1/* 2 * Copyright 2012 Tilera Corporation. All Rights Reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public License 6 * as published by the Free Software Foundation, version 2. 7 * 8 * This program is distributed in the hope that it will be useful, but 9 * WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or 11 * NON INFRINGEMENT. See the GNU General Public License for 12 * more details. 13 */ 14 15#ifndef _GXIO_MPIPE_H_ 16#define _GXIO_MPIPE_H_ 17 18/* 19 * 20 * An API for allocating, configuring, and manipulating mPIPE hardware 21 * resources. 22 */ 23 24#include <gxio/common.h> 25#include <gxio/dma_queue.h> 26 27#include <linux/time.h> 28 29#include <arch/mpipe_def.h> 30#include <arch/mpipe_shm.h> 31 32#include <hv/drv_mpipe_intf.h> 33#include <hv/iorpc.h> 34 35/* 36 * 37 * The TILE-Gx mPIPE&tm; shim provides Ethernet connectivity, packet 38 * classification, and packet load balancing services. The 39 * gxio_mpipe_ API, declared in <gxio/mpipe.h>, allows applications to 40 * allocate mPIPE IO channels, configure packet distribution 41 * parameters, and send and receive Ethernet packets. The API is 42 * designed to be a minimal wrapper around the mPIPE hardware, making 43 * system calls only where necessary to preserve inter-process 44 * protection guarantees. 45 * 46 * The APIs described below allow the programmer to allocate and 47 * configure mPIPE resources. As described below, the mPIPE is a 48 * single shared hardware device that provides partitionable resources 49 * that are shared between all applications in the system. The 50 * gxio_mpipe_ API allows userspace code to make resource request 51 * calls to the hypervisor, which in turns keeps track of the 52 * resources in use by all applications, maintains protection 53 * guarantees, and resets resources upon application shutdown. 54 * 55 * We strongly recommend reading the mPIPE section of the IO Device 56 * Guide (UG404) before working with this API. Most functions in the 57 * gxio_mpipe_ API are directly analogous to hardware interfaces and 58 * the documentation assumes that the reader understands those 59 * hardware interfaces. 60 * 61 * @section mpipe__ingress mPIPE Ingress Hardware Resources 62 * 63 * The mPIPE ingress hardware provides extensive hardware offload for 64 * tasks like packet header parsing, load balancing, and memory 65 * management. This section provides a brief introduction to the 66 * hardware components and the gxio_mpipe_ calls used to manage them; 67 * see the IO Device Guide for a much more detailed description of the 68 * mPIPE's capabilities. 69 * 70 * When a packet arrives at one of the mPIPE's Ethernet MACs, it is 71 * assigned a channel number indicating which MAC received it. It 72 * then proceeds through the following hardware pipeline: 73 * 74 * @subsection mpipe__classification Classification 75 * 76 * A set of classification processors run header parsing code on each 77 * incoming packet, extracting information including the destination 78 * MAC address, VLAN, Ethernet type, and five-tuple hash. Some of 79 * this information is then used to choose which buffer stack will be 80 * used to hold the packet, and which bucket will be used by the load 81 * balancer to determine which application will receive the packet. 82 * 83 * The rules by which the buffer stack and bucket are chosen can be 84 * configured via the @ref gxio_mpipe_classifier API. A given app can 85 * specify multiple rules, each one specifying a bucket range, and a 86 * set of buffer stacks, to be used for packets matching the rule. 87 * Each rule can optionally specify a restricted set of channels, 88 * VLANs, and/or dMACs, in which it is interested. By default, a 89 * given rule starts out matching all channels associated with the 90 * mPIPE context's set of open links; all VLANs; and all dMACs. 91 * Subsequent restrictions can then be added. 92 * 93 * @subsection mpipe__load_balancing Load Balancing 94 * 95 * The mPIPE load balancer is responsible for choosing the NotifRing 96 * to which the packet will be delivered. This decision is based on 97 * the bucket number indicated by the classification program. In 98 * general, the bucket number is based on some number of low bits of 99 * the packet's flow hash (applications that aren't interested in flow 100 * hashing use a single bucket). Each load balancer bucket keeps a 101 * record of the NotifRing to which packets directed to that bucket 102 * are currently being delivered. Based on the bucket's load 103 * balancing mode (@ref gxio_mpipe_bucket_mode_t), the load balancer 104 * either forwards the packet to the previously assigned NotifRing or 105 * decides to choose a new NotifRing. If a new NotifRing is required, 106 * the load balancer chooses the least loaded ring in the NotifGroup 107 * associated with the bucket. 108 * 109 * The load balancer is a shared resource. Each application needs to 110 * explicitly allocate NotifRings, NotifGroups, and buckets, using 111 * gxio_mpipe_alloc_notif_rings(), gxio_mpipe_alloc_notif_groups(), 112 * and gxio_mpipe_alloc_buckets(). Then the application needs to 113 * configure them using gxio_mpipe_init_notif_ring() and 114 * gxio_mpipe_init_notif_group_and_buckets(). 115 * 116 * @subsection mpipe__buffers Buffer Selection and Packet Delivery 117 * 118 * Once the load balancer has chosen the destination NotifRing, the 119 * mPIPE DMA engine pops at least one buffer off of the 'buffer stack' 120 * chosen by the classification program and DMAs the packet data into 121 * that buffer. Each buffer stack provides a hardware-accelerated 122 * stack of data buffers with the same size. If the packet data is 123 * larger than the buffers provided by the chosen buffer stack, the 124 * mPIPE hardware pops off multiple buffers and chains the packet data 125 * through a multi-buffer linked list. Once the packet data is 126 * delivered to the buffer(s), the mPIPE hardware writes the 127 * ::gxio_mpipe_idesc_t metadata object (calculated by the classifier) 128 * into the NotifRing and increments the number of packets delivered 129 * to that ring. 130 * 131 * Applications can push buffers onto a buffer stack by calling 132 * gxio_mpipe_push_buffer() or by egressing a packet with the 133 * ::gxio_mpipe_edesc_t::hwb bit set, indicating that the egressed 134 * buffers should be returned to the stack. 135 * 136 * Applications can allocate and initialize buffer stacks with the 137 * gxio_mpipe_alloc_buffer_stacks() and gxio_mpipe_init_buffer_stack() 138 * APIs. 139 * 140 * The application must also register the memory pages that will hold 141 * packets. This requires calling gxio_mpipe_register_page() for each 142 * memory page that will hold packets allocated by the application for 143 * a given buffer stack. Since each buffer stack is limited to 16 144 * registered pages, it may be necessary to use huge pages, or even 145 * extremely huge pages, to hold all the buffers. 146 * 147 * @subsection mpipe__iqueue NotifRings 148 * 149 * Each NotifRing is a region of shared memory, allocated by the 150 * application, to which the mPIPE delivers packet descriptors 151 * (::gxio_mpipe_idesc_t). The application can allocate them via 152 * gxio_mpipe_alloc_notif_rings(). The application can then either 153 * explicitly initialize them with gxio_mpipe_init_notif_ring() and 154 * then read from them manually, or can make use of the convenience 155 * wrappers provided by @ref gxio_mpipe_wrappers. 156 * 157 * @section mpipe__egress mPIPE Egress Hardware 158 * 159 * Applications use eDMA rings to queue packets for egress. The 160 * application can allocate them via gxio_mpipe_alloc_edma_rings(). 161 * The application can then either explicitly initialize them with 162 * gxio_mpipe_init_edma_ring() and then write to them manually, or 163 * can make use of the convenience wrappers provided by 164 * @ref gxio_mpipe_wrappers. 165 * 166 * @section gxio__shortcomings Plans for Future API Revisions 167 * 168 * The API defined here is only an initial version of the mPIPE API. 169 * Future plans include: 170 * 171 * - Higher level wrapper functions to provide common initialization 172 * patterns. This should help users start writing mPIPE programs 173 * without having to learn the details of the hardware. 174 * 175 * - Support for reset and deallocation of resources, including 176 * cleanup upon application shutdown. 177 * 178 * - Support for calling these APIs in the BME. 179 * 180 * - Support for IO interrupts. 181 * 182 * - Clearer definitions of thread safety guarantees. 183 * 184 * @section gxio__mpipe_examples Examples 185 * 186 * See the following mPIPE example programs for more information about 187 * allocating mPIPE resources and using them in real applications: 188 * 189 * - @ref mpipe/ingress/app.c : Receiving packets. 190 * 191 * - @ref mpipe/forward/app.c : Forwarding packets. 192 * 193 * Note that there are several more examples. 194 */ 195 196/* Flags that can be passed to resource allocation functions. */ 197enum gxio_mpipe_alloc_flags_e { 198 /* Require an allocation to start at a specified resource index. */ 199 GXIO_MPIPE_ALLOC_FIXED = HV_MPIPE_ALLOC_FIXED, 200}; 201 202/* Flags that can be passed to memory registration functions. */ 203enum gxio_mpipe_mem_flags_e { 204 /* Do not fill L3 when writing, and invalidate lines upon egress. */ 205 GXIO_MPIPE_MEM_FLAG_NT_HINT = IORPC_MEM_BUFFER_FLAG_NT_HINT, 206 207 /* L3 cache fills should only populate IO cache ways. */ 208 GXIO_MPIPE_MEM_FLAG_IO_PIN = IORPC_MEM_BUFFER_FLAG_IO_PIN, 209}; 210 211/* An ingress packet descriptor. When a packet arrives, the mPIPE 212 * hardware generates this structure and writes it into a NotifRing. 213 */ 214typedef MPIPE_PDESC_t gxio_mpipe_idesc_t; 215 216/* An egress command descriptor. Applications write this structure 217 * into eDMA rings and the hardware performs the indicated operation 218 * (normally involving egressing some bytes). Note that egressing a 219 * single packet may involve multiple egress command descriptors. 220 */ 221typedef MPIPE_EDMA_DESC_t gxio_mpipe_edesc_t; 222 223/* 224 * Max # of mpipe instances. 2 currently. 225 */ 226#define GXIO_MPIPE_INSTANCE_MAX HV_MPIPE_INSTANCE_MAX 227 228#define NR_MPIPE_MAX GXIO_MPIPE_INSTANCE_MAX 229 230/* Get the "va" field from an "idesc". 231 * 232 * This is the address at which the ingress hardware copied the first 233 * byte of the packet. 234 * 235 * If the classifier detected a custom header, then this will point to 236 * the custom header, and gxio_mpipe_idesc_get_l2_start() will point 237 * to the actual L2 header. 238 * 239 * Note that this value may be misleading if "idesc->be" is set. 240 * 241 * @param idesc An ingress packet descriptor. 242 */ 243static inline unsigned char *gxio_mpipe_idesc_get_va(gxio_mpipe_idesc_t *idesc) 244{ 245 return (unsigned char *)(long)idesc->va; 246} 247 248/* Get the "xfer_size" from an "idesc". 249 * 250 * This is the actual number of packet bytes transferred into memory 251 * by the hardware. 252 * 253 * Note that this value may be misleading if "idesc->be" is set. 254 * 255 * @param idesc An ingress packet descriptor. 256 * 257 * ISSUE: Is this the best name for this? 258 * FIXME: Add more docs about chaining, clipping, etc. 259 */ 260static inline unsigned int gxio_mpipe_idesc_get_xfer_size(gxio_mpipe_idesc_t 261 *idesc) 262{ 263 return idesc->l2_size; 264} 265 266/* Get the "l2_offset" from an "idesc". 267 * 268 * Extremely customized classifiers might not support this function. 269 * 270 * This is the number of bytes between the "va" and the L2 header. 271 * 272 * The L2 header consists of a destination mac address, a source mac 273 * address, and an initial ethertype. Various initial ethertypes 274 * allow encoding extra information in the L2 header, often including 275 * a vlan, and/or a new ethertype. 276 * 277 * Note that the "l2_offset" will be non-zero if (and only if) the 278 * classifier processed a custom header for the packet. 279 * 280 * @param idesc An ingress packet descriptor. 281 */ 282static inline uint8_t gxio_mpipe_idesc_get_l2_offset(gxio_mpipe_idesc_t *idesc) 283{ 284 return (idesc->custom1 >> 32) & 0xFF; 285} 286 287/* Get the "l2_start" from an "idesc". 288 * 289 * This is simply gxio_mpipe_idesc_get_va() plus 290 * gxio_mpipe_idesc_get_l2_offset(). 291 * 292 * @param idesc An ingress packet descriptor. 293 */ 294static inline unsigned char *gxio_mpipe_idesc_get_l2_start(gxio_mpipe_idesc_t 295 *idesc) 296{ 297 unsigned char *va = gxio_mpipe_idesc_get_va(idesc); 298 return va + gxio_mpipe_idesc_get_l2_offset(idesc); 299} 300 301/* Get the "l2_length" from an "idesc". 302 * 303 * This is simply gxio_mpipe_idesc_get_xfer_size() minus 304 * gxio_mpipe_idesc_get_l2_offset(). 305 * 306 * @param idesc An ingress packet descriptor. 307 */ 308static inline unsigned int gxio_mpipe_idesc_get_l2_length(gxio_mpipe_idesc_t 309 *idesc) 310{ 311 unsigned int xfer_size = idesc->l2_size; 312 return xfer_size - gxio_mpipe_idesc_get_l2_offset(idesc); 313} 314 315/* A context object used to manage mPIPE hardware resources. */ 316typedef struct { 317 318 /* File descriptor for calling up to Linux (and thus the HV). */ 319 int fd; 320 321 /* Corresponding mpipe instance #. */ 322 int instance; 323 324 /* The VA at which configuration registers are mapped. */ 325 char *mmio_cfg_base; 326 327 /* The VA at which IDMA, EDMA, and buffer manager are mapped. */ 328 char *mmio_fast_base; 329 330 /* The "initialized" buffer stacks. */ 331 gxio_mpipe_rules_stacks_t __stacks; 332 333} gxio_mpipe_context_t; 334 335/* This is only used internally, but it's most easily made visible here. */ 336typedef gxio_mpipe_context_t gxio_mpipe_info_context_t; 337 338/* Initialize an mPIPE context. 339 * 340 * This function allocates an mPIPE "service domain" and maps the MMIO 341 * registers into the caller's VA space. 342 * 343 * @param context Context object to be initialized. 344 * @param mpipe_instance Instance number of mPIPE shim to be controlled via 345 * context. 346 */ 347extern int gxio_mpipe_init(gxio_mpipe_context_t *context, 348 unsigned int mpipe_instance); 349 350/* Destroy an mPIPE context. 351 * 352 * This function frees the mPIPE "service domain" and unmaps the MMIO 353 * registers from the caller's VA space. 354 * 355 * If a user process exits without calling this routine, the kernel 356 * will destroy the mPIPE context as part of process teardown. 357 * 358 * @param context Context object to be destroyed. 359 */ 360extern int gxio_mpipe_destroy(gxio_mpipe_context_t *context); 361 362/***************************************************************** 363 * Buffer Stacks * 364 ******************************************************************/ 365 366/* Allocate a set of buffer stacks. 367 * 368 * The return value is NOT interesting if count is zero. 369 * 370 * @param context An initialized mPIPE context. 371 * @param count Number of stacks required. 372 * @param first Index of first stack if ::GXIO_MPIPE_ALLOC_FIXED flag is set, 373 * otherwise ignored. 374 * @param flags Flag bits from ::gxio_mpipe_alloc_flags_e. 375 * @return Index of first allocated buffer stack, or 376 * ::GXIO_MPIPE_ERR_NO_BUFFER_STACK if allocation failed. 377 */ 378extern int gxio_mpipe_alloc_buffer_stacks(gxio_mpipe_context_t *context, 379 unsigned int count, 380 unsigned int first, 381 unsigned int flags); 382 383/* Enum codes for buffer sizes supported by mPIPE. */ 384typedef enum { 385 /* 128 byte packet data buffer. */ 386 GXIO_MPIPE_BUFFER_SIZE_128 = MPIPE_BSM_INIT_DAT_1__SIZE_VAL_BSZ_128, 387 /* 256 byte packet data buffer. */ 388 GXIO_MPIPE_BUFFER_SIZE_256 = MPIPE_BSM_INIT_DAT_1__SIZE_VAL_BSZ_256, 389 /* 512 byte packet data buffer. */ 390 GXIO_MPIPE_BUFFER_SIZE_512 = MPIPE_BSM_INIT_DAT_1__SIZE_VAL_BSZ_512, 391 /* 1024 byte packet data buffer. */ 392 GXIO_MPIPE_BUFFER_SIZE_1024 = MPIPE_BSM_INIT_DAT_1__SIZE_VAL_BSZ_1024, 393 /* 1664 byte packet data buffer. */ 394 GXIO_MPIPE_BUFFER_SIZE_1664 = MPIPE_BSM_INIT_DAT_1__SIZE_VAL_BSZ_1664, 395 /* 4096 byte packet data buffer. */ 396 GXIO_MPIPE_BUFFER_SIZE_4096 = MPIPE_BSM_INIT_DAT_1__SIZE_VAL_BSZ_4096, 397 /* 10368 byte packet data buffer. */ 398 GXIO_MPIPE_BUFFER_SIZE_10368 = 399 MPIPE_BSM_INIT_DAT_1__SIZE_VAL_BSZ_10368, 400 /* 16384 byte packet data buffer. */ 401 GXIO_MPIPE_BUFFER_SIZE_16384 = MPIPE_BSM_INIT_DAT_1__SIZE_VAL_BSZ_16384 402} gxio_mpipe_buffer_size_enum_t; 403 404/* Convert a buffer size in bytes into a buffer size enum. */ 405extern gxio_mpipe_buffer_size_enum_t 406gxio_mpipe_buffer_size_to_buffer_size_enum(size_t size); 407 408/* Convert a buffer size enum into a buffer size in bytes. */ 409extern size_t 410gxio_mpipe_buffer_size_enum_to_buffer_size(gxio_mpipe_buffer_size_enum_t 411 buffer_size_enum); 412 413/* Calculate the number of bytes required to store a given number of 414 * buffers in the memory registered with a buffer stack via 415 * gxio_mpipe_init_buffer_stack(). 416 */ 417extern size_t gxio_mpipe_calc_buffer_stack_bytes(unsigned long buffers); 418 419/* Initialize a buffer stack. This function binds a region of memory 420 * to be used by the hardware for storing buffer addresses pushed via 421 * gxio_mpipe_push_buffer() or as the result of sending a buffer out 422 * the egress with the 'push to stack when done' bit set. Once this 423 * function returns, the memory region's contents may be arbitrarily 424 * modified by the hardware at any time and software should not access 425 * the memory region again. 426 * 427 * @param context An initialized mPIPE context. 428 * @param stack The buffer stack index. 429 * @param buffer_size_enum The size of each buffer in the buffer stack, 430 * as an enum. 431 * @param mem The address of the buffer stack. This memory must be 432 * physically contiguous and aligned to a 64kB boundary. 433 * @param mem_size The size of the buffer stack, in bytes. 434 * @param mem_flags ::gxio_mpipe_mem_flags_e memory flags. 435 * @return Zero on success, ::GXIO_MPIPE_ERR_INVAL_BUFFER_SIZE if 436 * buffer_size_enum is invalid, ::GXIO_MPIPE_ERR_BAD_BUFFER_STACK if 437 * stack has not been allocated. 438 */ 439extern int gxio_mpipe_init_buffer_stack(gxio_mpipe_context_t *context, 440 unsigned int stack, 441 gxio_mpipe_buffer_size_enum_t 442 buffer_size_enum, void *mem, 443 size_t mem_size, 444 unsigned int mem_flags); 445 446/* Push a buffer onto a previously initialized buffer stack. 447 * 448 * The size of the buffer being pushed must match the size that was 449 * registered with gxio_mpipe_init_buffer_stack(). All packet buffer 450 * addresses are 128-byte aligned; the low 7 bits of the specified 451 * buffer address will be ignored. 452 * 453 * @param context An initialized mPIPE context. 454 * @param stack The buffer stack index. 455 * @param buffer The buffer (the low seven bits are ignored). 456 */ 457static inline void gxio_mpipe_push_buffer(gxio_mpipe_context_t *context, 458 unsigned int stack, void *buffer) 459{ 460 MPIPE_BSM_REGION_ADDR_t offset = { {0} }; 461 MPIPE_BSM_REGION_VAL_t val = { {0} }; 462 463 /* 464 * The mmio_fast_base region starts at the IDMA region, so subtract 465 * off that initial offset. 466 */ 467 offset.region = 468 MPIPE_MMIO_ADDR__REGION_VAL_BSM - 469 MPIPE_MMIO_ADDR__REGION_VAL_IDMA; 470 offset.stack = stack; 471 472#if __SIZEOF_POINTER__ == 4 473 val.va = ((ulong) buffer) >> MPIPE_BSM_REGION_VAL__VA_SHIFT; 474#else 475 val.va = ((long)buffer) >> MPIPE_BSM_REGION_VAL__VA_SHIFT; 476#endif 477 478 __gxio_mmio_write(context->mmio_fast_base + offset.word, val.word); 479} 480 481/* Pop a buffer off of a previously initialized buffer stack. 482 * 483 * @param context An initialized mPIPE context. 484 * @param stack The buffer stack index. 485 * @return The buffer, or NULL if the stack is empty. 486 */ 487static inline void *gxio_mpipe_pop_buffer(gxio_mpipe_context_t *context, 488 unsigned int stack) 489{ 490 MPIPE_BSM_REGION_ADDR_t offset = { {0} }; 491 492 /* 493 * The mmio_fast_base region starts at the IDMA region, so subtract 494 * off that initial offset. 495 */ 496 offset.region = 497 MPIPE_MMIO_ADDR__REGION_VAL_BSM - 498 MPIPE_MMIO_ADDR__REGION_VAL_IDMA; 499 offset.stack = stack; 500 501 while (1) { 502 /* 503 * Case 1: val.c == ..._UNCHAINED, va is non-zero. 504 * Case 2: val.c == ..._INVALID, va is zero. 505 * Case 3: val.c == ..._NOT_RDY, va is zero. 506 */ 507 MPIPE_BSM_REGION_VAL_t val; 508 val.word = 509 __gxio_mmio_read(context->mmio_fast_base + 510 offset.word); 511 512 /* 513 * Handle case 1 and 2 by returning the buffer (or NULL). 514 * Handle case 3 by waiting for the prefetch buffer to refill. 515 */ 516 if (val.c != MPIPE_EDMA_DESC_WORD1__C_VAL_NOT_RDY) 517 return (void *)((unsigned long)val. 518 va << MPIPE_BSM_REGION_VAL__VA_SHIFT); 519 } 520} 521 522/***************************************************************** 523 * NotifRings * 524 ******************************************************************/ 525 526/* Allocate a set of NotifRings. 527 * 528 * The return value is NOT interesting if count is zero. 529 * 530 * Note that NotifRings are allocated in chunks, so allocating one at 531 * a time is much less efficient than allocating several at once. 532 * 533 * @param context An initialized mPIPE context. 534 * @param count Number of NotifRings required. 535 * @param first Index of first NotifRing if ::GXIO_MPIPE_ALLOC_FIXED flag 536 * is set, otherwise ignored. 537 * @param flags Flag bits from ::gxio_mpipe_alloc_flags_e. 538 * @return Index of first allocated buffer NotifRing, or 539 * ::GXIO_MPIPE_ERR_NO_NOTIF_RING if allocation failed. 540 */ 541extern int gxio_mpipe_alloc_notif_rings(gxio_mpipe_context_t *context, 542 unsigned int count, unsigned int first, 543 unsigned int flags); 544 545/* Initialize a NotifRing, using the given memory and size. 546 * 547 * @param context An initialized mPIPE context. 548 * @param ring The NotifRing index. 549 * @param mem A physically contiguous region of memory to be filled 550 * with a ring of ::gxio_mpipe_idesc_t structures. 551 * @param mem_size Number of bytes in the ring. Must be 128, 512, 552 * 2048, or 65536 * sizeof(gxio_mpipe_idesc_t). 553 * @param mem_flags ::gxio_mpipe_mem_flags_e memory flags. 554 * 555 * @return 0 on success, ::GXIO_MPIPE_ERR_BAD_NOTIF_RING or 556 * ::GXIO_ERR_INVAL_MEMORY_SIZE on failure. 557 */ 558extern int gxio_mpipe_init_notif_ring(gxio_mpipe_context_t *context, 559 unsigned int ring, 560 void *mem, size_t mem_size, 561 unsigned int mem_flags); 562 563/* Configure an interrupt to be sent to a tile on incoming NotifRing 564 * traffic. Once an interrupt is sent for a particular ring, no more 565 * will be sent until gxio_mica_enable_notif_ring_interrupt() is called. 566 * 567 * @param context An initialized mPIPE context. 568 * @param x X coordinate of interrupt target tile. 569 * @param y Y coordinate of interrupt target tile. 570 * @param i Index of the IPI register which will receive the interrupt. 571 * @param e Specific event which will be set in the target IPI register when 572 * the interrupt occurs. 573 * @param ring The NotifRing index. 574 * @return Zero on success, GXIO_ERR_INVAL if params are out of range. 575 */ 576extern int gxio_mpipe_request_notif_ring_interrupt(gxio_mpipe_context_t 577 *context, int x, int y, 578 int i, int e, 579 unsigned int ring); 580 581/* Enable an interrupt on incoming NotifRing traffic. 582 * 583 * @param context An initialized mPIPE context. 584 * @param ring The NotifRing index. 585 * @return Zero on success, GXIO_ERR_INVAL if params are out of range. 586 */ 587extern int gxio_mpipe_enable_notif_ring_interrupt(gxio_mpipe_context_t 588 *context, unsigned int ring); 589 590/* Map all of a client's memory via the given IOTLB. 591 * @param context An initialized mPIPE context. 592 * @param iotlb IOTLB index. 593 * @param pte Page table entry. 594 * @param flags Flags. 595 * @return Zero on success, or a negative error code. 596 */ 597extern int gxio_mpipe_register_client_memory(gxio_mpipe_context_t *context, 598 unsigned int iotlb, HV_PTE pte, 599 unsigned int flags); 600 601/***************************************************************** 602 * Notif Groups * 603 ******************************************************************/ 604 605/* Allocate a set of NotifGroups. 606 * 607 * The return value is NOT interesting if count is zero. 608 * 609 * @param context An initialized mPIPE context. 610 * @param count Number of NotifGroups required. 611 * @param first Index of first NotifGroup if ::GXIO_MPIPE_ALLOC_FIXED flag 612 * is set, otherwise ignored. 613 * @param flags Flag bits from ::gxio_mpipe_alloc_flags_e. 614 * @return Index of first allocated buffer NotifGroup, or 615 * ::GXIO_MPIPE_ERR_NO_NOTIF_GROUP if allocation failed. 616 */ 617extern int gxio_mpipe_alloc_notif_groups(gxio_mpipe_context_t *context, 618 unsigned int count, 619 unsigned int first, 620 unsigned int flags); 621 622/* Add a NotifRing to a NotifGroup. This only sets a bit in the 623 * application's 'group' object; the hardware NotifGroup can be 624 * initialized by passing 'group' to gxio_mpipe_init_notif_group() or 625 * gxio_mpipe_init_notif_group_and_buckets(). 626 */ 627static inline void 628gxio_mpipe_notif_group_add_ring(gxio_mpipe_notif_group_bits_t *bits, int ring) 629{ 630 bits->ring_mask[ring / 64] |= (1ull << (ring % 64)); 631} 632 633/* Set a particular NotifGroup bitmask. Since the load balancer 634 * makes decisions based on both bucket and NotifGroup state, most 635 * applications should use gxio_mpipe_init_notif_group_and_buckets() 636 * rather than using this function to configure just a NotifGroup. 637 */ 638extern int gxio_mpipe_init_notif_group(gxio_mpipe_context_t *context, 639 unsigned int group, 640 gxio_mpipe_notif_group_bits_t bits); 641 642/***************************************************************** 643 * Load Balancer * 644 ******************************************************************/ 645 646/* Allocate a set of load balancer buckets. 647 * 648 * The return value is NOT interesting if count is zero. 649 * 650 * Note that buckets are allocated in chunks, so allocating one at 651 * a time is much less efficient than allocating several at once. 652 * 653 * Note that the buckets are actually divided into two sub-ranges, of 654 * different sizes, and different chunk sizes, and the range you get 655 * by default is determined by the size of the request. Allocations 656 * cannot span the two sub-ranges. 657 * 658 * @param context An initialized mPIPE context. 659 * @param count Number of buckets required. 660 * @param first Index of first bucket if ::GXIO_MPIPE_ALLOC_FIXED flag is set, 661 * otherwise ignored. 662 * @param flags Flag bits from ::gxio_mpipe_alloc_flags_e. 663 * @return Index of first allocated buffer bucket, or 664 * ::GXIO_MPIPE_ERR_NO_BUCKET if allocation failed. 665 */ 666extern int gxio_mpipe_alloc_buckets(gxio_mpipe_context_t *context, 667 unsigned int count, unsigned int first, 668 unsigned int flags); 669 670/* The legal modes for gxio_mpipe_bucket_info_t and 671 * gxio_mpipe_init_notif_group_and_buckets(). 672 * 673 * All modes except ::GXIO_MPIPE_BUCKET_ROUND_ROBIN expect that the user 674 * will allocate a power-of-two number of buckets and initialize them 675 * to the same mode. The classifier program then uses the appropriate 676 * number of low bits from the incoming packet's flow hash to choose a 677 * load balancer bucket. Based on that bucket's load balancing mode, 678 * reference count, and currently active NotifRing, the load balancer 679 * chooses the NotifRing to which the packet will be delivered. 680 */ 681typedef enum { 682 /* All packets for a bucket go to the same NotifRing unless the 683 * NotifRing gets full, in which case packets will be dropped. If 684 * the bucket reference count ever reaches zero, a new NotifRing may 685 * be chosen. 686 */ 687 GXIO_MPIPE_BUCKET_DYNAMIC_FLOW_AFFINITY = 688 MPIPE_LBL_INIT_DAT_BSTS_TBL__MODE_VAL_DFA, 689 690 /* All packets for a bucket always go to the same NotifRing. 691 */ 692 GXIO_MPIPE_BUCKET_STATIC_FLOW_AFFINITY = 693 MPIPE_LBL_INIT_DAT_BSTS_TBL__MODE_VAL_FIXED, 694 695 /* All packets for a bucket go to the least full NotifRing in the 696 * group, providing load balancing round robin behavior. 697 */ 698 GXIO_MPIPE_BUCKET_ROUND_ROBIN = 699 MPIPE_LBL_INIT_DAT_BSTS_TBL__MODE_VAL_ALWAYS_PICK, 700 701 /* All packets for a bucket go to the same NotifRing unless the 702 * NotifRing gets full, at which point the bucket starts using the 703 * least full NotifRing in the group. If all NotifRings in the 704 * group are full, packets will be dropped. 705 */ 706 GXIO_MPIPE_BUCKET_STICKY_FLOW_LOCALITY = 707 MPIPE_LBL_INIT_DAT_BSTS_TBL__MODE_VAL_STICKY, 708 709 /* All packets for a bucket go to the same NotifRing unless the 710 * NotifRing gets full, or a random timer fires, at which point the 711 * bucket starts using the least full NotifRing in the group. If 712 * all NotifRings in the group are full, packets will be dropped. 713 * WARNING: This mode is BROKEN on chips with fewer than 64 tiles. 714 */ 715 GXIO_MPIPE_BUCKET_PREFER_FLOW_LOCALITY = 716 MPIPE_LBL_INIT_DAT_BSTS_TBL__MODE_VAL_STICKY_RAND, 717 718} gxio_mpipe_bucket_mode_t; 719 720/* Copy a set of bucket initialization values into the mPIPE 721 * hardware. Since the load balancer makes decisions based on both 722 * bucket and NotifGroup state, most applications should use 723 * gxio_mpipe_init_notif_group_and_buckets() rather than using this 724 * function to configure a single bucket. 725 * 726 * @param context An initialized mPIPE context. 727 * @param bucket Bucket index to be initialized. 728 * @param bucket_info Initial reference count, NotifRing index, and mode. 729 * @return 0 on success, ::GXIO_MPIPE_ERR_BAD_BUCKET on failure. 730 */ 731extern int gxio_mpipe_init_bucket(gxio_mpipe_context_t *context, 732 unsigned int bucket, 733 gxio_mpipe_bucket_info_t bucket_info); 734 735/* Initializes a group and range of buckets and range of rings such 736 * that the load balancer runs a particular load balancing function. 737 * 738 * First, the group is initialized with the given rings. 739 * 740 * Second, each bucket is initialized with the mode and group, and a 741 * ring chosen round-robin from the given rings. 742 * 743 * Normally, the classifier picks a bucket, and then the load balancer 744 * picks a ring, based on the bucket's mode, group, and current ring, 745 * possibly updating the bucket's ring. 746 * 747 * @param context An initialized mPIPE context. 748 * @param group The group. 749 * @param ring The first ring. 750 * @param num_rings The number of rings. 751 * @param bucket The first bucket. 752 * @param num_buckets The number of buckets. 753 * @param mode The load balancing mode. 754 * 755 * @return 0 on success, ::GXIO_MPIPE_ERR_BAD_BUCKET, 756 * ::GXIO_MPIPE_ERR_BAD_NOTIF_GROUP, or 757 * ::GXIO_MPIPE_ERR_BAD_NOTIF_RING on failure. 758 */ 759extern int gxio_mpipe_init_notif_group_and_buckets(gxio_mpipe_context_t 760 *context, 761 unsigned int group, 762 unsigned int ring, 763 unsigned int num_rings, 764 unsigned int bucket, 765 unsigned int num_buckets, 766 gxio_mpipe_bucket_mode_t 767 mode); 768 769/* Return credits to a NotifRing and/or bucket. 770 * 771 * @param context An initialized mPIPE context. 772 * @param ring The NotifRing index, or -1. 773 * @param bucket The bucket, or -1. 774 * @param count The number of credits to return. 775 */ 776static inline void gxio_mpipe_credit(gxio_mpipe_context_t *context, 777 int ring, int bucket, unsigned int count) 778{ 779 /* NOTE: Fancy struct initialization would break "C89" header test. */ 780 781 MPIPE_IDMA_RELEASE_REGION_ADDR_t offset = { {0} }; 782 MPIPE_IDMA_RELEASE_REGION_VAL_t val = { {0} }; 783 784 /* 785 * The mmio_fast_base region starts at the IDMA region, so subtract 786 * off that initial offset. 787 */ 788 offset.region = 789 MPIPE_MMIO_ADDR__REGION_VAL_IDMA - 790 MPIPE_MMIO_ADDR__REGION_VAL_IDMA; 791 offset.ring = ring; 792 offset.bucket = bucket; 793 offset.ring_enable = (ring >= 0); 794 offset.bucket_enable = (bucket >= 0); 795 val.count = count; 796 797 __gxio_mmio_write(context->mmio_fast_base + offset.word, val.word); 798} 799 800/***************************************************************** 801 * Egress Rings * 802 ******************************************************************/ 803 804/* Allocate a set of eDMA rings. 805 * 806 * The return value is NOT interesting if count is zero. 807 * 808 * @param context An initialized mPIPE context. 809 * @param count Number of eDMA rings required. 810 * @param first Index of first eDMA ring if ::GXIO_MPIPE_ALLOC_FIXED flag 811 * is set, otherwise ignored. 812 * @param flags Flag bits from ::gxio_mpipe_alloc_flags_e. 813 * @return Index of first allocated buffer eDMA ring, or 814 * ::GXIO_MPIPE_ERR_NO_EDMA_RING if allocation failed. 815 */ 816extern int gxio_mpipe_alloc_edma_rings(gxio_mpipe_context_t *context, 817 unsigned int count, unsigned int first, 818 unsigned int flags); 819 820/* Initialize an eDMA ring, using the given memory and size. 821 * 822 * @param context An initialized mPIPE context. 823 * @param ering The eDMA ring index. 824 * @param channel The channel to use. This must be one of the channels 825 * associated with the context's set of open links. 826 * @param mem A physically contiguous region of memory to be filled 827 * with a ring of ::gxio_mpipe_edesc_t structures. 828 * @param mem_size Number of bytes in the ring. Must be 512, 2048, 829 * 8192 or 65536, times 16 (i.e. sizeof(gxio_mpipe_edesc_t)). 830 * @param mem_flags ::gxio_mpipe_mem_flags_e memory flags. 831 * 832 * @return 0 on success, ::GXIO_MPIPE_ERR_BAD_EDMA_RING or 833 * ::GXIO_ERR_INVAL_MEMORY_SIZE on failure. 834 */ 835extern int gxio_mpipe_init_edma_ring(gxio_mpipe_context_t *context, 836 unsigned int ering, unsigned int channel, 837 void *mem, size_t mem_size, 838 unsigned int mem_flags); 839 840/* Set the "max_blks", "min_snf_blks", and "db" fields of 841 * ::MPIPE_EDMA_RG_INIT_DAT_THRESH_t for a given edma ring. 842 * 843 * The global pool of dynamic blocks will be automatically adjusted. 844 * 845 * This function should not be called after any egress has been done 846 * on the edma ring. 847 * 848 * Most applications should just use gxio_mpipe_equeue_set_snf_size(). 849 * 850 * @param context An initialized mPIPE context. 851 * @param ering The eDMA ring index. 852 * @param max_blks The number of blocks to dedicate to the ring 853 * (normally min_snf_blks + 1). Must be greater than min_snf_blocks. 854 * @param min_snf_blks The number of blocks which must be stored 855 * prior to starting to send the packet (normally 12). 856 * @param db Whether to allow use of dynamic blocks by the ring 857 * (normally 1). 858 * 859 * @return 0 on success, negative on error. 860 */ 861extern int gxio_mpipe_config_edma_ring_blks(gxio_mpipe_context_t *context, 862 unsigned int ering, 863 unsigned int max_blks, 864 unsigned int min_snf_blks, 865 unsigned int db); 866 867/***************************************************************** 868 * Classifier Program * 869 ******************************************************************/ 870 871/* 872 * 873 * Functions for loading or configuring the mPIPE classifier program. 874 * 875 * The mPIPE classification processors all run a special "classifier" 876 * program which, for each incoming packet, parses the packet headers, 877 * encodes some packet metadata in the "idesc", and either drops the 878 * packet, or picks a notif ring to handle the packet, and a buffer 879 * stack to contain the packet, usually based on the channel, VLAN, 880 * dMAC, flow hash, and packet size, under the guidance of the "rules" 881 * API described below. 882 * 883 * @section gxio_mpipe_classifier_default Default Classifier 884 * 885 * The MDE provides a simple "default" classifier program. It is 886 * shipped as source in "$TILERA_ROOT/src/sys/mpipe/classifier.c", 887 * which serves as its official documentation. It is shipped as a 888 * binary program in "$TILERA_ROOT/tile/boot/classifier", which is 889 * automatically included in bootroms created by "tile-monitor", and 890 * is automatically loaded by the hypervisor at boot time. 891 * 892 * The L2 analysis handles LLC packets, SNAP packets, and "VLAN 893 * wrappers" (keeping the outer VLAN). 894 * 895 * The L3 analysis handles IPv4 and IPv6, dropping packets with bad 896 * IPv4 header checksums, requesting computation of a TCP/UDP checksum 897 * if appropriate, and hashing the dest and src IP addresses, plus the 898 * ports for TCP/UDP packets, into the flow hash. No special analysis 899 * is done for "fragmented" packets or "tunneling" protocols. Thus, 900 * the first fragment of a fragmented TCP/UDP packet is hashed using 901 * src/dest IP address and ports and all subsequent fragments are only 902 * hashed according to src/dest IP address. 903 * 904 * The L3 analysis handles other packets too, hashing the dMAC 905 * smac into a flow hash. 906 * 907 * The channel, VLAN, and dMAC used to pick a "rule" (see the 908 * "rules" APIs below), which in turn is used to pick a buffer stack 909 * (based on the packet size) and a bucket (based on the flow hash). 910 * 911 * To receive traffic matching a particular (channel/VLAN/dMAC 912 * pattern, an application should allocate its own buffer stacks and 913 * load balancer buckets, and map traffic to those stacks and buckets, 914 * as decribed by the "rules" API below. 915 * 916 * Various packet metadata is encoded in the idesc. The flow hash is 917 * four bytes at 0x0C. The VLAN is two bytes at 0x10. The ethtype is 918 * two bytes at 0x12. The l3 start is one byte at 0x14. The l4 start 919 * is one byte at 0x15 for IPv4 and IPv6 packets, and otherwise zero. 920 * The protocol is one byte at 0x16 for IPv4 and IPv6 packets, and 921 * otherwise zero. 922 * 923 * @section gxio_mpipe_classifier_custom Custom Classifiers. 924 * 925 * A custom classifier may be created using "tile-mpipe-cc" with a 926 * customized version of the default classifier sources. 927 * 928 * The custom classifier may be included in bootroms using the 929 * "--classifier" option to "tile-monitor", or loaded dynamically 930 * using gxio_mpipe_classifier_load_from_file(). 931 * 932 * Be aware that "extreme" customizations may break the assumptions of 933 * the "rules" APIs described below, but simple customizations, such 934 * as adding new packet metadata, should be fine. 935 */ 936 937/* A set of classifier rules, plus a context. */ 938typedef struct { 939 940 /* The context. */ 941 gxio_mpipe_context_t *context; 942 943 /* The actual rules. */ 944 gxio_mpipe_rules_list_t list; 945 946} gxio_mpipe_rules_t; 947 948/* Initialize a classifier program rules list. 949 * 950 * This function can be called on a previously initialized rules list 951 * to discard any previously added rules. 952 * 953 * @param rules Rules list to initialize. 954 * @param context An initialized mPIPE context. 955 */ 956extern void gxio_mpipe_rules_init(gxio_mpipe_rules_t *rules, 957 gxio_mpipe_context_t *context); 958 959/* Begin a new rule on the indicated rules list. 960 * 961 * Note that an empty rule matches all packets, but an empty rule list 962 * matches no packets. 963 * 964 * @param rules Rules list to which new rule is appended. 965 * @param bucket First load balancer bucket to which packets will be 966 * delivered. 967 * @param num_buckets Number of buckets (must be a power of two) across 968 * which packets will be distributed based on the "flow hash". 969 * @param stacks Either NULL, to assign each packet to the smallest 970 * initialized buffer stack which does not induce chaining (and to 971 * drop packets which exceed the largest initialized buffer stack 972 * buffer size), or an array, with each entry indicating which buffer 973 * stack should be used for packets up to that size (with 255 974 * indicating that those packets should be dropped). 975 * @return 0 on success, or a negative error code on failure. 976 */ 977extern int gxio_mpipe_rules_begin(gxio_mpipe_rules_t *rules, 978 unsigned int bucket, 979 unsigned int num_buckets, 980 gxio_mpipe_rules_stacks_t *stacks); 981 982/* Set the headroom of the current rule. 983 * 984 * @param rules Rules list whose current rule will be modified. 985 * @param headroom The headroom. 986 * @return 0 on success, or a negative error code on failure. 987 */ 988extern int gxio_mpipe_rules_set_headroom(gxio_mpipe_rules_t *rules, 989 uint8_t headroom); 990 991/* Indicate that packets from a particular channel can be delivered 992 * to the buckets and buffer stacks associated with the current rule. 993 * 994 * Channels added must be associated with links opened by the mPIPE context 995 * used in gxio_mpipe_rules_init(). A rule with no channels is equivalent 996 * to a rule naming all such associated channels. 997 * 998 * @param rules Rules list whose current rule will be modified. 999 * @param channel The channel to add. 1000 * @return 0 on success, or a negative error code on failure.
1001 */ 1002extern int gxio_mpipe_rules_add_channel(gxio_mpipe_rules_t *rules, 1003 unsigned int channel); 1004 1005/* Commit rules. 1006 * 1007 * The rules are sent to the hypervisor, where they are combined with 1008 * the rules from other apps, and used to program the hardware classifier. 1009 * 1010 * Note that if this function returns an error, then the rules will NOT 1011 * have been committed, even if the error is due to interactions with 1012 * rules from another app. 1013 * 1014 * @param rules Rules list to commit. 1015 * @return 0 on success, or a negative error code on failure. 1016 */ 1017extern int gxio_mpipe_rules_commit(gxio_mpipe_rules_t *rules); 1018 1019/***************************************************************** 1020 * Ingress Queue Wrapper * 1021 ******************************************************************/ 1022 1023/* 1024 * 1025 * Convenience functions for receiving packets from a NotifRing and 1026 * sending packets via an eDMA ring. 1027 * 1028 * The mpipe ingress and egress hardware uses shared memory packet 1029 * descriptors to describe packets that have arrived on ingress or 1030 * are destined for egress. These descriptors are stored in shared 1031 * memory ring buffers and written or read by hardware as necessary. 1032 * The gxio library provides wrapper functions that manage the head and 1033 * tail pointers for these rings, allowing the user to easily read or 1034 * write packet descriptors. 1035 * 1036 * The initialization interface for ingress and egress rings is quite 1037 * similar. For example, to create an ingress queue, the user passes 1038 * a ::gxio_mpipe_iqueue_t state object, a ring number from 1039 * gxio_mpipe_alloc_notif_rings(), and the address of memory to hold a 1040 * ring buffer to the gxio_mpipe_iqueue_init() function. The function 1041 * returns success when the state object has been initialized and the 1042 * hardware configured to deliver packets to the specified ring 1043 * buffer. Similarly, gxio_mpipe_equeue_init() takes a 1044 * ::gxio_mpipe_equeue_t state object, a ring number from 1045 * gxio_mpipe_alloc_edma_rings(), and a shared memory buffer. 1046 * 1047 * @section gxio_mpipe_iqueue Working with Ingress Queues 1048 * 1049 * Once initialized, the gxio_mpipe_iqueue_t API provides two flows 1050 * for getting the ::gxio_mpipe_idesc_t packet descriptor associated 1051 * with incoming packets. The simplest is to call 1052 * gxio_mpipe_iqueue_get() or gxio_mpipe_iqueue_try_get(). These 1053 * functions copy the oldest packet descriptor out of the NotifRing and 1054 * into a descriptor provided by the caller. They also immediately 1055 * inform the hardware that a descriptor has been processed. 1056 * 1057 * For applications with stringent performance requirements, higher 1058 * efficiency can be achieved by avoiding the packet descriptor copy 1059 * and processing multiple descriptors at once. The 1060 * gxio_mpipe_iqueue_peek() and gxio_mpipe_iqueue_try_peek() functions 1061 * allow such optimizations. These functions provide a pointer to the 1062 * next valid ingress descriptor in the NotifRing's shared memory ring 1063 * buffer, and a count of how many contiguous descriptors are ready to 1064 * be processed. The application can then process any number of those 1065 * descriptors in place, calling gxio_mpipe_iqueue_consume() to inform 1066 * the hardware after each one has been processed. 1067 * 1068 * @section gxio_mpipe_equeue Working with Egress Queues 1069 * 1070 * Similarly, the egress queue API provides a high-performance 1071 * interface plus a simple wrapper for use in posting 1072 * ::gxio_mpipe_edesc_t egress packet descriptors. The simple 1073 * version, gxio_mpipe_equeue_put(), allows the programmer to wait for 1074 * an eDMA ring slot to become available and write a single descriptor 1075 * into the ring. 1076 * 1077 * Alternatively, you can reserve slots in the eDMA ring using 1078 * gxio_mpipe_equeue_reserve() or gxio_mpipe_equeue_try_reserve(), and 1079 * then fill in each slot using gxio_mpipe_equeue_put_at(). This 1080 * capability can be used to amortize the cost of reserving slots 1081 * across several packets. It also allows gather operations to be 1082 * performed on a shared equeue, by ensuring that the edescs for all 1083 * the fragments are all contiguous in the eDMA ring. 1084 * 1085 * The gxio_mpipe_equeue_reserve() and gxio_mpipe_equeue_try_reserve() 1086 * functions return a 63-bit "completion slot", which is actually a 1087 * sequence number, the low bits of which indicate the ring buffer 1088 * index and the high bits the number of times the application has 1089 * gone around the egress ring buffer. The extra bits allow an 1090 * application to check for egress completion by calling 1091 * gxio_mpipe_equeue_is_complete() to see whether a particular 'slot' 1092 * number has finished. Given the maximum packet rates of the Gx 1093 * processor, the 63-bit slot number will never wrap. 1094 * 1095 * In practice, most applications use the ::gxio_mpipe_edesc_t::hwb 1096 * bit to indicate that the buffers containing egress packet data 1097 * should be pushed onto a buffer stack when egress is complete. Such 1098 * applications generally do not need to know when an egress operation 1099 * completes (since there is no need to free a buffer post-egress), 1100 * and thus can use the optimized gxio_mpipe_equeue_reserve_fast() or 1101 * gxio_mpipe_equeue_try_reserve_fast() functions, which return a 24 1102 * bit "slot", instead of a 63-bit "completion slot". 1103 * 1104 * Once a slot has been "reserved", it MUST be filled. If the 1105 * application reserves a slot and then decides that it does not 1106 * actually need it, it can set the ::gxio_mpipe_edesc_t::ns (no send) 1107 * bit on the descriptor passed to gxio_mpipe_equeue_put_at() to 1108 * indicate that no data should be sent. This technique can also be 1109 * used to drop an incoming packet, instead of forwarding it, since 1110 * any buffer will still be pushed onto the buffer stack when the 1111 * egress descriptor is processed. 1112 */ 1113 1114/* A convenient interface to a NotifRing, for use by a single thread. 1115 */ 1116typedef struct { 1117 1118 /* The context. */ 1119 gxio_mpipe_context_t *context; 1120 1121 /* The actual NotifRing. */ 1122 gxio_mpipe_idesc_t *idescs; 1123 1124 /* The number of entries. */ 1125 unsigned long num_entries; 1126 1127 /* The number of entries minus one. */ 1128 unsigned long mask_num_entries; 1129 1130 /* The log2() of the number of entries. */ 1131 unsigned long log2_num_entries; 1132 1133 /* The next entry. */ 1134 unsigned int head; 1135 1136 /* The NotifRing id. */ 1137 unsigned int ring; 1138 1139#ifdef __BIG_ENDIAN__ 1140 /* The number of byteswapped entries. */ 1141 unsigned int swapped; 1142#endif 1143 1144} gxio_mpipe_iqueue_t; 1145 1146/* Initialize an "iqueue". 1147 * 1148 * Takes the iqueue plus the same args as gxio_mpipe_init_notif_ring(). 1149 */ 1150extern int gxio_mpipe_iqueue_init(gxio_mpipe_iqueue_t *iqueue, 1151 gxio_mpipe_context_t *context, 1152 unsigned int ring, 1153 void *mem, size_t mem_size, 1154 unsigned int mem_flags); 1155 1156/* Advance over some old entries in an iqueue. 1157 * 1158 * Please see the documentation for gxio_mpipe_iqueue_consume(). 1159 * 1160 * @param iqueue An ingress queue initialized via gxio_mpipe_iqueue_init(). 1161 * @param count The number of entries to advance over. 1162 */ 1163static inline void gxio_mpipe_iqueue_advance(gxio_mpipe_iqueue_t *iqueue, 1164 int count) 1165{ 1166 /* Advance with proper wrap. */ 1167 int head = iqueue->head + count; 1168 iqueue->head = 1169 (head & iqueue->mask_num_entries) + 1170 (head >> iqueue->log2_num_entries); 1171 1172#ifdef __BIG_ENDIAN__ 1173 /* HACK: Track swapped entries. */ 1174 iqueue->swapped -= count; 1175#endif 1176} 1177 1178/* Release the ring and bucket for an old entry in an iqueue. 1179 * 1180 * Releasing the ring allows more packets to be delivered to the ring. 1181 * 1182 * Releasing the bucket allows flows using the bucket to be moved to a 1183 * new ring when using GXIO_MPIPE_BUCKET_DYNAMIC_FLOW_AFFINITY. 1184 * 1185 * This function is shorthand for "gxio_mpipe_credit(iqueue->context, 1186 * iqueue->ring, idesc->bucket_id, 1)", and it may be more convenient 1187 * to make that underlying call, using those values, instead of 1188 * tracking the entire "idesc". 1189 * 1190 * If packet processing is deferred, optimal performance requires that 1191 * the releasing be deferred as well. 1192 * 1193 * Please see the documentation for gxio_mpipe_iqueue_consume(). 1194 * 1195 * @param iqueue An ingress queue initialized via gxio_mpipe_iqueue_init(). 1196 * @param idesc The descriptor which was processed. 1197 */ 1198static inline void gxio_mpipe_iqueue_release(gxio_mpipe_iqueue_t *iqueue, 1199 gxio_mpipe_idesc_t *idesc) 1200{ 1201 gxio_mpipe_credit(iqueue->context, iqueue->ring, idesc->bucket_id, 1); 1202} 1203 1204/* Consume a packet from an "iqueue". 1205 * 1206 * After processing packets peeked at via gxio_mpipe_iqueue_peek() 1207 * or gxio_mpipe_iqueue_try_peek(), you must call this function, or 1208 * gxio_mpipe_iqueue_advance() plus gxio_mpipe_iqueue_release(), to 1209 * advance over those entries, and release their rings and buckets. 1210 * 1211 * You may call this function as each packet is processed, or you can 1212 * wait until several packets have been processed. 1213 * 1214 * Note that if you are using a single bucket, and you are handling 1215 * batches of N packets, then you can replace several calls to this 1216 * function with calls to "gxio_mpipe_iqueue_advance(iqueue, N)" and 1217 * "gxio_mpipe_credit(iqueue->context, iqueue->ring, bucket, N)". 1218 * 1219 * Note that if your classifier sets "idesc->nr", then you should 1220 * explicitly call "gxio_mpipe_iqueue_advance(iqueue, idesc)" plus 1221 * "gxio_mpipe_credit(iqueue->context, iqueue->ring, -1, 1)", to 1222 * avoid incorrectly crediting the (unused) bucket. 1223 * 1224 * @param iqueue An ingress queue initialized via gxio_mpipe_iqueue_init(). 1225 * @param idesc The descriptor which was processed. 1226 */ 1227static inline void gxio_mpipe_iqueue_consume(gxio_mpipe_iqueue_t *iqueue, 1228 gxio_mpipe_idesc_t *idesc) 1229{ 1230 gxio_mpipe_iqueue_advance(iqueue, 1); 1231 gxio_mpipe_iqueue_release(iqueue, idesc); 1232} 1233 1234/* Peek at the next packet(s) in an "iqueue", without waiting. 1235 * 1236 * If no packets are available, fills idesc_ref with NULL, and then 1237 * returns ::GXIO_MPIPE_ERR_IQUEUE_EMPTY. Otherwise, fills idesc_ref 1238 * with the address of the next valid packet descriptor, and returns 1239 * the maximum number of valid descriptors which can be processed. 1240 * You may process fewer descriptors if desired. 1241 * 1242 * Call gxio_mpipe_iqueue_consume() on each packet once it has been 1243 * processed (or dropped), to allow more packets to be delivered. 1244 * 1245 * @param iqueue An ingress queue initialized via gxio_mpipe_iqueue_init(). 1246 * @param idesc_ref A pointer to a packet descriptor pointer. 1247 * @return The (positive) number of packets which can be processed, 1248 * or ::GXIO_MPIPE_ERR_IQUEUE_EMPTY if no packets are available. 1249 */ 1250static inline int gxio_mpipe_iqueue_try_peek(gxio_mpipe_iqueue_t *iqueue, 1251 gxio_mpipe_idesc_t **idesc_ref) 1252{ 1253 gxio_mpipe_idesc_t *next; 1254 1255 uint64_t head = iqueue->head; 1256 uint64_t tail = __gxio_mmio_read(iqueue->idescs); 1257 1258 /* Available entries. */ 1259 uint64_t avail = 1260 (tail >= head) ? (tail - head) : (iqueue->num_entries - head); 1261 1262 if (avail == 0) { 1263 *idesc_ref = NULL; 1264 return GXIO_MPIPE_ERR_IQUEUE_EMPTY; 1265 } 1266 1267 next = &iqueue->idescs[head]; 1268 1269 /* ISSUE: Is this helpful? */ 1270 __insn_prefetch(next); 1271 1272#ifdef __BIG_ENDIAN__ 1273 /* HACK: Swap new entries directly in memory. */ 1274 { 1275 int i, j; 1276 for (i = iqueue->swapped; i < avail; i++) { 1277 for (j = 0; j < 8; j++) 1278 next[i].words[j] = 1279 __builtin_bswap64(next[i].words[j]); 1280 } 1281 iqueue->swapped = avail; 1282 } 1283#endif 1284 1285 *idesc_ref = next; 1286 1287 return avail; 1288} 1289 1290/* Drop a packet by pushing its buffer (if appropriate). 1291 * 1292 * NOTE: The caller must still call gxio_mpipe_iqueue_consume() if idesc 1293 * came from gxio_mpipe_iqueue_try_peek() or gxio_mpipe_iqueue_peek(). 1294 * 1295 * @param iqueue An ingress queue initialized via gxio_mpipe_iqueue_init(). 1296 * @param idesc A packet descriptor. 1297 */ 1298static inline void gxio_mpipe_iqueue_drop(gxio_mpipe_iqueue_t *iqueue, 1299 gxio_mpipe_idesc_t *idesc) 1300{ 1301 /* FIXME: Handle "chaining" properly. */ 1302 1303 if (!idesc->be) { 1304 unsigned char *va = gxio_mpipe_idesc_get_va(idesc); 1305 gxio_mpipe_push_buffer(iqueue->context, idesc->stack_idx, va); 1306 } 1307} 1308 1309/***************************************************************** 1310 * Egress Queue Wrapper * 1311 ******************************************************************/ 1312 1313/* A convenient, thread-safe interface to an eDMA ring. */ 1314typedef struct { 1315 1316 /* State object for tracking head and tail pointers. */ 1317 __gxio_dma_queue_t dma_queue; 1318 1319 /* The ring entries. */ 1320 gxio_mpipe_edesc_t *edescs; 1321 1322 /* The number of entries minus one. */ 1323 unsigned long mask_num_entries; 1324 1325 /* The log2() of the number of entries. */ 1326 unsigned long log2_num_entries; 1327 1328 /* The context. */ 1329 gxio_mpipe_context_t *context; 1330 1331 /* The ering. */ 1332 unsigned int ering; 1333 1334 /* The channel. */ 1335 unsigned int channel; 1336 1337} gxio_mpipe_equeue_t; 1338 1339/* Initialize an "equeue". 1340 * 1341 * This function uses gxio_mpipe_init_edma_ring() to initialize the 1342 * underlying edma_ring using the provided arguments. 1343 * 1344 * @param equeue An egress queue to be initialized. 1345 * @param context An initialized mPIPE context. 1346 * @param ering The eDMA ring index. 1347 * @param channel The channel to use. This must be one of the channels 1348 * associated with the context's set of open links. 1349 * @param mem A physically contiguous region of memory to be filled 1350 * with a ring of ::gxio_mpipe_edesc_t structures. 1351 * @param mem_size Number of bytes in the ring. Must be 512, 2048, 1352 * 8192 or 65536, times 16 (i.e. sizeof(gxio_mpipe_edesc_t)). 1353 * @param mem_flags ::gxio_mpipe_mem_flags_e memory flags. 1354 * 1355 * @return 0 on success, ::GXIO_MPIPE_ERR_BAD_EDMA_RING or 1356 * ::GXIO_ERR_INVAL_MEMORY_SIZE on failure. 1357 */ 1358extern int gxio_mpipe_equeue_init(gxio_mpipe_equeue_t *equeue, 1359 gxio_mpipe_context_t *context, 1360 unsigned int ering, 1361 unsigned int channel, 1362 void *mem, unsigned int mem_size, 1363 unsigned int mem_flags); 1364 1365/* Reserve completion slots for edescs. 1366 * 1367 * Use gxio_mpipe_equeue_put_at() to actually populate the slots. 1368 * 1369 * This function is slower than gxio_mpipe_equeue_reserve_fast(), but 1370 * returns a full 64 bit completion slot, which can be used with 1371 * gxio_mpipe_equeue_is_complete(). 1372 * 1373 * @param equeue An egress queue initialized via gxio_mpipe_equeue_init(). 1374 * @param num Number of slots to reserve (must be non-zero). 1375 * @return The first reserved completion slot, or a negative error code. 1376 */ 1377static inline int64_t gxio_mpipe_equeue_reserve(gxio_mpipe_equeue_t *equeue, 1378 unsigned int num) 1379{ 1380 return __gxio_dma_queue_reserve_aux(&equeue->dma_queue, num, true); 1381} 1382 1383/* Reserve completion slots for edescs, if possible. 1384 * 1385 * Use gxio_mpipe_equeue_put_at() to actually populate the slots. 1386 * 1387 * This function is slower than gxio_mpipe_equeue_try_reserve_fast(), 1388 * but returns a full 64 bit completion slot, which can be used with 1389 * gxio_mpipe_equeue_is_complete(). 1390 * 1391 * @param equeue An egress queue initialized via gxio_mpipe_equeue_init(). 1392 * @param num Number of slots to reserve (must be non-zero). 1393 * @return The first reserved completion slot, or a negative error code. 1394 */ 1395static inline int64_t gxio_mpipe_equeue_try_reserve(gxio_mpipe_equeue_t 1396 *equeue, unsigned int num) 1397{ 1398 return __gxio_dma_queue_reserve_aux(&equeue->dma_queue, num, false); 1399} 1400 1401/* Reserve slots for edescs. 1402 * 1403 * Use gxio_mpipe_equeue_put_at() to actually populate the slots. 1404 * 1405 * This function is faster than gxio_mpipe_equeue_reserve(), but 1406 * returns a 24 bit slot (instead of a 64 bit completion slot), which 1407 * thus cannot be used with gxio_mpipe_equeue_is_complete(). 1408 * 1409 * @param equeue An egress queue initialized via gxio_mpipe_equeue_init(). 1410 * @param num Number of slots to reserve (should be non-zero). 1411 * @return The first reserved slot, or a negative error code. 1412 */ 1413static inline int64_t gxio_mpipe_equeue_reserve_fast(gxio_mpipe_equeue_t 1414 *equeue, unsigned int num) 1415{ 1416 return __gxio_dma_queue_reserve(&equeue->dma_queue, num, true, false); 1417} 1418 1419/* Reserve slots for edescs, if possible. 1420 * 1421 * Use gxio_mpipe_equeue_put_at() to actually populate the slots. 1422 * 1423 * This function is faster than gxio_mpipe_equeue_try_reserve(), but 1424 * returns a 24 bit slot (instead of a 64 bit completion slot), which 1425 * thus cannot be used with gxio_mpipe_equeue_is_complete(). 1426 * 1427 * @param equeue An egress queue initialized via gxio_mpipe_equeue_init(). 1428 * @param num Number of slots to reserve (should be non-zero). 1429 * @return The first reserved slot, or a negative error code. 1430 */ 1431static inline int64_t gxio_mpipe_equeue_try_reserve_fast(gxio_mpipe_equeue_t 1432 *equeue, 1433 unsigned int num) 1434{ 1435 return __gxio_dma_queue_reserve(&equeue->dma_queue, num, false, false); 1436} 1437 1438/* 1439 * HACK: This helper function tricks gcc 4.6 into avoiding saving 1440 * a copy of "edesc->words[0]" on the stack for no obvious reason. 1441 */ 1442 1443static inline void gxio_mpipe_equeue_put_at_aux(gxio_mpipe_equeue_t *equeue, 1444 uint_reg_t ew[2], 1445 unsigned long slot) 1446{ 1447 unsigned long edma_slot = slot & equeue->mask_num_entries; 1448 gxio_mpipe_edesc_t *edesc_p = &equeue->edescs[edma_slot]; 1449 1450 /* 1451 * ISSUE: Could set eDMA ring to be on generation 1 at start, which 1452 * would avoid the negation here, perhaps allowing "__insn_bfins()". 1453 */ 1454 ew[0] |= !((slot >> equeue->log2_num_entries) & 1); 1455 1456 /* 1457 * NOTE: We use "__gxio_mpipe_write()", plus the fact that the eDMA 1458 * queue alignment restrictions ensure that these two words are on 1459 * the same cacheline, to force proper ordering between the stores. 1460 */ 1461 __gxio_mmio_write64(&edesc_p->words[1], ew[1]); 1462 __gxio_mmio_write64(&edesc_p->words[0], ew[0]); 1463} 1464 1465/* Post an edesc to a given slot in an equeue. 1466 * 1467 * This function copies the supplied edesc into entry "slot mod N" in 1468 * the underlying ring, setting the "gen" bit to the appropriate value 1469 * based on "(slot mod N*2)", where "N" is the size of the ring. Note 1470 * that the higher bits of slot are unused, and thus, this function 1471 * can handle "slots" as well as "completion slots". 1472 * 1473 * Normally this function is used to fill in slots reserved by 1474 * gxio_mpipe_equeue_try_reserve(), gxio_mpipe_equeue_reserve(), 1475 * gxio_mpipe_equeue_try_reserve_fast(), or 1476 * gxio_mpipe_equeue_reserve_fast(), 1477 * 1478 * This function can also be used without "reserving" slots, if the 1479 * application KNOWS that the ring can never overflow, for example, by 1480 * pushing fewer buffers into the buffer stacks than there are total 1481 * slots in the equeue, but this is NOT recommended. 1482 * 1483 * @param equeue An egress queue initialized via gxio_mpipe_equeue_init(). 1484 * @param edesc The egress descriptor to be posted. 1485 * @param slot An egress slot (only the low bits are actually used). 1486 */ 1487static inline void gxio_mpipe_equeue_put_at(gxio_mpipe_equeue_t *equeue, 1488 gxio_mpipe_edesc_t edesc, 1489 unsigned long slot) 1490{ 1491 gxio_mpipe_equeue_put_at_aux(equeue, edesc.words, slot); 1492} 1493 1494/* Post an edesc to the next slot in an equeue. 1495 * 1496 * This is a convenience wrapper around 1497 * gxio_mpipe_equeue_reserve_fast() and gxio_mpipe_equeue_put_at(). 1498 * 1499 * @param equeue An egress queue initialized via gxio_mpipe_equeue_init(). 1500 * @param edesc The egress descriptor to be posted. 1501 * @return 0 on success. 1502 */ 1503static inline int gxio_mpipe_equeue_put(gxio_mpipe_equeue_t *equeue, 1504 gxio_mpipe_edesc_t edesc) 1505{ 1506 int64_t slot = gxio_mpipe_equeue_reserve_fast(equeue, 1); 1507 if (slot < 0) 1508 return (int)slot; 1509 1510 gxio_mpipe_equeue_put_at(equeue, edesc, slot); 1511 1512 return 0; 1513} 1514 1515/* Ask the mPIPE hardware to egress outstanding packets immediately. 1516 * 1517 * This call is not necessary, but may slightly reduce overall latency. 1518 * 1519 * Technically, you should flush all gxio_mpipe_equeue_put_at() writes 1520 * to memory before calling this function, to ensure the descriptors 1521 * are visible in memory before the mPIPE hardware actually looks for 1522 * them. But this should be very rare, and the only side effect would 1523 * be increased latency, so it is up to the caller to decide whether 1524 * or not to flush memory. 1525 * 1526 * @param equeue An egress queue initialized via gxio_mpipe_equeue_init(). 1527 */ 1528static inline void gxio_mpipe_equeue_flush(gxio_mpipe_equeue_t *equeue) 1529{ 1530 /* Use "ring_idx = 0" and "count = 0" to "wake up" the eDMA ring. */ 1531 MPIPE_EDMA_POST_REGION_VAL_t val = { {0} }; 1532 /* Flush the write buffers. */ 1533 __insn_flushwb(); 1534 __gxio_mmio_write(equeue->dma_queue.post_region_addr, val.word); 1535} 1536 1537/* Determine if a given edesc has been completed. 1538 * 1539 * Note that this function requires a "completion slot", and thus may 1540 * NOT be used with a "slot" from gxio_mpipe_equeue_reserve_fast() or 1541 * gxio_mpipe_equeue_try_reserve_fast(). 1542 * 1543 * @param equeue An egress queue initialized via gxio_mpipe_equeue_init(). 1544 * @param completion_slot The completion slot used by the edesc. 1545 * @param update If true, and the desc does not appear to have completed 1546 * yet, then update any software cache of the hardware completion counter, 1547 * and check again. This should normally be true. 1548 * @return True iff the given edesc has been completed. 1549 */ 1550static inline int gxio_mpipe_equeue_is_complete(gxio_mpipe_equeue_t *equeue, 1551 int64_t completion_slot, 1552 int update) 1553{ 1554 return __gxio_dma_queue_is_complete(&equeue->dma_queue, 1555 completion_slot, update); 1556} 1557 1558/* Set the snf (store and forward) size for an equeue. 1559 * 1560 * The snf size for an equeue defaults to 1536, and encodes the size 1561 * of the largest packet for which egress is guaranteed to avoid 1562 * transmission underruns and/or corrupt checksums under heavy load. 1563 * 1564 * The snf size affects a global resource pool which cannot support, 1565 * for example, all 24 equeues each requesting an snf size of 8K. 1566 * 1567 * To ensure that jumbo packets can be egressed properly, the snf size 1568 * should be set to the size of the largest possible packet, which 1569 * will usually be limited by the size of the app's largest buffer. 1570 * 1571 * This is a convenience wrapper around 1572 * gxio_mpipe_config_edma_ring_blks(). 1573 * 1574 * This function should not be called after any egress has been done 1575 * on the equeue. 1576 * 1577 * @param equeue An egress queue initialized via gxio_mpipe_equeue_init(). 1578 * @param size The snf size, in bytes. 1579 * @return Zero on success, negative error otherwise. 1580 */ 1581static inline int gxio_mpipe_equeue_set_snf_size(gxio_mpipe_equeue_t *equeue, 1582 size_t size) 1583{ 1584 int blks = (size + 127) / 128; 1585 return gxio_mpipe_config_edma_ring_blks(equeue->context, equeue->ering, 1586 blks + 1, blks, 1); 1587} 1588 1589/***************************************************************** 1590 * Link Management * 1591 ******************************************************************/ 1592 1593/* 1594 * 1595 * Functions for manipulating and sensing the state and configuration 1596 * of physical network links. 1597 * 1598 * @section gxio_mpipe_link_perm Link Permissions 1599 * 1600 * Opening a link (with gxio_mpipe_link_open()) requests a set of link 1601 * permissions, which control what may be done with the link, and potentially 1602 * what permissions may be granted to other processes. 1603 * 1604 * Data permission allows the process to receive packets from the link by 1605 * specifying the link's channel number in mPIPE packet distribution rules, 1606 * and to send packets to the link by using the link's channel number as 1607 * the target for an eDMA ring. 1608 * 1609 * Stats permission allows the process to retrieve link attributes (such as 1610 * the speeds it is capable of running at, or whether it is currently up), and 1611 * to read and write certain statistics-related registers in the link's MAC. 1612 * 1613 * Control permission allows the process to retrieve and modify link attributes 1614 * (so that it may, for example, bring the link up and take it down), and 1615 * read and write many registers in the link's MAC and PHY. 1616 * 1617 * Any permission may be requested as shared, which allows other processes 1618 * to also request shared permission, or exclusive, which prevents other 1619 * processes from requesting it. In keeping with GXIO's typical usage in 1620 * an embedded environment, the defaults for all permissions are shared. 1621 * 1622 * Permissions are granted on a first-come, first-served basis, so if two 1623 * applications request an exclusive permission on the same link, the one 1624 * to run first will win. Note, however, that some system components, like 1625 * the kernel Ethernet driver, may get an opportunity to open links before 1626 * any applications run. 1627 * 1628 * @section gxio_mpipe_link_names Link Names 1629 * 1630 * Link names are of the form gbe<em>number</em> (for Gigabit Ethernet), 1631 * xgbe<em>number</em> (for 10 Gigabit Ethernet), loop<em>number</em> (for 1632 * internal mPIPE loopback), or ilk<em>number</em>/<em>channel</em> 1633 * (for Interlaken links); for instance, gbe0, xgbe1, loop3, and 1634 * ilk0/12 are all possible link names. The correspondence between 1635 * the link name and an mPIPE instance number or mPIPE channel number is 1636 * system-dependent; all links will not exist on all systems, and the set 1637 * of numbers used for a particular link type may not start at zero and may 1638 * not be contiguous. Use gxio_mpipe_link_enumerate() to retrieve the set of 1639 * links which exist on a system, and always use gxio_mpipe_link_instance() 1640 * to determine which mPIPE controls a particular link. 1641 * 1642 * Note that in some cases, links may share hardware, such as PHYs, or 1643 * internal mPIPE buffers; in these cases, only one of the links may be 1644 * opened at a time. This is especially common with xgbe and gbe ports, 1645 * since each xgbe port uses 4 SERDES lanes, each of which may also be 1646 * configured as one gbe port. 1647 * 1648 * @section gxio_mpipe_link_states Link States 1649 * 1650 * The mPIPE link management model revolves around three different states, 1651 * which are maintained for each link: 1652 * 1653 * 1. The <em>current</em> link state: is the link up now, and if so, at 1654 * what speed? 1655 * 1656 * 2. The <em>desired</em> link state: what do we want the link state to be? 1657 * The system is always working to make this state the current state; 1658 * thus, if the desired state is up, and the link is down, we'll be 1659 * constantly trying to bring it up, automatically. 1660 * 1661 * 3. The <em>possible</em> link state: what speeds are valid for this 1662 * particular link? Or, in other words, what are the capabilities of 1663 * the link hardware? 1664 * 1665 * These link states are not, strictly speaking, related to application 1666 * state; they may be manipulated at any time, whether or not the link 1667 * is currently being used for data transfer. However, for convenience, 1668 * gxio_mpipe_link_open() and gxio_mpipe_link_close() (or application exit) 1669 * can affect the link state. These implicit link management operations 1670 * may be modified or disabled by the use of link open flags. 1671 * 1672 * From an application, you can use gxio_mpipe_link_get_attr() 1673 * and gxio_mpipe_link_set_attr() to manipulate the link states. 1674 * gxio_mpipe_link_get_attr() with ::GXIO_MPIPE_LINK_POSSIBLE_STATE 1675 * gets you the possible link state. gxio_mpipe_link_get_attr() with 1676 * ::GXIO_MPIPE_LINK_CURRENT_STATE gets you the current link state. 1677 * Finally, gxio_mpipe_link_set_attr() and gxio_mpipe_link_get_attr() 1678 * with ::GXIO_MPIPE_LINK_DESIRED_STATE allow you to modify or retrieve 1679 * the desired link state. 1680 * 1681 * If you want to manage a link from a part of your application which isn't 1682 * involved in packet processing, you can use the ::GXIO_MPIPE_LINK_NO_DATA 1683 * flags on a gxio_mpipe_link_open() call. This opens the link, but does 1684 * not request data permission, so it does not conflict with any exclusive 1685 * permissions which may be held by other processes. You can then can use 1686 * gxio_mpipe_link_get_attr() and gxio_mpipe_link_set_attr() on this link 1687 * object to bring up or take down the link. 1688 * 1689 * Some links support link state bits which support various loopback 1690 * modes. ::GXIO_MPIPE_LINK_LOOP_MAC tests datapaths within the Tile 1691 * Processor itself; ::GXIO_MPIPE_LINK_LOOP_PHY tests the datapath between 1692 * the Tile Processor and the external physical layer interface chip; and 1693 * ::GXIO_MPIPE_LINK_LOOP_EXT tests the entire network datapath with the 1694 * aid of an external loopback connector. In addition to enabling hardware 1695 * testing, such configuration can be useful for software testing, as well. 1696 * 1697 * When LOOP_MAC or LOOP_PHY is enabled, packets transmitted on a channel 1698 * will be received by that channel, instead of being emitted on the 1699 * physical link, and packets received on the physical link will be ignored. 1700 * Other than that, all standard GXIO operations work as you might expect. 1701 * Note that loopback operation requires that the link be brought up using 1702 * one or more of the GXIO_MPIPE_LINK_SPEED_xxx link state bits. 1703 * 1704 * Those familiar with previous versions of the MDE on TILEPro hardware 1705 * will notice significant similarities between the NetIO link management 1706 * model and the mPIPE link management model. However, the NetIO model 1707 * was developed in stages, and some of its features -- for instance, 1708 * the default setting of certain flags -- were shaped by the need to be 1709 * compatible with previous versions of NetIO. Since the features provided 1710 * by the mPIPE hardware and the mPIPE GXIO library are significantly 1711 * different than those provided by NetIO, in some cases, we have made 1712 * different choices in the mPIPE link management API. Thus, please read 1713 * this documentation carefully before assuming that mPIPE link management 1714 * operations are exactly equivalent to their NetIO counterparts. 1715 */ 1716 1717/* An object used to manage mPIPE link state and resources. */ 1718typedef struct { 1719 /* The overall mPIPE context. */ 1720 gxio_mpipe_context_t *context; 1721 1722 /* The channel number used by this link. */ 1723 uint8_t channel; 1724 1725 /* The MAC index used by this link. */ 1726 uint8_t mac; 1727} gxio_mpipe_link_t; 1728 1729/* Translate a link name to the instance number of the mPIPE shim which is 1730 * connected to that link. This call does not verify whether the link is 1731 * currently available, and does not reserve any link resources; 1732 * gxio_mpipe_link_open() must be called to perform those functions. 1733 * 1734 * Typically applications will call this function to translate a link name 1735 * to an mPIPE instance number; call gxio_mpipe_init(), passing it that 1736 * instance number, to initialize the mPIPE shim; and then call 1737 * gxio_mpipe_link_open(), passing it the same link name plus the mPIPE 1738 * context, to configure the link. 1739 * 1740 * @param link_name Name of the link; see @ref gxio_mpipe_link_names. 1741 * @return The mPIPE instance number which is associated with the named 1742 * link, or a negative error code (::GXIO_ERR_NO_DEVICE) if the link does 1743 * not exist. 1744 */ 1745extern int gxio_mpipe_link_instance(const char *link_name); 1746 1747/* Retrieve one of this system's legal link names, and its MAC address. 1748 * 1749 * @param index Link name index. If a system supports N legal link names, 1750 * then indices between 0 and N - 1, inclusive, each correspond to one of 1751 * those names. Thus, to retrieve all of a system's legal link names, 1752 * call this function in a loop, starting with an index of zero, and 1753 * incrementing it once per iteration until -1 is returned. 1754 * @param link_name Pointer to the buffer which will receive the retrieved 1755 * link name. The buffer should contain space for at least 1756 * ::GXIO_MPIPE_LINK_NAME_LEN bytes; the returned name, including the 1757 * terminating null byte, will be no longer than that. 1758 * @param link_name Pointer to the buffer which will receive the retrieved 1759 * MAC address. The buffer should contain space for at least 6 bytes. 1760 * @return Zero if a link name was successfully retrieved; -1 if one was 1761 * not. 1762 */ 1763extern int gxio_mpipe_link_enumerate_mac(int index, char *link_name, 1764 uint8_t *mac_addr); 1765 1766/* Open an mPIPE link. 1767 * 1768 * A link must be opened before it may be used to send or receive packets, 1769 * and before its state may be examined or changed. Depending up on the 1770 * link's intended use, one or more link permissions may be requested via 1771 * the flags parameter; see @ref gxio_mpipe_link_perm. In addition, flags 1772 * may request that the link's state be modified at open time. See @ref 1773 * gxio_mpipe_link_states and @ref gxio_mpipe_link_open_flags for more detail. 1774 * 1775 * @param link A link state object, which will be initialized if this 1776 * function completes successfully. 1777 * @param context An initialized mPIPE context. 1778 * @param link_name Name of the link. 1779 * @param flags Zero or more @ref gxio_mpipe_link_open_flags, ORed together. 1780 * @return 0 if the link was successfully opened, or a negative error code. 1781 * 1782 */ 1783extern int gxio_mpipe_link_open(gxio_mpipe_link_t *link, 1784 gxio_mpipe_context_t *context, 1785 const char *link_name, unsigned int flags); 1786 1787/* Close an mPIPE link. 1788 * 1789 * Closing a link makes it available for use by other processes. Once 1790 * a link has been closed, packets may no longer be sent on or received 1791 * from the link, and its state may not be examined or changed. 1792 * 1793 * @param link A link state object, which will no longer be initialized 1794 * if this function completes successfully. 1795 * @return 0 if the link was successfully closed, or a negative error code. 1796 * 1797 */ 1798extern int gxio_mpipe_link_close(gxio_mpipe_link_t *link); 1799 1800/* Return a link's channel number. 1801 * 1802 * @param link A properly initialized link state object. 1803 * @return The channel number for the link. 1804 */ 1805static inline int gxio_mpipe_link_channel(gxio_mpipe_link_t *link) 1806{ 1807 return link->channel; 1808} 1809 1810/* Set a link attribute. 1811 * 1812 * @param link A properly initialized link state object. 1813 * @param attr An attribute from the set of @ref gxio_mpipe_link_attrs. 1814 * @param val New value of the attribute. 1815 * @return 0 if the attribute was successfully set, or a negative error 1816 * code. 1817 */ 1818extern int gxio_mpipe_link_set_attr(gxio_mpipe_link_t *link, uint32_t attr, 1819 int64_t val); 1820 1821/////////////////////////////////////////////////////////////////// 1822// Timestamp // 1823/////////////////////////////////////////////////////////////////// 1824 1825/* Get the timestamp of mPIPE when this routine is called. 1826 * 1827 * @param context An initialized mPIPE context. 1828 * @param ts A timespec structure to store the current clock. 1829 * @return If the call was successful, zero; otherwise, a negative error 1830 * code. 1831 */ 1832extern int gxio_mpipe_get_timestamp(gxio_mpipe_context_t *context, 1833 struct timespec *ts); 1834 1835/* Set the timestamp of mPIPE. 1836 * 1837 * @param context An initialized mPIPE context. 1838 * @param ts A timespec structure to store the requested clock. 1839 * @return If the call was successful, zero; otherwise, a negative error 1840 * code. 1841 */ 1842extern int gxio_mpipe_set_timestamp(gxio_mpipe_context_t *context, 1843 const struct timespec *ts); 1844 1845/* Adjust the timestamp of mPIPE. 1846 * 1847 * @param context An initialized mPIPE context. 1848 * @param delta A signed time offset to adjust, in nanoseconds. 1849 * The absolute value of this parameter must be less than or 1850 * equal to 1000000000. 1851 * @return If the call was successful, zero; otherwise, a negative error 1852 * code. 1853 */ 1854extern int gxio_mpipe_adjust_timestamp(gxio_mpipe_context_t *context, 1855 int64_t delta); 1856 1857/** Adjust the mPIPE timestamp clock frequency. 1858 * 1859 * @param context An initialized mPIPE context. 1860 * @param ppb A 32-bit signed PPB (Parts Per Billion) value to adjust. 1861 * The absolute value of ppb must be less than or equal to 1000000000. 1862 * Values less than about 30000 will generally cause a GXIO_ERR_INVAL 1863 * return due to the granularity of the hardware that converts reference 1864 * clock cycles into seconds and nanoseconds. 1865 * @return If the call was successful, zero; otherwise, a negative error 1866 * code. 1867 */ 1868extern int gxio_mpipe_adjust_timestamp_freq(gxio_mpipe_context_t* context, 1869 int32_t ppb); 1870 1871#endif /* !_GXIO_MPIPE_H_ */ 1872