linux/arch/powerpc/kvm/book3s_64_mmu_hv.c
<<
>>
Prefs
   1/*
   2 * This program is free software; you can redistribute it and/or modify
   3 * it under the terms of the GNU General Public License, version 2, as
   4 * published by the Free Software Foundation.
   5 *
   6 * This program is distributed in the hope that it will be useful,
   7 * but WITHOUT ANY WARRANTY; without even the implied warranty of
   8 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   9 * GNU General Public License for more details.
  10 *
  11 * You should have received a copy of the GNU General Public License
  12 * along with this program; if not, write to the Free Software
  13 * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA.
  14 *
  15 * Copyright 2010 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
  16 */
  17
  18#include <linux/types.h>
  19#include <linux/string.h>
  20#include <linux/kvm.h>
  21#include <linux/kvm_host.h>
  22#include <linux/highmem.h>
  23#include <linux/gfp.h>
  24#include <linux/slab.h>
  25#include <linux/hugetlb.h>
  26#include <linux/vmalloc.h>
  27#include <linux/srcu.h>
  28#include <linux/anon_inodes.h>
  29#include <linux/file.h>
  30
  31#include <asm/tlbflush.h>
  32#include <asm/kvm_ppc.h>
  33#include <asm/kvm_book3s.h>
  34#include <asm/mmu-hash64.h>
  35#include <asm/hvcall.h>
  36#include <asm/synch.h>
  37#include <asm/ppc-opcode.h>
  38#include <asm/cputable.h>
  39
  40#include "trace_hv.h"
  41
  42/* Power architecture requires HPT is at least 256kB */
  43#define PPC_MIN_HPT_ORDER       18
  44
  45static long kvmppc_virtmode_do_h_enter(struct kvm *kvm, unsigned long flags,
  46                                long pte_index, unsigned long pteh,
  47                                unsigned long ptel, unsigned long *pte_idx_ret);
  48static void kvmppc_rmap_reset(struct kvm *kvm);
  49
  50long kvmppc_alloc_hpt(struct kvm *kvm, u32 *htab_orderp)
  51{
  52        unsigned long hpt = 0;
  53        struct revmap_entry *rev;
  54        struct page *page = NULL;
  55        long order = KVM_DEFAULT_HPT_ORDER;
  56
  57        if (htab_orderp) {
  58                order = *htab_orderp;
  59                if (order < PPC_MIN_HPT_ORDER)
  60                        order = PPC_MIN_HPT_ORDER;
  61        }
  62
  63        kvm->arch.hpt_cma_alloc = 0;
  64        page = kvm_alloc_hpt(1ul << (order - PAGE_SHIFT));
  65        if (page) {
  66                hpt = (unsigned long)pfn_to_kaddr(page_to_pfn(page));
  67                memset((void *)hpt, 0, (1ul << order));
  68                kvm->arch.hpt_cma_alloc = 1;
  69        }
  70
  71        /* Lastly try successively smaller sizes from the page allocator */
  72        while (!hpt && order > PPC_MIN_HPT_ORDER) {
  73                hpt = __get_free_pages(GFP_KERNEL|__GFP_ZERO|__GFP_REPEAT|
  74                                       __GFP_NOWARN, order - PAGE_SHIFT);
  75                if (!hpt)
  76                        --order;
  77        }
  78
  79        if (!hpt)
  80                return -ENOMEM;
  81
  82        kvm->arch.hpt_virt = hpt;
  83        kvm->arch.hpt_order = order;
  84        /* HPTEs are 2**4 bytes long */
  85        kvm->arch.hpt_npte = 1ul << (order - 4);
  86        /* 128 (2**7) bytes in each HPTEG */
  87        kvm->arch.hpt_mask = (1ul << (order - 7)) - 1;
  88
  89        /* Allocate reverse map array */
  90        rev = vmalloc(sizeof(struct revmap_entry) * kvm->arch.hpt_npte);
  91        if (!rev) {
  92                pr_err("kvmppc_alloc_hpt: Couldn't alloc reverse map array\n");
  93                goto out_freehpt;
  94        }
  95        kvm->arch.revmap = rev;
  96        kvm->arch.sdr1 = __pa(hpt) | (order - 18);
  97
  98        pr_info("KVM guest htab at %lx (order %ld), LPID %x\n",
  99                hpt, order, kvm->arch.lpid);
 100
 101        if (htab_orderp)
 102                *htab_orderp = order;
 103        return 0;
 104
 105 out_freehpt:
 106        if (kvm->arch.hpt_cma_alloc)
 107                kvm_release_hpt(page, 1 << (order - PAGE_SHIFT));
 108        else
 109                free_pages(hpt, order - PAGE_SHIFT);
 110        return -ENOMEM;
 111}
 112
 113long kvmppc_alloc_reset_hpt(struct kvm *kvm, u32 *htab_orderp)
 114{
 115        long err = -EBUSY;
 116        long order;
 117
 118        mutex_lock(&kvm->lock);
 119        if (kvm->arch.rma_setup_done) {
 120                kvm->arch.rma_setup_done = 0;
 121                /* order rma_setup_done vs. vcpus_running */
 122                smp_mb();
 123                if (atomic_read(&kvm->arch.vcpus_running)) {
 124                        kvm->arch.rma_setup_done = 1;
 125                        goto out;
 126                }
 127        }
 128        if (kvm->arch.hpt_virt) {
 129                order = kvm->arch.hpt_order;
 130                /* Set the entire HPT to 0, i.e. invalid HPTEs */
 131                memset((void *)kvm->arch.hpt_virt, 0, 1ul << order);
 132                /*
 133                 * Reset all the reverse-mapping chains for all memslots
 134                 */
 135                kvmppc_rmap_reset(kvm);
 136                /* Ensure that each vcpu will flush its TLB on next entry. */
 137                cpumask_setall(&kvm->arch.need_tlb_flush);
 138                *htab_orderp = order;
 139                err = 0;
 140        } else {
 141                err = kvmppc_alloc_hpt(kvm, htab_orderp);
 142                order = *htab_orderp;
 143        }
 144 out:
 145        mutex_unlock(&kvm->lock);
 146        return err;
 147}
 148
 149void kvmppc_free_hpt(struct kvm *kvm)
 150{
 151        kvmppc_free_lpid(kvm->arch.lpid);
 152        vfree(kvm->arch.revmap);
 153        if (kvm->arch.hpt_cma_alloc)
 154                kvm_release_hpt(virt_to_page(kvm->arch.hpt_virt),
 155                                1 << (kvm->arch.hpt_order - PAGE_SHIFT));
 156        else
 157                free_pages(kvm->arch.hpt_virt,
 158                           kvm->arch.hpt_order - PAGE_SHIFT);
 159}
 160
 161/* Bits in first HPTE dword for pagesize 4k, 64k or 16M */
 162static inline unsigned long hpte0_pgsize_encoding(unsigned long pgsize)
 163{
 164        return (pgsize > 0x1000) ? HPTE_V_LARGE : 0;
 165}
 166
 167/* Bits in second HPTE dword for pagesize 4k, 64k or 16M */
 168static inline unsigned long hpte1_pgsize_encoding(unsigned long pgsize)
 169{
 170        return (pgsize == 0x10000) ? 0x1000 : 0;
 171}
 172
 173void kvmppc_map_vrma(struct kvm_vcpu *vcpu, struct kvm_memory_slot *memslot,
 174                     unsigned long porder)
 175{
 176        unsigned long i;
 177        unsigned long npages;
 178        unsigned long hp_v, hp_r;
 179        unsigned long addr, hash;
 180        unsigned long psize;
 181        unsigned long hp0, hp1;
 182        unsigned long idx_ret;
 183        long ret;
 184        struct kvm *kvm = vcpu->kvm;
 185
 186        psize = 1ul << porder;
 187        npages = memslot->npages >> (porder - PAGE_SHIFT);
 188
 189        /* VRMA can't be > 1TB */
 190        if (npages > 1ul << (40 - porder))
 191                npages = 1ul << (40 - porder);
 192        /* Can't use more than 1 HPTE per HPTEG */
 193        if (npages > kvm->arch.hpt_mask + 1)
 194                npages = kvm->arch.hpt_mask + 1;
 195
 196        hp0 = HPTE_V_1TB_SEG | (VRMA_VSID << (40 - 16)) |
 197                HPTE_V_BOLTED | hpte0_pgsize_encoding(psize);
 198        hp1 = hpte1_pgsize_encoding(psize) |
 199                HPTE_R_R | HPTE_R_C | HPTE_R_M | PP_RWXX;
 200
 201        for (i = 0; i < npages; ++i) {
 202                addr = i << porder;
 203                /* can't use hpt_hash since va > 64 bits */
 204                hash = (i ^ (VRMA_VSID ^ (VRMA_VSID << 25))) & kvm->arch.hpt_mask;
 205                /*
 206                 * We assume that the hash table is empty and no
 207                 * vcpus are using it at this stage.  Since we create
 208                 * at most one HPTE per HPTEG, we just assume entry 7
 209                 * is available and use it.
 210                 */
 211                hash = (hash << 3) + 7;
 212                hp_v = hp0 | ((addr >> 16) & ~0x7fUL);
 213                hp_r = hp1 | addr;
 214                ret = kvmppc_virtmode_do_h_enter(kvm, H_EXACT, hash, hp_v, hp_r,
 215                                                 &idx_ret);
 216                if (ret != H_SUCCESS) {
 217                        pr_err("KVM: map_vrma at %lx failed, ret=%ld\n",
 218                               addr, ret);
 219                        break;
 220                }
 221        }
 222}
 223
 224int kvmppc_mmu_hv_init(void)
 225{
 226        unsigned long host_lpid, rsvd_lpid;
 227
 228        if (!cpu_has_feature(CPU_FTR_HVMODE))
 229                return -EINVAL;
 230
 231        /* POWER7 has 10-bit LPIDs (12-bit in POWER8) */
 232        host_lpid = mfspr(SPRN_LPID);
 233        rsvd_lpid = LPID_RSVD;
 234
 235        kvmppc_init_lpid(rsvd_lpid + 1);
 236
 237        kvmppc_claim_lpid(host_lpid);
 238        /* rsvd_lpid is reserved for use in partition switching */
 239        kvmppc_claim_lpid(rsvd_lpid);
 240
 241        return 0;
 242}
 243
 244static void kvmppc_mmu_book3s_64_hv_reset_msr(struct kvm_vcpu *vcpu)
 245{
 246        unsigned long msr = vcpu->arch.intr_msr;
 247
 248        /* If transactional, change to suspend mode on IRQ delivery */
 249        if (MSR_TM_TRANSACTIONAL(vcpu->arch.shregs.msr))
 250                msr |= MSR_TS_S;
 251        else
 252                msr |= vcpu->arch.shregs.msr & MSR_TS_MASK;
 253        kvmppc_set_msr(vcpu, msr);
 254}
 255
 256long kvmppc_virtmode_do_h_enter(struct kvm *kvm, unsigned long flags,
 257                                long pte_index, unsigned long pteh,
 258                                unsigned long ptel, unsigned long *pte_idx_ret)
 259{
 260        long ret;
 261
 262        /* Protect linux PTE lookup from page table destruction */
 263        rcu_read_lock_sched();  /* this disables preemption too */
 264        ret = kvmppc_do_h_enter(kvm, flags, pte_index, pteh, ptel,
 265                                current->mm->pgd, false, pte_idx_ret);
 266        rcu_read_unlock_sched();
 267        if (ret == H_TOO_HARD) {
 268                /* this can't happen */
 269                pr_err("KVM: Oops, kvmppc_h_enter returned too hard!\n");
 270                ret = H_RESOURCE;       /* or something */
 271        }
 272        return ret;
 273
 274}
 275
 276static struct kvmppc_slb *kvmppc_mmu_book3s_hv_find_slbe(struct kvm_vcpu *vcpu,
 277                                                         gva_t eaddr)
 278{
 279        u64 mask;
 280        int i;
 281
 282        for (i = 0; i < vcpu->arch.slb_nr; i++) {
 283                if (!(vcpu->arch.slb[i].orige & SLB_ESID_V))
 284                        continue;
 285
 286                if (vcpu->arch.slb[i].origv & SLB_VSID_B_1T)
 287                        mask = ESID_MASK_1T;
 288                else
 289                        mask = ESID_MASK;
 290
 291                if (((vcpu->arch.slb[i].orige ^ eaddr) & mask) == 0)
 292                        return &vcpu->arch.slb[i];
 293        }
 294        return NULL;
 295}
 296
 297static unsigned long kvmppc_mmu_get_real_addr(unsigned long v, unsigned long r,
 298                        unsigned long ea)
 299{
 300        unsigned long ra_mask;
 301
 302        ra_mask = hpte_page_size(v, r) - 1;
 303        return (r & HPTE_R_RPN & ~ra_mask) | (ea & ra_mask);
 304}
 305
 306static int kvmppc_mmu_book3s_64_hv_xlate(struct kvm_vcpu *vcpu, gva_t eaddr,
 307                        struct kvmppc_pte *gpte, bool data, bool iswrite)
 308{
 309        struct kvm *kvm = vcpu->kvm;
 310        struct kvmppc_slb *slbe;
 311        unsigned long slb_v;
 312        unsigned long pp, key;
 313        unsigned long v, gr;
 314        __be64 *hptep;
 315        int index;
 316        int virtmode = vcpu->arch.shregs.msr & (data ? MSR_DR : MSR_IR);
 317
 318        /* Get SLB entry */
 319        if (virtmode) {
 320                slbe = kvmppc_mmu_book3s_hv_find_slbe(vcpu, eaddr);
 321                if (!slbe)
 322                        return -EINVAL;
 323                slb_v = slbe->origv;
 324        } else {
 325                /* real mode access */
 326                slb_v = vcpu->kvm->arch.vrma_slb_v;
 327        }
 328
 329        preempt_disable();
 330        /* Find the HPTE in the hash table */
 331        index = kvmppc_hv_find_lock_hpte(kvm, eaddr, slb_v,
 332                                         HPTE_V_VALID | HPTE_V_ABSENT);
 333        if (index < 0) {
 334                preempt_enable();
 335                return -ENOENT;
 336        }
 337        hptep = (__be64 *)(kvm->arch.hpt_virt + (index << 4));
 338        v = be64_to_cpu(hptep[0]) & ~HPTE_V_HVLOCK;
 339        gr = kvm->arch.revmap[index].guest_rpte;
 340
 341        /* Unlock the HPTE */
 342        asm volatile("lwsync" : : : "memory");
 343        hptep[0] = cpu_to_be64(v);
 344        preempt_enable();
 345
 346        gpte->eaddr = eaddr;
 347        gpte->vpage = ((v & HPTE_V_AVPN) << 4) | ((eaddr >> 12) & 0xfff);
 348
 349        /* Get PP bits and key for permission check */
 350        pp = gr & (HPTE_R_PP0 | HPTE_R_PP);
 351        key = (vcpu->arch.shregs.msr & MSR_PR) ? SLB_VSID_KP : SLB_VSID_KS;
 352        key &= slb_v;
 353
 354        /* Calculate permissions */
 355        gpte->may_read = hpte_read_permission(pp, key);
 356        gpte->may_write = hpte_write_permission(pp, key);
 357        gpte->may_execute = gpte->may_read && !(gr & (HPTE_R_N | HPTE_R_G));
 358
 359        /* Storage key permission check for POWER7 */
 360        if (data && virtmode) {
 361                int amrfield = hpte_get_skey_perm(gr, vcpu->arch.amr);
 362                if (amrfield & 1)
 363                        gpte->may_read = 0;
 364                if (amrfield & 2)
 365                        gpte->may_write = 0;
 366        }
 367
 368        /* Get the guest physical address */
 369        gpte->raddr = kvmppc_mmu_get_real_addr(v, gr, eaddr);
 370        return 0;
 371}
 372
 373/*
 374 * Quick test for whether an instruction is a load or a store.
 375 * If the instruction is a load or a store, then this will indicate
 376 * which it is, at least on server processors.  (Embedded processors
 377 * have some external PID instructions that don't follow the rule
 378 * embodied here.)  If the instruction isn't a load or store, then
 379 * this doesn't return anything useful.
 380 */
 381static int instruction_is_store(unsigned int instr)
 382{
 383        unsigned int mask;
 384
 385        mask = 0x10000000;
 386        if ((instr & 0xfc000000) == 0x7c000000)
 387                mask = 0x100;           /* major opcode 31 */
 388        return (instr & mask) != 0;
 389}
 390
 391static int kvmppc_hv_emulate_mmio(struct kvm_run *run, struct kvm_vcpu *vcpu,
 392                                  unsigned long gpa, gva_t ea, int is_store)
 393{
 394        u32 last_inst;
 395
 396        /*
 397         * If we fail, we just return to the guest and try executing it again.
 398         */
 399        if (kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst) !=
 400                EMULATE_DONE)
 401                return RESUME_GUEST;
 402
 403        /*
 404         * WARNING: We do not know for sure whether the instruction we just
 405         * read from memory is the same that caused the fault in the first
 406         * place.  If the instruction we read is neither an load or a store,
 407         * then it can't access memory, so we don't need to worry about
 408         * enforcing access permissions.  So, assuming it is a load or
 409         * store, we just check that its direction (load or store) is
 410         * consistent with the original fault, since that's what we
 411         * checked the access permissions against.  If there is a mismatch
 412         * we just return and retry the instruction.
 413         */
 414
 415        if (instruction_is_store(last_inst) != !!is_store)
 416                return RESUME_GUEST;
 417
 418        /*
 419         * Emulated accesses are emulated by looking at the hash for
 420         * translation once, then performing the access later. The
 421         * translation could be invalidated in the meantime in which
 422         * point performing the subsequent memory access on the old
 423         * physical address could possibly be a security hole for the
 424         * guest (but not the host).
 425         *
 426         * This is less of an issue for MMIO stores since they aren't
 427         * globally visible. It could be an issue for MMIO loads to
 428         * a certain extent but we'll ignore it for now.
 429         */
 430
 431        vcpu->arch.paddr_accessed = gpa;
 432        vcpu->arch.vaddr_accessed = ea;
 433        return kvmppc_emulate_mmio(run, vcpu);
 434}
 435
 436int kvmppc_book3s_hv_page_fault(struct kvm_run *run, struct kvm_vcpu *vcpu,
 437                                unsigned long ea, unsigned long dsisr)
 438{
 439        struct kvm *kvm = vcpu->kvm;
 440        unsigned long hpte[3], r;
 441        __be64 *hptep;
 442        unsigned long mmu_seq, psize, pte_size;
 443        unsigned long gpa_base, gfn_base;
 444        unsigned long gpa, gfn, hva, pfn;
 445        struct kvm_memory_slot *memslot;
 446        unsigned long *rmap;
 447        struct revmap_entry *rev;
 448        struct page *page, *pages[1];
 449        long index, ret, npages;
 450        unsigned long is_io;
 451        unsigned int writing, write_ok;
 452        struct vm_area_struct *vma;
 453        unsigned long rcbits;
 454
 455        /*
 456         * Real-mode code has already searched the HPT and found the
 457         * entry we're interested in.  Lock the entry and check that
 458         * it hasn't changed.  If it has, just return and re-execute the
 459         * instruction.
 460         */
 461        if (ea != vcpu->arch.pgfault_addr)
 462                return RESUME_GUEST;
 463        index = vcpu->arch.pgfault_index;
 464        hptep = (__be64 *)(kvm->arch.hpt_virt + (index << 4));
 465        rev = &kvm->arch.revmap[index];
 466        preempt_disable();
 467        while (!try_lock_hpte(hptep, HPTE_V_HVLOCK))
 468                cpu_relax();
 469        hpte[0] = be64_to_cpu(hptep[0]) & ~HPTE_V_HVLOCK;
 470        hpte[1] = be64_to_cpu(hptep[1]);
 471        hpte[2] = r = rev->guest_rpte;
 472        asm volatile("lwsync" : : : "memory");
 473        hptep[0] = cpu_to_be64(hpte[0]);
 474        preempt_enable();
 475
 476        if (hpte[0] != vcpu->arch.pgfault_hpte[0] ||
 477            hpte[1] != vcpu->arch.pgfault_hpte[1])
 478                return RESUME_GUEST;
 479
 480        /* Translate the logical address and get the page */
 481        psize = hpte_page_size(hpte[0], r);
 482        gpa_base = r & HPTE_R_RPN & ~(psize - 1);
 483        gfn_base = gpa_base >> PAGE_SHIFT;
 484        gpa = gpa_base | (ea & (psize - 1));
 485        gfn = gpa >> PAGE_SHIFT;
 486        memslot = gfn_to_memslot(kvm, gfn);
 487
 488        trace_kvm_page_fault_enter(vcpu, hpte, memslot, ea, dsisr);
 489
 490        /* No memslot means it's an emulated MMIO region */
 491        if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID))
 492                return kvmppc_hv_emulate_mmio(run, vcpu, gpa, ea,
 493                                              dsisr & DSISR_ISSTORE);
 494
 495        /*
 496         * This should never happen, because of the slot_is_aligned()
 497         * check in kvmppc_do_h_enter().
 498         */
 499        if (gfn_base < memslot->base_gfn)
 500                return -EFAULT;
 501
 502        /* used to check for invalidations in progress */
 503        mmu_seq = kvm->mmu_notifier_seq;
 504        smp_rmb();
 505
 506        ret = -EFAULT;
 507        is_io = 0;
 508        pfn = 0;
 509        page = NULL;
 510        pte_size = PAGE_SIZE;
 511        writing = (dsisr & DSISR_ISSTORE) != 0;
 512        /* If writing != 0, then the HPTE must allow writing, if we get here */
 513        write_ok = writing;
 514        hva = gfn_to_hva_memslot(memslot, gfn);
 515        npages = get_user_pages_fast(hva, 1, writing, pages);
 516        if (npages < 1) {
 517                /* Check if it's an I/O mapping */
 518                down_read(&current->mm->mmap_sem);
 519                vma = find_vma(current->mm, hva);
 520                if (vma && vma->vm_start <= hva && hva + psize <= vma->vm_end &&
 521                    (vma->vm_flags & VM_PFNMAP)) {
 522                        pfn = vma->vm_pgoff +
 523                                ((hva - vma->vm_start) >> PAGE_SHIFT);
 524                        pte_size = psize;
 525                        is_io = hpte_cache_bits(pgprot_val(vma->vm_page_prot));
 526                        write_ok = vma->vm_flags & VM_WRITE;
 527                }
 528                up_read(&current->mm->mmap_sem);
 529                if (!pfn)
 530                        goto out_put;
 531        } else {
 532                page = pages[0];
 533                pfn = page_to_pfn(page);
 534                if (PageHuge(page)) {
 535                        page = compound_head(page);
 536                        pte_size <<= compound_order(page);
 537                }
 538                /* if the guest wants write access, see if that is OK */
 539                if (!writing && hpte_is_writable(r)) {
 540                        unsigned int hugepage_shift;
 541                        pte_t *ptep, pte;
 542
 543                        /*
 544                         * We need to protect against page table destruction
 545                         * while looking up and updating the pte.
 546                         */
 547                        rcu_read_lock_sched();
 548                        ptep = find_linux_pte_or_hugepte(current->mm->pgd,
 549                                                         hva, &hugepage_shift);
 550                        if (ptep) {
 551                                pte = kvmppc_read_update_linux_pte(ptep, 1,
 552                                                           hugepage_shift);
 553                                if (pte_write(pte))
 554                                        write_ok = 1;
 555                        }
 556                        rcu_read_unlock_sched();
 557                }
 558        }
 559
 560        if (psize > pte_size)
 561                goto out_put;
 562
 563        /* Check WIMG vs. the actual page we're accessing */
 564        if (!hpte_cache_flags_ok(r, is_io)) {
 565                if (is_io)
 566                        goto out_put;
 567
 568                /*
 569                 * Allow guest to map emulated device memory as
 570                 * uncacheable, but actually make it cacheable.
 571                 */
 572                r = (r & ~(HPTE_R_W|HPTE_R_I|HPTE_R_G)) | HPTE_R_M;
 573        }
 574
 575        /*
 576         * Set the HPTE to point to pfn.
 577         * Since the pfn is at PAGE_SIZE granularity, make sure we
 578         * don't mask out lower-order bits if psize < PAGE_SIZE.
 579         */
 580        if (psize < PAGE_SIZE)
 581                psize = PAGE_SIZE;
 582        r = (r & ~(HPTE_R_PP0 - psize)) | ((pfn << PAGE_SHIFT) & ~(psize - 1));
 583        if (hpte_is_writable(r) && !write_ok)
 584                r = hpte_make_readonly(r);
 585        ret = RESUME_GUEST;
 586        preempt_disable();
 587        while (!try_lock_hpte(hptep, HPTE_V_HVLOCK))
 588                cpu_relax();
 589        if ((be64_to_cpu(hptep[0]) & ~HPTE_V_HVLOCK) != hpte[0] ||
 590                be64_to_cpu(hptep[1]) != hpte[1] ||
 591                rev->guest_rpte != hpte[2])
 592                /* HPTE has been changed under us; let the guest retry */
 593                goto out_unlock;
 594        hpte[0] = (hpte[0] & ~HPTE_V_ABSENT) | HPTE_V_VALID;
 595
 596        /* Always put the HPTE in the rmap chain for the page base address */
 597        rmap = &memslot->arch.rmap[gfn_base - memslot->base_gfn];
 598        lock_rmap(rmap);
 599
 600        /* Check if we might have been invalidated; let the guest retry if so */
 601        ret = RESUME_GUEST;
 602        if (mmu_notifier_retry(vcpu->kvm, mmu_seq)) {
 603                unlock_rmap(rmap);
 604                goto out_unlock;
 605        }
 606
 607        /* Only set R/C in real HPTE if set in both *rmap and guest_rpte */
 608        rcbits = *rmap >> KVMPPC_RMAP_RC_SHIFT;
 609        r &= rcbits | ~(HPTE_R_R | HPTE_R_C);
 610
 611        if (be64_to_cpu(hptep[0]) & HPTE_V_VALID) {
 612                /* HPTE was previously valid, so we need to invalidate it */
 613                unlock_rmap(rmap);
 614                hptep[0] |= cpu_to_be64(HPTE_V_ABSENT);
 615                kvmppc_invalidate_hpte(kvm, hptep, index);
 616                /* don't lose previous R and C bits */
 617                r |= be64_to_cpu(hptep[1]) & (HPTE_R_R | HPTE_R_C);
 618        } else {
 619                kvmppc_add_revmap_chain(kvm, rev, rmap, index, 0);
 620        }
 621
 622        hptep[1] = cpu_to_be64(r);
 623        eieio();
 624        hptep[0] = cpu_to_be64(hpte[0]);
 625        asm volatile("ptesync" : : : "memory");
 626        preempt_enable();
 627        if (page && hpte_is_writable(r))
 628                SetPageDirty(page);
 629
 630 out_put:
 631        trace_kvm_page_fault_exit(vcpu, hpte, ret);
 632
 633        if (page) {
 634                /*
 635                 * We drop pages[0] here, not page because page might
 636                 * have been set to the head page of a compound, but
 637                 * we have to drop the reference on the correct tail
 638                 * page to match the get inside gup()
 639                 */
 640                put_page(pages[0]);
 641        }
 642        return ret;
 643
 644 out_unlock:
 645        hptep[0] &= ~cpu_to_be64(HPTE_V_HVLOCK);
 646        preempt_enable();
 647        goto out_put;
 648}
 649
 650static void kvmppc_rmap_reset(struct kvm *kvm)
 651{
 652        struct kvm_memslots *slots;
 653        struct kvm_memory_slot *memslot;
 654        int srcu_idx;
 655
 656        srcu_idx = srcu_read_lock(&kvm->srcu);
 657        slots = kvm->memslots;
 658        kvm_for_each_memslot(memslot, slots) {
 659                /*
 660                 * This assumes it is acceptable to lose reference and
 661                 * change bits across a reset.
 662                 */
 663                memset(memslot->arch.rmap, 0,
 664                       memslot->npages * sizeof(*memslot->arch.rmap));
 665        }
 666        srcu_read_unlock(&kvm->srcu, srcu_idx);
 667}
 668
 669static int kvm_handle_hva_range(struct kvm *kvm,
 670                                unsigned long start,
 671                                unsigned long end,
 672                                int (*handler)(struct kvm *kvm,
 673                                               unsigned long *rmapp,
 674                                               unsigned long gfn))
 675{
 676        int ret;
 677        int retval = 0;
 678        struct kvm_memslots *slots;
 679        struct kvm_memory_slot *memslot;
 680
 681        slots = kvm_memslots(kvm);
 682        kvm_for_each_memslot(memslot, slots) {
 683                unsigned long hva_start, hva_end;
 684                gfn_t gfn, gfn_end;
 685
 686                hva_start = max(start, memslot->userspace_addr);
 687                hva_end = min(end, memslot->userspace_addr +
 688                                        (memslot->npages << PAGE_SHIFT));
 689                if (hva_start >= hva_end)
 690                        continue;
 691                /*
 692                 * {gfn(page) | page intersects with [hva_start, hva_end)} =
 693                 * {gfn, gfn+1, ..., gfn_end-1}.
 694                 */
 695                gfn = hva_to_gfn_memslot(hva_start, memslot);
 696                gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
 697
 698                for (; gfn < gfn_end; ++gfn) {
 699                        gfn_t gfn_offset = gfn - memslot->base_gfn;
 700
 701                        ret = handler(kvm, &memslot->arch.rmap[gfn_offset], gfn);
 702                        retval |= ret;
 703                }
 704        }
 705
 706        return retval;
 707}
 708
 709static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
 710                          int (*handler)(struct kvm *kvm, unsigned long *rmapp,
 711                                         unsigned long gfn))
 712{
 713        return kvm_handle_hva_range(kvm, hva, hva + 1, handler);
 714}
 715
 716static int kvm_unmap_rmapp(struct kvm *kvm, unsigned long *rmapp,
 717                           unsigned long gfn)
 718{
 719        struct revmap_entry *rev = kvm->arch.revmap;
 720        unsigned long h, i, j;
 721        __be64 *hptep;
 722        unsigned long ptel, psize, rcbits;
 723
 724        for (;;) {
 725                lock_rmap(rmapp);
 726                if (!(*rmapp & KVMPPC_RMAP_PRESENT)) {
 727                        unlock_rmap(rmapp);
 728                        break;
 729                }
 730
 731                /*
 732                 * To avoid an ABBA deadlock with the HPTE lock bit,
 733                 * we can't spin on the HPTE lock while holding the
 734                 * rmap chain lock.
 735                 */
 736                i = *rmapp & KVMPPC_RMAP_INDEX;
 737                hptep = (__be64 *) (kvm->arch.hpt_virt + (i << 4));
 738                if (!try_lock_hpte(hptep, HPTE_V_HVLOCK)) {
 739                        /* unlock rmap before spinning on the HPTE lock */
 740                        unlock_rmap(rmapp);
 741                        while (be64_to_cpu(hptep[0]) & HPTE_V_HVLOCK)
 742                                cpu_relax();
 743                        continue;
 744                }
 745                j = rev[i].forw;
 746                if (j == i) {
 747                        /* chain is now empty */
 748                        *rmapp &= ~(KVMPPC_RMAP_PRESENT | KVMPPC_RMAP_INDEX);
 749                } else {
 750                        /* remove i from chain */
 751                        h = rev[i].back;
 752                        rev[h].forw = j;
 753                        rev[j].back = h;
 754                        rev[i].forw = rev[i].back = i;
 755                        *rmapp = (*rmapp & ~KVMPPC_RMAP_INDEX) | j;
 756                }
 757
 758                /* Now check and modify the HPTE */
 759                ptel = rev[i].guest_rpte;
 760                psize = hpte_page_size(be64_to_cpu(hptep[0]), ptel);
 761                if ((be64_to_cpu(hptep[0]) & HPTE_V_VALID) &&
 762                    hpte_rpn(ptel, psize) == gfn) {
 763                        hptep[0] |= cpu_to_be64(HPTE_V_ABSENT);
 764                        kvmppc_invalidate_hpte(kvm, hptep, i);
 765                        /* Harvest R and C */
 766                        rcbits = be64_to_cpu(hptep[1]) & (HPTE_R_R | HPTE_R_C);
 767                        *rmapp |= rcbits << KVMPPC_RMAP_RC_SHIFT;
 768                        if (rcbits & ~rev[i].guest_rpte) {
 769                                rev[i].guest_rpte = ptel | rcbits;
 770                                note_hpte_modification(kvm, &rev[i]);
 771                        }
 772                }
 773                unlock_rmap(rmapp);
 774                hptep[0] &= ~cpu_to_be64(HPTE_V_HVLOCK);
 775        }
 776        return 0;
 777}
 778
 779int kvm_unmap_hva_hv(struct kvm *kvm, unsigned long hva)
 780{
 781        kvm_handle_hva(kvm, hva, kvm_unmap_rmapp);
 782        return 0;
 783}
 784
 785int kvm_unmap_hva_range_hv(struct kvm *kvm, unsigned long start, unsigned long end)
 786{
 787        kvm_handle_hva_range(kvm, start, end, kvm_unmap_rmapp);
 788        return 0;
 789}
 790
 791void kvmppc_core_flush_memslot_hv(struct kvm *kvm,
 792                                  struct kvm_memory_slot *memslot)
 793{
 794        unsigned long *rmapp;
 795        unsigned long gfn;
 796        unsigned long n;
 797
 798        rmapp = memslot->arch.rmap;
 799        gfn = memslot->base_gfn;
 800        for (n = memslot->npages; n; --n) {
 801                /*
 802                 * Testing the present bit without locking is OK because
 803                 * the memslot has been marked invalid already, and hence
 804                 * no new HPTEs referencing this page can be created,
 805                 * thus the present bit can't go from 0 to 1.
 806                 */
 807                if (*rmapp & KVMPPC_RMAP_PRESENT)
 808                        kvm_unmap_rmapp(kvm, rmapp, gfn);
 809                ++rmapp;
 810                ++gfn;
 811        }
 812}
 813
 814static int kvm_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
 815                         unsigned long gfn)
 816{
 817        struct revmap_entry *rev = kvm->arch.revmap;
 818        unsigned long head, i, j;
 819        __be64 *hptep;
 820        int ret = 0;
 821
 822 retry:
 823        lock_rmap(rmapp);
 824        if (*rmapp & KVMPPC_RMAP_REFERENCED) {
 825                *rmapp &= ~KVMPPC_RMAP_REFERENCED;
 826                ret = 1;
 827        }
 828        if (!(*rmapp & KVMPPC_RMAP_PRESENT)) {
 829                unlock_rmap(rmapp);
 830                return ret;
 831        }
 832
 833        i = head = *rmapp & KVMPPC_RMAP_INDEX;
 834        do {
 835                hptep = (__be64 *) (kvm->arch.hpt_virt + (i << 4));
 836                j = rev[i].forw;
 837
 838                /* If this HPTE isn't referenced, ignore it */
 839                if (!(be64_to_cpu(hptep[1]) & HPTE_R_R))
 840                        continue;
 841
 842                if (!try_lock_hpte(hptep, HPTE_V_HVLOCK)) {
 843                        /* unlock rmap before spinning on the HPTE lock */
 844                        unlock_rmap(rmapp);
 845                        while (be64_to_cpu(hptep[0]) & HPTE_V_HVLOCK)
 846                                cpu_relax();
 847                        goto retry;
 848                }
 849
 850                /* Now check and modify the HPTE */
 851                if ((be64_to_cpu(hptep[0]) & HPTE_V_VALID) &&
 852                    (be64_to_cpu(hptep[1]) & HPTE_R_R)) {
 853                        kvmppc_clear_ref_hpte(kvm, hptep, i);
 854                        if (!(rev[i].guest_rpte & HPTE_R_R)) {
 855                                rev[i].guest_rpte |= HPTE_R_R;
 856                                note_hpte_modification(kvm, &rev[i]);
 857                        }
 858                        ret = 1;
 859                }
 860                hptep[0] &= ~cpu_to_be64(HPTE_V_HVLOCK);
 861        } while ((i = j) != head);
 862
 863        unlock_rmap(rmapp);
 864        return ret;
 865}
 866
 867int kvm_age_hva_hv(struct kvm *kvm, unsigned long start, unsigned long end)
 868{
 869        return kvm_handle_hva_range(kvm, start, end, kvm_age_rmapp);
 870}
 871
 872static int kvm_test_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
 873                              unsigned long gfn)
 874{
 875        struct revmap_entry *rev = kvm->arch.revmap;
 876        unsigned long head, i, j;
 877        unsigned long *hp;
 878        int ret = 1;
 879
 880        if (*rmapp & KVMPPC_RMAP_REFERENCED)
 881                return 1;
 882
 883        lock_rmap(rmapp);
 884        if (*rmapp & KVMPPC_RMAP_REFERENCED)
 885                goto out;
 886
 887        if (*rmapp & KVMPPC_RMAP_PRESENT) {
 888                i = head = *rmapp & KVMPPC_RMAP_INDEX;
 889                do {
 890                        hp = (unsigned long *)(kvm->arch.hpt_virt + (i << 4));
 891                        j = rev[i].forw;
 892                        if (be64_to_cpu(hp[1]) & HPTE_R_R)
 893                                goto out;
 894                } while ((i = j) != head);
 895        }
 896        ret = 0;
 897
 898 out:
 899        unlock_rmap(rmapp);
 900        return ret;
 901}
 902
 903int kvm_test_age_hva_hv(struct kvm *kvm, unsigned long hva)
 904{
 905        return kvm_handle_hva(kvm, hva, kvm_test_age_rmapp);
 906}
 907
 908void kvm_set_spte_hva_hv(struct kvm *kvm, unsigned long hva, pte_t pte)
 909{
 910        kvm_handle_hva(kvm, hva, kvm_unmap_rmapp);
 911}
 912
 913static int vcpus_running(struct kvm *kvm)
 914{
 915        return atomic_read(&kvm->arch.vcpus_running) != 0;
 916}
 917
 918/*
 919 * Returns the number of system pages that are dirty.
 920 * This can be more than 1 if we find a huge-page HPTE.
 921 */
 922static int kvm_test_clear_dirty_npages(struct kvm *kvm, unsigned long *rmapp)
 923{
 924        struct revmap_entry *rev = kvm->arch.revmap;
 925        unsigned long head, i, j;
 926        unsigned long n;
 927        unsigned long v, r;
 928        __be64 *hptep;
 929        int npages_dirty = 0;
 930
 931 retry:
 932        lock_rmap(rmapp);
 933        if (*rmapp & KVMPPC_RMAP_CHANGED) {
 934                *rmapp &= ~KVMPPC_RMAP_CHANGED;
 935                npages_dirty = 1;
 936        }
 937        if (!(*rmapp & KVMPPC_RMAP_PRESENT)) {
 938                unlock_rmap(rmapp);
 939                return npages_dirty;
 940        }
 941
 942        i = head = *rmapp & KVMPPC_RMAP_INDEX;
 943        do {
 944                unsigned long hptep1;
 945                hptep = (__be64 *) (kvm->arch.hpt_virt + (i << 4));
 946                j = rev[i].forw;
 947
 948                /*
 949                 * Checking the C (changed) bit here is racy since there
 950                 * is no guarantee about when the hardware writes it back.
 951                 * If the HPTE is not writable then it is stable since the
 952                 * page can't be written to, and we would have done a tlbie
 953                 * (which forces the hardware to complete any writeback)
 954                 * when making the HPTE read-only.
 955                 * If vcpus are running then this call is racy anyway
 956                 * since the page could get dirtied subsequently, so we
 957                 * expect there to be a further call which would pick up
 958                 * any delayed C bit writeback.
 959                 * Otherwise we need to do the tlbie even if C==0 in
 960                 * order to pick up any delayed writeback of C.
 961                 */
 962                hptep1 = be64_to_cpu(hptep[1]);
 963                if (!(hptep1 & HPTE_R_C) &&
 964                    (!hpte_is_writable(hptep1) || vcpus_running(kvm)))
 965                        continue;
 966
 967                if (!try_lock_hpte(hptep, HPTE_V_HVLOCK)) {
 968                        /* unlock rmap before spinning on the HPTE lock */
 969                        unlock_rmap(rmapp);
 970                        while (hptep[0] & cpu_to_be64(HPTE_V_HVLOCK))
 971                                cpu_relax();
 972                        goto retry;
 973                }
 974
 975                /* Now check and modify the HPTE */
 976                if (!(hptep[0] & cpu_to_be64(HPTE_V_VALID))) {
 977                        /* unlock and continue */
 978                        hptep[0] &= ~cpu_to_be64(HPTE_V_HVLOCK);
 979                        continue;
 980                }
 981
 982                /* need to make it temporarily absent so C is stable */
 983                hptep[0] |= cpu_to_be64(HPTE_V_ABSENT);
 984                kvmppc_invalidate_hpte(kvm, hptep, i);
 985                v = be64_to_cpu(hptep[0]);
 986                r = be64_to_cpu(hptep[1]);
 987                if (r & HPTE_R_C) {
 988                        hptep[1] = cpu_to_be64(r & ~HPTE_R_C);
 989                        if (!(rev[i].guest_rpte & HPTE_R_C)) {
 990                                rev[i].guest_rpte |= HPTE_R_C;
 991                                note_hpte_modification(kvm, &rev[i]);
 992                        }
 993                        n = hpte_page_size(v, r);
 994                        n = (n + PAGE_SIZE - 1) >> PAGE_SHIFT;
 995                        if (n > npages_dirty)
 996                                npages_dirty = n;
 997                        eieio();
 998                }
 999                v &= ~(HPTE_V_ABSENT | HPTE_V_HVLOCK);
1000                v |= HPTE_V_VALID;
1001                hptep[0] = cpu_to_be64(v);
1002        } while ((i = j) != head);
1003
1004        unlock_rmap(rmapp);
1005        return npages_dirty;
1006}
1007
1008static void harvest_vpa_dirty(struct kvmppc_vpa *vpa,
1009                              struct kvm_memory_slot *memslot,
1010                              unsigned long *map)
1011{
1012        unsigned long gfn;
1013
1014        if (!vpa->dirty || !vpa->pinned_addr)
1015                return;
1016        gfn = vpa->gpa >> PAGE_SHIFT;
1017        if (gfn < memslot->base_gfn ||
1018            gfn >= memslot->base_gfn + memslot->npages)
1019                return;
1020
1021        vpa->dirty = false;
1022        if (map)
1023                __set_bit_le(gfn - memslot->base_gfn, map);
1024}
1025
1026long kvmppc_hv_get_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot,
1027                             unsigned long *map)
1028{
1029        unsigned long i, j;
1030        unsigned long *rmapp;
1031        struct kvm_vcpu *vcpu;
1032
1033        preempt_disable();
1034        rmapp = memslot->arch.rmap;
1035        for (i = 0; i < memslot->npages; ++i) {
1036                int npages = kvm_test_clear_dirty_npages(kvm, rmapp);
1037                /*
1038                 * Note that if npages > 0 then i must be a multiple of npages,
1039                 * since we always put huge-page HPTEs in the rmap chain
1040                 * corresponding to their page base address.
1041                 */
1042                if (npages && map)
1043                        for (j = i; npages; ++j, --npages)
1044                                __set_bit_le(j, map);
1045                ++rmapp;
1046        }
1047
1048        /* Harvest dirty bits from VPA and DTL updates */
1049        /* Note: we never modify the SLB shadow buffer areas */
1050        kvm_for_each_vcpu(i, vcpu, kvm) {
1051                spin_lock(&vcpu->arch.vpa_update_lock);
1052                harvest_vpa_dirty(&vcpu->arch.vpa, memslot, map);
1053                harvest_vpa_dirty(&vcpu->arch.dtl, memslot, map);
1054                spin_unlock(&vcpu->arch.vpa_update_lock);
1055        }
1056        preempt_enable();
1057        return 0;
1058}
1059
1060void *kvmppc_pin_guest_page(struct kvm *kvm, unsigned long gpa,
1061                            unsigned long *nb_ret)
1062{
1063        struct kvm_memory_slot *memslot;
1064        unsigned long gfn = gpa >> PAGE_SHIFT;
1065        struct page *page, *pages[1];
1066        int npages;
1067        unsigned long hva, offset;
1068        int srcu_idx;
1069
1070        srcu_idx = srcu_read_lock(&kvm->srcu);
1071        memslot = gfn_to_memslot(kvm, gfn);
1072        if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID))
1073                goto err;
1074        hva = gfn_to_hva_memslot(memslot, gfn);
1075        npages = get_user_pages_fast(hva, 1, 1, pages);
1076        if (npages < 1)
1077                goto err;
1078        page = pages[0];
1079        srcu_read_unlock(&kvm->srcu, srcu_idx);
1080
1081        offset = gpa & (PAGE_SIZE - 1);
1082        if (nb_ret)
1083                *nb_ret = PAGE_SIZE - offset;
1084        return page_address(page) + offset;
1085
1086 err:
1087        srcu_read_unlock(&kvm->srcu, srcu_idx);
1088        return NULL;
1089}
1090
1091void kvmppc_unpin_guest_page(struct kvm *kvm, void *va, unsigned long gpa,
1092                             bool dirty)
1093{
1094        struct page *page = virt_to_page(va);
1095        struct kvm_memory_slot *memslot;
1096        unsigned long gfn;
1097        unsigned long *rmap;
1098        int srcu_idx;
1099
1100        put_page(page);
1101
1102        if (!dirty)
1103                return;
1104
1105        /* We need to mark this page dirty in the rmap chain */
1106        gfn = gpa >> PAGE_SHIFT;
1107        srcu_idx = srcu_read_lock(&kvm->srcu);
1108        memslot = gfn_to_memslot(kvm, gfn);
1109        if (memslot) {
1110                rmap = &memslot->arch.rmap[gfn - memslot->base_gfn];
1111                lock_rmap(rmap);
1112                *rmap |= KVMPPC_RMAP_CHANGED;
1113                unlock_rmap(rmap);
1114        }
1115        srcu_read_unlock(&kvm->srcu, srcu_idx);
1116}
1117
1118/*
1119 * Functions for reading and writing the hash table via reads and
1120 * writes on a file descriptor.
1121 *
1122 * Reads return the guest view of the hash table, which has to be
1123 * pieced together from the real hash table and the guest_rpte
1124 * values in the revmap array.
1125 *
1126 * On writes, each HPTE written is considered in turn, and if it
1127 * is valid, it is written to the HPT as if an H_ENTER with the
1128 * exact flag set was done.  When the invalid count is non-zero
1129 * in the header written to the stream, the kernel will make
1130 * sure that that many HPTEs are invalid, and invalidate them
1131 * if not.
1132 */
1133
1134struct kvm_htab_ctx {
1135        unsigned long   index;
1136        unsigned long   flags;
1137        struct kvm      *kvm;
1138        int             first_pass;
1139};
1140
1141#define HPTE_SIZE       (2 * sizeof(unsigned long))
1142
1143/*
1144 * Returns 1 if this HPT entry has been modified or has pending
1145 * R/C bit changes.
1146 */
1147static int hpte_dirty(struct revmap_entry *revp, __be64 *hptp)
1148{
1149        unsigned long rcbits_unset;
1150
1151        if (revp->guest_rpte & HPTE_GR_MODIFIED)
1152                return 1;
1153
1154        /* Also need to consider changes in reference and changed bits */
1155        rcbits_unset = ~revp->guest_rpte & (HPTE_R_R | HPTE_R_C);
1156        if ((be64_to_cpu(hptp[0]) & HPTE_V_VALID) &&
1157            (be64_to_cpu(hptp[1]) & rcbits_unset))
1158                return 1;
1159
1160        return 0;
1161}
1162
1163static long record_hpte(unsigned long flags, __be64 *hptp,
1164                        unsigned long *hpte, struct revmap_entry *revp,
1165                        int want_valid, int first_pass)
1166{
1167        unsigned long v, r;
1168        unsigned long rcbits_unset;
1169        int ok = 1;
1170        int valid, dirty;
1171
1172        /* Unmodified entries are uninteresting except on the first pass */
1173        dirty = hpte_dirty(revp, hptp);
1174        if (!first_pass && !dirty)
1175                return 0;
1176
1177        valid = 0;
1178        if (be64_to_cpu(hptp[0]) & (HPTE_V_VALID | HPTE_V_ABSENT)) {
1179                valid = 1;
1180                if ((flags & KVM_GET_HTAB_BOLTED_ONLY) &&
1181                    !(be64_to_cpu(hptp[0]) & HPTE_V_BOLTED))
1182                        valid = 0;
1183        }
1184        if (valid != want_valid)
1185                return 0;
1186
1187        v = r = 0;
1188        if (valid || dirty) {
1189                /* lock the HPTE so it's stable and read it */
1190                preempt_disable();
1191                while (!try_lock_hpte(hptp, HPTE_V_HVLOCK))
1192                        cpu_relax();
1193                v = be64_to_cpu(hptp[0]);
1194
1195                /* re-evaluate valid and dirty from synchronized HPTE value */
1196                valid = !!(v & HPTE_V_VALID);
1197                dirty = !!(revp->guest_rpte & HPTE_GR_MODIFIED);
1198
1199                /* Harvest R and C into guest view if necessary */
1200                rcbits_unset = ~revp->guest_rpte & (HPTE_R_R | HPTE_R_C);
1201                if (valid && (rcbits_unset & be64_to_cpu(hptp[1]))) {
1202                        revp->guest_rpte |= (be64_to_cpu(hptp[1]) &
1203                                (HPTE_R_R | HPTE_R_C)) | HPTE_GR_MODIFIED;
1204                        dirty = 1;
1205                }
1206
1207                if (v & HPTE_V_ABSENT) {
1208                        v &= ~HPTE_V_ABSENT;
1209                        v |= HPTE_V_VALID;
1210                        valid = 1;
1211                }
1212                if ((flags & KVM_GET_HTAB_BOLTED_ONLY) && !(v & HPTE_V_BOLTED))
1213                        valid = 0;
1214
1215                r = revp->guest_rpte;
1216                /* only clear modified if this is the right sort of entry */
1217                if (valid == want_valid && dirty) {
1218                        r &= ~HPTE_GR_MODIFIED;
1219                        revp->guest_rpte = r;
1220                }
1221                asm volatile(PPC_RELEASE_BARRIER "" : : : "memory");
1222                hptp[0] &= ~cpu_to_be64(HPTE_V_HVLOCK);
1223                preempt_enable();
1224                if (!(valid == want_valid && (first_pass || dirty)))
1225                        ok = 0;
1226        }
1227        hpte[0] = cpu_to_be64(v);
1228        hpte[1] = cpu_to_be64(r);
1229        return ok;
1230}
1231
1232static ssize_t kvm_htab_read(struct file *file, char __user *buf,
1233                             size_t count, loff_t *ppos)
1234{
1235        struct kvm_htab_ctx *ctx = file->private_data;
1236        struct kvm *kvm = ctx->kvm;
1237        struct kvm_get_htab_header hdr;
1238        __be64 *hptp;
1239        struct revmap_entry *revp;
1240        unsigned long i, nb, nw;
1241        unsigned long __user *lbuf;
1242        struct kvm_get_htab_header __user *hptr;
1243        unsigned long flags;
1244        int first_pass;
1245        unsigned long hpte[2];
1246
1247        if (!access_ok(VERIFY_WRITE, buf, count))
1248                return -EFAULT;
1249
1250        first_pass = ctx->first_pass;
1251        flags = ctx->flags;
1252
1253        i = ctx->index;
1254        hptp = (__be64 *)(kvm->arch.hpt_virt + (i * HPTE_SIZE));
1255        revp = kvm->arch.revmap + i;
1256        lbuf = (unsigned long __user *)buf;
1257
1258        nb = 0;
1259        while (nb + sizeof(hdr) + HPTE_SIZE < count) {
1260                /* Initialize header */
1261                hptr = (struct kvm_get_htab_header __user *)buf;
1262                hdr.n_valid = 0;
1263                hdr.n_invalid = 0;
1264                nw = nb;
1265                nb += sizeof(hdr);
1266                lbuf = (unsigned long __user *)(buf + sizeof(hdr));
1267
1268                /* Skip uninteresting entries, i.e. clean on not-first pass */
1269                if (!first_pass) {
1270                        while (i < kvm->arch.hpt_npte &&
1271                               !hpte_dirty(revp, hptp)) {
1272                                ++i;
1273                                hptp += 2;
1274                                ++revp;
1275                        }
1276                }
1277                hdr.index = i;
1278
1279                /* Grab a series of valid entries */
1280                while (i < kvm->arch.hpt_npte &&
1281                       hdr.n_valid < 0xffff &&
1282                       nb + HPTE_SIZE < count &&
1283                       record_hpte(flags, hptp, hpte, revp, 1, first_pass)) {
1284                        /* valid entry, write it out */
1285                        ++hdr.n_valid;
1286                        if (__put_user(hpte[0], lbuf) ||
1287                            __put_user(hpte[1], lbuf + 1))
1288                                return -EFAULT;
1289                        nb += HPTE_SIZE;
1290                        lbuf += 2;
1291                        ++i;
1292                        hptp += 2;
1293                        ++revp;
1294                }
1295                /* Now skip invalid entries while we can */
1296                while (i < kvm->arch.hpt_npte &&
1297                       hdr.n_invalid < 0xffff &&
1298                       record_hpte(flags, hptp, hpte, revp, 0, first_pass)) {
1299                        /* found an invalid entry */
1300                        ++hdr.n_invalid;
1301                        ++i;
1302                        hptp += 2;
1303                        ++revp;
1304                }
1305
1306                if (hdr.n_valid || hdr.n_invalid) {
1307                        /* write back the header */
1308                        if (__copy_to_user(hptr, &hdr, sizeof(hdr)))
1309                                return -EFAULT;
1310                        nw = nb;
1311                        buf = (char __user *)lbuf;
1312                } else {
1313                        nb = nw;
1314                }
1315
1316                /* Check if we've wrapped around the hash table */
1317                if (i >= kvm->arch.hpt_npte) {
1318                        i = 0;
1319                        ctx->first_pass = 0;
1320                        break;
1321                }
1322        }
1323
1324        ctx->index = i;
1325
1326        return nb;
1327}
1328
1329static ssize_t kvm_htab_write(struct file *file, const char __user *buf,
1330                              size_t count, loff_t *ppos)
1331{
1332        struct kvm_htab_ctx *ctx = file->private_data;
1333        struct kvm *kvm = ctx->kvm;
1334        struct kvm_get_htab_header hdr;
1335        unsigned long i, j;
1336        unsigned long v, r;
1337        unsigned long __user *lbuf;
1338        __be64 *hptp;
1339        unsigned long tmp[2];
1340        ssize_t nb;
1341        long int err, ret;
1342        int rma_setup;
1343
1344        if (!access_ok(VERIFY_READ, buf, count))
1345                return -EFAULT;
1346
1347        /* lock out vcpus from running while we're doing this */
1348        mutex_lock(&kvm->lock);
1349        rma_setup = kvm->arch.rma_setup_done;
1350        if (rma_setup) {
1351                kvm->arch.rma_setup_done = 0;   /* temporarily */
1352                /* order rma_setup_done vs. vcpus_running */
1353                smp_mb();
1354                if (atomic_read(&kvm->arch.vcpus_running)) {
1355                        kvm->arch.rma_setup_done = 1;
1356                        mutex_unlock(&kvm->lock);
1357                        return -EBUSY;
1358                }
1359        }
1360
1361        err = 0;
1362        for (nb = 0; nb + sizeof(hdr) <= count; ) {
1363                err = -EFAULT;
1364                if (__copy_from_user(&hdr, buf, sizeof(hdr)))
1365                        break;
1366
1367                err = 0;
1368                if (nb + hdr.n_valid * HPTE_SIZE > count)
1369                        break;
1370
1371                nb += sizeof(hdr);
1372                buf += sizeof(hdr);
1373
1374                err = -EINVAL;
1375                i = hdr.index;
1376                if (i >= kvm->arch.hpt_npte ||
1377                    i + hdr.n_valid + hdr.n_invalid > kvm->arch.hpt_npte)
1378                        break;
1379
1380                hptp = (__be64 *)(kvm->arch.hpt_virt + (i * HPTE_SIZE));
1381                lbuf = (unsigned long __user *)buf;
1382                for (j = 0; j < hdr.n_valid; ++j) {
1383                        __be64 hpte_v;
1384                        __be64 hpte_r;
1385
1386                        err = -EFAULT;
1387                        if (__get_user(hpte_v, lbuf) ||
1388                            __get_user(hpte_r, lbuf + 1))
1389                                goto out;
1390                        v = be64_to_cpu(hpte_v);
1391                        r = be64_to_cpu(hpte_r);
1392                        err = -EINVAL;
1393                        if (!(v & HPTE_V_VALID))
1394                                goto out;
1395                        lbuf += 2;
1396                        nb += HPTE_SIZE;
1397
1398                        if (be64_to_cpu(hptp[0]) & (HPTE_V_VALID | HPTE_V_ABSENT))
1399                                kvmppc_do_h_remove(kvm, 0, i, 0, tmp);
1400                        err = -EIO;
1401                        ret = kvmppc_virtmode_do_h_enter(kvm, H_EXACT, i, v, r,
1402                                                         tmp);
1403                        if (ret != H_SUCCESS) {
1404                                pr_err("kvm_htab_write ret %ld i=%ld v=%lx "
1405                                       "r=%lx\n", ret, i, v, r);
1406                                goto out;
1407                        }
1408                        if (!rma_setup && is_vrma_hpte(v)) {
1409                                unsigned long psize = hpte_base_page_size(v, r);
1410                                unsigned long senc = slb_pgsize_encoding(psize);
1411                                unsigned long lpcr;
1412
1413                                kvm->arch.vrma_slb_v = senc | SLB_VSID_B_1T |
1414                                        (VRMA_VSID << SLB_VSID_SHIFT_1T);
1415                                lpcr = senc << (LPCR_VRMASD_SH - 4);
1416                                kvmppc_update_lpcr(kvm, lpcr, LPCR_VRMASD);
1417                                rma_setup = 1;
1418                        }
1419                        ++i;
1420                        hptp += 2;
1421                }
1422
1423                for (j = 0; j < hdr.n_invalid; ++j) {
1424                        if (be64_to_cpu(hptp[0]) & (HPTE_V_VALID | HPTE_V_ABSENT))
1425                                kvmppc_do_h_remove(kvm, 0, i, 0, tmp);
1426                        ++i;
1427                        hptp += 2;
1428                }
1429                err = 0;
1430        }
1431
1432 out:
1433        /* Order HPTE updates vs. rma_setup_done */
1434        smp_wmb();
1435        kvm->arch.rma_setup_done = rma_setup;
1436        mutex_unlock(&kvm->lock);
1437
1438        if (err)
1439                return err;
1440        return nb;
1441}
1442
1443static int kvm_htab_release(struct inode *inode, struct file *filp)
1444{
1445        struct kvm_htab_ctx *ctx = filp->private_data;
1446
1447        filp->private_data = NULL;
1448        if (!(ctx->flags & KVM_GET_HTAB_WRITE))
1449                atomic_dec(&ctx->kvm->arch.hpte_mod_interest);
1450        kvm_put_kvm(ctx->kvm);
1451        kfree(ctx);
1452        return 0;
1453}
1454
1455static const struct file_operations kvm_htab_fops = {
1456        .read           = kvm_htab_read,
1457        .write          = kvm_htab_write,
1458        .llseek         = default_llseek,
1459        .release        = kvm_htab_release,
1460};
1461
1462int kvm_vm_ioctl_get_htab_fd(struct kvm *kvm, struct kvm_get_htab_fd *ghf)
1463{
1464        int ret;
1465        struct kvm_htab_ctx *ctx;
1466        int rwflag;
1467
1468        /* reject flags we don't recognize */
1469        if (ghf->flags & ~(KVM_GET_HTAB_BOLTED_ONLY | KVM_GET_HTAB_WRITE))
1470                return -EINVAL;
1471        ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
1472        if (!ctx)
1473                return -ENOMEM;
1474        kvm_get_kvm(kvm);
1475        ctx->kvm = kvm;
1476        ctx->index = ghf->start_index;
1477        ctx->flags = ghf->flags;
1478        ctx->first_pass = 1;
1479
1480        rwflag = (ghf->flags & KVM_GET_HTAB_WRITE) ? O_WRONLY : O_RDONLY;
1481        ret = anon_inode_getfd("kvm-htab", &kvm_htab_fops, ctx, rwflag | O_CLOEXEC);
1482        if (ret < 0) {
1483                kvm_put_kvm(kvm);
1484                return ret;
1485        }
1486
1487        if (rwflag == O_RDONLY) {
1488                mutex_lock(&kvm->slots_lock);
1489                atomic_inc(&kvm->arch.hpte_mod_interest);
1490                /* make sure kvmppc_do_h_enter etc. see the increment */
1491                synchronize_srcu_expedited(&kvm->srcu);
1492                mutex_unlock(&kvm->slots_lock);
1493        }
1494
1495        return ret;
1496}
1497
1498void kvmppc_mmu_book3s_hv_init(struct kvm_vcpu *vcpu)
1499{
1500        struct kvmppc_mmu *mmu = &vcpu->arch.mmu;
1501
1502        vcpu->arch.slb_nr = 32;         /* POWER7/POWER8 */
1503
1504        mmu->xlate = kvmppc_mmu_book3s_64_hv_xlate;
1505        mmu->reset_msr = kvmppc_mmu_book3s_64_hv_reset_msr;
1506
1507        vcpu->arch.hflags |= BOOK3S_HFLAG_SLB;
1508}
1509