1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21#include <linux/errno.h>
22#include <linux/module.h>
23#include <linux/sched.h>
24#include <linux/kernel.h>
25#include <linux/param.h>
26#include <linux/string.h>
27#include <linux/mm.h>
28#include <linux/delay.h>
29#include <linux/ioport.h>
30#include <linux/irq.h>
31#include <linux/interrupt.h>
32#include <linux/init.h>
33#include <linux/bcd.h>
34#include <linux/profile.h>
35#include <linux/irq_work.h>
36
37#include <asm/uaccess.h>
38#include <asm/io.h>
39#include <asm/hwrpb.h>
40
41#include <linux/mc146818rtc.h>
42#include <linux/time.h>
43#include <linux/timex.h>
44#include <linux/clocksource.h>
45#include <linux/clockchips.h>
46
47#include "proto.h"
48#include "irq_impl.h"
49
50DEFINE_SPINLOCK(rtc_lock);
51EXPORT_SYMBOL(rtc_lock);
52
53unsigned long est_cycle_freq;
54
55#ifdef CONFIG_IRQ_WORK
56
57DEFINE_PER_CPU(u8, irq_work_pending);
58
59#define set_irq_work_pending_flag() __this_cpu_write(irq_work_pending, 1)
60#define test_irq_work_pending() __this_cpu_read(irq_work_pending)
61#define clear_irq_work_pending() __this_cpu_write(irq_work_pending, 0)
62
63void arch_irq_work_raise(void)
64{
65 set_irq_work_pending_flag();
66}
67
68#else
69
70#define test_irq_work_pending() 0
71#define clear_irq_work_pending()
72
73#endif
74
75
76static inline __u32 rpcc(void)
77{
78 return __builtin_alpha_rpcc();
79}
80
81
82
83
84
85
86
87static DEFINE_PER_CPU(struct clock_event_device, cpu_ce);
88
89irqreturn_t
90rtc_timer_interrupt(int irq, void *dev)
91{
92 int cpu = smp_processor_id();
93 struct clock_event_device *ce = &per_cpu(cpu_ce, cpu);
94
95
96 if (likely(ce->mode == CLOCK_EVT_MODE_PERIODIC))
97 ce->event_handler(ce);
98
99 if (test_irq_work_pending()) {
100 clear_irq_work_pending();
101 irq_work_run();
102 }
103
104 return IRQ_HANDLED;
105}
106
107static void
108rtc_ce_set_mode(enum clock_event_mode mode, struct clock_event_device *ce)
109{
110
111
112}
113
114static int
115rtc_ce_set_next_event(unsigned long evt, struct clock_event_device *ce)
116{
117
118 return -EINVAL;
119}
120
121static void __init
122init_rtc_clockevent(void)
123{
124 int cpu = smp_processor_id();
125 struct clock_event_device *ce = &per_cpu(cpu_ce, cpu);
126
127 *ce = (struct clock_event_device){
128 .name = "rtc",
129 .features = CLOCK_EVT_FEAT_PERIODIC,
130 .rating = 100,
131 .cpumask = cpumask_of(cpu),
132 .set_mode = rtc_ce_set_mode,
133 .set_next_event = rtc_ce_set_next_event,
134 };
135
136 clockevents_config_and_register(ce, CONFIG_HZ, 0, 0);
137}
138
139
140
141
142
143
144static cycle_t
145qemu_cs_read(struct clocksource *cs)
146{
147 return qemu_get_vmtime();
148}
149
150static struct clocksource qemu_cs = {
151 .name = "qemu",
152 .rating = 400,
153 .read = qemu_cs_read,
154 .mask = CLOCKSOURCE_MASK(64),
155 .flags = CLOCK_SOURCE_IS_CONTINUOUS,
156 .max_idle_ns = LONG_MAX
157};
158
159
160
161
162
163
164static void
165qemu_ce_set_mode(enum clock_event_mode mode, struct clock_event_device *ce)
166{
167
168
169 qemu_set_alarm_abs(0);
170}
171
172static int
173qemu_ce_set_next_event(unsigned long evt, struct clock_event_device *ce)
174{
175 qemu_set_alarm_rel(evt);
176 return 0;
177}
178
179static irqreturn_t
180qemu_timer_interrupt(int irq, void *dev)
181{
182 int cpu = smp_processor_id();
183 struct clock_event_device *ce = &per_cpu(cpu_ce, cpu);
184
185 ce->event_handler(ce);
186 return IRQ_HANDLED;
187}
188
189static void __init
190init_qemu_clockevent(void)
191{
192 int cpu = smp_processor_id();
193 struct clock_event_device *ce = &per_cpu(cpu_ce, cpu);
194
195 *ce = (struct clock_event_device){
196 .name = "qemu",
197 .features = CLOCK_EVT_FEAT_ONESHOT,
198 .rating = 400,
199 .cpumask = cpumask_of(cpu),
200 .set_mode = qemu_ce_set_mode,
201 .set_next_event = qemu_ce_set_next_event,
202 };
203
204 clockevents_config_and_register(ce, NSEC_PER_SEC, 1000, LONG_MAX);
205}
206
207
208void __init
209common_init_rtc(void)
210{
211 unsigned char x, sel = 0;
212
213
214#if CONFIG_HZ == 1024 || CONFIG_HZ == 1200
215 x = CMOS_READ(RTC_FREQ_SELECT) & 0x3f;
216
217
218 if (x != 0x26 && x != 0x25 && x != 0x19 && x != 0x06) {
219 sel = RTC_REF_CLCK_32KHZ + 6;
220 }
221#elif CONFIG_HZ == 256 || CONFIG_HZ == 128 || CONFIG_HZ == 64 || CONFIG_HZ == 32
222 sel = RTC_REF_CLCK_32KHZ + __builtin_ffs(32768 / CONFIG_HZ);
223#else
224# error "Unknown HZ from arch/alpha/Kconfig"
225#endif
226 if (sel) {
227 printk(KERN_INFO "Setting RTC_FREQ to %d Hz (%x)\n",
228 CONFIG_HZ, sel);
229 CMOS_WRITE(sel, RTC_FREQ_SELECT);
230 }
231
232
233 x = CMOS_READ(RTC_CONTROL);
234 if (!(x & RTC_PIE)) {
235 printk("Turning on RTC interrupts.\n");
236 x |= RTC_PIE;
237 x &= ~(RTC_AIE | RTC_UIE);
238 CMOS_WRITE(x, RTC_CONTROL);
239 }
240 (void) CMOS_READ(RTC_INTR_FLAGS);
241
242 outb(0x36, 0x43);
243 outb(0x00, 0x40);
244 outb(0x00, 0x40);
245
246 outb(0xb6, 0x43);
247 outb(0x31, 0x42);
248 outb(0x13, 0x42);
249
250 init_rtc_irq();
251}
252
253
254#ifndef CONFIG_ALPHA_WTINT
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269static cycle_t read_rpcc(struct clocksource *cs)
270{
271 return rpcc();
272}
273
274static struct clocksource clocksource_rpcc = {
275 .name = "rpcc",
276 .rating = 300,
277 .read = read_rpcc,
278 .mask = CLOCKSOURCE_MASK(32),
279 .flags = CLOCK_SOURCE_IS_CONTINUOUS
280};
281#endif
282
283
284
285
286
287
288
289
290static unsigned long __init
291validate_cc_value(unsigned long cc)
292{
293 static struct bounds {
294 unsigned int min, max;
295 } cpu_hz[] __initdata = {
296 [EV3_CPU] = { 50000000, 200000000 },
297 [EV4_CPU] = { 100000000, 300000000 },
298 [LCA4_CPU] = { 100000000, 300000000 },
299 [EV45_CPU] = { 200000000, 300000000 },
300 [EV5_CPU] = { 250000000, 433000000 },
301 [EV56_CPU] = { 333000000, 667000000 },
302 [PCA56_CPU] = { 400000000, 600000000 },
303 [PCA57_CPU] = { 500000000, 600000000 },
304 [EV6_CPU] = { 466000000, 600000000 },
305 [EV67_CPU] = { 600000000, 750000000 },
306 [EV68AL_CPU] = { 750000000, 940000000 },
307 [EV68CB_CPU] = { 1000000000, 1333333333 },
308
309 [EV68CX_CPU] = { 1000000000, 1700000000 },
310 [EV69_CPU] = { 1000000000, 1700000000 },
311 [EV7_CPU] = { 800000000, 1400000000 },
312 [EV79_CPU] = { 1000000000, 2000000000 },
313 };
314
315
316 const unsigned int deviation = 10000000;
317
318 struct percpu_struct *cpu;
319 unsigned int index;
320
321 cpu = (struct percpu_struct *)((char*)hwrpb + hwrpb->processor_offset);
322 index = cpu->type & 0xffffffff;
323
324
325 if (index >= ARRAY_SIZE(cpu_hz))
326 return cc;
327
328
329 if (cpu_hz[index].max == 0)
330 return cc;
331
332 if (cc < cpu_hz[index].min - deviation
333 || cc > cpu_hz[index].max + deviation)
334 return 0;
335
336 return cc;
337}
338
339
340
341
342
343
344
345#define CALIBRATE_LATCH 0xffff
346#define TIMEOUT_COUNT 0x100000
347
348static unsigned long __init
349calibrate_cc_with_pit(void)
350{
351 int cc, count = 0;
352
353
354 outb((inb(0x61) & ~0x02) | 0x01, 0x61);
355
356
357
358
359
360
361
362
363 outb(0xb0, 0x43);
364 outb(CALIBRATE_LATCH & 0xff, 0x42);
365 outb(CALIBRATE_LATCH >> 8, 0x42);
366
367 cc = rpcc();
368 do {
369 count++;
370 } while ((inb(0x61) & 0x20) == 0 && count < TIMEOUT_COUNT);
371 cc = rpcc() - cc;
372
373
374 if (count <= 1 || count == TIMEOUT_COUNT)
375 return 0;
376
377 return ((long)cc * PIT_TICK_RATE) / (CALIBRATE_LATCH + 1);
378}
379
380
381
382
383
384
385static unsigned long __init
386rpcc_after_update_in_progress(void)
387{
388 do { } while (!(CMOS_READ(RTC_FREQ_SELECT) & RTC_UIP));
389 do { } while (CMOS_READ(RTC_FREQ_SELECT) & RTC_UIP);
390
391 return rpcc();
392}
393
394void __init
395time_init(void)
396{
397 unsigned int cc1, cc2;
398 unsigned long cycle_freq, tolerance;
399 long diff;
400
401 if (alpha_using_qemu) {
402 clocksource_register_hz(&qemu_cs, NSEC_PER_SEC);
403 init_qemu_clockevent();
404
405 timer_irqaction.handler = qemu_timer_interrupt;
406 init_rtc_irq();
407 return;
408 }
409
410
411 if (!est_cycle_freq)
412 est_cycle_freq = validate_cc_value(calibrate_cc_with_pit());
413
414 cc1 = rpcc();
415
416
417 if (!est_cycle_freq) {
418 cc1 = rpcc_after_update_in_progress();
419 cc2 = rpcc_after_update_in_progress();
420 est_cycle_freq = validate_cc_value(cc2 - cc1);
421 cc1 = cc2;
422 }
423
424 cycle_freq = hwrpb->cycle_freq;
425 if (est_cycle_freq) {
426
427
428 tolerance = cycle_freq / 4000;
429 diff = cycle_freq - est_cycle_freq;
430 if (diff < 0)
431 diff = -diff;
432 if ((unsigned long)diff > tolerance) {
433 cycle_freq = est_cycle_freq;
434 printk("HWRPB cycle frequency bogus. "
435 "Estimated %lu Hz\n", cycle_freq);
436 } else {
437 est_cycle_freq = 0;
438 }
439 } else if (! validate_cc_value (cycle_freq)) {
440 printk("HWRPB cycle frequency bogus, "
441 "and unable to estimate a proper value!\n");
442 }
443
444
445#ifndef CONFIG_ALPHA_WTINT
446 if (hwrpb->nr_processors == 1)
447 clocksource_register_hz(&clocksource_rpcc, cycle_freq);
448#endif
449
450
451 alpha_mv.init_rtc();
452 init_rtc_clockevent();
453}
454
455
456#ifdef CONFIG_SMP
457void __init
458init_clockevent(void)
459{
460 if (alpha_using_qemu)
461 init_qemu_clockevent();
462 else
463 init_rtc_clockevent();
464}
465#endif
466