linux/arch/hexagon/include/asm/bitops.h
<<
>>
Prefs
   1/*
   2 * Bit operations for the Hexagon architecture
   3 *
   4 * Copyright (c) 2010-2011, The Linux Foundation. All rights reserved.
   5 *
   6 *
   7 * This program is free software; you can redistribute it and/or modify
   8 * it under the terms of the GNU General Public License version 2 and
   9 * only version 2 as published by the Free Software Foundation.
  10 *
  11 * This program is distributed in the hope that it will be useful,
  12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  14 * GNU General Public License for more details.
  15 *
  16 * You should have received a copy of the GNU General Public License
  17 * along with this program; if not, write to the Free Software
  18 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
  19 * 02110-1301, USA.
  20 */
  21
  22#ifndef _ASM_BITOPS_H
  23#define _ASM_BITOPS_H
  24
  25#include <linux/compiler.h>
  26#include <asm/byteorder.h>
  27#include <asm/atomic.h>
  28#include <asm/barrier.h>
  29
  30#ifdef __KERNEL__
  31
  32/*
  33 * The offset calculations for these are based on BITS_PER_LONG == 32
  34 * (i.e. I get to shift by #5-2 (32 bits per long, 4 bytes per access),
  35 * mask by 0x0000001F)
  36 *
  37 * Typically, R10 is clobbered for address, R11 bit nr, and R12 is temp
  38 */
  39
  40/**
  41 * test_and_clear_bit - clear a bit and return its old value
  42 * @nr:  bit number to clear
  43 * @addr:  pointer to memory
  44 */
  45static inline int test_and_clear_bit(int nr, volatile void *addr)
  46{
  47        int oldval;
  48
  49        __asm__ __volatile__ (
  50        "       {R10 = %1; R11 = asr(%2,#5); }\n"
  51        "       {R10 += asl(R11,#2); R11 = and(%2,#0x1f)}\n"
  52        "1:     R12 = memw_locked(R10);\n"
  53        "       { P0 = tstbit(R12,R11); R12 = clrbit(R12,R11); }\n"
  54        "       memw_locked(R10,P1) = R12;\n"
  55        "       {if !P1 jump 1b; %0 = mux(P0,#1,#0);}\n"
  56        : "=&r" (oldval)
  57        : "r" (addr), "r" (nr)
  58        : "r10", "r11", "r12", "p0", "p1", "memory"
  59        );
  60
  61        return oldval;
  62}
  63
  64/**
  65 * test_and_set_bit - set a bit and return its old value
  66 * @nr:  bit number to set
  67 * @addr:  pointer to memory
  68 */
  69static inline int test_and_set_bit(int nr, volatile void *addr)
  70{
  71        int oldval;
  72
  73        __asm__ __volatile__ (
  74        "       {R10 = %1; R11 = asr(%2,#5); }\n"
  75        "       {R10 += asl(R11,#2); R11 = and(%2,#0x1f)}\n"
  76        "1:     R12 = memw_locked(R10);\n"
  77        "       { P0 = tstbit(R12,R11); R12 = setbit(R12,R11); }\n"
  78        "       memw_locked(R10,P1) = R12;\n"
  79        "       {if !P1 jump 1b; %0 = mux(P0,#1,#0);}\n"
  80        : "=&r" (oldval)
  81        : "r" (addr), "r" (nr)
  82        : "r10", "r11", "r12", "p0", "p1", "memory"
  83        );
  84
  85
  86        return oldval;
  87
  88}
  89
  90/**
  91 * test_and_change_bit - toggle a bit and return its old value
  92 * @nr:  bit number to set
  93 * @addr:  pointer to memory
  94 */
  95static inline int test_and_change_bit(int nr, volatile void *addr)
  96{
  97        int oldval;
  98
  99        __asm__ __volatile__ (
 100        "       {R10 = %1; R11 = asr(%2,#5); }\n"
 101        "       {R10 += asl(R11,#2); R11 = and(%2,#0x1f)}\n"
 102        "1:     R12 = memw_locked(R10);\n"
 103        "       { P0 = tstbit(R12,R11); R12 = togglebit(R12,R11); }\n"
 104        "       memw_locked(R10,P1) = R12;\n"
 105        "       {if !P1 jump 1b; %0 = mux(P0,#1,#0);}\n"
 106        : "=&r" (oldval)
 107        : "r" (addr), "r" (nr)
 108        : "r10", "r11", "r12", "p0", "p1", "memory"
 109        );
 110
 111        return oldval;
 112
 113}
 114
 115/*
 116 * Atomic, but doesn't care about the return value.
 117 * Rewrite later to save a cycle or two.
 118 */
 119
 120static inline void clear_bit(int nr, volatile void *addr)
 121{
 122        test_and_clear_bit(nr, addr);
 123}
 124
 125static inline void set_bit(int nr, volatile void *addr)
 126{
 127        test_and_set_bit(nr, addr);
 128}
 129
 130static inline void change_bit(int nr, volatile void *addr)
 131{
 132        test_and_change_bit(nr, addr);
 133}
 134
 135
 136/*
 137 * These are allowed to be non-atomic.  In fact the generic flavors are
 138 * in non-atomic.h.  Would it be better to use intrinsics for this?
 139 *
 140 * OK, writes in our architecture do not invalidate LL/SC, so this has to
 141 * be atomic, particularly for things like slab_lock and slab_unlock.
 142 *
 143 */
 144static inline void __clear_bit(int nr, volatile unsigned long *addr)
 145{
 146        test_and_clear_bit(nr, addr);
 147}
 148
 149static inline void __set_bit(int nr, volatile unsigned long *addr)
 150{
 151        test_and_set_bit(nr, addr);
 152}
 153
 154static inline void __change_bit(int nr, volatile unsigned long *addr)
 155{
 156        test_and_change_bit(nr, addr);
 157}
 158
 159/*  Apparently, at least some of these are allowed to be non-atomic  */
 160static inline int __test_and_clear_bit(int nr, volatile unsigned long *addr)
 161{
 162        return test_and_clear_bit(nr, addr);
 163}
 164
 165static inline int __test_and_set_bit(int nr, volatile unsigned long *addr)
 166{
 167        return test_and_set_bit(nr, addr);
 168}
 169
 170static inline int __test_and_change_bit(int nr, volatile unsigned long *addr)
 171{
 172        return test_and_change_bit(nr, addr);
 173}
 174
 175static inline int __test_bit(int nr, const volatile unsigned long *addr)
 176{
 177        int retval;
 178
 179        asm volatile(
 180        "{P0 = tstbit(%1,%2); if (P0.new) %0 = #1; if (!P0.new) %0 = #0;}\n"
 181        : "=&r" (retval)
 182        : "r" (addr[BIT_WORD(nr)]), "r" (nr % BITS_PER_LONG)
 183        : "p0"
 184        );
 185
 186        return retval;
 187}
 188
 189#define test_bit(nr, addr) __test_bit(nr, addr)
 190
 191/*
 192 * ffz - find first zero in word.
 193 * @word: The word to search
 194 *
 195 * Undefined if no zero exists, so code should check against ~0UL first.
 196 */
 197static inline long ffz(int x)
 198{
 199        int r;
 200
 201        asm("%0 = ct1(%1);\n"
 202                : "=&r" (r)
 203                : "r" (x));
 204        return r;
 205}
 206
 207/*
 208 * fls - find last (most-significant) bit set
 209 * @x: the word to search
 210 *
 211 * This is defined the same way as ffs.
 212 * Note fls(0) = 0, fls(1) = 1, fls(0x80000000) = 32.
 213 */
 214static inline long fls(int x)
 215{
 216        int r;
 217
 218        asm("{ %0 = cl0(%1);}\n"
 219                "%0 = sub(#32,%0);\n"
 220                : "=&r" (r)
 221                : "r" (x)
 222                : "p0");
 223
 224        return r;
 225}
 226
 227/*
 228 * ffs - find first bit set
 229 * @x: the word to search
 230 *
 231 * This is defined the same way as
 232 * the libc and compiler builtin ffs routines, therefore
 233 * differs in spirit from the above ffz (man ffs).
 234 */
 235static inline long ffs(int x)
 236{
 237        int r;
 238
 239        asm("{ P0 = cmp.eq(%1,#0); %0 = ct0(%1);}\n"
 240                "{ if P0 %0 = #0; if !P0 %0 = add(%0,#1);}\n"
 241                : "=&r" (r)
 242                : "r" (x)
 243                : "p0");
 244
 245        return r;
 246}
 247
 248/*
 249 * __ffs - find first bit in word.
 250 * @word: The word to search
 251 *
 252 * Undefined if no bit exists, so code should check against 0 first.
 253 *
 254 * bits_per_long assumed to be 32
 255 * numbering starts at 0 I think (instead of 1 like ffs)
 256 */
 257static inline unsigned long __ffs(unsigned long word)
 258{
 259        int num;
 260
 261        asm("%0 = ct0(%1);\n"
 262                : "=&r" (num)
 263                : "r" (word));
 264
 265        return num;
 266}
 267
 268/*
 269 * __fls - find last (most-significant) set bit in a long word
 270 * @word: the word to search
 271 *
 272 * Undefined if no set bit exists, so code should check against 0 first.
 273 * bits_per_long assumed to be 32
 274 */
 275static inline unsigned long __fls(unsigned long word)
 276{
 277        int num;
 278
 279        asm("%0 = cl0(%1);\n"
 280                "%0 = sub(#31,%0);\n"
 281                : "=&r" (num)
 282                : "r" (word));
 283
 284        return num;
 285}
 286
 287#include <asm-generic/bitops/lock.h>
 288#include <asm-generic/bitops/find.h>
 289
 290#include <asm-generic/bitops/fls64.h>
 291#include <asm-generic/bitops/sched.h>
 292#include <asm-generic/bitops/hweight.h>
 293
 294#include <asm-generic/bitops/le.h>
 295#include <asm-generic/bitops/ext2-atomic.h>
 296
 297#endif /* __KERNEL__ */
 298#endif
 299