linux/drivers/base/regmap/regmap.c
<<
>>
Prefs
   1/*
   2 * Register map access API
   3 *
   4 * Copyright 2011 Wolfson Microelectronics plc
   5 *
   6 * Author: Mark Brown <broonie@opensource.wolfsonmicro.com>
   7 *
   8 * This program is free software; you can redistribute it and/or modify
   9 * it under the terms of the GNU General Public License version 2 as
  10 * published by the Free Software Foundation.
  11 */
  12
  13#include <linux/device.h>
  14#include <linux/slab.h>
  15#include <linux/export.h>
  16#include <linux/mutex.h>
  17#include <linux/err.h>
  18#include <linux/of.h>
  19#include <linux/rbtree.h>
  20#include <linux/sched.h>
  21
  22#define CREATE_TRACE_POINTS
  23#include <trace/events/regmap.h>
  24
  25#include "internal.h"
  26
  27/*
  28 * Sometimes for failures during very early init the trace
  29 * infrastructure isn't available early enough to be used.  For this
  30 * sort of problem defining LOG_DEVICE will add printks for basic
  31 * register I/O on a specific device.
  32 */
  33#undef LOG_DEVICE
  34
  35static int _regmap_update_bits(struct regmap *map, unsigned int reg,
  36                               unsigned int mask, unsigned int val,
  37                               bool *change);
  38
  39static int _regmap_bus_reg_read(void *context, unsigned int reg,
  40                                unsigned int *val);
  41static int _regmap_bus_read(void *context, unsigned int reg,
  42                            unsigned int *val);
  43static int _regmap_bus_formatted_write(void *context, unsigned int reg,
  44                                       unsigned int val);
  45static int _regmap_bus_reg_write(void *context, unsigned int reg,
  46                                 unsigned int val);
  47static int _regmap_bus_raw_write(void *context, unsigned int reg,
  48                                 unsigned int val);
  49
  50bool regmap_reg_in_ranges(unsigned int reg,
  51                          const struct regmap_range *ranges,
  52                          unsigned int nranges)
  53{
  54        const struct regmap_range *r;
  55        int i;
  56
  57        for (i = 0, r = ranges; i < nranges; i++, r++)
  58                if (regmap_reg_in_range(reg, r))
  59                        return true;
  60        return false;
  61}
  62EXPORT_SYMBOL_GPL(regmap_reg_in_ranges);
  63
  64bool regmap_check_range_table(struct regmap *map, unsigned int reg,
  65                              const struct regmap_access_table *table)
  66{
  67        /* Check "no ranges" first */
  68        if (regmap_reg_in_ranges(reg, table->no_ranges, table->n_no_ranges))
  69                return false;
  70
  71        /* In case zero "yes ranges" are supplied, any reg is OK */
  72        if (!table->n_yes_ranges)
  73                return true;
  74
  75        return regmap_reg_in_ranges(reg, table->yes_ranges,
  76                                    table->n_yes_ranges);
  77}
  78EXPORT_SYMBOL_GPL(regmap_check_range_table);
  79
  80bool regmap_writeable(struct regmap *map, unsigned int reg)
  81{
  82        if (map->max_register && reg > map->max_register)
  83                return false;
  84
  85        if (map->writeable_reg)
  86                return map->writeable_reg(map->dev, reg);
  87
  88        if (map->wr_table)
  89                return regmap_check_range_table(map, reg, map->wr_table);
  90
  91        return true;
  92}
  93
  94bool regmap_readable(struct regmap *map, unsigned int reg)
  95{
  96        if (map->max_register && reg > map->max_register)
  97                return false;
  98
  99        if (map->format.format_write)
 100                return false;
 101
 102        if (map->readable_reg)
 103                return map->readable_reg(map->dev, reg);
 104
 105        if (map->rd_table)
 106                return regmap_check_range_table(map, reg, map->rd_table);
 107
 108        return true;
 109}
 110
 111bool regmap_volatile(struct regmap *map, unsigned int reg)
 112{
 113        if (!map->format.format_write && !regmap_readable(map, reg))
 114                return false;
 115
 116        if (map->volatile_reg)
 117                return map->volatile_reg(map->dev, reg);
 118
 119        if (map->volatile_table)
 120                return regmap_check_range_table(map, reg, map->volatile_table);
 121
 122        if (map->cache_ops)
 123                return false;
 124        else
 125                return true;
 126}
 127
 128bool regmap_precious(struct regmap *map, unsigned int reg)
 129{
 130        if (!regmap_readable(map, reg))
 131                return false;
 132
 133        if (map->precious_reg)
 134                return map->precious_reg(map->dev, reg);
 135
 136        if (map->precious_table)
 137                return regmap_check_range_table(map, reg, map->precious_table);
 138
 139        return false;
 140}
 141
 142static bool regmap_volatile_range(struct regmap *map, unsigned int reg,
 143        size_t num)
 144{
 145        unsigned int i;
 146
 147        for (i = 0; i < num; i++)
 148                if (!regmap_volatile(map, reg + i))
 149                        return false;
 150
 151        return true;
 152}
 153
 154static void regmap_format_2_6_write(struct regmap *map,
 155                                     unsigned int reg, unsigned int val)
 156{
 157        u8 *out = map->work_buf;
 158
 159        *out = (reg << 6) | val;
 160}
 161
 162static void regmap_format_4_12_write(struct regmap *map,
 163                                     unsigned int reg, unsigned int val)
 164{
 165        __be16 *out = map->work_buf;
 166        *out = cpu_to_be16((reg << 12) | val);
 167}
 168
 169static void regmap_format_7_9_write(struct regmap *map,
 170                                    unsigned int reg, unsigned int val)
 171{
 172        __be16 *out = map->work_buf;
 173        *out = cpu_to_be16((reg << 9) | val);
 174}
 175
 176static void regmap_format_10_14_write(struct regmap *map,
 177                                    unsigned int reg, unsigned int val)
 178{
 179        u8 *out = map->work_buf;
 180
 181        out[2] = val;
 182        out[1] = (val >> 8) | (reg << 6);
 183        out[0] = reg >> 2;
 184}
 185
 186static void regmap_format_8(void *buf, unsigned int val, unsigned int shift)
 187{
 188        u8 *b = buf;
 189
 190        b[0] = val << shift;
 191}
 192
 193static void regmap_format_16_be(void *buf, unsigned int val, unsigned int shift)
 194{
 195        __be16 *b = buf;
 196
 197        b[0] = cpu_to_be16(val << shift);
 198}
 199
 200static void regmap_format_16_le(void *buf, unsigned int val, unsigned int shift)
 201{
 202        __le16 *b = buf;
 203
 204        b[0] = cpu_to_le16(val << shift);
 205}
 206
 207static void regmap_format_16_native(void *buf, unsigned int val,
 208                                    unsigned int shift)
 209{
 210        *(u16 *)buf = val << shift;
 211}
 212
 213static void regmap_format_24(void *buf, unsigned int val, unsigned int shift)
 214{
 215        u8 *b = buf;
 216
 217        val <<= shift;
 218
 219        b[0] = val >> 16;
 220        b[1] = val >> 8;
 221        b[2] = val;
 222}
 223
 224static void regmap_format_32_be(void *buf, unsigned int val, unsigned int shift)
 225{
 226        __be32 *b = buf;
 227
 228        b[0] = cpu_to_be32(val << shift);
 229}
 230
 231static void regmap_format_32_le(void *buf, unsigned int val, unsigned int shift)
 232{
 233        __le32 *b = buf;
 234
 235        b[0] = cpu_to_le32(val << shift);
 236}
 237
 238static void regmap_format_32_native(void *buf, unsigned int val,
 239                                    unsigned int shift)
 240{
 241        *(u32 *)buf = val << shift;
 242}
 243
 244static void regmap_parse_inplace_noop(void *buf)
 245{
 246}
 247
 248static unsigned int regmap_parse_8(const void *buf)
 249{
 250        const u8 *b = buf;
 251
 252        return b[0];
 253}
 254
 255static unsigned int regmap_parse_16_be(const void *buf)
 256{
 257        const __be16 *b = buf;
 258
 259        return be16_to_cpu(b[0]);
 260}
 261
 262static unsigned int regmap_parse_16_le(const void *buf)
 263{
 264        const __le16 *b = buf;
 265
 266        return le16_to_cpu(b[0]);
 267}
 268
 269static void regmap_parse_16_be_inplace(void *buf)
 270{
 271        __be16 *b = buf;
 272
 273        b[0] = be16_to_cpu(b[0]);
 274}
 275
 276static void regmap_parse_16_le_inplace(void *buf)
 277{
 278        __le16 *b = buf;
 279
 280        b[0] = le16_to_cpu(b[0]);
 281}
 282
 283static unsigned int regmap_parse_16_native(const void *buf)
 284{
 285        return *(u16 *)buf;
 286}
 287
 288static unsigned int regmap_parse_24(const void *buf)
 289{
 290        const u8 *b = buf;
 291        unsigned int ret = b[2];
 292        ret |= ((unsigned int)b[1]) << 8;
 293        ret |= ((unsigned int)b[0]) << 16;
 294
 295        return ret;
 296}
 297
 298static unsigned int regmap_parse_32_be(const void *buf)
 299{
 300        const __be32 *b = buf;
 301
 302        return be32_to_cpu(b[0]);
 303}
 304
 305static unsigned int regmap_parse_32_le(const void *buf)
 306{
 307        const __le32 *b = buf;
 308
 309        return le32_to_cpu(b[0]);
 310}
 311
 312static void regmap_parse_32_be_inplace(void *buf)
 313{
 314        __be32 *b = buf;
 315
 316        b[0] = be32_to_cpu(b[0]);
 317}
 318
 319static void regmap_parse_32_le_inplace(void *buf)
 320{
 321        __le32 *b = buf;
 322
 323        b[0] = le32_to_cpu(b[0]);
 324}
 325
 326static unsigned int regmap_parse_32_native(const void *buf)
 327{
 328        return *(u32 *)buf;
 329}
 330
 331static void regmap_lock_mutex(void *__map)
 332{
 333        struct regmap *map = __map;
 334        mutex_lock(&map->mutex);
 335}
 336
 337static void regmap_unlock_mutex(void *__map)
 338{
 339        struct regmap *map = __map;
 340        mutex_unlock(&map->mutex);
 341}
 342
 343static void regmap_lock_spinlock(void *__map)
 344__acquires(&map->spinlock)
 345{
 346        struct regmap *map = __map;
 347        unsigned long flags;
 348
 349        spin_lock_irqsave(&map->spinlock, flags);
 350        map->spinlock_flags = flags;
 351}
 352
 353static void regmap_unlock_spinlock(void *__map)
 354__releases(&map->spinlock)
 355{
 356        struct regmap *map = __map;
 357        spin_unlock_irqrestore(&map->spinlock, map->spinlock_flags);
 358}
 359
 360static void dev_get_regmap_release(struct device *dev, void *res)
 361{
 362        /*
 363         * We don't actually have anything to do here; the goal here
 364         * is not to manage the regmap but to provide a simple way to
 365         * get the regmap back given a struct device.
 366         */
 367}
 368
 369static bool _regmap_range_add(struct regmap *map,
 370                              struct regmap_range_node *data)
 371{
 372        struct rb_root *root = &map->range_tree;
 373        struct rb_node **new = &(root->rb_node), *parent = NULL;
 374
 375        while (*new) {
 376                struct regmap_range_node *this =
 377                        container_of(*new, struct regmap_range_node, node);
 378
 379                parent = *new;
 380                if (data->range_max < this->range_min)
 381                        new = &((*new)->rb_left);
 382                else if (data->range_min > this->range_max)
 383                        new = &((*new)->rb_right);
 384                else
 385                        return false;
 386        }
 387
 388        rb_link_node(&data->node, parent, new);
 389        rb_insert_color(&data->node, root);
 390
 391        return true;
 392}
 393
 394static struct regmap_range_node *_regmap_range_lookup(struct regmap *map,
 395                                                      unsigned int reg)
 396{
 397        struct rb_node *node = map->range_tree.rb_node;
 398
 399        while (node) {
 400                struct regmap_range_node *this =
 401                        container_of(node, struct regmap_range_node, node);
 402
 403                if (reg < this->range_min)
 404                        node = node->rb_left;
 405                else if (reg > this->range_max)
 406                        node = node->rb_right;
 407                else
 408                        return this;
 409        }
 410
 411        return NULL;
 412}
 413
 414static void regmap_range_exit(struct regmap *map)
 415{
 416        struct rb_node *next;
 417        struct regmap_range_node *range_node;
 418
 419        next = rb_first(&map->range_tree);
 420        while (next) {
 421                range_node = rb_entry(next, struct regmap_range_node, node);
 422                next = rb_next(&range_node->node);
 423                rb_erase(&range_node->node, &map->range_tree);
 424                kfree(range_node);
 425        }
 426
 427        kfree(map->selector_work_buf);
 428}
 429
 430int regmap_attach_dev(struct device *dev, struct regmap *map,
 431                      const struct regmap_config *config)
 432{
 433        struct regmap **m;
 434
 435        map->dev = dev;
 436
 437        regmap_debugfs_init(map, config->name);
 438
 439        /* Add a devres resource for dev_get_regmap() */
 440        m = devres_alloc(dev_get_regmap_release, sizeof(*m), GFP_KERNEL);
 441        if (!m) {
 442                regmap_debugfs_exit(map);
 443                return -ENOMEM;
 444        }
 445        *m = map;
 446        devres_add(dev, m);
 447
 448        return 0;
 449}
 450EXPORT_SYMBOL_GPL(regmap_attach_dev);
 451
 452static enum regmap_endian regmap_get_reg_endian(const struct regmap_bus *bus,
 453                                        const struct regmap_config *config)
 454{
 455        enum regmap_endian endian;
 456
 457        /* Retrieve the endianness specification from the regmap config */
 458        endian = config->reg_format_endian;
 459
 460        /* If the regmap config specified a non-default value, use that */
 461        if (endian != REGMAP_ENDIAN_DEFAULT)
 462                return endian;
 463
 464        /* Retrieve the endianness specification from the bus config */
 465        if (bus && bus->reg_format_endian_default)
 466                endian = bus->reg_format_endian_default;
 467
 468        /* If the bus specified a non-default value, use that */
 469        if (endian != REGMAP_ENDIAN_DEFAULT)
 470                return endian;
 471
 472        /* Use this if no other value was found */
 473        return REGMAP_ENDIAN_BIG;
 474}
 475
 476static enum regmap_endian regmap_get_val_endian(struct device *dev,
 477                                        const struct regmap_bus *bus,
 478                                        const struct regmap_config *config)
 479{
 480        struct device_node *np;
 481        enum regmap_endian endian;
 482
 483        /* Retrieve the endianness specification from the regmap config */
 484        endian = config->val_format_endian;
 485
 486        /* If the regmap config specified a non-default value, use that */
 487        if (endian != REGMAP_ENDIAN_DEFAULT)
 488                return endian;
 489
 490        /* If the dev and dev->of_node exist try to get endianness from DT */
 491        if (dev && dev->of_node) {
 492                np = dev->of_node;
 493
 494                /* Parse the device's DT node for an endianness specification */
 495                if (of_property_read_bool(np, "big-endian"))
 496                        endian = REGMAP_ENDIAN_BIG;
 497                else if (of_property_read_bool(np, "little-endian"))
 498                        endian = REGMAP_ENDIAN_LITTLE;
 499
 500                /* If the endianness was specified in DT, use that */
 501                if (endian != REGMAP_ENDIAN_DEFAULT)
 502                        return endian;
 503        }
 504
 505        /* Retrieve the endianness specification from the bus config */
 506        if (bus && bus->val_format_endian_default)
 507                endian = bus->val_format_endian_default;
 508
 509        /* If the bus specified a non-default value, use that */
 510        if (endian != REGMAP_ENDIAN_DEFAULT)
 511                return endian;
 512
 513        /* Use this if no other value was found */
 514        return REGMAP_ENDIAN_BIG;
 515}
 516
 517/**
 518 * regmap_init(): Initialise register map
 519 *
 520 * @dev: Device that will be interacted with
 521 * @bus: Bus-specific callbacks to use with device
 522 * @bus_context: Data passed to bus-specific callbacks
 523 * @config: Configuration for register map
 524 *
 525 * The return value will be an ERR_PTR() on error or a valid pointer to
 526 * a struct regmap.  This function should generally not be called
 527 * directly, it should be called by bus-specific init functions.
 528 */
 529struct regmap *regmap_init(struct device *dev,
 530                           const struct regmap_bus *bus,
 531                           void *bus_context,
 532                           const struct regmap_config *config)
 533{
 534        struct regmap *map;
 535        int ret = -EINVAL;
 536        enum regmap_endian reg_endian, val_endian;
 537        int i, j;
 538
 539        if (!config)
 540                goto err;
 541
 542        map = kzalloc(sizeof(*map), GFP_KERNEL);
 543        if (map == NULL) {
 544                ret = -ENOMEM;
 545                goto err;
 546        }
 547
 548        if (config->lock && config->unlock) {
 549                map->lock = config->lock;
 550                map->unlock = config->unlock;
 551                map->lock_arg = config->lock_arg;
 552        } else {
 553                if ((bus && bus->fast_io) ||
 554                    config->fast_io) {
 555                        spin_lock_init(&map->spinlock);
 556                        map->lock = regmap_lock_spinlock;
 557                        map->unlock = regmap_unlock_spinlock;
 558                } else {
 559                        mutex_init(&map->mutex);
 560                        map->lock = regmap_lock_mutex;
 561                        map->unlock = regmap_unlock_mutex;
 562                }
 563                map->lock_arg = map;
 564        }
 565        map->format.reg_bytes = DIV_ROUND_UP(config->reg_bits, 8);
 566        map->format.pad_bytes = config->pad_bits / 8;
 567        map->format.val_bytes = DIV_ROUND_UP(config->val_bits, 8);
 568        map->format.buf_size = DIV_ROUND_UP(config->reg_bits +
 569                        config->val_bits + config->pad_bits, 8);
 570        map->reg_shift = config->pad_bits % 8;
 571        if (config->reg_stride)
 572                map->reg_stride = config->reg_stride;
 573        else
 574                map->reg_stride = 1;
 575        map->use_single_rw = config->use_single_rw;
 576        map->can_multi_write = config->can_multi_write;
 577        map->dev = dev;
 578        map->bus = bus;
 579        map->bus_context = bus_context;
 580        map->max_register = config->max_register;
 581        map->wr_table = config->wr_table;
 582        map->rd_table = config->rd_table;
 583        map->volatile_table = config->volatile_table;
 584        map->precious_table = config->precious_table;
 585        map->writeable_reg = config->writeable_reg;
 586        map->readable_reg = config->readable_reg;
 587        map->volatile_reg = config->volatile_reg;
 588        map->precious_reg = config->precious_reg;
 589        map->cache_type = config->cache_type;
 590        map->name = config->name;
 591
 592        spin_lock_init(&map->async_lock);
 593        INIT_LIST_HEAD(&map->async_list);
 594        INIT_LIST_HEAD(&map->async_free);
 595        init_waitqueue_head(&map->async_waitq);
 596
 597        if (config->read_flag_mask || config->write_flag_mask) {
 598                map->read_flag_mask = config->read_flag_mask;
 599                map->write_flag_mask = config->write_flag_mask;
 600        } else if (bus) {
 601                map->read_flag_mask = bus->read_flag_mask;
 602        }
 603
 604        if (!bus) {
 605                map->reg_read  = config->reg_read;
 606                map->reg_write = config->reg_write;
 607
 608                map->defer_caching = false;
 609                goto skip_format_initialization;
 610        } else if (!bus->read || !bus->write) {
 611                map->reg_read = _regmap_bus_reg_read;
 612                map->reg_write = _regmap_bus_reg_write;
 613
 614                map->defer_caching = false;
 615                goto skip_format_initialization;
 616        } else {
 617                map->reg_read  = _regmap_bus_read;
 618        }
 619
 620        reg_endian = regmap_get_reg_endian(bus, config);
 621        val_endian = regmap_get_val_endian(dev, bus, config);
 622
 623        switch (config->reg_bits + map->reg_shift) {
 624        case 2:
 625                switch (config->val_bits) {
 626                case 6:
 627                        map->format.format_write = regmap_format_2_6_write;
 628                        break;
 629                default:
 630                        goto err_map;
 631                }
 632                break;
 633
 634        case 4:
 635                switch (config->val_bits) {
 636                case 12:
 637                        map->format.format_write = regmap_format_4_12_write;
 638                        break;
 639                default:
 640                        goto err_map;
 641                }
 642                break;
 643
 644        case 7:
 645                switch (config->val_bits) {
 646                case 9:
 647                        map->format.format_write = regmap_format_7_9_write;
 648                        break;
 649                default:
 650                        goto err_map;
 651                }
 652                break;
 653
 654        case 10:
 655                switch (config->val_bits) {
 656                case 14:
 657                        map->format.format_write = regmap_format_10_14_write;
 658                        break;
 659                default:
 660                        goto err_map;
 661                }
 662                break;
 663
 664        case 8:
 665                map->format.format_reg = regmap_format_8;
 666                break;
 667
 668        case 16:
 669                switch (reg_endian) {
 670                case REGMAP_ENDIAN_BIG:
 671                        map->format.format_reg = regmap_format_16_be;
 672                        break;
 673                case REGMAP_ENDIAN_NATIVE:
 674                        map->format.format_reg = regmap_format_16_native;
 675                        break;
 676                default:
 677                        goto err_map;
 678                }
 679                break;
 680
 681        case 24:
 682                if (reg_endian != REGMAP_ENDIAN_BIG)
 683                        goto err_map;
 684                map->format.format_reg = regmap_format_24;
 685                break;
 686
 687        case 32:
 688                switch (reg_endian) {
 689                case REGMAP_ENDIAN_BIG:
 690                        map->format.format_reg = regmap_format_32_be;
 691                        break;
 692                case REGMAP_ENDIAN_NATIVE:
 693                        map->format.format_reg = regmap_format_32_native;
 694                        break;
 695                default:
 696                        goto err_map;
 697                }
 698                break;
 699
 700        default:
 701                goto err_map;
 702        }
 703
 704        if (val_endian == REGMAP_ENDIAN_NATIVE)
 705                map->format.parse_inplace = regmap_parse_inplace_noop;
 706
 707        switch (config->val_bits) {
 708        case 8:
 709                map->format.format_val = regmap_format_8;
 710                map->format.parse_val = regmap_parse_8;
 711                map->format.parse_inplace = regmap_parse_inplace_noop;
 712                break;
 713        case 16:
 714                switch (val_endian) {
 715                case REGMAP_ENDIAN_BIG:
 716                        map->format.format_val = regmap_format_16_be;
 717                        map->format.parse_val = regmap_parse_16_be;
 718                        map->format.parse_inplace = regmap_parse_16_be_inplace;
 719                        break;
 720                case REGMAP_ENDIAN_LITTLE:
 721                        map->format.format_val = regmap_format_16_le;
 722                        map->format.parse_val = regmap_parse_16_le;
 723                        map->format.parse_inplace = regmap_parse_16_le_inplace;
 724                        break;
 725                case REGMAP_ENDIAN_NATIVE:
 726                        map->format.format_val = regmap_format_16_native;
 727                        map->format.parse_val = regmap_parse_16_native;
 728                        break;
 729                default:
 730                        goto err_map;
 731                }
 732                break;
 733        case 24:
 734                if (val_endian != REGMAP_ENDIAN_BIG)
 735                        goto err_map;
 736                map->format.format_val = regmap_format_24;
 737                map->format.parse_val = regmap_parse_24;
 738                break;
 739        case 32:
 740                switch (val_endian) {
 741                case REGMAP_ENDIAN_BIG:
 742                        map->format.format_val = regmap_format_32_be;
 743                        map->format.parse_val = regmap_parse_32_be;
 744                        map->format.parse_inplace = regmap_parse_32_be_inplace;
 745                        break;
 746                case REGMAP_ENDIAN_LITTLE:
 747                        map->format.format_val = regmap_format_32_le;
 748                        map->format.parse_val = regmap_parse_32_le;
 749                        map->format.parse_inplace = regmap_parse_32_le_inplace;
 750                        break;
 751                case REGMAP_ENDIAN_NATIVE:
 752                        map->format.format_val = regmap_format_32_native;
 753                        map->format.parse_val = regmap_parse_32_native;
 754                        break;
 755                default:
 756                        goto err_map;
 757                }
 758                break;
 759        }
 760
 761        if (map->format.format_write) {
 762                if ((reg_endian != REGMAP_ENDIAN_BIG) ||
 763                    (val_endian != REGMAP_ENDIAN_BIG))
 764                        goto err_map;
 765                map->use_single_rw = true;
 766        }
 767
 768        if (!map->format.format_write &&
 769            !(map->format.format_reg && map->format.format_val))
 770                goto err_map;
 771
 772        map->work_buf = kzalloc(map->format.buf_size, GFP_KERNEL);
 773        if (map->work_buf == NULL) {
 774                ret = -ENOMEM;
 775                goto err_map;
 776        }
 777
 778        if (map->format.format_write) {
 779                map->defer_caching = false;
 780                map->reg_write = _regmap_bus_formatted_write;
 781        } else if (map->format.format_val) {
 782                map->defer_caching = true;
 783                map->reg_write = _regmap_bus_raw_write;
 784        }
 785
 786skip_format_initialization:
 787
 788        map->range_tree = RB_ROOT;
 789        for (i = 0; i < config->num_ranges; i++) {
 790                const struct regmap_range_cfg *range_cfg = &config->ranges[i];
 791                struct regmap_range_node *new;
 792
 793                /* Sanity check */
 794                if (range_cfg->range_max < range_cfg->range_min) {
 795                        dev_err(map->dev, "Invalid range %d: %d < %d\n", i,
 796                                range_cfg->range_max, range_cfg->range_min);
 797                        goto err_range;
 798                }
 799
 800                if (range_cfg->range_max > map->max_register) {
 801                        dev_err(map->dev, "Invalid range %d: %d > %d\n", i,
 802                                range_cfg->range_max, map->max_register);
 803                        goto err_range;
 804                }
 805
 806                if (range_cfg->selector_reg > map->max_register) {
 807                        dev_err(map->dev,
 808                                "Invalid range %d: selector out of map\n", i);
 809                        goto err_range;
 810                }
 811
 812                if (range_cfg->window_len == 0) {
 813                        dev_err(map->dev, "Invalid range %d: window_len 0\n",
 814                                i);
 815                        goto err_range;
 816                }
 817
 818                /* Make sure, that this register range has no selector
 819                   or data window within its boundary */
 820                for (j = 0; j < config->num_ranges; j++) {
 821                        unsigned sel_reg = config->ranges[j].selector_reg;
 822                        unsigned win_min = config->ranges[j].window_start;
 823                        unsigned win_max = win_min +
 824                                           config->ranges[j].window_len - 1;
 825
 826                        /* Allow data window inside its own virtual range */
 827                        if (j == i)
 828                                continue;
 829
 830                        if (range_cfg->range_min <= sel_reg &&
 831                            sel_reg <= range_cfg->range_max) {
 832                                dev_err(map->dev,
 833                                        "Range %d: selector for %d in window\n",
 834                                        i, j);
 835                                goto err_range;
 836                        }
 837
 838                        if (!(win_max < range_cfg->range_min ||
 839                              win_min > range_cfg->range_max)) {
 840                                dev_err(map->dev,
 841                                        "Range %d: window for %d in window\n",
 842                                        i, j);
 843                                goto err_range;
 844                        }
 845                }
 846
 847                new = kzalloc(sizeof(*new), GFP_KERNEL);
 848                if (new == NULL) {
 849                        ret = -ENOMEM;
 850                        goto err_range;
 851                }
 852
 853                new->map = map;
 854                new->name = range_cfg->name;
 855                new->range_min = range_cfg->range_min;
 856                new->range_max = range_cfg->range_max;
 857                new->selector_reg = range_cfg->selector_reg;
 858                new->selector_mask = range_cfg->selector_mask;
 859                new->selector_shift = range_cfg->selector_shift;
 860                new->window_start = range_cfg->window_start;
 861                new->window_len = range_cfg->window_len;
 862
 863                if (!_regmap_range_add(map, new)) {
 864                        dev_err(map->dev, "Failed to add range %d\n", i);
 865                        kfree(new);
 866                        goto err_range;
 867                }
 868
 869                if (map->selector_work_buf == NULL) {
 870                        map->selector_work_buf =
 871                                kzalloc(map->format.buf_size, GFP_KERNEL);
 872                        if (map->selector_work_buf == NULL) {
 873                                ret = -ENOMEM;
 874                                goto err_range;
 875                        }
 876                }
 877        }
 878
 879        ret = regcache_init(map, config);
 880        if (ret != 0)
 881                goto err_range;
 882
 883        if (dev) {
 884                ret = regmap_attach_dev(dev, map, config);
 885                if (ret != 0)
 886                        goto err_regcache;
 887        }
 888
 889        return map;
 890
 891err_regcache:
 892        regcache_exit(map);
 893err_range:
 894        regmap_range_exit(map);
 895        kfree(map->work_buf);
 896err_map:
 897        kfree(map);
 898err:
 899        return ERR_PTR(ret);
 900}
 901EXPORT_SYMBOL_GPL(regmap_init);
 902
 903static void devm_regmap_release(struct device *dev, void *res)
 904{
 905        regmap_exit(*(struct regmap **)res);
 906}
 907
 908/**
 909 * devm_regmap_init(): Initialise managed register map
 910 *
 911 * @dev: Device that will be interacted with
 912 * @bus: Bus-specific callbacks to use with device
 913 * @bus_context: Data passed to bus-specific callbacks
 914 * @config: Configuration for register map
 915 *
 916 * The return value will be an ERR_PTR() on error or a valid pointer
 917 * to a struct regmap.  This function should generally not be called
 918 * directly, it should be called by bus-specific init functions.  The
 919 * map will be automatically freed by the device management code.
 920 */
 921struct regmap *devm_regmap_init(struct device *dev,
 922                                const struct regmap_bus *bus,
 923                                void *bus_context,
 924                                const struct regmap_config *config)
 925{
 926        struct regmap **ptr, *regmap;
 927
 928        ptr = devres_alloc(devm_regmap_release, sizeof(*ptr), GFP_KERNEL);
 929        if (!ptr)
 930                return ERR_PTR(-ENOMEM);
 931
 932        regmap = regmap_init(dev, bus, bus_context, config);
 933        if (!IS_ERR(regmap)) {
 934                *ptr = regmap;
 935                devres_add(dev, ptr);
 936        } else {
 937                devres_free(ptr);
 938        }
 939
 940        return regmap;
 941}
 942EXPORT_SYMBOL_GPL(devm_regmap_init);
 943
 944static void regmap_field_init(struct regmap_field *rm_field,
 945        struct regmap *regmap, struct reg_field reg_field)
 946{
 947        int field_bits = reg_field.msb - reg_field.lsb + 1;
 948        rm_field->regmap = regmap;
 949        rm_field->reg = reg_field.reg;
 950        rm_field->shift = reg_field.lsb;
 951        rm_field->mask = ((BIT(field_bits) - 1) << reg_field.lsb);
 952        rm_field->id_size = reg_field.id_size;
 953        rm_field->id_offset = reg_field.id_offset;
 954}
 955
 956/**
 957 * devm_regmap_field_alloc(): Allocate and initialise a register field
 958 * in a register map.
 959 *
 960 * @dev: Device that will be interacted with
 961 * @regmap: regmap bank in which this register field is located.
 962 * @reg_field: Register field with in the bank.
 963 *
 964 * The return value will be an ERR_PTR() on error or a valid pointer
 965 * to a struct regmap_field. The regmap_field will be automatically freed
 966 * by the device management code.
 967 */
 968struct regmap_field *devm_regmap_field_alloc(struct device *dev,
 969                struct regmap *regmap, struct reg_field reg_field)
 970{
 971        struct regmap_field *rm_field = devm_kzalloc(dev,
 972                                        sizeof(*rm_field), GFP_KERNEL);
 973        if (!rm_field)
 974                return ERR_PTR(-ENOMEM);
 975
 976        regmap_field_init(rm_field, regmap, reg_field);
 977
 978        return rm_field;
 979
 980}
 981EXPORT_SYMBOL_GPL(devm_regmap_field_alloc);
 982
 983/**
 984 * devm_regmap_field_free(): Free register field allocated using
 985 * devm_regmap_field_alloc. Usally drivers need not call this function,
 986 * as the memory allocated via devm will be freed as per device-driver
 987 * life-cyle.
 988 *
 989 * @dev: Device that will be interacted with
 990 * @field: regmap field which should be freed.
 991 */
 992void devm_regmap_field_free(struct device *dev,
 993        struct regmap_field *field)
 994{
 995        devm_kfree(dev, field);
 996}
 997EXPORT_SYMBOL_GPL(devm_regmap_field_free);
 998
 999/**
1000 * regmap_field_alloc(): Allocate and initialise a register field
1001 * in a register map.
1002 *
1003 * @regmap: regmap bank in which this register field is located.
1004 * @reg_field: Register field with in the bank.
1005 *
1006 * The return value will be an ERR_PTR() on error or a valid pointer
1007 * to a struct regmap_field. The regmap_field should be freed by the
1008 * user once its finished working with it using regmap_field_free().
1009 */
1010struct regmap_field *regmap_field_alloc(struct regmap *regmap,
1011                struct reg_field reg_field)
1012{
1013        struct regmap_field *rm_field = kzalloc(sizeof(*rm_field), GFP_KERNEL);
1014
1015        if (!rm_field)
1016                return ERR_PTR(-ENOMEM);
1017
1018        regmap_field_init(rm_field, regmap, reg_field);
1019
1020        return rm_field;
1021}
1022EXPORT_SYMBOL_GPL(regmap_field_alloc);
1023
1024/**
1025 * regmap_field_free(): Free register field allocated using regmap_field_alloc
1026 *
1027 * @field: regmap field which should be freed.
1028 */
1029void regmap_field_free(struct regmap_field *field)
1030{
1031        kfree(field);
1032}
1033EXPORT_SYMBOL_GPL(regmap_field_free);
1034
1035/**
1036 * regmap_reinit_cache(): Reinitialise the current register cache
1037 *
1038 * @map: Register map to operate on.
1039 * @config: New configuration.  Only the cache data will be used.
1040 *
1041 * Discard any existing register cache for the map and initialize a
1042 * new cache.  This can be used to restore the cache to defaults or to
1043 * update the cache configuration to reflect runtime discovery of the
1044 * hardware.
1045 *
1046 * No explicit locking is done here, the user needs to ensure that
1047 * this function will not race with other calls to regmap.
1048 */
1049int regmap_reinit_cache(struct regmap *map, const struct regmap_config *config)
1050{
1051        regcache_exit(map);
1052        regmap_debugfs_exit(map);
1053
1054        map->max_register = config->max_register;
1055        map->writeable_reg = config->writeable_reg;
1056        map->readable_reg = config->readable_reg;
1057        map->volatile_reg = config->volatile_reg;
1058        map->precious_reg = config->precious_reg;
1059        map->cache_type = config->cache_type;
1060
1061        regmap_debugfs_init(map, config->name);
1062
1063        map->cache_bypass = false;
1064        map->cache_only = false;
1065
1066        return regcache_init(map, config);
1067}
1068EXPORT_SYMBOL_GPL(regmap_reinit_cache);
1069
1070/**
1071 * regmap_exit(): Free a previously allocated register map
1072 */
1073void regmap_exit(struct regmap *map)
1074{
1075        struct regmap_async *async;
1076
1077        regcache_exit(map);
1078        regmap_debugfs_exit(map);
1079        regmap_range_exit(map);
1080        if (map->bus && map->bus->free_context)
1081                map->bus->free_context(map->bus_context);
1082        kfree(map->work_buf);
1083        while (!list_empty(&map->async_free)) {
1084                async = list_first_entry_or_null(&map->async_free,
1085                                                 struct regmap_async,
1086                                                 list);
1087                list_del(&async->list);
1088                kfree(async->work_buf);
1089                kfree(async);
1090        }
1091        kfree(map);
1092}
1093EXPORT_SYMBOL_GPL(regmap_exit);
1094
1095static int dev_get_regmap_match(struct device *dev, void *res, void *data)
1096{
1097        struct regmap **r = res;
1098        if (!r || !*r) {
1099                WARN_ON(!r || !*r);
1100                return 0;
1101        }
1102
1103        /* If the user didn't specify a name match any */
1104        if (data)
1105                return (*r)->name == data;
1106        else
1107                return 1;
1108}
1109
1110/**
1111 * dev_get_regmap(): Obtain the regmap (if any) for a device
1112 *
1113 * @dev: Device to retrieve the map for
1114 * @name: Optional name for the register map, usually NULL.
1115 *
1116 * Returns the regmap for the device if one is present, or NULL.  If
1117 * name is specified then it must match the name specified when
1118 * registering the device, if it is NULL then the first regmap found
1119 * will be used.  Devices with multiple register maps are very rare,
1120 * generic code should normally not need to specify a name.
1121 */
1122struct regmap *dev_get_regmap(struct device *dev, const char *name)
1123{
1124        struct regmap **r = devres_find(dev, dev_get_regmap_release,
1125                                        dev_get_regmap_match, (void *)name);
1126
1127        if (!r)
1128                return NULL;
1129        return *r;
1130}
1131EXPORT_SYMBOL_GPL(dev_get_regmap);
1132
1133/**
1134 * regmap_get_device(): Obtain the device from a regmap
1135 *
1136 * @map: Register map to operate on.
1137 *
1138 * Returns the underlying device that the regmap has been created for.
1139 */
1140struct device *regmap_get_device(struct regmap *map)
1141{
1142        return map->dev;
1143}
1144EXPORT_SYMBOL_GPL(regmap_get_device);
1145
1146static int _regmap_select_page(struct regmap *map, unsigned int *reg,
1147                               struct regmap_range_node *range,
1148                               unsigned int val_num)
1149{
1150        void *orig_work_buf;
1151        unsigned int win_offset;
1152        unsigned int win_page;
1153        bool page_chg;
1154        int ret;
1155
1156        win_offset = (*reg - range->range_min) % range->window_len;
1157        win_page = (*reg - range->range_min) / range->window_len;
1158
1159        if (val_num > 1) {
1160                /* Bulk write shouldn't cross range boundary */
1161                if (*reg + val_num - 1 > range->range_max)
1162                        return -EINVAL;
1163
1164                /* ... or single page boundary */
1165                if (val_num > range->window_len - win_offset)
1166                        return -EINVAL;
1167        }
1168
1169        /* It is possible to have selector register inside data window.
1170           In that case, selector register is located on every page and
1171           it needs no page switching, when accessed alone. */
1172        if (val_num > 1 ||
1173            range->window_start + win_offset != range->selector_reg) {
1174                /* Use separate work_buf during page switching */
1175                orig_work_buf = map->work_buf;
1176                map->work_buf = map->selector_work_buf;
1177
1178                ret = _regmap_update_bits(map, range->selector_reg,
1179                                          range->selector_mask,
1180                                          win_page << range->selector_shift,
1181                                          &page_chg);
1182
1183                map->work_buf = orig_work_buf;
1184
1185                if (ret != 0)
1186                        return ret;
1187        }
1188
1189        *reg = range->window_start + win_offset;
1190
1191        return 0;
1192}
1193
1194int _regmap_raw_write(struct regmap *map, unsigned int reg,
1195                      const void *val, size_t val_len)
1196{
1197        struct regmap_range_node *range;
1198        unsigned long flags;
1199        u8 *u8 = map->work_buf;
1200        void *work_val = map->work_buf + map->format.reg_bytes +
1201                map->format.pad_bytes;
1202        void *buf;
1203        int ret = -ENOTSUPP;
1204        size_t len;
1205        int i;
1206
1207        WARN_ON(!map->bus);
1208
1209        /* Check for unwritable registers before we start */
1210        if (map->writeable_reg)
1211                for (i = 0; i < val_len / map->format.val_bytes; i++)
1212                        if (!map->writeable_reg(map->dev,
1213                                                reg + (i * map->reg_stride)))
1214                                return -EINVAL;
1215
1216        if (!map->cache_bypass && map->format.parse_val) {
1217                unsigned int ival;
1218                int val_bytes = map->format.val_bytes;
1219                for (i = 0; i < val_len / val_bytes; i++) {
1220                        ival = map->format.parse_val(val + (i * val_bytes));
1221                        ret = regcache_write(map, reg + (i * map->reg_stride),
1222                                             ival);
1223                        if (ret) {
1224                                dev_err(map->dev,
1225                                        "Error in caching of register: %x ret: %d\n",
1226                                        reg + i, ret);
1227                                return ret;
1228                        }
1229                }
1230                if (map->cache_only) {
1231                        map->cache_dirty = true;
1232                        return 0;
1233                }
1234        }
1235
1236        range = _regmap_range_lookup(map, reg);
1237        if (range) {
1238                int val_num = val_len / map->format.val_bytes;
1239                int win_offset = (reg - range->range_min) % range->window_len;
1240                int win_residue = range->window_len - win_offset;
1241
1242                /* If the write goes beyond the end of the window split it */
1243                while (val_num > win_residue) {
1244                        dev_dbg(map->dev, "Writing window %d/%zu\n",
1245                                win_residue, val_len / map->format.val_bytes);
1246                        ret = _regmap_raw_write(map, reg, val, win_residue *
1247                                                map->format.val_bytes);
1248                        if (ret != 0)
1249                                return ret;
1250
1251                        reg += win_residue;
1252                        val_num -= win_residue;
1253                        val += win_residue * map->format.val_bytes;
1254                        val_len -= win_residue * map->format.val_bytes;
1255
1256                        win_offset = (reg - range->range_min) %
1257                                range->window_len;
1258                        win_residue = range->window_len - win_offset;
1259                }
1260
1261                ret = _regmap_select_page(map, &reg, range, val_num);
1262                if (ret != 0)
1263                        return ret;
1264        }
1265
1266        map->format.format_reg(map->work_buf, reg, map->reg_shift);
1267
1268        u8[0] |= map->write_flag_mask;
1269
1270        /*
1271         * Essentially all I/O mechanisms will be faster with a single
1272         * buffer to write.  Since register syncs often generate raw
1273         * writes of single registers optimise that case.
1274         */
1275        if (val != work_val && val_len == map->format.val_bytes) {
1276                memcpy(work_val, val, map->format.val_bytes);
1277                val = work_val;
1278        }
1279
1280        if (map->async && map->bus->async_write) {
1281                struct regmap_async *async;
1282
1283                trace_regmap_async_write_start(map->dev, reg, val_len);
1284
1285                spin_lock_irqsave(&map->async_lock, flags);
1286                async = list_first_entry_or_null(&map->async_free,
1287                                                 struct regmap_async,
1288                                                 list);
1289                if (async)
1290                        list_del(&async->list);
1291                spin_unlock_irqrestore(&map->async_lock, flags);
1292
1293                if (!async) {
1294                        async = map->bus->async_alloc();
1295                        if (!async)
1296                                return -ENOMEM;
1297
1298                        async->work_buf = kzalloc(map->format.buf_size,
1299                                                  GFP_KERNEL | GFP_DMA);
1300                        if (!async->work_buf) {
1301                                kfree(async);
1302                                return -ENOMEM;
1303                        }
1304                }
1305
1306                async->map = map;
1307
1308                /* If the caller supplied the value we can use it safely. */
1309                memcpy(async->work_buf, map->work_buf, map->format.pad_bytes +
1310                       map->format.reg_bytes + map->format.val_bytes);
1311
1312                spin_lock_irqsave(&map->async_lock, flags);
1313                list_add_tail(&async->list, &map->async_list);
1314                spin_unlock_irqrestore(&map->async_lock, flags);
1315
1316                if (val != work_val)
1317                        ret = map->bus->async_write(map->bus_context,
1318                                                    async->work_buf,
1319                                                    map->format.reg_bytes +
1320                                                    map->format.pad_bytes,
1321                                                    val, val_len, async);
1322                else
1323                        ret = map->bus->async_write(map->bus_context,
1324                                                    async->work_buf,
1325                                                    map->format.reg_bytes +
1326                                                    map->format.pad_bytes +
1327                                                    val_len, NULL, 0, async);
1328
1329                if (ret != 0) {
1330                        dev_err(map->dev, "Failed to schedule write: %d\n",
1331                                ret);
1332
1333                        spin_lock_irqsave(&map->async_lock, flags);
1334                        list_move(&async->list, &map->async_free);
1335                        spin_unlock_irqrestore(&map->async_lock, flags);
1336                }
1337
1338                return ret;
1339        }
1340
1341        trace_regmap_hw_write_start(map->dev, reg,
1342                                    val_len / map->format.val_bytes);
1343
1344        /* If we're doing a single register write we can probably just
1345         * send the work_buf directly, otherwise try to do a gather
1346         * write.
1347         */
1348        if (val == work_val)
1349                ret = map->bus->write(map->bus_context, map->work_buf,
1350                                      map->format.reg_bytes +
1351                                      map->format.pad_bytes +
1352                                      val_len);
1353        else if (map->bus->gather_write)
1354                ret = map->bus->gather_write(map->bus_context, map->work_buf,
1355                                             map->format.reg_bytes +
1356                                             map->format.pad_bytes,
1357                                             val, val_len);
1358
1359        /* If that didn't work fall back on linearising by hand. */
1360        if (ret == -ENOTSUPP) {
1361                len = map->format.reg_bytes + map->format.pad_bytes + val_len;
1362                buf = kzalloc(len, GFP_KERNEL);
1363                if (!buf)
1364                        return -ENOMEM;
1365
1366                memcpy(buf, map->work_buf, map->format.reg_bytes);
1367                memcpy(buf + map->format.reg_bytes + map->format.pad_bytes,
1368                       val, val_len);
1369                ret = map->bus->write(map->bus_context, buf, len);
1370
1371                kfree(buf);
1372        }
1373
1374        trace_regmap_hw_write_done(map->dev, reg,
1375                                   val_len / map->format.val_bytes);
1376
1377        return ret;
1378}
1379
1380/**
1381 * regmap_can_raw_write - Test if regmap_raw_write() is supported
1382 *
1383 * @map: Map to check.
1384 */
1385bool regmap_can_raw_write(struct regmap *map)
1386{
1387        return map->bus && map->format.format_val && map->format.format_reg;
1388}
1389EXPORT_SYMBOL_GPL(regmap_can_raw_write);
1390
1391static int _regmap_bus_formatted_write(void *context, unsigned int reg,
1392                                       unsigned int val)
1393{
1394        int ret;
1395        struct regmap_range_node *range;
1396        struct regmap *map = context;
1397
1398        WARN_ON(!map->bus || !map->format.format_write);
1399
1400        range = _regmap_range_lookup(map, reg);
1401        if (range) {
1402                ret = _regmap_select_page(map, &reg, range, 1);
1403                if (ret != 0)
1404                        return ret;
1405        }
1406
1407        map->format.format_write(map, reg, val);
1408
1409        trace_regmap_hw_write_start(map->dev, reg, 1);
1410
1411        ret = map->bus->write(map->bus_context, map->work_buf,
1412                              map->format.buf_size);
1413
1414        trace_regmap_hw_write_done(map->dev, reg, 1);
1415
1416        return ret;
1417}
1418
1419static int _regmap_bus_reg_write(void *context, unsigned int reg,
1420                                 unsigned int val)
1421{
1422        struct regmap *map = context;
1423
1424        return map->bus->reg_write(map->bus_context, reg, val);
1425}
1426
1427static int _regmap_bus_raw_write(void *context, unsigned int reg,
1428                                 unsigned int val)
1429{
1430        struct regmap *map = context;
1431
1432        WARN_ON(!map->bus || !map->format.format_val);
1433
1434        map->format.format_val(map->work_buf + map->format.reg_bytes
1435                               + map->format.pad_bytes, val, 0);
1436        return _regmap_raw_write(map, reg,
1437                                 map->work_buf +
1438                                 map->format.reg_bytes +
1439                                 map->format.pad_bytes,
1440                                 map->format.val_bytes);
1441}
1442
1443static inline void *_regmap_map_get_context(struct regmap *map)
1444{
1445        return (map->bus) ? map : map->bus_context;
1446}
1447
1448int _regmap_write(struct regmap *map, unsigned int reg,
1449                  unsigned int val)
1450{
1451        int ret;
1452        void *context = _regmap_map_get_context(map);
1453
1454        if (!regmap_writeable(map, reg))
1455                return -EIO;
1456
1457        if (!map->cache_bypass && !map->defer_caching) {
1458                ret = regcache_write(map, reg, val);
1459                if (ret != 0)
1460                        return ret;
1461                if (map->cache_only) {
1462                        map->cache_dirty = true;
1463                        return 0;
1464                }
1465        }
1466
1467#ifdef LOG_DEVICE
1468        if (map->dev && strcmp(dev_name(map->dev), LOG_DEVICE) == 0)
1469                dev_info(map->dev, "%x <= %x\n", reg, val);
1470#endif
1471
1472        trace_regmap_reg_write(map->dev, reg, val);
1473
1474        return map->reg_write(context, reg, val);
1475}
1476
1477/**
1478 * regmap_write(): Write a value to a single register
1479 *
1480 * @map: Register map to write to
1481 * @reg: Register to write to
1482 * @val: Value to be written
1483 *
1484 * A value of zero will be returned on success, a negative errno will
1485 * be returned in error cases.
1486 */
1487int regmap_write(struct regmap *map, unsigned int reg, unsigned int val)
1488{
1489        int ret;
1490
1491        if (reg % map->reg_stride)
1492                return -EINVAL;
1493
1494        map->lock(map->lock_arg);
1495
1496        ret = _regmap_write(map, reg, val);
1497
1498        map->unlock(map->lock_arg);
1499
1500        return ret;
1501}
1502EXPORT_SYMBOL_GPL(regmap_write);
1503
1504/**
1505 * regmap_write_async(): Write a value to a single register asynchronously
1506 *
1507 * @map: Register map to write to
1508 * @reg: Register to write to
1509 * @val: Value to be written
1510 *
1511 * A value of zero will be returned on success, a negative errno will
1512 * be returned in error cases.
1513 */
1514int regmap_write_async(struct regmap *map, unsigned int reg, unsigned int val)
1515{
1516        int ret;
1517
1518        if (reg % map->reg_stride)
1519                return -EINVAL;
1520
1521        map->lock(map->lock_arg);
1522
1523        map->async = true;
1524
1525        ret = _regmap_write(map, reg, val);
1526
1527        map->async = false;
1528
1529        map->unlock(map->lock_arg);
1530
1531        return ret;
1532}
1533EXPORT_SYMBOL_GPL(regmap_write_async);
1534
1535/**
1536 * regmap_raw_write(): Write raw values to one or more registers
1537 *
1538 * @map: Register map to write to
1539 * @reg: Initial register to write to
1540 * @val: Block of data to be written, laid out for direct transmission to the
1541 *       device
1542 * @val_len: Length of data pointed to by val.
1543 *
1544 * This function is intended to be used for things like firmware
1545 * download where a large block of data needs to be transferred to the
1546 * device.  No formatting will be done on the data provided.
1547 *
1548 * A value of zero will be returned on success, a negative errno will
1549 * be returned in error cases.
1550 */
1551int regmap_raw_write(struct regmap *map, unsigned int reg,
1552                     const void *val, size_t val_len)
1553{
1554        int ret;
1555
1556        if (!regmap_can_raw_write(map))
1557                return -EINVAL;
1558        if (val_len % map->format.val_bytes)
1559                return -EINVAL;
1560
1561        map->lock(map->lock_arg);
1562
1563        ret = _regmap_raw_write(map, reg, val, val_len);
1564
1565        map->unlock(map->lock_arg);
1566
1567        return ret;
1568}
1569EXPORT_SYMBOL_GPL(regmap_raw_write);
1570
1571/**
1572 * regmap_field_write(): Write a value to a single register field
1573 *
1574 * @field: Register field to write to
1575 * @val: Value to be written
1576 *
1577 * A value of zero will be returned on success, a negative errno will
1578 * be returned in error cases.
1579 */
1580int regmap_field_write(struct regmap_field *field, unsigned int val)
1581{
1582        return regmap_update_bits(field->regmap, field->reg,
1583                                field->mask, val << field->shift);
1584}
1585EXPORT_SYMBOL_GPL(regmap_field_write);
1586
1587/**
1588 * regmap_field_update_bits():  Perform a read/modify/write cycle
1589 *                              on the register field
1590 *
1591 * @field: Register field to write to
1592 * @mask: Bitmask to change
1593 * @val: Value to be written
1594 *
1595 * A value of zero will be returned on success, a negative errno will
1596 * be returned in error cases.
1597 */
1598int regmap_field_update_bits(struct regmap_field *field, unsigned int mask, unsigned int val)
1599{
1600        mask = (mask << field->shift) & field->mask;
1601
1602        return regmap_update_bits(field->regmap, field->reg,
1603                                  mask, val << field->shift);
1604}
1605EXPORT_SYMBOL_GPL(regmap_field_update_bits);
1606
1607/**
1608 * regmap_fields_write(): Write a value to a single register field with port ID
1609 *
1610 * @field: Register field to write to
1611 * @id: port ID
1612 * @val: Value to be written
1613 *
1614 * A value of zero will be returned on success, a negative errno will
1615 * be returned in error cases.
1616 */
1617int regmap_fields_write(struct regmap_field *field, unsigned int id,
1618                        unsigned int val)
1619{
1620        if (id >= field->id_size)
1621                return -EINVAL;
1622
1623        return regmap_update_bits(field->regmap,
1624                                  field->reg + (field->id_offset * id),
1625                                  field->mask, val << field->shift);
1626}
1627EXPORT_SYMBOL_GPL(regmap_fields_write);
1628
1629/**
1630 * regmap_fields_update_bits(): Perform a read/modify/write cycle
1631 *                              on the register field
1632 *
1633 * @field: Register field to write to
1634 * @id: port ID
1635 * @mask: Bitmask to change
1636 * @val: Value to be written
1637 *
1638 * A value of zero will be returned on success, a negative errno will
1639 * be returned in error cases.
1640 */
1641int regmap_fields_update_bits(struct regmap_field *field,  unsigned int id,
1642                              unsigned int mask, unsigned int val)
1643{
1644        if (id >= field->id_size)
1645                return -EINVAL;
1646
1647        mask = (mask << field->shift) & field->mask;
1648
1649        return regmap_update_bits(field->regmap,
1650                                  field->reg + (field->id_offset * id),
1651                                  mask, val << field->shift);
1652}
1653EXPORT_SYMBOL_GPL(regmap_fields_update_bits);
1654
1655/*
1656 * regmap_bulk_write(): Write multiple registers to the device
1657 *
1658 * @map: Register map to write to
1659 * @reg: First register to be write from
1660 * @val: Block of data to be written, in native register size for device
1661 * @val_count: Number of registers to write
1662 *
1663 * This function is intended to be used for writing a large block of
1664 * data to the device either in single transfer or multiple transfer.
1665 *
1666 * A value of zero will be returned on success, a negative errno will
1667 * be returned in error cases.
1668 */
1669int regmap_bulk_write(struct regmap *map, unsigned int reg, const void *val,
1670                     size_t val_count)
1671{
1672        int ret = 0, i;
1673        size_t val_bytes = map->format.val_bytes;
1674
1675        if (map->bus && !map->format.parse_inplace)
1676                return -EINVAL;
1677        if (reg % map->reg_stride)
1678                return -EINVAL;
1679
1680        /*
1681         * Some devices don't support bulk write, for
1682         * them we have a series of single write operations.
1683         */
1684        if (!map->bus || map->use_single_rw) {
1685                map->lock(map->lock_arg);
1686                for (i = 0; i < val_count; i++) {
1687                        unsigned int ival;
1688
1689                        switch (val_bytes) {
1690                        case 1:
1691                                ival = *(u8 *)(val + (i * val_bytes));
1692                                break;
1693                        case 2:
1694                                ival = *(u16 *)(val + (i * val_bytes));
1695                                break;
1696                        case 4:
1697                                ival = *(u32 *)(val + (i * val_bytes));
1698                                break;
1699#ifdef CONFIG_64BIT
1700                        case 8:
1701                                ival = *(u64 *)(val + (i * val_bytes));
1702                                break;
1703#endif
1704                        default:
1705                                ret = -EINVAL;
1706                                goto out;
1707                        }
1708
1709                        ret = _regmap_write(map, reg + (i * map->reg_stride),
1710                                        ival);
1711                        if (ret != 0)
1712                                goto out;
1713                }
1714out:
1715                map->unlock(map->lock_arg);
1716        } else {
1717                void *wval;
1718
1719                if (!val_count)
1720                        return -EINVAL;
1721
1722                wval = kmemdup(val, val_count * val_bytes, GFP_KERNEL);
1723                if (!wval) {
1724                        dev_err(map->dev, "Error in memory allocation\n");
1725                        return -ENOMEM;
1726                }
1727                for (i = 0; i < val_count * val_bytes; i += val_bytes)
1728                        map->format.parse_inplace(wval + i);
1729
1730                map->lock(map->lock_arg);
1731                ret = _regmap_raw_write(map, reg, wval, val_bytes * val_count);
1732                map->unlock(map->lock_arg);
1733
1734                kfree(wval);
1735        }
1736        return ret;
1737}
1738EXPORT_SYMBOL_GPL(regmap_bulk_write);
1739
1740/*
1741 * _regmap_raw_multi_reg_write()
1742 *
1743 * the (register,newvalue) pairs in regs have not been formatted, but
1744 * they are all in the same page and have been changed to being page
1745 * relative. The page register has been written if that was neccessary.
1746 */
1747static int _regmap_raw_multi_reg_write(struct regmap *map,
1748                                       const struct reg_default *regs,
1749                                       size_t num_regs)
1750{
1751        int ret;
1752        void *buf;
1753        int i;
1754        u8 *u8;
1755        size_t val_bytes = map->format.val_bytes;
1756        size_t reg_bytes = map->format.reg_bytes;
1757        size_t pad_bytes = map->format.pad_bytes;
1758        size_t pair_size = reg_bytes + pad_bytes + val_bytes;
1759        size_t len = pair_size * num_regs;
1760
1761        if (!len)
1762                return -EINVAL;
1763
1764        buf = kzalloc(len, GFP_KERNEL);
1765        if (!buf)
1766                return -ENOMEM;
1767
1768        /* We have to linearise by hand. */
1769
1770        u8 = buf;
1771
1772        for (i = 0; i < num_regs; i++) {
1773                int reg = regs[i].reg;
1774                int val = regs[i].def;
1775                trace_regmap_hw_write_start(map->dev, reg, 1);
1776                map->format.format_reg(u8, reg, map->reg_shift);
1777                u8 += reg_bytes + pad_bytes;
1778                map->format.format_val(u8, val, 0);
1779                u8 += val_bytes;
1780        }
1781        u8 = buf;
1782        *u8 |= map->write_flag_mask;
1783
1784        ret = map->bus->write(map->bus_context, buf, len);
1785
1786        kfree(buf);
1787
1788        for (i = 0; i < num_regs; i++) {
1789                int reg = regs[i].reg;
1790                trace_regmap_hw_write_done(map->dev, reg, 1);
1791        }
1792        return ret;
1793}
1794
1795static unsigned int _regmap_register_page(struct regmap *map,
1796                                          unsigned int reg,
1797                                          struct regmap_range_node *range)
1798{
1799        unsigned int win_page = (reg - range->range_min) / range->window_len;
1800
1801        return win_page;
1802}
1803
1804static int _regmap_range_multi_paged_reg_write(struct regmap *map,
1805                                               struct reg_default *regs,
1806                                               size_t num_regs)
1807{
1808        int ret;
1809        int i, n;
1810        struct reg_default *base;
1811        unsigned int this_page = 0;
1812        /*
1813         * the set of registers are not neccessarily in order, but
1814         * since the order of write must be preserved this algorithm
1815         * chops the set each time the page changes
1816         */
1817        base = regs;
1818        for (i = 0, n = 0; i < num_regs; i++, n++) {
1819                unsigned int reg = regs[i].reg;
1820                struct regmap_range_node *range;
1821
1822                range = _regmap_range_lookup(map, reg);
1823                if (range) {
1824                        unsigned int win_page = _regmap_register_page(map, reg,
1825                                                                      range);
1826
1827                        if (i == 0)
1828                                this_page = win_page;
1829                        if (win_page != this_page) {
1830                                this_page = win_page;
1831                                ret = _regmap_raw_multi_reg_write(map, base, n);
1832                                if (ret != 0)
1833                                        return ret;
1834                                base += n;
1835                                n = 0;
1836                        }
1837                        ret = _regmap_select_page(map, &base[n].reg, range, 1);
1838                        if (ret != 0)
1839                                return ret;
1840                }
1841        }
1842        if (n > 0)
1843                return _regmap_raw_multi_reg_write(map, base, n);
1844        return 0;
1845}
1846
1847static int _regmap_multi_reg_write(struct regmap *map,
1848                                   const struct reg_default *regs,
1849                                   size_t num_regs)
1850{
1851        int i;
1852        int ret;
1853
1854        if (!map->can_multi_write) {
1855                for (i = 0; i < num_regs; i++) {
1856                        ret = _regmap_write(map, regs[i].reg, regs[i].def);
1857                        if (ret != 0)
1858                                return ret;
1859                }
1860                return 0;
1861        }
1862
1863        if (!map->format.parse_inplace)
1864                return -EINVAL;
1865
1866        if (map->writeable_reg)
1867                for (i = 0; i < num_regs; i++) {
1868                        int reg = regs[i].reg;
1869                        if (!map->writeable_reg(map->dev, reg))
1870                                return -EINVAL;
1871                        if (reg % map->reg_stride)
1872                                return -EINVAL;
1873                }
1874
1875        if (!map->cache_bypass) {
1876                for (i = 0; i < num_regs; i++) {
1877                        unsigned int val = regs[i].def;
1878                        unsigned int reg = regs[i].reg;
1879                        ret = regcache_write(map, reg, val);
1880                        if (ret) {
1881                                dev_err(map->dev,
1882                                "Error in caching of register: %x ret: %d\n",
1883                                                                reg, ret);
1884                                return ret;
1885                        }
1886                }
1887                if (map->cache_only) {
1888                        map->cache_dirty = true;
1889                        return 0;
1890                }
1891        }
1892
1893        WARN_ON(!map->bus);
1894
1895        for (i = 0; i < num_regs; i++) {
1896                unsigned int reg = regs[i].reg;
1897                struct regmap_range_node *range;
1898                range = _regmap_range_lookup(map, reg);
1899                if (range) {
1900                        size_t len = sizeof(struct reg_default)*num_regs;
1901                        struct reg_default *base = kmemdup(regs, len,
1902                                                           GFP_KERNEL);
1903                        if (!base)
1904                                return -ENOMEM;
1905                        ret = _regmap_range_multi_paged_reg_write(map, base,
1906                                                                  num_regs);
1907                        kfree(base);
1908
1909                        return ret;
1910                }
1911        }
1912        return _regmap_raw_multi_reg_write(map, regs, num_regs);
1913}
1914
1915/*
1916 * regmap_multi_reg_write(): Write multiple registers to the device
1917 *
1918 * where the set of register,value pairs are supplied in any order,
1919 * possibly not all in a single range.
1920 *
1921 * @map: Register map to write to
1922 * @regs: Array of structures containing register,value to be written
1923 * @num_regs: Number of registers to write
1924 *
1925 * The 'normal' block write mode will send ultimately send data on the
1926 * target bus as R,V1,V2,V3,..,Vn where successively higer registers are
1927 * addressed. However, this alternative block multi write mode will send
1928 * the data as R1,V1,R2,V2,..,Rn,Vn on the target bus. The target device
1929 * must of course support the mode.
1930 *
1931 * A value of zero will be returned on success, a negative errno will be
1932 * returned in error cases.
1933 */
1934int regmap_multi_reg_write(struct regmap *map, const struct reg_default *regs,
1935                           int num_regs)
1936{
1937        int ret;
1938
1939        map->lock(map->lock_arg);
1940
1941        ret = _regmap_multi_reg_write(map, regs, num_regs);
1942
1943        map->unlock(map->lock_arg);
1944
1945        return ret;
1946}
1947EXPORT_SYMBOL_GPL(regmap_multi_reg_write);
1948
1949/*
1950 * regmap_multi_reg_write_bypassed(): Write multiple registers to the
1951 *                                    device but not the cache
1952 *
1953 * where the set of register are supplied in any order
1954 *
1955 * @map: Register map to write to
1956 * @regs: Array of structures containing register,value to be written
1957 * @num_regs: Number of registers to write
1958 *
1959 * This function is intended to be used for writing a large block of data
1960 * atomically to the device in single transfer for those I2C client devices
1961 * that implement this alternative block write mode.
1962 *
1963 * A value of zero will be returned on success, a negative errno will
1964 * be returned in error cases.
1965 */
1966int regmap_multi_reg_write_bypassed(struct regmap *map,
1967                                    const struct reg_default *regs,
1968                                    int num_regs)
1969{
1970        int ret;
1971        bool bypass;
1972
1973        map->lock(map->lock_arg);
1974
1975        bypass = map->cache_bypass;
1976        map->cache_bypass = true;
1977
1978        ret = _regmap_multi_reg_write(map, regs, num_regs);
1979
1980        map->cache_bypass = bypass;
1981
1982        map->unlock(map->lock_arg);
1983
1984        return ret;
1985}
1986EXPORT_SYMBOL_GPL(regmap_multi_reg_write_bypassed);
1987
1988/**
1989 * regmap_raw_write_async(): Write raw values to one or more registers
1990 *                           asynchronously
1991 *
1992 * @map: Register map to write to
1993 * @reg: Initial register to write to
1994 * @val: Block of data to be written, laid out for direct transmission to the
1995 *       device.  Must be valid until regmap_async_complete() is called.
1996 * @val_len: Length of data pointed to by val.
1997 *
1998 * This function is intended to be used for things like firmware
1999 * download where a large block of data needs to be transferred to the
2000 * device.  No formatting will be done on the data provided.
2001 *
2002 * If supported by the underlying bus the write will be scheduled
2003 * asynchronously, helping maximise I/O speed on higher speed buses
2004 * like SPI.  regmap_async_complete() can be called to ensure that all
2005 * asynchrnous writes have been completed.
2006 *
2007 * A value of zero will be returned on success, a negative errno will
2008 * be returned in error cases.
2009 */
2010int regmap_raw_write_async(struct regmap *map, unsigned int reg,
2011                           const void *val, size_t val_len)
2012{
2013        int ret;
2014
2015        if (val_len % map->format.val_bytes)
2016                return -EINVAL;
2017        if (reg % map->reg_stride)
2018                return -EINVAL;
2019
2020        map->lock(map->lock_arg);
2021
2022        map->async = true;
2023
2024        ret = _regmap_raw_write(map, reg, val, val_len);
2025
2026        map->async = false;
2027
2028        map->unlock(map->lock_arg);
2029
2030        return ret;
2031}
2032EXPORT_SYMBOL_GPL(regmap_raw_write_async);
2033
2034static int _regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
2035                            unsigned int val_len)
2036{
2037        struct regmap_range_node *range;
2038        u8 *u8 = map->work_buf;
2039        int ret;
2040
2041        WARN_ON(!map->bus);
2042
2043        range = _regmap_range_lookup(map, reg);
2044        if (range) {
2045                ret = _regmap_select_page(map, &reg, range,
2046                                          val_len / map->format.val_bytes);
2047                if (ret != 0)
2048                        return ret;
2049        }
2050
2051        map->format.format_reg(map->work_buf, reg, map->reg_shift);
2052
2053        /*
2054         * Some buses or devices flag reads by setting the high bits in the
2055         * register addresss; since it's always the high bits for all
2056         * current formats we can do this here rather than in
2057         * formatting.  This may break if we get interesting formats.
2058         */
2059        u8[0] |= map->read_flag_mask;
2060
2061        trace_regmap_hw_read_start(map->dev, reg,
2062                                   val_len / map->format.val_bytes);
2063
2064        ret = map->bus->read(map->bus_context, map->work_buf,
2065                             map->format.reg_bytes + map->format.pad_bytes,
2066                             val, val_len);
2067
2068        trace_regmap_hw_read_done(map->dev, reg,
2069                                  val_len / map->format.val_bytes);
2070
2071        return ret;
2072}
2073
2074static int _regmap_bus_reg_read(void *context, unsigned int reg,
2075                                unsigned int *val)
2076{
2077        struct regmap *map = context;
2078
2079        return map->bus->reg_read(map->bus_context, reg, val);
2080}
2081
2082static int _regmap_bus_read(void *context, unsigned int reg,
2083                            unsigned int *val)
2084{
2085        int ret;
2086        struct regmap *map = context;
2087
2088        if (!map->format.parse_val)
2089                return -EINVAL;
2090
2091        ret = _regmap_raw_read(map, reg, map->work_buf, map->format.val_bytes);
2092        if (ret == 0)
2093                *val = map->format.parse_val(map->work_buf);
2094
2095        return ret;
2096}
2097
2098static int _regmap_read(struct regmap *map, unsigned int reg,
2099                        unsigned int *val)
2100{
2101        int ret;
2102        void *context = _regmap_map_get_context(map);
2103
2104        WARN_ON(!map->reg_read);
2105
2106        if (!map->cache_bypass) {
2107                ret = regcache_read(map, reg, val);
2108                if (ret == 0)
2109                        return 0;
2110        }
2111
2112        if (map->cache_only)
2113                return -EBUSY;
2114
2115        if (!regmap_readable(map, reg))
2116                return -EIO;
2117
2118        ret = map->reg_read(context, reg, val);
2119        if (ret == 0) {
2120#ifdef LOG_DEVICE
2121                if (map->dev && strcmp(dev_name(map->dev), LOG_DEVICE) == 0)
2122                        dev_info(map->dev, "%x => %x\n", reg, *val);
2123#endif
2124
2125                trace_regmap_reg_read(map->dev, reg, *val);
2126
2127                if (!map->cache_bypass)
2128                        regcache_write(map, reg, *val);
2129        }
2130
2131        return ret;
2132}
2133
2134/**
2135 * regmap_read(): Read a value from a single register
2136 *
2137 * @map: Register map to read from
2138 * @reg: Register to be read from
2139 * @val: Pointer to store read value
2140 *
2141 * A value of zero will be returned on success, a negative errno will
2142 * be returned in error cases.
2143 */
2144int regmap_read(struct regmap *map, unsigned int reg, unsigned int *val)
2145{
2146        int ret;
2147
2148        if (reg % map->reg_stride)
2149                return -EINVAL;
2150
2151        map->lock(map->lock_arg);
2152
2153        ret = _regmap_read(map, reg, val);
2154
2155        map->unlock(map->lock_arg);
2156
2157        return ret;
2158}
2159EXPORT_SYMBOL_GPL(regmap_read);
2160
2161/**
2162 * regmap_raw_read(): Read raw data from the device
2163 *
2164 * @map: Register map to read from
2165 * @reg: First register to be read from
2166 * @val: Pointer to store read value
2167 * @val_len: Size of data to read
2168 *
2169 * A value of zero will be returned on success, a negative errno will
2170 * be returned in error cases.
2171 */
2172int regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
2173                    size_t val_len)
2174{
2175        size_t val_bytes = map->format.val_bytes;
2176        size_t val_count = val_len / val_bytes;
2177        unsigned int v;
2178        int ret, i;
2179
2180        if (!map->bus)
2181                return -EINVAL;
2182        if (val_len % map->format.val_bytes)
2183                return -EINVAL;
2184        if (reg % map->reg_stride)
2185                return -EINVAL;
2186
2187        map->lock(map->lock_arg);
2188
2189        if (regmap_volatile_range(map, reg, val_count) || map->cache_bypass ||
2190            map->cache_type == REGCACHE_NONE) {
2191                /* Physical block read if there's no cache involved */
2192                ret = _regmap_raw_read(map, reg, val, val_len);
2193
2194        } else {
2195                /* Otherwise go word by word for the cache; should be low
2196                 * cost as we expect to hit the cache.
2197                 */
2198                for (i = 0; i < val_count; i++) {
2199                        ret = _regmap_read(map, reg + (i * map->reg_stride),
2200                                           &v);
2201                        if (ret != 0)
2202                                goto out;
2203
2204                        map->format.format_val(val + (i * val_bytes), v, 0);
2205                }
2206        }
2207
2208 out:
2209        map->unlock(map->lock_arg);
2210
2211        return ret;
2212}
2213EXPORT_SYMBOL_GPL(regmap_raw_read);
2214
2215/**
2216 * regmap_field_read(): Read a value to a single register field
2217 *
2218 * @field: Register field to read from
2219 * @val: Pointer to store read value
2220 *
2221 * A value of zero will be returned on success, a negative errno will
2222 * be returned in error cases.
2223 */
2224int regmap_field_read(struct regmap_field *field, unsigned int *val)
2225{
2226        int ret;
2227        unsigned int reg_val;
2228        ret = regmap_read(field->regmap, field->reg, &reg_val);
2229        if (ret != 0)
2230                return ret;
2231
2232        reg_val &= field->mask;
2233        reg_val >>= field->shift;
2234        *val = reg_val;
2235
2236        return ret;
2237}
2238EXPORT_SYMBOL_GPL(regmap_field_read);
2239
2240/**
2241 * regmap_fields_read(): Read a value to a single register field with port ID
2242 *
2243 * @field: Register field to read from
2244 * @id: port ID
2245 * @val: Pointer to store read value
2246 *
2247 * A value of zero will be returned on success, a negative errno will
2248 * be returned in error cases.
2249 */
2250int regmap_fields_read(struct regmap_field *field, unsigned int id,
2251                       unsigned int *val)
2252{
2253        int ret;
2254        unsigned int reg_val;
2255
2256        if (id >= field->id_size)
2257                return -EINVAL;
2258
2259        ret = regmap_read(field->regmap,
2260                          field->reg + (field->id_offset * id),
2261                          &reg_val);
2262        if (ret != 0)
2263                return ret;
2264
2265        reg_val &= field->mask;
2266        reg_val >>= field->shift;
2267        *val = reg_val;
2268
2269        return ret;
2270}
2271EXPORT_SYMBOL_GPL(regmap_fields_read);
2272
2273/**
2274 * regmap_bulk_read(): Read multiple registers from the device
2275 *
2276 * @map: Register map to read from
2277 * @reg: First register to be read from
2278 * @val: Pointer to store read value, in native register size for device
2279 * @val_count: Number of registers to read
2280 *
2281 * A value of zero will be returned on success, a negative errno will
2282 * be returned in error cases.
2283 */
2284int regmap_bulk_read(struct regmap *map, unsigned int reg, void *val,
2285                     size_t val_count)
2286{
2287        int ret, i;
2288        size_t val_bytes = map->format.val_bytes;
2289        bool vol = regmap_volatile_range(map, reg, val_count);
2290
2291        if (reg % map->reg_stride)
2292                return -EINVAL;
2293
2294        if (map->bus && map->format.parse_inplace && (vol || map->cache_type == REGCACHE_NONE)) {
2295                /*
2296                 * Some devices does not support bulk read, for
2297                 * them we have a series of single read operations.
2298                 */
2299                if (map->use_single_rw) {
2300                        for (i = 0; i < val_count; i++) {
2301                                ret = regmap_raw_read(map,
2302                                                reg + (i * map->reg_stride),
2303                                                val + (i * val_bytes),
2304                                                val_bytes);
2305                                if (ret != 0)
2306                                        return ret;
2307                        }
2308                } else {
2309                        ret = regmap_raw_read(map, reg, val,
2310                                              val_bytes * val_count);
2311                        if (ret != 0)
2312                                return ret;
2313                }
2314
2315                for (i = 0; i < val_count * val_bytes; i += val_bytes)
2316                        map->format.parse_inplace(val + i);
2317        } else {
2318                for (i = 0; i < val_count; i++) {
2319                        unsigned int ival;
2320                        ret = regmap_read(map, reg + (i * map->reg_stride),
2321                                          &ival);
2322                        if (ret != 0)
2323                                return ret;
2324                        memcpy(val + (i * val_bytes), &ival, val_bytes);
2325                }
2326        }
2327
2328        return 0;
2329}
2330EXPORT_SYMBOL_GPL(regmap_bulk_read);
2331
2332static int _regmap_update_bits(struct regmap *map, unsigned int reg,
2333                               unsigned int mask, unsigned int val,
2334                               bool *change)
2335{
2336        int ret;
2337        unsigned int tmp, orig;
2338
2339        ret = _regmap_read(map, reg, &orig);
2340        if (ret != 0)
2341                return ret;
2342
2343        tmp = orig & ~mask;
2344        tmp |= val & mask;
2345
2346        if (tmp != orig) {
2347                ret = _regmap_write(map, reg, tmp);
2348                if (change)
2349                        *change = true;
2350        } else {
2351                if (change)
2352                        *change = false;
2353        }
2354
2355        return ret;
2356}
2357
2358/**
2359 * regmap_update_bits: Perform a read/modify/write cycle on the register map
2360 *
2361 * @map: Register map to update
2362 * @reg: Register to update
2363 * @mask: Bitmask to change
2364 * @val: New value for bitmask
2365 *
2366 * Returns zero for success, a negative number on error.
2367 */
2368int regmap_update_bits(struct regmap *map, unsigned int reg,
2369                       unsigned int mask, unsigned int val)
2370{
2371        int ret;
2372
2373        map->lock(map->lock_arg);
2374        ret = _regmap_update_bits(map, reg, mask, val, NULL);
2375        map->unlock(map->lock_arg);
2376
2377        return ret;
2378}
2379EXPORT_SYMBOL_GPL(regmap_update_bits);
2380
2381/**
2382 * regmap_update_bits_async: Perform a read/modify/write cycle on the register
2383 *                           map asynchronously
2384 *
2385 * @map: Register map to update
2386 * @reg: Register to update
2387 * @mask: Bitmask to change
2388 * @val: New value for bitmask
2389 *
2390 * With most buses the read must be done synchronously so this is most
2391 * useful for devices with a cache which do not need to interact with
2392 * the hardware to determine the current register value.
2393 *
2394 * Returns zero for success, a negative number on error.
2395 */
2396int regmap_update_bits_async(struct regmap *map, unsigned int reg,
2397                             unsigned int mask, unsigned int val)
2398{
2399        int ret;
2400
2401        map->lock(map->lock_arg);
2402
2403        map->async = true;
2404
2405        ret = _regmap_update_bits(map, reg, mask, val, NULL);
2406
2407        map->async = false;
2408
2409        map->unlock(map->lock_arg);
2410
2411        return ret;
2412}
2413EXPORT_SYMBOL_GPL(regmap_update_bits_async);
2414
2415/**
2416 * regmap_update_bits_check: Perform a read/modify/write cycle on the
2417 *                           register map and report if updated
2418 *
2419 * @map: Register map to update
2420 * @reg: Register to update
2421 * @mask: Bitmask to change
2422 * @val: New value for bitmask
2423 * @change: Boolean indicating if a write was done
2424 *
2425 * Returns zero for success, a negative number on error.
2426 */
2427int regmap_update_bits_check(struct regmap *map, unsigned int reg,
2428                             unsigned int mask, unsigned int val,
2429                             bool *change)
2430{
2431        int ret;
2432
2433        map->lock(map->lock_arg);
2434        ret = _regmap_update_bits(map, reg, mask, val, change);
2435        map->unlock(map->lock_arg);
2436        return ret;
2437}
2438EXPORT_SYMBOL_GPL(regmap_update_bits_check);
2439
2440/**
2441 * regmap_update_bits_check_async: Perform a read/modify/write cycle on the
2442 *                                 register map asynchronously and report if
2443 *                                 updated
2444 *
2445 * @map: Register map to update
2446 * @reg: Register to update
2447 * @mask: Bitmask to change
2448 * @val: New value for bitmask
2449 * @change: Boolean indicating if a write was done
2450 *
2451 * With most buses the read must be done synchronously so this is most
2452 * useful for devices with a cache which do not need to interact with
2453 * the hardware to determine the current register value.
2454 *
2455 * Returns zero for success, a negative number on error.
2456 */
2457int regmap_update_bits_check_async(struct regmap *map, unsigned int reg,
2458                                   unsigned int mask, unsigned int val,
2459                                   bool *change)
2460{
2461        int ret;
2462
2463        map->lock(map->lock_arg);
2464
2465        map->async = true;
2466
2467        ret = _regmap_update_bits(map, reg, mask, val, change);
2468
2469        map->async = false;
2470
2471        map->unlock(map->lock_arg);
2472
2473        return ret;
2474}
2475EXPORT_SYMBOL_GPL(regmap_update_bits_check_async);
2476
2477void regmap_async_complete_cb(struct regmap_async *async, int ret)
2478{
2479        struct regmap *map = async->map;
2480        bool wake;
2481
2482        trace_regmap_async_io_complete(map->dev);
2483
2484        spin_lock(&map->async_lock);
2485        list_move(&async->list, &map->async_free);
2486        wake = list_empty(&map->async_list);
2487
2488        if (ret != 0)
2489                map->async_ret = ret;
2490
2491        spin_unlock(&map->async_lock);
2492
2493        if (wake)
2494                wake_up(&map->async_waitq);
2495}
2496EXPORT_SYMBOL_GPL(regmap_async_complete_cb);
2497
2498static int regmap_async_is_done(struct regmap *map)
2499{
2500        unsigned long flags;
2501        int ret;
2502
2503        spin_lock_irqsave(&map->async_lock, flags);
2504        ret = list_empty(&map->async_list);
2505        spin_unlock_irqrestore(&map->async_lock, flags);
2506
2507        return ret;
2508}
2509
2510/**
2511 * regmap_async_complete: Ensure all asynchronous I/O has completed.
2512 *
2513 * @map: Map to operate on.
2514 *
2515 * Blocks until any pending asynchronous I/O has completed.  Returns
2516 * an error code for any failed I/O operations.
2517 */
2518int regmap_async_complete(struct regmap *map)
2519{
2520        unsigned long flags;
2521        int ret;
2522
2523        /* Nothing to do with no async support */
2524        if (!map->bus || !map->bus->async_write)
2525                return 0;
2526
2527        trace_regmap_async_complete_start(map->dev);
2528
2529        wait_event(map->async_waitq, regmap_async_is_done(map));
2530
2531        spin_lock_irqsave(&map->async_lock, flags);
2532        ret = map->async_ret;
2533        map->async_ret = 0;
2534        spin_unlock_irqrestore(&map->async_lock, flags);
2535
2536        trace_regmap_async_complete_done(map->dev);
2537
2538        return ret;
2539}
2540EXPORT_SYMBOL_GPL(regmap_async_complete);
2541
2542/**
2543 * regmap_register_patch: Register and apply register updates to be applied
2544 *                        on device initialistion
2545 *
2546 * @map: Register map to apply updates to.
2547 * @regs: Values to update.
2548 * @num_regs: Number of entries in regs.
2549 *
2550 * Register a set of register updates to be applied to the device
2551 * whenever the device registers are synchronised with the cache and
2552 * apply them immediately.  Typically this is used to apply
2553 * corrections to be applied to the device defaults on startup, such
2554 * as the updates some vendors provide to undocumented registers.
2555 *
2556 * The caller must ensure that this function cannot be called
2557 * concurrently with either itself or regcache_sync().
2558 */
2559int regmap_register_patch(struct regmap *map, const struct reg_default *regs,
2560                          int num_regs)
2561{
2562        struct reg_default *p;
2563        int ret;
2564        bool bypass;
2565
2566        if (WARN_ONCE(num_regs <= 0, "invalid registers number (%d)\n",
2567            num_regs))
2568                return 0;
2569
2570        p = krealloc(map->patch,
2571                     sizeof(struct reg_default) * (map->patch_regs + num_regs),
2572                     GFP_KERNEL);
2573        if (p) {
2574                memcpy(p + map->patch_regs, regs, num_regs * sizeof(*regs));
2575                map->patch = p;
2576                map->patch_regs += num_regs;
2577        } else {
2578                return -ENOMEM;
2579        }
2580
2581        map->lock(map->lock_arg);
2582
2583        bypass = map->cache_bypass;
2584
2585        map->cache_bypass = true;
2586        map->async = true;
2587
2588        ret = _regmap_multi_reg_write(map, regs, num_regs);
2589        if (ret != 0)
2590                goto out;
2591
2592out:
2593        map->async = false;
2594        map->cache_bypass = bypass;
2595
2596        map->unlock(map->lock_arg);
2597
2598        regmap_async_complete(map);
2599
2600        return ret;
2601}
2602EXPORT_SYMBOL_GPL(regmap_register_patch);
2603
2604/*
2605 * regmap_get_val_bytes(): Report the size of a register value
2606 *
2607 * Report the size of a register value, mainly intended to for use by
2608 * generic infrastructure built on top of regmap.
2609 */
2610int regmap_get_val_bytes(struct regmap *map)
2611{
2612        if (map->format.format_write)
2613                return -EINVAL;
2614
2615        return map->format.val_bytes;
2616}
2617EXPORT_SYMBOL_GPL(regmap_get_val_bytes);
2618
2619int regmap_parse_val(struct regmap *map, const void *buf,
2620                        unsigned int *val)
2621{
2622        if (!map->format.parse_val)
2623                return -EINVAL;
2624
2625        *val = map->format.parse_val(buf);
2626
2627        return 0;
2628}
2629EXPORT_SYMBOL_GPL(regmap_parse_val);
2630
2631static int __init regmap_initcall(void)
2632{
2633        regmap_debugfs_initcall();
2634
2635        return 0;
2636}
2637postcore_initcall(regmap_initcall);
2638