linux/arch/arm/mach-omap2/vc.c
<<
>>
Prefs
   1/*
   2 * OMAP Voltage Controller (VC) interface
   3 *
   4 * Copyright (C) 2011 Texas Instruments, Inc.
   5 *
   6 * This file is licensed under the terms of the GNU General Public
   7 * License version 2. This program is licensed "as is" without any
   8 * warranty of any kind, whether express or implied.
   9 */
  10#include <linux/kernel.h>
  11#include <linux/delay.h>
  12#include <linux/init.h>
  13#include <linux/bug.h>
  14#include <linux/io.h>
  15
  16#include <asm/div64.h>
  17
  18#include "iomap.h"
  19#include "soc.h"
  20#include "voltage.h"
  21#include "vc.h"
  22#include "prm-regbits-34xx.h"
  23#include "prm-regbits-44xx.h"
  24#include "prm44xx.h"
  25#include "pm.h"
  26#include "scrm44xx.h"
  27#include "control.h"
  28
  29/**
  30 * struct omap_vc_channel_cfg - describe the cfg_channel bitfield
  31 * @sa: bit for slave address
  32 * @rav: bit for voltage configuration register
  33 * @rac: bit for command configuration register
  34 * @racen: enable bit for RAC
  35 * @cmd: bit for command value set selection
  36 *
  37 * Channel configuration bits, common for OMAP3+
  38 * OMAP3 register: PRM_VC_CH_CONF
  39 * OMAP4 register: PRM_VC_CFG_CHANNEL
  40 * OMAP5 register: PRM_VC_SMPS_<voltdm>_CONFIG
  41 */
  42struct omap_vc_channel_cfg {
  43        u8 sa;
  44        u8 rav;
  45        u8 rac;
  46        u8 racen;
  47        u8 cmd;
  48};
  49
  50static struct omap_vc_channel_cfg vc_default_channel_cfg = {
  51        .sa    = BIT(0),
  52        .rav   = BIT(1),
  53        .rac   = BIT(2),
  54        .racen = BIT(3),
  55        .cmd   = BIT(4),
  56};
  57
  58/*
  59 * On OMAP3+, all VC channels have the above default bitfield
  60 * configuration, except the OMAP4 MPU channel.  This appears
  61 * to be a freak accident as every other VC channel has the
  62 * default configuration, thus creating a mutant channel config.
  63 */
  64static struct omap_vc_channel_cfg vc_mutant_channel_cfg = {
  65        .sa    = BIT(0),
  66        .rav   = BIT(2),
  67        .rac   = BIT(3),
  68        .racen = BIT(4),
  69        .cmd   = BIT(1),
  70};
  71
  72static struct omap_vc_channel_cfg *vc_cfg_bits;
  73
  74/* Default I2C trace length on pcb, 6.3cm. Used for capacitance calculations. */
  75static u32 sr_i2c_pcb_length = 63;
  76#define CFG_CHANNEL_MASK 0x1f
  77
  78/**
  79 * omap_vc_config_channel - configure VC channel to PMIC mappings
  80 * @voltdm: pointer to voltagdomain defining the desired VC channel
  81 *
  82 * Configures the VC channel to PMIC mappings for the following
  83 * PMIC settings
  84 * - i2c slave address (SA)
  85 * - voltage configuration address (RAV)
  86 * - command configuration address (RAC) and enable bit (RACEN)
  87 * - command values for ON, ONLP, RET and OFF (CMD)
  88 *
  89 * This function currently only allows flexible configuration of the
  90 * non-default channel.  Starting with OMAP4, there are more than 2
  91 * channels, with one defined as the default (on OMAP4, it's MPU.)
  92 * Only the non-default channel can be configured.
  93 */
  94static int omap_vc_config_channel(struct voltagedomain *voltdm)
  95{
  96        struct omap_vc_channel *vc = voltdm->vc;
  97
  98        /*
  99         * For default channel, the only configurable bit is RACEN.
 100         * All others must stay at zero (see function comment above.)
 101         */
 102        if (vc->flags & OMAP_VC_CHANNEL_DEFAULT)
 103                vc->cfg_channel &= vc_cfg_bits->racen;
 104
 105        voltdm->rmw(CFG_CHANNEL_MASK << vc->cfg_channel_sa_shift,
 106                    vc->cfg_channel << vc->cfg_channel_sa_shift,
 107                    vc->cfg_channel_reg);
 108
 109        return 0;
 110}
 111
 112/* Voltage scale and accessory APIs */
 113int omap_vc_pre_scale(struct voltagedomain *voltdm,
 114                      unsigned long target_volt,
 115                      u8 *target_vsel, u8 *current_vsel)
 116{
 117        struct omap_vc_channel *vc = voltdm->vc;
 118        u32 vc_cmdval;
 119
 120        /* Check if sufficient pmic info is available for this vdd */
 121        if (!voltdm->pmic) {
 122                pr_err("%s: Insufficient pmic info to scale the vdd_%s\n",
 123                        __func__, voltdm->name);
 124                return -EINVAL;
 125        }
 126
 127        if (!voltdm->pmic->uv_to_vsel) {
 128                pr_err("%s: PMIC function to convert voltage in uV to vsel not registered. Hence unable to scale voltage for vdd_%s\n",
 129                       __func__, voltdm->name);
 130                return -ENODATA;
 131        }
 132
 133        if (!voltdm->read || !voltdm->write) {
 134                pr_err("%s: No read/write API for accessing vdd_%s regs\n",
 135                        __func__, voltdm->name);
 136                return -EINVAL;
 137        }
 138
 139        *target_vsel = voltdm->pmic->uv_to_vsel(target_volt);
 140        *current_vsel = voltdm->pmic->uv_to_vsel(voltdm->nominal_volt);
 141
 142        /* Setting the ON voltage to the new target voltage */
 143        vc_cmdval = voltdm->read(vc->cmdval_reg);
 144        vc_cmdval &= ~vc->common->cmd_on_mask;
 145        vc_cmdval |= (*target_vsel << vc->common->cmd_on_shift);
 146        voltdm->write(vc_cmdval, vc->cmdval_reg);
 147
 148        voltdm->vc_param->on = target_volt;
 149
 150        omap_vp_update_errorgain(voltdm, target_volt);
 151
 152        return 0;
 153}
 154
 155void omap_vc_post_scale(struct voltagedomain *voltdm,
 156                        unsigned long target_volt,
 157                        u8 target_vsel, u8 current_vsel)
 158{
 159        u32 smps_steps = 0, smps_delay = 0;
 160
 161        smps_steps = abs(target_vsel - current_vsel);
 162        /* SMPS slew rate / step size. 2us added as buffer. */
 163        smps_delay = ((smps_steps * voltdm->pmic->step_size) /
 164                        voltdm->pmic->slew_rate) + 2;
 165        udelay(smps_delay);
 166}
 167
 168/* vc_bypass_scale - VC bypass method of voltage scaling */
 169int omap_vc_bypass_scale(struct voltagedomain *voltdm,
 170                         unsigned long target_volt)
 171{
 172        struct omap_vc_channel *vc = voltdm->vc;
 173        u32 loop_cnt = 0, retries_cnt = 0;
 174        u32 vc_valid, vc_bypass_val_reg, vc_bypass_value;
 175        u8 target_vsel, current_vsel;
 176        int ret;
 177
 178        ret = omap_vc_pre_scale(voltdm, target_volt, &target_vsel, &current_vsel);
 179        if (ret)
 180                return ret;
 181
 182        vc_valid = vc->common->valid;
 183        vc_bypass_val_reg = vc->common->bypass_val_reg;
 184        vc_bypass_value = (target_vsel << vc->common->data_shift) |
 185                (vc->volt_reg_addr << vc->common->regaddr_shift) |
 186                (vc->i2c_slave_addr << vc->common->slaveaddr_shift);
 187
 188        voltdm->write(vc_bypass_value, vc_bypass_val_reg);
 189        voltdm->write(vc_bypass_value | vc_valid, vc_bypass_val_reg);
 190
 191        vc_bypass_value = voltdm->read(vc_bypass_val_reg);
 192        /*
 193         * Loop till the bypass command is acknowledged from the SMPS.
 194         * NOTE: This is legacy code. The loop count and retry count needs
 195         * to be revisited.
 196         */
 197        while (!(vc_bypass_value & vc_valid)) {
 198                loop_cnt++;
 199
 200                if (retries_cnt > 10) {
 201                        pr_warn("%s: Retry count exceeded\n", __func__);
 202                        return -ETIMEDOUT;
 203                }
 204
 205                if (loop_cnt > 50) {
 206                        retries_cnt++;
 207                        loop_cnt = 0;
 208                        udelay(10);
 209                }
 210                vc_bypass_value = voltdm->read(vc_bypass_val_reg);
 211        }
 212
 213        omap_vc_post_scale(voltdm, target_volt, target_vsel, current_vsel);
 214        return 0;
 215}
 216
 217/* Convert microsecond value to number of 32kHz clock cycles */
 218static inline u32 omap_usec_to_32k(u32 usec)
 219{
 220        return DIV_ROUND_UP_ULL(32768ULL * (u64)usec, 1000000ULL);
 221}
 222
 223struct omap3_vc_timings {
 224        u32 voltsetup1;
 225        u32 voltsetup2;
 226};
 227
 228struct omap3_vc {
 229        struct voltagedomain *vd;
 230        u32 voltctrl;
 231        u32 voltsetup1;
 232        u32 voltsetup2;
 233        struct omap3_vc_timings timings[2];
 234};
 235static struct omap3_vc vc;
 236
 237void omap3_vc_set_pmic_signaling(int core_next_state)
 238{
 239        struct voltagedomain *vd = vc.vd;
 240        struct omap3_vc_timings *c = vc.timings;
 241        u32 voltctrl, voltsetup1, voltsetup2;
 242
 243        voltctrl = vc.voltctrl;
 244        voltsetup1 = vc.voltsetup1;
 245        voltsetup2 = vc.voltsetup2;
 246
 247        switch (core_next_state) {
 248        case PWRDM_POWER_OFF:
 249                voltctrl &= ~(OMAP3430_PRM_VOLTCTRL_AUTO_RET |
 250                              OMAP3430_PRM_VOLTCTRL_AUTO_SLEEP);
 251                voltctrl |= OMAP3430_PRM_VOLTCTRL_AUTO_OFF;
 252                if (voltctrl & OMAP3430_PRM_VOLTCTRL_SEL_OFF)
 253                        voltsetup2 = c->voltsetup2;
 254                else
 255                        voltsetup1 = c->voltsetup1;
 256                break;
 257        case PWRDM_POWER_RET:
 258        default:
 259                c++;
 260                voltctrl &= ~(OMAP3430_PRM_VOLTCTRL_AUTO_OFF |
 261                              OMAP3430_PRM_VOLTCTRL_AUTO_SLEEP);
 262                voltctrl |= OMAP3430_PRM_VOLTCTRL_AUTO_RET;
 263                voltsetup1 = c->voltsetup1;
 264                break;
 265        }
 266
 267        if (voltctrl != vc.voltctrl) {
 268                vd->write(voltctrl, OMAP3_PRM_VOLTCTRL_OFFSET);
 269                vc.voltctrl = voltctrl;
 270        }
 271        if (voltsetup1 != vc.voltsetup1) {
 272                vd->write(c->voltsetup1,
 273                          OMAP3_PRM_VOLTSETUP1_OFFSET);
 274                vc.voltsetup1 = voltsetup1;
 275        }
 276        if (voltsetup2 != vc.voltsetup2) {
 277                vd->write(c->voltsetup2,
 278                          OMAP3_PRM_VOLTSETUP2_OFFSET);
 279                vc.voltsetup2 = voltsetup2;
 280        }
 281}
 282
 283#define PRM_POLCTRL_TWL_MASK    (OMAP3430_PRM_POLCTRL_CLKREQ_POL | \
 284                                        OMAP3430_PRM_POLCTRL_CLKREQ_POL)
 285#define PRM_POLCTRL_TWL_VAL     OMAP3430_PRM_POLCTRL_CLKREQ_POL
 286
 287/*
 288 * Configure signal polarity for sys_clkreq and sys_off_mode pins
 289 * as the default values are wrong and can cause the system to hang
 290 * if any twl4030 scripts are loaded.
 291 */
 292static void __init omap3_vc_init_pmic_signaling(struct voltagedomain *voltdm)
 293{
 294        u32 val;
 295
 296        if (vc.vd)
 297                return;
 298
 299        vc.vd = voltdm;
 300
 301        val = voltdm->read(OMAP3_PRM_POLCTRL_OFFSET);
 302        if (!(val & OMAP3430_PRM_POLCTRL_CLKREQ_POL) ||
 303            (val & OMAP3430_PRM_POLCTRL_CLKREQ_POL)) {
 304                val |= OMAP3430_PRM_POLCTRL_CLKREQ_POL;
 305                val &= ~OMAP3430_PRM_POLCTRL_OFFMODE_POL;
 306                pr_debug("PM: fixing sys_clkreq and sys_off_mode polarity to 0x%x\n",
 307                         val);
 308                voltdm->write(val, OMAP3_PRM_POLCTRL_OFFSET);
 309        }
 310
 311        /*
 312         * By default let's use I2C4 signaling for retention idle
 313         * and sys_off_mode pin signaling for off idle. This way we
 314         * have sys_clk_req pin go down for retention and both
 315         * sys_clk_req and sys_off_mode pins will go down for off
 316         * idle. And we can also scale voltages to zero for off-idle.
 317         * Note that no actual voltage scaling during off-idle will
 318         * happen unless the board specific twl4030 PMIC scripts are
 319         * loaded.
 320         */
 321        val = voltdm->read(OMAP3_PRM_VOLTCTRL_OFFSET);
 322        if (!(val & OMAP3430_PRM_VOLTCTRL_SEL_OFF)) {
 323                val |= OMAP3430_PRM_VOLTCTRL_SEL_OFF;
 324                pr_debug("PM: setting voltctrl sys_off_mode signaling to 0x%x\n",
 325                         val);
 326                voltdm->write(val, OMAP3_PRM_VOLTCTRL_OFFSET);
 327        }
 328        vc.voltctrl = val;
 329
 330        omap3_vc_set_pmic_signaling(PWRDM_POWER_ON);
 331}
 332
 333static void omap3_init_voltsetup1(struct voltagedomain *voltdm,
 334                                  struct omap3_vc_timings *c, u32 idle)
 335{
 336        unsigned long val;
 337
 338        val = (voltdm->vc_param->on - idle) / voltdm->pmic->slew_rate;
 339        val *= voltdm->sys_clk.rate / 8 / 1000000 + 1;
 340        val <<= __ffs(voltdm->vfsm->voltsetup_mask);
 341        c->voltsetup1 &= ~voltdm->vfsm->voltsetup_mask;
 342        c->voltsetup1 |= val;
 343}
 344
 345/**
 346 * omap3_set_i2c_timings - sets i2c sleep timings for a channel
 347 * @voltdm: channel to configure
 348 * @off_mode: select whether retention or off mode values used
 349 *
 350 * Calculates and sets up voltage controller to use I2C based
 351 * voltage scaling for sleep modes. This can be used for either off mode
 352 * or retention. Off mode has additionally an option to use sys_off_mode
 353 * pad, which uses a global signal to program the whole power IC to
 354 * off-mode.
 355 *
 356 * Note that pmic is not controlling the voltage scaling during
 357 * retention signaled over I2C4, so we can keep voltsetup2 as 0.
 358 * And the oscillator is not shut off over I2C4, so no need to
 359 * set clksetup.
 360 */
 361static void omap3_set_i2c_timings(struct voltagedomain *voltdm)
 362{
 363        struct omap3_vc_timings *c = vc.timings;
 364
 365        /* Configure PRWDM_POWER_OFF over I2C4 */
 366        omap3_init_voltsetup1(voltdm, c, voltdm->vc_param->off);
 367        c++;
 368        /* Configure PRWDM_POWER_RET over I2C4 */
 369        omap3_init_voltsetup1(voltdm, c, voltdm->vc_param->ret);
 370}
 371
 372/**
 373 * omap3_set_off_timings - sets off-mode timings for a channel
 374 * @voltdm: channel to configure
 375 *
 376 * Calculates and sets up off-mode timings for a channel. Off-mode
 377 * can use either I2C based voltage scaling, or alternatively
 378 * sys_off_mode pad can be used to send a global command to power IC.n,
 379 * sys_off_mode has the additional benefit that voltages can be
 380 * scaled to zero volt level with TWL4030 / TWL5030, I2C can only
 381 * scale to 600mV.
 382 *
 383 * Note that omap is not controlling the voltage scaling during
 384 * off idle signaled by sys_off_mode, so we can keep voltsetup1
 385 * as 0.
 386 */
 387static void omap3_set_off_timings(struct voltagedomain *voltdm)
 388{
 389        struct omap3_vc_timings *c = vc.timings;
 390        u32 tstart, tshut, clksetup, voltoffset;
 391
 392        if (c->voltsetup2)
 393                return;
 394
 395        omap_pm_get_oscillator(&tstart, &tshut);
 396        if (tstart == ULONG_MAX) {
 397                pr_debug("PM: oscillator start-up time not initialized, using 10ms\n");
 398                clksetup = omap_usec_to_32k(10000);
 399        } else {
 400                clksetup = omap_usec_to_32k(tstart);
 401        }
 402
 403        /*
 404         * For twl4030 errata 27, we need to allow minimum ~488.32 us wait to
 405         * switch from HFCLKIN to internal oscillator. That means timings
 406         * have voltoffset fixed to 0xa in rounded up 32 KiHz cycles. And
 407         * that means we can calculate the value based on the oscillator
 408         * start-up time since voltoffset2 = clksetup - voltoffset.
 409         */
 410        voltoffset = omap_usec_to_32k(488);
 411        c->voltsetup2 = clksetup - voltoffset;
 412        voltdm->write(clksetup, OMAP3_PRM_CLKSETUP_OFFSET);
 413        voltdm->write(voltoffset, OMAP3_PRM_VOLTOFFSET_OFFSET);
 414}
 415
 416static void __init omap3_vc_init_channel(struct voltagedomain *voltdm)
 417{
 418        omap3_vc_init_pmic_signaling(voltdm);
 419        omap3_set_off_timings(voltdm);
 420        omap3_set_i2c_timings(voltdm);
 421}
 422
 423/**
 424 * omap4_calc_volt_ramp - calculates voltage ramping delays on omap4
 425 * @voltdm: channel to calculate values for
 426 * @voltage_diff: voltage difference in microvolts
 427 *
 428 * Calculates voltage ramp prescaler + counter values for a voltage
 429 * difference on omap4. Returns a field value suitable for writing to
 430 * VOLTSETUP register for a channel in following format:
 431 * bits[8:9] prescaler ... bits[0:5] counter. See OMAP4 TRM for reference.
 432 */
 433static u32 omap4_calc_volt_ramp(struct voltagedomain *voltdm, u32 voltage_diff)
 434{
 435        u32 prescaler;
 436        u32 cycles;
 437        u32 time;
 438
 439        time = voltage_diff / voltdm->pmic->slew_rate;
 440
 441        cycles = voltdm->sys_clk.rate / 1000 * time / 1000;
 442
 443        cycles /= 64;
 444        prescaler = 0;
 445
 446        /* shift to next prescaler until no overflow */
 447
 448        /* scale for div 256 = 64 * 4 */
 449        if (cycles > 63) {
 450                cycles /= 4;
 451                prescaler++;
 452        }
 453
 454        /* scale for div 512 = 256 * 2 */
 455        if (cycles > 63) {
 456                cycles /= 2;
 457                prescaler++;
 458        }
 459
 460        /* scale for div 2048 = 512 * 4 */
 461        if (cycles > 63) {
 462                cycles /= 4;
 463                prescaler++;
 464        }
 465
 466        /* check for overflow => invalid ramp time */
 467        if (cycles > 63) {
 468                pr_warn("%s: invalid setuptime for vdd_%s\n", __func__,
 469                        voltdm->name);
 470                return 0;
 471        }
 472
 473        cycles++;
 474
 475        return (prescaler << OMAP4430_RAMP_UP_PRESCAL_SHIFT) |
 476                (cycles << OMAP4430_RAMP_UP_COUNT_SHIFT);
 477}
 478
 479/**
 480 * omap4_usec_to_val_scrm - convert microsecond value to SCRM module bitfield
 481 * @usec: microseconds
 482 * @shift: number of bits to shift left
 483 * @mask: bitfield mask
 484 *
 485 * Converts microsecond value to OMAP4 SCRM bitfield. Bitfield is
 486 * shifted to requested position, and checked agains the mask value.
 487 * If larger, forced to the max value of the field (i.e. the mask itself.)
 488 * Returns the SCRM bitfield value.
 489 */
 490static u32 omap4_usec_to_val_scrm(u32 usec, int shift, u32 mask)
 491{
 492        u32 val;
 493
 494        val = omap_usec_to_32k(usec) << shift;
 495
 496        /* Check for overflow, if yes, force to max value */
 497        if (val > mask)
 498                val = mask;
 499
 500        return val;
 501}
 502
 503/**
 504 * omap4_set_timings - set voltage ramp timings for a channel
 505 * @voltdm: channel to configure
 506 * @off_mode: whether off-mode values are used
 507 *
 508 * Calculates and sets the voltage ramp up / down values for a channel.
 509 */
 510static void omap4_set_timings(struct voltagedomain *voltdm, bool off_mode)
 511{
 512        u32 val;
 513        u32 ramp;
 514        int offset;
 515        u32 tstart, tshut;
 516
 517        if (off_mode) {
 518                ramp = omap4_calc_volt_ramp(voltdm,
 519                        voltdm->vc_param->on - voltdm->vc_param->off);
 520                offset = voltdm->vfsm->voltsetup_off_reg;
 521        } else {
 522                ramp = omap4_calc_volt_ramp(voltdm,
 523                        voltdm->vc_param->on - voltdm->vc_param->ret);
 524                offset = voltdm->vfsm->voltsetup_reg;
 525        }
 526
 527        if (!ramp)
 528                return;
 529
 530        val = voltdm->read(offset);
 531
 532        val |= ramp << OMAP4430_RAMP_DOWN_COUNT_SHIFT;
 533
 534        val |= ramp << OMAP4430_RAMP_UP_COUNT_SHIFT;
 535
 536        voltdm->write(val, offset);
 537
 538        omap_pm_get_oscillator(&tstart, &tshut);
 539
 540        val = omap4_usec_to_val_scrm(tstart, OMAP4_SETUPTIME_SHIFT,
 541                OMAP4_SETUPTIME_MASK);
 542        val |= omap4_usec_to_val_scrm(tshut, OMAP4_DOWNTIME_SHIFT,
 543                OMAP4_DOWNTIME_MASK);
 544
 545        writel_relaxed(val, OMAP4_SCRM_CLKSETUPTIME);
 546}
 547
 548/* OMAP4 specific voltage init functions */
 549static void __init omap4_vc_init_channel(struct voltagedomain *voltdm)
 550{
 551        omap4_set_timings(voltdm, true);
 552        omap4_set_timings(voltdm, false);
 553}
 554
 555struct i2c_init_data {
 556        u8 loadbits;
 557        u8 load;
 558        u8 hsscll_38_4;
 559        u8 hsscll_26;
 560        u8 hsscll_19_2;
 561        u8 hsscll_16_8;
 562        u8 hsscll_12;
 563};
 564
 565static const __initdata struct i2c_init_data omap4_i2c_timing_data[] = {
 566        {
 567                .load = 50,
 568                .loadbits = 0x3,
 569                .hsscll_38_4 = 13,
 570                .hsscll_26 = 11,
 571                .hsscll_19_2 = 9,
 572                .hsscll_16_8 = 9,
 573                .hsscll_12 = 8,
 574        },
 575        {
 576                .load = 25,
 577                .loadbits = 0x2,
 578                .hsscll_38_4 = 13,
 579                .hsscll_26 = 11,
 580                .hsscll_19_2 = 9,
 581                .hsscll_16_8 = 9,
 582                .hsscll_12 = 8,
 583        },
 584        {
 585                .load = 12,
 586                .loadbits = 0x1,
 587                .hsscll_38_4 = 11,
 588                .hsscll_26 = 10,
 589                .hsscll_19_2 = 9,
 590                .hsscll_16_8 = 9,
 591                .hsscll_12 = 8,
 592        },
 593        {
 594                .load = 0,
 595                .loadbits = 0x0,
 596                .hsscll_38_4 = 12,
 597                .hsscll_26 = 10,
 598                .hsscll_19_2 = 9,
 599                .hsscll_16_8 = 8,
 600                .hsscll_12 = 8,
 601        },
 602};
 603
 604/**
 605 * omap4_vc_i2c_timing_init - sets up board I2C timing parameters
 606 * @voltdm: voltagedomain pointer to get data from
 607 *
 608 * Use PMIC + board supplied settings for calculating the total I2C
 609 * channel capacitance and set the timing parameters based on this.
 610 * Pre-calculated values are provided in data tables, as it is not
 611 * too straightforward to calculate these runtime.
 612 */
 613static void __init omap4_vc_i2c_timing_init(struct voltagedomain *voltdm)
 614{
 615        u32 capacitance;
 616        u32 val;
 617        u16 hsscll;
 618        const struct i2c_init_data *i2c_data;
 619
 620        if (!voltdm->pmic->i2c_high_speed) {
 621                pr_warn("%s: only high speed supported!\n", __func__);
 622                return;
 623        }
 624
 625        /* PCB trace capacitance, 0.125pF / mm => mm / 8 */
 626        capacitance = DIV_ROUND_UP(sr_i2c_pcb_length, 8);
 627
 628        /* OMAP pad capacitance */
 629        capacitance += 4;
 630
 631        /* PMIC pad capacitance */
 632        capacitance += voltdm->pmic->i2c_pad_load;
 633
 634        /* Search for capacitance match in the table */
 635        i2c_data = omap4_i2c_timing_data;
 636
 637        while (i2c_data->load > capacitance)
 638                i2c_data++;
 639
 640        /* Select proper values based on sysclk frequency */
 641        switch (voltdm->sys_clk.rate) {
 642        case 38400000:
 643                hsscll = i2c_data->hsscll_38_4;
 644                break;
 645        case 26000000:
 646                hsscll = i2c_data->hsscll_26;
 647                break;
 648        case 19200000:
 649                hsscll = i2c_data->hsscll_19_2;
 650                break;
 651        case 16800000:
 652                hsscll = i2c_data->hsscll_16_8;
 653                break;
 654        case 12000000:
 655                hsscll = i2c_data->hsscll_12;
 656                break;
 657        default:
 658                pr_warn("%s: unsupported sysclk rate: %d!\n", __func__,
 659                        voltdm->sys_clk.rate);
 660                return;
 661        }
 662
 663        /* Loadbits define pull setup for the I2C channels */
 664        val = i2c_data->loadbits << 25 | i2c_data->loadbits << 29;
 665
 666        /* Write to SYSCTRL_PADCONF_WKUP_CTRL_I2C_2 to setup I2C pull */
 667        writel_relaxed(val, OMAP2_L4_IO_ADDRESS(OMAP4_CTRL_MODULE_PAD_WKUP +
 668                                OMAP4_CTRL_MODULE_PAD_WKUP_CONTROL_I2C_2));
 669
 670        /* HSSCLH can always be zero */
 671        val = hsscll << OMAP4430_HSSCLL_SHIFT;
 672        val |= (0x28 << OMAP4430_SCLL_SHIFT | 0x2c << OMAP4430_SCLH_SHIFT);
 673
 674        /* Write setup times to I2C config register */
 675        voltdm->write(val, OMAP4_PRM_VC_CFG_I2C_CLK_OFFSET);
 676}
 677
 678
 679
 680/**
 681 * omap_vc_i2c_init - initialize I2C interface to PMIC
 682 * @voltdm: voltage domain containing VC data
 683 *
 684 * Use PMIC supplied settings for I2C high-speed mode and
 685 * master code (if set) and program the VC I2C configuration
 686 * register.
 687 *
 688 * The VC I2C configuration is common to all VC channels,
 689 * so this function only configures I2C for the first VC
 690 * channel registers.  All other VC channels will use the
 691 * same configuration.
 692 */
 693static void __init omap_vc_i2c_init(struct voltagedomain *voltdm)
 694{
 695        struct omap_vc_channel *vc = voltdm->vc;
 696        static bool initialized;
 697        static bool i2c_high_speed;
 698        u8 mcode;
 699
 700        if (initialized) {
 701                if (voltdm->pmic->i2c_high_speed != i2c_high_speed)
 702                        pr_warn("%s: I2C config for vdd_%s does not match other channels (%u).\n",
 703                                __func__, voltdm->name, i2c_high_speed);
 704                return;
 705        }
 706
 707        i2c_high_speed = voltdm->pmic->i2c_high_speed;
 708        if (i2c_high_speed)
 709                voltdm->rmw(vc->common->i2c_cfg_hsen_mask,
 710                            vc->common->i2c_cfg_hsen_mask,
 711                            vc->common->i2c_cfg_reg);
 712
 713        mcode = voltdm->pmic->i2c_mcode;
 714        if (mcode)
 715                voltdm->rmw(vc->common->i2c_mcode_mask,
 716                            mcode << __ffs(vc->common->i2c_mcode_mask),
 717                            vc->common->i2c_cfg_reg);
 718
 719        if (cpu_is_omap44xx())
 720                omap4_vc_i2c_timing_init(voltdm);
 721
 722        initialized = true;
 723}
 724
 725/**
 726 * omap_vc_calc_vsel - calculate vsel value for a channel
 727 * @voltdm: channel to calculate value for
 728 * @uvolt: microvolt value to convert to vsel
 729 *
 730 * Converts a microvolt value to vsel value for the used PMIC.
 731 * This checks whether the microvolt value is out of bounds, and
 732 * adjusts the value accordingly. If unsupported value detected,
 733 * warning is thrown.
 734 */
 735static u8 omap_vc_calc_vsel(struct voltagedomain *voltdm, u32 uvolt)
 736{
 737        if (voltdm->pmic->vddmin > uvolt)
 738                uvolt = voltdm->pmic->vddmin;
 739        if (voltdm->pmic->vddmax < uvolt) {
 740                WARN(1, "%s: voltage not supported by pmic: %u vs max %u\n",
 741                        __func__, uvolt, voltdm->pmic->vddmax);
 742                /* Lets try maximum value anyway */
 743                uvolt = voltdm->pmic->vddmax;
 744        }
 745
 746        return voltdm->pmic->uv_to_vsel(uvolt);
 747}
 748
 749#ifdef CONFIG_PM
 750/**
 751 * omap_pm_setup_sr_i2c_pcb_length - set length of SR I2C traces on PCB
 752 * @mm: length of the PCB trace in millimetres
 753 *
 754 * Sets the PCB trace length for the I2C channel. By default uses 63mm.
 755 * This is needed for properly calculating the capacitance value for
 756 * the PCB trace, and for setting the SR I2C channel timing parameters.
 757 */
 758void __init omap_pm_setup_sr_i2c_pcb_length(u32 mm)
 759{
 760        sr_i2c_pcb_length = mm;
 761}
 762#endif
 763
 764void __init omap_vc_init_channel(struct voltagedomain *voltdm)
 765{
 766        struct omap_vc_channel *vc = voltdm->vc;
 767        u8 on_vsel, onlp_vsel, ret_vsel, off_vsel;
 768        u32 val;
 769
 770        if (!voltdm->pmic || !voltdm->pmic->uv_to_vsel) {
 771                pr_err("%s: No PMIC info for vdd_%s\n", __func__, voltdm->name);
 772                return;
 773        }
 774
 775        if (!voltdm->read || !voltdm->write) {
 776                pr_err("%s: No read/write API for accessing vdd_%s regs\n",
 777                        __func__, voltdm->name);
 778                return;
 779        }
 780
 781        vc->cfg_channel = 0;
 782        if (vc->flags & OMAP_VC_CHANNEL_CFG_MUTANT)
 783                vc_cfg_bits = &vc_mutant_channel_cfg;
 784        else
 785                vc_cfg_bits = &vc_default_channel_cfg;
 786
 787        /* get PMIC/board specific settings */
 788        vc->i2c_slave_addr = voltdm->pmic->i2c_slave_addr;
 789        vc->volt_reg_addr = voltdm->pmic->volt_reg_addr;
 790        vc->cmd_reg_addr = voltdm->pmic->cmd_reg_addr;
 791
 792        /* Configure the i2c slave address for this VC */
 793        voltdm->rmw(vc->smps_sa_mask,
 794                    vc->i2c_slave_addr << __ffs(vc->smps_sa_mask),
 795                    vc->smps_sa_reg);
 796        vc->cfg_channel |= vc_cfg_bits->sa;
 797
 798        /*
 799         * Configure the PMIC register addresses.
 800         */
 801        voltdm->rmw(vc->smps_volra_mask,
 802                    vc->volt_reg_addr << __ffs(vc->smps_volra_mask),
 803                    vc->smps_volra_reg);
 804        vc->cfg_channel |= vc_cfg_bits->rav;
 805
 806        if (vc->cmd_reg_addr) {
 807                voltdm->rmw(vc->smps_cmdra_mask,
 808                            vc->cmd_reg_addr << __ffs(vc->smps_cmdra_mask),
 809                            vc->smps_cmdra_reg);
 810                vc->cfg_channel |= vc_cfg_bits->rac;
 811        }
 812
 813        if (vc->cmd_reg_addr == vc->volt_reg_addr)
 814                vc->cfg_channel |= vc_cfg_bits->racen;
 815
 816        /* Set up the on, inactive, retention and off voltage */
 817        on_vsel = omap_vc_calc_vsel(voltdm, voltdm->vc_param->on);
 818        onlp_vsel = omap_vc_calc_vsel(voltdm, voltdm->vc_param->onlp);
 819        ret_vsel = omap_vc_calc_vsel(voltdm, voltdm->vc_param->ret);
 820        off_vsel = omap_vc_calc_vsel(voltdm, voltdm->vc_param->off);
 821
 822        val = ((on_vsel << vc->common->cmd_on_shift) |
 823               (onlp_vsel << vc->common->cmd_onlp_shift) |
 824               (ret_vsel << vc->common->cmd_ret_shift) |
 825               (off_vsel << vc->common->cmd_off_shift));
 826        voltdm->write(val, vc->cmdval_reg);
 827        vc->cfg_channel |= vc_cfg_bits->cmd;
 828
 829        /* Channel configuration */
 830        omap_vc_config_channel(voltdm);
 831
 832        omap_vc_i2c_init(voltdm);
 833
 834        if (cpu_is_omap34xx())
 835                omap3_vc_init_channel(voltdm);
 836        else if (cpu_is_omap44xx())
 837                omap4_vc_init_channel(voltdm);
 838}
 839
 840