1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18#include <linux/types.h>
19#include <linux/string.h>
20#include <linux/kvm.h>
21#include <linux/kvm_host.h>
22#include <linux/highmem.h>
23#include <linux/gfp.h>
24#include <linux/slab.h>
25#include <linux/hugetlb.h>
26#include <linux/vmalloc.h>
27#include <linux/srcu.h>
28#include <linux/anon_inodes.h>
29#include <linux/file.h>
30
31#include <asm/tlbflush.h>
32#include <asm/kvm_ppc.h>
33#include <asm/kvm_book3s.h>
34#include <asm/mmu-hash64.h>
35#include <asm/hvcall.h>
36#include <asm/synch.h>
37#include <asm/ppc-opcode.h>
38#include <asm/cputable.h>
39
40#include "trace_hv.h"
41
42
43#define PPC_MIN_HPT_ORDER 18
44
45static long kvmppc_virtmode_do_h_enter(struct kvm *kvm, unsigned long flags,
46 long pte_index, unsigned long pteh,
47 unsigned long ptel, unsigned long *pte_idx_ret);
48static void kvmppc_rmap_reset(struct kvm *kvm);
49
50long kvmppc_alloc_hpt(struct kvm *kvm, u32 *htab_orderp)
51{
52 unsigned long hpt = 0;
53 struct revmap_entry *rev;
54 struct page *page = NULL;
55 long order = KVM_DEFAULT_HPT_ORDER;
56
57 if (htab_orderp) {
58 order = *htab_orderp;
59 if (order < PPC_MIN_HPT_ORDER)
60 order = PPC_MIN_HPT_ORDER;
61 }
62
63 kvm->arch.hpt_cma_alloc = 0;
64 page = kvm_alloc_hpt(1ul << (order - PAGE_SHIFT));
65 if (page) {
66 hpt = (unsigned long)pfn_to_kaddr(page_to_pfn(page));
67 memset((void *)hpt, 0, (1ul << order));
68 kvm->arch.hpt_cma_alloc = 1;
69 }
70
71
72 while (!hpt && order > PPC_MIN_HPT_ORDER) {
73 hpt = __get_free_pages(GFP_KERNEL|__GFP_ZERO|__GFP_REPEAT|
74 __GFP_NOWARN, order - PAGE_SHIFT);
75 if (!hpt)
76 --order;
77 }
78
79 if (!hpt)
80 return -ENOMEM;
81
82 kvm->arch.hpt_virt = hpt;
83 kvm->arch.hpt_order = order;
84
85 kvm->arch.hpt_npte = 1ul << (order - 4);
86
87 kvm->arch.hpt_mask = (1ul << (order - 7)) - 1;
88
89
90 rev = vmalloc(sizeof(struct revmap_entry) * kvm->arch.hpt_npte);
91 if (!rev) {
92 pr_err("kvmppc_alloc_hpt: Couldn't alloc reverse map array\n");
93 goto out_freehpt;
94 }
95 kvm->arch.revmap = rev;
96 kvm->arch.sdr1 = __pa(hpt) | (order - 18);
97
98 pr_info("KVM guest htab at %lx (order %ld), LPID %x\n",
99 hpt, order, kvm->arch.lpid);
100
101 if (htab_orderp)
102 *htab_orderp = order;
103 return 0;
104
105 out_freehpt:
106 if (kvm->arch.hpt_cma_alloc)
107 kvm_release_hpt(page, 1 << (order - PAGE_SHIFT));
108 else
109 free_pages(hpt, order - PAGE_SHIFT);
110 return -ENOMEM;
111}
112
113long kvmppc_alloc_reset_hpt(struct kvm *kvm, u32 *htab_orderp)
114{
115 long err = -EBUSY;
116 long order;
117
118 mutex_lock(&kvm->lock);
119 if (kvm->arch.rma_setup_done) {
120 kvm->arch.rma_setup_done = 0;
121
122 smp_mb();
123 if (atomic_read(&kvm->arch.vcpus_running)) {
124 kvm->arch.rma_setup_done = 1;
125 goto out;
126 }
127 }
128 if (kvm->arch.hpt_virt) {
129 order = kvm->arch.hpt_order;
130
131 memset((void *)kvm->arch.hpt_virt, 0, 1ul << order);
132
133
134
135 kvmppc_rmap_reset(kvm);
136
137 cpumask_setall(&kvm->arch.need_tlb_flush);
138 *htab_orderp = order;
139 err = 0;
140 } else {
141 err = kvmppc_alloc_hpt(kvm, htab_orderp);
142 order = *htab_orderp;
143 }
144 out:
145 mutex_unlock(&kvm->lock);
146 return err;
147}
148
149void kvmppc_free_hpt(struct kvm *kvm)
150{
151 kvmppc_free_lpid(kvm->arch.lpid);
152 vfree(kvm->arch.revmap);
153 if (kvm->arch.hpt_cma_alloc)
154 kvm_release_hpt(virt_to_page(kvm->arch.hpt_virt),
155 1 << (kvm->arch.hpt_order - PAGE_SHIFT));
156 else
157 free_pages(kvm->arch.hpt_virt,
158 kvm->arch.hpt_order - PAGE_SHIFT);
159}
160
161
162static inline unsigned long hpte0_pgsize_encoding(unsigned long pgsize)
163{
164 return (pgsize > 0x1000) ? HPTE_V_LARGE : 0;
165}
166
167
168static inline unsigned long hpte1_pgsize_encoding(unsigned long pgsize)
169{
170 return (pgsize == 0x10000) ? 0x1000 : 0;
171}
172
173void kvmppc_map_vrma(struct kvm_vcpu *vcpu, struct kvm_memory_slot *memslot,
174 unsigned long porder)
175{
176 unsigned long i;
177 unsigned long npages;
178 unsigned long hp_v, hp_r;
179 unsigned long addr, hash;
180 unsigned long psize;
181 unsigned long hp0, hp1;
182 unsigned long idx_ret;
183 long ret;
184 struct kvm *kvm = vcpu->kvm;
185
186 psize = 1ul << porder;
187 npages = memslot->npages >> (porder - PAGE_SHIFT);
188
189
190 if (npages > 1ul << (40 - porder))
191 npages = 1ul << (40 - porder);
192
193 if (npages > kvm->arch.hpt_mask + 1)
194 npages = kvm->arch.hpt_mask + 1;
195
196 hp0 = HPTE_V_1TB_SEG | (VRMA_VSID << (40 - 16)) |
197 HPTE_V_BOLTED | hpte0_pgsize_encoding(psize);
198 hp1 = hpte1_pgsize_encoding(psize) |
199 HPTE_R_R | HPTE_R_C | HPTE_R_M | PP_RWXX;
200
201 for (i = 0; i < npages; ++i) {
202 addr = i << porder;
203
204 hash = (i ^ (VRMA_VSID ^ (VRMA_VSID << 25))) & kvm->arch.hpt_mask;
205
206
207
208
209
210
211 hash = (hash << 3) + 7;
212 hp_v = hp0 | ((addr >> 16) & ~0x7fUL);
213 hp_r = hp1 | addr;
214 ret = kvmppc_virtmode_do_h_enter(kvm, H_EXACT, hash, hp_v, hp_r,
215 &idx_ret);
216 if (ret != H_SUCCESS) {
217 pr_err("KVM: map_vrma at %lx failed, ret=%ld\n",
218 addr, ret);
219 break;
220 }
221 }
222}
223
224int kvmppc_mmu_hv_init(void)
225{
226 unsigned long host_lpid, rsvd_lpid;
227
228 if (!cpu_has_feature(CPU_FTR_HVMODE))
229 return -EINVAL;
230
231
232 host_lpid = mfspr(SPRN_LPID);
233 rsvd_lpid = LPID_RSVD;
234
235 kvmppc_init_lpid(rsvd_lpid + 1);
236
237 kvmppc_claim_lpid(host_lpid);
238
239 kvmppc_claim_lpid(rsvd_lpid);
240
241 return 0;
242}
243
244static void kvmppc_mmu_book3s_64_hv_reset_msr(struct kvm_vcpu *vcpu)
245{
246 unsigned long msr = vcpu->arch.intr_msr;
247
248
249 if (MSR_TM_TRANSACTIONAL(vcpu->arch.shregs.msr))
250 msr |= MSR_TS_S;
251 else
252 msr |= vcpu->arch.shregs.msr & MSR_TS_MASK;
253 kvmppc_set_msr(vcpu, msr);
254}
255
256long kvmppc_virtmode_do_h_enter(struct kvm *kvm, unsigned long flags,
257 long pte_index, unsigned long pteh,
258 unsigned long ptel, unsigned long *pte_idx_ret)
259{
260 long ret;
261
262
263 rcu_read_lock_sched();
264 ret = kvmppc_do_h_enter(kvm, flags, pte_index, pteh, ptel,
265 current->mm->pgd, false, pte_idx_ret);
266 rcu_read_unlock_sched();
267 if (ret == H_TOO_HARD) {
268
269 pr_err("KVM: Oops, kvmppc_h_enter returned too hard!\n");
270 ret = H_RESOURCE;
271 }
272 return ret;
273
274}
275
276static struct kvmppc_slb *kvmppc_mmu_book3s_hv_find_slbe(struct kvm_vcpu *vcpu,
277 gva_t eaddr)
278{
279 u64 mask;
280 int i;
281
282 for (i = 0; i < vcpu->arch.slb_nr; i++) {
283 if (!(vcpu->arch.slb[i].orige & SLB_ESID_V))
284 continue;
285
286 if (vcpu->arch.slb[i].origv & SLB_VSID_B_1T)
287 mask = ESID_MASK_1T;
288 else
289 mask = ESID_MASK;
290
291 if (((vcpu->arch.slb[i].orige ^ eaddr) & mask) == 0)
292 return &vcpu->arch.slb[i];
293 }
294 return NULL;
295}
296
297static unsigned long kvmppc_mmu_get_real_addr(unsigned long v, unsigned long r,
298 unsigned long ea)
299{
300 unsigned long ra_mask;
301
302 ra_mask = hpte_page_size(v, r) - 1;
303 return (r & HPTE_R_RPN & ~ra_mask) | (ea & ra_mask);
304}
305
306static int kvmppc_mmu_book3s_64_hv_xlate(struct kvm_vcpu *vcpu, gva_t eaddr,
307 struct kvmppc_pte *gpte, bool data, bool iswrite)
308{
309 struct kvm *kvm = vcpu->kvm;
310 struct kvmppc_slb *slbe;
311 unsigned long slb_v;
312 unsigned long pp, key;
313 unsigned long v, gr;
314 __be64 *hptep;
315 int index;
316 int virtmode = vcpu->arch.shregs.msr & (data ? MSR_DR : MSR_IR);
317
318
319 if (virtmode) {
320 slbe = kvmppc_mmu_book3s_hv_find_slbe(vcpu, eaddr);
321 if (!slbe)
322 return -EINVAL;
323 slb_v = slbe->origv;
324 } else {
325
326 slb_v = vcpu->kvm->arch.vrma_slb_v;
327 }
328
329 preempt_disable();
330
331 index = kvmppc_hv_find_lock_hpte(kvm, eaddr, slb_v,
332 HPTE_V_VALID | HPTE_V_ABSENT);
333 if (index < 0) {
334 preempt_enable();
335 return -ENOENT;
336 }
337 hptep = (__be64 *)(kvm->arch.hpt_virt + (index << 4));
338 v = be64_to_cpu(hptep[0]) & ~HPTE_V_HVLOCK;
339 gr = kvm->arch.revmap[index].guest_rpte;
340
341
342 asm volatile("lwsync" : : : "memory");
343 hptep[0] = cpu_to_be64(v);
344 preempt_enable();
345
346 gpte->eaddr = eaddr;
347 gpte->vpage = ((v & HPTE_V_AVPN) << 4) | ((eaddr >> 12) & 0xfff);
348
349
350 pp = gr & (HPTE_R_PP0 | HPTE_R_PP);
351 key = (vcpu->arch.shregs.msr & MSR_PR) ? SLB_VSID_KP : SLB_VSID_KS;
352 key &= slb_v;
353
354
355 gpte->may_read = hpte_read_permission(pp, key);
356 gpte->may_write = hpte_write_permission(pp, key);
357 gpte->may_execute = gpte->may_read && !(gr & (HPTE_R_N | HPTE_R_G));
358
359
360 if (data && virtmode) {
361 int amrfield = hpte_get_skey_perm(gr, vcpu->arch.amr);
362 if (amrfield & 1)
363 gpte->may_read = 0;
364 if (amrfield & 2)
365 gpte->may_write = 0;
366 }
367
368
369 gpte->raddr = kvmppc_mmu_get_real_addr(v, gr, eaddr);
370 return 0;
371}
372
373
374
375
376
377
378
379
380
381static int instruction_is_store(unsigned int instr)
382{
383 unsigned int mask;
384
385 mask = 0x10000000;
386 if ((instr & 0xfc000000) == 0x7c000000)
387 mask = 0x100;
388 return (instr & mask) != 0;
389}
390
391static int kvmppc_hv_emulate_mmio(struct kvm_run *run, struct kvm_vcpu *vcpu,
392 unsigned long gpa, gva_t ea, int is_store)
393{
394 u32 last_inst;
395
396
397
398
399 if (kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst) !=
400 EMULATE_DONE)
401 return RESUME_GUEST;
402
403
404
405
406
407
408
409
410
411
412
413
414
415 if (instruction_is_store(last_inst) != !!is_store)
416 return RESUME_GUEST;
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431 vcpu->arch.paddr_accessed = gpa;
432 vcpu->arch.vaddr_accessed = ea;
433 return kvmppc_emulate_mmio(run, vcpu);
434}
435
436int kvmppc_book3s_hv_page_fault(struct kvm_run *run, struct kvm_vcpu *vcpu,
437 unsigned long ea, unsigned long dsisr)
438{
439 struct kvm *kvm = vcpu->kvm;
440 unsigned long hpte[3], r;
441 __be64 *hptep;
442 unsigned long mmu_seq, psize, pte_size;
443 unsigned long gpa_base, gfn_base;
444 unsigned long gpa, gfn, hva, pfn;
445 struct kvm_memory_slot *memslot;
446 unsigned long *rmap;
447 struct revmap_entry *rev;
448 struct page *page, *pages[1];
449 long index, ret, npages;
450 unsigned long is_io;
451 unsigned int writing, write_ok;
452 struct vm_area_struct *vma;
453 unsigned long rcbits;
454
455
456
457
458
459
460
461 if (ea != vcpu->arch.pgfault_addr)
462 return RESUME_GUEST;
463 index = vcpu->arch.pgfault_index;
464 hptep = (__be64 *)(kvm->arch.hpt_virt + (index << 4));
465 rev = &kvm->arch.revmap[index];
466 preempt_disable();
467 while (!try_lock_hpte(hptep, HPTE_V_HVLOCK))
468 cpu_relax();
469 hpte[0] = be64_to_cpu(hptep[0]) & ~HPTE_V_HVLOCK;
470 hpte[1] = be64_to_cpu(hptep[1]);
471 hpte[2] = r = rev->guest_rpte;
472 asm volatile("lwsync" : : : "memory");
473 hptep[0] = cpu_to_be64(hpte[0]);
474 preempt_enable();
475
476 if (hpte[0] != vcpu->arch.pgfault_hpte[0] ||
477 hpte[1] != vcpu->arch.pgfault_hpte[1])
478 return RESUME_GUEST;
479
480
481 psize = hpte_page_size(hpte[0], r);
482 gpa_base = r & HPTE_R_RPN & ~(psize - 1);
483 gfn_base = gpa_base >> PAGE_SHIFT;
484 gpa = gpa_base | (ea & (psize - 1));
485 gfn = gpa >> PAGE_SHIFT;
486 memslot = gfn_to_memslot(kvm, gfn);
487
488 trace_kvm_page_fault_enter(vcpu, hpte, memslot, ea, dsisr);
489
490
491 if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID))
492 return kvmppc_hv_emulate_mmio(run, vcpu, gpa, ea,
493 dsisr & DSISR_ISSTORE);
494
495
496
497
498
499 if (gfn_base < memslot->base_gfn)
500 return -EFAULT;
501
502
503 mmu_seq = kvm->mmu_notifier_seq;
504 smp_rmb();
505
506 ret = -EFAULT;
507 is_io = 0;
508 pfn = 0;
509 page = NULL;
510 pte_size = PAGE_SIZE;
511 writing = (dsisr & DSISR_ISSTORE) != 0;
512
513 write_ok = writing;
514 hva = gfn_to_hva_memslot(memslot, gfn);
515 npages = get_user_pages_fast(hva, 1, writing, pages);
516 if (npages < 1) {
517
518 down_read(¤t->mm->mmap_sem);
519 vma = find_vma(current->mm, hva);
520 if (vma && vma->vm_start <= hva && hva + psize <= vma->vm_end &&
521 (vma->vm_flags & VM_PFNMAP)) {
522 pfn = vma->vm_pgoff +
523 ((hva - vma->vm_start) >> PAGE_SHIFT);
524 pte_size = psize;
525 is_io = hpte_cache_bits(pgprot_val(vma->vm_page_prot));
526 write_ok = vma->vm_flags & VM_WRITE;
527 }
528 up_read(¤t->mm->mmap_sem);
529 if (!pfn)
530 goto out_put;
531 } else {
532 page = pages[0];
533 pfn = page_to_pfn(page);
534 if (PageHuge(page)) {
535 page = compound_head(page);
536 pte_size <<= compound_order(page);
537 }
538
539 if (!writing && hpte_is_writable(r)) {
540 unsigned int hugepage_shift;
541 pte_t *ptep, pte;
542
543
544
545
546
547 rcu_read_lock_sched();
548 ptep = find_linux_pte_or_hugepte(current->mm->pgd,
549 hva, &hugepage_shift);
550 if (ptep) {
551 pte = kvmppc_read_update_linux_pte(ptep, 1,
552 hugepage_shift);
553 if (pte_write(pte))
554 write_ok = 1;
555 }
556 rcu_read_unlock_sched();
557 }
558 }
559
560 if (psize > pte_size)
561 goto out_put;
562
563
564 if (!hpte_cache_flags_ok(r, is_io)) {
565 if (is_io)
566 goto out_put;
567
568
569
570
571
572 r = (r & ~(HPTE_R_W|HPTE_R_I|HPTE_R_G)) | HPTE_R_M;
573 }
574
575
576
577
578
579
580 if (psize < PAGE_SIZE)
581 psize = PAGE_SIZE;
582 r = (r & ~(HPTE_R_PP0 - psize)) | ((pfn << PAGE_SHIFT) & ~(psize - 1));
583 if (hpte_is_writable(r) && !write_ok)
584 r = hpte_make_readonly(r);
585 ret = RESUME_GUEST;
586 preempt_disable();
587 while (!try_lock_hpte(hptep, HPTE_V_HVLOCK))
588 cpu_relax();
589 if ((be64_to_cpu(hptep[0]) & ~HPTE_V_HVLOCK) != hpte[0] ||
590 be64_to_cpu(hptep[1]) != hpte[1] ||
591 rev->guest_rpte != hpte[2])
592
593 goto out_unlock;
594 hpte[0] = (hpte[0] & ~HPTE_V_ABSENT) | HPTE_V_VALID;
595
596
597 rmap = &memslot->arch.rmap[gfn_base - memslot->base_gfn];
598 lock_rmap(rmap);
599
600
601 ret = RESUME_GUEST;
602 if (mmu_notifier_retry(vcpu->kvm, mmu_seq)) {
603 unlock_rmap(rmap);
604 goto out_unlock;
605 }
606
607
608 rcbits = *rmap >> KVMPPC_RMAP_RC_SHIFT;
609 r &= rcbits | ~(HPTE_R_R | HPTE_R_C);
610
611 if (be64_to_cpu(hptep[0]) & HPTE_V_VALID) {
612
613 unlock_rmap(rmap);
614 hptep[0] |= cpu_to_be64(HPTE_V_ABSENT);
615 kvmppc_invalidate_hpte(kvm, hptep, index);
616
617 r |= be64_to_cpu(hptep[1]) & (HPTE_R_R | HPTE_R_C);
618 } else {
619 kvmppc_add_revmap_chain(kvm, rev, rmap, index, 0);
620 }
621
622 hptep[1] = cpu_to_be64(r);
623 eieio();
624 hptep[0] = cpu_to_be64(hpte[0]);
625 asm volatile("ptesync" : : : "memory");
626 preempt_enable();
627 if (page && hpte_is_writable(r))
628 SetPageDirty(page);
629
630 out_put:
631 trace_kvm_page_fault_exit(vcpu, hpte, ret);
632
633 if (page) {
634
635
636
637
638
639
640 put_page(pages[0]);
641 }
642 return ret;
643
644 out_unlock:
645 hptep[0] &= ~cpu_to_be64(HPTE_V_HVLOCK);
646 preempt_enable();
647 goto out_put;
648}
649
650static void kvmppc_rmap_reset(struct kvm *kvm)
651{
652 struct kvm_memslots *slots;
653 struct kvm_memory_slot *memslot;
654 int srcu_idx;
655
656 srcu_idx = srcu_read_lock(&kvm->srcu);
657 slots = kvm->memslots;
658 kvm_for_each_memslot(memslot, slots) {
659
660
661
662
663 memset(memslot->arch.rmap, 0,
664 memslot->npages * sizeof(*memslot->arch.rmap));
665 }
666 srcu_read_unlock(&kvm->srcu, srcu_idx);
667}
668
669static int kvm_handle_hva_range(struct kvm *kvm,
670 unsigned long start,
671 unsigned long end,
672 int (*handler)(struct kvm *kvm,
673 unsigned long *rmapp,
674 unsigned long gfn))
675{
676 int ret;
677 int retval = 0;
678 struct kvm_memslots *slots;
679 struct kvm_memory_slot *memslot;
680
681 slots = kvm_memslots(kvm);
682 kvm_for_each_memslot(memslot, slots) {
683 unsigned long hva_start, hva_end;
684 gfn_t gfn, gfn_end;
685
686 hva_start = max(start, memslot->userspace_addr);
687 hva_end = min(end, memslot->userspace_addr +
688 (memslot->npages << PAGE_SHIFT));
689 if (hva_start >= hva_end)
690 continue;
691
692
693
694
695 gfn = hva_to_gfn_memslot(hva_start, memslot);
696 gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
697
698 for (; gfn < gfn_end; ++gfn) {
699 gfn_t gfn_offset = gfn - memslot->base_gfn;
700
701 ret = handler(kvm, &memslot->arch.rmap[gfn_offset], gfn);
702 retval |= ret;
703 }
704 }
705
706 return retval;
707}
708
709static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
710 int (*handler)(struct kvm *kvm, unsigned long *rmapp,
711 unsigned long gfn))
712{
713 return kvm_handle_hva_range(kvm, hva, hva + 1, handler);
714}
715
716static int kvm_unmap_rmapp(struct kvm *kvm, unsigned long *rmapp,
717 unsigned long gfn)
718{
719 struct revmap_entry *rev = kvm->arch.revmap;
720 unsigned long h, i, j;
721 __be64 *hptep;
722 unsigned long ptel, psize, rcbits;
723
724 for (;;) {
725 lock_rmap(rmapp);
726 if (!(*rmapp & KVMPPC_RMAP_PRESENT)) {
727 unlock_rmap(rmapp);
728 break;
729 }
730
731
732
733
734
735
736 i = *rmapp & KVMPPC_RMAP_INDEX;
737 hptep = (__be64 *) (kvm->arch.hpt_virt + (i << 4));
738 if (!try_lock_hpte(hptep, HPTE_V_HVLOCK)) {
739
740 unlock_rmap(rmapp);
741 while (be64_to_cpu(hptep[0]) & HPTE_V_HVLOCK)
742 cpu_relax();
743 continue;
744 }
745 j = rev[i].forw;
746 if (j == i) {
747
748 *rmapp &= ~(KVMPPC_RMAP_PRESENT | KVMPPC_RMAP_INDEX);
749 } else {
750
751 h = rev[i].back;
752 rev[h].forw = j;
753 rev[j].back = h;
754 rev[i].forw = rev[i].back = i;
755 *rmapp = (*rmapp & ~KVMPPC_RMAP_INDEX) | j;
756 }
757
758
759 ptel = rev[i].guest_rpte;
760 psize = hpte_page_size(be64_to_cpu(hptep[0]), ptel);
761 if ((be64_to_cpu(hptep[0]) & HPTE_V_VALID) &&
762 hpte_rpn(ptel, psize) == gfn) {
763 hptep[0] |= cpu_to_be64(HPTE_V_ABSENT);
764 kvmppc_invalidate_hpte(kvm, hptep, i);
765
766 rcbits = be64_to_cpu(hptep[1]) & (HPTE_R_R | HPTE_R_C);
767 *rmapp |= rcbits << KVMPPC_RMAP_RC_SHIFT;
768 if (rcbits & ~rev[i].guest_rpte) {
769 rev[i].guest_rpte = ptel | rcbits;
770 note_hpte_modification(kvm, &rev[i]);
771 }
772 }
773 unlock_rmap(rmapp);
774 hptep[0] &= ~cpu_to_be64(HPTE_V_HVLOCK);
775 }
776 return 0;
777}
778
779int kvm_unmap_hva_hv(struct kvm *kvm, unsigned long hva)
780{
781 kvm_handle_hva(kvm, hva, kvm_unmap_rmapp);
782 return 0;
783}
784
785int kvm_unmap_hva_range_hv(struct kvm *kvm, unsigned long start, unsigned long end)
786{
787 kvm_handle_hva_range(kvm, start, end, kvm_unmap_rmapp);
788 return 0;
789}
790
791void kvmppc_core_flush_memslot_hv(struct kvm *kvm,
792 struct kvm_memory_slot *memslot)
793{
794 unsigned long *rmapp;
795 unsigned long gfn;
796 unsigned long n;
797
798 rmapp = memslot->arch.rmap;
799 gfn = memslot->base_gfn;
800 for (n = memslot->npages; n; --n) {
801
802
803
804
805
806
807 if (*rmapp & KVMPPC_RMAP_PRESENT)
808 kvm_unmap_rmapp(kvm, rmapp, gfn);
809 ++rmapp;
810 ++gfn;
811 }
812}
813
814static int kvm_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
815 unsigned long gfn)
816{
817 struct revmap_entry *rev = kvm->arch.revmap;
818 unsigned long head, i, j;
819 __be64 *hptep;
820 int ret = 0;
821
822 retry:
823 lock_rmap(rmapp);
824 if (*rmapp & KVMPPC_RMAP_REFERENCED) {
825 *rmapp &= ~KVMPPC_RMAP_REFERENCED;
826 ret = 1;
827 }
828 if (!(*rmapp & KVMPPC_RMAP_PRESENT)) {
829 unlock_rmap(rmapp);
830 return ret;
831 }
832
833 i = head = *rmapp & KVMPPC_RMAP_INDEX;
834 do {
835 hptep = (__be64 *) (kvm->arch.hpt_virt + (i << 4));
836 j = rev[i].forw;
837
838
839 if (!(be64_to_cpu(hptep[1]) & HPTE_R_R))
840 continue;
841
842 if (!try_lock_hpte(hptep, HPTE_V_HVLOCK)) {
843
844 unlock_rmap(rmapp);
845 while (be64_to_cpu(hptep[0]) & HPTE_V_HVLOCK)
846 cpu_relax();
847 goto retry;
848 }
849
850
851 if ((be64_to_cpu(hptep[0]) & HPTE_V_VALID) &&
852 (be64_to_cpu(hptep[1]) & HPTE_R_R)) {
853 kvmppc_clear_ref_hpte(kvm, hptep, i);
854 if (!(rev[i].guest_rpte & HPTE_R_R)) {
855 rev[i].guest_rpte |= HPTE_R_R;
856 note_hpte_modification(kvm, &rev[i]);
857 }
858 ret = 1;
859 }
860 hptep[0] &= ~cpu_to_be64(HPTE_V_HVLOCK);
861 } while ((i = j) != head);
862
863 unlock_rmap(rmapp);
864 return ret;
865}
866
867int kvm_age_hva_hv(struct kvm *kvm, unsigned long start, unsigned long end)
868{
869 return kvm_handle_hva_range(kvm, start, end, kvm_age_rmapp);
870}
871
872static int kvm_test_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
873 unsigned long gfn)
874{
875 struct revmap_entry *rev = kvm->arch.revmap;
876 unsigned long head, i, j;
877 unsigned long *hp;
878 int ret = 1;
879
880 if (*rmapp & KVMPPC_RMAP_REFERENCED)
881 return 1;
882
883 lock_rmap(rmapp);
884 if (*rmapp & KVMPPC_RMAP_REFERENCED)
885 goto out;
886
887 if (*rmapp & KVMPPC_RMAP_PRESENT) {
888 i = head = *rmapp & KVMPPC_RMAP_INDEX;
889 do {
890 hp = (unsigned long *)(kvm->arch.hpt_virt + (i << 4));
891 j = rev[i].forw;
892 if (be64_to_cpu(hp[1]) & HPTE_R_R)
893 goto out;
894 } while ((i = j) != head);
895 }
896 ret = 0;
897
898 out:
899 unlock_rmap(rmapp);
900 return ret;
901}
902
903int kvm_test_age_hva_hv(struct kvm *kvm, unsigned long hva)
904{
905 return kvm_handle_hva(kvm, hva, kvm_test_age_rmapp);
906}
907
908void kvm_set_spte_hva_hv(struct kvm *kvm, unsigned long hva, pte_t pte)
909{
910 kvm_handle_hva(kvm, hva, kvm_unmap_rmapp);
911}
912
913static int vcpus_running(struct kvm *kvm)
914{
915 return atomic_read(&kvm->arch.vcpus_running) != 0;
916}
917
918
919
920
921
922static int kvm_test_clear_dirty_npages(struct kvm *kvm, unsigned long *rmapp)
923{
924 struct revmap_entry *rev = kvm->arch.revmap;
925 unsigned long head, i, j;
926 unsigned long n;
927 unsigned long v, r;
928 __be64 *hptep;
929 int npages_dirty = 0;
930
931 retry:
932 lock_rmap(rmapp);
933 if (*rmapp & KVMPPC_RMAP_CHANGED) {
934 *rmapp &= ~KVMPPC_RMAP_CHANGED;
935 npages_dirty = 1;
936 }
937 if (!(*rmapp & KVMPPC_RMAP_PRESENT)) {
938 unlock_rmap(rmapp);
939 return npages_dirty;
940 }
941
942 i = head = *rmapp & KVMPPC_RMAP_INDEX;
943 do {
944 unsigned long hptep1;
945 hptep = (__be64 *) (kvm->arch.hpt_virt + (i << 4));
946 j = rev[i].forw;
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962 hptep1 = be64_to_cpu(hptep[1]);
963 if (!(hptep1 & HPTE_R_C) &&
964 (!hpte_is_writable(hptep1) || vcpus_running(kvm)))
965 continue;
966
967 if (!try_lock_hpte(hptep, HPTE_V_HVLOCK)) {
968
969 unlock_rmap(rmapp);
970 while (hptep[0] & cpu_to_be64(HPTE_V_HVLOCK))
971 cpu_relax();
972 goto retry;
973 }
974
975
976 if (!(hptep[0] & cpu_to_be64(HPTE_V_VALID))) {
977
978 hptep[0] &= ~cpu_to_be64(HPTE_V_HVLOCK);
979 continue;
980 }
981
982
983 hptep[0] |= cpu_to_be64(HPTE_V_ABSENT);
984 kvmppc_invalidate_hpte(kvm, hptep, i);
985 v = be64_to_cpu(hptep[0]);
986 r = be64_to_cpu(hptep[1]);
987 if (r & HPTE_R_C) {
988 hptep[1] = cpu_to_be64(r & ~HPTE_R_C);
989 if (!(rev[i].guest_rpte & HPTE_R_C)) {
990 rev[i].guest_rpte |= HPTE_R_C;
991 note_hpte_modification(kvm, &rev[i]);
992 }
993 n = hpte_page_size(v, r);
994 n = (n + PAGE_SIZE - 1) >> PAGE_SHIFT;
995 if (n > npages_dirty)
996 npages_dirty = n;
997 eieio();
998 }
999 v &= ~(HPTE_V_ABSENT | HPTE_V_HVLOCK);
1000 v |= HPTE_V_VALID;
1001 hptep[0] = cpu_to_be64(v);
1002 } while ((i = j) != head);
1003
1004 unlock_rmap(rmapp);
1005 return npages_dirty;
1006}
1007
1008static void harvest_vpa_dirty(struct kvmppc_vpa *vpa,
1009 struct kvm_memory_slot *memslot,
1010 unsigned long *map)
1011{
1012 unsigned long gfn;
1013
1014 if (!vpa->dirty || !vpa->pinned_addr)
1015 return;
1016 gfn = vpa->gpa >> PAGE_SHIFT;
1017 if (gfn < memslot->base_gfn ||
1018 gfn >= memslot->base_gfn + memslot->npages)
1019 return;
1020
1021 vpa->dirty = false;
1022 if (map)
1023 __set_bit_le(gfn - memslot->base_gfn, map);
1024}
1025
1026long kvmppc_hv_get_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot,
1027 unsigned long *map)
1028{
1029 unsigned long i, j;
1030 unsigned long *rmapp;
1031 struct kvm_vcpu *vcpu;
1032
1033 preempt_disable();
1034 rmapp = memslot->arch.rmap;
1035 for (i = 0; i < memslot->npages; ++i) {
1036 int npages = kvm_test_clear_dirty_npages(kvm, rmapp);
1037
1038
1039
1040
1041
1042 if (npages && map)
1043 for (j = i; npages; ++j, --npages)
1044 __set_bit_le(j, map);
1045 ++rmapp;
1046 }
1047
1048
1049
1050 kvm_for_each_vcpu(i, vcpu, kvm) {
1051 spin_lock(&vcpu->arch.vpa_update_lock);
1052 harvest_vpa_dirty(&vcpu->arch.vpa, memslot, map);
1053 harvest_vpa_dirty(&vcpu->arch.dtl, memslot, map);
1054 spin_unlock(&vcpu->arch.vpa_update_lock);
1055 }
1056 preempt_enable();
1057 return 0;
1058}
1059
1060void *kvmppc_pin_guest_page(struct kvm *kvm, unsigned long gpa,
1061 unsigned long *nb_ret)
1062{
1063 struct kvm_memory_slot *memslot;
1064 unsigned long gfn = gpa >> PAGE_SHIFT;
1065 struct page *page, *pages[1];
1066 int npages;
1067 unsigned long hva, offset;
1068 int srcu_idx;
1069
1070 srcu_idx = srcu_read_lock(&kvm->srcu);
1071 memslot = gfn_to_memslot(kvm, gfn);
1072 if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID))
1073 goto err;
1074 hva = gfn_to_hva_memslot(memslot, gfn);
1075 npages = get_user_pages_fast(hva, 1, 1, pages);
1076 if (npages < 1)
1077 goto err;
1078 page = pages[0];
1079 srcu_read_unlock(&kvm->srcu, srcu_idx);
1080
1081 offset = gpa & (PAGE_SIZE - 1);
1082 if (nb_ret)
1083 *nb_ret = PAGE_SIZE - offset;
1084 return page_address(page) + offset;
1085
1086 err:
1087 srcu_read_unlock(&kvm->srcu, srcu_idx);
1088 return NULL;
1089}
1090
1091void kvmppc_unpin_guest_page(struct kvm *kvm, void *va, unsigned long gpa,
1092 bool dirty)
1093{
1094 struct page *page = virt_to_page(va);
1095 struct kvm_memory_slot *memslot;
1096 unsigned long gfn;
1097 unsigned long *rmap;
1098 int srcu_idx;
1099
1100 put_page(page);
1101
1102 if (!dirty)
1103 return;
1104
1105
1106 gfn = gpa >> PAGE_SHIFT;
1107 srcu_idx = srcu_read_lock(&kvm->srcu);
1108 memslot = gfn_to_memslot(kvm, gfn);
1109 if (memslot) {
1110 rmap = &memslot->arch.rmap[gfn - memslot->base_gfn];
1111 lock_rmap(rmap);
1112 *rmap |= KVMPPC_RMAP_CHANGED;
1113 unlock_rmap(rmap);
1114 }
1115 srcu_read_unlock(&kvm->srcu, srcu_idx);
1116}
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134struct kvm_htab_ctx {
1135 unsigned long index;
1136 unsigned long flags;
1137 struct kvm *kvm;
1138 int first_pass;
1139};
1140
1141#define HPTE_SIZE (2 * sizeof(unsigned long))
1142
1143
1144
1145
1146
1147static int hpte_dirty(struct revmap_entry *revp, __be64 *hptp)
1148{
1149 unsigned long rcbits_unset;
1150
1151 if (revp->guest_rpte & HPTE_GR_MODIFIED)
1152 return 1;
1153
1154
1155 rcbits_unset = ~revp->guest_rpte & (HPTE_R_R | HPTE_R_C);
1156 if ((be64_to_cpu(hptp[0]) & HPTE_V_VALID) &&
1157 (be64_to_cpu(hptp[1]) & rcbits_unset))
1158 return 1;
1159
1160 return 0;
1161}
1162
1163static long record_hpte(unsigned long flags, __be64 *hptp,
1164 unsigned long *hpte, struct revmap_entry *revp,
1165 int want_valid, int first_pass)
1166{
1167 unsigned long v, r;
1168 unsigned long rcbits_unset;
1169 int ok = 1;
1170 int valid, dirty;
1171
1172
1173 dirty = hpte_dirty(revp, hptp);
1174 if (!first_pass && !dirty)
1175 return 0;
1176
1177 valid = 0;
1178 if (be64_to_cpu(hptp[0]) & (HPTE_V_VALID | HPTE_V_ABSENT)) {
1179 valid = 1;
1180 if ((flags & KVM_GET_HTAB_BOLTED_ONLY) &&
1181 !(be64_to_cpu(hptp[0]) & HPTE_V_BOLTED))
1182 valid = 0;
1183 }
1184 if (valid != want_valid)
1185 return 0;
1186
1187 v = r = 0;
1188 if (valid || dirty) {
1189
1190 preempt_disable();
1191 while (!try_lock_hpte(hptp, HPTE_V_HVLOCK))
1192 cpu_relax();
1193 v = be64_to_cpu(hptp[0]);
1194
1195
1196 valid = !!(v & HPTE_V_VALID);
1197 dirty = !!(revp->guest_rpte & HPTE_GR_MODIFIED);
1198
1199
1200 rcbits_unset = ~revp->guest_rpte & (HPTE_R_R | HPTE_R_C);
1201 if (valid && (rcbits_unset & be64_to_cpu(hptp[1]))) {
1202 revp->guest_rpte |= (be64_to_cpu(hptp[1]) &
1203 (HPTE_R_R | HPTE_R_C)) | HPTE_GR_MODIFIED;
1204 dirty = 1;
1205 }
1206
1207 if (v & HPTE_V_ABSENT) {
1208 v &= ~HPTE_V_ABSENT;
1209 v |= HPTE_V_VALID;
1210 valid = 1;
1211 }
1212 if ((flags & KVM_GET_HTAB_BOLTED_ONLY) && !(v & HPTE_V_BOLTED))
1213 valid = 0;
1214
1215 r = revp->guest_rpte;
1216
1217 if (valid == want_valid && dirty) {
1218 r &= ~HPTE_GR_MODIFIED;
1219 revp->guest_rpte = r;
1220 }
1221 asm volatile(PPC_RELEASE_BARRIER "" : : : "memory");
1222 hptp[0] &= ~cpu_to_be64(HPTE_V_HVLOCK);
1223 preempt_enable();
1224 if (!(valid == want_valid && (first_pass || dirty)))
1225 ok = 0;
1226 }
1227 hpte[0] = cpu_to_be64(v);
1228 hpte[1] = cpu_to_be64(r);
1229 return ok;
1230}
1231
1232static ssize_t kvm_htab_read(struct file *file, char __user *buf,
1233 size_t count, loff_t *ppos)
1234{
1235 struct kvm_htab_ctx *ctx = file->private_data;
1236 struct kvm *kvm = ctx->kvm;
1237 struct kvm_get_htab_header hdr;
1238 __be64 *hptp;
1239 struct revmap_entry *revp;
1240 unsigned long i, nb, nw;
1241 unsigned long __user *lbuf;
1242 struct kvm_get_htab_header __user *hptr;
1243 unsigned long flags;
1244 int first_pass;
1245 unsigned long hpte[2];
1246
1247 if (!access_ok(VERIFY_WRITE, buf, count))
1248 return -EFAULT;
1249
1250 first_pass = ctx->first_pass;
1251 flags = ctx->flags;
1252
1253 i = ctx->index;
1254 hptp = (__be64 *)(kvm->arch.hpt_virt + (i * HPTE_SIZE));
1255 revp = kvm->arch.revmap + i;
1256 lbuf = (unsigned long __user *)buf;
1257
1258 nb = 0;
1259 while (nb + sizeof(hdr) + HPTE_SIZE < count) {
1260
1261 hptr = (struct kvm_get_htab_header __user *)buf;
1262 hdr.n_valid = 0;
1263 hdr.n_invalid = 0;
1264 nw = nb;
1265 nb += sizeof(hdr);
1266 lbuf = (unsigned long __user *)(buf + sizeof(hdr));
1267
1268
1269 if (!first_pass) {
1270 while (i < kvm->arch.hpt_npte &&
1271 !hpte_dirty(revp, hptp)) {
1272 ++i;
1273 hptp += 2;
1274 ++revp;
1275 }
1276 }
1277 hdr.index = i;
1278
1279
1280 while (i < kvm->arch.hpt_npte &&
1281 hdr.n_valid < 0xffff &&
1282 nb + HPTE_SIZE < count &&
1283 record_hpte(flags, hptp, hpte, revp, 1, first_pass)) {
1284
1285 ++hdr.n_valid;
1286 if (__put_user(hpte[0], lbuf) ||
1287 __put_user(hpte[1], lbuf + 1))
1288 return -EFAULT;
1289 nb += HPTE_SIZE;
1290 lbuf += 2;
1291 ++i;
1292 hptp += 2;
1293 ++revp;
1294 }
1295
1296 while (i < kvm->arch.hpt_npte &&
1297 hdr.n_invalid < 0xffff &&
1298 record_hpte(flags, hptp, hpte, revp, 0, first_pass)) {
1299
1300 ++hdr.n_invalid;
1301 ++i;
1302 hptp += 2;
1303 ++revp;
1304 }
1305
1306 if (hdr.n_valid || hdr.n_invalid) {
1307
1308 if (__copy_to_user(hptr, &hdr, sizeof(hdr)))
1309 return -EFAULT;
1310 nw = nb;
1311 buf = (char __user *)lbuf;
1312 } else {
1313 nb = nw;
1314 }
1315
1316
1317 if (i >= kvm->arch.hpt_npte) {
1318 i = 0;
1319 ctx->first_pass = 0;
1320 break;
1321 }
1322 }
1323
1324 ctx->index = i;
1325
1326 return nb;
1327}
1328
1329static ssize_t kvm_htab_write(struct file *file, const char __user *buf,
1330 size_t count, loff_t *ppos)
1331{
1332 struct kvm_htab_ctx *ctx = file->private_data;
1333 struct kvm *kvm = ctx->kvm;
1334 struct kvm_get_htab_header hdr;
1335 unsigned long i, j;
1336 unsigned long v, r;
1337 unsigned long __user *lbuf;
1338 __be64 *hptp;
1339 unsigned long tmp[2];
1340 ssize_t nb;
1341 long int err, ret;
1342 int rma_setup;
1343
1344 if (!access_ok(VERIFY_READ, buf, count))
1345 return -EFAULT;
1346
1347
1348 mutex_lock(&kvm->lock);
1349 rma_setup = kvm->arch.rma_setup_done;
1350 if (rma_setup) {
1351 kvm->arch.rma_setup_done = 0;
1352
1353 smp_mb();
1354 if (atomic_read(&kvm->arch.vcpus_running)) {
1355 kvm->arch.rma_setup_done = 1;
1356 mutex_unlock(&kvm->lock);
1357 return -EBUSY;
1358 }
1359 }
1360
1361 err = 0;
1362 for (nb = 0; nb + sizeof(hdr) <= count; ) {
1363 err = -EFAULT;
1364 if (__copy_from_user(&hdr, buf, sizeof(hdr)))
1365 break;
1366
1367 err = 0;
1368 if (nb + hdr.n_valid * HPTE_SIZE > count)
1369 break;
1370
1371 nb += sizeof(hdr);
1372 buf += sizeof(hdr);
1373
1374 err = -EINVAL;
1375 i = hdr.index;
1376 if (i >= kvm->arch.hpt_npte ||
1377 i + hdr.n_valid + hdr.n_invalid > kvm->arch.hpt_npte)
1378 break;
1379
1380 hptp = (__be64 *)(kvm->arch.hpt_virt + (i * HPTE_SIZE));
1381 lbuf = (unsigned long __user *)buf;
1382 for (j = 0; j < hdr.n_valid; ++j) {
1383 __be64 hpte_v;
1384 __be64 hpte_r;
1385
1386 err = -EFAULT;
1387 if (__get_user(hpte_v, lbuf) ||
1388 __get_user(hpte_r, lbuf + 1))
1389 goto out;
1390 v = be64_to_cpu(hpte_v);
1391 r = be64_to_cpu(hpte_r);
1392 err = -EINVAL;
1393 if (!(v & HPTE_V_VALID))
1394 goto out;
1395 lbuf += 2;
1396 nb += HPTE_SIZE;
1397
1398 if (be64_to_cpu(hptp[0]) & (HPTE_V_VALID | HPTE_V_ABSENT))
1399 kvmppc_do_h_remove(kvm, 0, i, 0, tmp);
1400 err = -EIO;
1401 ret = kvmppc_virtmode_do_h_enter(kvm, H_EXACT, i, v, r,
1402 tmp);
1403 if (ret != H_SUCCESS) {
1404 pr_err("kvm_htab_write ret %ld i=%ld v=%lx "
1405 "r=%lx\n", ret, i, v, r);
1406 goto out;
1407 }
1408 if (!rma_setup && is_vrma_hpte(v)) {
1409 unsigned long psize = hpte_base_page_size(v, r);
1410 unsigned long senc = slb_pgsize_encoding(psize);
1411 unsigned long lpcr;
1412
1413 kvm->arch.vrma_slb_v = senc | SLB_VSID_B_1T |
1414 (VRMA_VSID << SLB_VSID_SHIFT_1T);
1415 lpcr = senc << (LPCR_VRMASD_SH - 4);
1416 kvmppc_update_lpcr(kvm, lpcr, LPCR_VRMASD);
1417 rma_setup = 1;
1418 }
1419 ++i;
1420 hptp += 2;
1421 }
1422
1423 for (j = 0; j < hdr.n_invalid; ++j) {
1424 if (be64_to_cpu(hptp[0]) & (HPTE_V_VALID | HPTE_V_ABSENT))
1425 kvmppc_do_h_remove(kvm, 0, i, 0, tmp);
1426 ++i;
1427 hptp += 2;
1428 }
1429 err = 0;
1430 }
1431
1432 out:
1433
1434 smp_wmb();
1435 kvm->arch.rma_setup_done = rma_setup;
1436 mutex_unlock(&kvm->lock);
1437
1438 if (err)
1439 return err;
1440 return nb;
1441}
1442
1443static int kvm_htab_release(struct inode *inode, struct file *filp)
1444{
1445 struct kvm_htab_ctx *ctx = filp->private_data;
1446
1447 filp->private_data = NULL;
1448 if (!(ctx->flags & KVM_GET_HTAB_WRITE))
1449 atomic_dec(&ctx->kvm->arch.hpte_mod_interest);
1450 kvm_put_kvm(ctx->kvm);
1451 kfree(ctx);
1452 return 0;
1453}
1454
1455static const struct file_operations kvm_htab_fops = {
1456 .read = kvm_htab_read,
1457 .write = kvm_htab_write,
1458 .llseek = default_llseek,
1459 .release = kvm_htab_release,
1460};
1461
1462int kvm_vm_ioctl_get_htab_fd(struct kvm *kvm, struct kvm_get_htab_fd *ghf)
1463{
1464 int ret;
1465 struct kvm_htab_ctx *ctx;
1466 int rwflag;
1467
1468
1469 if (ghf->flags & ~(KVM_GET_HTAB_BOLTED_ONLY | KVM_GET_HTAB_WRITE))
1470 return -EINVAL;
1471 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
1472 if (!ctx)
1473 return -ENOMEM;
1474 kvm_get_kvm(kvm);
1475 ctx->kvm = kvm;
1476 ctx->index = ghf->start_index;
1477 ctx->flags = ghf->flags;
1478 ctx->first_pass = 1;
1479
1480 rwflag = (ghf->flags & KVM_GET_HTAB_WRITE) ? O_WRONLY : O_RDONLY;
1481 ret = anon_inode_getfd("kvm-htab", &kvm_htab_fops, ctx, rwflag | O_CLOEXEC);
1482 if (ret < 0) {
1483 kvm_put_kvm(kvm);
1484 return ret;
1485 }
1486
1487 if (rwflag == O_RDONLY) {
1488 mutex_lock(&kvm->slots_lock);
1489 atomic_inc(&kvm->arch.hpte_mod_interest);
1490
1491 synchronize_srcu_expedited(&kvm->srcu);
1492 mutex_unlock(&kvm->slots_lock);
1493 }
1494
1495 return ret;
1496}
1497
1498void kvmppc_mmu_book3s_hv_init(struct kvm_vcpu *vcpu)
1499{
1500 struct kvmppc_mmu *mmu = &vcpu->arch.mmu;
1501
1502 vcpu->arch.slb_nr = 32;
1503
1504 mmu->xlate = kvmppc_mmu_book3s_64_hv_xlate;
1505 mmu->reset_msr = kvmppc_mmu_book3s_64_hv_reset_msr;
1506
1507 vcpu->arch.hflags |= BOOK3S_HFLAG_SLB;
1508}
1509