linux/arch/powerpc/kernel/fadump.c
<<
>>
Prefs
   1/*
   2 * Firmware Assisted dump: A robust mechanism to get reliable kernel crash
   3 * dump with assistance from firmware. This approach does not use kexec,
   4 * instead firmware assists in booting the kdump kernel while preserving
   5 * memory contents. The most of the code implementation has been adapted
   6 * from phyp assisted dump implementation written by Linas Vepstas and
   7 * Manish Ahuja
   8 *
   9 * This program is free software; you can redistribute it and/or modify
  10 * it under the terms of the GNU General Public License as published by
  11 * the Free Software Foundation; either version 2 of the License, or
  12 * (at your option) any later version.
  13 *
  14 * This program is distributed in the hope that it will be useful,
  15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  17 * GNU General Public License for more details.
  18 *
  19 * You should have received a copy of the GNU General Public License
  20 * along with this program; if not, write to the Free Software
  21 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
  22 *
  23 * Copyright 2011 IBM Corporation
  24 * Author: Mahesh Salgaonkar <mahesh@linux.vnet.ibm.com>
  25 */
  26
  27#undef DEBUG
  28#define pr_fmt(fmt) "fadump: " fmt
  29
  30#include <linux/string.h>
  31#include <linux/memblock.h>
  32#include <linux/delay.h>
  33#include <linux/debugfs.h>
  34#include <linux/seq_file.h>
  35#include <linux/crash_dump.h>
  36#include <linux/kobject.h>
  37#include <linux/sysfs.h>
  38
  39#include <asm/page.h>
  40#include <asm/prom.h>
  41#include <asm/rtas.h>
  42#include <asm/fadump.h>
  43#include <asm/debug.h>
  44#include <asm/setup.h>
  45
  46static struct fw_dump fw_dump;
  47static struct fadump_mem_struct fdm;
  48static const struct fadump_mem_struct *fdm_active;
  49
  50static DEFINE_MUTEX(fadump_mutex);
  51struct fad_crash_memory_ranges crash_memory_ranges[INIT_CRASHMEM_RANGES];
  52int crash_mem_ranges;
  53
  54/* Scan the Firmware Assisted dump configuration details. */
  55int __init early_init_dt_scan_fw_dump(unsigned long node,
  56                        const char *uname, int depth, void *data)
  57{
  58        const __be32 *sections;
  59        int i, num_sections;
  60        int size;
  61        const __be32 *token;
  62
  63        if (depth != 1 || strcmp(uname, "rtas") != 0)
  64                return 0;
  65
  66        /*
  67         * Check if Firmware Assisted dump is supported. if yes, check
  68         * if dump has been initiated on last reboot.
  69         */
  70        token = of_get_flat_dt_prop(node, "ibm,configure-kernel-dump", NULL);
  71        if (!token)
  72                return 1;
  73
  74        fw_dump.fadump_supported = 1;
  75        fw_dump.ibm_configure_kernel_dump = be32_to_cpu(*token);
  76
  77        /*
  78         * The 'ibm,kernel-dump' rtas node is present only if there is
  79         * dump data waiting for us.
  80         */
  81        fdm_active = of_get_flat_dt_prop(node, "ibm,kernel-dump", NULL);
  82        if (fdm_active)
  83                fw_dump.dump_active = 1;
  84
  85        /* Get the sizes required to store dump data for the firmware provided
  86         * dump sections.
  87         * For each dump section type supported, a 32bit cell which defines
  88         * the ID of a supported section followed by two 32 bit cells which
  89         * gives teh size of the section in bytes.
  90         */
  91        sections = of_get_flat_dt_prop(node, "ibm,configure-kernel-dump-sizes",
  92                                        &size);
  93
  94        if (!sections)
  95                return 1;
  96
  97        num_sections = size / (3 * sizeof(u32));
  98
  99        for (i = 0; i < num_sections; i++, sections += 3) {
 100                u32 type = (u32)of_read_number(sections, 1);
 101
 102                switch (type) {
 103                case FADUMP_CPU_STATE_DATA:
 104                        fw_dump.cpu_state_data_size =
 105                                        of_read_ulong(&sections[1], 2);
 106                        break;
 107                case FADUMP_HPTE_REGION:
 108                        fw_dump.hpte_region_size =
 109                                        of_read_ulong(&sections[1], 2);
 110                        break;
 111                }
 112        }
 113
 114        return 1;
 115}
 116
 117int is_fadump_active(void)
 118{
 119        return fw_dump.dump_active;
 120}
 121
 122/* Print firmware assisted dump configurations for debugging purpose. */
 123static void fadump_show_config(void)
 124{
 125        pr_debug("Support for firmware-assisted dump (fadump): %s\n",
 126                        (fw_dump.fadump_supported ? "present" : "no support"));
 127
 128        if (!fw_dump.fadump_supported)
 129                return;
 130
 131        pr_debug("Fadump enabled    : %s\n",
 132                                (fw_dump.fadump_enabled ? "yes" : "no"));
 133        pr_debug("Dump Active       : %s\n",
 134                                (fw_dump.dump_active ? "yes" : "no"));
 135        pr_debug("Dump section sizes:\n");
 136        pr_debug("    CPU state data size: %lx\n", fw_dump.cpu_state_data_size);
 137        pr_debug("    HPTE region size   : %lx\n", fw_dump.hpte_region_size);
 138        pr_debug("Boot memory size  : %lx\n", fw_dump.boot_memory_size);
 139}
 140
 141static unsigned long init_fadump_mem_struct(struct fadump_mem_struct *fdm,
 142                                unsigned long addr)
 143{
 144        if (!fdm)
 145                return 0;
 146
 147        memset(fdm, 0, sizeof(struct fadump_mem_struct));
 148        addr = addr & PAGE_MASK;
 149
 150        fdm->header.dump_format_version = cpu_to_be32(0x00000001);
 151        fdm->header.dump_num_sections = cpu_to_be16(3);
 152        fdm->header.dump_status_flag = 0;
 153        fdm->header.offset_first_dump_section =
 154                cpu_to_be32((u32)offsetof(struct fadump_mem_struct, cpu_state_data));
 155
 156        /*
 157         * Fields for disk dump option.
 158         * We are not using disk dump option, hence set these fields to 0.
 159         */
 160        fdm->header.dd_block_size = 0;
 161        fdm->header.dd_block_offset = 0;
 162        fdm->header.dd_num_blocks = 0;
 163        fdm->header.dd_offset_disk_path = 0;
 164
 165        /* set 0 to disable an automatic dump-reboot. */
 166        fdm->header.max_time_auto = 0;
 167
 168        /* Kernel dump sections */
 169        /* cpu state data section. */
 170        fdm->cpu_state_data.request_flag = cpu_to_be32(FADUMP_REQUEST_FLAG);
 171        fdm->cpu_state_data.source_data_type = cpu_to_be16(FADUMP_CPU_STATE_DATA);
 172        fdm->cpu_state_data.source_address = 0;
 173        fdm->cpu_state_data.source_len = cpu_to_be64(fw_dump.cpu_state_data_size);
 174        fdm->cpu_state_data.destination_address = cpu_to_be64(addr);
 175        addr += fw_dump.cpu_state_data_size;
 176
 177        /* hpte region section */
 178        fdm->hpte_region.request_flag = cpu_to_be32(FADUMP_REQUEST_FLAG);
 179        fdm->hpte_region.source_data_type = cpu_to_be16(FADUMP_HPTE_REGION);
 180        fdm->hpte_region.source_address = 0;
 181        fdm->hpte_region.source_len = cpu_to_be64(fw_dump.hpte_region_size);
 182        fdm->hpte_region.destination_address = cpu_to_be64(addr);
 183        addr += fw_dump.hpte_region_size;
 184
 185        /* RMA region section */
 186        fdm->rmr_region.request_flag = cpu_to_be32(FADUMP_REQUEST_FLAG);
 187        fdm->rmr_region.source_data_type = cpu_to_be16(FADUMP_REAL_MODE_REGION);
 188        fdm->rmr_region.source_address = cpu_to_be64(RMA_START);
 189        fdm->rmr_region.source_len = cpu_to_be64(fw_dump.boot_memory_size);
 190        fdm->rmr_region.destination_address = cpu_to_be64(addr);
 191        addr += fw_dump.boot_memory_size;
 192
 193        return addr;
 194}
 195
 196/**
 197 * fadump_calculate_reserve_size(): reserve variable boot area 5% of System RAM
 198 *
 199 * Function to find the largest memory size we need to reserve during early
 200 * boot process. This will be the size of the memory that is required for a
 201 * kernel to boot successfully.
 202 *
 203 * This function has been taken from phyp-assisted dump feature implementation.
 204 *
 205 * returns larger of 256MB or 5% rounded down to multiples of 256MB.
 206 *
 207 * TODO: Come up with better approach to find out more accurate memory size
 208 * that is required for a kernel to boot successfully.
 209 *
 210 */
 211static inline unsigned long fadump_calculate_reserve_size(void)
 212{
 213        unsigned long size;
 214
 215        /*
 216         * Check if the size is specified through fadump_reserve_mem= cmdline
 217         * option. If yes, then use that.
 218         */
 219        if (fw_dump.reserve_bootvar)
 220                return fw_dump.reserve_bootvar;
 221
 222        /* divide by 20 to get 5% of value */
 223        size = memblock_end_of_DRAM() / 20;
 224
 225        /* round it down in multiples of 256 */
 226        size = size & ~0x0FFFFFFFUL;
 227
 228        /* Truncate to memory_limit. We don't want to over reserve the memory.*/
 229        if (memory_limit && size > memory_limit)
 230                size = memory_limit;
 231
 232        return (size > MIN_BOOT_MEM ? size : MIN_BOOT_MEM);
 233}
 234
 235/*
 236 * Calculate the total memory size required to be reserved for
 237 * firmware-assisted dump registration.
 238 */
 239static unsigned long get_fadump_area_size(void)
 240{
 241        unsigned long size = 0;
 242
 243        size += fw_dump.cpu_state_data_size;
 244        size += fw_dump.hpte_region_size;
 245        size += fw_dump.boot_memory_size;
 246        size += sizeof(struct fadump_crash_info_header);
 247        size += sizeof(struct elfhdr); /* ELF core header.*/
 248        size += sizeof(struct elf_phdr); /* place holder for cpu notes */
 249        /* Program headers for crash memory regions. */
 250        size += sizeof(struct elf_phdr) * (memblock_num_regions(memory) + 2);
 251
 252        size = PAGE_ALIGN(size);
 253        return size;
 254}
 255
 256int __init fadump_reserve_mem(void)
 257{
 258        unsigned long base, size, memory_boundary;
 259
 260        if (!fw_dump.fadump_enabled)
 261                return 0;
 262
 263        if (!fw_dump.fadump_supported) {
 264                printk(KERN_INFO "Firmware-assisted dump is not supported on"
 265                                " this hardware\n");
 266                fw_dump.fadump_enabled = 0;
 267                return 0;
 268        }
 269        /*
 270         * Initialize boot memory size
 271         * If dump is active then we have already calculated the size during
 272         * first kernel.
 273         */
 274        if (fdm_active)
 275                fw_dump.boot_memory_size = be64_to_cpu(fdm_active->rmr_region.source_len);
 276        else
 277                fw_dump.boot_memory_size = fadump_calculate_reserve_size();
 278
 279        /*
 280         * Calculate the memory boundary.
 281         * If memory_limit is less than actual memory boundary then reserve
 282         * the memory for fadump beyond the memory_limit and adjust the
 283         * memory_limit accordingly, so that the running kernel can run with
 284         * specified memory_limit.
 285         */
 286        if (memory_limit && memory_limit < memblock_end_of_DRAM()) {
 287                size = get_fadump_area_size();
 288                if ((memory_limit + size) < memblock_end_of_DRAM())
 289                        memory_limit += size;
 290                else
 291                        memory_limit = memblock_end_of_DRAM();
 292                printk(KERN_INFO "Adjusted memory_limit for firmware-assisted"
 293                                " dump, now %#016llx\n", memory_limit);
 294        }
 295        if (memory_limit)
 296                memory_boundary = memory_limit;
 297        else
 298                memory_boundary = memblock_end_of_DRAM();
 299
 300        if (fw_dump.dump_active) {
 301                printk(KERN_INFO "Firmware-assisted dump is active.\n");
 302                /*
 303                 * If last boot has crashed then reserve all the memory
 304                 * above boot_memory_size so that we don't touch it until
 305                 * dump is written to disk by userspace tool. This memory
 306                 * will be released for general use once the dump is saved.
 307                 */
 308                base = fw_dump.boot_memory_size;
 309                size = memory_boundary - base;
 310                memblock_reserve(base, size);
 311                printk(KERN_INFO "Reserved %ldMB of memory at %ldMB "
 312                                "for saving crash dump\n",
 313                                (unsigned long)(size >> 20),
 314                                (unsigned long)(base >> 20));
 315
 316                fw_dump.fadumphdr_addr =
 317                                be64_to_cpu(fdm_active->rmr_region.destination_address) +
 318                                be64_to_cpu(fdm_active->rmr_region.source_len);
 319                pr_debug("fadumphdr_addr = %p\n",
 320                                (void *) fw_dump.fadumphdr_addr);
 321        } else {
 322                /* Reserve the memory at the top of memory. */
 323                size = get_fadump_area_size();
 324                base = memory_boundary - size;
 325                memblock_reserve(base, size);
 326                printk(KERN_INFO "Reserved %ldMB of memory at %ldMB "
 327                                "for firmware-assisted dump\n",
 328                                (unsigned long)(size >> 20),
 329                                (unsigned long)(base >> 20));
 330        }
 331        fw_dump.reserve_dump_area_start = base;
 332        fw_dump.reserve_dump_area_size = size;
 333        return 1;
 334}
 335
 336/* Look for fadump= cmdline option. */
 337static int __init early_fadump_param(char *p)
 338{
 339        if (!p)
 340                return 1;
 341
 342        if (strncmp(p, "on", 2) == 0)
 343                fw_dump.fadump_enabled = 1;
 344        else if (strncmp(p, "off", 3) == 0)
 345                fw_dump.fadump_enabled = 0;
 346
 347        return 0;
 348}
 349early_param("fadump", early_fadump_param);
 350
 351/* Look for fadump_reserve_mem= cmdline option */
 352static int __init early_fadump_reserve_mem(char *p)
 353{
 354        if (p)
 355                fw_dump.reserve_bootvar = memparse(p, &p);
 356        return 0;
 357}
 358early_param("fadump_reserve_mem", early_fadump_reserve_mem);
 359
 360static void register_fw_dump(struct fadump_mem_struct *fdm)
 361{
 362        int rc;
 363        unsigned int wait_time;
 364
 365        pr_debug("Registering for firmware-assisted kernel dump...\n");
 366
 367        /* TODO: Add upper time limit for the delay */
 368        do {
 369                rc = rtas_call(fw_dump.ibm_configure_kernel_dump, 3, 1, NULL,
 370                        FADUMP_REGISTER, fdm,
 371                        sizeof(struct fadump_mem_struct));
 372
 373                wait_time = rtas_busy_delay_time(rc);
 374                if (wait_time)
 375                        mdelay(wait_time);
 376
 377        } while (wait_time);
 378
 379        switch (rc) {
 380        case -1:
 381                printk(KERN_ERR "Failed to register firmware-assisted kernel"
 382                        " dump. Hardware Error(%d).\n", rc);
 383                break;
 384        case -3:
 385                printk(KERN_ERR "Failed to register firmware-assisted kernel"
 386                        " dump. Parameter Error(%d).\n", rc);
 387                break;
 388        case -9:
 389                printk(KERN_ERR "firmware-assisted kernel dump is already "
 390                        " registered.");
 391                fw_dump.dump_registered = 1;
 392                break;
 393        case 0:
 394                printk(KERN_INFO "firmware-assisted kernel dump registration"
 395                        " is successful\n");
 396                fw_dump.dump_registered = 1;
 397                break;
 398        }
 399}
 400
 401void crash_fadump(struct pt_regs *regs, const char *str)
 402{
 403        struct fadump_crash_info_header *fdh = NULL;
 404
 405        if (!fw_dump.dump_registered || !fw_dump.fadumphdr_addr)
 406                return;
 407
 408        fdh = __va(fw_dump.fadumphdr_addr);
 409        crashing_cpu = smp_processor_id();
 410        fdh->crashing_cpu = crashing_cpu;
 411        crash_save_vmcoreinfo();
 412
 413        if (regs)
 414                fdh->regs = *regs;
 415        else
 416                ppc_save_regs(&fdh->regs);
 417
 418        fdh->cpu_online_mask = *cpu_online_mask;
 419
 420        /* Call ibm,os-term rtas call to trigger firmware assisted dump */
 421        rtas_os_term((char *)str);
 422}
 423
 424#define GPR_MASK        0xffffff0000000000
 425static inline int fadump_gpr_index(u64 id)
 426{
 427        int i = -1;
 428        char str[3];
 429
 430        if ((id & GPR_MASK) == REG_ID("GPR")) {
 431                /* get the digits at the end */
 432                id &= ~GPR_MASK;
 433                id >>= 24;
 434                str[2] = '\0';
 435                str[1] = id & 0xff;
 436                str[0] = (id >> 8) & 0xff;
 437                sscanf(str, "%d", &i);
 438                if (i > 31)
 439                        i = -1;
 440        }
 441        return i;
 442}
 443
 444static inline void fadump_set_regval(struct pt_regs *regs, u64 reg_id,
 445                                                                u64 reg_val)
 446{
 447        int i;
 448
 449        i = fadump_gpr_index(reg_id);
 450        if (i >= 0)
 451                regs->gpr[i] = (unsigned long)reg_val;
 452        else if (reg_id == REG_ID("NIA"))
 453                regs->nip = (unsigned long)reg_val;
 454        else if (reg_id == REG_ID("MSR"))
 455                regs->msr = (unsigned long)reg_val;
 456        else if (reg_id == REG_ID("CTR"))
 457                regs->ctr = (unsigned long)reg_val;
 458        else if (reg_id == REG_ID("LR"))
 459                regs->link = (unsigned long)reg_val;
 460        else if (reg_id == REG_ID("XER"))
 461                regs->xer = (unsigned long)reg_val;
 462        else if (reg_id == REG_ID("CR"))
 463                regs->ccr = (unsigned long)reg_val;
 464        else if (reg_id == REG_ID("DAR"))
 465                regs->dar = (unsigned long)reg_val;
 466        else if (reg_id == REG_ID("DSISR"))
 467                regs->dsisr = (unsigned long)reg_val;
 468}
 469
 470static struct fadump_reg_entry*
 471fadump_read_registers(struct fadump_reg_entry *reg_entry, struct pt_regs *regs)
 472{
 473        memset(regs, 0, sizeof(struct pt_regs));
 474
 475        while (be64_to_cpu(reg_entry->reg_id) != REG_ID("CPUEND")) {
 476                fadump_set_regval(regs, be64_to_cpu(reg_entry->reg_id),
 477                                        be64_to_cpu(reg_entry->reg_value));
 478                reg_entry++;
 479        }
 480        reg_entry++;
 481        return reg_entry;
 482}
 483
 484static u32 *fadump_append_elf_note(u32 *buf, char *name, unsigned type,
 485                                                void *data, size_t data_len)
 486{
 487        struct elf_note note;
 488
 489        note.n_namesz = strlen(name) + 1;
 490        note.n_descsz = data_len;
 491        note.n_type   = type;
 492        memcpy(buf, &note, sizeof(note));
 493        buf += (sizeof(note) + 3)/4;
 494        memcpy(buf, name, note.n_namesz);
 495        buf += (note.n_namesz + 3)/4;
 496        memcpy(buf, data, note.n_descsz);
 497        buf += (note.n_descsz + 3)/4;
 498
 499        return buf;
 500}
 501
 502static void fadump_final_note(u32 *buf)
 503{
 504        struct elf_note note;
 505
 506        note.n_namesz = 0;
 507        note.n_descsz = 0;
 508        note.n_type   = 0;
 509        memcpy(buf, &note, sizeof(note));
 510}
 511
 512static u32 *fadump_regs_to_elf_notes(u32 *buf, struct pt_regs *regs)
 513{
 514        struct elf_prstatus prstatus;
 515
 516        memset(&prstatus, 0, sizeof(prstatus));
 517        /*
 518         * FIXME: How do i get PID? Do I really need it?
 519         * prstatus.pr_pid = ????
 520         */
 521        elf_core_copy_kernel_regs(&prstatus.pr_reg, regs);
 522        buf = fadump_append_elf_note(buf, KEXEC_CORE_NOTE_NAME, NT_PRSTATUS,
 523                                &prstatus, sizeof(prstatus));
 524        return buf;
 525}
 526
 527static void fadump_update_elfcore_header(char *bufp)
 528{
 529        struct elfhdr *elf;
 530        struct elf_phdr *phdr;
 531
 532        elf = (struct elfhdr *)bufp;
 533        bufp += sizeof(struct elfhdr);
 534
 535        /* First note is a place holder for cpu notes info. */
 536        phdr = (struct elf_phdr *)bufp;
 537
 538        if (phdr->p_type == PT_NOTE) {
 539                phdr->p_paddr = fw_dump.cpu_notes_buf;
 540                phdr->p_offset  = phdr->p_paddr;
 541                phdr->p_filesz  = fw_dump.cpu_notes_buf_size;
 542                phdr->p_memsz = fw_dump.cpu_notes_buf_size;
 543        }
 544        return;
 545}
 546
 547static void *fadump_cpu_notes_buf_alloc(unsigned long size)
 548{
 549        void *vaddr;
 550        struct page *page;
 551        unsigned long order, count, i;
 552
 553        order = get_order(size);
 554        vaddr = (void *)__get_free_pages(GFP_KERNEL|__GFP_ZERO, order);
 555        if (!vaddr)
 556                return NULL;
 557
 558        count = 1 << order;
 559        page = virt_to_page(vaddr);
 560        for (i = 0; i < count; i++)
 561                SetPageReserved(page + i);
 562        return vaddr;
 563}
 564
 565static void fadump_cpu_notes_buf_free(unsigned long vaddr, unsigned long size)
 566{
 567        struct page *page;
 568        unsigned long order, count, i;
 569
 570        order = get_order(size);
 571        count = 1 << order;
 572        page = virt_to_page(vaddr);
 573        for (i = 0; i < count; i++)
 574                ClearPageReserved(page + i);
 575        __free_pages(page, order);
 576}
 577
 578/*
 579 * Read CPU state dump data and convert it into ELF notes.
 580 * The CPU dump starts with magic number "REGSAVE". NumCpusOffset should be
 581 * used to access the data to allow for additional fields to be added without
 582 * affecting compatibility. Each list of registers for a CPU starts with
 583 * "CPUSTRT" and ends with "CPUEND". Each register entry is of 16 bytes,
 584 * 8 Byte ASCII identifier and 8 Byte register value. The register entry
 585 * with identifier "CPUSTRT" and "CPUEND" contains 4 byte cpu id as part
 586 * of register value. For more details refer to PAPR document.
 587 *
 588 * Only for the crashing cpu we ignore the CPU dump data and get exact
 589 * state from fadump crash info structure populated by first kernel at the
 590 * time of crash.
 591 */
 592static int __init fadump_build_cpu_notes(const struct fadump_mem_struct *fdm)
 593{
 594        struct fadump_reg_save_area_header *reg_header;
 595        struct fadump_reg_entry *reg_entry;
 596        struct fadump_crash_info_header *fdh = NULL;
 597        void *vaddr;
 598        unsigned long addr;
 599        u32 num_cpus, *note_buf;
 600        struct pt_regs regs;
 601        int i, rc = 0, cpu = 0;
 602
 603        if (!fdm->cpu_state_data.bytes_dumped)
 604                return -EINVAL;
 605
 606        addr = be64_to_cpu(fdm->cpu_state_data.destination_address);
 607        vaddr = __va(addr);
 608
 609        reg_header = vaddr;
 610        if (be64_to_cpu(reg_header->magic_number) != REGSAVE_AREA_MAGIC) {
 611                printk(KERN_ERR "Unable to read register save area.\n");
 612                return -ENOENT;
 613        }
 614        pr_debug("--------CPU State Data------------\n");
 615        pr_debug("Magic Number: %llx\n", be64_to_cpu(reg_header->magic_number));
 616        pr_debug("NumCpuOffset: %x\n", be32_to_cpu(reg_header->num_cpu_offset));
 617
 618        vaddr += be32_to_cpu(reg_header->num_cpu_offset);
 619        num_cpus = be32_to_cpu(*((__be32 *)(vaddr)));
 620        pr_debug("NumCpus     : %u\n", num_cpus);
 621        vaddr += sizeof(u32);
 622        reg_entry = (struct fadump_reg_entry *)vaddr;
 623
 624        /* Allocate buffer to hold cpu crash notes. */
 625        fw_dump.cpu_notes_buf_size = num_cpus * sizeof(note_buf_t);
 626        fw_dump.cpu_notes_buf_size = PAGE_ALIGN(fw_dump.cpu_notes_buf_size);
 627        note_buf = fadump_cpu_notes_buf_alloc(fw_dump.cpu_notes_buf_size);
 628        if (!note_buf) {
 629                printk(KERN_ERR "Failed to allocate 0x%lx bytes for "
 630                        "cpu notes buffer\n", fw_dump.cpu_notes_buf_size);
 631                return -ENOMEM;
 632        }
 633        fw_dump.cpu_notes_buf = __pa(note_buf);
 634
 635        pr_debug("Allocated buffer for cpu notes of size %ld at %p\n",
 636                        (num_cpus * sizeof(note_buf_t)), note_buf);
 637
 638        if (fw_dump.fadumphdr_addr)
 639                fdh = __va(fw_dump.fadumphdr_addr);
 640
 641        for (i = 0; i < num_cpus; i++) {
 642                if (be64_to_cpu(reg_entry->reg_id) != REG_ID("CPUSTRT")) {
 643                        printk(KERN_ERR "Unable to read CPU state data\n");
 644                        rc = -ENOENT;
 645                        goto error_out;
 646                }
 647                /* Lower 4 bytes of reg_value contains logical cpu id */
 648                cpu = be64_to_cpu(reg_entry->reg_value) & FADUMP_CPU_ID_MASK;
 649                if (fdh && !cpumask_test_cpu(cpu, &fdh->cpu_online_mask)) {
 650                        SKIP_TO_NEXT_CPU(reg_entry);
 651                        continue;
 652                }
 653                pr_debug("Reading register data for cpu %d...\n", cpu);
 654                if (fdh && fdh->crashing_cpu == cpu) {
 655                        regs = fdh->regs;
 656                        note_buf = fadump_regs_to_elf_notes(note_buf, &regs);
 657                        SKIP_TO_NEXT_CPU(reg_entry);
 658                } else {
 659                        reg_entry++;
 660                        reg_entry = fadump_read_registers(reg_entry, &regs);
 661                        note_buf = fadump_regs_to_elf_notes(note_buf, &regs);
 662                }
 663        }
 664        fadump_final_note(note_buf);
 665
 666        if (fdh) {
 667                pr_debug("Updating elfcore header (%llx) with cpu notes\n",
 668                                                        fdh->elfcorehdr_addr);
 669                fadump_update_elfcore_header((char *)__va(fdh->elfcorehdr_addr));
 670        }
 671        return 0;
 672
 673error_out:
 674        fadump_cpu_notes_buf_free((unsigned long)__va(fw_dump.cpu_notes_buf),
 675                                        fw_dump.cpu_notes_buf_size);
 676        fw_dump.cpu_notes_buf = 0;
 677        fw_dump.cpu_notes_buf_size = 0;
 678        return rc;
 679
 680}
 681
 682/*
 683 * Validate and process the dump data stored by firmware before exporting
 684 * it through '/proc/vmcore'.
 685 */
 686static int __init process_fadump(const struct fadump_mem_struct *fdm_active)
 687{
 688        struct fadump_crash_info_header *fdh;
 689        int rc = 0;
 690
 691        if (!fdm_active || !fw_dump.fadumphdr_addr)
 692                return -EINVAL;
 693
 694        /* Check if the dump data is valid. */
 695        if ((be16_to_cpu(fdm_active->header.dump_status_flag) == FADUMP_ERROR_FLAG) ||
 696                        (fdm_active->cpu_state_data.error_flags != 0) ||
 697                        (fdm_active->rmr_region.error_flags != 0)) {
 698                printk(KERN_ERR "Dump taken by platform is not valid\n");
 699                return -EINVAL;
 700        }
 701        if ((fdm_active->rmr_region.bytes_dumped !=
 702                        fdm_active->rmr_region.source_len) ||
 703                        !fdm_active->cpu_state_data.bytes_dumped) {
 704                printk(KERN_ERR "Dump taken by platform is incomplete\n");
 705                return -EINVAL;
 706        }
 707
 708        /* Validate the fadump crash info header */
 709        fdh = __va(fw_dump.fadumphdr_addr);
 710        if (fdh->magic_number != FADUMP_CRASH_INFO_MAGIC) {
 711                printk(KERN_ERR "Crash info header is not valid.\n");
 712                return -EINVAL;
 713        }
 714
 715        rc = fadump_build_cpu_notes(fdm_active);
 716        if (rc)
 717                return rc;
 718
 719        /*
 720         * We are done validating dump info and elfcore header is now ready
 721         * to be exported. set elfcorehdr_addr so that vmcore module will
 722         * export the elfcore header through '/proc/vmcore'.
 723         */
 724        elfcorehdr_addr = fdh->elfcorehdr_addr;
 725
 726        return 0;
 727}
 728
 729static inline void fadump_add_crash_memory(unsigned long long base,
 730                                        unsigned long long end)
 731{
 732        if (base == end)
 733                return;
 734
 735        pr_debug("crash_memory_range[%d] [%#016llx-%#016llx], %#llx bytes\n",
 736                crash_mem_ranges, base, end - 1, (end - base));
 737        crash_memory_ranges[crash_mem_ranges].base = base;
 738        crash_memory_ranges[crash_mem_ranges].size = end - base;
 739        crash_mem_ranges++;
 740}
 741
 742static void fadump_exclude_reserved_area(unsigned long long start,
 743                                        unsigned long long end)
 744{
 745        unsigned long long ra_start, ra_end;
 746
 747        ra_start = fw_dump.reserve_dump_area_start;
 748        ra_end = ra_start + fw_dump.reserve_dump_area_size;
 749
 750        if ((ra_start < end) && (ra_end > start)) {
 751                if ((start < ra_start) && (end > ra_end)) {
 752                        fadump_add_crash_memory(start, ra_start);
 753                        fadump_add_crash_memory(ra_end, end);
 754                } else if (start < ra_start) {
 755                        fadump_add_crash_memory(start, ra_start);
 756                } else if (ra_end < end) {
 757                        fadump_add_crash_memory(ra_end, end);
 758                }
 759        } else
 760                fadump_add_crash_memory(start, end);
 761}
 762
 763static int fadump_init_elfcore_header(char *bufp)
 764{
 765        struct elfhdr *elf;
 766
 767        elf = (struct elfhdr *) bufp;
 768        bufp += sizeof(struct elfhdr);
 769        memcpy(elf->e_ident, ELFMAG, SELFMAG);
 770        elf->e_ident[EI_CLASS] = ELF_CLASS;
 771        elf->e_ident[EI_DATA] = ELF_DATA;
 772        elf->e_ident[EI_VERSION] = EV_CURRENT;
 773        elf->e_ident[EI_OSABI] = ELF_OSABI;
 774        memset(elf->e_ident+EI_PAD, 0, EI_NIDENT-EI_PAD);
 775        elf->e_type = ET_CORE;
 776        elf->e_machine = ELF_ARCH;
 777        elf->e_version = EV_CURRENT;
 778        elf->e_entry = 0;
 779        elf->e_phoff = sizeof(struct elfhdr);
 780        elf->e_shoff = 0;
 781        elf->e_flags = ELF_CORE_EFLAGS;
 782        elf->e_ehsize = sizeof(struct elfhdr);
 783        elf->e_phentsize = sizeof(struct elf_phdr);
 784        elf->e_phnum = 0;
 785        elf->e_shentsize = 0;
 786        elf->e_shnum = 0;
 787        elf->e_shstrndx = 0;
 788
 789        return 0;
 790}
 791
 792/*
 793 * Traverse through memblock structure and setup crash memory ranges. These
 794 * ranges will be used create PT_LOAD program headers in elfcore header.
 795 */
 796static void fadump_setup_crash_memory_ranges(void)
 797{
 798        struct memblock_region *reg;
 799        unsigned long long start, end;
 800
 801        pr_debug("Setup crash memory ranges.\n");
 802        crash_mem_ranges = 0;
 803        /*
 804         * add the first memory chunk (RMA_START through boot_memory_size) as
 805         * a separate memory chunk. The reason is, at the time crash firmware
 806         * will move the content of this memory chunk to different location
 807         * specified during fadump registration. We need to create a separate
 808         * program header for this chunk with the correct offset.
 809         */
 810        fadump_add_crash_memory(RMA_START, fw_dump.boot_memory_size);
 811
 812        for_each_memblock(memory, reg) {
 813                start = (unsigned long long)reg->base;
 814                end = start + (unsigned long long)reg->size;
 815                if (start == RMA_START && end >= fw_dump.boot_memory_size)
 816                        start = fw_dump.boot_memory_size;
 817
 818                /* add this range excluding the reserved dump area. */
 819                fadump_exclude_reserved_area(start, end);
 820        }
 821}
 822
 823/*
 824 * If the given physical address falls within the boot memory region then
 825 * return the relocated address that points to the dump region reserved
 826 * for saving initial boot memory contents.
 827 */
 828static inline unsigned long fadump_relocate(unsigned long paddr)
 829{
 830        if (paddr > RMA_START && paddr < fw_dump.boot_memory_size)
 831                return be64_to_cpu(fdm.rmr_region.destination_address) + paddr;
 832        else
 833                return paddr;
 834}
 835
 836static int fadump_create_elfcore_headers(char *bufp)
 837{
 838        struct elfhdr *elf;
 839        struct elf_phdr *phdr;
 840        int i;
 841
 842        fadump_init_elfcore_header(bufp);
 843        elf = (struct elfhdr *)bufp;
 844        bufp += sizeof(struct elfhdr);
 845
 846        /*
 847         * setup ELF PT_NOTE, place holder for cpu notes info. The notes info
 848         * will be populated during second kernel boot after crash. Hence
 849         * this PT_NOTE will always be the first elf note.
 850         *
 851         * NOTE: Any new ELF note addition should be placed after this note.
 852         */
 853        phdr = (struct elf_phdr *)bufp;
 854        bufp += sizeof(struct elf_phdr);
 855        phdr->p_type = PT_NOTE;
 856        phdr->p_flags = 0;
 857        phdr->p_vaddr = 0;
 858        phdr->p_align = 0;
 859
 860        phdr->p_offset = 0;
 861        phdr->p_paddr = 0;
 862        phdr->p_filesz = 0;
 863        phdr->p_memsz = 0;
 864
 865        (elf->e_phnum)++;
 866
 867        /* setup ELF PT_NOTE for vmcoreinfo */
 868        phdr = (struct elf_phdr *)bufp;
 869        bufp += sizeof(struct elf_phdr);
 870        phdr->p_type    = PT_NOTE;
 871        phdr->p_flags   = 0;
 872        phdr->p_vaddr   = 0;
 873        phdr->p_align   = 0;
 874
 875        phdr->p_paddr   = fadump_relocate(paddr_vmcoreinfo_note());
 876        phdr->p_offset  = phdr->p_paddr;
 877        phdr->p_memsz   = vmcoreinfo_max_size;
 878        phdr->p_filesz  = vmcoreinfo_max_size;
 879
 880        /* Increment number of program headers. */
 881        (elf->e_phnum)++;
 882
 883        /* setup PT_LOAD sections. */
 884
 885        for (i = 0; i < crash_mem_ranges; i++) {
 886                unsigned long long mbase, msize;
 887                mbase = crash_memory_ranges[i].base;
 888                msize = crash_memory_ranges[i].size;
 889
 890                if (!msize)
 891                        continue;
 892
 893                phdr = (struct elf_phdr *)bufp;
 894                bufp += sizeof(struct elf_phdr);
 895                phdr->p_type    = PT_LOAD;
 896                phdr->p_flags   = PF_R|PF_W|PF_X;
 897                phdr->p_offset  = mbase;
 898
 899                if (mbase == RMA_START) {
 900                        /*
 901                         * The entire RMA region will be moved by firmware
 902                         * to the specified destination_address. Hence set
 903                         * the correct offset.
 904                         */
 905                        phdr->p_offset = be64_to_cpu(fdm.rmr_region.destination_address);
 906                }
 907
 908                phdr->p_paddr = mbase;
 909                phdr->p_vaddr = (unsigned long)__va(mbase);
 910                phdr->p_filesz = msize;
 911                phdr->p_memsz = msize;
 912                phdr->p_align = 0;
 913
 914                /* Increment number of program headers. */
 915                (elf->e_phnum)++;
 916        }
 917        return 0;
 918}
 919
 920static unsigned long init_fadump_header(unsigned long addr)
 921{
 922        struct fadump_crash_info_header *fdh;
 923
 924        if (!addr)
 925                return 0;
 926
 927        fw_dump.fadumphdr_addr = addr;
 928        fdh = __va(addr);
 929        addr += sizeof(struct fadump_crash_info_header);
 930
 931        memset(fdh, 0, sizeof(struct fadump_crash_info_header));
 932        fdh->magic_number = FADUMP_CRASH_INFO_MAGIC;
 933        fdh->elfcorehdr_addr = addr;
 934        /* We will set the crashing cpu id in crash_fadump() during crash. */
 935        fdh->crashing_cpu = CPU_UNKNOWN;
 936
 937        return addr;
 938}
 939
 940static void register_fadump(void)
 941{
 942        unsigned long addr;
 943        void *vaddr;
 944
 945        /*
 946         * If no memory is reserved then we can not register for firmware-
 947         * assisted dump.
 948         */
 949        if (!fw_dump.reserve_dump_area_size)
 950                return;
 951
 952        fadump_setup_crash_memory_ranges();
 953
 954        addr = be64_to_cpu(fdm.rmr_region.destination_address) + be64_to_cpu(fdm.rmr_region.source_len);
 955        /* Initialize fadump crash info header. */
 956        addr = init_fadump_header(addr);
 957        vaddr = __va(addr);
 958
 959        pr_debug("Creating ELF core headers at %#016lx\n", addr);
 960        fadump_create_elfcore_headers(vaddr);
 961
 962        /* register the future kernel dump with firmware. */
 963        register_fw_dump(&fdm);
 964}
 965
 966static int fadump_unregister_dump(struct fadump_mem_struct *fdm)
 967{
 968        int rc = 0;
 969        unsigned int wait_time;
 970
 971        pr_debug("Un-register firmware-assisted dump\n");
 972
 973        /* TODO: Add upper time limit for the delay */
 974        do {
 975                rc = rtas_call(fw_dump.ibm_configure_kernel_dump, 3, 1, NULL,
 976                        FADUMP_UNREGISTER, fdm,
 977                        sizeof(struct fadump_mem_struct));
 978
 979                wait_time = rtas_busy_delay_time(rc);
 980                if (wait_time)
 981                        mdelay(wait_time);
 982        } while (wait_time);
 983
 984        if (rc) {
 985                printk(KERN_ERR "Failed to un-register firmware-assisted dump."
 986                        " unexpected error(%d).\n", rc);
 987                return rc;
 988        }
 989        fw_dump.dump_registered = 0;
 990        return 0;
 991}
 992
 993static int fadump_invalidate_dump(struct fadump_mem_struct *fdm)
 994{
 995        int rc = 0;
 996        unsigned int wait_time;
 997
 998        pr_debug("Invalidating firmware-assisted dump registration\n");
 999
1000        /* TODO: Add upper time limit for the delay */
1001        do {
1002                rc = rtas_call(fw_dump.ibm_configure_kernel_dump, 3, 1, NULL,
1003                        FADUMP_INVALIDATE, fdm,
1004                        sizeof(struct fadump_mem_struct));
1005
1006                wait_time = rtas_busy_delay_time(rc);
1007                if (wait_time)
1008                        mdelay(wait_time);
1009        } while (wait_time);
1010
1011        if (rc) {
1012                printk(KERN_ERR "Failed to invalidate firmware-assisted dump "
1013                        "rgistration. unexpected error(%d).\n", rc);
1014                return rc;
1015        }
1016        fw_dump.dump_active = 0;
1017        fdm_active = NULL;
1018        return 0;
1019}
1020
1021void fadump_cleanup(void)
1022{
1023        /* Invalidate the registration only if dump is active. */
1024        if (fw_dump.dump_active) {
1025                init_fadump_mem_struct(&fdm,
1026                        be64_to_cpu(fdm_active->cpu_state_data.destination_address));
1027                fadump_invalidate_dump(&fdm);
1028        }
1029}
1030
1031/*
1032 * Release the memory that was reserved in early boot to preserve the memory
1033 * contents. The released memory will be available for general use.
1034 */
1035static void fadump_release_memory(unsigned long begin, unsigned long end)
1036{
1037        unsigned long addr;
1038        unsigned long ra_start, ra_end;
1039
1040        ra_start = fw_dump.reserve_dump_area_start;
1041        ra_end = ra_start + fw_dump.reserve_dump_area_size;
1042
1043        for (addr = begin; addr < end; addr += PAGE_SIZE) {
1044                /*
1045                 * exclude the dump reserve area. Will reuse it for next
1046                 * fadump registration.
1047                 */
1048                if (addr <= ra_end && ((addr + PAGE_SIZE) > ra_start))
1049                        continue;
1050
1051                free_reserved_page(pfn_to_page(addr >> PAGE_SHIFT));
1052        }
1053}
1054
1055static void fadump_invalidate_release_mem(void)
1056{
1057        unsigned long reserved_area_start, reserved_area_end;
1058        unsigned long destination_address;
1059
1060        mutex_lock(&fadump_mutex);
1061        if (!fw_dump.dump_active) {
1062                mutex_unlock(&fadump_mutex);
1063                return;
1064        }
1065
1066        destination_address = be64_to_cpu(fdm_active->cpu_state_data.destination_address);
1067        fadump_cleanup();
1068        mutex_unlock(&fadump_mutex);
1069
1070        /*
1071         * Save the current reserved memory bounds we will require them
1072         * later for releasing the memory for general use.
1073         */
1074        reserved_area_start = fw_dump.reserve_dump_area_start;
1075        reserved_area_end = reserved_area_start +
1076                        fw_dump.reserve_dump_area_size;
1077        /*
1078         * Setup reserve_dump_area_start and its size so that we can
1079         * reuse this reserved memory for Re-registration.
1080         */
1081        fw_dump.reserve_dump_area_start = destination_address;
1082        fw_dump.reserve_dump_area_size = get_fadump_area_size();
1083
1084        fadump_release_memory(reserved_area_start, reserved_area_end);
1085        if (fw_dump.cpu_notes_buf) {
1086                fadump_cpu_notes_buf_free(
1087                                (unsigned long)__va(fw_dump.cpu_notes_buf),
1088                                fw_dump.cpu_notes_buf_size);
1089                fw_dump.cpu_notes_buf = 0;
1090                fw_dump.cpu_notes_buf_size = 0;
1091        }
1092        /* Initialize the kernel dump memory structure for FAD registration. */
1093        init_fadump_mem_struct(&fdm, fw_dump.reserve_dump_area_start);
1094}
1095
1096static ssize_t fadump_release_memory_store(struct kobject *kobj,
1097                                        struct kobj_attribute *attr,
1098                                        const char *buf, size_t count)
1099{
1100        if (!fw_dump.dump_active)
1101                return -EPERM;
1102
1103        if (buf[0] == '1') {
1104                /*
1105                 * Take away the '/proc/vmcore'. We are releasing the dump
1106                 * memory, hence it will not be valid anymore.
1107                 */
1108                vmcore_cleanup();
1109                fadump_invalidate_release_mem();
1110
1111        } else
1112                return -EINVAL;
1113        return count;
1114}
1115
1116static ssize_t fadump_enabled_show(struct kobject *kobj,
1117                                        struct kobj_attribute *attr,
1118                                        char *buf)
1119{
1120        return sprintf(buf, "%d\n", fw_dump.fadump_enabled);
1121}
1122
1123static ssize_t fadump_register_show(struct kobject *kobj,
1124                                        struct kobj_attribute *attr,
1125                                        char *buf)
1126{
1127        return sprintf(buf, "%d\n", fw_dump.dump_registered);
1128}
1129
1130static ssize_t fadump_register_store(struct kobject *kobj,
1131                                        struct kobj_attribute *attr,
1132                                        const char *buf, size_t count)
1133{
1134        int ret = 0;
1135
1136        if (!fw_dump.fadump_enabled || fdm_active)
1137                return -EPERM;
1138
1139        mutex_lock(&fadump_mutex);
1140
1141        switch (buf[0]) {
1142        case '0':
1143                if (fw_dump.dump_registered == 0) {
1144                        ret = -EINVAL;
1145                        goto unlock_out;
1146                }
1147                /* Un-register Firmware-assisted dump */
1148                fadump_unregister_dump(&fdm);
1149                break;
1150        case '1':
1151                if (fw_dump.dump_registered == 1) {
1152                        ret = -EINVAL;
1153                        goto unlock_out;
1154                }
1155                /* Register Firmware-assisted dump */
1156                register_fadump();
1157                break;
1158        default:
1159                ret = -EINVAL;
1160                break;
1161        }
1162
1163unlock_out:
1164        mutex_unlock(&fadump_mutex);
1165        return ret < 0 ? ret : count;
1166}
1167
1168static int fadump_region_show(struct seq_file *m, void *private)
1169{
1170        const struct fadump_mem_struct *fdm_ptr;
1171
1172        if (!fw_dump.fadump_enabled)
1173                return 0;
1174
1175        mutex_lock(&fadump_mutex);
1176        if (fdm_active)
1177                fdm_ptr = fdm_active;
1178        else {
1179                mutex_unlock(&fadump_mutex);
1180                fdm_ptr = &fdm;
1181        }
1182
1183        seq_printf(m,
1184                        "CPU : [%#016llx-%#016llx] %#llx bytes, "
1185                        "Dumped: %#llx\n",
1186                        be64_to_cpu(fdm_ptr->cpu_state_data.destination_address),
1187                        be64_to_cpu(fdm_ptr->cpu_state_data.destination_address) +
1188                        be64_to_cpu(fdm_ptr->cpu_state_data.source_len) - 1,
1189                        be64_to_cpu(fdm_ptr->cpu_state_data.source_len),
1190                        be64_to_cpu(fdm_ptr->cpu_state_data.bytes_dumped));
1191        seq_printf(m,
1192                        "HPTE: [%#016llx-%#016llx] %#llx bytes, "
1193                        "Dumped: %#llx\n",
1194                        be64_to_cpu(fdm_ptr->hpte_region.destination_address),
1195                        be64_to_cpu(fdm_ptr->hpte_region.destination_address) +
1196                        be64_to_cpu(fdm_ptr->hpte_region.source_len) - 1,
1197                        be64_to_cpu(fdm_ptr->hpte_region.source_len),
1198                        be64_to_cpu(fdm_ptr->hpte_region.bytes_dumped));
1199        seq_printf(m,
1200                        "DUMP: [%#016llx-%#016llx] %#llx bytes, "
1201                        "Dumped: %#llx\n",
1202                        be64_to_cpu(fdm_ptr->rmr_region.destination_address),
1203                        be64_to_cpu(fdm_ptr->rmr_region.destination_address) +
1204                        be64_to_cpu(fdm_ptr->rmr_region.source_len) - 1,
1205                        be64_to_cpu(fdm_ptr->rmr_region.source_len),
1206                        be64_to_cpu(fdm_ptr->rmr_region.bytes_dumped));
1207
1208        if (!fdm_active ||
1209                (fw_dump.reserve_dump_area_start ==
1210                be64_to_cpu(fdm_ptr->cpu_state_data.destination_address)))
1211                goto out;
1212
1213        /* Dump is active. Show reserved memory region. */
1214        seq_printf(m,
1215                        "    : [%#016llx-%#016llx] %#llx bytes, "
1216                        "Dumped: %#llx\n",
1217                        (unsigned long long)fw_dump.reserve_dump_area_start,
1218                        be64_to_cpu(fdm_ptr->cpu_state_data.destination_address) - 1,
1219                        be64_to_cpu(fdm_ptr->cpu_state_data.destination_address) -
1220                        fw_dump.reserve_dump_area_start,
1221                        be64_to_cpu(fdm_ptr->cpu_state_data.destination_address) -
1222                        fw_dump.reserve_dump_area_start);
1223out:
1224        if (fdm_active)
1225                mutex_unlock(&fadump_mutex);
1226        return 0;
1227}
1228
1229static struct kobj_attribute fadump_release_attr = __ATTR(fadump_release_mem,
1230                                                0200, NULL,
1231                                                fadump_release_memory_store);
1232static struct kobj_attribute fadump_attr = __ATTR(fadump_enabled,
1233                                                0444, fadump_enabled_show,
1234                                                NULL);
1235static struct kobj_attribute fadump_register_attr = __ATTR(fadump_registered,
1236                                                0644, fadump_register_show,
1237                                                fadump_register_store);
1238
1239static int fadump_region_open(struct inode *inode, struct file *file)
1240{
1241        return single_open(file, fadump_region_show, inode->i_private);
1242}
1243
1244static const struct file_operations fadump_region_fops = {
1245        .open    = fadump_region_open,
1246        .read    = seq_read,
1247        .llseek  = seq_lseek,
1248        .release = single_release,
1249};
1250
1251static void fadump_init_files(void)
1252{
1253        struct dentry *debugfs_file;
1254        int rc = 0;
1255
1256        rc = sysfs_create_file(kernel_kobj, &fadump_attr.attr);
1257        if (rc)
1258                printk(KERN_ERR "fadump: unable to create sysfs file"
1259                        " fadump_enabled (%d)\n", rc);
1260
1261        rc = sysfs_create_file(kernel_kobj, &fadump_register_attr.attr);
1262        if (rc)
1263                printk(KERN_ERR "fadump: unable to create sysfs file"
1264                        " fadump_registered (%d)\n", rc);
1265
1266        debugfs_file = debugfs_create_file("fadump_region", 0444,
1267                                        powerpc_debugfs_root, NULL,
1268                                        &fadump_region_fops);
1269        if (!debugfs_file)
1270                printk(KERN_ERR "fadump: unable to create debugfs file"
1271                                " fadump_region\n");
1272
1273        if (fw_dump.dump_active) {
1274                rc = sysfs_create_file(kernel_kobj, &fadump_release_attr.attr);
1275                if (rc)
1276                        printk(KERN_ERR "fadump: unable to create sysfs file"
1277                                " fadump_release_mem (%d)\n", rc);
1278        }
1279        return;
1280}
1281
1282/*
1283 * Prepare for firmware-assisted dump.
1284 */
1285int __init setup_fadump(void)
1286{
1287        if (!fw_dump.fadump_enabled)
1288                return 0;
1289
1290        if (!fw_dump.fadump_supported) {
1291                printk(KERN_ERR "Firmware-assisted dump is not supported on"
1292                        " this hardware\n");
1293                return 0;
1294        }
1295
1296        fadump_show_config();
1297        /*
1298         * If dump data is available then see if it is valid and prepare for
1299         * saving it to the disk.
1300         */
1301        if (fw_dump.dump_active) {
1302                /*
1303                 * if dump process fails then invalidate the registration
1304                 * and release memory before proceeding for re-registration.
1305                 */
1306                if (process_fadump(fdm_active) < 0)
1307                        fadump_invalidate_release_mem();
1308        }
1309        /* Initialize the kernel dump memory structure for FAD registration. */
1310        else if (fw_dump.reserve_dump_area_size)
1311                init_fadump_mem_struct(&fdm, fw_dump.reserve_dump_area_start);
1312        fadump_init_files();
1313
1314        return 1;
1315}
1316subsys_initcall(setup_fadump);
1317