keyring_compare_object,
 372        .diff_objects           = keyring_diff_objects,
 373        .free_object            = keyring_free_object,
 374};
 375
 376/*
 377 * Clean up a keyring when it is destroyed.  Unpublish its name if it had one
 378 * and dispose of its data.
 379 *
 380 * The garbage collector detects the final key_put(), removes the keyring from
 381 * the serial number tree and then does RCU synchronisation before coming here,
 382 * so we shouldn't need to worry about code poking around here with the RCU
 383 * readlock held by this time.
 384 */
 385static void keyring_destroy(struct key *keyring)
 386{
 387        if (keyring->description) {
 388                write_lock(&keyring_name_lock);
 389
 390                if (keyring->type_data.link.next != NULL &&
 391                    !list_empty(&keyring->type_data.link))
 392                        list_del(&keyring->type_data.link);
 393
 394                write_unlock(&keyring_name_lock);
 395        }
 396
 397        assoc_array_destroy(&keyring->keys, &keyring_assoc_array_ops);
 398}
 399
 400/*
 401 * Describe a keyring for /proc.
 402 */
 403static void keyring_describe(const struct key *keyring, struct seq_file *m)
 404{
 405        if (keyring->description)
 406                seq_puts(m, keyring->description);
 407        else
 408                seq_puts(m, "[anon]");
 409
 410        if (key_is_instantiated(keyring)) {
 411                if (keyring->keys.nr_leaves_on_tree != 0)
 412                        seq_printf(m, ": %lu", keyring->keys.nr_leaves_on_tree);
 413                else
 414                        seq_puts(m, ": empty");
 415        }
 416}
 417
 418struct keyring_read_iterator_context {
 419        size_t                  qty;
 420        size_t                  count;
 421        key_serial_t __user     *buffer;
 422};
 423
 424static int keyring_read_iterator(const void *object, void *data)
 425{
 426        struct keyring_read_iterator_context *ctx = data;
 427        const struct key *key = keyring_ptr_to_key(object);
 428        int ret;
 429
 430        kenter("{%s,%d},,{%zu/%zu}",
 431               key->type->name, key->serial, ctx->count, ctx->qty);
 432
 433        if (ctx->count >= ctx->qty)
 434                return 1;
 435
 436        ret = put_user(key->serial, ctx->buffer);
 437        if (ret < 0)
 438                return ret;
 439        ctx->buffer++;
 440        ctx->count += sizeof(key->serial);
 441        return 0;
 442}
 443
 444/*
 445 * Read a list of key IDs from the keyring's contents in binary form
 446 *
 447 * The keyring's semaphore is read-locked by the caller.  This prevents someone
 448 * from modifying it under us - which could cause us to read key IDs multiple
 449 * times.
 450 */
 451static long keyring_read(const struct key *keyring,
 452                         char __user *buffer, size_t buflen)
 453{
 454        struct keyring_read_iterator_context ctx;
 455        unsigned long nr_keys;
 456        int ret;
 457
 458        kenter("{%d},,%zu", key_serial(keyring), buflen);
 459
 460        if (buflen & (sizeof(key_serial_t) - 1))
 461                return -EINVAL;
 462
 463        nr_keys = keyring->keys.nr_leaves_on_tree;
 464        if (nr_keys == 0)
 465                return 0;
 466
 467        /* Calculate how much data we could return */
 468        ctx.qty = nr_keys * sizeof(key_serial_t);
 469
 470        if (!buffer || !buflen)
 471                return ctx.qty;
 472
 473        if (buflen > ctx.qty)
 474                ctx.qty = buflen;
 475
 476        /* Copy the IDs of the subscribed keys into the buffer */
 477        ctx.buffer = (key_serial_t __user *)buffer;
 478        ctx.count = 0;
 479        ret = assoc_array_iterate(&keyring->keys, keyring_read_iterator, &ctx);
 480        if (ret < 0) {
 481                kleave(" = %d [iterate]", ret);
 482                return ret;
 483        }
 484
 485        kleave(" = %zu [ok]", ctx.count);
 486        return ctx.count;
 487}
 488
 489/*
 490 * Allocate a keyring and link into the destination keyring.
 491 */
 492struct key *keyring_alloc(const char *description, kuid_t uid, kgid_t gid,
 493                          const struct cred *cred, key_perm_t perm,
 494                          unsigned long flags, struct key *dest)
 495{
 496        struct key *keyring;
 497        int ret;
 498
 499        keyring = key_alloc(&key_type_keyring, description,
 500                            uid, gid, cred, perm, flags);
 501        if (!IS_ERR(keyring)) {
 502                ret = key_instantiate_and_link(keyring, NULL, 0, dest, NULL);
 503                if (ret < 0) {
 504                        key_put(keyring);
 505                        keyring = ERR_PTR(ret);
 506                }
 507        }
 508
 509        return keyring;
 510}
 511EXPORT_SYMBOL(keyring_alloc);
 512
 513/*
 514 * By default, we keys found by getting an exact match on their descriptions.
 515 */
 516bool key_default_cmp(const struct key *key,
 517                     const struct key_match_data *match_data)
 518{
 519        return strcmp(key->description, match_data->raw_data) == 0;
 520}
 521
 522/*
 523 * Iteration function to consider each key found.
 524 */
 525static int keyring_search_iterator(const void *object, void *iterator_data)
 526{
 527        struct keyring_search_context *ctx = iterator_data;
 528        const struct key *key = keyring_ptr_to_key(object);
 529        unsigned long kflags = key->flags;
 530
 531        kenter("{%d}", key->serial);
 532
 533        /* ignore keys not of this type */
 534        if (key->type != ctx->index_key.type) {
 535                kleave(" = 0 [!type]");
 536                return 0;
 537        }
 538
 539        /* skip invalidated, revoked and expired keys */
 540        if (ctx->flags & KEYRING_SEARCH_DO_STATE_CHECK) {
 541                if (kflags & ((1 << KEY_FLAG_INVALIDATED) |
 542                              (1 << KEY_FLAG_REVOKED))) {
 543                        ctx->result = ERR_PTR(-EKEYREVOKED);
 544                        kleave(" = %d [invrev]", ctx->skipped_ret);
 545                        goto skipped;
 546                }
 547
 548                if (key->expiry && ctx->now.tv_sec >= key->expiry) {
 549                        if (!(ctx->flags & KEYRING_SEARCH_SKIP_EXPIRED))
 550                                ctx->result = ERR_PTR(-EKEYEXPIRED);
 551                        kleave(" = %d [expire]", ctx->skipped_ret);
 552                        goto skipped;
 553                }
 554        }
 555
 556        /* keys that don't match */
 557        if (!ctx->match_data.cmp(key, &ctx->match_data)) {
 558                kleave(" = 0 [!match]");
 559                return 0;
 560        }
 561
 562        /* key must have search permissions */
 563        if (!(ctx->flags & KEYRING_SEARCH_NO_CHECK_PERM) &&
 564            key_task_permission(make_key_ref(key, ctx->possessed),
 565                                ctx->cred, KEY_NEED_SEARCH) < 0) {
 566                ctx->result = ERR_PTR(-EACCES);
 567                kleave(" = %d [!perm]", ctx->skipped_ret);
 568                goto skipped;
 569        }
 570
 571        if (ctx->flags & KEYRING_SEARCH_DO_STATE_CHECK) {
 572                /* we set a different error code if we pass a negative key */
 573                if (kflags & (1 << KEY_FLAG_NEGATIVE)) {
 574                        smp_rmb();
 575                        ctx->result = ERR_PTR(key->type_data.reject_error);
 576                        kleave(" = %d [neg]", ctx->skipped_ret);
 577                        goto skipped;
 578                }
 579        }
 580
 581        /* Found */
 582        ctx->result = make_key_ref(key, ctx->possessed);
 583        kleave(" = 1 [found]");
 584        return 1;
 585
 586skipped:
 587        return ctx->skipped_ret;
 588}
 589
 590/*
 591 * Search inside a keyring for a key.  We can search by walking to it
 592 * directly based on its index-key or we can iterate over the entire
 593 * tree looking for it, based on the match function.
 594 */
 595static int search_keyring(struct key *keyring, struct keyring_search_context *ctx)
 596{
 597        if (ctx->match_data.lookup_type == KEYRING_SEARCH_LOOKUP_DIRECT) {
 598                const void *object;
 599
 600                object = assoc_array_find(&keyring->keys,
 601                                          &keyring_assoc_array_ops,
 602                                          &ctx->index_key);
 603                return object ? ctx->iterator(object, ctx) : 0;
 604        }
 605        return assoc_array_iterate(&keyring->keys, ctx->iterator, ctx);
 606}
 607
 608/*
 609 * Search a tree of keyrings that point to other keyrings up to the maximum
 610 * depth.
 611 */
 612static bool search_nested_keyrings(struct key *keyring,
 613                                   struct keyring_search_context *ctx)
 614{
 615        struct {
 616                struct key *keyring;
 617                struct assoc_array_node *node;
 618                int slot;
 619        } stack[KEYRING_SEARCH_MAX_DEPTH];
 620
 621        struct assoc_array_shortcut *shortcut;
 622        struct assoc_array_node *node;
 623        struct assoc_array_ptr *ptr;
 624        struct key *key;
 625        int sp = 0, slot;
 626
 627        kenter("{%d},{%s,%s}",
 628               keyring->serial,
 629               ctx->index_key.type->name,
 630               ctx->index_key.description);
 631
 632#define STATE_CHECKS (KEYRING_SEARCH_NO_STATE_CHECK | KEYRING_SEARCH_DO_STATE_CHECK)
 633        BUG_ON((ctx->flags & STATE_CHECKS) == 0 ||
 634               (ctx->flags & STATE_CHECKS) == STATE_CHECKS);
 635
 636        if (ctx->index_key.description)
 637                ctx->index_key.desc_len = strlen(ctx->index_key.description);
 638
 639        /* Check to see if this top-level keyring is what we are looking for
 640         * and whether it is valid or not.
 641         */
 642        if (ctx->match_data.lookup_type == KEYRING_SEARCH_LOOKUP_ITERATE ||
 643            keyring_compare_object(keyring, &ctx->index_key)) {
 644                ctx->skipped_ret = 2;
 645                switch (ctx->iterator(keyring_key_to_ptr(keyring), ctx)) {
 646                case 1:
 647                        goto found;
 648                case 2:
 649                        return false;
 650                default:
 651                        break;
 652                }
 653        }
 654
 655        ctx->skipped_ret = 0;
 656
 657        /* Start processing a new keyring */
 658descend_to_keyring:
 659        kdebug("descend to %d", keyring->serial);
 660        if (keyring->flags & ((1 << KEY_FLAG_INVALIDATED) |
 661                              (1 << KEY_FLAG_REVOKED)))
 662                goto not_this_keyring;
 663
 664        /* Search through the keys in this keyring before its searching its
 665         * subtrees.
 666         */
 667        if (search_keyring(keyring, ctx))
 668                goto found;
 669
 670        /* Then manually iterate through the keyrings nested in this one.
 671         *
 672         * Start from the root node of the index tree.  Because of the way the
 673         * hash function has been set up, keyrings cluster on the leftmost
 674         * branch of the root node (root slot 0) or in the root node itself.
 675         * Non-keyrings avoid the leftmost branch of the root entirely (root
 676         * slots 1-15).
 677         */
 678        ptr = ACCESS_ONCE(keyring->keys.root);
 679        if (!ptr)
 680                goto not_this_keyring;
 681
 682        if (assoc_array_ptr_is_shortcut(ptr)) {
 683                /* If the root is a shortcut, either the keyring only contains
 684                 * keyring pointers (everything clusters behind root slot 0) or
 685                 * doesn't contain any keyring pointers.
 686                 */
 687                shortcut = assoc_array_ptr_to_shortcut(ptr);
 688                smp_read_barrier_depends();
 689                if ((shortcut->index_key[0] & ASSOC_ARRAY_FAN_MASK) != 0)
 690                        goto not_this_keyring;
 691
 692                ptr = ACCESS_ONCE(shortcut->next_node);
 693                node = assoc_array_ptr_to_node(ptr);
 694                goto begin_node;
 695        }
 696
 697        node = assoc_array_ptr_to_node(ptr);
 698        smp_read_barrier_depends();
 699
 700        ptr = node->slots[0];
 701        if (!assoc_array_ptr_is_meta(ptr))
 702                goto begin_node;
 703
 704descend_to_node:
 705        /* Descend to a more distal node in this keyring's content tree and go
 706         * through that.
 707         */
 708        kdebug("descend");
 709        if (assoc_array_ptr_is_shortcut(ptr)) {
 710                shortcut = assoc_array_ptr_to_shortcut(ptr);
 711                smp_read_barrier_depends();
 712                ptr = ACCESS_ONCE(shortcut->next_node);
 713                BUG_ON(!assoc_array_ptr_is_node(ptr));
 714        }
 715        node = assoc_array_ptr_to_node(ptr);
 716
 717begin_node:
 718        kdebug("begin_node");
 719        smp_read_barrier_depends();
 720        slot = 0;
 721ascend_to_node:
 722        /* Go through the slots in a node */
 723        for (; slot < ASSOC_ARRAY_FAN_OUT; slot++) {
 724                ptr = ACCESS_ONCE(node->slots[slot]);
 725
 726                if (assoc_array_ptr_is_meta(ptr) && node->back_pointer)
 727                        goto descend_to_node;
 728
 729                if (!keyring_ptr_is_keyring(ptr))
 730                        continue;
 731
 732                key = keyring_ptr_to_key(ptr);
 733
 734                if (sp >= KEYRING_SEARCH_MAX_DEPTH) {
 735                        if (ctx->flags & KEYRING_SEARCH_DETECT_TOO_DEEP) {
 736                                ctx->result = ERR_PTR(-ELOOP);
 737                                return false;
 738                        }
 739                        goto not_this_keyring;
 740                }
 741
 742                /* Search a nested keyring */
 743                if (!(ctx->flags & KEYRING_SEARCH_NO_CHECK_PERM) &&
 744                    key_task_permission(make_key_ref(key, ctx->possessed),
 745                                        ctx->cred, KEY_NEED_SEARCH) < 0)
 746                        continue;
 747
 748                /* stack the current position */
 749                stack[sp].keyring = keyring;
 750                stack[sp].node = node;
 751                stack[sp].slot = slot;
 752                sp++;
 753
 754                /* begin again with the new keyring */
 755                keyring = key;
 756                goto descend_to_keyring;
 757        }
 758
 759        /* We've dealt with all the slots in the current node, so now we need
 760         * to ascend to the parent and continue processing there.
 761         */
 762        ptr = ACCESS_ONCE(node->back_pointer);
 763        slot = node->parent_slot;
 764
 765        if (ptr && assoc_array_ptr_is_shortcut(ptr)) {
 766                shortcut = assoc_array_ptr_to_shortcut(ptr);
 767                smp_read_barrier_depends();
 768                ptr = ACCESS_ONCE(shortcut->back_pointer);
 769                slot = shortcut->parent_slot;
 770        }
 771        if (!ptr)
 772                goto not_this_keyring;
 773        node = assoc_array_ptr_to_node(ptr);
 774        smp_read_barrier_depends();
 775        slot++;
 776
 777        /* If we've ascended to the root (zero backpointer), we must have just
 778         * finished processing the leftmost branch rather than the root slots -
 779         * so there can't be any more keyrings for us to find.
 780         */
 781        if (node->back_pointer) {
 782                kdebug("ascend %d", slot);
 783                goto ascend_to_node;
 784        }
 785
 786        /* The keyring we're looking at was disqualified or didn't contain a
 787         * matching key.
 788         */
 789not_this_keyring:
 790        kdebug("not_this_keyring %d", sp);
 791        if (sp <= 0) {
 792                kleave(" = false");
 793                return false;
 794        }
 795
 796        /* Resume the processing of a keyring higher up in the tree */
 797        sp--;
 798        keyring = stack[sp].keyring;
 799        node = stack[sp].node;
 800        slot = stack[sp].slot + 1;
 801        kdebug("ascend to %d [%d]", keyring->serial, slot);
 802        goto ascend_to_node;
 803
 804        /* We found a viable match */
 805found:
 806        key = key_ref_to_ptr(ctx->result);
 807        key_check(key);
 808        if (!(ctx->flags & KEYRING_SEARCH_NO_UPDATE_TIME)) {
 809                key->last_used_at = ctx->now.tv_sec;
 810                keyring->last_used_at = ctx->now.tv_sec;
 811                while (sp > 0)
 812                        stack[--sp].keyring->last_used_at = ctx->now.tv_sec;
 813        }
 814        kleave(" = true");
 815        return true;
 816}
 817
 818/**
 819 * keyring_search_aux - Search a keyring tree for a key matching some criteria
 820 * @keyring_ref: A pointer to the keyring with possession indicator.
 821 * @ctx: The keyring search context.
 822 *
 823 * Search the supplied keyring tree for a key that matches the criteria given.
 824 * The root keyring and any linked keyrings must grant Search permission to the
 825 * caller to be searchable and keys can only be found if they too grant Search
 826 * to the caller. The possession flag on the root keyring pointer controls use
 827 * of the possessor bits in permissions checking of the entire tree.  In
 828 * addition, the LSM gets to forbid keyring searches and key matches.
 829 *
 830 * The search is performed as a breadth-then-depth search up to the prescribed
 831 * limit (KEYRING_SEARCH_MAX_DEPTH).
 832 *
 833 * Keys are matched to the type provided and are then filtered by the match
 834 * function, which is given the description to use in any way it sees fit.  The
 835 * match function may use any attributes of a key that it wishes to to
 836 * determine the match.  Normally the match function from the key type would be
 837 * used.
 838 *
 839 * RCU can be used to prevent the keyring key lists from disappearing without
 840 * the need to take lots of locks.
 841 *
 842 * Returns a pointer to the found key and increments the key usage count if
 843 * successful; -EAGAIN if no matching keys were found, or if expired or revoked
 844 * keys were found; -ENOKEY if only negative keys were found; -ENOTDIR if the
 845 * specified keyring wasn't a keyring.
 846 *
 847 * In the case of a successful return, the possession attribute from
 848 * @keyring_ref is propagated to the returned key reference.
 849 */
 850key_ref_t keyring_search_aux(key_ref_t keyring_ref,
 851                             struct keyring_search_context *ctx)
 852{
 853        struct key *keyring;
 854        long err;
 855
 856        ctx->iterator = keyring_search_iterator;
 857        ctx->possessed = is_key_possessed(keyring_ref);
 858        ctx->result = ERR_PTR(-EAGAIN);
 859
 860        keyring = key_ref_to_ptr(keyring_ref);
 861        key_check(keyring);
 862
 863        if (keyring->type != &key_type_keyring)
 864                return ERR_PTR(-ENOTDIR);
 865
 866        if (!(ctx->flags & KEYRING_SEARCH_NO_CHECK_PERM)) {
 867                err = key_task_permission(keyring_ref, ctx->cred, KEY_NEED_SEARCH);
 868                if (err < 0)
 869                        return ERR_PTR(err);
 870        }
 871
 872        rcu_read_lock();
 873        ctx->now = current_kernel_time();
 874        if (search_nested_keyrings(keyring, ctx))
 875                __key_get(key_ref_to_ptr(ctx->result));
 876        rcu_read_unlock();
 877        return ctx->result;
 878}
 879
 880/**
 881 * keyring_search - Search the supplied keyring tree for a matching key
 882 * @keyring: The root of the keyring tree to be searched.
 883 * @type: The type of keyring we want to find.
 884 * @description: The name of the keyring we want to find.
 885 *
 886 * As keyring_search_aux() above, but using the current task's credentials and
 887 * type's default matching function and preferred search method.
 888 */
 889key_ref_t keyring_search(key_ref_t keyring,
 890                         struct key_type *type,
 891                         const char *description)
 892{
 893        struct keyring_search_context ctx = {
 894                .index_key.type         = type,
 895                .index_key.description  = description,
 896                .cred                   = current_cred(),
 897                .match_data.cmp         = key_default_cmp,
 898                .match_data.raw_data    = description,
 899                .match_data.lookup_type = KEYRING_SEARCH_LOOKUP_DIRECT,
 900                .flags                  = KEYRING_SEARCH_DO_STATE_CHECK,
 901        };
 902        key_ref_t key;
 903        int ret;
 904
 905        if (type->match_preparse) {
 906                ret = type->match_preparse(&ctx.match_data);
 907                if (ret < 0)
 908                        return ERR_PTR(ret);
 909        }
 910
 911        key = keyring_search_aux(keyring, &ctx);
 912
 913        if (type->match_free)
 914                type->match_free(&ctx.match_data);
 915        return key;
 916}
 917EXPORT_SYMBOL(keyring_search);
 918
 919/*
 920 * Search the given keyring for a key that might be updated.
 921 *
 922 * The caller must guarantee that the keyring is a keyring and that the
 923 * permission is granted to modify the keyring as no check is made here.  The
 924 * caller must also hold a lock on the keyring semaphore.
 925 *
 926 * Returns a pointer to the found key with usage count incremented if
 927 * successful and returns NULL if not found.  Revoked and invalidated keys are
 928 * skipped over.
 929 *
 930 * If successful, the possession indicator is propagated from the keyring ref
 931 * to the returned key reference.
 932 */
 933key_ref_t find_key_to_update(key_ref_t keyring_ref,
 934                             const struct keyring_index_key *index_key)
 935{
 936        struct key *keyring, *key;
 937        const void *object;
 938
 939        keyring = key_ref_to_ptr(keyring_ref);
 940
 941        kenter("{%d},{%s,%s}",
 942               keyring->serial, index_key->type->name, index_key->description);
 943
 944        object = assoc_array_find(&keyring->keys, &keyring_assoc_array_ops,
 945                                  index_key);
 946
 947        if (object)
 948                goto found;
 949
 950        kleave(" = NULL");
 951        return NULL;
 952
 953found:
 954        key = keyring_ptr_to_key(object);
 955        if (key->flags & ((1 << KEY_FLAG_INVALIDATED) |
 956                          (1 << KEY_FLAG_REVOKED))) {
 957                kleave(" = NULL [x]");
 958                return NULL;
 959        }
 960        __key_get(key);
 961        kleave(" = {%d}", key->serial);
 962        return make_key_ref(key, is_key_possessed(keyring_ref));
 963}
 964
 965/*
 966 * Find a keyring with the specified name.
 967 *
 968 * All named keyrings in the current user namespace are searched, provided they
 969 * grant Search permission directly to the caller (unless this check is
 970 * skipped).  Keyrings whose usage points have reached zero or who have been
 971 * revoked are skipped.
 972 *
 973 * Returns a pointer to the keyring with the keyring's refcount having being
 974 * incremented on success.  -ENOKEY is returned if a key could not be found.
 975 */
 976struct key *find_keyring_by_name(const char *name, bool skip_perm_check)
 977{
 978        struct key *keyring;
 979        int bucket;
 980
 981        if (!name)
 982                return ERR_PTR(-EINVAL);
 983
 984        bucket = keyring_hash(name);
 985
 986        read_lock(&keyring_name_lock);
 987
 988        if (keyring_name_hash[bucket].next) {
 989                /* search this hash bucket for a keyring with a matching name
 990                 * that's readable and that hasn't been revoked */
 991                list_for_each_entry(keyring,
 992                                    &keyring_name_hash[bucket],
 993                                    type_data.link
 994                                    ) {
 995                        if (!kuid_has_mapping(current_user_ns(), keyring->user->uid))
 996                                continue;
 997
 998                        if (test_bit(KEY_FLAG_REVOKED, &keyring->flags))
 999                                continue;
1000
1001                        if (strcmp(keyring->description, name) != 0)
1002                                continue;
1003
1004                        if (!skip_perm_check &&
1005                            key_permission(make_key_ref(keyring, 0),
1006                                           KEY_NEED_SEARCH) < 0)
1007                                continue;
1008
1009                        /* we've got a match but we might end up racing with
1010                         * key_cleanup() if the keyring is currently 'dead'
1011                         * (ie. it has a zero usage count) */
1012                        if (!atomic_inc_not_zero(&keyring->usage))
1013                                continue;
1014                        keyring->last_used_at = current_kernel_time().tv_sec;
1015                        goto out;
1016                }
1017        }
1018
1019        keyring = ERR_PTR(-ENOKEY);
1020out:
1021        read_unlock(&keyring_name_lock);
1022        return keyring;
1023}
1024
1025static int keyring_detect_cycle_iterator(const void *object,
1026                                         void *iterator_data)
1027{
1028        struct keyring_search_context *ctx = iterator_data;
1029        const struct key *key = keyring_ptr_to_key(object);
1030
1031        kenter("{%d}", key->serial);
1032
1033        /* We might get a keyring with matching index-key that is nonetheless a
1034         * different keyring. */
1035        if (key != ctx->match_data.raw_data)
1036                return 0;
1037
1038        ctx->result = ERR_PTR(-EDEADLK);
1039        return 1;
1040}
1041
1042/*
1043 * See if a cycle will will be created by inserting acyclic tree B in acyclic
1044 * tree A at the topmost level (ie: as a direct child of A).
1045 *
1046 * Since we are adding B to A at the top level, checking for cycles should just
1047 * be a matter of seeing if node A is somewhere in tree B.
1048 */
1049static int keyring_detect_cycle(struct key *A, struct key *B)
1050{
1051        struct keyring_search_context ctx = {
1052                .index_key              = A->index_key,
1053                .match_data.raw_data    = A,
1054                .match_data.lookup_type = KEYRING_SEARCH_LOOKUP_DIRECT,
1055                .iterator               = keyring_detect_cycle_iterator,
1056                .flags                  = (KEYRING_SEARCH_NO_STATE_CHECK |
1057                                           KEYRING_SEARCH_NO_UPDATE_TIME |
1058                                           KEYRING_SEARCH_NO_CHECK_PERM |
1059                                           KEYRING_SEARCH_DETECT_TOO_DEEP),
1060        };
1061
1062        rcu_read_lock();
1063        search_nested_keyrings(B, &ctx);
1064        rcu_read_unlock();
1065        return PTR_ERR(ctx.result) == -EAGAIN ? 0 : PTR_ERR(ctx.result);
1066}
1067
1068/*
1069 * Preallocate memory so that a key can be linked into to a keyring.
1070 */
1071int __key_link_begin(struct key *keyring,
1072                     const struct keyring_index_key *index_key,
1073                     struct assoc_array_edit **_edit)
1074        __acquires(&keyring->sem)
1075        __acquires(&keyring_serialise_link_sem)
1076{
1077        struct assoc_array_edit *edit;
1078        int ret;
1079
1080        kenter("%d,%s,%s,",
1081               keyring->serial, index_key->type->name, index_key->description);
1082
1083        BUG_ON(index_key->desc_len == 0);
1084
1085        if (keyring->type != &key_type_keyring)
1086                return -ENOTDIR;
1087
1088        down_write(&keyring->sem);
1089
1090        ret = -EKEYREVOKED;
1091        if (test_bit(KEY_FLAG_REVOKED, &keyring->flags))
1092                goto error_krsem;
1093
1094        /* serialise link/link calls to prevent parallel calls causing a cycle
1095         * when linking two keyring in opposite orders */
1096        if (index_key->type == &key_type_keyring)
1097                down_write(&keyring_serialise_link_sem);
1098
1099        /* Create an edit script that will insert/replace the key in the
1100         * keyring tree.
1101         */
1102        edit = assoc_array_insert(&keyring->keys,
1103                                  &keyring_assoc_array_ops,
1104                                  index_key,
1105                                  NULL);
1106        if (IS_ERR(edit)) {
1107                ret = PTR_ERR(edit);
1108                goto error_sem;
1109        }
1110
1111        /* If we're not replacing a link in-place then we're going to need some
1112         * extra quota.
1113         */
1114        if (!edit->dead_leaf) {
1115                ret = key_payload_reserve(keyring,
1116                                          keyring->datalen + KEYQUOTA_LINK_BYTES);
1117                if (ret < 0)
1118                        goto error_cancel;
1119        }
1120
1121        *_edit = edit;
1122        kleave(" = 0");
1123        return 0;
1124
1125error_cancel:
1126        assoc_array_cancel_edit(edit);
1127error_sem:
1128        if (index_key->type == &key_type_keyring)
1129                up_write(&keyring_serialise_link_sem);
1130error_krsem:
1131        up_write(&keyring->sem);
1132        kleave(" = %d", ret);
1133        return ret;
1134}
1135
1136/*
1137 * Check already instantiated keys aren't going to be a problem.
1138 *
1139 * The caller must have called __key_link_begin(). Don't need to call this for
1140 * keys that were created since __key_link_begin() was called.
1141 */
1142int __key_link_check_live_key(struct key *keyring, struct key *key)
1143{
1144        if (key->type == &key_type_keyring)
1145                /* check that we aren't going to create a cycle by linking one
1146                 * keyring to another */
1147                return keyring_detect_cycle(keyring, key);
1148        return 0;
1149}
1150
1151/*
1152 * Link a key into to a keyring.
1153 *
1154 * Must be called with __key_link_begin() having being called.  Discards any
1155 * already extant link to matching key if there is one, so that each keyring
1156 * holds at most one link to any given key of a particular type+description
1157 * combination.
1158 */
1159void __key_link(struct key *key, struct assoc_array_edit **_edit)
1160{
1161        __key_get(key);
1162        assoc_array_insert_set_object(*_edit, keyring_key_to_ptr(key));
1163        assoc_array_apply_edit(*_edit);
1164        *_edit = NULL;
1165}
1166
1167/*
1168 * Finish linking a key into to a keyring.
1169 *
1170 * Must be called with __key_link_begin() having being called.
1171 */
1172void __key_link_end(struct key *keyring,
1173                    const struct keyring_index_key *index_key,
1174                    struct assoc_array_edit *edit)
1175        __releases(&keyring->sem)
1176        __releases(&keyring_serialise_link_sem)
1177{
1178        BUG_ON(index_key->type == NULL);
1179        kenter("%d,%s,", keyring->serial, index_key->type->name);
1180
1181        if (index_key->type == &key_type_keyring)
1182                up_write(&keyring_serialise_link_sem);
1183
1184        if (edit && !edit->dead_leaf) {
1185                key_payload_reserve(keyring,
1186                                    keyring->datalen - KEYQUOTA_LINK_BYTES);
1187                assoc_array_cancel_edit(edit);
1188        }
1189        up_write(&keyring->sem);
1190}
1191
1192/**
1193 * key_link - Link a key to a keyring
1194 * @keyring: The keyring to make the link in.
1195 * @key: The key to link to.
1196 *
1197 * Make a link in a keyring to a key, such that the keyring holds a reference
1198 * on that key and the key can potentially be found by searching that keyring.
1199 *
1200 * This function will write-lock the keyring's semaphore and will consume some
1201 * of the user's key data quota to hold the link.
1202 *
1203 * Returns 0 if successful, -ENOTDIR if the keyring isn't a keyring,
1204 * -EKEYREVOKED if the keyring has been revoked, -ENFILE if the keyring is
1205 * full, -EDQUOT if there is insufficient key data quota remaining to add
1206 * another link or -ENOMEM if there's insufficient memory.
1207 *
1208 * It is assumed that the caller has checked that it is permitted for a link to
1209 * be made (the keyring should have Write permission and the key Link
1210 * permission).
1211 */
1212int key_link(struct key *keyring, struct key *key)
1213{
1214        struct assoc_array_edit *edit;
1215        int ret;
1216
1217        kenter("{%d,%d}", keyring->serial, atomic_read(&keyring->usage));
1218
1219        key_check(keyring);
1220        key_check(key);
1221
1222        if (test_bit(KEY_FLAG_TRUSTED_ONLY, &keyring->flags) &&
1223            !test_bit(KEY_FLAG_TRUSTED, &key->flags))
1224                return -EPERM;
1225
1226        ret = __key_link_begin(keyring, &key->index_key, &edit);
1227        if (ret == 0) {
1228                kdebug("begun {%d,%d}", keyring->serial, atomic_read(&keyring->usage));
1229                ret = __key_link_check_live_key(keyring, key);
1230                if (ret == 0)
1231                        __key_link(key, &edit);
1232                __key_link_end(keyring, &key->index_key, edit);
1233        }
1234
1235        kleave(" = %d {%d,%d}", ret, keyring->serial, atomic_read(&keyring->usage));
1236        return ret;
1237}
1238EXPORT_SYMBOL(key_link);
1239
1240/**
1241 * key_unlink - Unlink the first link to a key from a keyring.
1242 * @keyring: The keyring to remove the link from.
1243 * @key: The key the link is to.
1244 *
1245 * Remove a link from a keyring to a key.
1246 *
1247 * This function will write-lock the keyring's semaphore.
1248 *
1249 * Returns 0 if successful, -ENOTDIR if the keyring isn't a keyring, -ENOENT if
1250 * the key isn't linked to by the keyring or -ENOMEM if there's insufficient
1251 * memory.
1252 *
1253 * It is assumed that the caller has checked that it is permitted for a link to
1254 * be removed (the keyring should have Write permission; no permissions are
1255 * required on the key).
1256 */
1257int key_unlink(struct key *keyring, struct key *key)
1258{
1259        struct assoc_array_edit *edit;
1260        int ret;
1261
1262        key_check(keyring);
1263        key_check(key);
1264
1265        if (keyring->type != &key_type_keyring)
1266                return -ENOTDIR;
1267
1268        down_write(&keyring->sem);
1269
1270        edit = assoc_array_delete(&keyring->keys, &keyring_assoc_array_ops,
1271                                  &key->index_key);
1272        if (IS_ERR(edit)) {
1273                ret = PTR_ERR(edit);
1274                goto error;
1275        }
1276        ret = -ENOENT;
1277        if (edit == NULL)
1278                goto error;
1279
1280        assoc_array_apply_edit(edit);
1281        key_payload_reserve(keyring, keyring->datalen - KEYQUOTA_LINK_BYTES);
1282        ret = 0;
1283
1284error:
1285        up_write(&keyring->sem);
1286        return ret;
1287}
1288EXPORT_SYMBOL(key_unlink);
1289
1290/**
1291 * keyring_clear - Clear a keyring
1292 * @keyring: The keyring to clear.
1293 *
1294 * Clear the contents of the specified keyring.
1295 *
1296 * Returns 0 if successful or -ENOTDIR if the keyring isn't a keyring.
1297 */
1298int keyring_clear(struct key *keyring)
1299{
1300        struct assoc_array_edit *edit;
1301        int ret;
1302
1303        if (keyring->type != &key_type_keyring)
1304                return -ENOTDIR;
1305
1306        down_write(&keyring->sem);
1307
1308        edit = assoc_array_clear(&keyring->keys, &keyring_assoc_array_ops);
1309        if (IS_ERR(edit)) {
1310                ret = PTR_ERR(edit);
1311        } else {
1312                if (edit)
1313                        assoc_array_apply_edit(edit);
1314                key_payload_reserve(keyring, 0);
1315                ret = 0;
1316        }
1317
1318        up_write(&keyring->sem);
1319        return ret;
1320}
1321EXPORT_SYMBOL(keyring_clear);
1322
1323/*
1324 * Dispose of the links from a revoked keyring.
1325 *
1326 * This is called with the key sem write-locked.
1327 */
1328static void keyring_revoke(struct key *keyring)
1329{
1330        struct assoc_array_edit *edit;
1331
1332        edit = assoc_array_clear(&keyring->keys, &keyring_assoc_array_ops);
1333        if (!IS_ERR(edit)) {
1334                if (edit)
1335                        assoc_array_apply_edit(edit);
1336                key_payload_reserve(keyring, 0);
1337        }
1338}
1339
1340static bool keyring_gc_select_iterator(void *object, void *iterator_data)
1341{
1342        struct key *key = keyring_ptr_to_key(object);
1343        time_t *limit = iterator_data;
1344
1345        if (key_is_dead(key, *limit))
1346                return false;
1347        key_get(key);
1348        return true;
1349}
1350
1351static int keyring_gc_check_iterator(const void *object, void *iterator_data)
1352{
1353        const struct key *key = keyring_ptr_to_key(object);
1354        time_t *limit = iterator_data;
1355
1356        key_check(key);
1357        return key_is_dead(key, *limit);
1358}
1359
1360/*
1361 * Garbage collect pointers from a keyring.
1362 *
1363 * Not called with any locks held.  The keyring's key struct will not be
1364 * deallocated under us as only our caller may deallocate it.
1365 */
1366void keyring_gc(struct key *keyring, time_t limit)
1367{
1368        int result;
1369
1370        kenter("%x{%s}", keyring->serial, keyring->description ?: "");
1371
1372        if (keyring->flags & ((1 << KEY_FLAG_INVALIDATED) |
1373                              (1 << KEY_FLAG_REVOKED)))
1374                goto dont_gc;
1375
1376        /* scan the keyring looking for dead keys */
1377        rcu_read_lock();
1378        result = assoc_array_iterate(&keyring->keys,
1379                                     keyring_gc_check_iterator, &limit);
1380        rcu_read_unlock();
1381        if (result == true)
1382                goto do_gc;
1383
1384dont_gc:
1385        kleave(" [no gc]");
1386        return;
1387
1388do_gc:
1389        down_write(&keyring->sem);
1390        assoc_array_gc(&keyring->keys, &keyring_assoc_array_ops,
1391                       keyring_gc_select_iterator, &limit);
1392        up_write(&keyring->sem);
1393        kleave(" [gc]");
1394}
1395