linux/arch/sparc/kernel/time_32.c
<<
>>
Prefs
   1/* linux/arch/sparc/kernel/time.c
   2 *
   3 * Copyright (C) 1995 David S. Miller (davem@davemloft.net)
   4 * Copyright (C) 1996 Thomas K. Dyas (tdyas@eden.rutgers.edu)
   5 *
   6 * Chris Davis (cdavis@cois.on.ca) 03/27/1998
   7 * Added support for the intersil on the sun4/4200
   8 *
   9 * Gleb Raiko (rajko@mech.math.msu.su) 08/18/1998
  10 * Support for MicroSPARC-IIep, PCI CPU.
  11 *
  12 * This file handles the Sparc specific time handling details.
  13 *
  14 * 1997-09-10   Updated NTP code according to technical memorandum Jan '96
  15 *              "A Kernel Model for Precision Timekeeping" by Dave Mills
  16 */
  17#include <linux/errno.h>
  18#include <linux/module.h>
  19#include <linux/sched.h>
  20#include <linux/kernel.h>
  21#include <linux/param.h>
  22#include <linux/string.h>
  23#include <linux/mm.h>
  24#include <linux/interrupt.h>
  25#include <linux/time.h>
  26#include <linux/rtc.h>
  27#include <linux/rtc/m48t59.h>
  28#include <linux/timex.h>
  29#include <linux/clocksource.h>
  30#include <linux/clockchips.h>
  31#include <linux/init.h>
  32#include <linux/pci.h>
  33#include <linux/ioport.h>
  34#include <linux/profile.h>
  35#include <linux/of.h>
  36#include <linux/of_device.h>
  37#include <linux/platform_device.h>
  38
  39#include <asm/mc146818rtc.h>
  40#include <asm/oplib.h>
  41#include <asm/timex.h>
  42#include <asm/timer.h>
  43#include <asm/irq.h>
  44#include <asm/io.h>
  45#include <asm/idprom.h>
  46#include <asm/page.h>
  47#include <asm/pcic.h>
  48#include <asm/irq_regs.h>
  49#include <asm/setup.h>
  50
  51#include "kernel.h"
  52#include "irq.h"
  53
  54static __cacheline_aligned_in_smp DEFINE_SEQLOCK(timer_cs_lock);
  55static __volatile__ u64 timer_cs_internal_counter = 0;
  56static char timer_cs_enabled = 0;
  57
  58static struct clock_event_device timer_ce;
  59static char timer_ce_enabled = 0;
  60
  61#ifdef CONFIG_SMP
  62DEFINE_PER_CPU(struct clock_event_device, sparc32_clockevent);
  63#endif
  64
  65DEFINE_SPINLOCK(rtc_lock);
  66EXPORT_SYMBOL(rtc_lock);
  67
  68static int set_rtc_mmss(unsigned long);
  69
  70unsigned long profile_pc(struct pt_regs *regs)
  71{
  72        extern char __copy_user_begin[], __copy_user_end[];
  73        extern char __bzero_begin[], __bzero_end[];
  74
  75        unsigned long pc = regs->pc;
  76
  77        if (in_lock_functions(pc) ||
  78            (pc >= (unsigned long) __copy_user_begin &&
  79             pc < (unsigned long) __copy_user_end) ||
  80            (pc >= (unsigned long) __bzero_begin &&
  81             pc < (unsigned long) __bzero_end))
  82                pc = regs->u_regs[UREG_RETPC];
  83        return pc;
  84}
  85
  86EXPORT_SYMBOL(profile_pc);
  87
  88volatile u32 __iomem *master_l10_counter;
  89
  90int update_persistent_clock(struct timespec now)
  91{
  92        return set_rtc_mmss(now.tv_sec);
  93}
  94
  95irqreturn_t notrace timer_interrupt(int dummy, void *dev_id)
  96{
  97        if (timer_cs_enabled) {
  98                write_seqlock(&timer_cs_lock);
  99                timer_cs_internal_counter++;
 100                sparc_config.clear_clock_irq();
 101                write_sequnlock(&timer_cs_lock);
 102        } else {
 103                sparc_config.clear_clock_irq();
 104        }
 105
 106        if (timer_ce_enabled)
 107                timer_ce.event_handler(&timer_ce);
 108
 109        return IRQ_HANDLED;
 110}
 111
 112static void timer_ce_set_mode(enum clock_event_mode mode,
 113                              struct clock_event_device *evt)
 114{
 115        switch (mode) {
 116                case CLOCK_EVT_MODE_PERIODIC:
 117                case CLOCK_EVT_MODE_RESUME:
 118                        timer_ce_enabled = 1;
 119                        break;
 120                case CLOCK_EVT_MODE_SHUTDOWN:
 121                        timer_ce_enabled = 0;
 122                        break;
 123                default:
 124                        break;
 125        }
 126        smp_mb();
 127}
 128
 129static __init void setup_timer_ce(void)
 130{
 131        struct clock_event_device *ce = &timer_ce;
 132
 133        BUG_ON(smp_processor_id() != boot_cpu_id);
 134
 135        ce->name     = "timer_ce";
 136        ce->rating   = 100;
 137        ce->features = CLOCK_EVT_FEAT_PERIODIC;
 138        ce->set_mode = timer_ce_set_mode;
 139        ce->cpumask  = cpu_possible_mask;
 140        ce->shift    = 32;
 141        ce->mult     = div_sc(sparc_config.clock_rate, NSEC_PER_SEC,
 142                              ce->shift);
 143        clockevents_register_device(ce);
 144}
 145
 146static unsigned int sbus_cycles_offset(void)
 147{
 148        u32 val, offset;
 149
 150        val = sbus_readl(master_l10_counter);
 151        offset = (val >> TIMER_VALUE_SHIFT) & TIMER_VALUE_MASK;
 152
 153        /* Limit hit? */
 154        if (val & TIMER_LIMIT_BIT)
 155                offset += sparc_config.cs_period;
 156
 157        return offset;
 158}
 159
 160static cycle_t timer_cs_read(struct clocksource *cs)
 161{
 162        unsigned int seq, offset;
 163        u64 cycles;
 164
 165        do {
 166                seq = read_seqbegin(&timer_cs_lock);
 167
 168                cycles = timer_cs_internal_counter;
 169                offset = sparc_config.get_cycles_offset();
 170        } while (read_seqretry(&timer_cs_lock, seq));
 171
 172        /* Count absolute cycles */
 173        cycles *= sparc_config.cs_period;
 174        cycles += offset;
 175
 176        return cycles;
 177}
 178
 179static struct clocksource timer_cs = {
 180        .name   = "timer_cs",
 181        .rating = 100,
 182        .read   = timer_cs_read,
 183        .mask   = CLOCKSOURCE_MASK(64),
 184        .shift  = 2,
 185        .flags  = CLOCK_SOURCE_IS_CONTINUOUS,
 186};
 187
 188static __init int setup_timer_cs(void)
 189{
 190        timer_cs_enabled = 1;
 191        timer_cs.mult = clocksource_hz2mult(sparc_config.clock_rate,
 192                                            timer_cs.shift);
 193
 194        return clocksource_register(&timer_cs);
 195}
 196
 197#ifdef CONFIG_SMP
 198static void percpu_ce_setup(enum clock_event_mode mode,
 199                        struct clock_event_device *evt)
 200{
 201        int cpu = __first_cpu(evt->cpumask);
 202
 203        switch (mode) {
 204                case CLOCK_EVT_MODE_PERIODIC:
 205                        sparc_config.load_profile_irq(cpu,
 206                                                      SBUS_CLOCK_RATE / HZ);
 207                        break;
 208                case CLOCK_EVT_MODE_ONESHOT:
 209                case CLOCK_EVT_MODE_SHUTDOWN:
 210                case CLOCK_EVT_MODE_UNUSED:
 211                        sparc_config.load_profile_irq(cpu, 0);
 212                        break;
 213                default:
 214                        break;
 215        }
 216}
 217
 218static int percpu_ce_set_next_event(unsigned long delta,
 219                                    struct clock_event_device *evt)
 220{
 221        int cpu = __first_cpu(evt->cpumask);
 222        unsigned int next = (unsigned int)delta;
 223
 224        sparc_config.load_profile_irq(cpu, next);
 225        return 0;
 226}
 227
 228void register_percpu_ce(int cpu)
 229{
 230        struct clock_event_device *ce = &per_cpu(sparc32_clockevent, cpu);
 231        unsigned int features = CLOCK_EVT_FEAT_PERIODIC;
 232
 233        if (sparc_config.features & FEAT_L14_ONESHOT)
 234                features |= CLOCK_EVT_FEAT_ONESHOT;
 235
 236        ce->name           = "percpu_ce";
 237        ce->rating         = 200;
 238        ce->features       = features;
 239        ce->set_mode       = percpu_ce_setup;
 240        ce->set_next_event = percpu_ce_set_next_event;
 241        ce->cpumask        = cpumask_of(cpu);
 242        ce->shift          = 32;
 243        ce->mult           = div_sc(sparc_config.clock_rate, NSEC_PER_SEC,
 244                                    ce->shift);
 245        ce->max_delta_ns   = clockevent_delta2ns(sparc_config.clock_rate, ce);
 246        ce->min_delta_ns   = clockevent_delta2ns(100, ce);
 247
 248        clockevents_register_device(ce);
 249}
 250#endif
 251
 252static unsigned char mostek_read_byte(struct device *dev, u32 ofs)
 253{
 254        struct platform_device *pdev = to_platform_device(dev);
 255        struct m48t59_plat_data *pdata = pdev->dev.platform_data;
 256
 257        return readb(pdata->ioaddr + ofs);
 258}
 259
 260static void mostek_write_byte(struct device *dev, u32 ofs, u8 val)
 261{
 262        struct platform_device *pdev = to_platform_device(dev);
 263        struct m48t59_plat_data *pdata = pdev->dev.platform_data;
 264
 265        writeb(val, pdata->ioaddr + ofs);
 266}
 267
 268static struct m48t59_plat_data m48t59_data = {
 269        .read_byte = mostek_read_byte,
 270        .write_byte = mostek_write_byte,
 271};
 272
 273/* resource is set at runtime */
 274static struct platform_device m48t59_rtc = {
 275        .name           = "rtc-m48t59",
 276        .id             = 0,
 277        .num_resources  = 1,
 278        .dev    = {
 279                .platform_data = &m48t59_data,
 280        },
 281};
 282
 283static int clock_probe(struct platform_device *op)
 284{
 285        struct device_node *dp = op->dev.of_node;
 286        const char *model = of_get_property(dp, "model", NULL);
 287
 288        if (!model)
 289                return -ENODEV;
 290
 291        /* Only the primary RTC has an address property */
 292        if (!of_find_property(dp, "address", NULL))
 293                return -ENODEV;
 294
 295        m48t59_rtc.resource = &op->resource[0];
 296        if (!strcmp(model, "mk48t02")) {
 297                /* Map the clock register io area read-only */
 298                m48t59_data.ioaddr = of_ioremap(&op->resource[0], 0,
 299                                                2048, "rtc-m48t59");
 300                m48t59_data.type = M48T59RTC_TYPE_M48T02;
 301        } else if (!strcmp(model, "mk48t08")) {
 302                m48t59_data.ioaddr = of_ioremap(&op->resource[0], 0,
 303                                                8192, "rtc-m48t59");
 304                m48t59_data.type = M48T59RTC_TYPE_M48T08;
 305        } else
 306                return -ENODEV;
 307
 308        if (platform_device_register(&m48t59_rtc) < 0)
 309                printk(KERN_ERR "Registering RTC device failed\n");
 310
 311        return 0;
 312}
 313
 314static struct of_device_id clock_match[] = {
 315        {
 316                .name = "eeprom",
 317        },
 318        {},
 319};
 320
 321static struct platform_driver clock_driver = {
 322        .probe          = clock_probe,
 323        .driver = {
 324                .name = "rtc",
 325                .of_match_table = clock_match,
 326        },
 327};
 328
 329
 330/* Probe for the mostek real time clock chip. */
 331static int __init clock_init(void)
 332{
 333        return platform_driver_register(&clock_driver);
 334}
 335/* Must be after subsys_initcall() so that busses are probed.  Must
 336 * be before device_initcall() because things like the RTC driver
 337 * need to see the clock registers.
 338 */
 339fs_initcall(clock_init);
 340
 341static void __init sparc32_late_time_init(void)
 342{
 343        if (sparc_config.features & FEAT_L10_CLOCKEVENT)
 344                setup_timer_ce();
 345        if (sparc_config.features & FEAT_L10_CLOCKSOURCE)
 346                setup_timer_cs();
 347#ifdef CONFIG_SMP
 348        register_percpu_ce(smp_processor_id());
 349#endif
 350}
 351
 352static void __init sbus_time_init(void)
 353{
 354        sparc_config.get_cycles_offset = sbus_cycles_offset;
 355        sparc_config.init_timers();
 356}
 357
 358void __init time_init(void)
 359{
 360        sparc_config.features = 0;
 361        late_time_init = sparc32_late_time_init;
 362
 363        if (pcic_present())
 364                pci_time_init();
 365        else
 366                sbus_time_init();
 367}
 368
 369
 370static int set_rtc_mmss(unsigned long secs)
 371{
 372        struct rtc_device *rtc = rtc_class_open("rtc0");
 373        int err = -1;
 374
 375        if (rtc) {
 376                err = rtc_set_mmss(rtc, secs);
 377                rtc_class_close(rtc);
 378        }
 379
 380        return err;
 381}
 382