linux/arch/tile/include/gxio/mpipe.h
<<
>>
Prefs
   1/*
   2 * Copyright 2012 Tilera Corporation. All Rights Reserved.
   3 *
   4 *   This program is free software; you can redistribute it and/or
   5 *   modify it under the terms of the GNU General Public License
   6 *   as published by the Free Software Foundation, version 2.
   7 *
   8 *   This program is distributed in the hope that it will be useful, but
   9 *   WITHOUT ANY WARRANTY; without even the implied warranty of
  10 *   MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
  11 *   NON INFRINGEMENT.  See the GNU General Public License for
  12 *   more details.
  13 */
  14
  15#ifndef _GXIO_MPIPE_H_
  16#define _GXIO_MPIPE_H_
  17
  18/*
  19 *
  20 * An API for allocating, configuring, and manipulating mPIPE hardware
  21 * resources.
  22 */
  23
  24#include <gxio/common.h>
  25#include <gxio/dma_queue.h>
  26
  27#include <linux/time.h>
  28
  29#include <arch/mpipe_def.h>
  30#include <arch/mpipe_shm.h>
  31
  32#include <hv/drv_mpipe_intf.h>
  33#include <hv/iorpc.h>
  34
  35/*
  36 *
  37 * The TILE-Gx mPIPE&tm; shim provides Ethernet connectivity, packet
  38 * classification, and packet load balancing services.  The
  39 * gxio_mpipe_ API, declared in <gxio/mpipe.h>, allows applications to
  40 * allocate mPIPE IO channels, configure packet distribution
  41 * parameters, and send and receive Ethernet packets.  The API is
  42 * designed to be a minimal wrapper around the mPIPE hardware, making
  43 * system calls only where necessary to preserve inter-process
  44 * protection guarantees.
  45 *
  46 * The APIs described below allow the programmer to allocate and
  47 * configure mPIPE resources.  As described below, the mPIPE is a
  48 * single shared hardware device that provides partitionable resources
  49 * that are shared between all applications in the system.  The
  50 * gxio_mpipe_ API allows userspace code to make resource request
  51 * calls to the hypervisor, which in turns keeps track of the
  52 * resources in use by all applications, maintains protection
  53 * guarantees, and resets resources upon application shutdown.
  54 *
  55 * We strongly recommend reading the mPIPE section of the IO Device
  56 * Guide (UG404) before working with this API.  Most functions in the
  57 * gxio_mpipe_ API are directly analogous to hardware interfaces and
  58 * the documentation assumes that the reader understands those
  59 * hardware interfaces.
  60 *
  61 * @section mpipe__ingress mPIPE Ingress Hardware Resources
  62 *
  63 * The mPIPE ingress hardware provides extensive hardware offload for
  64 * tasks like packet header parsing, load balancing, and memory
  65 * management.  This section provides a brief introduction to the
  66 * hardware components and the gxio_mpipe_ calls used to manage them;
  67 * see the IO Device Guide for a much more detailed description of the
  68 * mPIPE's capabilities.
  69 *
  70 * When a packet arrives at one of the mPIPE's Ethernet MACs, it is
  71 * assigned a channel number indicating which MAC received it.  It
  72 * then proceeds through the following hardware pipeline:
  73 *
  74 * @subsection mpipe__classification Classification
  75 *
  76 * A set of classification processors run header parsing code on each
  77 * incoming packet, extracting information including the destination
  78 * MAC address, VLAN, Ethernet type, and five-tuple hash.  Some of
  79 * this information is then used to choose which buffer stack will be
  80 * used to hold the packet, and which bucket will be used by the load
  81 * balancer to determine which application will receive the packet.
  82 *
  83 * The rules by which the buffer stack and bucket are chosen can be
  84 * configured via the @ref gxio_mpipe_classifier API.  A given app can
  85 * specify multiple rules, each one specifying a bucket range, and a
  86 * set of buffer stacks, to be used for packets matching the rule.
  87 * Each rule can optionally specify a restricted set of channels,
  88 * VLANs, and/or dMACs, in which it is interested.  By default, a
  89 * given rule starts out matching all channels associated with the
  90 * mPIPE context's set of open links; all VLANs; and all dMACs.
  91 * Subsequent restrictions can then be added.
  92 *
  93 * @subsection mpipe__load_balancing Load Balancing
  94 *
  95 * The mPIPE load balancer is responsible for choosing the NotifRing
  96 * to which the packet will be delivered.  This decision is based on
  97 * the bucket number indicated by the classification program.  In
  98 * general, the bucket number is based on some number of low bits of
  99 * the packet's flow hash (applications that aren't interested in flow
 100 * hashing use a single bucket).  Each load balancer bucket keeps a
 101 * record of the NotifRing to which packets directed to that bucket
 102 * are currently being delivered.  Based on the bucket's load
 103 * balancing mode (@ref gxio_mpipe_bucket_mode_t), the load balancer
 104 * either forwards the packet to the previously assigned NotifRing or
 105 * decides to choose a new NotifRing.  If a new NotifRing is required,
 106 * the load balancer chooses the least loaded ring in the NotifGroup
 107 * associated with the bucket.
 108 *
 109 * The load balancer is a shared resource.  Each application needs to
 110 * explicitly allocate NotifRings, NotifGroups, and buckets, using
 111 * gxio_mpipe_alloc_notif_rings(), gxio_mpipe_alloc_notif_groups(),
 112 * and gxio_mpipe_alloc_buckets().  Then the application needs to
 113 * configure them using gxio_mpipe_init_notif_ring() and
 114 * gxio_mpipe_init_notif_group_and_buckets().
 115 *
 116 * @subsection mpipe__buffers Buffer Selection and Packet Delivery
 117 *
 118 * Once the load balancer has chosen the destination NotifRing, the
 119 * mPIPE DMA engine pops at least one buffer off of the 'buffer stack'
 120 * chosen by the classification program and DMAs the packet data into
 121 * that buffer.  Each buffer stack provides a hardware-accelerated
 122 * stack of data buffers with the same size.  If the packet data is
 123 * larger than the buffers provided by the chosen buffer stack, the
 124 * mPIPE hardware pops off multiple buffers and chains the packet data
 125 * through a multi-buffer linked list.  Once the packet data is
 126 * delivered to the buffer(s), the mPIPE hardware writes the
 127 * ::gxio_mpipe_idesc_t metadata object (calculated by the classifier)
 128 * into the NotifRing and increments the number of packets delivered
 129 * to that ring.
 130 *
 131 * Applications can push buffers onto a buffer stack by calling
 132 * gxio_mpipe_push_buffer() or by egressing a packet with the
 133 * ::gxio_mpipe_edesc_t::hwb bit set, indicating that the egressed
 134 * buffers should be returned to the stack.
 135 *
 136 * Applications can allocate and initialize buffer stacks with the
 137 * gxio_mpipe_alloc_buffer_stacks() and gxio_mpipe_init_buffer_stack()
 138 * APIs.
 139 *
 140 * The application must also register the memory pages that will hold
 141 * packets.  This requires calling gxio_mpipe_register_page() for each
 142 * memory page that will hold packets allocated by the application for
 143 * a given buffer stack.  Since each buffer stack is limited to 16
 144 * registered pages, it may be necessary to use huge pages, or even
 145 * extremely huge pages, to hold all the buffers.
 146 *
 147 * @subsection mpipe__iqueue NotifRings
 148 *
 149 * Each NotifRing is a region of shared memory, allocated by the
 150 * application, to which the mPIPE delivers packet descriptors
 151 * (::gxio_mpipe_idesc_t).  The application can allocate them via
 152 * gxio_mpipe_alloc_notif_rings().  The application can then either
 153 * explicitly initialize them with gxio_mpipe_init_notif_ring() and
 154 * then read from them manually, or can make use of the convenience
 155 * wrappers provided by @ref gxio_mpipe_wrappers.
 156 *
 157 * @section mpipe__egress mPIPE Egress Hardware
 158 *
 159 * Applications use eDMA rings to queue packets for egress.  The
 160 * application can allocate them via gxio_mpipe_alloc_edma_rings().
 161 * The application can then either explicitly initialize them with
 162 * gxio_mpipe_init_edma_ring() and then write to them manually, or
 163 * can make use of the convenience wrappers provided by
 164 * @ref gxio_mpipe_wrappers.
 165 *
 166 * @section gxio__shortcomings Plans for Future API Revisions
 167 *
 168 * The API defined here is only an initial version of the mPIPE API.
 169 * Future plans include:
 170 *
 171 * - Higher level wrapper functions to provide common initialization
 172 * patterns.  This should help users start writing mPIPE programs
 173 * without having to learn the details of the hardware.
 174 *
 175 * - Support for reset and deallocation of resources, including
 176 * cleanup upon application shutdown.
 177 *
 178 * - Support for calling these APIs in the BME.
 179 *
 180 * - Support for IO interrupts.
 181 *
 182 * - Clearer definitions of thread safety guarantees.
 183 *
 184 * @section gxio__mpipe_examples Examples
 185 *
 186 * See the following mPIPE example programs for more information about
 187 * allocating mPIPE resources and using them in real applications:
 188 *
 189 * - @ref mpipe/ingress/app.c : Receiving packets.
 190 *
 191 * - @ref mpipe/forward/app.c : Forwarding packets.
 192 *
 193 * Note that there are several more examples.
 194 */
 195
 196/* Flags that can be passed to resource allocation functions. */
 197enum gxio_mpipe_alloc_flags_e {
 198        /* Require an allocation to start at a specified resource index. */
 199        GXIO_MPIPE_ALLOC_FIXED = HV_MPIPE_ALLOC_FIXED,
 200};
 201
 202/* Flags that can be passed to memory registration functions. */
 203enum gxio_mpipe_mem_flags_e {
 204        /* Do not fill L3 when writing, and invalidate lines upon egress. */
 205        GXIO_MPIPE_MEM_FLAG_NT_HINT = IORPC_MEM_BUFFER_FLAG_NT_HINT,
 206
 207        /* L3 cache fills should only populate IO cache ways. */
 208        GXIO_MPIPE_MEM_FLAG_IO_PIN = IORPC_MEM_BUFFER_FLAG_IO_PIN,
 209};
 210
 211/* An ingress packet descriptor.  When a packet arrives, the mPIPE
 212 * hardware generates this structure and writes it into a NotifRing.
 213 */
 214typedef MPIPE_PDESC_t gxio_mpipe_idesc_t;
 215
 216/* An egress command descriptor.  Applications write this structure
 217 * into eDMA rings and the hardware performs the indicated operation
 218 * (normally involving egressing some bytes).  Note that egressing a
 219 * single packet may involve multiple egress command descriptors.
 220 */
 221typedef MPIPE_EDMA_DESC_t gxio_mpipe_edesc_t;
 222
 223/*
 224 * Max # of mpipe instances. 2 currently.
 225 */
 226#define GXIO_MPIPE_INSTANCE_MAX  HV_MPIPE_INSTANCE_MAX
 227
 228#define NR_MPIPE_MAX   GXIO_MPIPE_INSTANCE_MAX
 229
 230/* Get the "va" field from an "idesc".
 231 *
 232 * This is the address at which the ingress hardware copied the first
 233 * byte of the packet.
 234 *
 235 * If the classifier detected a custom header, then this will point to
 236 * the custom header, and gxio_mpipe_idesc_get_l2_start() will point
 237 * to the actual L2 header.
 238 *
 239 * Note that this value may be misleading if "idesc->be" is set.
 240 *
 241 * @param idesc An ingress packet descriptor.
 242 */
 243static inline unsigned char *gxio_mpipe_idesc_get_va(gxio_mpipe_idesc_t *idesc)
 244{
 245        return (unsigned char *)(long)idesc->va;
 246}
 247
 248/* Get the "xfer_size" from an "idesc".
 249 *
 250 * This is the actual number of packet bytes transferred into memory
 251 * by the hardware.
 252 *
 253 * Note that this value may be misleading if "idesc->be" is set.
 254 *
 255 * @param idesc An ingress packet descriptor.
 256 *
 257 * ISSUE: Is this the best name for this?
 258 * FIXME: Add more docs about chaining, clipping, etc.
 259 */
 260static inline unsigned int gxio_mpipe_idesc_get_xfer_size(gxio_mpipe_idesc_t
 261                                                          *idesc)
 262{
 263        return idesc->l2_size;
 264}
 265
 266/* Get the "l2_offset" from an "idesc".
 267 *
 268 * Extremely customized classifiers might not support this function.
 269 *
 270 * This is the number of bytes between the "va" and the L2 header.
 271 *
 272 * The L2 header consists of a destination mac address, a source mac
 273 * address, and an initial ethertype.  Various initial ethertypes
 274 * allow encoding extra information in the L2 header, often including
 275 * a vlan, and/or a new ethertype.
 276 *
 277 * Note that the "l2_offset" will be non-zero if (and only if) the
 278 * classifier processed a custom header for the packet.
 279 *
 280 * @param idesc An ingress packet descriptor.
 281 */
 282static inline uint8_t gxio_mpipe_idesc_get_l2_offset(gxio_mpipe_idesc_t *idesc)
 283{
 284        return (idesc->custom1 >> 32) & 0xFF;
 285}
 286
 287/* Get the "l2_start" from an "idesc".
 288 *
 289 * This is simply gxio_mpipe_idesc_get_va() plus
 290 * gxio_mpipe_idesc_get_l2_offset().
 291 *
 292 * @param idesc An ingress packet descriptor.
 293 */
 294static inline unsigned char *gxio_mpipe_idesc_get_l2_start(gxio_mpipe_idesc_t
 295                                                           *idesc)
 296{
 297        unsigned char *va = gxio_mpipe_idesc_get_va(idesc);
 298        return va + gxio_mpipe_idesc_get_l2_offset(idesc);
 299}
 300
 301/* Get the "l2_length" from an "idesc".
 302 *
 303 * This is simply gxio_mpipe_idesc_get_xfer_size() minus
 304 * gxio_mpipe_idesc_get_l2_offset().
 305 *
 306 * @param idesc An ingress packet descriptor.
 307 */
 308static inline unsigned int gxio_mpipe_idesc_get_l2_length(gxio_mpipe_idesc_t
 309                                                          *idesc)
 310{
 311        unsigned int xfer_size = idesc->l2_size;
 312        return xfer_size - gxio_mpipe_idesc_get_l2_offset(idesc);
 313}
 314
 315/* A context object used to manage mPIPE hardware resources. */
 316typedef struct {
 317
 318        /* File descriptor for calling up to Linux (and thus the HV). */
 319        int fd;
 320
 321        /* Corresponding mpipe instance #. */
 322        int instance;
 323
 324        /* The VA at which configuration registers are mapped. */
 325        char *mmio_cfg_base;
 326
 327        /* The VA at which IDMA, EDMA, and buffer manager are mapped. */
 328        char *mmio_fast_base;
 329
 330        /* The "initialized" buffer stacks. */
 331        gxio_mpipe_rules_stacks_t __stacks;
 332
 333} gxio_mpipe_context_t;
 334
 335/* This is only used internally, but it's most easily made visible here. */
 336typedef gxio_mpipe_context_t gxio_mpipe_info_context_t;
 337
 338/* Initialize an mPIPE context.
 339 *
 340 * This function allocates an mPIPE "service domain" and maps the MMIO
 341 * registers into the caller's VA space.
 342 *
 343 * @param context Context object to be initialized.
 344 * @param mpipe_instance Instance number of mPIPE shim to be controlled via
 345 *  context.
 346 */
 347extern int gxio_mpipe_init(gxio_mpipe_context_t *context,
 348                           unsigned int mpipe_instance);
 349
 350/* Destroy an mPIPE context.
 351 *
 352 * This function frees the mPIPE "service domain" and unmaps the MMIO
 353 * registers from the caller's VA space.
 354 *
 355 * If a user process exits without calling this routine, the kernel
 356 * will destroy the mPIPE context as part of process teardown.
 357 *
 358 * @param context Context object to be destroyed.
 359 */
 360extern int gxio_mpipe_destroy(gxio_mpipe_context_t *context);
 361
 362/*****************************************************************
 363 *                         Buffer Stacks                          *
 364 ******************************************************************/
 365
 366/* Allocate a set of buffer stacks.
 367 *
 368 * The return value is NOT interesting if count is zero.
 369 *
 370 * @param context An initialized mPIPE context.
 371 * @param count Number of stacks required.
 372 * @param first Index of first stack if ::GXIO_MPIPE_ALLOC_FIXED flag is set,
 373 *   otherwise ignored.
 374 * @param flags Flag bits from ::gxio_mpipe_alloc_flags_e.
 375 * @return Index of first allocated buffer stack, or
 376 * ::GXIO_MPIPE_ERR_NO_BUFFER_STACK if allocation failed.
 377 */
 378extern int gxio_mpipe_alloc_buffer_stacks(gxio_mpipe_context_t *context,
 379                                          unsigned int count,
 380                                          unsigned int first,
 381                                          unsigned int flags);
 382
 383/* Enum codes for buffer sizes supported by mPIPE. */
 384typedef enum {
 385        /* 128 byte packet data buffer. */
 386        GXIO_MPIPE_BUFFER_SIZE_128 = MPIPE_BSM_INIT_DAT_1__SIZE_VAL_BSZ_128,
 387        /* 256 byte packet data buffer. */
 388        GXIO_MPIPE_BUFFER_SIZE_256 = MPIPE_BSM_INIT_DAT_1__SIZE_VAL_BSZ_256,
 389        /* 512 byte packet data buffer. */
 390        GXIO_MPIPE_BUFFER_SIZE_512 = MPIPE_BSM_INIT_DAT_1__SIZE_VAL_BSZ_512,
 391        /* 1024 byte packet data buffer. */
 392        GXIO_MPIPE_BUFFER_SIZE_1024 = MPIPE_BSM_INIT_DAT_1__SIZE_VAL_BSZ_1024,
 393        /* 1664 byte packet data buffer. */
 394        GXIO_MPIPE_BUFFER_SIZE_1664 = MPIPE_BSM_INIT_DAT_1__SIZE_VAL_BSZ_1664,
 395        /* 4096 byte packet data buffer. */
 396        GXIO_MPIPE_BUFFER_SIZE_4096 = MPIPE_BSM_INIT_DAT_1__SIZE_VAL_BSZ_4096,
 397        /* 10368 byte packet data buffer. */
 398        GXIO_MPIPE_BUFFER_SIZE_10368 =
 399                MPIPE_BSM_INIT_DAT_1__SIZE_VAL_BSZ_10368,
 400        /* 16384 byte packet data buffer. */
 401        GXIO_MPIPE_BUFFER_SIZE_16384 = MPIPE_BSM_INIT_DAT_1__SIZE_VAL_BSZ_16384
 402} gxio_mpipe_buffer_size_enum_t;
 403
 404/* Convert a buffer size in bytes into a buffer size enum. */
 405extern gxio_mpipe_buffer_size_enum_t
 406gxio_mpipe_buffer_size_to_buffer_size_enum(size_t size);
 407
 408/* Convert a buffer size enum into a buffer size in bytes. */
 409extern size_t
 410gxio_mpipe_buffer_size_enum_to_buffer_size(gxio_mpipe_buffer_size_enum_t
 411                                           buffer_size_enum);
 412
 413/* Calculate the number of bytes required to store a given number of
 414 * buffers in the memory registered with a buffer stack via
 415 * gxio_mpipe_init_buffer_stack().
 416 */
 417extern size_t gxio_mpipe_calc_buffer_stack_bytes(unsigned long buffers);
 418
 419/* Initialize a buffer stack.  This function binds a region of memory
 420 * to be used by the hardware for storing buffer addresses pushed via
 421 * gxio_mpipe_push_buffer() or as the result of sending a buffer out
 422 * the egress with the 'push to stack when done' bit set.  Once this
 423 * function returns, the memory region's contents may be arbitrarily
 424 * modified by the hardware at any time and software should not access
 425 * the memory region again.
 426 *
 427 * @param context An initialized mPIPE context.
 428 * @param stack The buffer stack index.
 429 * @param buffer_size_enum The size of each buffer in the buffer stack,
 430 * as an enum.
 431 * @param mem The address of the buffer stack.  This memory must be
 432 * physically contiguous and aligned to a 64kB boundary.
 433 * @param mem_size The size of the buffer stack, in bytes.
 434 * @param mem_flags ::gxio_mpipe_mem_flags_e memory flags.
 435 * @return Zero on success, ::GXIO_MPIPE_ERR_INVAL_BUFFER_SIZE if
 436 * buffer_size_enum is invalid, ::GXIO_MPIPE_ERR_BAD_BUFFER_STACK if
 437 * stack has not been allocated.
 438 */
 439extern int gxio_mpipe_init_buffer_stack(gxio_mpipe_context_t *context,
 440                                        unsigned int stack,
 441                                        gxio_mpipe_buffer_size_enum_t
 442                                        buffer_size_enum, void *mem,
 443                                        size_t mem_size,
 444                                        unsigned int mem_flags);
 445
 446/* Push a buffer onto a previously initialized buffer stack.
 447 *
 448 * The size of the buffer being pushed must match the size that was
 449 * registered with gxio_mpipe_init_buffer_stack().  All packet buffer
 450 * addresses are 128-byte aligned; the low 7 bits of the specified
 451 * buffer address will be ignored.
 452 *
 453 * @param context An initialized mPIPE context.
 454 * @param stack The buffer stack index.
 455 * @param buffer The buffer (the low seven bits are ignored).
 456 */
 457static inline void gxio_mpipe_push_buffer(gxio_mpipe_context_t *context,
 458                                          unsigned int stack, void *buffer)
 459{
 460        MPIPE_BSM_REGION_ADDR_t offset = { {0} };
 461        MPIPE_BSM_REGION_VAL_t val = { {0} };
 462
 463        /*
 464         * The mmio_fast_base region starts at the IDMA region, so subtract
 465         * off that initial offset.
 466         */
 467        offset.region =
 468                MPIPE_MMIO_ADDR__REGION_VAL_BSM -
 469                MPIPE_MMIO_ADDR__REGION_VAL_IDMA;
 470        offset.stack = stack;
 471
 472#if __SIZEOF_POINTER__ == 4
 473        val.va = ((ulong) buffer) >> MPIPE_BSM_REGION_VAL__VA_SHIFT;
 474#else
 475        val.va = ((long)buffer) >> MPIPE_BSM_REGION_VAL__VA_SHIFT;
 476#endif
 477
 478        __gxio_mmio_write(context->mmio_fast_base + offset.word, val.word);
 479}
 480
 481/* Pop a buffer off of a previously initialized buffer stack.
 482 *
 483 * @param context An initialized mPIPE context.
 484 * @param stack The buffer stack index.
 485 * @return The buffer, or NULL if the stack is empty.
 486 */
 487static inline void *gxio_mpipe_pop_buffer(gxio_mpipe_context_t *context,
 488                                          unsigned int stack)
 489{
 490        MPIPE_BSM_REGION_ADDR_t offset = { {0} };
 491
 492        /*
 493         * The mmio_fast_base region starts at the IDMA region, so subtract
 494         * off that initial offset.
 495         */
 496        offset.region =
 497                MPIPE_MMIO_ADDR__REGION_VAL_BSM -
 498                MPIPE_MMIO_ADDR__REGION_VAL_IDMA;
 499        offset.stack = stack;
 500
 501        while (1) {
 502                /*
 503                 * Case 1: val.c == ..._UNCHAINED, va is non-zero.
 504                 * Case 2: val.c == ..._INVALID, va is zero.
 505                 * Case 3: val.c == ..._NOT_RDY, va is zero.
 506                 */
 507                MPIPE_BSM_REGION_VAL_t val;
 508                val.word =
 509                        __gxio_mmio_read(context->mmio_fast_base +
 510                                         offset.word);
 511
 512                /*
 513                 * Handle case 1 and 2 by returning the buffer (or NULL).
 514                 * Handle case 3 by waiting for the prefetch buffer to refill.
 515                 */
 516                if (val.c != MPIPE_EDMA_DESC_WORD1__C_VAL_NOT_RDY)
 517                        return (void *)((unsigned long)val.
 518                                        va << MPIPE_BSM_REGION_VAL__VA_SHIFT);
 519        }
 520}
 521
 522/*****************************************************************
 523 *                          NotifRings                            *
 524 ******************************************************************/
 525
 526/* Allocate a set of NotifRings.
 527 *
 528 * The return value is NOT interesting if count is zero.
 529 *
 530 * Note that NotifRings are allocated in chunks, so allocating one at
 531 * a time is much less efficient than allocating several at once.
 532 *
 533 * @param context An initialized mPIPE context.
 534 * @param count Number of NotifRings required.
 535 * @param first Index of first NotifRing if ::GXIO_MPIPE_ALLOC_FIXED flag
 536 *   is set, otherwise ignored.
 537 * @param flags Flag bits from ::gxio_mpipe_alloc_flags_e.
 538 * @return Index of first allocated buffer NotifRing, or
 539 * ::GXIO_MPIPE_ERR_NO_NOTIF_RING if allocation failed.
 540 */
 541extern int gxio_mpipe_alloc_notif_rings(gxio_mpipe_context_t *context,
 542                                        unsigned int count, unsigned int first,
 543                                        unsigned int flags);
 544
 545/* Initialize a NotifRing, using the given memory and size.
 546 *
 547 * @param context An initialized mPIPE context.
 548 * @param ring The NotifRing index.
 549 * @param mem A physically contiguous region of memory to be filled
 550 * with a ring of ::gxio_mpipe_idesc_t structures.
 551 * @param mem_size Number of bytes in the ring.  Must be 128, 512,
 552 * 2048, or 65536 * sizeof(gxio_mpipe_idesc_t).
 553 * @param mem_flags ::gxio_mpipe_mem_flags_e memory flags.
 554 *
 555 * @return 0 on success, ::GXIO_MPIPE_ERR_BAD_NOTIF_RING or
 556 * ::GXIO_ERR_INVAL_MEMORY_SIZE on failure.
 557 */
 558extern int gxio_mpipe_init_notif_ring(gxio_mpipe_context_t *context,
 559                                      unsigned int ring,
 560                                      void *mem, size_t mem_size,
 561                                      unsigned int mem_flags);
 562
 563/* Configure an interrupt to be sent to a tile on incoming NotifRing
 564 *  traffic.  Once an interrupt is sent for a particular ring, no more
 565 *  will be sent until gxio_mica_enable_notif_ring_interrupt() is called.
 566 *
 567 * @param context An initialized mPIPE context.
 568 * @param x X coordinate of interrupt target tile.
 569 * @param y Y coordinate of interrupt target tile.
 570 * @param i Index of the IPI register which will receive the interrupt.
 571 * @param e Specific event which will be set in the target IPI register when
 572 * the interrupt occurs.
 573 * @param ring The NotifRing index.
 574 * @return Zero on success, GXIO_ERR_INVAL if params are out of range.
 575 */
 576extern int gxio_mpipe_request_notif_ring_interrupt(gxio_mpipe_context_t
 577                                                   *context, int x, int y,
 578                                                   int i, int e,
 579                                                   unsigned int ring);
 580
 581/* Enable an interrupt on incoming NotifRing traffic.
 582 *
 583 * @param context An initialized mPIPE context.
 584 * @param ring The NotifRing index.
 585 * @return Zero on success, GXIO_ERR_INVAL if params are out of range.
 586 */
 587extern int gxio_mpipe_enable_notif_ring_interrupt(gxio_mpipe_context_t
 588                                                  *context, unsigned int ring);
 589
 590/* Map all of a client's memory via the given IOTLB.
 591 * @param context An initialized mPIPE context.
 592 * @param iotlb IOTLB index.
 593 * @param pte Page table entry.
 594 * @param flags Flags.
 595 * @return Zero on success, or a negative error code.
 596 */
 597extern int gxio_mpipe_register_client_memory(gxio_mpipe_context_t *context,
 598                                             unsigned int iotlb, HV_PTE pte,
 599                                             unsigned int flags);
 600
 601/*****************************************************************
 602 *                        Notif Groups                            *
 603 ******************************************************************/
 604
 605/* Allocate a set of NotifGroups.
 606 *
 607 * The return value is NOT interesting if count is zero.
 608 *
 609 * @param context An initialized mPIPE context.
 610 * @param count Number of NotifGroups required.
 611 * @param first Index of first NotifGroup if ::GXIO_MPIPE_ALLOC_FIXED flag
 612 *   is set, otherwise ignored.
 613 * @param flags Flag bits from ::gxio_mpipe_alloc_flags_e.
 614 * @return Index of first allocated buffer NotifGroup, or
 615 * ::GXIO_MPIPE_ERR_NO_NOTIF_GROUP if allocation failed.
 616 */
 617extern int gxio_mpipe_alloc_notif_groups(gxio_mpipe_context_t *context,
 618                                         unsigned int count,
 619                                         unsigned int first,
 620                                         unsigned int flags);
 621
 622/* Add a NotifRing to a NotifGroup.  This only sets a bit in the
 623 * application's 'group' object; the hardware NotifGroup can be
 624 * initialized by passing 'group' to gxio_mpipe_init_notif_group() or
 625 * gxio_mpipe_init_notif_group_and_buckets().
 626 */
 627static inline void
 628gxio_mpipe_notif_group_add_ring(gxio_mpipe_notif_group_bits_t *bits, int ring)
 629{
 630        bits->ring_mask[ring / 64] |= (1ull << (ring % 64));
 631}
 632
 633/* Set a particular NotifGroup bitmask.  Since the load balancer
 634 * makes decisions based on both bucket and NotifGroup state, most
 635 * applications should use gxio_mpipe_init_notif_group_and_buckets()
 636 * rather than using this function to configure just a NotifGroup.
 637 */
 638extern int gxio_mpipe_init_notif_group(gxio_mpipe_context_t *context,
 639                                       unsigned int group,
 640                                       gxio_mpipe_notif_group_bits_t bits);
 641
 642/*****************************************************************
 643 *                         Load Balancer                          *
 644 ******************************************************************/
 645
 646/* Allocate a set of load balancer buckets.
 647 *
 648 * The return value is NOT interesting if count is zero.
 649 *
 650 * Note that buckets are allocated in chunks, so allocating one at
 651 * a time is much less efficient than allocating several at once.
 652 *
 653 * Note that the buckets are actually divided into two sub-ranges, of
 654 * different sizes, and different chunk sizes, and the range you get
 655 * by default is determined by the size of the request.  Allocations
 656 * cannot span the two sub-ranges.
 657 *
 658 * @param context An initialized mPIPE context.
 659 * @param count Number of buckets required.
 660 * @param first Index of first bucket if ::GXIO_MPIPE_ALLOC_FIXED flag is set,
 661 *   otherwise ignored.
 662 * @param flags Flag bits from ::gxio_mpipe_alloc_flags_e.
 663 * @return Index of first allocated buffer bucket, or
 664 * ::GXIO_MPIPE_ERR_NO_BUCKET if allocation failed.
 665 */
 666extern int gxio_mpipe_alloc_buckets(gxio_mpipe_context_t *context,
 667                                    unsigned int count, unsigned int first,
 668                                    unsigned int flags);
 669
 670/* The legal modes for gxio_mpipe_bucket_info_t and
 671 * gxio_mpipe_init_notif_group_and_buckets().
 672 *
 673 * All modes except ::GXIO_MPIPE_BUCKET_ROUND_ROBIN expect that the user
 674 * will allocate a power-of-two number of buckets and initialize them
 675 * to the same mode.  The classifier program then uses the appropriate
 676 * number of low bits from the incoming packet's flow hash to choose a
 677 * load balancer bucket.  Based on that bucket's load balancing mode,
 678 * reference count, and currently active NotifRing, the load balancer
 679 * chooses the NotifRing to which the packet will be delivered.
 680 */
 681typedef enum {
 682        /* All packets for a bucket go to the same NotifRing unless the
 683         * NotifRing gets full, in which case packets will be dropped.  If
 684         * the bucket reference count ever reaches zero, a new NotifRing may
 685         * be chosen.
 686         */
 687        GXIO_MPIPE_BUCKET_DYNAMIC_FLOW_AFFINITY =
 688                MPIPE_LBL_INIT_DAT_BSTS_TBL__MODE_VAL_DFA,
 689
 690        /* All packets for a bucket always go to the same NotifRing.
 691         */
 692        GXIO_MPIPE_BUCKET_STATIC_FLOW_AFFINITY =
 693                MPIPE_LBL_INIT_DAT_BSTS_TBL__MODE_VAL_FIXED,
 694
 695        /* All packets for a bucket go to the least full NotifRing in the
 696         * group, providing load balancing round robin behavior.
 697         */
 698        GXIO_MPIPE_BUCKET_ROUND_ROBIN =
 699                MPIPE_LBL_INIT_DAT_BSTS_TBL__MODE_VAL_ALWAYS_PICK,
 700
 701        /* All packets for a bucket go to the same NotifRing unless the
 702         * NotifRing gets full, at which point the bucket starts using the
 703         * least full NotifRing in the group.  If all NotifRings in the
 704         * group are full, packets will be dropped.
 705         */
 706        GXIO_MPIPE_BUCKET_STICKY_FLOW_LOCALITY =
 707                MPIPE_LBL_INIT_DAT_BSTS_TBL__MODE_VAL_STICKY,
 708
 709        /* All packets for a bucket go to the same NotifRing unless the
 710         * NotifRing gets full, or a random timer fires, at which point the
 711         * bucket starts using the least full NotifRing in the group.  If
 712         * all NotifRings in the group are full, packets will be dropped.
 713         * WARNING: This mode is BROKEN on chips with fewer than 64 tiles.
 714         */
 715        GXIO_MPIPE_BUCKET_PREFER_FLOW_LOCALITY =
 716                MPIPE_LBL_INIT_DAT_BSTS_TBL__MODE_VAL_STICKY_RAND,
 717
 718} gxio_mpipe_bucket_mode_t;
 719
 720/* Copy a set of bucket initialization values into the mPIPE
 721 * hardware.  Since the load balancer makes decisions based on both
 722 * bucket and NotifGroup state, most applications should use
 723 * gxio_mpipe_init_notif_group_and_buckets() rather than using this
 724 * function to configure a single bucket.
 725 *
 726 * @param context An initialized mPIPE context.
 727 * @param bucket Bucket index to be initialized.
 728 * @param bucket_info Initial reference count, NotifRing index, and mode.
 729 * @return 0 on success, ::GXIO_MPIPE_ERR_BAD_BUCKET on failure.
 730 */
 731extern int gxio_mpipe_init_bucket(gxio_mpipe_context_t *context,
 732                                  unsigned int bucket,
 733                                  gxio_mpipe_bucket_info_t bucket_info);
 734
 735/* Initializes a group and range of buckets and range of rings such
 736 * that the load balancer runs a particular load balancing function.
 737 *
 738 * First, the group is initialized with the given rings.
 739 *
 740 * Second, each bucket is initialized with the mode and group, and a
 741 * ring chosen round-robin from the given rings.
 742 *
 743 * Normally, the classifier picks a bucket, and then the load balancer
 744 * picks a ring, based on the bucket's mode, group, and current ring,
 745 * possibly updating the bucket's ring.
 746 *
 747 * @param context An initialized mPIPE context.
 748 * @param group The group.
 749 * @param ring The first ring.
 750 * @param num_rings The number of rings.
 751 * @param bucket The first bucket.
 752 * @param num_buckets The number of buckets.
 753 * @param mode The load balancing mode.
 754 *
 755 * @return 0 on success, ::GXIO_MPIPE_ERR_BAD_BUCKET,
 756 * ::GXIO_MPIPE_ERR_BAD_NOTIF_GROUP, or
 757 * ::GXIO_MPIPE_ERR_BAD_NOTIF_RING on failure.
 758 */
 759extern int gxio_mpipe_init_notif_group_and_buckets(gxio_mpipe_context_t
 760                                                   *context,
 761                                                   unsigned int group,
 762                                                   unsigned int ring,
 763                                                   unsigned int num_rings,
 764                                                   unsigned int bucket,
 765                                                   unsigned int num_buckets,
 766                                                   gxio_mpipe_bucket_mode_t
 767                                                   mode);
 768
 769/* Return credits to a NotifRing and/or bucket.
 770 *
 771 * @param context An initialized mPIPE context.
 772 * @param ring The NotifRing index, or -1.
 773 * @param bucket The bucket, or -1.
 774 * @param count The number of credits to return.
 775 */
 776static inline void gxio_mpipe_credit(gxio_mpipe_context_t *context,
 777                                     int ring, int bucket, unsigned int count)
 778{
 779        /* NOTE: Fancy struct initialization would break "C89" header test. */
 780
 781        MPIPE_IDMA_RELEASE_REGION_ADDR_t offset = { {0} };
 782        MPIPE_IDMA_RELEASE_REGION_VAL_t val = { {0} };
 783
 784        /*
 785         * The mmio_fast_base region starts at the IDMA region, so subtract
 786         * off that initial offset.
 787         */
 788        offset.region =
 789                MPIPE_MMIO_ADDR__REGION_VAL_IDMA -
 790                MPIPE_MMIO_ADDR__REGION_VAL_IDMA;
 791        offset.ring = ring;
 792        offset.bucket = bucket;
 793        offset.ring_enable = (ring >= 0);
 794        offset.bucket_enable = (bucket >= 0);
 795        val.count = count;
 796
 797        __gxio_mmio_write(context->mmio_fast_base + offset.word, val.word);
 798}
 799
 800/*****************************************************************
 801 *                         Egress Rings                           *
 802 ******************************************************************/
 803
 804/* Allocate a set of eDMA rings.
 805 *
 806 * The return value is NOT interesting if count is zero.
 807 *
 808 * @param context An initialized mPIPE context.
 809 * @param count Number of eDMA rings required.
 810 * @param first Index of first eDMA ring if ::GXIO_MPIPE_ALLOC_FIXED flag
 811 *   is set, otherwise ignored.
 812 * @param flags Flag bits from ::gxio_mpipe_alloc_flags_e.
 813 * @return Index of first allocated buffer eDMA ring, or
 814 * ::GXIO_MPIPE_ERR_NO_EDMA_RING if allocation failed.
 815 */
 816extern int gxio_mpipe_alloc_edma_rings(gxio_mpipe_context_t *context,
 817                                       unsigned int count, unsigned int first,
 818                                       unsigned int flags);
 819
 820/* Initialize an eDMA ring, using the given memory and size.
 821 *
 822 * @param context An initialized mPIPE context.
 823 * @param ering The eDMA ring index.
 824 * @param channel The channel to use.  This must be one of the channels
 825 * associated with the context's set of open links.
 826 * @param mem A physically contiguous region of memory to be filled
 827 * with a ring of ::gxio_mpipe_edesc_t structures.
 828 * @param mem_size Number of bytes in the ring.  Must be 512, 2048,
 829 * 8192 or 65536, times 16 (i.e. sizeof(gxio_mpipe_edesc_t)).
 830 * @param mem_flags ::gxio_mpipe_mem_flags_e memory flags.
 831 *
 832 * @return 0 on success, ::GXIO_MPIPE_ERR_BAD_EDMA_RING or
 833 * ::GXIO_ERR_INVAL_MEMORY_SIZE on failure.
 834 */
 835extern int gxio_mpipe_init_edma_ring(gxio_mpipe_context_t *context,
 836                                     unsigned int ering, unsigned int channel,
 837                                     void *mem, size_t mem_size,
 838                                     unsigned int mem_flags);
 839
 840/* Set the "max_blks", "min_snf_blks", and "db" fields of
 841 * ::MPIPE_EDMA_RG_INIT_DAT_THRESH_t for a given edma ring.
 842 *
 843 * The global pool of dynamic blocks will be automatically adjusted.
 844 *
 845 * This function should not be called after any egress has been done
 846 * on the edma ring.
 847 *
 848 * Most applications should just use gxio_mpipe_equeue_set_snf_size().
 849 *
 850 * @param context An initialized mPIPE context.
 851 * @param ering The eDMA ring index.
 852 * @param max_blks The number of blocks to dedicate to the ring
 853 * (normally min_snf_blks + 1).  Must be greater than min_snf_blocks.
 854 * @param min_snf_blks The number of blocks which must be stored
 855 * prior to starting to send the packet (normally 12).
 856 * @param db Whether to allow use of dynamic blocks by the ring
 857 * (normally 1).
 858 *
 859 * @return 0 on success, negative on error.
 860 */
 861extern int gxio_mpipe_config_edma_ring_blks(gxio_mpipe_context_t *context,
 862                                            unsigned int ering,
 863                                            unsigned int max_blks,
 864                                            unsigned int min_snf_blks,
 865                                            unsigned int db);
 866
 867/*****************************************************************
 868 *                      Classifier Program                        *
 869 ******************************************************************/
 870
 871/*
 872 *
 873 * Functions for loading or configuring the mPIPE classifier program.
 874 *
 875 * The mPIPE classification processors all run a special "classifier"
 876 * program which, for each incoming packet, parses the packet headers,
 877 * encodes some packet metadata in the "idesc", and either drops the
 878 * packet, or picks a notif ring to handle the packet, and a buffer
 879 * stack to contain the packet, usually based on the channel, VLAN,
 880 * dMAC, flow hash, and packet size, under the guidance of the "rules"
 881 * API described below.
 882 *
 883 * @section gxio_mpipe_classifier_default Default Classifier
 884 *
 885 * The MDE provides a simple "default" classifier program.  It is
 886 * shipped as source in "$TILERA_ROOT/src/sys/mpipe/classifier.c",
 887 * which serves as its official documentation.  It is shipped as a
 888 * binary program in "$TILERA_ROOT/tile/boot/classifier", which is
 889 * automatically included in bootroms created by "tile-monitor", and
 890 * is automatically loaded by the hypervisor at boot time.
 891 *
 892 * The L2 analysis handles LLC packets, SNAP packets, and "VLAN
 893 * wrappers" (keeping the outer VLAN).
 894 *
 895 * The L3 analysis handles IPv4 and IPv6, dropping packets with bad
 896 * IPv4 header checksums, requesting computation of a TCP/UDP checksum
 897 * if appropriate, and hashing the dest and src IP addresses, plus the
 898 * ports for TCP/UDP packets, into the flow hash.  No special analysis
 899 * is done for "fragmented" packets or "tunneling" protocols.  Thus,
 900 * the first fragment of a fragmented TCP/UDP packet is hashed using
 901 * src/dest IP address and ports and all subsequent fragments are only
 902 * hashed according to src/dest IP address.
 903 *
 904 * The L3 analysis handles other packets too, hashing the dMAC
 905 * smac into a flow hash.
 906 *
 907 * The channel, VLAN, and dMAC used to pick a "rule" (see the
 908 * "rules" APIs below), which in turn is used to pick a buffer stack
 909 * (based on the packet size) and a bucket (based on the flow hash).
 910 *
 911 * To receive traffic matching a particular (channel/VLAN/dMAC
 912 * pattern, an application should allocate its own buffer stacks and
 913 * load balancer buckets, and map traffic to those stacks and buckets,
 914 * as decribed by the "rules" API below.
 915 *
 916 * Various packet metadata is encoded in the idesc.  The flow hash is
 917 * four bytes at 0x0C.  The VLAN is two bytes at 0x10.  The ethtype is
 918 * two bytes at 0x12.  The l3 start is one byte at 0x14.  The l4 start
 919 * is one byte at 0x15 for IPv4 and IPv6 packets, and otherwise zero.
 920 * The protocol is one byte at 0x16 for IPv4 and IPv6 packets, and
 921 * otherwise zero.
 922 *
 923 * @section gxio_mpipe_classifier_custom Custom Classifiers.
 924 *
 925 * A custom classifier may be created using "tile-mpipe-cc" with a
 926 * customized version of the default classifier sources.
 927 *
 928 * The custom classifier may be included in bootroms using the
 929 * "--classifier" option to "tile-monitor", or loaded dynamically
 930 * using gxio_mpipe_classifier_load_from_file().
 931 *
 932 * Be aware that "extreme" customizations may break the assumptions of
 933 * the "rules" APIs described below, but simple customizations, such
 934 * as adding new packet metadata, should be fine.
 935 */
 936
 937/* A set of classifier rules, plus a context. */
 938typedef struct {
 939
 940        /* The context. */
 941        gxio_mpipe_context_t *context;
 942
 943        /* The actual rules. */
 944        gxio_mpipe_rules_list_t list;
 945
 946} gxio_mpipe_rules_t;
 947
 948/* Initialize a classifier program rules list.
 949 *
 950 * This function can be called on a previously initialized rules list
 951 * to discard any previously added rules.
 952 *
 953 * @param rules Rules list to initialize.
 954 * @param context An initialized mPIPE context.
 955 */
 956extern void gxio_mpipe_rules_init(gxio_mpipe_rules_t *rules,
 957                                  gxio_mpipe_context_t *context);
 958
 959/* Begin a new rule on the indicated rules list.
 960 *
 961 * Note that an empty rule matches all packets, but an empty rule list
 962 * matches no packets.
 963 *
 964 * @param rules Rules list to which new rule is appended.
 965 * @param bucket First load balancer bucket to which packets will be
 966 * delivered.
 967 * @param num_buckets Number of buckets (must be a power of two) across
 968 * which packets will be distributed based on the "flow hash".
 969 * @param stacks Either NULL, to assign each packet to the smallest
 970 * initialized buffer stack which does not induce chaining (and to
 971 * drop packets which exceed the largest initialized buffer stack
 972 * buffer size), or an array, with each entry indicating which buffer
 973 * stack should be used for packets up to that size (with 255
 974 * indicating that those packets should be dropped).
 975 * @return 0 on success, or a negative error code on failure.
 976 */
 977extern int gxio_mpipe_rules_begin(gxio_mpipe_rules_t *rules,
 978                                  unsigned int bucket,
 979                                  unsigned int num_buckets,
 980                                  gxio_mpipe_rules_stacks_t *stacks);
 981
 982/* Set the headroom of the current rule.
 983 *
 984 * @param rules Rules list whose current rule will be modified.
 985 * @param headroom The headroom.
 986 * @return 0 on success, or a negative error code on failure.
 987 */
 988extern int gxio_mpipe_rules_set_headroom(gxio_mpipe_rules_t *rules,
 989                                         uint8_t headroom);
 990
 991/* Indicate that packets from a particular channel can be delivered
 992 * to the buckets and buffer stacks associated with the current rule.
 993 *
 994 * Channels added must be associated with links opened by the mPIPE context
 995 * used in gxio_mpipe_rules_init().  A rule with no channels is equivalent
 996 * to a rule naming all such associated channels.
 997 *
 998 * @param rules Rules list whose current rule will be modified.
 999 * @param channel The channel to add.
1000 * @return 0 on success, or a negative error code on failure.
1001 */
1002extern int gxio_mpipe_rules_add_channel(gxio_mpipe_rules_t *rules,
1003                                        unsigned int channel);
1004
1005/* Commit rules.
1006 *
1007 * The rules are sent to the hypervisor, where they are combined with
1008 * the rules from other apps, and used to program the hardware classifier.
1009 *
1010 * Note that if this function returns an error, then the rules will NOT
1011 * have been committed, even if the error is due to interactions with
1012 * rules from another app.
1013 *
1014 * @param rules Rules list to commit.
1015 * @return 0 on success, or a negative error code on failure.
1016 */
1017extern int gxio_mpipe_rules_commit(gxio_mpipe_rules_t *rules);
1018
1019/*****************************************************************
1020 *                     Ingress Queue Wrapper                      *
1021 ******************************************************************/
1022
1023/*
1024 *
1025 * Convenience functions for receiving packets from a NotifRing and
1026 * sending packets via an eDMA ring.
1027 *
1028 * The mpipe ingress and egress hardware uses shared memory packet
1029 * descriptors to describe packets that have arrived on ingress or
1030 * are destined for egress.  These descriptors are stored in shared
1031 * memory ring buffers and written or read by hardware as necessary.
1032 * The gxio library provides wrapper functions that manage the head and
1033 * tail pointers for these rings, allowing the user to easily read or
1034 * write packet descriptors.
1035 *
1036 * The initialization interface for ingress and egress rings is quite
1037 * similar.  For example, to create an ingress queue, the user passes
1038 * a ::gxio_mpipe_iqueue_t state object, a ring number from
1039 * gxio_mpipe_alloc_notif_rings(), and the address of memory to hold a
1040 * ring buffer to the gxio_mpipe_iqueue_init() function.  The function
1041 * returns success when the state object has been initialized and the
1042 * hardware configured to deliver packets to the specified ring
1043 * buffer.  Similarly, gxio_mpipe_equeue_init() takes a
1044 * ::gxio_mpipe_equeue_t state object, a ring number from
1045 * gxio_mpipe_alloc_edma_rings(), and a shared memory buffer.
1046 *
1047 * @section gxio_mpipe_iqueue Working with Ingress Queues
1048 *
1049 * Once initialized, the gxio_mpipe_iqueue_t API provides two flows
1050 * for getting the ::gxio_mpipe_idesc_t packet descriptor associated
1051 * with incoming packets.  The simplest is to call
1052 * gxio_mpipe_iqueue_get() or gxio_mpipe_iqueue_try_get().  These
1053 * functions copy the oldest packet descriptor out of the NotifRing and
1054 * into a descriptor provided by the caller.  They also immediately
1055 * inform the hardware that a descriptor has been processed.
1056 *
1057 * For applications with stringent performance requirements, higher
1058 * efficiency can be achieved by avoiding the packet descriptor copy
1059 * and processing multiple descriptors at once.  The
1060 * gxio_mpipe_iqueue_peek() and gxio_mpipe_iqueue_try_peek() functions
1061 * allow such optimizations.  These functions provide a pointer to the
1062 * next valid ingress descriptor in the NotifRing's shared memory ring
1063 * buffer, and a count of how many contiguous descriptors are ready to
1064 * be processed.  The application can then process any number of those
1065 * descriptors in place, calling gxio_mpipe_iqueue_consume() to inform
1066 * the hardware after each one has been processed.
1067 *
1068 * @section gxio_mpipe_equeue Working with Egress Queues
1069 *
1070 * Similarly, the egress queue API provides a high-performance
1071 * interface plus a simple wrapper for use in posting
1072 * ::gxio_mpipe_edesc_t egress packet descriptors.  The simple
1073 * version, gxio_mpipe_equeue_put(), allows the programmer to wait for
1074 * an eDMA ring slot to become available and write a single descriptor
1075 * into the ring.
1076 *
1077 * Alternatively, you can reserve slots in the eDMA ring using
1078 * gxio_mpipe_equeue_reserve() or gxio_mpipe_equeue_try_reserve(), and
1079 * then fill in each slot using gxio_mpipe_equeue_put_at().  This
1080 * capability can be used to amortize the cost of reserving slots
1081 * across several packets.  It also allows gather operations to be
1082 * performed on a shared equeue, by ensuring that the edescs for all
1083 * the fragments are all contiguous in the eDMA ring.
1084 *
1085 * The gxio_mpipe_equeue_reserve() and gxio_mpipe_equeue_try_reserve()
1086 * functions return a 63-bit "completion slot", which is actually a
1087 * sequence number, the low bits of which indicate the ring buffer
1088 * index and the high bits the number of times the application has
1089 * gone around the egress ring buffer.  The extra bits allow an
1090 * application to check for egress completion by calling
1091 * gxio_mpipe_equeue_is_complete() to see whether a particular 'slot'
1092 * number has finished.  Given the maximum packet rates of the Gx
1093 * processor, the 63-bit slot number will never wrap.
1094 *
1095 * In practice, most applications use the ::gxio_mpipe_edesc_t::hwb
1096 * bit to indicate that the buffers containing egress packet data
1097 * should be pushed onto a buffer stack when egress is complete.  Such
1098 * applications generally do not need to know when an egress operation
1099 * completes (since there is no need to free a buffer post-egress),
1100 * and thus can use the optimized gxio_mpipe_equeue_reserve_fast() or
1101 * gxio_mpipe_equeue_try_reserve_fast() functions, which return a 24
1102 * bit "slot", instead of a 63-bit "completion slot".
1103 *
1104 * Once a slot has been "reserved", it MUST be filled.  If the
1105 * application reserves a slot and then decides that it does not
1106 * actually need it, it can set the ::gxio_mpipe_edesc_t::ns (no send)
1107 * bit on the descriptor passed to gxio_mpipe_equeue_put_at() to
1108 * indicate that no data should be sent.  This technique can also be
1109 * used to drop an incoming packet, instead of forwarding it, since
1110 * any buffer will still be pushed onto the buffer stack when the
1111 * egress descriptor is processed.
1112 */
1113
1114/* A convenient interface to a NotifRing, for use by a single thread.
1115 */
1116typedef struct {
1117
1118        /* The context. */
1119        gxio_mpipe_context_t *context;
1120
1121        /* The actual NotifRing. */
1122        gxio_mpipe_idesc_t *idescs;
1123
1124        /* The number of entries. */
1125        unsigned long num_entries;
1126
1127        /* The number of entries minus one. */
1128        unsigned long mask_num_entries;
1129
1130        /* The log2() of the number of entries. */
1131        unsigned long log2_num_entries;
1132
1133        /* The next entry. */
1134        unsigned int head;
1135
1136        /* The NotifRing id. */
1137        unsigned int ring;
1138
1139#ifdef __BIG_ENDIAN__
1140        /* The number of byteswapped entries. */
1141        unsigned int swapped;
1142#endif
1143
1144} gxio_mpipe_iqueue_t;
1145
1146/* Initialize an "iqueue".
1147 *
1148 * Takes the iqueue plus the same args as gxio_mpipe_init_notif_ring().
1149 */
1150extern int gxio_mpipe_iqueue_init(gxio_mpipe_iqueue_t *iqueue,
1151                                  gxio_mpipe_context_t *context,
1152                                  unsigned int ring,
1153                                  void *mem, size_t mem_size,
1154                                  unsigned int mem_flags);
1155
1156/* Advance over some old entries in an iqueue.
1157 *
1158 * Please see the documentation for gxio_mpipe_iqueue_consume().
1159 *
1160 * @param iqueue An ingress queue initialized via gxio_mpipe_iqueue_init().
1161 * @param count The number of entries to advance over.
1162 */
1163static inline void gxio_mpipe_iqueue_advance(gxio_mpipe_iqueue_t *iqueue,
1164                                             int count)
1165{
1166        /* Advance with proper wrap. */
1167        int head = iqueue->head + count;
1168        iqueue->head =
1169                (head & iqueue->mask_num_entries) +
1170                (head >> iqueue->log2_num_entries);
1171
1172#ifdef __BIG_ENDIAN__
1173        /* HACK: Track swapped entries. */
1174        iqueue->swapped -= count;
1175#endif
1176}
1177
1178/* Release the ring and bucket for an old entry in an iqueue.
1179 *
1180 * Releasing the ring allows more packets to be delivered to the ring.
1181 *
1182 * Releasing the bucket allows flows using the bucket to be moved to a
1183 * new ring when using GXIO_MPIPE_BUCKET_DYNAMIC_FLOW_AFFINITY.
1184 *
1185 * This function is shorthand for "gxio_mpipe_credit(iqueue->context,
1186 * iqueue->ring, idesc->bucket_id, 1)", and it may be more convenient
1187 * to make that underlying call, using those values, instead of
1188 * tracking the entire "idesc".
1189 *
1190 * If packet processing is deferred, optimal performance requires that
1191 * the releasing be deferred as well.
1192 *
1193 * Please see the documentation for gxio_mpipe_iqueue_consume().
1194 *
1195 * @param iqueue An ingress queue initialized via gxio_mpipe_iqueue_init().
1196 * @param idesc The descriptor which was processed.
1197 */
1198static inline void gxio_mpipe_iqueue_release(gxio_mpipe_iqueue_t *iqueue,
1199                                             gxio_mpipe_idesc_t *idesc)
1200{
1201        gxio_mpipe_credit(iqueue->context, iqueue->ring, idesc->bucket_id, 1);
1202}
1203
1204/* Consume a packet from an "iqueue".
1205 *
1206 * After processing packets peeked at via gxio_mpipe_iqueue_peek()
1207 * or gxio_mpipe_iqueue_try_peek(), you must call this function, or
1208 * gxio_mpipe_iqueue_advance() plus gxio_mpipe_iqueue_release(), to
1209 * advance over those entries, and release their rings and buckets.
1210 *
1211 * You may call this function as each packet is processed, or you can
1212 * wait until several packets have been processed.
1213 *
1214 * Note that if you are using a single bucket, and you are handling
1215 * batches of N packets, then you can replace several calls to this
1216 * function with calls to "gxio_mpipe_iqueue_advance(iqueue, N)" and
1217 * "gxio_mpipe_credit(iqueue->context, iqueue->ring, bucket, N)".
1218 *
1219 * Note that if your classifier sets "idesc->nr", then you should
1220 * explicitly call "gxio_mpipe_iqueue_advance(iqueue, idesc)" plus
1221 * "gxio_mpipe_credit(iqueue->context, iqueue->ring, -1, 1)", to
1222 * avoid incorrectly crediting the (unused) bucket.
1223 *
1224 * @param iqueue An ingress queue initialized via gxio_mpipe_iqueue_init().
1225 * @param idesc The descriptor which was processed.
1226 */
1227static inline void gxio_mpipe_iqueue_consume(gxio_mpipe_iqueue_t *iqueue,
1228                                             gxio_mpipe_idesc_t *idesc)
1229{
1230        gxio_mpipe_iqueue_advance(iqueue, 1);
1231        gxio_mpipe_iqueue_release(iqueue, idesc);
1232}
1233
1234/* Peek at the next packet(s) in an "iqueue", without waiting.
1235 *
1236 * If no packets are available, fills idesc_ref with NULL, and then
1237 * returns ::GXIO_MPIPE_ERR_IQUEUE_EMPTY.  Otherwise, fills idesc_ref
1238 * with the address of the next valid packet descriptor, and returns
1239 * the maximum number of valid descriptors which can be processed.
1240 * You may process fewer descriptors if desired.
1241 *
1242 * Call gxio_mpipe_iqueue_consume() on each packet once it has been
1243 * processed (or dropped), to allow more packets to be delivered.
1244 *
1245 * @param iqueue An ingress queue initialized via gxio_mpipe_iqueue_init().
1246 * @param idesc_ref A pointer to a packet descriptor pointer.
1247 * @return The (positive) number of packets which can be processed,
1248 * or ::GXIO_MPIPE_ERR_IQUEUE_EMPTY if no packets are available.
1249 */
1250static inline int gxio_mpipe_iqueue_try_peek(gxio_mpipe_iqueue_t *iqueue,
1251                                             gxio_mpipe_idesc_t **idesc_ref)
1252{
1253        gxio_mpipe_idesc_t *next;
1254
1255        uint64_t head = iqueue->head;
1256        uint64_t tail = __gxio_mmio_read(iqueue->idescs);
1257
1258        /* Available entries. */
1259        uint64_t avail =
1260                (tail >= head) ? (tail - head) : (iqueue->num_entries - head);
1261
1262        if (avail == 0) {
1263                *idesc_ref = NULL;
1264                return GXIO_MPIPE_ERR_IQUEUE_EMPTY;
1265        }
1266
1267        next = &iqueue->idescs[head];
1268
1269        /* ISSUE: Is this helpful? */
1270        __insn_prefetch(next);
1271
1272#ifdef __BIG_ENDIAN__
1273        /* HACK: Swap new entries directly in memory. */
1274        {
1275                int i, j;
1276                for (i = iqueue->swapped; i < avail; i++) {
1277                        for (j = 0; j < 8; j++)
1278                                next[i].words[j] =
1279                                        __builtin_bswap64(next[i].words[j]);
1280                }
1281                iqueue->swapped = avail;
1282        }
1283#endif
1284
1285        *idesc_ref = next;
1286
1287        return avail;
1288}
1289
1290/* Drop a packet by pushing its buffer (if appropriate).
1291 *
1292 * NOTE: The caller must still call gxio_mpipe_iqueue_consume() if idesc
1293 * came from gxio_mpipe_iqueue_try_peek() or gxio_mpipe_iqueue_peek().
1294 *
1295 * @param iqueue An ingress queue initialized via gxio_mpipe_iqueue_init().
1296 * @param idesc A packet descriptor.
1297 */
1298static inline void gxio_mpipe_iqueue_drop(gxio_mpipe_iqueue_t *iqueue,
1299                                          gxio_mpipe_idesc_t *idesc)
1300{
1301        /* FIXME: Handle "chaining" properly. */
1302
1303        if (!idesc->be) {
1304                unsigned char *va = gxio_mpipe_idesc_get_va(idesc);
1305                gxio_mpipe_push_buffer(iqueue->context, idesc->stack_idx, va);
1306        }
1307}
1308
1309/*****************************************************************
1310 *                      Egress Queue Wrapper                      *
1311 ******************************************************************/
1312
1313/* A convenient, thread-safe interface to an eDMA ring. */
1314typedef struct {
1315
1316        /* State object for tracking head and tail pointers. */
1317        __gxio_dma_queue_t dma_queue;
1318
1319        /* The ring entries. */
1320        gxio_mpipe_edesc_t *edescs;
1321
1322        /* The number of entries minus one. */
1323        unsigned long mask_num_entries;
1324
1325        /* The log2() of the number of entries. */
1326        unsigned long log2_num_entries;
1327
1328        /* The context. */
1329        gxio_mpipe_context_t *context;
1330
1331        /* The ering. */
1332        unsigned int ering;
1333
1334        /* The channel. */
1335        unsigned int channel;
1336
1337} gxio_mpipe_equeue_t;
1338
1339/* Initialize an "equeue".
1340 *
1341 * This function uses gxio_mpipe_init_edma_ring() to initialize the
1342 * underlying edma_ring using the provided arguments.
1343 *
1344 * @param equeue An egress queue to be initialized.
1345 * @param context An initialized mPIPE context.
1346 * @param ering The eDMA ring index.
1347 * @param channel The channel to use.  This must be one of the channels
1348 * associated with the context's set of open links.
1349 * @param mem A physically contiguous region of memory to be filled
1350 * with a ring of ::gxio_mpipe_edesc_t structures.
1351 * @param mem_size Number of bytes in the ring.  Must be 512, 2048,
1352 * 8192 or 65536, times 16 (i.e. sizeof(gxio_mpipe_edesc_t)).
1353 * @param mem_flags ::gxio_mpipe_mem_flags_e memory flags.
1354 *
1355 * @return 0 on success, ::GXIO_MPIPE_ERR_BAD_EDMA_RING or
1356 * ::GXIO_ERR_INVAL_MEMORY_SIZE on failure.
1357 */
1358extern int gxio_mpipe_equeue_init(gxio_mpipe_equeue_t *equeue,
1359                                  gxio_mpipe_context_t *context,
1360                                  unsigned int ering,
1361                                  unsigned int channel,
1362                                  void *mem, unsigned int mem_size,
1363                                  unsigned int mem_flags);
1364
1365/* Reserve completion slots for edescs.
1366 *
1367 * Use gxio_mpipe_equeue_put_at() to actually populate the slots.
1368 *
1369 * This function is slower than gxio_mpipe_equeue_reserve_fast(), but
1370 * returns a full 64 bit completion slot, which can be used with
1371 * gxio_mpipe_equeue_is_complete().
1372 *
1373 * @param equeue An egress queue initialized via gxio_mpipe_equeue_init().
1374 * @param num Number of slots to reserve (must be non-zero).
1375 * @return The first reserved completion slot, or a negative error code.
1376 */
1377static inline int64_t gxio_mpipe_equeue_reserve(gxio_mpipe_equeue_t *equeue,
1378                                                unsigned int num)
1379{
1380        return __gxio_dma_queue_reserve_aux(&equeue->dma_queue, num, true);
1381}
1382
1383/* Reserve completion slots for edescs, if possible.
1384 *
1385 * Use gxio_mpipe_equeue_put_at() to actually populate the slots.
1386 *
1387 * This function is slower than gxio_mpipe_equeue_try_reserve_fast(),
1388 * but returns a full 64 bit completion slot, which can be used with
1389 * gxio_mpipe_equeue_is_complete().
1390 *
1391 * @param equeue An egress queue initialized via gxio_mpipe_equeue_init().
1392 * @param num Number of slots to reserve (must be non-zero).
1393 * @return The first reserved completion slot, or a negative error code.
1394 */
1395static inline int64_t gxio_mpipe_equeue_try_reserve(gxio_mpipe_equeue_t
1396                                                    *equeue, unsigned int num)
1397{
1398        return __gxio_dma_queue_reserve_aux(&equeue->dma_queue, num, false);
1399}
1400
1401/* Reserve slots for edescs.
1402 *
1403 * Use gxio_mpipe_equeue_put_at() to actually populate the slots.
1404 *
1405 * This function is faster than gxio_mpipe_equeue_reserve(), but
1406 * returns a 24 bit slot (instead of a 64 bit completion slot), which
1407 * thus cannot be used with gxio_mpipe_equeue_is_complete().
1408 *
1409 * @param equeue An egress queue initialized via gxio_mpipe_equeue_init().
1410 * @param num Number of slots to reserve (should be non-zero).
1411 * @return The first reserved slot, or a negative error code.
1412 */
1413static inline int64_t gxio_mpipe_equeue_reserve_fast(gxio_mpipe_equeue_t
1414                                                     *equeue, unsigned int num)
1415{
1416        return __gxio_dma_queue_reserve(&equeue->dma_queue, num, true, false);
1417}
1418
1419/* Reserve slots for edescs, if possible.
1420 *
1421 * Use gxio_mpipe_equeue_put_at() to actually populate the slots.
1422 *
1423 * This function is faster than gxio_mpipe_equeue_try_reserve(), but
1424 * returns a 24 bit slot (instead of a 64 bit completion slot), which
1425 * thus cannot be used with gxio_mpipe_equeue_is_complete().
1426 *
1427 * @param equeue An egress queue initialized via gxio_mpipe_equeue_init().
1428 * @param num Number of slots to reserve (should be non-zero).
1429 * @return The first reserved slot, or a negative error code.
1430 */
1431static inline int64_t gxio_mpipe_equeue_try_reserve_fast(gxio_mpipe_equeue_t
1432                                                         *equeue,
1433                                                         unsigned int num)
1434{
1435        return __gxio_dma_queue_reserve(&equeue->dma_queue, num, false, false);
1436}
1437
1438/*
1439 * HACK: This helper function tricks gcc 4.6 into avoiding saving
1440 * a copy of "edesc->words[0]" on the stack for no obvious reason.
1441 */
1442
1443static inline void gxio_mpipe_equeue_put_at_aux(gxio_mpipe_equeue_t *equeue,
1444                                                uint_reg_t ew[2],
1445                                                unsigned long slot)
1446{
1447        unsigned long edma_slot = slot & equeue->mask_num_entries;
1448        gxio_mpipe_edesc_t *edesc_p = &equeue->edescs[edma_slot];
1449
1450        /*
1451         * ISSUE: Could set eDMA ring to be on generation 1 at start, which
1452         * would avoid the negation here, perhaps allowing "__insn_bfins()".
1453         */
1454        ew[0] |= !((slot >> equeue->log2_num_entries) & 1);
1455
1456        /*
1457         * NOTE: We use "__gxio_mpipe_write()", plus the fact that the eDMA
1458         * queue alignment restrictions ensure that these two words are on
1459         * the same cacheline, to force proper ordering between the stores.
1460         */
1461        __gxio_mmio_write64(&edesc_p->words[1], ew[1]);
1462        __gxio_mmio_write64(&edesc_p->words[0], ew[0]);
1463}
1464
1465/* Post an edesc to a given slot in an equeue.
1466 *
1467 * This function copies the supplied edesc into entry "slot mod N" in
1468 * the underlying ring, setting the "gen" bit to the appropriate value
1469 * based on "(slot mod N*2)", where "N" is the size of the ring.  Note
1470 * that the higher bits of slot are unused, and thus, this function
1471 * can handle "slots" as well as "completion slots".
1472 *
1473 * Normally this function is used to fill in slots reserved by
1474 * gxio_mpipe_equeue_try_reserve(), gxio_mpipe_equeue_reserve(),
1475 * gxio_mpipe_equeue_try_reserve_fast(), or
1476 * gxio_mpipe_equeue_reserve_fast(),
1477 *
1478 * This function can also be used without "reserving" slots, if the
1479 * application KNOWS that the ring can never overflow, for example, by
1480 * pushing fewer buffers into the buffer stacks than there are total
1481 * slots in the equeue, but this is NOT recommended.
1482 *
1483 * @param equeue An egress queue initialized via gxio_mpipe_equeue_init().
1484 * @param edesc The egress descriptor to be posted.
1485 * @param slot An egress slot (only the low bits are actually used).
1486 */
1487static inline void gxio_mpipe_equeue_put_at(gxio_mpipe_equeue_t *equeue,
1488                                            gxio_mpipe_edesc_t edesc,
1489                                            unsigned long slot)
1490{
1491        gxio_mpipe_equeue_put_at_aux(equeue, edesc.words, slot);
1492}
1493
1494/* Post an edesc to the next slot in an equeue.
1495 *
1496 * This is a convenience wrapper around
1497 * gxio_mpipe_equeue_reserve_fast() and gxio_mpipe_equeue_put_at().
1498 *
1499 * @param equeue An egress queue initialized via gxio_mpipe_equeue_init().
1500 * @param edesc The egress descriptor to be posted.
1501 * @return 0 on success.
1502 */
1503static inline int gxio_mpipe_equeue_put(gxio_mpipe_equeue_t *equeue,
1504                                        gxio_mpipe_edesc_t edesc)
1505{
1506        int64_t slot = gxio_mpipe_equeue_reserve_fast(equeue, 1);
1507        if (slot < 0)
1508                return (int)slot;
1509
1510        gxio_mpipe_equeue_put_at(equeue, edesc, slot);
1511
1512        return 0;
1513}
1514
1515/* Ask the mPIPE hardware to egress outstanding packets immediately.
1516 *
1517 * This call is not necessary, but may slightly reduce overall latency.
1518 *
1519 * Technically, you should flush all gxio_mpipe_equeue_put_at() writes
1520 * to memory before calling this function, to ensure the descriptors
1521 * are visible in memory before the mPIPE hardware actually looks for
1522 * them.  But this should be very rare, and the only side effect would
1523 * be increased latency, so it is up to the caller to decide whether
1524 * or not to flush memory.
1525 *
1526 * @param equeue An egress queue initialized via gxio_mpipe_equeue_init().
1527 */
1528static inline void gxio_mpipe_equeue_flush(gxio_mpipe_equeue_t *equeue)
1529{
1530        /* Use "ring_idx = 0" and "count = 0" to "wake up" the eDMA ring. */
1531        MPIPE_EDMA_POST_REGION_VAL_t val = { {0} };
1532        /* Flush the write buffers. */
1533        __insn_flushwb();
1534        __gxio_mmio_write(equeue->dma_queue.post_region_addr, val.word);
1535}
1536
1537/* Determine if a given edesc has been completed.
1538 *
1539 * Note that this function requires a "completion slot", and thus may
1540 * NOT be used with a "slot" from gxio_mpipe_equeue_reserve_fast() or
1541 * gxio_mpipe_equeue_try_reserve_fast().
1542 *
1543 * @param equeue An egress queue initialized via gxio_mpipe_equeue_init().
1544 * @param completion_slot The completion slot used by the edesc.
1545 * @param update If true, and the desc does not appear to have completed
1546 * yet, then update any software cache of the hardware completion counter,
1547 * and check again.  This should normally be true.
1548 * @return True iff the given edesc has been completed.
1549 */
1550static inline int gxio_mpipe_equeue_is_complete(gxio_mpipe_equeue_t *equeue,
1551                                                int64_t completion_slot,
1552                                                int update)
1553{
1554        return __gxio_dma_queue_is_complete(&equeue->dma_queue,
1555                                            completion_slot, update);
1556}
1557
1558/* Set the snf (store and forward) size for an equeue.
1559 *
1560 * The snf size for an equeue defaults to 1536, and encodes the size
1561 * of the largest packet for which egress is guaranteed to avoid
1562 * transmission underruns and/or corrupt checksums under heavy load.
1563 *
1564 * The snf size affects a global resource pool which cannot support,
1565 * for example, all 24 equeues each requesting an snf size of 8K.
1566 *
1567 * To ensure that jumbo packets can be egressed properly, the snf size
1568 * should be set to the size of the largest possible packet, which
1569 * will usually be limited by the size of the app's largest buffer.
1570 *
1571 * This is a convenience wrapper around
1572 * gxio_mpipe_config_edma_ring_blks().
1573 *
1574 * This function should not be called after any egress has been done
1575 * on the equeue.
1576 *
1577 * @param equeue An egress queue initialized via gxio_mpipe_equeue_init().
1578 * @param size The snf size, in bytes.
1579 * @return Zero on success, negative error otherwise.
1580 */
1581static inline int gxio_mpipe_equeue_set_snf_size(gxio_mpipe_equeue_t *equeue,
1582                                                 size_t size)
1583{
1584        int blks = (size + 127) / 128;
1585        return gxio_mpipe_config_edma_ring_blks(equeue->context, equeue->ering,
1586                                                blks + 1, blks, 1);
1587}
1588
1589/*****************************************************************
1590 *                        Link Management                         *
1591 ******************************************************************/
1592
1593/*
1594 *
1595 * Functions for manipulating and sensing the state and configuration
1596 * of physical network links.
1597 *
1598 * @section gxio_mpipe_link_perm Link Permissions
1599 *
1600 * Opening a link (with gxio_mpipe_link_open()) requests a set of link
1601 * permissions, which control what may be done with the link, and potentially
1602 * what permissions may be granted to other processes.
1603 *
1604 * Data permission allows the process to receive packets from the link by
1605 * specifying the link's channel number in mPIPE packet distribution rules,
1606 * and to send packets to the link by using the link's channel number as
1607 * the target for an eDMA ring.
1608 *
1609 * Stats permission allows the process to retrieve link attributes (such as
1610 * the speeds it is capable of running at, or whether it is currently up), and
1611 * to read and write certain statistics-related registers in the link's MAC.
1612 *
1613 * Control permission allows the process to retrieve and modify link attributes
1614 * (so that it may, for example, bring the link up and take it down), and
1615 * read and write many registers in the link's MAC and PHY.
1616 *
1617 * Any permission may be requested as shared, which allows other processes
1618 * to also request shared permission, or exclusive, which prevents other
1619 * processes from requesting it.  In keeping with GXIO's typical usage in
1620 * an embedded environment, the defaults for all permissions are shared.
1621 *
1622 * Permissions are granted on a first-come, first-served basis, so if two
1623 * applications request an exclusive permission on the same link, the one
1624 * to run first will win.  Note, however, that some system components, like
1625 * the kernel Ethernet driver, may get an opportunity to open links before
1626 * any applications run.
1627 *
1628 * @section gxio_mpipe_link_names Link Names
1629 *
1630 * Link names are of the form gbe<em>number</em> (for Gigabit Ethernet),
1631 * xgbe<em>number</em> (for 10 Gigabit Ethernet), loop<em>number</em> (for
1632 * internal mPIPE loopback), or ilk<em>number</em>/<em>channel</em>
1633 * (for Interlaken links); for instance, gbe0, xgbe1, loop3, and
1634 * ilk0/12 are all possible link names.  The correspondence between
1635 * the link name and an mPIPE instance number or mPIPE channel number is
1636 * system-dependent; all links will not exist on all systems, and the set
1637 * of numbers used for a particular link type may not start at zero and may
1638 * not be contiguous.  Use gxio_mpipe_link_enumerate() to retrieve the set of
1639 * links which exist on a system, and always use gxio_mpipe_link_instance()
1640 * to determine which mPIPE controls a particular link.
1641 *
1642 * Note that in some cases, links may share hardware, such as PHYs, or
1643 * internal mPIPE buffers; in these cases, only one of the links may be
1644 * opened at a time.  This is especially common with xgbe and gbe ports,
1645 * since each xgbe port uses 4 SERDES lanes, each of which may also be
1646 * configured as one gbe port.
1647 *
1648 * @section gxio_mpipe_link_states Link States
1649 *
1650 * The mPIPE link management model revolves around three different states,
1651 * which are maintained for each link:
1652 *
1653 * 1. The <em>current</em> link state: is the link up now, and if so, at
1654 *    what speed?
1655 *
1656 * 2. The <em>desired</em> link state: what do we want the link state to be?
1657 *    The system is always working to make this state the current state;
1658 *    thus, if the desired state is up, and the link is down, we'll be
1659 *    constantly trying to bring it up, automatically.
1660 *
1661 * 3. The <em>possible</em> link state: what speeds are valid for this
1662 *    particular link?  Or, in other words, what are the capabilities of
1663 *    the link hardware?
1664 *
1665 * These link states are not, strictly speaking, related to application
1666 * state; they may be manipulated at any time, whether or not the link
1667 * is currently being used for data transfer.  However, for convenience,
1668 * gxio_mpipe_link_open() and gxio_mpipe_link_close() (or application exit)
1669 * can affect the link state.  These implicit link management operations
1670 * may be modified or disabled by the use of link open flags.
1671 *
1672 * From an application, you can use gxio_mpipe_link_get_attr()
1673 * and gxio_mpipe_link_set_attr() to manipulate the link states.
1674 * gxio_mpipe_link_get_attr() with ::GXIO_MPIPE_LINK_POSSIBLE_STATE
1675 * gets you the possible link state.  gxio_mpipe_link_get_attr() with
1676 * ::GXIO_MPIPE_LINK_CURRENT_STATE gets you the current link state.
1677 * Finally, gxio_mpipe_link_set_attr() and gxio_mpipe_link_get_attr()
1678 * with ::GXIO_MPIPE_LINK_DESIRED_STATE allow you to modify or retrieve
1679 * the desired link state.
1680 *
1681 * If you want to manage a link from a part of your application which isn't
1682 * involved in packet processing, you can use the ::GXIO_MPIPE_LINK_NO_DATA
1683 * flags on a gxio_mpipe_link_open() call.  This opens the link, but does
1684 * not request data permission, so it does not conflict with any exclusive
1685 * permissions which may be held by other processes.  You can then can use
1686 * gxio_mpipe_link_get_attr() and gxio_mpipe_link_set_attr() on this link
1687 * object to bring up or take down the link.
1688 *
1689 * Some links support link state bits which support various loopback
1690 * modes. ::GXIO_MPIPE_LINK_LOOP_MAC tests datapaths within the Tile
1691 * Processor itself; ::GXIO_MPIPE_LINK_LOOP_PHY tests the datapath between
1692 * the Tile Processor and the external physical layer interface chip; and
1693 * ::GXIO_MPIPE_LINK_LOOP_EXT tests the entire network datapath with the
1694 * aid of an external loopback connector.  In addition to enabling hardware
1695 * testing, such configuration can be useful for software testing, as well.
1696 *
1697 * When LOOP_MAC or LOOP_PHY is enabled, packets transmitted on a channel
1698 * will be received by that channel, instead of being emitted on the
1699 * physical link, and packets received on the physical link will be ignored.
1700 * Other than that, all standard GXIO operations work as you might expect.
1701 * Note that loopback operation requires that the link be brought up using
1702 * one or more of the GXIO_MPIPE_LINK_SPEED_xxx link state bits.
1703 *
1704 * Those familiar with previous versions of the MDE on TILEPro hardware
1705 * will notice significant similarities between the NetIO link management
1706 * model and the mPIPE link management model.  However, the NetIO model
1707 * was developed in stages, and some of its features -- for instance,
1708 * the default setting of certain flags -- were shaped by the need to be
1709 * compatible with previous versions of NetIO.  Since the features provided
1710 * by the mPIPE hardware and the mPIPE GXIO library are significantly
1711 * different than those provided by NetIO, in some cases, we have made
1712 * different choices in the mPIPE link management API.  Thus, please read
1713 * this documentation carefully before assuming that mPIPE link management
1714 * operations are exactly equivalent to their NetIO counterparts.
1715 */
1716
1717/* An object used to manage mPIPE link state and resources. */
1718typedef struct {
1719        /* The overall mPIPE context. */
1720        gxio_mpipe_context_t *context;
1721
1722        /* The channel number used by this link. */
1723        uint8_t channel;
1724
1725        /* The MAC index used by this link. */
1726        uint8_t mac;
1727} gxio_mpipe_link_t;
1728
1729/* Translate a link name to the instance number of the mPIPE shim which is
1730 *  connected to that link.  This call does not verify whether the link is
1731 *  currently available, and does not reserve any link resources;
1732 *  gxio_mpipe_link_open() must be called to perform those functions.
1733 *
1734 *  Typically applications will call this function to translate a link name
1735 *  to an mPIPE instance number; call gxio_mpipe_init(), passing it that
1736 *  instance number, to initialize the mPIPE shim; and then call
1737 *  gxio_mpipe_link_open(), passing it the same link name plus the mPIPE
1738 *  context, to configure the link.
1739 *
1740 * @param link_name Name of the link; see @ref gxio_mpipe_link_names.
1741 * @return The mPIPE instance number which is associated with the named
1742 *  link, or a negative error code (::GXIO_ERR_NO_DEVICE) if the link does
1743 *  not exist.
1744 */
1745extern int gxio_mpipe_link_instance(const char *link_name);
1746
1747/* Retrieve one of this system's legal link names, and its MAC address.
1748 *
1749 * @param index Link name index.  If a system supports N legal link names,
1750 *  then indices between 0 and N - 1, inclusive, each correspond to one of
1751 *  those names.  Thus, to retrieve all of a system's legal link names,
1752 *  call this function in a loop, starting with an index of zero, and
1753 *  incrementing it once per iteration until -1 is returned.
1754 * @param link_name Pointer to the buffer which will receive the retrieved
1755 *  link name.  The buffer should contain space for at least
1756 *  ::GXIO_MPIPE_LINK_NAME_LEN bytes; the returned name, including the
1757 *  terminating null byte, will be no longer than that.
1758 * @param link_name Pointer to the buffer which will receive the retrieved
1759 *  MAC address.  The buffer should contain space for at least 6 bytes.
1760 * @return Zero if a link name was successfully retrieved; -1 if one was
1761 *  not.
1762 */
1763extern int gxio_mpipe_link_enumerate_mac(int index, char *link_name,
1764                                         uint8_t *mac_addr);
1765
1766/* Open an mPIPE link.
1767 *
1768 *  A link must be opened before it may be used to send or receive packets,
1769 *  and before its state may be examined or changed.  Depending up on the
1770 *  link's intended use, one or more link permissions may be requested via
1771 *  the flags parameter; see @ref gxio_mpipe_link_perm.  In addition, flags
1772 *  may request that the link's state be modified at open time.  See @ref
1773 *  gxio_mpipe_link_states and @ref gxio_mpipe_link_open_flags for more detail.
1774 *
1775 * @param link A link state object, which will be initialized if this
1776 *  function completes successfully.
1777 * @param context An initialized mPIPE context.
1778 * @param link_name Name of the link.
1779 * @param flags Zero or more @ref gxio_mpipe_link_open_flags, ORed together.
1780 * @return 0 if the link was successfully opened, or a negative error code.
1781 *
1782 */
1783extern int gxio_mpipe_link_open(gxio_mpipe_link_t *link,
1784                                gxio_mpipe_context_t *context,
1785                                const char *link_name, unsigned int flags);
1786
1787/* Close an mPIPE link.
1788 *
1789 *  Closing a link makes it available for use by other processes.  Once
1790 *  a link has been closed, packets may no longer be sent on or received
1791 *  from the link, and its state may not be examined or changed.
1792 *
1793 * @param link A link state object, which will no longer be initialized
1794 *  if this function completes successfully.
1795 * @return 0 if the link was successfully closed, or a negative error code.
1796 *
1797 */
1798extern int gxio_mpipe_link_close(gxio_mpipe_link_t *link);
1799
1800/* Return a link's channel number.
1801 *
1802 * @param link A properly initialized link state object.
1803 * @return The channel number for the link.
1804 */
1805static inline int gxio_mpipe_link_channel(gxio_mpipe_link_t *link)
1806{
1807        return link->channel;
1808}
1809
1810/* Set a link attribute.
1811 *
1812 * @param link A properly initialized link state object.
1813 * @param attr An attribute from the set of @ref gxio_mpipe_link_attrs.
1814 * @param val New value of the attribute.
1815 * @return 0 if the attribute was successfully set, or a negative error
1816 *  code.
1817 */
1818extern int gxio_mpipe_link_set_attr(gxio_mpipe_link_t *link, uint32_t attr,
1819                                    int64_t val);
1820
1821///////////////////////////////////////////////////////////////////
1822//                             Timestamp                         //
1823///////////////////////////////////////////////////////////////////
1824
1825/* Get the timestamp of mPIPE when this routine is called.
1826 *
1827 * @param context An initialized mPIPE context.
1828 * @param ts A timespec structure to store the current clock.
1829 * @return If the call was successful, zero; otherwise, a negative error
1830 *  code.
1831 */
1832extern int gxio_mpipe_get_timestamp(gxio_mpipe_context_t *context,
1833                                    struct timespec *ts);
1834
1835/* Set the timestamp of mPIPE.
1836 *
1837 * @param context An initialized mPIPE context.
1838 * @param ts A timespec structure to store the requested clock.
1839 * @return If the call was successful, zero; otherwise, a negative error
1840 *  code.
1841 */
1842extern int gxio_mpipe_set_timestamp(gxio_mpipe_context_t *context,
1843                                    const struct timespec *ts);
1844
1845/* Adjust the timestamp of mPIPE.
1846 *
1847 * @param context An initialized mPIPE context.
1848 * @param delta A signed time offset to adjust, in nanoseconds.
1849 * The absolute value of this parameter must be less than or
1850 * equal to 1000000000.
1851 * @return If the call was successful, zero; otherwise, a negative error
1852 *  code.
1853 */
1854extern int gxio_mpipe_adjust_timestamp(gxio_mpipe_context_t *context,
1855                                       int64_t delta);
1856
1857/** Adjust the mPIPE timestamp clock frequency.
1858 *
1859 * @param context An initialized mPIPE context.
1860 * @param ppb A 32-bit signed PPB (Parts Per Billion) value to adjust.
1861 * The absolute value of ppb must be less than or equal to 1000000000.
1862 * Values less than about 30000 will generally cause a GXIO_ERR_INVAL
1863 * return due to the granularity of the hardware that converts reference
1864 * clock cycles into seconds and nanoseconds.
1865 * @return If the call was successful, zero; otherwise, a negative error
1866 *  code.
1867 */
1868extern int gxio_mpipe_adjust_timestamp_freq(gxio_mpipe_context_t* context,
1869                                            int32_t ppb);
1870
1871#endif /* !_GXIO_MPIPE_H_ */
1872