linux/drivers/gpu/drm/i915/intel_display.c
<<
>>
Prefs
   1/*
   2 * Copyright © 2006-2007 Intel Corporation
   3 *
   4 * Permission is hereby granted, free of charge, to any person obtaining a
   5 * copy of this software and associated documentation files (the "Software"),
   6 * to deal in the Software without restriction, including without limitation
   7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
   8 * and/or sell copies of the Software, and to permit persons to whom the
   9 * Software is furnished to do so, subject to the following conditions:
  10 *
  11 * The above copyright notice and this permission notice (including the next
  12 * paragraph) shall be included in all copies or substantial portions of the
  13 * Software.
  14 *
  15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
  18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
  21 * DEALINGS IN THE SOFTWARE.
  22 *
  23 * Authors:
  24 *      Eric Anholt <eric@anholt.net>
  25 */
  26
  27#include <linux/dmi.h>
  28#include <linux/module.h>
  29#include <linux/input.h>
  30#include <linux/i2c.h>
  31#include <linux/kernel.h>
  32#include <linux/slab.h>
  33#include <linux/vgaarb.h>
  34#include <drm/drm_edid.h>
  35#include <drm/drmP.h>
  36#include "intel_drv.h"
  37#include <drm/i915_drm.h>
  38#include "i915_drv.h"
  39#include "i915_trace.h"
  40#include <drm/drm_dp_helper.h>
  41#include <drm/drm_crtc_helper.h>
  42#include <drm/drm_plane_helper.h>
  43#include <drm/drm_rect.h>
  44#include <linux/dma_remapping.h>
  45
  46/* Primary plane formats supported by all gen */
  47#define COMMON_PRIMARY_FORMATS \
  48        DRM_FORMAT_C8, \
  49        DRM_FORMAT_RGB565, \
  50        DRM_FORMAT_XRGB8888, \
  51        DRM_FORMAT_ARGB8888
  52
  53/* Primary plane formats for gen <= 3 */
  54static const uint32_t intel_primary_formats_gen2[] = {
  55        COMMON_PRIMARY_FORMATS,
  56        DRM_FORMAT_XRGB1555,
  57        DRM_FORMAT_ARGB1555,
  58};
  59
  60/* Primary plane formats for gen >= 4 */
  61static const uint32_t intel_primary_formats_gen4[] = {
  62        COMMON_PRIMARY_FORMATS, \
  63        DRM_FORMAT_XBGR8888,
  64        DRM_FORMAT_ABGR8888,
  65        DRM_FORMAT_XRGB2101010,
  66        DRM_FORMAT_ARGB2101010,
  67        DRM_FORMAT_XBGR2101010,
  68        DRM_FORMAT_ABGR2101010,
  69};
  70
  71/* Cursor formats */
  72static const uint32_t intel_cursor_formats[] = {
  73        DRM_FORMAT_ARGB8888,
  74};
  75
  76static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
  77
  78static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
  79                                struct intel_crtc_config *pipe_config);
  80static void ironlake_pch_clock_get(struct intel_crtc *crtc,
  81                                   struct intel_crtc_config *pipe_config);
  82
  83static int intel_set_mode(struct drm_crtc *crtc, struct drm_display_mode *mode,
  84                          int x, int y, struct drm_framebuffer *old_fb);
  85static int intel_framebuffer_init(struct drm_device *dev,
  86                                  struct intel_framebuffer *ifb,
  87                                  struct drm_mode_fb_cmd2 *mode_cmd,
  88                                  struct drm_i915_gem_object *obj);
  89static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc);
  90static void intel_set_pipe_timings(struct intel_crtc *intel_crtc);
  91static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
  92                                         struct intel_link_m_n *m_n,
  93                                         struct intel_link_m_n *m2_n2);
  94static void ironlake_set_pipeconf(struct drm_crtc *crtc);
  95static void haswell_set_pipeconf(struct drm_crtc *crtc);
  96static void intel_set_pipe_csc(struct drm_crtc *crtc);
  97static void vlv_prepare_pll(struct intel_crtc *crtc,
  98                            const struct intel_crtc_config *pipe_config);
  99static void chv_prepare_pll(struct intel_crtc *crtc,
 100                            const struct intel_crtc_config *pipe_config);
 101
 102static struct intel_encoder *intel_find_encoder(struct intel_connector *connector, int pipe)
 103{
 104        if (!connector->mst_port)
 105                return connector->encoder;
 106        else
 107                return &connector->mst_port->mst_encoders[pipe]->base;
 108}
 109
 110typedef struct {
 111        int     min, max;
 112} intel_range_t;
 113
 114typedef struct {
 115        int     dot_limit;
 116        int     p2_slow, p2_fast;
 117} intel_p2_t;
 118
 119typedef struct intel_limit intel_limit_t;
 120struct intel_limit {
 121        intel_range_t   dot, vco, n, m, m1, m2, p, p1;
 122        intel_p2_t          p2;
 123};
 124
 125int
 126intel_pch_rawclk(struct drm_device *dev)
 127{
 128        struct drm_i915_private *dev_priv = dev->dev_private;
 129
 130        WARN_ON(!HAS_PCH_SPLIT(dev));
 131
 132        return I915_READ(PCH_RAWCLK_FREQ) & RAWCLK_FREQ_MASK;
 133}
 134
 135static inline u32 /* units of 100MHz */
 136intel_fdi_link_freq(struct drm_device *dev)
 137{
 138        if (IS_GEN5(dev)) {
 139                struct drm_i915_private *dev_priv = dev->dev_private;
 140                return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
 141        } else
 142                return 27;
 143}
 144
 145static const intel_limit_t intel_limits_i8xx_dac = {
 146        .dot = { .min = 25000, .max = 350000 },
 147        .vco = { .min = 908000, .max = 1512000 },
 148        .n = { .min = 2, .max = 16 },
 149        .m = { .min = 96, .max = 140 },
 150        .m1 = { .min = 18, .max = 26 },
 151        .m2 = { .min = 6, .max = 16 },
 152        .p = { .min = 4, .max = 128 },
 153        .p1 = { .min = 2, .max = 33 },
 154        .p2 = { .dot_limit = 165000,
 155                .p2_slow = 4, .p2_fast = 2 },
 156};
 157
 158static const intel_limit_t intel_limits_i8xx_dvo = {
 159        .dot = { .min = 25000, .max = 350000 },
 160        .vco = { .min = 908000, .max = 1512000 },
 161        .n = { .min = 2, .max = 16 },
 162        .m = { .min = 96, .max = 140 },
 163        .m1 = { .min = 18, .max = 26 },
 164        .m2 = { .min = 6, .max = 16 },
 165        .p = { .min = 4, .max = 128 },
 166        .p1 = { .min = 2, .max = 33 },
 167        .p2 = { .dot_limit = 165000,
 168                .p2_slow = 4, .p2_fast = 4 },
 169};
 170
 171static const intel_limit_t intel_limits_i8xx_lvds = {
 172        .dot = { .min = 25000, .max = 350000 },
 173        .vco = { .min = 908000, .max = 1512000 },
 174        .n = { .min = 2, .max = 16 },
 175        .m = { .min = 96, .max = 140 },
 176        .m1 = { .min = 18, .max = 26 },
 177        .m2 = { .min = 6, .max = 16 },
 178        .p = { .min = 4, .max = 128 },
 179        .p1 = { .min = 1, .max = 6 },
 180        .p2 = { .dot_limit = 165000,
 181                .p2_slow = 14, .p2_fast = 7 },
 182};
 183
 184static const intel_limit_t intel_limits_i9xx_sdvo = {
 185        .dot = { .min = 20000, .max = 400000 },
 186        .vco = { .min = 1400000, .max = 2800000 },
 187        .n = { .min = 1, .max = 6 },
 188        .m = { .min = 70, .max = 120 },
 189        .m1 = { .min = 8, .max = 18 },
 190        .m2 = { .min = 3, .max = 7 },
 191        .p = { .min = 5, .max = 80 },
 192        .p1 = { .min = 1, .max = 8 },
 193        .p2 = { .dot_limit = 200000,
 194                .p2_slow = 10, .p2_fast = 5 },
 195};
 196
 197static const intel_limit_t intel_limits_i9xx_lvds = {
 198        .dot = { .min = 20000, .max = 400000 },
 199        .vco = { .min = 1400000, .max = 2800000 },
 200        .n = { .min = 1, .max = 6 },
 201        .m = { .min = 70, .max = 120 },
 202        .m1 = { .min = 8, .max = 18 },
 203        .m2 = { .min = 3, .max = 7 },
 204        .p = { .min = 7, .max = 98 },
 205        .p1 = { .min = 1, .max = 8 },
 206        .p2 = { .dot_limit = 112000,
 207                .p2_slow = 14, .p2_fast = 7 },
 208};
 209
 210
 211static const intel_limit_t intel_limits_g4x_sdvo = {
 212        .dot = { .min = 25000, .max = 270000 },
 213        .vco = { .min = 1750000, .max = 3500000},
 214        .n = { .min = 1, .max = 4 },
 215        .m = { .min = 104, .max = 138 },
 216        .m1 = { .min = 17, .max = 23 },
 217        .m2 = { .min = 5, .max = 11 },
 218        .p = { .min = 10, .max = 30 },
 219        .p1 = { .min = 1, .max = 3},
 220        .p2 = { .dot_limit = 270000,
 221                .p2_slow = 10,
 222                .p2_fast = 10
 223        },
 224};
 225
 226static const intel_limit_t intel_limits_g4x_hdmi = {
 227        .dot = { .min = 22000, .max = 400000 },
 228        .vco = { .min = 1750000, .max = 3500000},
 229        .n = { .min = 1, .max = 4 },
 230        .m = { .min = 104, .max = 138 },
 231        .m1 = { .min = 16, .max = 23 },
 232        .m2 = { .min = 5, .max = 11 },
 233        .p = { .min = 5, .max = 80 },
 234        .p1 = { .min = 1, .max = 8},
 235        .p2 = { .dot_limit = 165000,
 236                .p2_slow = 10, .p2_fast = 5 },
 237};
 238
 239static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
 240        .dot = { .min = 20000, .max = 115000 },
 241        .vco = { .min = 1750000, .max = 3500000 },
 242        .n = { .min = 1, .max = 3 },
 243        .m = { .min = 104, .max = 138 },
 244        .m1 = { .min = 17, .max = 23 },
 245        .m2 = { .min = 5, .max = 11 },
 246        .p = { .min = 28, .max = 112 },
 247        .p1 = { .min = 2, .max = 8 },
 248        .p2 = { .dot_limit = 0,
 249                .p2_slow = 14, .p2_fast = 14
 250        },
 251};
 252
 253static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
 254        .dot = { .min = 80000, .max = 224000 },
 255        .vco = { .min = 1750000, .max = 3500000 },
 256        .n = { .min = 1, .max = 3 },
 257        .m = { .min = 104, .max = 138 },
 258        .m1 = { .min = 17, .max = 23 },
 259        .m2 = { .min = 5, .max = 11 },
 260        .p = { .min = 14, .max = 42 },
 261        .p1 = { .min = 2, .max = 6 },
 262        .p2 = { .dot_limit = 0,
 263                .p2_slow = 7, .p2_fast = 7
 264        },
 265};
 266
 267static const intel_limit_t intel_limits_pineview_sdvo = {
 268        .dot = { .min = 20000, .max = 400000},
 269        .vco = { .min = 1700000, .max = 3500000 },
 270        /* Pineview's Ncounter is a ring counter */
 271        .n = { .min = 3, .max = 6 },
 272        .m = { .min = 2, .max = 256 },
 273        /* Pineview only has one combined m divider, which we treat as m2. */
 274        .m1 = { .min = 0, .max = 0 },
 275        .m2 = { .min = 0, .max = 254 },
 276        .p = { .min = 5, .max = 80 },
 277        .p1 = { .min = 1, .max = 8 },
 278        .p2 = { .dot_limit = 200000,
 279                .p2_slow = 10, .p2_fast = 5 },
 280};
 281
 282static const intel_limit_t intel_limits_pineview_lvds = {
 283        .dot = { .min = 20000, .max = 400000 },
 284        .vco = { .min = 1700000, .max = 3500000 },
 285        .n = { .min = 3, .max = 6 },
 286        .m = { .min = 2, .max = 256 },
 287        .m1 = { .min = 0, .max = 0 },
 288        .m2 = { .min = 0, .max = 254 },
 289        .p = { .min = 7, .max = 112 },
 290        .p1 = { .min = 1, .max = 8 },
 291        .p2 = { .dot_limit = 112000,
 292                .p2_slow = 14, .p2_fast = 14 },
 293};
 294
 295/* Ironlake / Sandybridge
 296 *
 297 * We calculate clock using (register_value + 2) for N/M1/M2, so here
 298 * the range value for them is (actual_value - 2).
 299 */
 300static const intel_limit_t intel_limits_ironlake_dac = {
 301        .dot = { .min = 25000, .max = 350000 },
 302        .vco = { .min = 1760000, .max = 3510000 },
 303        .n = { .min = 1, .max = 5 },
 304        .m = { .min = 79, .max = 127 },
 305        .m1 = { .min = 12, .max = 22 },
 306        .m2 = { .min = 5, .max = 9 },
 307        .p = { .min = 5, .max = 80 },
 308        .p1 = { .min = 1, .max = 8 },
 309        .p2 = { .dot_limit = 225000,
 310                .p2_slow = 10, .p2_fast = 5 },
 311};
 312
 313static const intel_limit_t intel_limits_ironlake_single_lvds = {
 314        .dot = { .min = 25000, .max = 350000 },
 315        .vco = { .min = 1760000, .max = 3510000 },
 316        .n = { .min = 1, .max = 3 },
 317        .m = { .min = 79, .max = 118 },
 318        .m1 = { .min = 12, .max = 22 },
 319        .m2 = { .min = 5, .max = 9 },
 320        .p = { .min = 28, .max = 112 },
 321        .p1 = { .min = 2, .max = 8 },
 322        .p2 = { .dot_limit = 225000,
 323                .p2_slow = 14, .p2_fast = 14 },
 324};
 325
 326static const intel_limit_t intel_limits_ironlake_dual_lvds = {
 327        .dot = { .min = 25000, .max = 350000 },
 328        .vco = { .min = 1760000, .max = 3510000 },
 329        .n = { .min = 1, .max = 3 },
 330        .m = { .min = 79, .max = 127 },
 331        .m1 = { .min = 12, .max = 22 },
 332        .m2 = { .min = 5, .max = 9 },
 333        .p = { .min = 14, .max = 56 },
 334        .p1 = { .min = 2, .max = 8 },
 335        .p2 = { .dot_limit = 225000,
 336                .p2_slow = 7, .p2_fast = 7 },
 337};
 338
 339/* LVDS 100mhz refclk limits. */
 340static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
 341        .dot = { .min = 25000, .max = 350000 },
 342        .vco = { .min = 1760000, .max = 3510000 },
 343        .n = { .min = 1, .max = 2 },
 344        .m = { .min = 79, .max = 126 },
 345        .m1 = { .min = 12, .max = 22 },
 346        .m2 = { .min = 5, .max = 9 },
 347        .p = { .min = 28, .max = 112 },
 348        .p1 = { .min = 2, .max = 8 },
 349        .p2 = { .dot_limit = 225000,
 350                .p2_slow = 14, .p2_fast = 14 },
 351};
 352
 353static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
 354        .dot = { .min = 25000, .max = 350000 },
 355        .vco = { .min = 1760000, .max = 3510000 },
 356        .n = { .min = 1, .max = 3 },
 357        .m = { .min = 79, .max = 126 },
 358        .m1 = { .min = 12, .max = 22 },
 359        .m2 = { .min = 5, .max = 9 },
 360        .p = { .min = 14, .max = 42 },
 361        .p1 = { .min = 2, .max = 6 },
 362        .p2 = { .dot_limit = 225000,
 363                .p2_slow = 7, .p2_fast = 7 },
 364};
 365
 366static const intel_limit_t intel_limits_vlv = {
 367         /*
 368          * These are the data rate limits (measured in fast clocks)
 369          * since those are the strictest limits we have. The fast
 370          * clock and actual rate limits are more relaxed, so checking
 371          * them would make no difference.
 372          */
 373        .dot = { .min = 25000 * 5, .max = 270000 * 5 },
 374        .vco = { .min = 4000000, .max = 6000000 },
 375        .n = { .min = 1, .max = 7 },
 376        .m1 = { .min = 2, .max = 3 },
 377        .m2 = { .min = 11, .max = 156 },
 378        .p1 = { .min = 2, .max = 3 },
 379        .p2 = { .p2_slow = 2, .p2_fast = 20 }, /* slow=min, fast=max */
 380};
 381
 382static const intel_limit_t intel_limits_chv = {
 383        /*
 384         * These are the data rate limits (measured in fast clocks)
 385         * since those are the strictest limits we have.  The fast
 386         * clock and actual rate limits are more relaxed, so checking
 387         * them would make no difference.
 388         */
 389        .dot = { .min = 25000 * 5, .max = 540000 * 5},
 390        .vco = { .min = 4860000, .max = 6700000 },
 391        .n = { .min = 1, .max = 1 },
 392        .m1 = { .min = 2, .max = 2 },
 393        .m2 = { .min = 24 << 22, .max = 175 << 22 },
 394        .p1 = { .min = 2, .max = 4 },
 395        .p2 = { .p2_slow = 1, .p2_fast = 14 },
 396};
 397
 398static void vlv_clock(int refclk, intel_clock_t *clock)
 399{
 400        clock->m = clock->m1 * clock->m2;
 401        clock->p = clock->p1 * clock->p2;
 402        if (WARN_ON(clock->n == 0 || clock->p == 0))
 403                return;
 404        clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
 405        clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
 406}
 407
 408/**
 409 * Returns whether any output on the specified pipe is of the specified type
 410 */
 411bool intel_pipe_has_type(struct intel_crtc *crtc, enum intel_output_type type)
 412{
 413        struct drm_device *dev = crtc->base.dev;
 414        struct intel_encoder *encoder;
 415
 416        for_each_encoder_on_crtc(dev, &crtc->base, encoder)
 417                if (encoder->type == type)
 418                        return true;
 419
 420        return false;
 421}
 422
 423/**
 424 * Returns whether any output on the specified pipe will have the specified
 425 * type after a staged modeset is complete, i.e., the same as
 426 * intel_pipe_has_type() but looking at encoder->new_crtc instead of
 427 * encoder->crtc.
 428 */
 429static bool intel_pipe_will_have_type(struct intel_crtc *crtc, int type)
 430{
 431        struct drm_device *dev = crtc->base.dev;
 432        struct intel_encoder *encoder;
 433
 434        for_each_intel_encoder(dev, encoder)
 435                if (encoder->new_crtc == crtc && encoder->type == type)
 436                        return true;
 437
 438        return false;
 439}
 440
 441static const intel_limit_t *intel_ironlake_limit(struct intel_crtc *crtc,
 442                                                int refclk)
 443{
 444        struct drm_device *dev = crtc->base.dev;
 445        const intel_limit_t *limit;
 446
 447        if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS)) {
 448                if (intel_is_dual_link_lvds(dev)) {
 449                        if (refclk == 100000)
 450                                limit = &intel_limits_ironlake_dual_lvds_100m;
 451                        else
 452                                limit = &intel_limits_ironlake_dual_lvds;
 453                } else {
 454                        if (refclk == 100000)
 455                                limit = &intel_limits_ironlake_single_lvds_100m;
 456                        else
 457                                limit = &intel_limits_ironlake_single_lvds;
 458                }
 459        } else
 460                limit = &intel_limits_ironlake_dac;
 461
 462        return limit;
 463}
 464
 465static const intel_limit_t *intel_g4x_limit(struct intel_crtc *crtc)
 466{
 467        struct drm_device *dev = crtc->base.dev;
 468        const intel_limit_t *limit;
 469
 470        if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS)) {
 471                if (intel_is_dual_link_lvds(dev))
 472                        limit = &intel_limits_g4x_dual_channel_lvds;
 473                else
 474                        limit = &intel_limits_g4x_single_channel_lvds;
 475        } else if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_HDMI) ||
 476                   intel_pipe_will_have_type(crtc, INTEL_OUTPUT_ANALOG)) {
 477                limit = &intel_limits_g4x_hdmi;
 478        } else if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_SDVO)) {
 479                limit = &intel_limits_g4x_sdvo;
 480        } else /* The option is for other outputs */
 481                limit = &intel_limits_i9xx_sdvo;
 482
 483        return limit;
 484}
 485
 486static const intel_limit_t *intel_limit(struct intel_crtc *crtc, int refclk)
 487{
 488        struct drm_device *dev = crtc->base.dev;
 489        const intel_limit_t *limit;
 490
 491        if (HAS_PCH_SPLIT(dev))
 492                limit = intel_ironlake_limit(crtc, refclk);
 493        else if (IS_G4X(dev)) {
 494                limit = intel_g4x_limit(crtc);
 495        } else if (IS_PINEVIEW(dev)) {
 496                if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS))
 497                        limit = &intel_limits_pineview_lvds;
 498                else
 499                        limit = &intel_limits_pineview_sdvo;
 500        } else if (IS_CHERRYVIEW(dev)) {
 501                limit = &intel_limits_chv;
 502        } else if (IS_VALLEYVIEW(dev)) {
 503                limit = &intel_limits_vlv;
 504        } else if (!IS_GEN2(dev)) {
 505                if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS))
 506                        limit = &intel_limits_i9xx_lvds;
 507                else
 508                        limit = &intel_limits_i9xx_sdvo;
 509        } else {
 510                if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS))
 511                        limit = &intel_limits_i8xx_lvds;
 512                else if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_DVO))
 513                        limit = &intel_limits_i8xx_dvo;
 514                else
 515                        limit = &intel_limits_i8xx_dac;
 516        }
 517        return limit;
 518}
 519
 520/* m1 is reserved as 0 in Pineview, n is a ring counter */
 521static void pineview_clock(int refclk, intel_clock_t *clock)
 522{
 523        clock->m = clock->m2 + 2;
 524        clock->p = clock->p1 * clock->p2;
 525        if (WARN_ON(clock->n == 0 || clock->p == 0))
 526                return;
 527        clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
 528        clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
 529}
 530
 531static uint32_t i9xx_dpll_compute_m(struct dpll *dpll)
 532{
 533        return 5 * (dpll->m1 + 2) + (dpll->m2 + 2);
 534}
 535
 536static void i9xx_clock(int refclk, intel_clock_t *clock)
 537{
 538        clock->m = i9xx_dpll_compute_m(clock);
 539        clock->p = clock->p1 * clock->p2;
 540        if (WARN_ON(clock->n + 2 == 0 || clock->p == 0))
 541                return;
 542        clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n + 2);
 543        clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
 544}
 545
 546static void chv_clock(int refclk, intel_clock_t *clock)
 547{
 548        clock->m = clock->m1 * clock->m2;
 549        clock->p = clock->p1 * clock->p2;
 550        if (WARN_ON(clock->n == 0 || clock->p == 0))
 551                return;
 552        clock->vco = DIV_ROUND_CLOSEST_ULL((uint64_t)refclk * clock->m,
 553                        clock->n << 22);
 554        clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
 555}
 556
 557#define INTELPllInvalid(s)   do { /* DRM_DEBUG(s); */ return false; } while (0)
 558/**
 559 * Returns whether the given set of divisors are valid for a given refclk with
 560 * the given connectors.
 561 */
 562
 563static bool intel_PLL_is_valid(struct drm_device *dev,
 564                               const intel_limit_t *limit,
 565                               const intel_clock_t *clock)
 566{
 567        if (clock->n   < limit->n.min   || limit->n.max   < clock->n)
 568                INTELPllInvalid("n out of range\n");
 569        if (clock->p1  < limit->p1.min  || limit->p1.max  < clock->p1)
 570                INTELPllInvalid("p1 out of range\n");
 571        if (clock->m2  < limit->m2.min  || limit->m2.max  < clock->m2)
 572                INTELPllInvalid("m2 out of range\n");
 573        if (clock->m1  < limit->m1.min  || limit->m1.max  < clock->m1)
 574                INTELPllInvalid("m1 out of range\n");
 575
 576        if (!IS_PINEVIEW(dev) && !IS_VALLEYVIEW(dev))
 577                if (clock->m1 <= clock->m2)
 578                        INTELPllInvalid("m1 <= m2\n");
 579
 580        if (!IS_VALLEYVIEW(dev)) {
 581                if (clock->p < limit->p.min || limit->p.max < clock->p)
 582                        INTELPllInvalid("p out of range\n");
 583                if (clock->m < limit->m.min || limit->m.max < clock->m)
 584                        INTELPllInvalid("m out of range\n");
 585        }
 586
 587        if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
 588                INTELPllInvalid("vco out of range\n");
 589        /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
 590         * connector, etc., rather than just a single range.
 591         */
 592        if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
 593                INTELPllInvalid("dot out of range\n");
 594
 595        return true;
 596}
 597
 598static bool
 599i9xx_find_best_dpll(const intel_limit_t *limit, struct intel_crtc *crtc,
 600                    int target, int refclk, intel_clock_t *match_clock,
 601                    intel_clock_t *best_clock)
 602{
 603        struct drm_device *dev = crtc->base.dev;
 604        intel_clock_t clock;
 605        int err = target;
 606
 607        if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS)) {
 608                /*
 609                 * For LVDS just rely on its current settings for dual-channel.
 610                 * We haven't figured out how to reliably set up different
 611                 * single/dual channel state, if we even can.
 612                 */
 613                if (intel_is_dual_link_lvds(dev))
 614                        clock.p2 = limit->p2.p2_fast;
 615                else
 616                        clock.p2 = limit->p2.p2_slow;
 617        } else {
 618                if (target < limit->p2.dot_limit)
 619                        clock.p2 = limit->p2.p2_slow;
 620                else
 621                        clock.p2 = limit->p2.p2_fast;
 622        }
 623
 624        memset(best_clock, 0, sizeof(*best_clock));
 625
 626        for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
 627             clock.m1++) {
 628                for (clock.m2 = limit->m2.min;
 629                     clock.m2 <= limit->m2.max; clock.m2++) {
 630                        if (clock.m2 >= clock.m1)
 631                                break;
 632                        for (clock.n = limit->n.min;
 633                             clock.n <= limit->n.max; clock.n++) {
 634                                for (clock.p1 = limit->p1.min;
 635                                        clock.p1 <= limit->p1.max; clock.p1++) {
 636                                        int this_err;
 637
 638                                        i9xx_clock(refclk, &clock);
 639                                        if (!intel_PLL_is_valid(dev, limit,
 640                                                                &clock))
 641                                                continue;
 642                                        if (match_clock &&
 643                                            clock.p != match_clock->p)
 644                                                continue;
 645
 646                                        this_err = abs(clock.dot - target);
 647                                        if (this_err < err) {
 648                                                *best_clock = clock;
 649                                                err = this_err;
 650                                        }
 651                                }
 652                        }
 653                }
 654        }
 655
 656        return (err != target);
 657}
 658
 659static bool
 660pnv_find_best_dpll(const intel_limit_t *limit, struct intel_crtc *crtc,
 661                   int target, int refclk, intel_clock_t *match_clock,
 662                   intel_clock_t *best_clock)
 663{
 664        struct drm_device *dev = crtc->base.dev;
 665        intel_clock_t clock;
 666        int err = target;
 667
 668        if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS)) {
 669                /*
 670                 * For LVDS just rely on its current settings for dual-channel.
 671                 * We haven't figured out how to reliably set up different
 672                 * single/dual channel state, if we even can.
 673                 */
 674                if (intel_is_dual_link_lvds(dev))
 675                        clock.p2 = limit->p2.p2_fast;
 676                else
 677                        clock.p2 = limit->p2.p2_slow;
 678        } else {
 679                if (target < limit->p2.dot_limit)
 680                        clock.p2 = limit->p2.p2_slow;
 681                else
 682                        clock.p2 = limit->p2.p2_fast;
 683        }
 684
 685        memset(best_clock, 0, sizeof(*best_clock));
 686
 687        for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
 688             clock.m1++) {
 689                for (clock.m2 = limit->m2.min;
 690                     clock.m2 <= limit->m2.max; clock.m2++) {
 691                        for (clock.n = limit->n.min;
 692                             clock.n <= limit->n.max; clock.n++) {
 693                                for (clock.p1 = limit->p1.min;
 694                                        clock.p1 <= limit->p1.max; clock.p1++) {
 695                                        int this_err;
 696
 697                                        pineview_clock(refclk, &clock);
 698                                        if (!intel_PLL_is_valid(dev, limit,
 699                                                                &clock))
 700                                                continue;
 701                                        if (match_clock &&
 702                                            clock.p != match_clock->p)
 703                                                continue;
 704
 705                                        this_err = abs(clock.dot - target);
 706                                        if (this_err < err) {
 707                                                *best_clock = clock;
 708                                                err = this_err;
 709                                        }
 710                                }
 711                        }
 712                }
 713        }
 714
 715        return (err != target);
 716}
 717
 718static bool
 719g4x_find_best_dpll(const intel_limit_t *limit, struct intel_crtc *crtc,
 720                   int target, int refclk, intel_clock_t *match_clock,
 721                   intel_clock_t *best_clock)
 722{
 723        struct drm_device *dev = crtc->base.dev;
 724        intel_clock_t clock;
 725        int max_n;
 726        bool found;
 727        /* approximately equals target * 0.00585 */
 728        int err_most = (target >> 8) + (target >> 9);
 729        found = false;
 730
 731        if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS)) {
 732                if (intel_is_dual_link_lvds(dev))
 733                        clock.p2 = limit->p2.p2_fast;
 734                else
 735                        clock.p2 = limit->p2.p2_slow;
 736        } else {
 737                if (target < limit->p2.dot_limit)
 738                        clock.p2 = limit->p2.p2_slow;
 739                else
 740                        clock.p2 = limit->p2.p2_fast;
 741        }
 742
 743        memset(best_clock, 0, sizeof(*best_clock));
 744        max_n = limit->n.max;
 745        /* based on hardware requirement, prefer smaller n to precision */
 746        for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
 747                /* based on hardware requirement, prefere larger m1,m2 */
 748                for (clock.m1 = limit->m1.max;
 749                     clock.m1 >= limit->m1.min; clock.m1--) {
 750                        for (clock.m2 = limit->m2.max;
 751                             clock.m2 >= limit->m2.min; clock.m2--) {
 752                                for (clock.p1 = limit->p1.max;
 753                                     clock.p1 >= limit->p1.min; clock.p1--) {
 754                                        int this_err;
 755
 756                                        i9xx_clock(refclk, &clock);
 757                                        if (!intel_PLL_is_valid(dev, limit,
 758                                                                &clock))
 759                                                continue;
 760
 761                                        this_err = abs(clock.dot - target);
 762                                        if (this_err < err_most) {
 763                                                *best_clock = clock;
 764                                                err_most = this_err;
 765                                                max_n = clock.n;
 766                                                found = true;
 767                                        }
 768                                }
 769                        }
 770                }
 771        }
 772        return found;
 773}
 774
 775static bool
 776vlv_find_best_dpll(const intel_limit_t *limit, struct intel_crtc *crtc,
 777                   int target, int refclk, intel_clock_t *match_clock,
 778                   intel_clock_t *best_clock)
 779{
 780        struct drm_device *dev = crtc->base.dev;
 781        intel_clock_t clock;
 782        unsigned int bestppm = 1000000;
 783        /* min update 19.2 MHz */
 784        int max_n = min(limit->n.max, refclk / 19200);
 785        bool found = false;
 786
 787        target *= 5; /* fast clock */
 788
 789        memset(best_clock, 0, sizeof(*best_clock));
 790
 791        /* based on hardware requirement, prefer smaller n to precision */
 792        for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
 793                for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
 794                        for (clock.p2 = limit->p2.p2_fast; clock.p2 >= limit->p2.p2_slow;
 795                             clock.p2 -= clock.p2 > 10 ? 2 : 1) {
 796                                clock.p = clock.p1 * clock.p2;
 797                                /* based on hardware requirement, prefer bigger m1,m2 values */
 798                                for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; clock.m1++) {
 799                                        unsigned int ppm, diff;
 800
 801                                        clock.m2 = DIV_ROUND_CLOSEST(target * clock.p * clock.n,
 802                                                                     refclk * clock.m1);
 803
 804                                        vlv_clock(refclk, &clock);
 805
 806                                        if (!intel_PLL_is_valid(dev, limit,
 807                                                                &clock))
 808                                                continue;
 809
 810                                        diff = abs(clock.dot - target);
 811                                        ppm = div_u64(1000000ULL * diff, target);
 812
 813                                        if (ppm < 100 && clock.p > best_clock->p) {
 814                                                bestppm = 0;
 815                                                *best_clock = clock;
 816                                                found = true;
 817                                        }
 818
 819                                        if (bestppm >= 10 && ppm < bestppm - 10) {
 820                                                bestppm = ppm;
 821                                                *best_clock = clock;
 822                                                found = true;
 823                                        }
 824                                }
 825                        }
 826                }
 827        }
 828
 829        return found;
 830}
 831
 832static bool
 833chv_find_best_dpll(const intel_limit_t *limit, struct intel_crtc *crtc,
 834                   int target, int refclk, intel_clock_t *match_clock,
 835                   intel_clock_t *best_clock)
 836{
 837        struct drm_device *dev = crtc->base.dev;
 838        intel_clock_t clock;
 839        uint64_t m2;
 840        int found = false;
 841
 842        memset(best_clock, 0, sizeof(*best_clock));
 843
 844        /*
 845         * Based on hardware doc, the n always set to 1, and m1 always
 846         * set to 2.  If requires to support 200Mhz refclk, we need to
 847         * revisit this because n may not 1 anymore.
 848         */
 849        clock.n = 1, clock.m1 = 2;
 850        target *= 5;    /* fast clock */
 851
 852        for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
 853                for (clock.p2 = limit->p2.p2_fast;
 854                                clock.p2 >= limit->p2.p2_slow;
 855                                clock.p2 -= clock.p2 > 10 ? 2 : 1) {
 856
 857                        clock.p = clock.p1 * clock.p2;
 858
 859                        m2 = DIV_ROUND_CLOSEST_ULL(((uint64_t)target * clock.p *
 860                                        clock.n) << 22, refclk * clock.m1);
 861
 862                        if (m2 > INT_MAX/clock.m1)
 863                                continue;
 864
 865                        clock.m2 = m2;
 866
 867                        chv_clock(refclk, &clock);
 868
 869                        if (!intel_PLL_is_valid(dev, limit, &clock))
 870                                continue;
 871
 872                        /* based on hardware requirement, prefer bigger p
 873                         */
 874                        if (clock.p > best_clock->p) {
 875                                *best_clock = clock;
 876                                found = true;
 877                        }
 878                }
 879        }
 880
 881        return found;
 882}
 883
 884bool intel_crtc_active(struct drm_crtc *crtc)
 885{
 886        struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
 887
 888        /* Be paranoid as we can arrive here with only partial
 889         * state retrieved from the hardware during setup.
 890         *
 891         * We can ditch the adjusted_mode.crtc_clock check as soon
 892         * as Haswell has gained clock readout/fastboot support.
 893         *
 894         * We can ditch the crtc->primary->fb check as soon as we can
 895         * properly reconstruct framebuffers.
 896         */
 897        return intel_crtc->active && crtc->primary->fb &&
 898                intel_crtc->config.adjusted_mode.crtc_clock;
 899}
 900
 901enum transcoder intel_pipe_to_cpu_transcoder(struct drm_i915_private *dev_priv,
 902                                             enum pipe pipe)
 903{
 904        struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
 905        struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
 906
 907        return intel_crtc->config.cpu_transcoder;
 908}
 909
 910static bool pipe_dsl_stopped(struct drm_device *dev, enum pipe pipe)
 911{
 912        struct drm_i915_private *dev_priv = dev->dev_private;
 913        u32 reg = PIPEDSL(pipe);
 914        u32 line1, line2;
 915        u32 line_mask;
 916
 917        if (IS_GEN2(dev))
 918                line_mask = DSL_LINEMASK_GEN2;
 919        else
 920                line_mask = DSL_LINEMASK_GEN3;
 921
 922        line1 = I915_READ(reg) & line_mask;
 923        mdelay(5);
 924        line2 = I915_READ(reg) & line_mask;
 925
 926        return line1 == line2;
 927}
 928
 929/*
 930 * intel_wait_for_pipe_off - wait for pipe to turn off
 931 * @crtc: crtc whose pipe to wait for
 932 *
 933 * After disabling a pipe, we can't wait for vblank in the usual way,
 934 * spinning on the vblank interrupt status bit, since we won't actually
 935 * see an interrupt when the pipe is disabled.
 936 *
 937 * On Gen4 and above:
 938 *   wait for the pipe register state bit to turn off
 939 *
 940 * Otherwise:
 941 *   wait for the display line value to settle (it usually
 942 *   ends up stopping at the start of the next frame).
 943 *
 944 */
 945static void intel_wait_for_pipe_off(struct intel_crtc *crtc)
 946{
 947        struct drm_device *dev = crtc->base.dev;
 948        struct drm_i915_private *dev_priv = dev->dev_private;
 949        enum transcoder cpu_transcoder = crtc->config.cpu_transcoder;
 950        enum pipe pipe = crtc->pipe;
 951
 952        if (INTEL_INFO(dev)->gen >= 4) {
 953                int reg = PIPECONF(cpu_transcoder);
 954
 955                /* Wait for the Pipe State to go off */
 956                if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
 957                             100))
 958                        WARN(1, "pipe_off wait timed out\n");
 959        } else {
 960                /* Wait for the display line to settle */
 961                if (wait_for(pipe_dsl_stopped(dev, pipe), 100))
 962                        WARN(1, "pipe_off wait timed out\n");
 963        }
 964}
 965
 966/*
 967 * ibx_digital_port_connected - is the specified port connected?
 968 * @dev_priv: i915 private structure
 969 * @port: the port to test
 970 *
 971 * Returns true if @port is connected, false otherwise.
 972 */
 973bool ibx_digital_port_connected(struct drm_i915_private *dev_priv,
 974                                struct intel_digital_port *port)
 975{
 976        u32 bit;
 977
 978        if (HAS_PCH_IBX(dev_priv->dev)) {
 979                switch (port->port) {
 980                case PORT_B:
 981                        bit = SDE_PORTB_HOTPLUG;
 982                        break;
 983                case PORT_C:
 984                        bit = SDE_PORTC_HOTPLUG;
 985                        break;
 986                case PORT_D:
 987                        bit = SDE_PORTD_HOTPLUG;
 988                        break;
 989                default:
 990                        return true;
 991                }
 992        } else {
 993                switch (port->port) {
 994                case PORT_B:
 995                        bit = SDE_PORTB_HOTPLUG_CPT;
 996                        break;
 997                case PORT_C:
 998                        bit = SDE_PORTC_HOTPLUG_CPT;
 999                        break;
1000                case PORT_D:
1001                        bit = SDE_PORTD_HOTPLUG_CPT;
1002                        break;
1003                default:
1004                        return true;
1005                }
1006        }
1007
1008        return I915_READ(SDEISR) & bit;
1009}
1010
1011static const char *state_string(bool enabled)
1012{
1013        return enabled ? "on" : "off";
1014}
1015
1016/* Only for pre-ILK configs */
1017void assert_pll(struct drm_i915_private *dev_priv,
1018                enum pipe pipe, bool state)
1019{
1020        int reg;
1021        u32 val;
1022        bool cur_state;
1023
1024        reg = DPLL(pipe);
1025        val = I915_READ(reg);
1026        cur_state = !!(val & DPLL_VCO_ENABLE);
1027        WARN(cur_state != state,
1028             "PLL state assertion failure (expected %s, current %s)\n",
1029             state_string(state), state_string(cur_state));
1030}
1031
1032/* XXX: the dsi pll is shared between MIPI DSI ports */
1033static void assert_dsi_pll(struct drm_i915_private *dev_priv, bool state)
1034{
1035        u32 val;
1036        bool cur_state;
1037
1038        mutex_lock(&dev_priv->dpio_lock);
1039        val = vlv_cck_read(dev_priv, CCK_REG_DSI_PLL_CONTROL);
1040        mutex_unlock(&dev_priv->dpio_lock);
1041
1042        cur_state = val & DSI_PLL_VCO_EN;
1043        WARN(cur_state != state,
1044             "DSI PLL state assertion failure (expected %s, current %s)\n",
1045             state_string(state), state_string(cur_state));
1046}
1047#define assert_dsi_pll_enabled(d) assert_dsi_pll(d, true)
1048#define assert_dsi_pll_disabled(d) assert_dsi_pll(d, false)
1049
1050struct intel_shared_dpll *
1051intel_crtc_to_shared_dpll(struct intel_crtc *crtc)
1052{
1053        struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
1054
1055        if (crtc->config.shared_dpll < 0)
1056                return NULL;
1057
1058        return &dev_priv->shared_dplls[crtc->config.shared_dpll];
1059}
1060
1061/* For ILK+ */
1062void assert_shared_dpll(struct drm_i915_private *dev_priv,
1063                        struct intel_shared_dpll *pll,
1064                        bool state)
1065{
1066        bool cur_state;
1067        struct intel_dpll_hw_state hw_state;
1068
1069        if (WARN (!pll,
1070                  "asserting DPLL %s with no DPLL\n", state_string(state)))
1071                return;
1072
1073        cur_state = pll->get_hw_state(dev_priv, pll, &hw_state);
1074        WARN(cur_state != state,
1075             "%s assertion failure (expected %s, current %s)\n",
1076             pll->name, state_string(state), state_string(cur_state));
1077}
1078
1079static void assert_fdi_tx(struct drm_i915_private *dev_priv,
1080                          enum pipe pipe, bool state)
1081{
1082        int reg;
1083        u32 val;
1084        bool cur_state;
1085        enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1086                                                                      pipe);
1087
1088        if (HAS_DDI(dev_priv->dev)) {
1089                /* DDI does not have a specific FDI_TX register */
1090                reg = TRANS_DDI_FUNC_CTL(cpu_transcoder);
1091                val = I915_READ(reg);
1092                cur_state = !!(val & TRANS_DDI_FUNC_ENABLE);
1093        } else {
1094                reg = FDI_TX_CTL(pipe);
1095                val = I915_READ(reg);
1096                cur_state = !!(val & FDI_TX_ENABLE);
1097        }
1098        WARN(cur_state != state,
1099             "FDI TX state assertion failure (expected %s, current %s)\n",
1100             state_string(state), state_string(cur_state));
1101}
1102#define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
1103#define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
1104
1105static void assert_fdi_rx(struct drm_i915_private *dev_priv,
1106                          enum pipe pipe, bool state)
1107{
1108        int reg;
1109        u32 val;
1110        bool cur_state;
1111
1112        reg = FDI_RX_CTL(pipe);
1113        val = I915_READ(reg);
1114        cur_state = !!(val & FDI_RX_ENABLE);
1115        WARN(cur_state != state,
1116             "FDI RX state assertion failure (expected %s, current %s)\n",
1117             state_string(state), state_string(cur_state));
1118}
1119#define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
1120#define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
1121
1122static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
1123                                      enum pipe pipe)
1124{
1125        int reg;
1126        u32 val;
1127
1128        /* ILK FDI PLL is always enabled */
1129        if (INTEL_INFO(dev_priv->dev)->gen == 5)
1130                return;
1131
1132        /* On Haswell, DDI ports are responsible for the FDI PLL setup */
1133        if (HAS_DDI(dev_priv->dev))
1134                return;
1135
1136        reg = FDI_TX_CTL(pipe);
1137        val = I915_READ(reg);
1138        WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
1139}
1140
1141void assert_fdi_rx_pll(struct drm_i915_private *dev_priv,
1142                       enum pipe pipe, bool state)
1143{
1144        int reg;
1145        u32 val;
1146        bool cur_state;
1147
1148        reg = FDI_RX_CTL(pipe);
1149        val = I915_READ(reg);
1150        cur_state = !!(val & FDI_RX_PLL_ENABLE);
1151        WARN(cur_state != state,
1152             "FDI RX PLL assertion failure (expected %s, current %s)\n",
1153             state_string(state), state_string(cur_state));
1154}
1155
1156void assert_panel_unlocked(struct drm_i915_private *dev_priv,
1157                           enum pipe pipe)
1158{
1159        struct drm_device *dev = dev_priv->dev;
1160        int pp_reg;
1161        u32 val;
1162        enum pipe panel_pipe = PIPE_A;
1163        bool locked = true;
1164
1165        if (WARN_ON(HAS_DDI(dev)))
1166                return;
1167
1168        if (HAS_PCH_SPLIT(dev)) {
1169                u32 port_sel;
1170
1171                pp_reg = PCH_PP_CONTROL;
1172                port_sel = I915_READ(PCH_PP_ON_DELAYS) & PANEL_PORT_SELECT_MASK;
1173
1174                if (port_sel == PANEL_PORT_SELECT_LVDS &&
1175                    I915_READ(PCH_LVDS) & LVDS_PIPEB_SELECT)
1176                        panel_pipe = PIPE_B;
1177                /* XXX: else fix for eDP */
1178        } else if (IS_VALLEYVIEW(dev)) {
1179                /* presumably write lock depends on pipe, not port select */
1180                pp_reg = VLV_PIPE_PP_CONTROL(pipe);
1181                panel_pipe = pipe;
1182        } else {
1183                pp_reg = PP_CONTROL;
1184                if (I915_READ(LVDS) & LVDS_PIPEB_SELECT)
1185                        panel_pipe = PIPE_B;
1186        }
1187
1188        val = I915_READ(pp_reg);
1189        if (!(val & PANEL_POWER_ON) ||
1190            ((val & PANEL_UNLOCK_MASK) == PANEL_UNLOCK_REGS))
1191                locked = false;
1192
1193        WARN(panel_pipe == pipe && locked,
1194             "panel assertion failure, pipe %c regs locked\n",
1195             pipe_name(pipe));
1196}
1197
1198static void assert_cursor(struct drm_i915_private *dev_priv,
1199                          enum pipe pipe, bool state)
1200{
1201        struct drm_device *dev = dev_priv->dev;
1202        bool cur_state;
1203
1204        if (IS_845G(dev) || IS_I865G(dev))
1205                cur_state = I915_READ(_CURACNTR) & CURSOR_ENABLE;
1206        else
1207                cur_state = I915_READ(CURCNTR(pipe)) & CURSOR_MODE;
1208
1209        WARN(cur_state != state,
1210             "cursor on pipe %c assertion failure (expected %s, current %s)\n",
1211             pipe_name(pipe), state_string(state), state_string(cur_state));
1212}
1213#define assert_cursor_enabled(d, p) assert_cursor(d, p, true)
1214#define assert_cursor_disabled(d, p) assert_cursor(d, p, false)
1215
1216void assert_pipe(struct drm_i915_private *dev_priv,
1217                 enum pipe pipe, bool state)
1218{
1219        int reg;
1220        u32 val;
1221        bool cur_state;
1222        enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1223                                                                      pipe);
1224
1225        /* if we need the pipe quirk it must be always on */
1226        if ((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
1227            (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
1228                state = true;
1229
1230        if (!intel_display_power_is_enabled(dev_priv,
1231                                POWER_DOMAIN_TRANSCODER(cpu_transcoder))) {
1232                cur_state = false;
1233        } else {
1234                reg = PIPECONF(cpu_transcoder);
1235                val = I915_READ(reg);
1236                cur_state = !!(val & PIPECONF_ENABLE);
1237        }
1238
1239        WARN(cur_state != state,
1240             "pipe %c assertion failure (expected %s, current %s)\n",
1241             pipe_name(pipe), state_string(state), state_string(cur_state));
1242}
1243
1244static void assert_plane(struct drm_i915_private *dev_priv,
1245                         enum plane plane, bool state)
1246{
1247        int reg;
1248        u32 val;
1249        bool cur_state;
1250
1251        reg = DSPCNTR(plane);
1252        val = I915_READ(reg);
1253        cur_state = !!(val & DISPLAY_PLANE_ENABLE);
1254        WARN(cur_state != state,
1255             "plane %c assertion failure (expected %s, current %s)\n",
1256             plane_name(plane), state_string(state), state_string(cur_state));
1257}
1258
1259#define assert_plane_enabled(d, p) assert_plane(d, p, true)
1260#define assert_plane_disabled(d, p) assert_plane(d, p, false)
1261
1262static void assert_planes_disabled(struct drm_i915_private *dev_priv,
1263                                   enum pipe pipe)
1264{
1265        struct drm_device *dev = dev_priv->dev;
1266        int reg, i;
1267        u32 val;
1268        int cur_pipe;
1269
1270        /* Primary planes are fixed to pipes on gen4+ */
1271        if (INTEL_INFO(dev)->gen >= 4) {
1272                reg = DSPCNTR(pipe);
1273                val = I915_READ(reg);
1274                WARN(val & DISPLAY_PLANE_ENABLE,
1275                     "plane %c assertion failure, should be disabled but not\n",
1276                     plane_name(pipe));
1277                return;
1278        }
1279
1280        /* Need to check both planes against the pipe */
1281        for_each_pipe(dev_priv, i) {
1282                reg = DSPCNTR(i);
1283                val = I915_READ(reg);
1284                cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
1285                        DISPPLANE_SEL_PIPE_SHIFT;
1286                WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
1287                     "plane %c assertion failure, should be off on pipe %c but is still active\n",
1288                     plane_name(i), pipe_name(pipe));
1289        }
1290}
1291
1292static void assert_sprites_disabled(struct drm_i915_private *dev_priv,
1293                                    enum pipe pipe)
1294{
1295        struct drm_device *dev = dev_priv->dev;
1296        int reg, sprite;
1297        u32 val;
1298
1299        if (INTEL_INFO(dev)->gen >= 9) {
1300                for_each_sprite(pipe, sprite) {
1301                        val = I915_READ(PLANE_CTL(pipe, sprite));
1302                        WARN(val & PLANE_CTL_ENABLE,
1303                             "plane %d assertion failure, should be off on pipe %c but is still active\n",
1304                             sprite, pipe_name(pipe));
1305                }
1306        } else if (IS_VALLEYVIEW(dev)) {
1307                for_each_sprite(pipe, sprite) {
1308                        reg = SPCNTR(pipe, sprite);
1309                        val = I915_READ(reg);
1310                        WARN(val & SP_ENABLE,
1311                             "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1312                             sprite_name(pipe, sprite), pipe_name(pipe));
1313                }
1314        } else if (INTEL_INFO(dev)->gen >= 7) {
1315                reg = SPRCTL(pipe);
1316                val = I915_READ(reg);
1317                WARN(val & SPRITE_ENABLE,
1318                     "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1319                     plane_name(pipe), pipe_name(pipe));
1320        } else if (INTEL_INFO(dev)->gen >= 5) {
1321                reg = DVSCNTR(pipe);
1322                val = I915_READ(reg);
1323                WARN(val & DVS_ENABLE,
1324                     "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1325                     plane_name(pipe), pipe_name(pipe));
1326        }
1327}
1328
1329static void assert_vblank_disabled(struct drm_crtc *crtc)
1330{
1331        if (WARN_ON(drm_crtc_vblank_get(crtc) == 0))
1332                drm_crtc_vblank_put(crtc);
1333}
1334
1335static void ibx_assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
1336{
1337        u32 val;
1338        bool enabled;
1339
1340        WARN_ON(!(HAS_PCH_IBX(dev_priv->dev) || HAS_PCH_CPT(dev_priv->dev)));
1341
1342        val = I915_READ(PCH_DREF_CONTROL);
1343        enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
1344                            DREF_SUPERSPREAD_SOURCE_MASK));
1345        WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
1346}
1347
1348static void assert_pch_transcoder_disabled(struct drm_i915_private *dev_priv,
1349                                           enum pipe pipe)
1350{
1351        int reg;
1352        u32 val;
1353        bool enabled;
1354
1355        reg = PCH_TRANSCONF(pipe);
1356        val = I915_READ(reg);
1357        enabled = !!(val & TRANS_ENABLE);
1358        WARN(enabled,
1359             "transcoder assertion failed, should be off on pipe %c but is still active\n",
1360             pipe_name(pipe));
1361}
1362
1363static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
1364                            enum pipe pipe, u32 port_sel, u32 val)
1365{
1366        if ((val & DP_PORT_EN) == 0)
1367                return false;
1368
1369        if (HAS_PCH_CPT(dev_priv->dev)) {
1370                u32     trans_dp_ctl_reg = TRANS_DP_CTL(pipe);
1371                u32     trans_dp_ctl = I915_READ(trans_dp_ctl_reg);
1372                if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
1373                        return false;
1374        } else if (IS_CHERRYVIEW(dev_priv->dev)) {
1375                if ((val & DP_PIPE_MASK_CHV) != DP_PIPE_SELECT_CHV(pipe))
1376                        return false;
1377        } else {
1378                if ((val & DP_PIPE_MASK) != (pipe << 30))
1379                        return false;
1380        }
1381        return true;
1382}
1383
1384static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
1385                              enum pipe pipe, u32 val)
1386{
1387        if ((val & SDVO_ENABLE) == 0)
1388                return false;
1389
1390        if (HAS_PCH_CPT(dev_priv->dev)) {
1391                if ((val & SDVO_PIPE_SEL_MASK_CPT) != SDVO_PIPE_SEL_CPT(pipe))
1392                        return false;
1393        } else if (IS_CHERRYVIEW(dev_priv->dev)) {
1394                if ((val & SDVO_PIPE_SEL_MASK_CHV) != SDVO_PIPE_SEL_CHV(pipe))
1395                        return false;
1396        } else {
1397                if ((val & SDVO_PIPE_SEL_MASK) != SDVO_PIPE_SEL(pipe))
1398                        return false;
1399        }
1400        return true;
1401}
1402
1403static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
1404                              enum pipe pipe, u32 val)
1405{
1406        if ((val & LVDS_PORT_EN) == 0)
1407                return false;
1408
1409        if (HAS_PCH_CPT(dev_priv->dev)) {
1410                if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1411                        return false;
1412        } else {
1413                if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
1414                        return false;
1415        }
1416        return true;
1417}
1418
1419static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
1420                              enum pipe pipe, u32 val)
1421{
1422        if ((val & ADPA_DAC_ENABLE) == 0)
1423                return false;
1424        if (HAS_PCH_CPT(dev_priv->dev)) {
1425                if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1426                        return false;
1427        } else {
1428                if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
1429                        return false;
1430        }
1431        return true;
1432}
1433
1434static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
1435                                   enum pipe pipe, int reg, u32 port_sel)
1436{
1437        u32 val = I915_READ(reg);
1438        WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
1439             "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
1440             reg, pipe_name(pipe));
1441
1442        WARN(HAS_PCH_IBX(dev_priv->dev) && (val & DP_PORT_EN) == 0
1443             && (val & DP_PIPEB_SELECT),
1444             "IBX PCH dp port still using transcoder B\n");
1445}
1446
1447static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
1448                                     enum pipe pipe, int reg)
1449{
1450        u32 val = I915_READ(reg);
1451        WARN(hdmi_pipe_enabled(dev_priv, pipe, val),
1452             "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
1453             reg, pipe_name(pipe));
1454
1455        WARN(HAS_PCH_IBX(dev_priv->dev) && (val & SDVO_ENABLE) == 0
1456             && (val & SDVO_PIPE_B_SELECT),
1457             "IBX PCH hdmi port still using transcoder B\n");
1458}
1459
1460static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
1461                                      enum pipe pipe)
1462{
1463        int reg;
1464        u32 val;
1465
1466        assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1467        assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1468        assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
1469
1470        reg = PCH_ADPA;
1471        val = I915_READ(reg);
1472        WARN(adpa_pipe_enabled(dev_priv, pipe, val),
1473             "PCH VGA enabled on transcoder %c, should be disabled\n",
1474             pipe_name(pipe));
1475
1476        reg = PCH_LVDS;
1477        val = I915_READ(reg);
1478        WARN(lvds_pipe_enabled(dev_priv, pipe, val),
1479             "PCH LVDS enabled on transcoder %c, should be disabled\n",
1480             pipe_name(pipe));
1481
1482        assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIB);
1483        assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIC);
1484        assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMID);
1485}
1486
1487static void intel_init_dpio(struct drm_device *dev)
1488{
1489        struct drm_i915_private *dev_priv = dev->dev_private;
1490
1491        if (!IS_VALLEYVIEW(dev))
1492                return;
1493
1494        /*
1495         * IOSF_PORT_DPIO is used for VLV x2 PHY (DP/HDMI B and C),
1496         * CHV x1 PHY (DP/HDMI D)
1497         * IOSF_PORT_DPIO_2 is used for CHV x2 PHY (DP/HDMI B and C)
1498         */
1499        if (IS_CHERRYVIEW(dev)) {
1500                DPIO_PHY_IOSF_PORT(DPIO_PHY0) = IOSF_PORT_DPIO_2;
1501                DPIO_PHY_IOSF_PORT(DPIO_PHY1) = IOSF_PORT_DPIO;
1502        } else {
1503                DPIO_PHY_IOSF_PORT(DPIO_PHY0) = IOSF_PORT_DPIO;
1504        }
1505}
1506
1507static void vlv_enable_pll(struct intel_crtc *crtc,
1508                           const struct intel_crtc_config *pipe_config)
1509{
1510        struct drm_device *dev = crtc->base.dev;
1511        struct drm_i915_private *dev_priv = dev->dev_private;
1512        int reg = DPLL(crtc->pipe);
1513        u32 dpll = pipe_config->dpll_hw_state.dpll;
1514
1515        assert_pipe_disabled(dev_priv, crtc->pipe);
1516
1517        /* No really, not for ILK+ */
1518        BUG_ON(!IS_VALLEYVIEW(dev_priv->dev));
1519
1520        /* PLL is protected by panel, make sure we can write it */
1521        if (IS_MOBILE(dev_priv->dev))
1522                assert_panel_unlocked(dev_priv, crtc->pipe);
1523
1524        I915_WRITE(reg, dpll);
1525        POSTING_READ(reg);
1526        udelay(150);
1527
1528        if (wait_for(((I915_READ(reg) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
1529                DRM_ERROR("DPLL %d failed to lock\n", crtc->pipe);
1530
1531        I915_WRITE(DPLL_MD(crtc->pipe), pipe_config->dpll_hw_state.dpll_md);
1532        POSTING_READ(DPLL_MD(crtc->pipe));
1533
1534        /* We do this three times for luck */
1535        I915_WRITE(reg, dpll);
1536        POSTING_READ(reg);
1537        udelay(150); /* wait for warmup */
1538        I915_WRITE(reg, dpll);
1539        POSTING_READ(reg);
1540        udelay(150); /* wait for warmup */
1541        I915_WRITE(reg, dpll);
1542        POSTING_READ(reg);
1543        udelay(150); /* wait for warmup */
1544}
1545
1546static void chv_enable_pll(struct intel_crtc *crtc,
1547                           const struct intel_crtc_config *pipe_config)
1548{
1549        struct drm_device *dev = crtc->base.dev;
1550        struct drm_i915_private *dev_priv = dev->dev_private;
1551        int pipe = crtc->pipe;
1552        enum dpio_channel port = vlv_pipe_to_channel(pipe);
1553        u32 tmp;
1554
1555        assert_pipe_disabled(dev_priv, crtc->pipe);
1556
1557        BUG_ON(!IS_CHERRYVIEW(dev_priv->dev));
1558
1559        mutex_lock(&dev_priv->dpio_lock);
1560
1561        /* Enable back the 10bit clock to display controller */
1562        tmp = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1563        tmp |= DPIO_DCLKP_EN;
1564        vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), tmp);
1565
1566        /*
1567         * Need to wait > 100ns between dclkp clock enable bit and PLL enable.
1568         */
1569        udelay(1);
1570
1571        /* Enable PLL */
1572        I915_WRITE(DPLL(pipe), pipe_config->dpll_hw_state.dpll);
1573
1574        /* Check PLL is locked */
1575        if (wait_for(((I915_READ(DPLL(pipe)) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
1576                DRM_ERROR("PLL %d failed to lock\n", pipe);
1577
1578        /* not sure when this should be written */
1579        I915_WRITE(DPLL_MD(pipe), pipe_config->dpll_hw_state.dpll_md);
1580        POSTING_READ(DPLL_MD(pipe));
1581
1582        mutex_unlock(&dev_priv->dpio_lock);
1583}
1584
1585static int intel_num_dvo_pipes(struct drm_device *dev)
1586{
1587        struct intel_crtc *crtc;
1588        int count = 0;
1589
1590        for_each_intel_crtc(dev, crtc)
1591                count += crtc->active &&
1592                        intel_pipe_has_type(crtc, INTEL_OUTPUT_DVO);
1593
1594        return count;
1595}
1596
1597static void i9xx_enable_pll(struct intel_crtc *crtc)
1598{
1599        struct drm_device *dev = crtc->base.dev;
1600        struct drm_i915_private *dev_priv = dev->dev_private;
1601        int reg = DPLL(crtc->pipe);
1602        u32 dpll = crtc->config.dpll_hw_state.dpll;
1603
1604        assert_pipe_disabled(dev_priv, crtc->pipe);
1605
1606        /* No really, not for ILK+ */
1607        BUG_ON(INTEL_INFO(dev)->gen >= 5);
1608
1609        /* PLL is protected by panel, make sure we can write it */
1610        if (IS_MOBILE(dev) && !IS_I830(dev))
1611                assert_panel_unlocked(dev_priv, crtc->pipe);
1612
1613        /* Enable DVO 2x clock on both PLLs if necessary */
1614        if (IS_I830(dev) && intel_num_dvo_pipes(dev) > 0) {
1615                /*
1616                 * It appears to be important that we don't enable this
1617                 * for the current pipe before otherwise configuring the
1618                 * PLL. No idea how this should be handled if multiple
1619                 * DVO outputs are enabled simultaneosly.
1620                 */
1621                dpll |= DPLL_DVO_2X_MODE;
1622                I915_WRITE(DPLL(!crtc->pipe),
1623                           I915_READ(DPLL(!crtc->pipe)) | DPLL_DVO_2X_MODE);
1624        }
1625
1626        /* Wait for the clocks to stabilize. */
1627        POSTING_READ(reg);
1628        udelay(150);
1629
1630        if (INTEL_INFO(dev)->gen >= 4) {
1631                I915_WRITE(DPLL_MD(crtc->pipe),
1632                           crtc->config.dpll_hw_state.dpll_md);
1633        } else {
1634                /* The pixel multiplier can only be updated once the
1635                 * DPLL is enabled and the clocks are stable.
1636                 *
1637                 * So write it again.
1638                 */
1639                I915_WRITE(reg, dpll);
1640        }
1641
1642        /* We do this three times for luck */
1643        I915_WRITE(reg, dpll);
1644        POSTING_READ(reg);
1645        udelay(150); /* wait for warmup */
1646        I915_WRITE(reg, dpll);
1647        POSTING_READ(reg);
1648        udelay(150); /* wait for warmup */
1649        I915_WRITE(reg, dpll);
1650        POSTING_READ(reg);
1651        udelay(150); /* wait for warmup */
1652}
1653
1654/**
1655 * i9xx_disable_pll - disable a PLL
1656 * @dev_priv: i915 private structure
1657 * @pipe: pipe PLL to disable
1658 *
1659 * Disable the PLL for @pipe, making sure the pipe is off first.
1660 *
1661 * Note!  This is for pre-ILK only.
1662 */
1663static void i9xx_disable_pll(struct intel_crtc *crtc)
1664{
1665        struct drm_device *dev = crtc->base.dev;
1666        struct drm_i915_private *dev_priv = dev->dev_private;
1667        enum pipe pipe = crtc->pipe;
1668
1669        /* Disable DVO 2x clock on both PLLs if necessary */
1670        if (IS_I830(dev) &&
1671            intel_pipe_has_type(crtc, INTEL_OUTPUT_DVO) &&
1672            intel_num_dvo_pipes(dev) == 1) {
1673                I915_WRITE(DPLL(PIPE_B),
1674                           I915_READ(DPLL(PIPE_B)) & ~DPLL_DVO_2X_MODE);
1675                I915_WRITE(DPLL(PIPE_A),
1676                           I915_READ(DPLL(PIPE_A)) & ~DPLL_DVO_2X_MODE);
1677        }
1678
1679        /* Don't disable pipe or pipe PLLs if needed */
1680        if ((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
1681            (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
1682                return;
1683
1684        /* Make sure the pipe isn't still relying on us */
1685        assert_pipe_disabled(dev_priv, pipe);
1686
1687        I915_WRITE(DPLL(pipe), 0);
1688        POSTING_READ(DPLL(pipe));
1689}
1690
1691static void vlv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1692{
1693        u32 val = 0;
1694
1695        /* Make sure the pipe isn't still relying on us */
1696        assert_pipe_disabled(dev_priv, pipe);
1697
1698        /*
1699         * Leave integrated clock source and reference clock enabled for pipe B.
1700         * The latter is needed for VGA hotplug / manual detection.
1701         */
1702        if (pipe == PIPE_B)
1703                val = DPLL_INTEGRATED_CRI_CLK_VLV | DPLL_REFA_CLK_ENABLE_VLV;
1704        I915_WRITE(DPLL(pipe), val);
1705        POSTING_READ(DPLL(pipe));
1706
1707}
1708
1709static void chv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1710{
1711        enum dpio_channel port = vlv_pipe_to_channel(pipe);
1712        u32 val;
1713
1714        /* Make sure the pipe isn't still relying on us */
1715        assert_pipe_disabled(dev_priv, pipe);
1716
1717        /* Set PLL en = 0 */
1718        val = DPLL_SSC_REF_CLOCK_CHV | DPLL_REFA_CLK_ENABLE_VLV;
1719        if (pipe != PIPE_A)
1720                val |= DPLL_INTEGRATED_CRI_CLK_VLV;
1721        I915_WRITE(DPLL(pipe), val);
1722        POSTING_READ(DPLL(pipe));
1723
1724        mutex_lock(&dev_priv->dpio_lock);
1725
1726        /* Disable 10bit clock to display controller */
1727        val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1728        val &= ~DPIO_DCLKP_EN;
1729        vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), val);
1730
1731        /* disable left/right clock distribution */
1732        if (pipe != PIPE_B) {
1733                val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW5_CH0);
1734                val &= ~(CHV_BUFLEFTENA1_MASK | CHV_BUFRIGHTENA1_MASK);
1735                vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW5_CH0, val);
1736        } else {
1737                val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW1_CH1);
1738                val &= ~(CHV_BUFLEFTENA2_MASK | CHV_BUFRIGHTENA2_MASK);
1739                vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW1_CH1, val);
1740        }
1741
1742        mutex_unlock(&dev_priv->dpio_lock);
1743}
1744
1745void vlv_wait_port_ready(struct drm_i915_private *dev_priv,
1746                struct intel_digital_port *dport)
1747{
1748        u32 port_mask;
1749        int dpll_reg;
1750
1751        switch (dport->port) {
1752        case PORT_B:
1753                port_mask = DPLL_PORTB_READY_MASK;
1754                dpll_reg = DPLL(0);
1755                break;
1756        case PORT_C:
1757                port_mask = DPLL_PORTC_READY_MASK;
1758                dpll_reg = DPLL(0);
1759                break;
1760        case PORT_D:
1761                port_mask = DPLL_PORTD_READY_MASK;
1762                dpll_reg = DPIO_PHY_STATUS;
1763                break;
1764        default:
1765                BUG();
1766        }
1767
1768        if (wait_for((I915_READ(dpll_reg) & port_mask) == 0, 1000))
1769                WARN(1, "timed out waiting for port %c ready: 0x%08x\n",
1770                     port_name(dport->port), I915_READ(dpll_reg));
1771}
1772
1773static void intel_prepare_shared_dpll(struct intel_crtc *crtc)
1774{
1775        struct drm_device *dev = crtc->base.dev;
1776        struct drm_i915_private *dev_priv = dev->dev_private;
1777        struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1778
1779        if (WARN_ON(pll == NULL))
1780                return;
1781
1782        WARN_ON(!pll->config.crtc_mask);
1783        if (pll->active == 0) {
1784                DRM_DEBUG_DRIVER("setting up %s\n", pll->name);
1785                WARN_ON(pll->on);
1786                assert_shared_dpll_disabled(dev_priv, pll);
1787
1788                pll->mode_set(dev_priv, pll);
1789        }
1790}
1791
1792/**
1793 * intel_enable_shared_dpll - enable PCH PLL
1794 * @dev_priv: i915 private structure
1795 * @pipe: pipe PLL to enable
1796 *
1797 * The PCH PLL needs to be enabled before the PCH transcoder, since it
1798 * drives the transcoder clock.
1799 */
1800static void intel_enable_shared_dpll(struct intel_crtc *crtc)
1801{
1802        struct drm_device *dev = crtc->base.dev;
1803        struct drm_i915_private *dev_priv = dev->dev_private;
1804        struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1805
1806        if (WARN_ON(pll == NULL))
1807                return;
1808
1809        if (WARN_ON(pll->config.crtc_mask == 0))
1810                return;
1811
1812        DRM_DEBUG_KMS("enable %s (active %d, on? %d) for crtc %d\n",
1813                      pll->name, pll->active, pll->on,
1814                      crtc->base.base.id);
1815
1816        if (pll->active++) {
1817                WARN_ON(!pll->on);
1818                assert_shared_dpll_enabled(dev_priv, pll);
1819                return;
1820        }
1821        WARN_ON(pll->on);
1822
1823        intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
1824
1825        DRM_DEBUG_KMS("enabling %s\n", pll->name);
1826        pll->enable(dev_priv, pll);
1827        pll->on = true;
1828}
1829
1830static void intel_disable_shared_dpll(struct intel_crtc *crtc)
1831{
1832        struct drm_device *dev = crtc->base.dev;
1833        struct drm_i915_private *dev_priv = dev->dev_private;
1834        struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1835
1836        /* PCH only available on ILK+ */
1837        BUG_ON(INTEL_INFO(dev)->gen < 5);
1838        if (WARN_ON(pll == NULL))
1839               return;
1840
1841        if (WARN_ON(pll->config.crtc_mask == 0))
1842                return;
1843
1844        DRM_DEBUG_KMS("disable %s (active %d, on? %d) for crtc %d\n",
1845                      pll->name, pll->active, pll->on,
1846                      crtc->base.base.id);
1847
1848        if (WARN_ON(pll->active == 0)) {
1849                assert_shared_dpll_disabled(dev_priv, pll);
1850                return;
1851        }
1852
1853        assert_shared_dpll_enabled(dev_priv, pll);
1854        WARN_ON(!pll->on);
1855        if (--pll->active)
1856                return;
1857
1858        DRM_DEBUG_KMS("disabling %s\n", pll->name);
1859        pll->disable(dev_priv, pll);
1860        pll->on = false;
1861
1862        intel_display_power_put(dev_priv, POWER_DOMAIN_PLLS);
1863}
1864
1865static void ironlake_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1866                                           enum pipe pipe)
1867{
1868        struct drm_device *dev = dev_priv->dev;
1869        struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
1870        struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1871        uint32_t reg, val, pipeconf_val;
1872
1873        /* PCH only available on ILK+ */
1874        BUG_ON(!HAS_PCH_SPLIT(dev));
1875
1876        /* Make sure PCH DPLL is enabled */
1877        assert_shared_dpll_enabled(dev_priv,
1878                                   intel_crtc_to_shared_dpll(intel_crtc));
1879
1880        /* FDI must be feeding us bits for PCH ports */
1881        assert_fdi_tx_enabled(dev_priv, pipe);
1882        assert_fdi_rx_enabled(dev_priv, pipe);
1883
1884        if (HAS_PCH_CPT(dev)) {
1885                /* Workaround: Set the timing override bit before enabling the
1886                 * pch transcoder. */
1887                reg = TRANS_CHICKEN2(pipe);
1888                val = I915_READ(reg);
1889                val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1890                I915_WRITE(reg, val);
1891        }
1892
1893        reg = PCH_TRANSCONF(pipe);
1894        val = I915_READ(reg);
1895        pipeconf_val = I915_READ(PIPECONF(pipe));
1896
1897        if (HAS_PCH_IBX(dev_priv->dev)) {
1898                /*
1899                 * make the BPC in transcoder be consistent with
1900                 * that in pipeconf reg.
1901                 */
1902                val &= ~PIPECONF_BPC_MASK;
1903                val |= pipeconf_val & PIPECONF_BPC_MASK;
1904        }
1905
1906        val &= ~TRANS_INTERLACE_MASK;
1907        if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
1908                if (HAS_PCH_IBX(dev_priv->dev) &&
1909                    intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_SDVO))
1910                        val |= TRANS_LEGACY_INTERLACED_ILK;
1911                else
1912                        val |= TRANS_INTERLACED;
1913        else
1914                val |= TRANS_PROGRESSIVE;
1915
1916        I915_WRITE(reg, val | TRANS_ENABLE);
1917        if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
1918                DRM_ERROR("failed to enable transcoder %c\n", pipe_name(pipe));
1919}
1920
1921static void lpt_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1922                                      enum transcoder cpu_transcoder)
1923{
1924        u32 val, pipeconf_val;
1925
1926        /* PCH only available on ILK+ */
1927        BUG_ON(!HAS_PCH_SPLIT(dev_priv->dev));
1928
1929        /* FDI must be feeding us bits for PCH ports */
1930        assert_fdi_tx_enabled(dev_priv, (enum pipe) cpu_transcoder);
1931        assert_fdi_rx_enabled(dev_priv, TRANSCODER_A);
1932
1933        /* Workaround: set timing override bit. */
1934        val = I915_READ(_TRANSA_CHICKEN2);
1935        val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1936        I915_WRITE(_TRANSA_CHICKEN2, val);
1937
1938        val = TRANS_ENABLE;
1939        pipeconf_val = I915_READ(PIPECONF(cpu_transcoder));
1940
1941        if ((pipeconf_val & PIPECONF_INTERLACE_MASK_HSW) ==
1942            PIPECONF_INTERLACED_ILK)
1943                val |= TRANS_INTERLACED;
1944        else
1945                val |= TRANS_PROGRESSIVE;
1946
1947        I915_WRITE(LPT_TRANSCONF, val);
1948        if (wait_for(I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE, 100))
1949                DRM_ERROR("Failed to enable PCH transcoder\n");
1950}
1951
1952static void ironlake_disable_pch_transcoder(struct drm_i915_private *dev_priv,
1953                                            enum pipe pipe)
1954{
1955        struct drm_device *dev = dev_priv->dev;
1956        uint32_t reg, val;
1957
1958        /* FDI relies on the transcoder */
1959        assert_fdi_tx_disabled(dev_priv, pipe);
1960        assert_fdi_rx_disabled(dev_priv, pipe);
1961
1962        /* Ports must be off as well */
1963        assert_pch_ports_disabled(dev_priv, pipe);
1964
1965        reg = PCH_TRANSCONF(pipe);
1966        val = I915_READ(reg);
1967        val &= ~TRANS_ENABLE;
1968        I915_WRITE(reg, val);
1969        /* wait for PCH transcoder off, transcoder state */
1970        if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
1971                DRM_ERROR("failed to disable transcoder %c\n", pipe_name(pipe));
1972
1973        if (!HAS_PCH_IBX(dev)) {
1974                /* Workaround: Clear the timing override chicken bit again. */
1975                reg = TRANS_CHICKEN2(pipe);
1976                val = I915_READ(reg);
1977                val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1978                I915_WRITE(reg, val);
1979        }
1980}
1981
1982static void lpt_disable_pch_transcoder(struct drm_i915_private *dev_priv)
1983{
1984        u32 val;
1985
1986        val = I915_READ(LPT_TRANSCONF);
1987        val &= ~TRANS_ENABLE;
1988        I915_WRITE(LPT_TRANSCONF, val);
1989        /* wait for PCH transcoder off, transcoder state */
1990        if (wait_for((I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE) == 0, 50))
1991                DRM_ERROR("Failed to disable PCH transcoder\n");
1992
1993        /* Workaround: clear timing override bit. */
1994        val = I915_READ(_TRANSA_CHICKEN2);
1995        val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1996        I915_WRITE(_TRANSA_CHICKEN2, val);
1997}
1998
1999/**
2000 * intel_enable_pipe - enable a pipe, asserting requirements
2001 * @crtc: crtc responsible for the pipe
2002 *
2003 * Enable @crtc's pipe, making sure that various hardware specific requirements
2004 * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
2005 */
2006static void intel_enable_pipe(struct intel_crtc *crtc)
2007{
2008        struct drm_device *dev = crtc->base.dev;
2009        struct drm_i915_private *dev_priv = dev->dev_private;
2010        enum pipe pipe = crtc->pipe;
2011        enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
2012                                                                      pipe);
2013        enum pipe pch_transcoder;
2014        int reg;
2015        u32 val;
2016
2017        assert_planes_disabled(dev_priv, pipe);
2018        assert_cursor_disabled(dev_priv, pipe);
2019        assert_sprites_disabled(dev_priv, pipe);
2020
2021        if (HAS_PCH_LPT(dev_priv->dev))
2022                pch_transcoder = TRANSCODER_A;
2023        else
2024                pch_transcoder = pipe;
2025
2026        /*
2027         * A pipe without a PLL won't actually be able to drive bits from
2028         * a plane.  On ILK+ the pipe PLLs are integrated, so we don't
2029         * need the check.
2030         */
2031        if (!HAS_PCH_SPLIT(dev_priv->dev))
2032                if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DSI))
2033                        assert_dsi_pll_enabled(dev_priv);
2034                else
2035                        assert_pll_enabled(dev_priv, pipe);
2036        else {
2037                if (crtc->config.has_pch_encoder) {
2038                        /* if driving the PCH, we need FDI enabled */
2039                        assert_fdi_rx_pll_enabled(dev_priv, pch_transcoder);
2040                        assert_fdi_tx_pll_enabled(dev_priv,
2041                                                  (enum pipe) cpu_transcoder);
2042                }
2043                /* FIXME: assert CPU port conditions for SNB+ */
2044        }
2045
2046        reg = PIPECONF(cpu_transcoder);
2047        val = I915_READ(reg);
2048        if (val & PIPECONF_ENABLE) {
2049                WARN_ON(!((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
2050                          (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE)));
2051                return;
2052        }
2053
2054        I915_WRITE(reg, val | PIPECONF_ENABLE);
2055        POSTING_READ(reg);
2056}
2057
2058/**
2059 * intel_disable_pipe - disable a pipe, asserting requirements
2060 * @crtc: crtc whose pipes is to be disabled
2061 *
2062 * Disable the pipe of @crtc, making sure that various hardware
2063 * specific requirements are met, if applicable, e.g. plane
2064 * disabled, panel fitter off, etc.
2065 *
2066 * Will wait until the pipe has shut down before returning.
2067 */
2068static void intel_disable_pipe(struct intel_crtc *crtc)
2069{
2070        struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
2071        enum transcoder cpu_transcoder = crtc->config.cpu_transcoder;
2072        enum pipe pipe = crtc->pipe;
2073        int reg;
2074        u32 val;
2075
2076        /*
2077         * Make sure planes won't keep trying to pump pixels to us,
2078         * or we might hang the display.
2079         */
2080        assert_planes_disabled(dev_priv, pipe);
2081        assert_cursor_disabled(dev_priv, pipe);
2082        assert_sprites_disabled(dev_priv, pipe);
2083
2084        reg = PIPECONF(cpu_transcoder);
2085        val = I915_READ(reg);
2086        if ((val & PIPECONF_ENABLE) == 0)
2087                return;
2088
2089        /*
2090         * Double wide has implications for planes
2091         * so best keep it disabled when not needed.
2092         */
2093        if (crtc->config.double_wide)
2094                val &= ~PIPECONF_DOUBLE_WIDE;
2095
2096        /* Don't disable pipe or pipe PLLs if needed */
2097        if (!(pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) &&
2098            !(pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
2099                val &= ~PIPECONF_ENABLE;
2100
2101        I915_WRITE(reg, val);
2102        if ((val & PIPECONF_ENABLE) == 0)
2103                intel_wait_for_pipe_off(crtc);
2104}
2105
2106/*
2107 * Plane regs are double buffered, going from enabled->disabled needs a
2108 * trigger in order to latch.  The display address reg provides this.
2109 */
2110void intel_flush_primary_plane(struct drm_i915_private *dev_priv,
2111                               enum plane plane)
2112{
2113        struct drm_device *dev = dev_priv->dev;
2114        u32 reg = INTEL_INFO(dev)->gen >= 4 ? DSPSURF(plane) : DSPADDR(plane);
2115
2116        I915_WRITE(reg, I915_READ(reg));
2117        POSTING_READ(reg);
2118}
2119
2120/**
2121 * intel_enable_primary_hw_plane - enable the primary plane on a given pipe
2122 * @plane:  plane to be enabled
2123 * @crtc: crtc for the plane
2124 *
2125 * Enable @plane on @crtc, making sure that the pipe is running first.
2126 */
2127static void intel_enable_primary_hw_plane(struct drm_plane *plane,
2128                                          struct drm_crtc *crtc)
2129{
2130        struct drm_device *dev = plane->dev;
2131        struct drm_i915_private *dev_priv = dev->dev_private;
2132        struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2133
2134        /* If the pipe isn't enabled, we can't pump pixels and may hang */
2135        assert_pipe_enabled(dev_priv, intel_crtc->pipe);
2136
2137        if (intel_crtc->primary_enabled)
2138                return;
2139
2140        intel_crtc->primary_enabled = true;
2141
2142        dev_priv->display.update_primary_plane(crtc, plane->fb,
2143                                               crtc->x, crtc->y);
2144
2145        /*
2146         * BDW signals flip done immediately if the plane
2147         * is disabled, even if the plane enable is already
2148         * armed to occur at the next vblank :(
2149         */
2150        if (IS_BROADWELL(dev))
2151                intel_wait_for_vblank(dev, intel_crtc->pipe);
2152}
2153
2154/**
2155 * intel_disable_primary_hw_plane - disable the primary hardware plane
2156 * @plane: plane to be disabled
2157 * @crtc: crtc for the plane
2158 *
2159 * Disable @plane on @crtc, making sure that the pipe is running first.
2160 */
2161static void intel_disable_primary_hw_plane(struct drm_plane *plane,
2162                                           struct drm_crtc *crtc)
2163{
2164        struct drm_device *dev = plane->dev;
2165        struct drm_i915_private *dev_priv = dev->dev_private;
2166        struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2167
2168        assert_pipe_enabled(dev_priv, intel_crtc->pipe);
2169
2170        if (!intel_crtc->primary_enabled)
2171                return;
2172
2173        intel_crtc->primary_enabled = false;
2174
2175        dev_priv->display.update_primary_plane(crtc, plane->fb,
2176                                               crtc->x, crtc->y);
2177}
2178
2179static bool need_vtd_wa(struct drm_device *dev)
2180{
2181#ifdef CONFIG_INTEL_IOMMU
2182        if (INTEL_INFO(dev)->gen >= 6 && intel_iommu_gfx_mapped)
2183                return true;
2184#endif
2185        return false;
2186}
2187
2188static int intel_align_height(struct drm_device *dev, int height, bool tiled)
2189{
2190        int tile_height;
2191
2192        tile_height = tiled ? (IS_GEN2(dev) ? 16 : 8) : 1;
2193        return ALIGN(height, tile_height);
2194}
2195
2196int
2197intel_pin_and_fence_fb_obj(struct drm_plane *plane,
2198                           struct drm_framebuffer *fb,
2199                           struct intel_engine_cs *pipelined)
2200{
2201        struct drm_device *dev = fb->dev;
2202        struct drm_i915_private *dev_priv = dev->dev_private;
2203        struct drm_i915_gem_object *obj = intel_fb_obj(fb);
2204        u32 alignment;
2205        int ret;
2206
2207        WARN_ON(!mutex_is_locked(&dev->struct_mutex));
2208
2209        switch (obj->tiling_mode) {
2210        case I915_TILING_NONE:
2211                if (INTEL_INFO(dev)->gen >= 9)
2212                        alignment = 256 * 1024;
2213                else if (IS_BROADWATER(dev) || IS_CRESTLINE(dev))
2214                        alignment = 128 * 1024;
2215                else if (INTEL_INFO(dev)->gen >= 4)
2216                        alignment = 4 * 1024;
2217                else
2218                        alignment = 64 * 1024;
2219                break;
2220        case I915_TILING_X:
2221                if (INTEL_INFO(dev)->gen >= 9)
2222                        alignment = 256 * 1024;
2223                else {
2224                        /* pin() will align the object as required by fence */
2225                        alignment = 0;
2226                }
2227                break;
2228        case I915_TILING_Y:
2229                WARN(1, "Y tiled bo slipped through, driver bug!\n");
2230                return -EINVAL;
2231        default:
2232                BUG();
2233        }
2234
2235        /* Note that the w/a also requires 64 PTE of padding following the
2236         * bo. We currently fill all unused PTE with the shadow page and so
2237         * we should always have valid PTE following the scanout preventing
2238         * the VT-d warning.
2239         */
2240        if (need_vtd_wa(dev) && alignment < 256 * 1024)
2241                alignment = 256 * 1024;
2242
2243        /*
2244         * Global gtt pte registers are special registers which actually forward
2245         * writes to a chunk of system memory. Which means that there is no risk
2246         * that the register values disappear as soon as we call
2247         * intel_runtime_pm_put(), so it is correct to wrap only the
2248         * pin/unpin/fence and not more.
2249         */
2250        intel_runtime_pm_get(dev_priv);
2251
2252        dev_priv->mm.interruptible = false;
2253        ret = i915_gem_object_pin_to_display_plane(obj, alignment, pipelined);
2254        if (ret)
2255                goto err_interruptible;
2256
2257        /* Install a fence for tiled scan-out. Pre-i965 always needs a
2258         * fence, whereas 965+ only requires a fence if using
2259         * framebuffer compression.  For simplicity, we always install
2260         * a fence as the cost is not that onerous.
2261         */
2262        ret = i915_gem_object_get_fence(obj);
2263        if (ret)
2264                goto err_unpin;
2265
2266        i915_gem_object_pin_fence(obj);
2267
2268        dev_priv->mm.interruptible = true;
2269        intel_runtime_pm_put(dev_priv);
2270        return 0;
2271
2272err_unpin:
2273        i915_gem_object_unpin_from_display_plane(obj);
2274err_interruptible:
2275        dev_priv->mm.interruptible = true;
2276        intel_runtime_pm_put(dev_priv);
2277        return ret;
2278}
2279
2280void intel_unpin_fb_obj(struct drm_i915_gem_object *obj)
2281{
2282        WARN_ON(!mutex_is_locked(&obj->base.dev->struct_mutex));
2283
2284        i915_gem_object_unpin_fence(obj);
2285        i915_gem_object_unpin_from_display_plane(obj);
2286}
2287
2288/* Computes the linear offset to the base tile and adjusts x, y. bytes per pixel
2289 * is assumed to be a power-of-two. */
2290unsigned long intel_gen4_compute_page_offset(int *x, int *y,
2291                                             unsigned int tiling_mode,
2292                                             unsigned int cpp,
2293                                             unsigned int pitch)
2294{
2295        if (tiling_mode != I915_TILING_NONE) {
2296                unsigned int tile_rows, tiles;
2297
2298                tile_rows = *y / 8;
2299                *y %= 8;
2300
2301                tiles = *x / (512/cpp);
2302                *x %= 512/cpp;
2303
2304                return tile_rows * pitch * 8 + tiles * 4096;
2305        } else {
2306                unsigned int offset;
2307
2308                offset = *y * pitch + *x * cpp;
2309                *y = 0;
2310                *x = (offset & 4095) / cpp;
2311                return offset & -4096;
2312        }
2313}
2314
2315int intel_format_to_fourcc(int format)
2316{
2317        switch (format) {
2318        case DISPPLANE_8BPP:
2319                return DRM_FORMAT_C8;
2320        case DISPPLANE_BGRX555:
2321                return DRM_FORMAT_XRGB1555;
2322        case DISPPLANE_BGRX565:
2323                return DRM_FORMAT_RGB565;
2324        default:
2325        case DISPPLANE_BGRX888:
2326                return DRM_FORMAT_XRGB8888;
2327        case DISPPLANE_RGBX888:
2328                return DRM_FORMAT_XBGR8888;
2329        case DISPPLANE_BGRX101010:
2330                return DRM_FORMAT_XRGB2101010;
2331        case DISPPLANE_RGBX101010:
2332                return DRM_FORMAT_XBGR2101010;
2333        }
2334}
2335
2336static bool intel_alloc_plane_obj(struct intel_crtc *crtc,
2337                                  struct intel_plane_config *plane_config)
2338{
2339        struct drm_device *dev = crtc->base.dev;
2340        struct drm_i915_gem_object *obj = NULL;
2341        struct drm_mode_fb_cmd2 mode_cmd = { 0 };
2342        u32 base = plane_config->base;
2343
2344        if (plane_config->size == 0)
2345                return false;
2346
2347        obj = i915_gem_object_create_stolen_for_preallocated(dev, base, base,
2348                                                             plane_config->size);
2349        if (!obj)
2350                return false;
2351
2352        if (plane_config->tiled) {
2353                obj->tiling_mode = I915_TILING_X;
2354                obj->stride = crtc->base.primary->fb->pitches[0];
2355        }
2356
2357        mode_cmd.pixel_format = crtc->base.primary->fb->pixel_format;
2358        mode_cmd.width = crtc->base.primary->fb->width;
2359        mode_cmd.height = crtc->base.primary->fb->height;
2360        mode_cmd.pitches[0] = crtc->base.primary->fb->pitches[0];
2361
2362        mutex_lock(&dev->struct_mutex);
2363
2364        if (intel_framebuffer_init(dev, to_intel_framebuffer(crtc->base.primary->fb),
2365                                   &mode_cmd, obj)) {
2366                DRM_DEBUG_KMS("intel fb init failed\n");
2367                goto out_unref_obj;
2368        }
2369
2370        obj->frontbuffer_bits = INTEL_FRONTBUFFER_PRIMARY(crtc->pipe);
2371        mutex_unlock(&dev->struct_mutex);
2372
2373        DRM_DEBUG_KMS("plane fb obj %p\n", obj);
2374        return true;
2375
2376out_unref_obj:
2377        drm_gem_object_unreference(&obj->base);
2378        mutex_unlock(&dev->struct_mutex);
2379        return false;
2380}
2381
2382static void intel_find_plane_obj(struct intel_crtc *intel_crtc,
2383                                 struct intel_plane_config *plane_config)
2384{
2385        struct drm_device *dev = intel_crtc->base.dev;
2386        struct drm_i915_private *dev_priv = dev->dev_private;
2387        struct drm_crtc *c;
2388        struct intel_crtc *i;
2389        struct drm_i915_gem_object *obj;
2390
2391        if (!intel_crtc->base.primary->fb)
2392                return;
2393
2394        if (intel_alloc_plane_obj(intel_crtc, plane_config))
2395                return;
2396
2397        kfree(intel_crtc->base.primary->fb);
2398        intel_crtc->base.primary->fb = NULL;
2399
2400        /*
2401         * Failed to alloc the obj, check to see if we should share
2402         * an fb with another CRTC instead
2403         */
2404        for_each_crtc(dev, c) {
2405                i = to_intel_crtc(c);
2406
2407                if (c == &intel_crtc->base)
2408                        continue;
2409
2410                if (!i->active)
2411                        continue;
2412
2413                obj = intel_fb_obj(c->primary->fb);
2414                if (obj == NULL)
2415                        continue;
2416
2417                if (i915_gem_obj_ggtt_offset(obj) == plane_config->base) {
2418                        if (obj->tiling_mode != I915_TILING_NONE)
2419                                dev_priv->preserve_bios_swizzle = true;
2420
2421                        drm_framebuffer_reference(c->primary->fb);
2422                        intel_crtc->base.primary->fb = c->primary->fb;
2423                        obj->frontbuffer_bits |= INTEL_FRONTBUFFER_PRIMARY(intel_crtc->pipe);
2424                        break;
2425                }
2426        }
2427}
2428
2429static void i9xx_update_primary_plane(struct drm_crtc *crtc,
2430                                      struct drm_framebuffer *fb,
2431                                      int x, int y)
2432{
2433        struct drm_device *dev = crtc->dev;
2434        struct drm_i915_private *dev_priv = dev->dev_private;
2435        struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2436        struct drm_i915_gem_object *obj;
2437        int plane = intel_crtc->plane;
2438        unsigned long linear_offset;
2439        u32 dspcntr;
2440        u32 reg = DSPCNTR(plane);
2441        int pixel_size;
2442
2443        if (!intel_crtc->primary_enabled) {
2444                I915_WRITE(reg, 0);
2445                if (INTEL_INFO(dev)->gen >= 4)
2446                        I915_WRITE(DSPSURF(plane), 0);
2447                else
2448                        I915_WRITE(DSPADDR(plane), 0);
2449                POSTING_READ(reg);
2450                return;
2451        }
2452
2453        obj = intel_fb_obj(fb);
2454        if (WARN_ON(obj == NULL))
2455                return;
2456
2457        pixel_size = drm_format_plane_cpp(fb->pixel_format, 0);
2458
2459        dspcntr = DISPPLANE_GAMMA_ENABLE;
2460
2461        dspcntr |= DISPLAY_PLANE_ENABLE;
2462
2463        if (INTEL_INFO(dev)->gen < 4) {
2464                if (intel_crtc->pipe == PIPE_B)
2465                        dspcntr |= DISPPLANE_SEL_PIPE_B;
2466
2467                /* pipesrc and dspsize control the size that is scaled from,
2468                 * which should always be the user's requested size.
2469                 */
2470                I915_WRITE(DSPSIZE(plane),
2471                           ((intel_crtc->config.pipe_src_h - 1) << 16) |
2472                           (intel_crtc->config.pipe_src_w - 1));
2473                I915_WRITE(DSPPOS(plane), 0);
2474        } else if (IS_CHERRYVIEW(dev) && plane == PLANE_B) {
2475                I915_WRITE(PRIMSIZE(plane),
2476                           ((intel_crtc->config.pipe_src_h - 1) << 16) |
2477                           (intel_crtc->config.pipe_src_w - 1));
2478                I915_WRITE(PRIMPOS(plane), 0);
2479                I915_WRITE(PRIMCNSTALPHA(plane), 0);
2480        }
2481
2482        switch (fb->pixel_format) {
2483        case DRM_FORMAT_C8:
2484                dspcntr |= DISPPLANE_8BPP;
2485                break;
2486        case DRM_FORMAT_XRGB1555:
2487        case DRM_FORMAT_ARGB1555:
2488                dspcntr |= DISPPLANE_BGRX555;
2489                break;
2490        case DRM_FORMAT_RGB565:
2491                dspcntr |= DISPPLANE_BGRX565;
2492                break;
2493        case DRM_FORMAT_XRGB8888:
2494        case DRM_FORMAT_ARGB8888:
2495                dspcntr |= DISPPLANE_BGRX888;
2496                break;
2497        case DRM_FORMAT_XBGR8888:
2498        case DRM_FORMAT_ABGR8888:
2499                dspcntr |= DISPPLANE_RGBX888;
2500                break;
2501        case DRM_FORMAT_XRGB2101010:
2502        case DRM_FORMAT_ARGB2101010:
2503                dspcntr |= DISPPLANE_BGRX101010;
2504                break;
2505        case DRM_FORMAT_XBGR2101010:
2506        case DRM_FORMAT_ABGR2101010:
2507                dspcntr |= DISPPLANE_RGBX101010;
2508                break;
2509        default:
2510                BUG();
2511        }
2512
2513        if (INTEL_INFO(dev)->gen >= 4 &&
2514            obj->tiling_mode != I915_TILING_NONE)
2515                dspcntr |= DISPPLANE_TILED;
2516
2517        if (IS_G4X(dev))
2518                dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2519
2520        linear_offset = y * fb->pitches[0] + x * pixel_size;
2521
2522        if (INTEL_INFO(dev)->gen >= 4) {
2523                intel_crtc->dspaddr_offset =
2524                        intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
2525                                                       pixel_size,
2526                                                       fb->pitches[0]);
2527                linear_offset -= intel_crtc->dspaddr_offset;
2528        } else {
2529                intel_crtc->dspaddr_offset = linear_offset;
2530        }
2531
2532        if (to_intel_plane(crtc->primary)->rotation == BIT(DRM_ROTATE_180)) {
2533                dspcntr |= DISPPLANE_ROTATE_180;
2534
2535                x += (intel_crtc->config.pipe_src_w - 1);
2536                y += (intel_crtc->config.pipe_src_h - 1);
2537
2538                /* Finding the last pixel of the last line of the display
2539                data and adding to linear_offset*/
2540                linear_offset +=
2541                        (intel_crtc->config.pipe_src_h - 1) * fb->pitches[0] +
2542                        (intel_crtc->config.pipe_src_w - 1) * pixel_size;
2543        }
2544
2545        I915_WRITE(reg, dspcntr);
2546
2547        DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
2548                      i915_gem_obj_ggtt_offset(obj), linear_offset, x, y,
2549                      fb->pitches[0]);
2550        I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2551        if (INTEL_INFO(dev)->gen >= 4) {
2552                I915_WRITE(DSPSURF(plane),
2553                           i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
2554                I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2555                I915_WRITE(DSPLINOFF(plane), linear_offset);
2556        } else
2557                I915_WRITE(DSPADDR(plane), i915_gem_obj_ggtt_offset(obj) + linear_offset);
2558        POSTING_READ(reg);
2559}
2560
2561static void ironlake_update_primary_plane(struct drm_crtc *crtc,
2562                                          struct drm_framebuffer *fb,
2563                                          int x, int y)
2564{
2565        struct drm_device *dev = crtc->dev;
2566        struct drm_i915_private *dev_priv = dev->dev_private;
2567        struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2568        struct drm_i915_gem_object *obj;
2569        int plane = intel_crtc->plane;
2570        unsigned long linear_offset;
2571        u32 dspcntr;
2572        u32 reg = DSPCNTR(plane);
2573        int pixel_size;
2574
2575        if (!intel_crtc->primary_enabled) {
2576                I915_WRITE(reg, 0);
2577                I915_WRITE(DSPSURF(plane), 0);
2578                POSTING_READ(reg);
2579                return;
2580        }
2581
2582        obj = intel_fb_obj(fb);
2583        if (WARN_ON(obj == NULL))
2584                return;
2585
2586        pixel_size = drm_format_plane_cpp(fb->pixel_format, 0);
2587
2588        dspcntr = DISPPLANE_GAMMA_ENABLE;
2589
2590        dspcntr |= DISPLAY_PLANE_ENABLE;
2591
2592        if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2593                dspcntr |= DISPPLANE_PIPE_CSC_ENABLE;
2594
2595        switch (fb->pixel_format) {
2596        case DRM_FORMAT_C8:
2597                dspcntr |= DISPPLANE_8BPP;
2598                break;
2599        case DRM_FORMAT_RGB565:
2600                dspcntr |= DISPPLANE_BGRX565;
2601                break;
2602        case DRM_FORMAT_XRGB8888:
2603        case DRM_FORMAT_ARGB8888:
2604                dspcntr |= DISPPLANE_BGRX888;
2605                break;
2606        case DRM_FORMAT_XBGR8888:
2607        case DRM_FORMAT_ABGR8888:
2608                dspcntr |= DISPPLANE_RGBX888;
2609                break;
2610        case DRM_FORMAT_XRGB2101010:
2611        case DRM_FORMAT_ARGB2101010:
2612                dspcntr |= DISPPLANE_BGRX101010;
2613                break;
2614        case DRM_FORMAT_XBGR2101010:
2615        case DRM_FORMAT_ABGR2101010:
2616                dspcntr |= DISPPLANE_RGBX101010;
2617                break;
2618        default:
2619                BUG();
2620        }
2621
2622        if (obj->tiling_mode != I915_TILING_NONE)
2623                dspcntr |= DISPPLANE_TILED;
2624
2625        if (!IS_HASWELL(dev) && !IS_BROADWELL(dev))
2626                dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2627
2628        linear_offset = y * fb->pitches[0] + x * pixel_size;
2629        intel_crtc->dspaddr_offset =
2630                intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
2631                                               pixel_size,
2632                                               fb->pitches[0]);
2633        linear_offset -= intel_crtc->dspaddr_offset;
2634        if (to_intel_plane(crtc->primary)->rotation == BIT(DRM_ROTATE_180)) {
2635                dspcntr |= DISPPLANE_ROTATE_180;
2636
2637                if (!IS_HASWELL(dev) && !IS_BROADWELL(dev)) {
2638                        x += (intel_crtc->config.pipe_src_w - 1);
2639                        y += (intel_crtc->config.pipe_src_h - 1);
2640
2641                        /* Finding the last pixel of the last line of the display
2642                        data and adding to linear_offset*/
2643                        linear_offset +=
2644                                (intel_crtc->config.pipe_src_h - 1) * fb->pitches[0] +
2645                                (intel_crtc->config.pipe_src_w - 1) * pixel_size;
2646                }
2647        }
2648
2649        I915_WRITE(reg, dspcntr);
2650
2651        DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
2652                      i915_gem_obj_ggtt_offset(obj), linear_offset, x, y,
2653                      fb->pitches[0]);
2654        I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2655        I915_WRITE(DSPSURF(plane),
2656                   i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
2657        if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2658                I915_WRITE(DSPOFFSET(plane), (y << 16) | x);
2659        } else {
2660                I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2661                I915_WRITE(DSPLINOFF(plane), linear_offset);
2662        }
2663        POSTING_READ(reg);
2664}
2665
2666static void skylake_update_primary_plane(struct drm_crtc *crtc,
2667                                         struct drm_framebuffer *fb,
2668                                         int x, int y)
2669{
2670        struct drm_device *dev = crtc->dev;
2671        struct drm_i915_private *dev_priv = dev->dev_private;
2672        struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2673        struct intel_framebuffer *intel_fb;
2674        struct drm_i915_gem_object *obj;
2675        int pipe = intel_crtc->pipe;
2676        u32 plane_ctl, stride;
2677
2678        if (!intel_crtc->primary_enabled) {
2679                I915_WRITE(PLANE_CTL(pipe, 0), 0);
2680                I915_WRITE(PLANE_SURF(pipe, 0), 0);
2681                POSTING_READ(PLANE_CTL(pipe, 0));
2682                return;
2683        }
2684
2685        plane_ctl = PLANE_CTL_ENABLE |
2686                    PLANE_CTL_PIPE_GAMMA_ENABLE |
2687                    PLANE_CTL_PIPE_CSC_ENABLE;
2688
2689        switch (fb->pixel_format) {
2690        case DRM_FORMAT_RGB565:
2691                plane_ctl |= PLANE_CTL_FORMAT_RGB_565;
2692                break;
2693        case DRM_FORMAT_XRGB8888:
2694                plane_ctl |= PLANE_CTL_FORMAT_XRGB_8888;
2695                break;
2696        case DRM_FORMAT_XBGR8888:
2697                plane_ctl |= PLANE_CTL_ORDER_RGBX;
2698                plane_ctl |= PLANE_CTL_FORMAT_XRGB_8888;
2699                break;
2700        case DRM_FORMAT_XRGB2101010:
2701                plane_ctl |= PLANE_CTL_FORMAT_XRGB_2101010;
2702                break;
2703        case DRM_FORMAT_XBGR2101010:
2704                plane_ctl |= PLANE_CTL_ORDER_RGBX;
2705                plane_ctl |= PLANE_CTL_FORMAT_XRGB_2101010;
2706                break;
2707        default:
2708                BUG();
2709        }
2710
2711        intel_fb = to_intel_framebuffer(fb);
2712        obj = intel_fb->obj;
2713
2714        /*
2715         * The stride is either expressed as a multiple of 64 bytes chunks for
2716         * linear buffers or in number of tiles for tiled buffers.
2717         */
2718        switch (obj->tiling_mode) {
2719        case I915_TILING_NONE:
2720                stride = fb->pitches[0] >> 6;
2721                break;
2722        case I915_TILING_X:
2723                plane_ctl |= PLANE_CTL_TILED_X;
2724                stride = fb->pitches[0] >> 9;
2725                break;
2726        default:
2727                BUG();
2728        }
2729
2730        plane_ctl |= PLANE_CTL_PLANE_GAMMA_DISABLE;
2731        if (to_intel_plane(crtc->primary)->rotation == BIT(DRM_ROTATE_180))
2732                plane_ctl |= PLANE_CTL_ROTATE_180;
2733
2734        I915_WRITE(PLANE_CTL(pipe, 0), plane_ctl);
2735
2736        DRM_DEBUG_KMS("Writing base %08lX %d,%d,%d,%d pitch=%d\n",
2737                      i915_gem_obj_ggtt_offset(obj),
2738                      x, y, fb->width, fb->height,
2739                      fb->pitches[0]);
2740
2741        I915_WRITE(PLANE_POS(pipe, 0), 0);
2742        I915_WRITE(PLANE_OFFSET(pipe, 0), (y << 16) | x);
2743        I915_WRITE(PLANE_SIZE(pipe, 0),
2744                   (intel_crtc->config.pipe_src_h - 1) << 16 |
2745                   (intel_crtc->config.pipe_src_w - 1));
2746        I915_WRITE(PLANE_STRIDE(pipe, 0), stride);
2747        I915_WRITE(PLANE_SURF(pipe, 0), i915_gem_obj_ggtt_offset(obj));
2748
2749        POSTING_READ(PLANE_SURF(pipe, 0));
2750}
2751
2752/* Assume fb object is pinned & idle & fenced and just update base pointers */
2753static int
2754intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
2755                           int x, int y, enum mode_set_atomic state)
2756{
2757        struct drm_device *dev = crtc->dev;
2758        struct drm_i915_private *dev_priv = dev->dev_private;
2759
2760        if (dev_priv->display.disable_fbc)
2761                dev_priv->display.disable_fbc(dev);
2762
2763        dev_priv->display.update_primary_plane(crtc, fb, x, y);
2764
2765        return 0;
2766}
2767
2768static void intel_complete_page_flips(struct drm_device *dev)
2769{
2770        struct drm_crtc *crtc;
2771
2772        for_each_crtc(dev, crtc) {
2773                struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2774                enum plane plane = intel_crtc->plane;
2775
2776                intel_prepare_page_flip(dev, plane);
2777                intel_finish_page_flip_plane(dev, plane);
2778        }
2779}
2780
2781static void intel_update_primary_planes(struct drm_device *dev)
2782{
2783        struct drm_i915_private *dev_priv = dev->dev_private;
2784        struct drm_crtc *crtc;
2785
2786        for_each_crtc(dev, crtc) {
2787                struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2788
2789                drm_modeset_lock(&crtc->mutex, NULL);
2790                /*
2791                 * FIXME: Once we have proper support for primary planes (and
2792                 * disabling them without disabling the entire crtc) allow again
2793                 * a NULL crtc->primary->fb.
2794                 */
2795                if (intel_crtc->active && crtc->primary->fb)
2796                        dev_priv->display.update_primary_plane(crtc,
2797                                                               crtc->primary->fb,
2798                                                               crtc->x,
2799                                                               crtc->y);
2800                drm_modeset_unlock(&crtc->mutex);
2801        }
2802}
2803
2804void intel_prepare_reset(struct drm_device *dev)
2805{
2806        struct drm_i915_private *dev_priv = to_i915(dev);
2807        struct intel_crtc *crtc;
2808
2809        /* no reset support for gen2 */
2810        if (IS_GEN2(dev))
2811                return;
2812
2813        /* reset doesn't touch the display */
2814        if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
2815                return;
2816
2817        drm_modeset_lock_all(dev);
2818
2819        /*
2820         * Disabling the crtcs gracefully seems nicer. Also the
2821         * g33 docs say we should at least disable all the planes.
2822         */
2823        for_each_intel_crtc(dev, crtc) {
2824                if (crtc->active)
2825                        dev_priv->display.crtc_disable(&crtc->base);
2826        }
2827}
2828
2829void intel_finish_reset(struct drm_device *dev)
2830{
2831        struct drm_i915_private *dev_priv = to_i915(dev);
2832
2833        /*
2834         * Flips in the rings will be nuked by the reset,
2835         * so complete all pending flips so that user space
2836         * will get its events and not get stuck.
2837         */
2838        intel_complete_page_flips(dev);
2839
2840        /* no reset support for gen2 */
2841        if (IS_GEN2(dev))
2842                return;
2843
2844        /* reset doesn't touch the display */
2845        if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev)) {
2846                /*
2847                 * Flips in the rings have been nuked by the reset,
2848                 * so update the base address of all primary
2849                 * planes to the the last fb to make sure we're
2850                 * showing the correct fb after a reset.
2851                 */
2852                intel_update_primary_planes(dev);
2853                return;
2854        }
2855
2856        /*
2857         * The display has been reset as well,
2858         * so need a full re-initialization.
2859         */
2860        intel_runtime_pm_disable_interrupts(dev_priv);
2861        intel_runtime_pm_enable_interrupts(dev_priv);
2862
2863        intel_modeset_init_hw(dev);
2864
2865        spin_lock_irq(&dev_priv->irq_lock);
2866        if (dev_priv->display.hpd_irq_setup)
2867                dev_priv->display.hpd_irq_setup(dev);
2868        spin_unlock_irq(&dev_priv->irq_lock);
2869
2870        intel_modeset_setup_hw_state(dev, true);
2871
2872        intel_hpd_init(dev_priv);
2873
2874        drm_modeset_unlock_all(dev);
2875}
2876
2877static int
2878intel_finish_fb(struct drm_framebuffer *old_fb)
2879{
2880        struct drm_i915_gem_object *obj = intel_fb_obj(old_fb);
2881        struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2882        bool was_interruptible = dev_priv->mm.interruptible;
2883        int ret;
2884
2885        /* Big Hammer, we also need to ensure that any pending
2886         * MI_WAIT_FOR_EVENT inside a user batch buffer on the
2887         * current scanout is retired before unpinning the old
2888         * framebuffer.
2889         *
2890         * This should only fail upon a hung GPU, in which case we
2891         * can safely continue.
2892         */
2893        dev_priv->mm.interruptible = false;
2894        ret = i915_gem_object_finish_gpu(obj);
2895        dev_priv->mm.interruptible = was_interruptible;
2896
2897        return ret;
2898}
2899
2900static bool intel_crtc_has_pending_flip(struct drm_crtc *crtc)
2901{
2902        struct drm_device *dev = crtc->dev;
2903        struct drm_i915_private *dev_priv = dev->dev_private;
2904        struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2905        bool pending;
2906
2907        if (i915_reset_in_progress(&dev_priv->gpu_error) ||
2908            intel_crtc->reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
2909                return false;
2910
2911        spin_lock_irq(&dev->event_lock);
2912        pending = to_intel_crtc(crtc)->unpin_work != NULL;
2913        spin_unlock_irq(&dev->event_lock);
2914
2915        return pending;
2916}
2917
2918static void intel_update_pipe_size(struct intel_crtc *crtc)
2919{
2920        struct drm_device *dev = crtc->base.dev;
2921        struct drm_i915_private *dev_priv = dev->dev_private;
2922        const struct drm_display_mode *adjusted_mode;
2923
2924        if (!i915.fastboot)
2925                return;
2926
2927        /*
2928         * Update pipe size and adjust fitter if needed: the reason for this is
2929         * that in compute_mode_changes we check the native mode (not the pfit
2930         * mode) to see if we can flip rather than do a full mode set. In the
2931         * fastboot case, we'll flip, but if we don't update the pipesrc and
2932         * pfit state, we'll end up with a big fb scanned out into the wrong
2933         * sized surface.
2934         *
2935         * To fix this properly, we need to hoist the checks up into
2936         * compute_mode_changes (or above), check the actual pfit state and
2937         * whether the platform allows pfit disable with pipe active, and only
2938         * then update the pipesrc and pfit state, even on the flip path.
2939         */
2940
2941        adjusted_mode = &crtc->config.adjusted_mode;
2942
2943        I915_WRITE(PIPESRC(crtc->pipe),
2944                   ((adjusted_mode->crtc_hdisplay - 1) << 16) |
2945                   (adjusted_mode->crtc_vdisplay - 1));
2946        if (!crtc->config.pch_pfit.enabled &&
2947            (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) ||
2948             intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
2949                I915_WRITE(PF_CTL(crtc->pipe), 0);
2950                I915_WRITE(PF_WIN_POS(crtc->pipe), 0);
2951                I915_WRITE(PF_WIN_SZ(crtc->pipe), 0);
2952        }
2953        crtc->config.pipe_src_w = adjusted_mode->crtc_hdisplay;
2954        crtc->config.pipe_src_h = adjusted_mode->crtc_vdisplay;
2955}
2956
2957static int
2958intel_pipe_set_base(struct drm_crtc *crtc, int x, int y,
2959                    struct drm_framebuffer *fb)
2960{
2961        struct drm_device *dev = crtc->dev;
2962        struct drm_i915_private *dev_priv = dev->dev_private;
2963        struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2964        enum pipe pipe = intel_crtc->pipe;
2965        struct drm_framebuffer *old_fb = crtc->primary->fb;
2966        struct drm_i915_gem_object *old_obj = intel_fb_obj(old_fb);
2967        int ret;
2968
2969        if (intel_crtc_has_pending_flip(crtc)) {
2970                DRM_ERROR("pipe is still busy with an old pageflip\n");
2971                return -EBUSY;
2972        }
2973
2974        /* no fb bound */
2975        if (!fb) {
2976                DRM_ERROR("No FB bound\n");
2977                return 0;
2978        }
2979
2980        if (intel_crtc->plane > INTEL_INFO(dev)->num_pipes) {
2981                DRM_ERROR("no plane for crtc: plane %c, num_pipes %d\n",
2982                          plane_name(intel_crtc->plane),
2983                          INTEL_INFO(dev)->num_pipes);
2984                return -EINVAL;
2985        }
2986
2987        mutex_lock(&dev->struct_mutex);
2988        ret = intel_pin_and_fence_fb_obj(crtc->primary, fb, NULL);
2989        if (ret == 0)
2990                i915_gem_track_fb(old_obj, intel_fb_obj(fb),
2991                                  INTEL_FRONTBUFFER_PRIMARY(pipe));
2992        mutex_unlock(&dev->struct_mutex);
2993        if (ret != 0) {
2994                DRM_ERROR("pin & fence failed\n");
2995                return ret;
2996        }
2997
2998        dev_priv->display.update_primary_plane(crtc, fb, x, y);
2999
3000        if (intel_crtc->active)
3001                intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_PRIMARY(pipe));
3002
3003        crtc->primary->fb = fb;
3004        crtc->x = x;
3005        crtc->y = y;
3006
3007        if (old_fb) {
3008                if (intel_crtc->active && old_fb != fb)
3009                        intel_wait_for_vblank(dev, intel_crtc->pipe);
3010                mutex_lock(&dev->struct_mutex);
3011                intel_unpin_fb_obj(old_obj);
3012                mutex_unlock(&dev->struct_mutex);
3013        }
3014
3015        mutex_lock(&dev->struct_mutex);
3016        intel_update_fbc(dev);
3017        mutex_unlock(&dev->struct_mutex);
3018
3019        return 0;
3020}
3021
3022static void intel_fdi_normal_train(struct drm_crtc *crtc)
3023{
3024        struct drm_device *dev = crtc->dev;
3025        struct drm_i915_private *dev_priv = dev->dev_private;
3026        struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3027        int pipe = intel_crtc->pipe;
3028        u32 reg, temp;
3029
3030        /* enable normal train */
3031        reg = FDI_TX_CTL(pipe);
3032        temp = I915_READ(reg);
3033        if (IS_IVYBRIDGE(dev)) {
3034                temp &= ~FDI_LINK_TRAIN_NONE_IVB;
3035                temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
3036        } else {
3037                temp &= ~FDI_LINK_TRAIN_NONE;
3038                temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
3039        }
3040        I915_WRITE(reg, temp);
3041
3042        reg = FDI_RX_CTL(pipe);
3043        temp = I915_READ(reg);
3044        if (HAS_PCH_CPT(dev)) {
3045                temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3046                temp |= FDI_LINK_TRAIN_NORMAL_CPT;
3047        } else {
3048                temp &= ~FDI_LINK_TRAIN_NONE;
3049                temp |= FDI_LINK_TRAIN_NONE;
3050        }
3051        I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
3052
3053        /* wait one idle pattern time */
3054        POSTING_READ(reg);
3055        udelay(1000);
3056
3057        /* IVB wants error correction enabled */
3058        if (IS_IVYBRIDGE(dev))
3059                I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
3060                           FDI_FE_ERRC_ENABLE);
3061}
3062
3063static bool pipe_has_enabled_pch(struct intel_crtc *crtc)
3064{
3065        return crtc->base.enabled && crtc->active &&
3066                crtc->config.has_pch_encoder;
3067}
3068
3069static void ivb_modeset_global_resources(struct drm_device *dev)
3070{
3071        struct drm_i915_private *dev_priv = dev->dev_private;
3072        struct intel_crtc *pipe_B_crtc =
3073                to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
3074        struct intel_crtc *pipe_C_crtc =
3075                to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_C]);
3076        uint32_t temp;
3077
3078        /*
3079         * When everything is off disable fdi C so that we could enable fdi B
3080         * with all lanes. Note that we don't care about enabled pipes without
3081         * an enabled pch encoder.
3082         */
3083        if (!pipe_has_enabled_pch(pipe_B_crtc) &&
3084            !pipe_has_enabled_pch(pipe_C_crtc)) {
3085                WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
3086                WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
3087
3088                temp = I915_READ(SOUTH_CHICKEN1);
3089                temp &= ~FDI_BC_BIFURCATION_SELECT;
3090                DRM_DEBUG_KMS("disabling fdi C rx\n");
3091                I915_WRITE(SOUTH_CHICKEN1, temp);
3092        }
3093}
3094
3095/* The FDI link training functions for ILK/Ibexpeak. */
3096static void ironlake_fdi_link_train(struct drm_crtc *crtc)
3097{
3098        struct drm_device *dev = crtc->dev;
3099        struct drm_i915_private *dev_priv = dev->dev_private;
3100        struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3101        int pipe = intel_crtc->pipe;
3102        u32 reg, temp, tries;
3103
3104        /* FDI needs bits from pipe first */
3105        assert_pipe_enabled(dev_priv, pipe);
3106
3107        /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3108           for train result */
3109        reg = FDI_RX_IMR(pipe);
3110        temp = I915_READ(reg);
3111        temp &= ~FDI_RX_SYMBOL_LOCK;
3112        temp &= ~FDI_RX_BIT_LOCK;
3113        I915_WRITE(reg, temp);
3114        I915_READ(reg);
3115        udelay(150);
3116
3117        /* enable CPU FDI TX and PCH FDI RX */
3118        reg = FDI_TX_CTL(pipe);
3119        temp = I915_READ(reg);
3120        temp &= ~FDI_DP_PORT_WIDTH_MASK;
3121        temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
3122        temp &= ~FDI_LINK_TRAIN_NONE;
3123        temp |= FDI_LINK_TRAIN_PATTERN_1;
3124        I915_WRITE(reg, temp | FDI_TX_ENABLE);
3125
3126        reg = FDI_RX_CTL(pipe);
3127        temp = I915_READ(reg);
3128        temp &= ~FDI_LINK_TRAIN_NONE;
3129        temp |= FDI_LINK_TRAIN_PATTERN_1;
3130        I915_WRITE(reg, temp | FDI_RX_ENABLE);
3131
3132        POSTING_READ(reg);
3133        udelay(150);
3134
3135        /* Ironlake workaround, enable clock pointer after FDI enable*/
3136        I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
3137        I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
3138                   FDI_RX_PHASE_SYNC_POINTER_EN);
3139
3140        reg = FDI_RX_IIR(pipe);
3141        for (tries = 0; tries < 5; tries++) {
3142                temp = I915_READ(reg);
3143                DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3144
3145                if ((temp & FDI_RX_BIT_LOCK)) {
3146                        DRM_DEBUG_KMS("FDI train 1 done.\n");
3147                        I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3148                        break;
3149                }
3150        }
3151        if (tries == 5)
3152                DRM_ERROR("FDI train 1 fail!\n");
3153
3154        /* Train 2 */
3155        reg = FDI_TX_CTL(pipe);
3156        temp = I915_READ(reg);
3157        temp &= ~FDI_LINK_TRAIN_NONE;
3158        temp |= FDI_LINK_TRAIN_PATTERN_2;
3159        I915_WRITE(reg, temp);
3160
3161        reg = FDI_RX_CTL(pipe);
3162        temp = I915_READ(reg);
3163        temp &= ~FDI_LINK_TRAIN_NONE;
3164        temp |= FDI_LINK_TRAIN_PATTERN_2;
3165        I915_WRITE(reg, temp);
3166
3167        POSTING_READ(reg);
3168        udelay(150);
3169
3170        reg = FDI_RX_IIR(pipe);
3171        for (tries = 0; tries < 5; tries++) {
3172                temp = I915_READ(reg);
3173                DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3174
3175                if (temp & FDI_RX_SYMBOL_LOCK) {
3176                        I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3177                        DRM_DEBUG_KMS("FDI train 2 done.\n");
3178                        break;
3179                }
3180        }
3181        if (tries == 5)
3182                DRM_ERROR("FDI train 2 fail!\n");
3183
3184        DRM_DEBUG_KMS("FDI train done\n");
3185
3186}
3187
3188static const int snb_b_fdi_train_param[] = {
3189        FDI_LINK_TRAIN_400MV_0DB_SNB_B,
3190        FDI_LINK_TRAIN_400MV_6DB_SNB_B,
3191        FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
3192        FDI_LINK_TRAIN_800MV_0DB_SNB_B,
3193};
3194
3195/* The FDI link training functions for SNB/Cougarpoint. */
3196static void gen6_fdi_link_train(struct drm_crtc *crtc)
3197{
3198        struct drm_device *dev = crtc->dev;
3199        struct drm_i915_private *dev_priv = dev->dev_private;
3200        struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3201        int pipe = intel_crtc->pipe;
3202        u32 reg, temp, i, retry;
3203
3204        /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3205           for train result */
3206        reg = FDI_RX_IMR(pipe);
3207        temp = I915_READ(reg);
3208        temp &= ~FDI_RX_SYMBOL_LOCK;
3209        temp &= ~FDI_RX_BIT_LOCK;
3210        I915_WRITE(reg, temp);
3211
3212        POSTING_READ(reg);
3213        udelay(150);
3214
3215        /* enable CPU FDI TX and PCH FDI RX */
3216        reg = FDI_TX_CTL(pipe);
3217        temp = I915_READ(reg);
3218        temp &= ~FDI_DP_PORT_WIDTH_MASK;
3219        temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
3220        temp &= ~FDI_LINK_TRAIN_NONE;
3221        temp |= FDI_LINK_TRAIN_PATTERN_1;
3222        temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3223        /* SNB-B */
3224        temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
3225        I915_WRITE(reg, temp | FDI_TX_ENABLE);
3226
3227        I915_WRITE(FDI_RX_MISC(pipe),
3228                   FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
3229
3230        reg = FDI_RX_CTL(pipe);
3231        temp = I915_READ(reg);
3232        if (HAS_PCH_CPT(dev)) {
3233                temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3234                temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3235        } else {
3236                temp &= ~FDI_LINK_TRAIN_NONE;
3237                temp |= FDI_LINK_TRAIN_PATTERN_1;
3238        }
3239        I915_WRITE(reg, temp | FDI_RX_ENABLE);
3240
3241        POSTING_READ(reg);
3242        udelay(150);
3243
3244        for (i = 0; i < 4; i++) {
3245                reg = FDI_TX_CTL(pipe);
3246                temp = I915_READ(reg);
3247                temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3248                temp |= snb_b_fdi_train_param[i];
3249                I915_WRITE(reg, temp);
3250
3251                POSTING_READ(reg);
3252                udelay(500);
3253
3254                for (retry = 0; retry < 5; retry++) {
3255                        reg = FDI_RX_IIR(pipe);
3256                        temp = I915_READ(reg);
3257                        DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3258                        if (temp & FDI_RX_BIT_LOCK) {
3259                                I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3260                                DRM_DEBUG_KMS("FDI train 1 done.\n");
3261                                break;
3262                        }
3263                        udelay(50);
3264                }
3265                if (retry < 5)
3266                        break;
3267        }
3268        if (i == 4)
3269                DRM_ERROR("FDI train 1 fail!\n");
3270
3271        /* Train 2 */
3272        reg = FDI_TX_CTL(pipe);
3273        temp = I915_READ(reg);
3274        temp &= ~FDI_LINK_TRAIN_NONE;
3275        temp |= FDI_LINK_TRAIN_PATTERN_2;
3276        if (IS_GEN6(dev)) {
3277                temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3278                /* SNB-B */
3279                temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
3280        }
3281        I915_WRITE(reg, temp);
3282
3283        reg = FDI_RX_CTL(pipe);
3284        temp = I915_READ(reg);
3285        if (HAS_PCH_CPT(dev)) {
3286                temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3287                temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
3288        } else {
3289                temp &= ~FDI_LINK_TRAIN_NONE;
3290                temp |= FDI_LINK_TRAIN_PATTERN_2;
3291        }
3292        I915_WRITE(reg, temp);
3293
3294        POSTING_READ(reg);
3295        udelay(150);
3296
3297        for (i = 0; i < 4; i++) {
3298                reg = FDI_TX_CTL(pipe);
3299                temp = I915_READ(reg);
3300                temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3301                temp |= snb_b_fdi_train_param[i];
3302                I915_WRITE(reg, temp);
3303
3304                POSTING_READ(reg);
3305                udelay(500);
3306
3307                for (retry = 0; retry < 5; retry++) {
3308                        reg = FDI_RX_IIR(pipe);
3309                        temp = I915_READ(reg);
3310                        DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3311                        if (temp & FDI_RX_SYMBOL_LOCK) {
3312                                I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3313                                DRM_DEBUG_KMS("FDI train 2 done.\n");
3314                                break;
3315                        }
3316                        udelay(50);
3317                }
3318                if (retry < 5)
3319                        break;
3320        }
3321        if (i == 4)
3322                DRM_ERROR("FDI train 2 fail!\n");
3323
3324        DRM_DEBUG_KMS("FDI train done.\n");
3325}
3326
3327/* Manual link training for Ivy Bridge A0 parts */
3328static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
3329{
3330        struct drm_device *dev = crtc->dev;
3331        struct drm_i915_private *dev_priv = dev->dev_private;
3332        struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3333        int pipe = intel_crtc->pipe;
3334        u32 reg, temp, i, j;
3335
3336        /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3337           for train result */
3338        reg = FDI_RX_IMR(pipe);
3339        temp = I915_READ(reg);
3340        temp &= ~FDI_RX_SYMBOL_LOCK;
3341        temp &= ~FDI_RX_BIT_LOCK;
3342        I915_WRITE(reg, temp);
3343
3344        POSTING_READ(reg);
3345        udelay(150);
3346
3347        DRM_DEBUG_KMS("FDI_RX_IIR before link train 0x%x\n",
3348                      I915_READ(FDI_RX_IIR(pipe)));
3349
3350        /* Try each vswing and preemphasis setting twice before moving on */
3351        for (j = 0; j < ARRAY_SIZE(snb_b_fdi_train_param) * 2; j++) {
3352                /* disable first in case we need to retry */
3353                reg = FDI_TX_CTL(pipe);
3354                temp = I915_READ(reg);
3355                temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
3356                temp &= ~FDI_TX_ENABLE;
3357                I915_WRITE(reg, temp);
3358
3359                reg = FDI_RX_CTL(pipe);
3360                temp = I915_READ(reg);
3361                temp &= ~FDI_LINK_TRAIN_AUTO;
3362                temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3363                temp &= ~FDI_RX_ENABLE;
3364                I915_WRITE(reg, temp);
3365
3366                /* enable CPU FDI TX and PCH FDI RX */
3367                reg = FDI_TX_CTL(pipe);
3368                temp = I915_READ(reg);
3369                temp &= ~FDI_DP_PORT_WIDTH_MASK;
3370                temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
3371                temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
3372                temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3373                temp |= snb_b_fdi_train_param[j/2];
3374                temp |= FDI_COMPOSITE_SYNC;
3375                I915_WRITE(reg, temp | FDI_TX_ENABLE);
3376
3377                I915_WRITE(FDI_RX_MISC(pipe),
3378                           FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
3379
3380                reg = FDI_RX_CTL(pipe);
3381                temp = I915_READ(reg);
3382                temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3383                temp |= FDI_COMPOSITE_SYNC;
3384                I915_WRITE(reg, temp | FDI_RX_ENABLE);
3385
3386                POSTING_READ(reg);
3387                udelay(1); /* should be 0.5us */
3388
3389                for (i = 0; i < 4; i++) {
3390                        reg = FDI_RX_IIR(pipe);
3391                        temp = I915_READ(reg);
3392                        DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3393
3394                        if (temp & FDI_RX_BIT_LOCK ||
3395                            (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
3396                                I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3397                                DRM_DEBUG_KMS("FDI train 1 done, level %i.\n",
3398                                              i);
3399                                break;
3400                        }
3401                        udelay(1); /* should be 0.5us */
3402                }
3403                if (i == 4) {
3404                        DRM_DEBUG_KMS("FDI train 1 fail on vswing %d\n", j / 2);
3405                        continue;
3406                }
3407
3408                /* Train 2 */
3409                reg = FDI_TX_CTL(pipe);
3410                temp = I915_READ(reg);
3411                temp &= ~FDI_LINK_TRAIN_NONE_IVB;
3412                temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
3413                I915_WRITE(reg, temp);
3414
3415                reg = FDI_RX_CTL(pipe);
3416                temp = I915_READ(reg);
3417                temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3418                temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
3419                I915_WRITE(reg, temp);
3420
3421                POSTING_READ(reg);
3422                udelay(2); /* should be 1.5us */
3423
3424                for (i = 0; i < 4; i++) {
3425                        reg = FDI_RX_IIR(pipe);
3426                        temp = I915_READ(reg);
3427                        DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3428
3429                        if (temp & FDI_RX_SYMBOL_LOCK ||
3430                            (I915_READ(reg) & FDI_RX_SYMBOL_LOCK)) {
3431                                I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3432                                DRM_DEBUG_KMS("FDI train 2 done, level %i.\n",
3433                                              i);
3434                                goto train_done;
3435                        }
3436                        udelay(2); /* should be 1.5us */
3437                }
3438                if (i == 4)
3439                        DRM_DEBUG_KMS("FDI train 2 fail on vswing %d\n", j / 2);
3440        }
3441
3442train_done:
3443        DRM_DEBUG_KMS("FDI train done.\n");
3444}
3445
3446static void ironlake_fdi_pll_enable(struct intel_crtc *intel_crtc)
3447{
3448        struct drm_device *dev = intel_crtc->base.dev;
3449        struct drm_i915_private *dev_priv = dev->dev_private;
3450        int pipe = intel_crtc->pipe;
3451        u32 reg, temp;
3452
3453
3454        /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
3455        reg = FDI_RX_CTL(pipe);
3456        temp = I915_READ(reg);
3457        temp &= ~(FDI_DP_PORT_WIDTH_MASK | (0x7 << 16));
3458        temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
3459        temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
3460        I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
3461
3462        POSTING_READ(reg);
3463        udelay(200);
3464
3465        /* Switch from Rawclk to PCDclk */
3466        temp = I915_READ(reg);
3467        I915_WRITE(reg, temp | FDI_PCDCLK);
3468
3469        POSTING_READ(reg);
3470        udelay(200);
3471
3472        /* Enable CPU FDI TX PLL, always on for Ironlake */
3473        reg = FDI_TX_CTL(pipe);
3474        temp = I915_READ(reg);
3475        if ((temp & FDI_TX_PLL_ENABLE) == 0) {
3476                I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
3477
3478                POSTING_READ(reg);
3479                udelay(100);
3480        }
3481}
3482
3483static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc)
3484{
3485        struct drm_device *dev = intel_crtc->base.dev;
3486        struct drm_i915_private *dev_priv = dev->dev_private;
3487        int pipe = intel_crtc->pipe;
3488        u32 reg, temp;
3489
3490        /* Switch from PCDclk to Rawclk */
3491        reg = FDI_RX_CTL(pipe);
3492        temp = I915_READ(reg);
3493        I915_WRITE(reg, temp & ~FDI_PCDCLK);
3494
3495        /* Disable CPU FDI TX PLL */
3496        reg = FDI_TX_CTL(pipe);
3497        temp = I915_READ(reg);
3498        I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
3499
3500        POSTING_READ(reg);
3501        udelay(100);
3502
3503        reg = FDI_RX_CTL(pipe);
3504        temp = I915_READ(reg);
3505        I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
3506
3507        /* Wait for the clocks to turn off. */
3508        POSTING_READ(reg);
3509        udelay(100);
3510}
3511
3512static void ironlake_fdi_disable(struct drm_crtc *crtc)
3513{
3514        struct drm_device *dev = crtc->dev;
3515        struct drm_i915_private *dev_priv = dev->dev_private;
3516        struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3517        int pipe = intel_crtc->pipe;
3518        u32 reg, temp;
3519
3520        /* disable CPU FDI tx and PCH FDI rx */
3521        reg = FDI_TX_CTL(pipe);
3522        temp = I915_READ(reg);
3523        I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
3524        POSTING_READ(reg);
3525
3526        reg = FDI_RX_CTL(pipe);
3527        temp = I915_READ(reg);
3528        temp &= ~(0x7 << 16);
3529        temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
3530        I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
3531
3532        POSTING_READ(reg);
3533        udelay(100);
3534
3535        /* Ironlake workaround, disable clock pointer after downing FDI */
3536        if (HAS_PCH_IBX(dev))
3537                I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
3538
3539        /* still set train pattern 1 */
3540        reg = FDI_TX_CTL(pipe);
3541        temp = I915_READ(reg);
3542        temp &= ~FDI_LINK_TRAIN_NONE;
3543        temp |= FDI_LINK_TRAIN_PATTERN_1;
3544        I915_WRITE(reg, temp);
3545
3546        reg = FDI_RX_CTL(pipe);
3547        temp = I915_READ(reg);
3548        if (HAS_PCH_CPT(dev)) {
3549                temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3550                temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3551        } else {
3552                temp &= ~FDI_LINK_TRAIN_NONE;
3553                temp |= FDI_LINK_TRAIN_PATTERN_1;
3554        }
3555        /* BPC in FDI rx is consistent with that in PIPECONF */
3556        temp &= ~(0x07 << 16);
3557        temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
3558        I915_WRITE(reg, temp);
3559
3560        POSTING_READ(reg);
3561        udelay(100);
3562}
3563
3564bool intel_has_pending_fb_unpin(struct drm_device *dev)
3565{
3566        struct intel_crtc *crtc;
3567
3568        /* Note that we don't need to be called with mode_config.lock here
3569         * as our list of CRTC objects is static for the lifetime of the
3570         * device and so cannot disappear as we iterate. Similarly, we can
3571         * happily treat the predicates as racy, atomic checks as userspace
3572         * cannot claim and pin a new fb without at least acquring the
3573         * struct_mutex and so serialising with us.
3574         */
3575        for_each_intel_crtc(dev, crtc) {
3576                if (atomic_read(&crtc->unpin_work_count) == 0)
3577                        continue;
3578
3579                if (crtc->unpin_work)
3580                        intel_wait_for_vblank(dev, crtc->pipe);
3581
3582                return true;
3583        }
3584
3585        return false;
3586}
3587
3588static void page_flip_completed(struct intel_crtc *intel_crtc)
3589{
3590        struct drm_i915_private *dev_priv = to_i915(intel_crtc->base.dev);
3591        struct intel_unpin_work *work = intel_crtc->unpin_work;
3592
3593        /* ensure that the unpin work is consistent wrt ->pending. */
3594        smp_rmb();
3595        intel_crtc->unpin_work = NULL;
3596
3597        if (work->event)
3598                drm_send_vblank_event(intel_crtc->base.dev,
3599                                      intel_crtc->pipe,
3600                                      work->event);
3601
3602        drm_crtc_vblank_put(&intel_crtc->base);
3603
3604        wake_up_all(&dev_priv->pending_flip_queue);
3605        queue_work(dev_priv->wq, &work->work);
3606
3607        trace_i915_flip_complete(intel_crtc->plane,
3608                                 work->pending_flip_obj);
3609}
3610
3611void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
3612{
3613        struct drm_device *dev = crtc->dev;
3614        struct drm_i915_private *dev_priv = dev->dev_private;
3615
3616        WARN_ON(waitqueue_active(&dev_priv->pending_flip_queue));
3617        if (WARN_ON(wait_event_timeout(dev_priv->pending_flip_queue,
3618                                       !intel_crtc_has_pending_flip(crtc),
3619                                       60*HZ) == 0)) {
3620                struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3621
3622                spin_lock_irq(&dev->event_lock);
3623                if (intel_crtc->unpin_work) {
3624                        WARN_ONCE(1, "Removing stuck page flip\n");
3625                        page_flip_completed(intel_crtc);
3626                }
3627                spin_unlock_irq(&dev->event_lock);
3628        }
3629
3630        if (crtc->primary->fb) {
3631                mutex_lock(&dev->struct_mutex);
3632                intel_finish_fb(crtc->primary->fb);
3633                mutex_unlock(&dev->struct_mutex);
3634        }
3635}
3636
3637/* Program iCLKIP clock to the desired frequency */
3638static void lpt_program_iclkip(struct drm_crtc *crtc)
3639{
3640        struct drm_device *dev = crtc->dev;
3641        struct drm_i915_private *dev_priv = dev->dev_private;
3642        int clock = to_intel_crtc(crtc)->config.adjusted_mode.crtc_clock;
3643        u32 divsel, phaseinc, auxdiv, phasedir = 0;
3644        u32 temp;
3645
3646        mutex_lock(&dev_priv->dpio_lock);
3647
3648        /* It is necessary to ungate the pixclk gate prior to programming
3649         * the divisors, and gate it back when it is done.
3650         */
3651        I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE);
3652
3653        /* Disable SSCCTL */
3654        intel_sbi_write(dev_priv, SBI_SSCCTL6,
3655                        intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK) |
3656                                SBI_SSCCTL_DISABLE,
3657                        SBI_ICLK);
3658
3659        /* 20MHz is a corner case which is out of range for the 7-bit divisor */
3660        if (clock == 20000) {
3661                auxdiv = 1;
3662                divsel = 0x41;
3663                phaseinc = 0x20;
3664        } else {
3665                /* The iCLK virtual clock root frequency is in MHz,
3666                 * but the adjusted_mode->crtc_clock in in KHz. To get the
3667                 * divisors, it is necessary to divide one by another, so we
3668                 * convert the virtual clock precision to KHz here for higher
3669                 * precision.
3670                 */
3671                u32 iclk_virtual_root_freq = 172800 * 1000;
3672                u32 iclk_pi_range = 64;
3673                u32 desired_divisor, msb_divisor_value, pi_value;
3674
3675                desired_divisor = (iclk_virtual_root_freq / clock);
3676                msb_divisor_value = desired_divisor / iclk_pi_range;
3677                pi_value = desired_divisor % iclk_pi_range;
3678
3679                auxdiv = 0;
3680                divsel = msb_divisor_value - 2;
3681                phaseinc = pi_value;
3682        }
3683
3684        /* This should not happen with any sane values */
3685        WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
3686                ~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
3687        WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) &
3688                ~SBI_SSCDIVINTPHASE_INCVAL_MASK);
3689
3690        DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
3691                        clock,
3692                        auxdiv,
3693                        divsel,
3694                        phasedir,
3695                        phaseinc);
3696
3697        /* Program SSCDIVINTPHASE6 */
3698        temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
3699        temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
3700        temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
3701        temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
3702        temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
3703        temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
3704        temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
3705        intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE6, temp, SBI_ICLK);
3706
3707        /* Program SSCAUXDIV */
3708        temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
3709        temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
3710        temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
3711        intel_sbi_write(dev_priv, SBI_SSCAUXDIV6, temp, SBI_ICLK);
3712
3713        /* Enable modulator and associated divider */
3714        temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
3715        temp &= ~SBI_SSCCTL_DISABLE;
3716        intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
3717
3718        /* Wait for initialization time */
3719        udelay(24);
3720
3721        I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
3722
3723        mutex_unlock(&dev_priv->dpio_lock);
3724}
3725
3726static void ironlake_pch_transcoder_set_timings(struct intel_crtc *crtc,
3727                                                enum pipe pch_transcoder)
3728{
3729        struct drm_device *dev = crtc->base.dev;
3730        struct drm_i915_private *dev_priv = dev->dev_private;
3731        enum transcoder cpu_transcoder = crtc->config.cpu_transcoder;
3732
3733        I915_WRITE(PCH_TRANS_HTOTAL(pch_transcoder),
3734                   I915_READ(HTOTAL(cpu_transcoder)));
3735        I915_WRITE(PCH_TRANS_HBLANK(pch_transcoder),
3736                   I915_READ(HBLANK(cpu_transcoder)));
3737        I915_WRITE(PCH_TRANS_HSYNC(pch_transcoder),
3738                   I915_READ(HSYNC(cpu_transcoder)));
3739
3740        I915_WRITE(PCH_TRANS_VTOTAL(pch_transcoder),
3741                   I915_READ(VTOTAL(cpu_transcoder)));
3742        I915_WRITE(PCH_TRANS_VBLANK(pch_transcoder),
3743                   I915_READ(VBLANK(cpu_transcoder)));
3744        I915_WRITE(PCH_TRANS_VSYNC(pch_transcoder),
3745                   I915_READ(VSYNC(cpu_transcoder)));
3746        I915_WRITE(PCH_TRANS_VSYNCSHIFT(pch_transcoder),
3747                   I915_READ(VSYNCSHIFT(cpu_transcoder)));
3748}
3749
3750static void cpt_enable_fdi_bc_bifurcation(struct drm_device *dev)
3751{
3752        struct drm_i915_private *dev_priv = dev->dev_private;
3753        uint32_t temp;
3754
3755        temp = I915_READ(SOUTH_CHICKEN1);
3756        if (temp & FDI_BC_BIFURCATION_SELECT)
3757                return;
3758
3759        WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
3760        WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
3761
3762        temp |= FDI_BC_BIFURCATION_SELECT;
3763        DRM_DEBUG_KMS("enabling fdi C rx\n");
3764        I915_WRITE(SOUTH_CHICKEN1, temp);
3765        POSTING_READ(SOUTH_CHICKEN1);
3766}
3767
3768static void ivybridge_update_fdi_bc_bifurcation(struct intel_crtc *intel_crtc)
3769{
3770        struct drm_device *dev = intel_crtc->base.dev;
3771        struct drm_i915_private *dev_priv = dev->dev_private;
3772
3773        switch (intel_crtc->pipe) {
3774        case PIPE_A:
3775                break;
3776        case PIPE_B:
3777                if (intel_crtc->config.fdi_lanes > 2)
3778                        WARN_ON(I915_READ(SOUTH_CHICKEN1) & FDI_BC_BIFURCATION_SELECT);
3779                else
3780                        cpt_enable_fdi_bc_bifurcation(dev);
3781
3782                break;
3783        case PIPE_C:
3784                cpt_enable_fdi_bc_bifurcation(dev);
3785
3786                break;
3787        default:
3788                BUG();
3789        }
3790}
3791
3792/*
3793 * Enable PCH resources required for PCH ports:
3794 *   - PCH PLLs
3795 *   - FDI training & RX/TX
3796 *   - update transcoder timings
3797 *   - DP transcoding bits
3798 *   - transcoder
3799 */
3800static void ironlake_pch_enable(struct drm_crtc *crtc)
3801{
3802        struct drm_device *dev = crtc->dev;
3803        struct drm_i915_private *dev_priv = dev->dev_private;
3804        struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3805        int pipe = intel_crtc->pipe;
3806        u32 reg, temp;
3807
3808        assert_pch_transcoder_disabled(dev_priv, pipe);
3809
3810        if (IS_IVYBRIDGE(dev))
3811                ivybridge_update_fdi_bc_bifurcation(intel_crtc);
3812
3813        /* Write the TU size bits before fdi link training, so that error
3814         * detection works. */
3815        I915_WRITE(FDI_RX_TUSIZE1(pipe),
3816                   I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
3817
3818        /* For PCH output, training FDI link */
3819        dev_priv->display.fdi_link_train(crtc);
3820
3821        /* We need to program the right clock selection before writing the pixel
3822         * mutliplier into the DPLL. */
3823        if (HAS_PCH_CPT(dev)) {
3824                u32 sel;
3825
3826                temp = I915_READ(PCH_DPLL_SEL);
3827                temp |= TRANS_DPLL_ENABLE(pipe);
3828                sel = TRANS_DPLLB_SEL(pipe);
3829                if (intel_crtc->config.shared_dpll == DPLL_ID_PCH_PLL_B)
3830                        temp |= sel;
3831                else
3832                        temp &= ~sel;
3833                I915_WRITE(PCH_DPLL_SEL, temp);
3834        }
3835
3836        /* XXX: pch pll's can be enabled any time before we enable the PCH
3837         * transcoder, and we actually should do this to not upset any PCH
3838         * transcoder that already use the clock when we share it.
3839         *
3840         * Note that enable_shared_dpll tries to do the right thing, but
3841         * get_shared_dpll unconditionally resets the pll - we need that to have
3842         * the right LVDS enable sequence. */
3843        intel_enable_shared_dpll(intel_crtc);
3844
3845        /* set transcoder timing, panel must allow it */
3846        assert_panel_unlocked(dev_priv, pipe);
3847        ironlake_pch_transcoder_set_timings(intel_crtc, pipe);
3848
3849        intel_fdi_normal_train(crtc);
3850
3851        /* For PCH DP, enable TRANS_DP_CTL */
3852        if (HAS_PCH_CPT(dev) && intel_crtc->config.has_dp_encoder) {
3853                u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) >> 5;
3854                reg = TRANS_DP_CTL(pipe);
3855                temp = I915_READ(reg);
3856                temp &= ~(TRANS_DP_PORT_SEL_MASK |
3857                          TRANS_DP_SYNC_MASK |
3858                          TRANS_DP_BPC_MASK);
3859                temp |= (TRANS_DP_OUTPUT_ENABLE |
3860                         TRANS_DP_ENH_FRAMING);
3861                temp |= bpc << 9; /* same format but at 11:9 */
3862
3863                if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
3864                        temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
3865                if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
3866                        temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
3867
3868                switch (intel_trans_dp_port_sel(crtc)) {
3869                case PCH_DP_B:
3870                        temp |= TRANS_DP_PORT_SEL_B;
3871                        break;
3872                case PCH_DP_C:
3873                        temp |= TRANS_DP_PORT_SEL_C;
3874                        break;
3875                case PCH_DP_D:
3876                        temp |= TRANS_DP_PORT_SEL_D;
3877                        break;
3878                default:
3879                        BUG();
3880                }
3881
3882                I915_WRITE(reg, temp);
3883        }
3884
3885        ironlake_enable_pch_transcoder(dev_priv, pipe);
3886}
3887
3888static void lpt_pch_enable(struct drm_crtc *crtc)
3889{
3890        struct drm_device *dev = crtc->dev;
3891        struct drm_i915_private *dev_priv = dev->dev_private;
3892        struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3893        enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
3894
3895        assert_pch_transcoder_disabled(dev_priv, TRANSCODER_A);
3896
3897        lpt_program_iclkip(crtc);
3898
3899        /* Set transcoder timing. */
3900        ironlake_pch_transcoder_set_timings(intel_crtc, PIPE_A);
3901
3902        lpt_enable_pch_transcoder(dev_priv, cpu_transcoder);
3903}
3904
3905void intel_put_shared_dpll(struct intel_crtc *crtc)
3906{
3907        struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
3908
3909        if (pll == NULL)
3910                return;
3911
3912        if (!(pll->config.crtc_mask & (1 << crtc->pipe))) {
3913                WARN(1, "bad %s crtc mask\n", pll->name);
3914                return;
3915        }
3916
3917        pll->config.crtc_mask &= ~(1 << crtc->pipe);
3918        if (pll->config.crtc_mask == 0) {
3919                WARN_ON(pll->on);
3920                WARN_ON(pll->active);
3921        }
3922
3923        crtc->config.shared_dpll = DPLL_ID_PRIVATE;
3924}
3925
3926struct intel_shared_dpll *intel_get_shared_dpll(struct intel_crtc *crtc)
3927{
3928        struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
3929        struct intel_shared_dpll *pll;
3930        enum intel_dpll_id i;
3931
3932        if (HAS_PCH_IBX(dev_priv->dev)) {
3933                /* Ironlake PCH has a fixed PLL->PCH pipe mapping. */
3934                i = (enum intel_dpll_id) crtc->pipe;
3935                pll = &dev_priv->shared_dplls[i];
3936
3937                DRM_DEBUG_KMS("CRTC:%d using pre-allocated %s\n",
3938                              crtc->base.base.id, pll->name);
3939
3940                WARN_ON(pll->new_config->crtc_mask);
3941
3942                goto found;
3943        }
3944
3945        for (i = 0; i < dev_priv->num_shared_dpll; i++) {
3946                pll = &dev_priv->shared_dplls[i];
3947
3948                /* Only want to check enabled timings first */
3949                if (pll->new_config->crtc_mask == 0)
3950                        continue;
3951
3952                if (memcmp(&crtc->new_config->dpll_hw_state,
3953                           &pll->new_config->hw_state,
3954                           sizeof(pll->new_config->hw_state)) == 0) {
3955                        DRM_DEBUG_KMS("CRTC:%d sharing existing %s (crtc mask 0x%08x, ative %d)\n",
3956                                      crtc->base.base.id, pll->name,
3957                                      pll->new_config->crtc_mask,
3958                                      pll->active);
3959                        goto found;
3960                }
3961        }
3962
3963        /* Ok no matching timings, maybe there's a free one? */
3964        for (i = 0; i < dev_priv->num_shared_dpll; i++) {
3965                pll = &dev_priv->shared_dplls[i];
3966                if (pll->new_config->crtc_mask == 0) {
3967                        DRM_DEBUG_KMS("CRTC:%d allocated %s\n",
3968                                      crtc->base.base.id, pll->name);
3969                        goto found;
3970                }
3971        }
3972
3973        return NULL;
3974
3975found:
3976        if (pll->new_config->crtc_mask == 0)
3977                pll->new_config->hw_state = crtc->new_config->dpll_hw_state;
3978
3979        crtc->new_config->shared_dpll = i;
3980        DRM_DEBUG_DRIVER("using %s for pipe %c\n", pll->name,
3981                         pipe_name(crtc->pipe));
3982
3983        pll->new_config->crtc_mask |= 1 << crtc->pipe;
3984
3985        return pll;
3986}
3987
3988/**
3989 * intel_shared_dpll_start_config - start a new PLL staged config
3990 * @dev_priv: DRM device
3991 * @clear_pipes: mask of pipes that will have their PLLs freed
3992 *
3993 * Starts a new PLL staged config, copying the current config but
3994 * releasing the references of pipes specified in clear_pipes.
3995 */
3996static int intel_shared_dpll_start_config(struct drm_i915_private *dev_priv,
3997                                          unsigned clear_pipes)
3998{
3999        struct intel_shared_dpll *pll;
4000        enum intel_dpll_id i;
4001
4002        for (i = 0; i < dev_priv->num_shared_dpll; i++) {
4003                pll = &dev_priv->shared_dplls[i];
4004
4005                pll->new_config = kmemdup(&pll->config, sizeof pll->config,
4006                                          GFP_KERNEL);
4007                if (!pll->new_config)
4008                        goto cleanup;
4009
4010                pll->new_config->crtc_mask &= ~clear_pipes;
4011        }
4012
4013        return 0;
4014
4015cleanup:
4016        while (--i >= 0) {
4017                pll = &dev_priv->shared_dplls[i];
4018                kfree(pll->new_config);
4019                pll->new_config = NULL;
4020        }
4021
4022        return -ENOMEM;
4023}
4024
4025static void intel_shared_dpll_commit(struct drm_i915_private *dev_priv)
4026{
4027        struct intel_shared_dpll *pll;
4028        enum intel_dpll_id i;
4029
4030        for (i = 0; i < dev_priv->num_shared_dpll; i++) {
4031                pll = &dev_priv->shared_dplls[i];
4032
4033                WARN_ON(pll->new_config == &pll->config);
4034
4035                pll->config = *pll->new_config;
4036                kfree(pll->new_config);
4037                pll->new_config = NULL;
4038        }
4039}
4040
4041static void intel_shared_dpll_abort_config(struct drm_i915_private *dev_priv)
4042{
4043        struct intel_shared_dpll *pll;
4044        enum intel_dpll_id i;
4045
4046        for (i = 0; i < dev_priv->num_shared_dpll; i++) {
4047                pll = &dev_priv->shared_dplls[i];
4048
4049                WARN_ON(pll->new_config == &pll->config);
4050
4051                kfree(pll->new_config);
4052                pll->new_config = NULL;
4053        }
4054}
4055
4056static void cpt_verify_modeset(struct drm_device *dev, int pipe)
4057{
4058        struct drm_i915_private *dev_priv = dev->dev_private;
4059        int dslreg = PIPEDSL(pipe);
4060        u32 temp;
4061
4062        temp = I915_READ(dslreg);
4063        udelay(500);
4064        if (wait_for(I915_READ(dslreg) != temp, 5)) {
4065                if (wait_for(I915_READ(dslreg) != temp, 5))
4066                        DRM_ERROR("mode set failed: pipe %c stuck\n", pipe_name(pipe));
4067        }
4068}
4069
4070static void skylake_pfit_enable(struct intel_crtc *crtc)
4071{
4072        struct drm_device *dev = crtc->base.dev;
4073        struct drm_i915_private *dev_priv = dev->dev_private;
4074        int pipe = crtc->pipe;
4075
4076        if (crtc->config.pch_pfit.enabled) {
4077                I915_WRITE(PS_CTL(pipe), PS_ENABLE);
4078                I915_WRITE(PS_WIN_POS(pipe), crtc->config.pch_pfit.pos);
4079                I915_WRITE(PS_WIN_SZ(pipe), crtc->config.pch_pfit.size);
4080        }
4081}
4082
4083static void ironlake_pfit_enable(struct intel_crtc *crtc)
4084{
4085        struct drm_device *dev = crtc->base.dev;
4086        struct drm_i915_private *dev_priv = dev->dev_private;
4087        int pipe = crtc->pipe;
4088
4089        if (crtc->config.pch_pfit.enabled) {
4090                /* Force use of hard-coded filter coefficients
4091                 * as some pre-programmed values are broken,
4092                 * e.g. x201.
4093                 */
4094                if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev))
4095                        I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3 |
4096                                                 PF_PIPE_SEL_IVB(pipe));
4097                else
4098                        I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
4099                I915_WRITE(PF_WIN_POS(pipe), crtc->config.pch_pfit.pos);
4100                I915_WRITE(PF_WIN_SZ(pipe), crtc->config.pch_pfit.size);
4101        }
4102}
4103
4104static void intel_enable_planes(struct drm_crtc *crtc)
4105{
4106        struct drm_device *dev = crtc->dev;
4107        enum pipe pipe = to_intel_crtc(crtc)->pipe;
4108        struct drm_plane *plane;
4109        struct intel_plane *intel_plane;
4110
4111        drm_for_each_legacy_plane(plane, &dev->mode_config.plane_list) {
4112                intel_plane = to_intel_plane(plane);
4113                if (intel_plane->pipe == pipe)
4114                        intel_plane_restore(&intel_plane->base);
4115        }
4116}
4117
4118static void intel_disable_planes(struct drm_crtc *crtc)
4119{
4120        struct drm_device *dev = crtc->dev;
4121        enum pipe pipe = to_intel_crtc(crtc)->pipe;
4122        struct drm_plane *plane;
4123        struct intel_plane *intel_plane;
4124
4125        drm_for_each_legacy_plane(plane, &dev->mode_config.plane_list) {
4126                intel_plane = to_intel_plane(plane);
4127                if (intel_plane->pipe == pipe)
4128                        intel_plane_disable(&intel_plane->base);
4129        }
4130}
4131
4132void hsw_enable_ips(struct intel_crtc *crtc)
4133{
4134        struct drm_device *dev = crtc->base.dev;
4135        struct drm_i915_private *dev_priv = dev->dev_private;
4136
4137        if (!crtc->config.ips_enabled)
4138                return;
4139
4140        /* We can only enable IPS after we enable a plane and wait for a vblank */
4141        intel_wait_for_vblank(dev, crtc->pipe);
4142
4143        assert_plane_enabled(dev_priv, crtc->plane);
4144        if (IS_BROADWELL(dev)) {
4145                mutex_lock(&dev_priv->rps.hw_lock);
4146                WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0xc0000000));
4147                mutex_unlock(&dev_priv->rps.hw_lock);
4148                /* Quoting Art Runyan: "its not safe to expect any particular
4149                 * value in IPS_CTL bit 31 after enabling IPS through the
4150                 * mailbox." Moreover, the mailbox may return a bogus state,
4151                 * so we need to just enable it and continue on.
4152                 */
4153        } else {
4154                I915_WRITE(IPS_CTL, IPS_ENABLE);
4155                /* The bit only becomes 1 in the next vblank, so this wait here
4156                 * is essentially intel_wait_for_vblank. If we don't have this
4157                 * and don't wait for vblanks until the end of crtc_enable, then
4158                 * the HW state readout code will complain that the expected
4159                 * IPS_CTL value is not the one we read. */
4160                if (wait_for(I915_READ_NOTRACE(IPS_CTL) & IPS_ENABLE, 50))
4161                        DRM_ERROR("Timed out waiting for IPS enable\n");
4162        }
4163}
4164
4165void hsw_disable_ips(struct intel_crtc *crtc)
4166{
4167        struct drm_device *dev = crtc->base.dev;
4168        struct drm_i915_private *dev_priv = dev->dev_private;
4169
4170        if (!crtc->config.ips_enabled)
4171                return;
4172
4173        assert_plane_enabled(dev_priv, crtc->plane);
4174        if (IS_BROADWELL(dev)) {
4175                mutex_lock(&dev_priv->rps.hw_lock);
4176                WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0));
4177                mutex_unlock(&dev_priv->rps.hw_lock);
4178                /* wait for pcode to finish disabling IPS, which may take up to 42ms */
4179                if (wait_for((I915_READ(IPS_CTL) & IPS_ENABLE) == 0, 42))
4180                        DRM_ERROR("Timed out waiting for IPS disable\n");
4181        } else {
4182                I915_WRITE(IPS_CTL, 0);
4183                POSTING_READ(IPS_CTL);
4184        }
4185
4186        /* We need to wait for a vblank before we can disable the plane. */
4187        intel_wait_for_vblank(dev, crtc->pipe);
4188}
4189
4190/** Loads the palette/gamma unit for the CRTC with the prepared values */
4191static void intel_crtc_load_lut(struct drm_crtc *crtc)
4192{
4193        struct drm_device *dev = crtc->dev;
4194        struct drm_i915_private *dev_priv = dev->dev_private;
4195        struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4196        enum pipe pipe = intel_crtc->pipe;
4197        int palreg = PALETTE(pipe);
4198        int i;
4199        bool reenable_ips = false;
4200
4201        /* The clocks have to be on to load the palette. */
4202        if (!crtc->enabled || !intel_crtc->active)
4203                return;
4204
4205        if (!HAS_PCH_SPLIT(dev_priv->dev)) {
4206                if (intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_DSI))
4207                        assert_dsi_pll_enabled(dev_priv);
4208                else
4209                        assert_pll_enabled(dev_priv, pipe);
4210        }
4211
4212        /* use legacy palette for Ironlake */
4213        if (!HAS_GMCH_DISPLAY(dev))
4214                palreg = LGC_PALETTE(pipe);
4215
4216        /* Workaround : Do not read or write the pipe palette/gamma data while
4217         * GAMMA_MODE is configured for split gamma and IPS_CTL has IPS enabled.
4218         */
4219        if (IS_HASWELL(dev) && intel_crtc->config.ips_enabled &&
4220            ((I915_READ(GAMMA_MODE(pipe)) & GAMMA_MODE_MODE_MASK) ==
4221             GAMMA_MODE_MODE_SPLIT)) {
4222                hsw_disable_ips(intel_crtc);
4223                reenable_ips = true;
4224        }
4225
4226        for (i = 0; i < 256; i++) {
4227                I915_WRITE(palreg + 4 * i,
4228                           (intel_crtc->lut_r[i] << 16) |
4229                           (intel_crtc->lut_g[i] << 8) |
4230                           intel_crtc->lut_b[i]);
4231        }
4232
4233        if (reenable_ips)
4234                hsw_enable_ips(intel_crtc);
4235}
4236
4237static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable)
4238{
4239        if (!enable && intel_crtc->overlay) {
4240                struct drm_device *dev = intel_crtc->base.dev;
4241                struct drm_i915_private *dev_priv = dev->dev_private;
4242
4243                mutex_lock(&dev->struct_mutex);
4244                dev_priv->mm.interruptible = false;
4245                (void) intel_overlay_switch_off(intel_crtc->overlay);
4246                dev_priv->mm.interruptible = true;
4247                mutex_unlock(&dev->struct_mutex);
4248        }
4249
4250        /* Let userspace switch the overlay on again. In most cases userspace
4251         * has to recompute where to put it anyway.
4252         */
4253}
4254
4255static void intel_crtc_enable_planes(struct drm_crtc *crtc)
4256{
4257        struct drm_device *dev = crtc->dev;
4258        struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4259        int pipe = intel_crtc->pipe;
4260
4261        intel_enable_primary_hw_plane(crtc->primary, crtc);
4262        intel_enable_planes(crtc);
4263        intel_crtc_update_cursor(crtc, true);
4264        intel_crtc_dpms_overlay(intel_crtc, true);
4265
4266        hsw_enable_ips(intel_crtc);
4267
4268        mutex_lock(&dev->struct_mutex);
4269        intel_update_fbc(dev);
4270        mutex_unlock(&dev->struct_mutex);
4271
4272        /*
4273         * FIXME: Once we grow proper nuclear flip support out of this we need
4274         * to compute the mask of flip planes precisely. For the time being
4275         * consider this a flip from a NULL plane.
4276         */
4277        intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_ALL_MASK(pipe));
4278}
4279
4280static void intel_crtc_disable_planes(struct drm_crtc *crtc)
4281{
4282        struct drm_device *dev = crtc->dev;
4283        struct drm_i915_private *dev_priv = dev->dev_private;
4284        struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4285        int pipe = intel_crtc->pipe;
4286        int plane = intel_crtc->plane;
4287
4288        intel_crtc_wait_for_pending_flips(crtc);
4289
4290        if (dev_priv->fbc.plane == plane)
4291                intel_disable_fbc(dev);
4292
4293        hsw_disable_ips(intel_crtc);
4294
4295        intel_crtc_dpms_overlay(intel_crtc, false);
4296        intel_crtc_update_cursor(crtc, false);
4297        intel_disable_planes(crtc);
4298        intel_disable_primary_hw_plane(crtc->primary, crtc);
4299
4300        /*
4301         * FIXME: Once we grow proper nuclear flip support out of this we need
4302         * to compute the mask of flip planes precisely. For the time being
4303         * consider this a flip to a NULL plane.
4304         */
4305        intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_ALL_MASK(pipe));
4306}
4307
4308static void ironlake_crtc_enable(struct drm_crtc *crtc)
4309{
4310        struct drm_device *dev = crtc->dev;
4311        struct drm_i915_private *dev_priv = dev->dev_private;
4312        struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4313        struct intel_encoder *encoder;
4314        int pipe = intel_crtc->pipe;
4315
4316        WARN_ON(!crtc->enabled);
4317
4318        if (intel_crtc->active)
4319                return;
4320
4321        if (intel_crtc->config.has_pch_encoder)
4322                intel_prepare_shared_dpll(intel_crtc);
4323
4324        if (intel_crtc->config.has_dp_encoder)
4325                intel_dp_set_m_n(intel_crtc);
4326
4327        intel_set_pipe_timings(intel_crtc);
4328
4329        if (intel_crtc->config.has_pch_encoder) {
4330                intel_cpu_transcoder_set_m_n(intel_crtc,
4331                                     &intel_crtc->config.fdi_m_n, NULL);
4332        }
4333
4334        ironlake_set_pipeconf(crtc);
4335
4336        intel_crtc->active = true;
4337
4338        intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4339        intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, true);
4340
4341        for_each_encoder_on_crtc(dev, crtc, encoder)
4342                if (encoder->pre_enable)
4343                        encoder->pre_enable(encoder);
4344
4345        if (intel_crtc->config.has_pch_encoder) {
4346                /* Note: FDI PLL enabling _must_ be done before we enable the
4347                 * cpu pipes, hence this is separate from all the other fdi/pch
4348                 * enabling. */
4349                ironlake_fdi_pll_enable(intel_crtc);
4350        } else {
4351                assert_fdi_tx_disabled(dev_priv, pipe);
4352                assert_fdi_rx_disabled(dev_priv, pipe);
4353        }
4354
4355        ironlake_pfit_enable(intel_crtc);
4356
4357        /*
4358         * On ILK+ LUT must be loaded before the pipe is running but with
4359         * clocks enabled
4360         */
4361        intel_crtc_load_lut(crtc);
4362
4363        intel_update_watermarks(crtc);
4364        intel_enable_pipe(intel_crtc);
4365
4366        if (intel_crtc->config.has_pch_encoder)
4367                ironlake_pch_enable(crtc);
4368
4369        for_each_encoder_on_crtc(dev, crtc, encoder)
4370                encoder->enable(encoder);
4371
4372        if (HAS_PCH_CPT(dev))
4373                cpt_verify_modeset(dev, intel_crtc->pipe);
4374
4375        assert_vblank_disabled(crtc);
4376        drm_crtc_vblank_on(crtc);
4377
4378        intel_crtc_enable_planes(crtc);
4379}
4380
4381/* IPS only exists on ULT machines and is tied to pipe A. */
4382static bool hsw_crtc_supports_ips(struct intel_crtc *crtc)
4383{
4384        return HAS_IPS(crtc->base.dev) && crtc->pipe == PIPE_A;
4385}
4386
4387/*
4388 * This implements the workaround described in the "notes" section of the mode
4389 * set sequence documentation. When going from no pipes or single pipe to
4390 * multiple pipes, and planes are enabled after the pipe, we need to wait at
4391 * least 2 vblanks on the first pipe before enabling planes on the second pipe.
4392 */
4393static void haswell_mode_set_planes_workaround(struct intel_crtc *crtc)
4394{
4395        struct drm_device *dev = crtc->base.dev;
4396        struct intel_crtc *crtc_it, *other_active_crtc = NULL;
4397
4398        /* We want to get the other_active_crtc only if there's only 1 other
4399         * active crtc. */
4400        for_each_intel_crtc(dev, crtc_it) {
4401                if (!crtc_it->active || crtc_it == crtc)
4402                        continue;
4403
4404                if (other_active_crtc)
4405                        return;
4406
4407                other_active_crtc = crtc_it;
4408        }
4409        if (!other_active_crtc)
4410                return;
4411
4412        intel_wait_for_vblank(dev, other_active_crtc->pipe);
4413        intel_wait_for_vblank(dev, other_active_crtc->pipe);
4414}
4415
4416static void haswell_crtc_enable(struct drm_crtc *crtc)
4417{
4418        struct drm_device *dev = crtc->dev;
4419        struct drm_i915_private *dev_priv = dev->dev_private;
4420        struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4421        struct intel_encoder *encoder;
4422        int pipe = intel_crtc->pipe;
4423
4424        WARN_ON(!crtc->enabled);
4425
4426        if (intel_crtc->active)
4427                return;
4428
4429        if (intel_crtc_to_shared_dpll(intel_crtc))
4430                intel_enable_shared_dpll(intel_crtc);
4431
4432        if (intel_crtc->config.has_dp_encoder)
4433                intel_dp_set_m_n(intel_crtc);
4434
4435        intel_set_pipe_timings(intel_crtc);
4436
4437        if (intel_crtc->config.cpu_transcoder != TRANSCODER_EDP) {
4438                I915_WRITE(PIPE_MULT(intel_crtc->config.cpu_transcoder),
4439                           intel_crtc->config.pixel_multiplier - 1);
4440        }
4441
4442        if (intel_crtc->config.has_pch_encoder) {
4443                intel_cpu_transcoder_set_m_n(intel_crtc,
4444                                     &intel_crtc->config.fdi_m_n, NULL);
4445        }
4446
4447        haswell_set_pipeconf(crtc);
4448
4449        intel_set_pipe_csc(crtc);
4450
4451        intel_crtc->active = true;
4452
4453        intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4454        for_each_encoder_on_crtc(dev, crtc, encoder)
4455                if (encoder->pre_enable)
4456                        encoder->pre_enable(encoder);
4457
4458        if (intel_crtc->config.has_pch_encoder) {
4459                intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
4460                                                      true);
4461                dev_priv->display.fdi_link_train(crtc);
4462        }
4463
4464        intel_ddi_enable_pipe_clock(intel_crtc);
4465
4466        if (IS_SKYLAKE(dev))
4467                skylake_pfit_enable(intel_crtc);
4468        else
4469                ironlake_pfit_enable(intel_crtc);
4470
4471        /*
4472         * On ILK+ LUT must be loaded before the pipe is running but with
4473         * clocks enabled
4474         */
4475        intel_crtc_load_lut(crtc);
4476
4477        intel_ddi_set_pipe_settings(crtc);
4478        intel_ddi_enable_transcoder_func(crtc);
4479
4480        intel_update_watermarks(crtc);
4481        intel_enable_pipe(intel_crtc);
4482
4483        if (intel_crtc->config.has_pch_encoder)
4484                lpt_pch_enable(crtc);
4485
4486        if (intel_crtc->config.dp_encoder_is_mst)
4487                intel_ddi_set_vc_payload_alloc(crtc, true);
4488
4489        for_each_encoder_on_crtc(dev, crtc, encoder) {
4490                encoder->enable(encoder);
4491                intel_opregion_notify_encoder(encoder, true);
4492        }
4493
4494        assert_vblank_disabled(crtc);
4495        drm_crtc_vblank_on(crtc);
4496
4497        /* If we change the relative order between pipe/planes enabling, we need
4498         * to change the workaround. */
4499        haswell_mode_set_planes_workaround(intel_crtc);
4500        intel_crtc_enable_planes(crtc);
4501}
4502
4503static void skylake_pfit_disable(struct intel_crtc *crtc)
4504{
4505        struct drm_device *dev = crtc->base.dev;
4506        struct drm_i915_private *dev_priv = dev->dev_private;
4507        int pipe = crtc->pipe;
4508
4509        /* To avoid upsetting the power well on haswell only disable the pfit if
4510         * it's in use. The hw state code will make sure we get this right. */
4511        if (crtc->config.pch_pfit.enabled) {
4512                I915_WRITE(PS_CTL(pipe), 0);
4513                I915_WRITE(PS_WIN_POS(pipe), 0);
4514                I915_WRITE(PS_WIN_SZ(pipe), 0);
4515        }
4516}
4517
4518static void ironlake_pfit_disable(struct intel_crtc *crtc)
4519{
4520        struct drm_device *dev = crtc->base.dev;
4521        struct drm_i915_private *dev_priv = dev->dev_private;
4522        int pipe = crtc->pipe;
4523
4524        /* To avoid upsetting the power well on haswell only disable the pfit if
4525         * it's in use. The hw state code will make sure we get this right. */
4526        if (crtc->config.pch_pfit.enabled) {
4527                I915_WRITE(PF_CTL(pipe), 0);
4528                I915_WRITE(PF_WIN_POS(pipe), 0);
4529                I915_WRITE(PF_WIN_SZ(pipe), 0);
4530        }
4531}
4532
4533static void ironlake_crtc_disable(struct drm_crtc *crtc)
4534{
4535        struct drm_device *dev = crtc->dev;
4536        struct drm_i915_private *dev_priv = dev->dev_private;
4537        struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4538        struct intel_encoder *encoder;
4539        int pipe = intel_crtc->pipe;
4540        u32 reg, temp;
4541
4542        if (!intel_crtc->active)
4543                return;
4544
4545        intel_crtc_disable_planes(crtc);
4546
4547        drm_crtc_vblank_off(crtc);
4548        assert_vblank_disabled(crtc);
4549
4550        for_each_encoder_on_crtc(dev, crtc, encoder)
4551                encoder->disable(encoder);
4552
4553        if (intel_crtc->config.has_pch_encoder)
4554                intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, false);
4555
4556        intel_disable_pipe(intel_crtc);
4557
4558        ironlake_pfit_disable(intel_crtc);
4559
4560        for_each_encoder_on_crtc(dev, crtc, encoder)
4561                if (encoder->post_disable)
4562                        encoder->post_disable(encoder);
4563
4564        if (intel_crtc->config.has_pch_encoder) {
4565                ironlake_fdi_disable(crtc);
4566
4567                ironlake_disable_pch_transcoder(dev_priv, pipe);
4568
4569                if (HAS_PCH_CPT(dev)) {
4570                        /* disable TRANS_DP_CTL */
4571                        reg = TRANS_DP_CTL(pipe);
4572                        temp = I915_READ(reg);
4573                        temp &= ~(TRANS_DP_OUTPUT_ENABLE |
4574                                  TRANS_DP_PORT_SEL_MASK);
4575                        temp |= TRANS_DP_PORT_SEL_NONE;
4576                        I915_WRITE(reg, temp);
4577
4578                        /* disable DPLL_SEL */
4579                        temp = I915_READ(PCH_DPLL_SEL);
4580                        temp &= ~(TRANS_DPLL_ENABLE(pipe) | TRANS_DPLLB_SEL(pipe));
4581                        I915_WRITE(PCH_DPLL_SEL, temp);
4582                }
4583
4584                /* disable PCH DPLL */
4585                intel_disable_shared_dpll(intel_crtc);
4586
4587                ironlake_fdi_pll_disable(intel_crtc);
4588        }
4589
4590        intel_crtc->active = false;
4591        intel_update_watermarks(crtc);
4592
4593        mutex_lock(&dev->struct_mutex);
4594        intel_update_fbc(dev);
4595        mutex_unlock(&dev->struct_mutex);
4596}
4597
4598static void haswell_crtc_disable(struct drm_crtc *crtc)
4599{
4600        struct drm_device *dev = crtc->dev;
4601        struct drm_i915_private *dev_priv = dev->dev_private;
4602        struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4603        struct intel_encoder *encoder;
4604        enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
4605
4606        if (!intel_crtc->active)
4607                return;
4608
4609        intel_crtc_disable_planes(crtc);
4610
4611        drm_crtc_vblank_off(crtc);
4612        assert_vblank_disabled(crtc);
4613
4614        for_each_encoder_on_crtc(dev, crtc, encoder) {
4615                intel_opregion_notify_encoder(encoder, false);
4616                encoder->disable(encoder);
4617        }
4618
4619        if (intel_crtc->config.has_pch_encoder)
4620                intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
4621                                                      false);
4622        intel_disable_pipe(intel_crtc);
4623
4624        if (intel_crtc->config.dp_encoder_is_mst)
4625                intel_ddi_set_vc_payload_alloc(crtc, false);
4626
4627        intel_ddi_disable_transcoder_func(dev_priv, cpu_transcoder);
4628
4629        if (IS_SKYLAKE(dev))
4630                skylake_pfit_disable(intel_crtc);
4631        else
4632                ironlake_pfit_disable(intel_crtc);
4633
4634        intel_ddi_disable_pipe_clock(intel_crtc);
4635
4636        if (intel_crtc->config.has_pch_encoder) {
4637                lpt_disable_pch_transcoder(dev_priv);
4638                intel_ddi_fdi_disable(crtc);
4639        }
4640
4641        for_each_encoder_on_crtc(dev, crtc, encoder)
4642                if (encoder->post_disable)
4643                        encoder->post_disable(encoder);
4644
4645        intel_crtc->active = false;
4646        intel_update_watermarks(crtc);
4647
4648        mutex_lock(&dev->struct_mutex);
4649        intel_update_fbc(dev);
4650        mutex_unlock(&dev->struct_mutex);
4651
4652        if (intel_crtc_to_shared_dpll(intel_crtc))
4653                intel_disable_shared_dpll(intel_crtc);
4654}
4655
4656static void ironlake_crtc_off(struct drm_crtc *crtc)
4657{
4658        struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4659        intel_put_shared_dpll(intel_crtc);
4660}
4661
4662
4663static void i9xx_pfit_enable(struct intel_crtc *crtc)
4664{
4665        struct drm_device *dev = crtc->base.dev;
4666        struct drm_i915_private *dev_priv = dev->dev_private;
4667        struct intel_crtc_config *pipe_config = &crtc->config;
4668
4669        if (!crtc->config.gmch_pfit.control)
4670                return;
4671
4672        /*
4673         * The panel fitter should only be adjusted whilst the pipe is disabled,
4674         * according to register description and PRM.
4675         */
4676        WARN_ON(I915_READ(PFIT_CONTROL) & PFIT_ENABLE);
4677        assert_pipe_disabled(dev_priv, crtc->pipe);
4678
4679        I915_WRITE(PFIT_PGM_RATIOS, pipe_config->gmch_pfit.pgm_ratios);
4680        I915_WRITE(PFIT_CONTROL, pipe_config->gmch_pfit.control);
4681
4682        /* Border color in case we don't scale up to the full screen. Black by
4683         * default, change to something else for debugging. */
4684        I915_WRITE(BCLRPAT(crtc->pipe), 0);
4685}
4686
4687static enum intel_display_power_domain port_to_power_domain(enum port port)
4688{
4689        switch (port) {
4690        case PORT_A:
4691                return POWER_DOMAIN_PORT_DDI_A_4_LANES;
4692        case PORT_B:
4693                return POWER_DOMAIN_PORT_DDI_B_4_LANES;
4694        case PORT_C:
4695                return POWER_DOMAIN_PORT_DDI_C_4_LANES;
4696        case PORT_D:
4697                return POWER_DOMAIN_PORT_DDI_D_4_LANES;
4698        default:
4699                WARN_ON_ONCE(1);
4700                return POWER_DOMAIN_PORT_OTHER;
4701        }
4702}
4703
4704#define for_each_power_domain(domain, mask)                             \
4705        for ((domain) = 0; (domain) < POWER_DOMAIN_NUM; (domain)++)     \
4706                if ((1 << (domain)) & (mask))
4707
4708enum intel_display_power_domain
4709intel_display_port_power_domain(struct intel_encoder *intel_encoder)
4710{
4711        struct drm_device *dev = intel_encoder->base.dev;
4712        struct intel_digital_port *intel_dig_port;
4713
4714        switch (intel_encoder->type) {
4715        case INTEL_OUTPUT_UNKNOWN:
4716                /* Only DDI platforms should ever use this output type */
4717                WARN_ON_ONCE(!HAS_DDI(dev));
4718        case INTEL_OUTPUT_DISPLAYPORT:
4719        case INTEL_OUTPUT_HDMI:
4720        case INTEL_OUTPUT_EDP:
4721                intel_dig_port = enc_to_dig_port(&intel_encoder->base);
4722                return port_to_power_domain(intel_dig_port->port);
4723        case INTEL_OUTPUT_DP_MST:
4724                intel_dig_port = enc_to_mst(&intel_encoder->base)->primary;
4725                return port_to_power_domain(intel_dig_port->port);
4726        case INTEL_OUTPUT_ANALOG:
4727                return POWER_DOMAIN_PORT_CRT;
4728        case INTEL_OUTPUT_DSI:
4729                return POWER_DOMAIN_PORT_DSI;
4730        default:
4731                return POWER_DOMAIN_PORT_OTHER;
4732        }
4733}
4734
4735static unsigned long get_crtc_power_domains(struct drm_crtc *crtc)
4736{
4737        struct drm_device *dev = crtc->dev;
4738        struct intel_encoder *intel_encoder;
4739        struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4740        enum pipe pipe = intel_crtc->pipe;
4741        unsigned long mask;
4742        enum transcoder transcoder;
4743
4744        transcoder = intel_pipe_to_cpu_transcoder(dev->dev_private, pipe);
4745
4746        mask = BIT(POWER_DOMAIN_PIPE(pipe));
4747        mask |= BIT(POWER_DOMAIN_TRANSCODER(transcoder));
4748        if (intel_crtc->config.pch_pfit.enabled ||
4749            intel_crtc->config.pch_pfit.force_thru)
4750                mask |= BIT(POWER_DOMAIN_PIPE_PANEL_FITTER(pipe));
4751
4752        for_each_encoder_on_crtc(dev, crtc, intel_encoder)
4753                mask |= BIT(intel_display_port_power_domain(intel_encoder));
4754
4755        return mask;
4756}
4757
4758static void modeset_update_crtc_power_domains(struct drm_device *dev)
4759{
4760        struct drm_i915_private *dev_priv = dev->dev_private;
4761        unsigned long pipe_domains[I915_MAX_PIPES] = { 0, };
4762        struct intel_crtc *crtc;
4763
4764        /*
4765         * First get all needed power domains, then put all unneeded, to avoid
4766         * any unnecessary toggling of the power wells.
4767         */
4768        for_each_intel_crtc(dev, crtc) {
4769                enum intel_display_power_domain domain;
4770
4771                if (!crtc->base.enabled)
4772                        continue;
4773
4774                pipe_domains[crtc->pipe] = get_crtc_power_domains(&crtc->base);
4775
4776                for_each_power_domain(domain, pipe_domains[crtc->pipe])
4777                        intel_display_power_get(dev_priv, domain);
4778        }
4779
4780        if (dev_priv->display.modeset_global_resources)
4781                dev_priv->display.modeset_global_resources(dev);
4782
4783        for_each_intel_crtc(dev, crtc) {
4784                enum intel_display_power_domain domain;
4785
4786                for_each_power_domain(domain, crtc->enabled_power_domains)
4787                        intel_display_power_put(dev_priv, domain);
4788
4789                crtc->enabled_power_domains = pipe_domains[crtc->pipe];
4790        }
4791
4792        intel_display_set_init_power(dev_priv, false);
4793}
4794
4795/* returns HPLL frequency in kHz */
4796static int valleyview_get_vco(struct drm_i915_private *dev_priv)
4797{
4798        int hpll_freq, vco_freq[] = { 800, 1600, 2000, 2400 };
4799
4800        /* Obtain SKU information */
4801        mutex_lock(&dev_priv->dpio_lock);
4802        hpll_freq = vlv_cck_read(dev_priv, CCK_FUSE_REG) &
4803                CCK_FUSE_HPLL_FREQ_MASK;
4804        mutex_unlock(&dev_priv->dpio_lock);
4805
4806        return vco_freq[hpll_freq] * 1000;
4807}
4808
4809static void vlv_update_cdclk(struct drm_device *dev)
4810{
4811        struct drm_i915_private *dev_priv = dev->dev_private;
4812
4813        dev_priv->vlv_cdclk_freq = dev_priv->display.get_display_clock_speed(dev);
4814        DRM_DEBUG_DRIVER("Current CD clock rate: %d kHz\n",
4815                         dev_priv->vlv_cdclk_freq);
4816
4817        /*
4818         * Program the gmbus_freq based on the cdclk frequency.
4819         * BSpec erroneously claims we should aim for 4MHz, but
4820         * in fact 1MHz is the correct frequency.
4821         */
4822        I915_WRITE(GMBUSFREQ_VLV, DIV_ROUND_UP(dev_priv->vlv_cdclk_freq, 1000));
4823}
4824
4825/* Adjust CDclk dividers to allow high res or save power if possible */
4826static void valleyview_set_cdclk(struct drm_device *dev, int cdclk)
4827{
4828        struct drm_i915_private *dev_priv = dev->dev_private;
4829        u32 val, cmd;
4830
4831        WARN_ON(dev_priv->display.get_display_clock_speed(dev) != dev_priv->vlv_cdclk_freq);
4832
4833        if (cdclk >= 320000) /* jump to highest voltage for 400MHz too */
4834                cmd = 2;
4835        else if (cdclk == 266667)
4836                cmd = 1;
4837        else
4838                cmd = 0;
4839
4840        mutex_lock(&dev_priv->rps.hw_lock);
4841        val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
4842        val &= ~DSPFREQGUAR_MASK;
4843        val |= (cmd << DSPFREQGUAR_SHIFT);
4844        vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
4845        if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) &
4846                      DSPFREQSTAT_MASK) == (cmd << DSPFREQSTAT_SHIFT),
4847                     50)) {
4848                DRM_ERROR("timed out waiting for CDclk change\n");
4849        }
4850        mutex_unlock(&dev_priv->rps.hw_lock);
4851
4852        if (cdclk == 400000) {
4853                u32 divider;
4854
4855                divider = DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, cdclk) - 1;
4856
4857                mutex_lock(&dev_priv->dpio_lock);
4858                /* adjust cdclk divider */
4859                val = vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL);
4860                val &= ~DISPLAY_FREQUENCY_VALUES;
4861                val |= divider;
4862                vlv_cck_write(dev_priv, CCK_DISPLAY_CLOCK_CONTROL, val);
4863
4864                if (wait_for((vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL) &
4865                              DISPLAY_FREQUENCY_STATUS) == (divider << DISPLAY_FREQUENCY_STATUS_SHIFT),
4866                             50))
4867                        DRM_ERROR("timed out waiting for CDclk change\n");
4868                mutex_unlock(&dev_priv->dpio_lock);
4869        }
4870
4871        mutex_lock(&dev_priv->dpio_lock);
4872        /* adjust self-refresh exit latency value */
4873        val = vlv_bunit_read(dev_priv, BUNIT_REG_BISOC);
4874        val &= ~0x7f;
4875
4876        /*
4877         * For high bandwidth configs, we set a higher latency in the bunit
4878         * so that the core display fetch happens in time to avoid underruns.
4879         */
4880        if (cdclk == 400000)
4881                val |= 4500 / 250; /* 4.5 usec */
4882        else
4883                val |= 3000 / 250; /* 3.0 usec */
4884        vlv_bunit_write(dev_priv, BUNIT_REG_BISOC, val);
4885        mutex_unlock(&dev_priv->dpio_lock);
4886
4887        vlv_update_cdclk(dev);
4888}
4889
4890static void cherryview_set_cdclk(struct drm_device *dev, int cdclk)
4891{
4892        struct drm_i915_private *dev_priv = dev->dev_private;
4893        u32 val, cmd;
4894
4895        WARN_ON(dev_priv->display.get_display_clock_speed(dev) != dev_priv->vlv_cdclk_freq);
4896
4897        switch (cdclk) {
4898        case 400000:
4899                cmd = 3;
4900                break;
4901        case 333333:
4902        case 320000:
4903                cmd = 2;
4904                break;
4905        case 266667:
4906                cmd = 1;
4907                break;
4908        case 200000:
4909                cmd = 0;
4910                break;
4911        default:
4912                WARN_ON(1);
4913                return;
4914        }
4915
4916        mutex_lock(&dev_priv->rps.hw_lock);
4917        val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
4918        val &= ~DSPFREQGUAR_MASK_CHV;
4919        val |= (cmd << DSPFREQGUAR_SHIFT_CHV);
4920        vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
4921        if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) &
4922                      DSPFREQSTAT_MASK_CHV) == (cmd << DSPFREQSTAT_SHIFT_CHV),
4923                     50)) {
4924                DRM_ERROR("timed out waiting for CDclk change\n");
4925        }
4926        mutex_unlock(&dev_priv->rps.hw_lock);
4927
4928        vlv_update_cdclk(dev);
4929}
4930
4931static int valleyview_calc_cdclk(struct drm_i915_private *dev_priv,
4932                                 int max_pixclk)
4933{
4934        int freq_320 = (dev_priv->hpll_freq <<  1) % 320000 != 0 ? 333333 : 320000;
4935
4936        /* FIXME: Punit isn't quite ready yet */
4937        if (IS_CHERRYVIEW(dev_priv->dev))
4938                return 400000;
4939
4940        /*
4941         * Really only a few cases to deal with, as only 4 CDclks are supported:
4942         *   200MHz
4943         *   267MHz
4944         *   320/333MHz (depends on HPLL freq)
4945         *   400MHz
4946         * So we check to see whether we're above 90% of the lower bin and
4947         * adjust if needed.
4948         *
4949         * We seem to get an unstable or solid color picture at 200MHz.
4950         * Not sure what's wrong. For now use 200MHz only when all pipes
4951         * are off.
4952         */
4953        if (max_pixclk > freq_320*9/10)
4954                return 400000;
4955        else if (max_pixclk > 266667*9/10)
4956                return freq_320;
4957        else if (max_pixclk > 0)
4958                return 266667;
4959        else
4960                return 200000;
4961}
4962
4963/* compute the max pixel clock for new configuration */
4964static int intel_mode_max_pixclk(struct drm_i915_private *dev_priv)
4965{
4966        struct drm_device *dev = dev_priv->dev;
4967        struct intel_crtc *intel_crtc;
4968        int max_pixclk = 0;
4969
4970        for_each_intel_crtc(dev, intel_crtc) {
4971                if (intel_crtc->new_enabled)
4972                        max_pixclk = max(max_pixclk,
4973                                         intel_crtc->new_config->adjusted_mode.crtc_clock);
4974        }
4975
4976        return max_pixclk;
4977}
4978
4979static void valleyview_modeset_global_pipes(struct drm_device *dev,
4980                                            unsigned *prepare_pipes)
4981{
4982        struct drm_i915_private *dev_priv = dev->dev_private;
4983        struct intel_crtc *intel_crtc;
4984        int max_pixclk = intel_mode_max_pixclk(dev_priv);
4985
4986        if (valleyview_calc_cdclk(dev_priv, max_pixclk) ==
4987            dev_priv->vlv_cdclk_freq)
4988                return;
4989
4990        /* disable/enable all currently active pipes while we change cdclk */
4991        for_each_intel_crtc(dev, intel_crtc)
4992                if (intel_crtc->base.enabled)
4993                        *prepare_pipes |= (1 << intel_crtc->pipe);
4994}
4995
4996static void valleyview_modeset_global_resources(struct drm_device *dev)
4997{
4998        struct drm_i915_private *dev_priv = dev->dev_private;
4999        int max_pixclk = intel_mode_max_pixclk(dev_priv);
5000        int req_cdclk = valleyview_calc_cdclk(dev_priv, max_pixclk);
5001
5002        if (req_cdclk != dev_priv->vlv_cdclk_freq) {
5003                /*
5004                 * FIXME: We can end up here with all power domains off, yet
5005                 * with a CDCLK frequency other than the minimum. To account
5006                 * for this take the PIPE-A power domain, which covers the HW
5007                 * blocks needed for the following programming. This can be
5008                 * removed once it's guaranteed that we get here either with
5009                 * the minimum CDCLK set, or the required power domains
5010                 * enabled.
5011                 */
5012                intel_display_power_get(dev_priv, POWER_DOMAIN_PIPE_A);
5013
5014                if (IS_CHERRYVIEW(dev))
5015                        cherryview_set_cdclk(dev, req_cdclk);
5016                else
5017                        valleyview_set_cdclk(dev, req_cdclk);
5018
5019                intel_display_power_put(dev_priv, POWER_DOMAIN_PIPE_A);
5020        }
5021}
5022
5023static void valleyview_crtc_enable(struct drm_crtc *crtc)
5024{
5025        struct drm_device *dev = crtc->dev;
5026        struct drm_i915_private *dev_priv = to_i915(dev);
5027        struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5028        struct intel_encoder *encoder;
5029        int pipe = intel_crtc->pipe;
5030        bool is_dsi;
5031
5032        WARN_ON(!crtc->enabled);
5033
5034        if (intel_crtc->active)
5035                return;
5036
5037        is_dsi = intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_DSI);
5038
5039        if (!is_dsi) {
5040                if (IS_CHERRYVIEW(dev))
5041                        chv_prepare_pll(intel_crtc, &intel_crtc->config);
5042                else
5043                        vlv_prepare_pll(intel_crtc, &intel_crtc->config);
5044        }
5045
5046        if (intel_crtc->config.has_dp_encoder)
5047                intel_dp_set_m_n(intel_crtc);
5048
5049        intel_set_pipe_timings(intel_crtc);
5050
5051        if (IS_CHERRYVIEW(dev) && pipe == PIPE_B) {
5052                struct drm_i915_private *dev_priv = dev->dev_private;
5053
5054                I915_WRITE(CHV_BLEND(pipe), CHV_BLEND_LEGACY);
5055                I915_WRITE(CHV_CANVAS(pipe), 0);
5056        }
5057
5058        i9xx_set_pipeconf(intel_crtc);
5059
5060        intel_crtc->active = true;
5061
5062        intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
5063
5064        for_each_encoder_on_crtc(dev, crtc, encoder)
5065                if (encoder->pre_pll_enable)
5066                        encoder->pre_pll_enable(encoder);
5067
5068        if (!is_dsi) {
5069                if (IS_CHERRYVIEW(dev))
5070                        chv_enable_pll(intel_crtc, &intel_crtc->config);
5071                else
5072                        vlv_enable_pll(intel_crtc, &intel_crtc->config);
5073        }
5074
5075        for_each_encoder_on_crtc(dev, crtc, encoder)
5076                if (encoder->pre_enable)
5077                        encoder->pre_enable(encoder);
5078
5079        i9xx_pfit_enable(intel_crtc);
5080
5081        intel_crtc_load_lut(crtc);
5082
5083        intel_update_watermarks(crtc);
5084        intel_enable_pipe(intel_crtc);
5085
5086        for_each_encoder_on_crtc(dev, crtc, encoder)
5087                encoder->enable(encoder);
5088
5089        assert_vblank_disabled(crtc);
5090        drm_crtc_vblank_on(crtc);
5091
5092        intel_crtc_enable_planes(crtc);
5093
5094        /* Underruns don't raise interrupts, so check manually. */
5095        i9xx_check_fifo_underruns(dev_priv);
5096}
5097
5098static void i9xx_set_pll_dividers(struct intel_crtc *crtc)
5099{
5100        struct drm_device *dev = crtc->base.dev;
5101        struct drm_i915_private *dev_priv = dev->dev_private;
5102
5103        I915_WRITE(FP0(crtc->pipe), crtc->config.dpll_hw_state.fp0);
5104        I915_WRITE(FP1(crtc->pipe), crtc->config.dpll_hw_state.fp1);
5105}
5106
5107static void i9xx_crtc_enable(struct drm_crtc *crtc)
5108{
5109        struct drm_device *dev = crtc->dev;
5110        struct drm_i915_private *dev_priv = to_i915(dev);
5111        struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5112        struct intel_encoder *encoder;
5113        int pipe = intel_crtc->pipe;
5114
5115        WARN_ON(!crtc->enabled);
5116
5117        if (intel_crtc->active)
5118                return;
5119
5120        i9xx_set_pll_dividers(intel_crtc);
5121
5122        if (intel_crtc->config.has_dp_encoder)
5123                intel_dp_set_m_n(intel_crtc);
5124
5125        intel_set_pipe_timings(intel_crtc);
5126
5127        i9xx_set_pipeconf(intel_crtc);
5128
5129        intel_crtc->active = true;
5130
5131        if (!IS_GEN2(dev))
5132                intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
5133
5134        for_each_encoder_on_crtc(dev, crtc, encoder)
5135                if (encoder->pre_enable)
5136                        encoder->pre_enable(encoder);
5137
5138        i9xx_enable_pll(intel_crtc);
5139
5140        i9xx_pfit_enable(intel_crtc);
5141
5142        intel_crtc_load_lut(crtc);
5143
5144        intel_update_watermarks(crtc);
5145        intel_enable_pipe(intel_crtc);
5146
5147        for_each_encoder_on_crtc(dev, crtc, encoder)
5148                encoder->enable(encoder);
5149
5150        assert_vblank_disabled(crtc);
5151        drm_crtc_vblank_on(crtc);
5152
5153        intel_crtc_enable_planes(crtc);
5154
5155        /*
5156         * Gen2 reports pipe underruns whenever all planes are disabled.
5157         * So don't enable underrun reporting before at least some planes
5158         * are enabled.
5159         * FIXME: Need to fix the logic to work when we turn off all planes
5160         * but leave the pipe running.
5161         */
5162        if (IS_GEN2(dev))
5163                intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
5164
5165        /* Underruns don't raise interrupts, so check manually. */
5166        i9xx_check_fifo_underruns(dev_priv);
5167}
5168
5169static void i9xx_pfit_disable(struct intel_crtc *crtc)
5170{
5171        struct drm_device *dev = crtc->base.dev;
5172        struct drm_i915_private *dev_priv = dev->dev_private;
5173
5174        if (!crtc->config.gmch_pfit.control)
5175                return;
5176
5177        assert_pipe_disabled(dev_priv, crtc->pipe);
5178
5179        DRM_DEBUG_DRIVER("disabling pfit, current: 0x%08x\n",
5180                         I915_READ(PFIT_CONTROL));
5181        I915_WRITE(PFIT_CONTROL, 0);
5182}
5183
5184static void i9xx_crtc_disable(struct drm_crtc *crtc)
5185{
5186        struct drm_device *dev = crtc->dev;
5187        struct drm_i915_private *dev_priv = dev->dev_private;
5188        struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5189        struct intel_encoder *encoder;
5190        int pipe = intel_crtc->pipe;
5191
5192        if (!intel_crtc->active)
5193                return;
5194
5195        /*
5196         * Gen2 reports pipe underruns whenever all planes are disabled.
5197         * So diasble underrun reporting before all the planes get disabled.
5198         * FIXME: Need to fix the logic to work when we turn off all planes
5199         * but leave the pipe running.
5200         */
5201        if (IS_GEN2(dev))
5202                intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
5203
5204        /*
5205         * Vblank time updates from the shadow to live plane control register
5206         * are blocked if the memory self-refresh mode is active at that
5207         * moment. So to make sure the plane gets truly disabled, disable
5208         * first the self-refresh mode. The self-refresh enable bit in turn
5209         * will be checked/applied by the HW only at the next frame start
5210         * event which is after the vblank start event, so we need to have a
5211         * wait-for-vblank between disabling the plane and the pipe.
5212         */
5213        intel_set_memory_cxsr(dev_priv, false);
5214        intel_crtc_disable_planes(crtc);
5215
5216        /*
5217         * On gen2 planes are double buffered but the pipe isn't, so we must
5218         * wait for planes to fully turn off before disabling the pipe.
5219         * We also need to wait on all gmch platforms because of the
5220         * self-refresh mode constraint explained above.
5221         */
5222        intel_wait_for_vblank(dev, pipe);
5223
5224        drm_crtc_vblank_off(crtc);
5225        assert_vblank_disabled(crtc);
5226
5227        for_each_encoder_on_crtc(dev, crtc, encoder)
5228                encoder->disable(encoder);
5229
5230        intel_disable_pipe(intel_crtc);
5231
5232        i9xx_pfit_disable(intel_crtc);
5233
5234        for_each_encoder_on_crtc(dev, crtc, encoder)
5235                if (encoder->post_disable)
5236                        encoder->post_disable(encoder);
5237
5238        if (!intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_DSI)) {
5239                if (IS_CHERRYVIEW(dev))
5240                        chv_disable_pll(dev_priv, pipe);
5241                else if (IS_VALLEYVIEW(dev))
5242                        vlv_disable_pll(dev_priv, pipe);
5243                else
5244                        i9xx_disable_pll(intel_crtc);
5245        }
5246
5247        if (!IS_GEN2(dev))
5248                intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
5249
5250        intel_crtc->active = false;
5251        intel_update_watermarks(crtc);
5252
5253        mutex_lock(&dev->struct_mutex);
5254        intel_update_fbc(dev);
5255        mutex_unlock(&dev->struct_mutex);
5256}
5257
5258static void i9xx_crtc_off(struct drm_crtc *crtc)
5259{
5260}
5261
5262/* Master function to enable/disable CRTC and corresponding power wells */
5263void intel_crtc_control(struct drm_crtc *crtc, bool enable)
5264{
5265        struct drm_device *dev = crtc->dev;
5266        struct drm_i915_private *dev_priv = dev->dev_private;
5267        struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5268        enum intel_display_power_domain domain;
5269        unsigned long domains;
5270
5271        if (enable) {
5272                if (!intel_crtc->active) {
5273                        domains = get_crtc_power_domains(crtc);
5274                        for_each_power_domain(domain, domains)
5275                                intel_display_power_get(dev_priv, domain);
5276                        intel_crtc->enabled_power_domains = domains;
5277
5278                        dev_priv->display.crtc_enable(crtc);
5279                }
5280        } else {
5281                if (intel_crtc->active) {
5282                        dev_priv->display.crtc_disable(crtc);
5283
5284                        domains = intel_crtc->enabled_power_domains;
5285                        for_each_power_domain(domain, domains)
5286                                intel_display_power_put(dev_priv, domain);
5287                        intel_crtc->enabled_power_domains = 0;
5288                }
5289        }
5290}
5291
5292/**
5293 * Sets the power management mode of the pipe and plane.
5294 */
5295void intel_crtc_update_dpms(struct drm_crtc *crtc)
5296{
5297        struct drm_device *dev = crtc->dev;
5298        struct intel_encoder *intel_encoder;
5299        bool enable = false;
5300
5301        for_each_encoder_on_crtc(dev, crtc, intel_encoder)
5302                enable |= intel_encoder->connectors_active;
5303
5304        intel_crtc_control(crtc, enable);
5305}
5306
5307static void intel_crtc_disable(struct drm_crtc *crtc)
5308{
5309        struct drm_device *dev = crtc->dev;
5310        struct drm_connector *connector;
5311        struct drm_i915_private *dev_priv = dev->dev_private;
5312        struct drm_i915_gem_object *old_obj = intel_fb_obj(crtc->primary->fb);
5313        enum pipe pipe = to_intel_crtc(crtc)->pipe;
5314
5315        /* crtc should still be enabled when we disable it. */
5316        WARN_ON(!crtc->enabled);
5317
5318        dev_priv->display.crtc_disable(crtc);
5319        dev_priv->display.off(crtc);
5320
5321        if (crtc->primary->fb) {
5322                mutex_lock(&dev->struct_mutex);
5323                intel_unpin_fb_obj(old_obj);
5324                i915_gem_track_fb(old_obj, NULL,
5325                                  INTEL_FRONTBUFFER_PRIMARY(pipe));
5326                mutex_unlock(&dev->struct_mutex);
5327                crtc->primary->fb = NULL;
5328        }
5329
5330        /* Update computed state. */
5331        list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
5332                if (!connector->encoder || !connector->encoder->crtc)
5333                        continue;
5334
5335                if (connector->encoder->crtc != crtc)
5336                        continue;
5337
5338                connector->dpms = DRM_MODE_DPMS_OFF;
5339                to_intel_encoder(connector->encoder)->connectors_active = false;
5340        }
5341}
5342
5343void intel_encoder_destroy(struct drm_encoder *encoder)
5344{
5345        struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
5346
5347        drm_encoder_cleanup(encoder);
5348        kfree(intel_encoder);
5349}
5350
5351/* Simple dpms helper for encoders with just one connector, no cloning and only
5352 * one kind of off state. It clamps all !ON modes to fully OFF and changes the
5353 * state of the entire output pipe. */
5354static void intel_encoder_dpms(struct intel_encoder *encoder, int mode)
5355{
5356        if (mode == DRM_MODE_DPMS_ON) {
5357                encoder->connectors_active = true;
5358
5359                intel_crtc_update_dpms(encoder->base.crtc);
5360        } else {
5361                encoder->connectors_active = false;
5362
5363                intel_crtc_update_dpms(encoder->base.crtc);
5364        }
5365}
5366
5367/* Cross check the actual hw state with our own modeset state tracking (and it's
5368 * internal consistency). */
5369static void intel_connector_check_state(struct intel_connector *connector)
5370{
5371        if (connector->get_hw_state(connector)) {
5372                struct intel_encoder *encoder = connector->encoder;
5373                struct drm_crtc *crtc;
5374                bool encoder_enabled;
5375                enum pipe pipe;
5376
5377                DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
5378                              connector->base.base.id,
5379                              connector->base.name);
5380
5381                /* there is no real hw state for MST connectors */
5382                if (connector->mst_port)
5383                        return;
5384
5385                WARN(connector->base.dpms == DRM_MODE_DPMS_OFF,
5386                     "wrong connector dpms state\n");
5387                WARN(connector->base.encoder != &encoder->base,
5388                     "active connector not linked to encoder\n");
5389
5390                if (encoder) {
5391                        WARN(!encoder->connectors_active,
5392                             "encoder->connectors_active not set\n");
5393
5394                        encoder_enabled = encoder->get_hw_state(encoder, &pipe);
5395                        WARN(!encoder_enabled, "encoder not enabled\n");
5396                        if (WARN_ON(!encoder->base.crtc))
5397                                return;
5398
5399                        crtc = encoder->base.crtc;
5400
5401                        WARN(!crtc->enabled, "crtc not enabled\n");
5402                        WARN(!to_intel_crtc(crtc)->active, "crtc not active\n");
5403                        WARN(pipe != to_intel_crtc(crtc)->pipe,
5404                             "encoder active on the wrong pipe\n");
5405                }
5406        }
5407}
5408
5409/* Even simpler default implementation, if there's really no special case to
5410 * consider. */
5411void intel_connector_dpms(struct drm_connector *connector, int mode)
5412{
5413        /* All the simple cases only support two dpms states. */
5414        if (mode != DRM_MODE_DPMS_ON)
5415                mode = DRM_MODE_DPMS_OFF;
5416
5417        if (mode == connector->dpms)
5418                return;
5419
5420        connector->dpms = mode;
5421
5422        /* Only need to change hw state when actually enabled */
5423        if (connector->encoder)
5424                intel_encoder_dpms(to_intel_encoder(connector->encoder), mode);
5425
5426        intel_modeset_check_state(connector->dev);
5427}
5428
5429/* Simple connector->get_hw_state implementation for encoders that support only
5430 * one connector and no cloning and hence the encoder state determines the state
5431 * of the connector. */
5432bool intel_connector_get_hw_state(struct intel_connector *connector)
5433{
5434        enum pipe pipe = 0;
5435        struct intel_encoder *encoder = connector->encoder;
5436
5437        return encoder->get_hw_state(encoder, &pipe);
5438}
5439
5440static bool ironlake_check_fdi_lanes(struct drm_device *dev, enum pipe pipe,
5441                                     struct intel_crtc_config *pipe_config)
5442{
5443        struct drm_i915_private *dev_priv = dev->dev_private;
5444        struct intel_crtc *pipe_B_crtc =
5445                to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
5446
5447        DRM_DEBUG_KMS("checking fdi config on pipe %c, lanes %i\n",
5448                      pipe_name(pipe), pipe_config->fdi_lanes);
5449        if (pipe_config->fdi_lanes > 4) {
5450                DRM_DEBUG_KMS("invalid fdi lane config on pipe %c: %i lanes\n",
5451                              pipe_name(pipe), pipe_config->fdi_lanes);
5452                return false;
5453        }
5454
5455        if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
5456                if (pipe_config->fdi_lanes > 2) {
5457                        DRM_DEBUG_KMS("only 2 lanes on haswell, required: %i lanes\n",
5458                                      pipe_config->fdi_lanes);
5459                        return false;
5460                } else {
5461                        return true;
5462                }
5463        }
5464
5465        if (INTEL_INFO(dev)->num_pipes == 2)
5466                return true;
5467
5468        /* Ivybridge 3 pipe is really complicated */
5469        switch (pipe) {
5470        case PIPE_A:
5471                return true;
5472        case PIPE_B:
5473                if (dev_priv->pipe_to_crtc_mapping[PIPE_C]->enabled &&
5474                    pipe_config->fdi_lanes > 2) {
5475                        DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
5476                                      pipe_name(pipe), pipe_config->fdi_lanes);
5477                        return false;
5478                }
5479                return true;
5480        case PIPE_C:
5481                if (!pipe_has_enabled_pch(pipe_B_crtc) ||
5482                    pipe_B_crtc->config.fdi_lanes <= 2) {
5483                        if (pipe_config->fdi_lanes > 2) {
5484                                DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
5485                                              pipe_name(pipe), pipe_config->fdi_lanes);
5486                                return false;
5487                        }
5488                } else {
5489                        DRM_DEBUG_KMS("fdi link B uses too many lanes to enable link C\n");
5490                        return false;
5491                }
5492                return true;
5493        default:
5494                BUG();
5495        }
5496}
5497
5498#define RETRY 1
5499static int ironlake_fdi_compute_config(struct intel_crtc *intel_crtc,
5500                                       struct intel_crtc_config *pipe_config)
5501{
5502        struct drm_device *dev = intel_crtc->base.dev;
5503        struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
5504        int lane, link_bw, fdi_dotclock;
5505        bool setup_ok, needs_recompute = false;
5506
5507retry:
5508        /* FDI is a binary signal running at ~2.7GHz, encoding
5509         * each output octet as 10 bits. The actual frequency
5510         * is stored as a divider into a 100MHz clock, and the
5511         * mode pixel clock is stored in units of 1KHz.
5512         * Hence the bw of each lane in terms of the mode signal
5513         * is:
5514         */
5515        link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
5516
5517        fdi_dotclock = adjusted_mode->crtc_clock;
5518
5519        lane = ironlake_get_lanes_required(fdi_dotclock, link_bw,
5520                                           pipe_config->pipe_bpp);
5521
5522        pipe_config->fdi_lanes = lane;
5523
5524        intel_link_compute_m_n(pipe_config->pipe_bpp, lane, fdi_dotclock,
5525                               link_bw, &pipe_config->fdi_m_n);
5526
5527        setup_ok = ironlake_check_fdi_lanes(intel_crtc->base.dev,
5528                                            intel_crtc->pipe, pipe_config);
5529        if (!setup_ok && pipe_config->pipe_bpp > 6*3) {
5530                pipe_config->pipe_bpp -= 2*3;
5531                DRM_DEBUG_KMS("fdi link bw constraint, reducing pipe bpp to %i\n",
5532                              pipe_config->pipe_bpp);
5533                needs_recompute = true;
5534                pipe_config->bw_constrained = true;
5535
5536                goto retry;
5537        }
5538
5539        if (needs_recompute)
5540                return RETRY;
5541
5542        return setup_ok ? 0 : -EINVAL;
5543}
5544
5545static void hsw_compute_ips_config(struct intel_crtc *crtc,
5546                                   struct intel_crtc_config *pipe_config)
5547{
5548        pipe_config->ips_enabled = i915.enable_ips &&
5549                                   hsw_crtc_supports_ips(crtc) &&
5550                                   pipe_config->pipe_bpp <= 24;
5551}
5552
5553static int intel_crtc_compute_config(struct intel_crtc *crtc,
5554                                     struct intel_crtc_config *pipe_config)
5555{
5556        struct drm_device *dev = crtc->base.dev;
5557        struct drm_i915_private *dev_priv = dev->dev_private;
5558        struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
5559
5560        /* FIXME should check pixel clock limits on all platforms */
5561        if (INTEL_INFO(dev)->gen < 4) {
5562                int clock_limit =
5563                        dev_priv->display.get_display_clock_speed(dev);
5564
5565                /*
5566                 * Enable pixel doubling when the dot clock
5567                 * is > 90% of the (display) core speed.
5568                 *
5569                 * GDG double wide on either pipe,
5570                 * otherwise pipe A only.
5571                 */
5572                if ((crtc->pipe == PIPE_A || IS_I915G(dev)) &&
5573                    adjusted_mode->crtc_clock > clock_limit * 9 / 10) {
5574                        clock_limit *= 2;
5575                        pipe_config->double_wide = true;
5576                }
5577
5578                if (adjusted_mode->crtc_clock > clock_limit * 9 / 10)
5579                        return -EINVAL;
5580        }
5581
5582        /*
5583         * Pipe horizontal size must be even in:
5584         * - DVO ganged mode
5585         * - LVDS dual channel mode
5586         * - Double wide pipe
5587         */
5588        if ((intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
5589             intel_is_dual_link_lvds(dev)) || pipe_config->double_wide)
5590                pipe_config->pipe_src_w &= ~1;
5591
5592        /* Cantiga+ cannot handle modes with a hsync front porch of 0.
5593         * WaPruneModeWithIncorrectHsyncOffset:ctg,elk,ilk,snb,ivb,vlv,hsw.
5594         */
5595        if ((INTEL_INFO(dev)->gen > 4 || IS_G4X(dev)) &&
5596                adjusted_mode->hsync_start == adjusted_mode->hdisplay)
5597                return -EINVAL;
5598
5599        if ((IS_G4X(dev) || IS_VALLEYVIEW(dev)) && pipe_config->pipe_bpp > 10*3) {
5600                pipe_config->pipe_bpp = 10*3; /* 12bpc is gen5+ */
5601        } else if (INTEL_INFO(dev)->gen <= 4 && pipe_config->pipe_bpp > 8*3) {
5602                /* only a 8bpc pipe, with 6bpc dither through the panel fitter
5603                 * for lvds. */
5604                pipe_config->pipe_bpp = 8*3;
5605        }
5606
5607        if (HAS_IPS(dev))
5608                hsw_compute_ips_config(crtc, pipe_config);
5609
5610        if (pipe_config->has_pch_encoder)
5611                return ironlake_fdi_compute_config(crtc, pipe_config);
5612
5613        return 0;
5614}
5615
5616static int valleyview_get_display_clock_speed(struct drm_device *dev)
5617{
5618        struct drm_i915_private *dev_priv = dev->dev_private;
5619        u32 val;
5620        int divider;
5621
5622        /* FIXME: Punit isn't quite ready yet */
5623        if (IS_CHERRYVIEW(dev))
5624                return 400000;
5625
5626        if (dev_priv->hpll_freq == 0)
5627                dev_priv->hpll_freq = valleyview_get_vco(dev_priv);
5628
5629        mutex_lock(&dev_priv->dpio_lock);
5630        val = vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL);
5631        mutex_unlock(&dev_priv->dpio_lock);
5632
5633        divider = val & DISPLAY_FREQUENCY_VALUES;
5634
5635        WARN((val & DISPLAY_FREQUENCY_STATUS) !=
5636             (divider << DISPLAY_FREQUENCY_STATUS_SHIFT),
5637             "cdclk change in progress\n");
5638
5639        return DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, divider + 1);
5640}
5641
5642static int i945_get_display_clock_speed(struct drm_device *dev)
5643{
5644        return 400000;
5645}
5646
5647static int i915_get_display_clock_speed(struct drm_device *dev)
5648{
5649        return 333000;
5650}
5651
5652static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
5653{
5654        return 200000;
5655}
5656
5657static int pnv_get_display_clock_speed(struct drm_device *dev)
5658{
5659        u16 gcfgc = 0;
5660
5661        pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
5662
5663        switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
5664        case GC_DISPLAY_CLOCK_267_MHZ_PNV:
5665                return 267000;
5666        case GC_DISPLAY_CLOCK_333_MHZ_PNV:
5667                return 333000;
5668        case GC_DISPLAY_CLOCK_444_MHZ_PNV:
5669                return 444000;
5670        case GC_DISPLAY_CLOCK_200_MHZ_PNV:
5671                return 200000;
5672        default:
5673                DRM_ERROR("Unknown pnv display core clock 0x%04x\n", gcfgc);
5674        case GC_DISPLAY_CLOCK_133_MHZ_PNV:
5675                return 133000;
5676        case GC_DISPLAY_CLOCK_167_MHZ_PNV:
5677                return 167000;
5678        }
5679}
5680
5681static int i915gm_get_display_clock_speed(struct drm_device *dev)
5682{
5683        u16 gcfgc = 0;
5684
5685        pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
5686
5687        if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
5688                return 133000;
5689        else {
5690                switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
5691                case GC_DISPLAY_CLOCK_333_MHZ:
5692                        return 333000;
5693                default:
5694                case GC_DISPLAY_CLOCK_190_200_MHZ:
5695                        return 190000;
5696                }
5697        }
5698}
5699
5700static int i865_get_display_clock_speed(struct drm_device *dev)
5701{
5702        return 266000;
5703}
5704
5705static int i855_get_display_clock_speed(struct drm_device *dev)
5706{
5707        u16 hpllcc = 0;
5708        /* Assume that the hardware is in the high speed state.  This
5709         * should be the default.
5710         */
5711        switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
5712        case GC_CLOCK_133_200:
5713        case GC_CLOCK_100_200:
5714                return 200000;
5715        case GC_CLOCK_166_250:
5716                return 250000;
5717        case GC_CLOCK_100_133:
5718                return 133000;
5719        }
5720
5721        /* Shouldn't happen */
5722        return 0;
5723}
5724
5725static int i830_get_display_clock_speed(struct drm_device *dev)
5726{
5727        return 133000;
5728}
5729
5730static void
5731intel_reduce_m_n_ratio(uint32_t *num, uint32_t *den)
5732{
5733        while (*num > DATA_LINK_M_N_MASK ||
5734               *den > DATA_LINK_M_N_MASK) {
5735                *num >>= 1;
5736                *den >>= 1;
5737        }
5738}
5739
5740static void compute_m_n(unsigned int m, unsigned int n,
5741                        uint32_t *ret_m, uint32_t *ret_n)
5742{
5743        *ret_n = min_t(unsigned int, roundup_pow_of_two(n), DATA_LINK_N_MAX);
5744        *ret_m = div_u64((uint64_t) m * *ret_n, n);
5745        intel_reduce_m_n_ratio(ret_m, ret_n);
5746}
5747
5748void
5749intel_link_compute_m_n(int bits_per_pixel, int nlanes,
5750                       int pixel_clock, int link_clock,
5751                       struct intel_link_m_n *m_n)
5752{
5753        m_n->tu = 64;
5754
5755        compute_m_n(bits_per_pixel * pixel_clock,
5756                    link_clock * nlanes * 8,
5757                    &m_n->gmch_m, &m_n->gmch_n);
5758
5759        compute_m_n(pixel_clock, link_clock,
5760                    &m_n->link_m, &m_n->link_n);
5761}
5762
5763static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
5764{
5765        if (i915.panel_use_ssc >= 0)
5766                return i915.panel_use_ssc != 0;
5767        return dev_priv->vbt.lvds_use_ssc
5768                && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
5769}
5770
5771static int i9xx_get_refclk(struct intel_crtc *crtc, int num_connectors)
5772{
5773        struct drm_device *dev = crtc->base.dev;
5774        struct drm_i915_private *dev_priv = dev->dev_private;
5775        int refclk;
5776
5777        if (IS_VALLEYVIEW(dev)) {
5778                refclk = 100000;
5779        } else if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS) &&
5780            intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
5781                refclk = dev_priv->vbt.lvds_ssc_freq;
5782                DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
5783        } else if (!IS_GEN2(dev)) {
5784                refclk = 96000;
5785        } else {
5786                refclk = 48000;
5787        }
5788
5789        return refclk;
5790}
5791
5792static uint32_t pnv_dpll_compute_fp(struct dpll *dpll)
5793{
5794        return (1 << dpll->n) << 16 | dpll->m2;
5795}
5796
5797static uint32_t i9xx_dpll_compute_fp(struct dpll *dpll)
5798{
5799        return dpll->n << 16 | dpll->m1 << 8 | dpll->m2;
5800}
5801
5802static void i9xx_update_pll_dividers(struct intel_crtc *crtc,
5803                                     intel_clock_t *reduced_clock)
5804{
5805        struct drm_device *dev = crtc->base.dev;
5806        u32 fp, fp2 = 0;
5807
5808        if (IS_PINEVIEW(dev)) {
5809                fp = pnv_dpll_compute_fp(&crtc->new_config->dpll);
5810                if (reduced_clock)
5811                        fp2 = pnv_dpll_compute_fp(reduced_clock);
5812        } else {
5813                fp = i9xx_dpll_compute_fp(&crtc->new_config->dpll);
5814                if (reduced_clock)
5815                        fp2 = i9xx_dpll_compute_fp(reduced_clock);
5816        }
5817
5818        crtc->new_config->dpll_hw_state.fp0 = fp;
5819
5820        crtc->lowfreq_avail = false;
5821        if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS) &&
5822            reduced_clock && i915.powersave) {
5823                crtc->new_config->dpll_hw_state.fp1 = fp2;
5824                crtc->lowfreq_avail = true;
5825        } else {
5826                crtc->new_config->dpll_hw_state.fp1 = fp;
5827        }
5828}
5829
5830static void vlv_pllb_recal_opamp(struct drm_i915_private *dev_priv, enum pipe
5831                pipe)
5832{
5833        u32 reg_val;
5834
5835        /*
5836         * PLLB opamp always calibrates to max value of 0x3f, force enable it
5837         * and set it to a reasonable value instead.
5838         */
5839        reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
5840        reg_val &= 0xffffff00;
5841        reg_val |= 0x00000030;
5842        vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
5843
5844        reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
5845        reg_val &= 0x8cffffff;
5846        reg_val = 0x8c000000;
5847        vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
5848
5849        reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
5850        reg_val &= 0xffffff00;
5851        vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
5852
5853        reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
5854        reg_val &= 0x00ffffff;
5855        reg_val |= 0xb0000000;
5856        vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
5857}
5858
5859static void intel_pch_transcoder_set_m_n(struct intel_crtc *crtc,
5860                                         struct intel_link_m_n *m_n)
5861{
5862        struct drm_device *dev = crtc->base.dev;
5863        struct drm_i915_private *dev_priv = dev->dev_private;
5864        int pipe = crtc->pipe;
5865
5866        I915_WRITE(PCH_TRANS_DATA_M1(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
5867        I915_WRITE(PCH_TRANS_DATA_N1(pipe), m_n->gmch_n);
5868        I915_WRITE(PCH_TRANS_LINK_M1(pipe), m_n->link_m);
5869        I915_WRITE(PCH_TRANS_LINK_N1(pipe), m_n->link_n);
5870}
5871
5872static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
5873                                         struct intel_link_m_n *m_n,
5874                                         struct intel_link_m_n *m2_n2)
5875{
5876        struct drm_device *dev = crtc->base.dev;
5877        struct drm_i915_private *dev_priv = dev->dev_private;
5878        int pipe = crtc->pipe;
5879        enum transcoder transcoder = crtc->config.cpu_transcoder;
5880
5881        if (INTEL_INFO(dev)->gen >= 5) {
5882                I915_WRITE(PIPE_DATA_M1(transcoder), TU_SIZE(m_n->tu) | m_n->gmch_m);
5883                I915_WRITE(PIPE_DATA_N1(transcoder), m_n->gmch_n);
5884                I915_WRITE(PIPE_LINK_M1(transcoder), m_n->link_m);
5885                I915_WRITE(PIPE_LINK_N1(transcoder), m_n->link_n);
5886                /* M2_N2 registers to be set only for gen < 8 (M2_N2 available
5887                 * for gen < 8) and if DRRS is supported (to make sure the
5888                 * registers are not unnecessarily accessed).
5889                 */
5890                if (m2_n2 && INTEL_INFO(dev)->gen < 8 &&
5891                        crtc->config.has_drrs) {
5892                        I915_WRITE(PIPE_DATA_M2(transcoder),
5893                                        TU_SIZE(m2_n2->tu) | m2_n2->gmch_m);
5894                        I915_WRITE(PIPE_DATA_N2(transcoder), m2_n2->gmch_n);
5895                        I915_WRITE(PIPE_LINK_M2(transcoder), m2_n2->link_m);
5896                        I915_WRITE(PIPE_LINK_N2(transcoder), m2_n2->link_n);
5897                }
5898        } else {
5899                I915_WRITE(PIPE_DATA_M_G4X(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
5900                I915_WRITE(PIPE_DATA_N_G4X(pipe), m_n->gmch_n);
5901                I915_WRITE(PIPE_LINK_M_G4X(pipe), m_n->link_m);
5902                I915_WRITE(PIPE_LINK_N_G4X(pipe), m_n->link_n);
5903        }
5904}
5905
5906void intel_dp_set_m_n(struct intel_crtc *crtc)
5907{
5908        if (crtc->config.has_pch_encoder)
5909                intel_pch_transcoder_set_m_n(crtc, &crtc->config.dp_m_n);
5910        else
5911                intel_cpu_transcoder_set_m_n(crtc, &crtc->config.dp_m_n,
5912                                                   &crtc->config.dp_m2_n2);
5913}
5914
5915static void vlv_update_pll(struct intel_crtc *crtc,
5916                           struct intel_crtc_config *pipe_config)
5917{
5918        u32 dpll, dpll_md;
5919
5920        /*
5921         * Enable DPIO clock input. We should never disable the reference
5922         * clock for pipe B, since VGA hotplug / manual detection depends
5923         * on it.
5924         */
5925        dpll = DPLL_EXT_BUFFER_ENABLE_VLV | DPLL_REFA_CLK_ENABLE_VLV |
5926                DPLL_VGA_MODE_DIS | DPLL_INTEGRATED_CLOCK_VLV;
5927        /* We should never disable this, set it here for state tracking */
5928        if (crtc->pipe == PIPE_B)
5929                dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
5930        dpll |= DPLL_VCO_ENABLE;
5931        pipe_config->dpll_hw_state.dpll = dpll;
5932
5933        dpll_md = (pipe_config->pixel_multiplier - 1)
5934                << DPLL_MD_UDI_MULTIPLIER_SHIFT;
5935        pipe_config->dpll_hw_state.dpll_md = dpll_md;
5936}
5937
5938static void vlv_prepare_pll(struct intel_crtc *crtc,
5939                            const struct intel_crtc_config *pipe_config)
5940{
5941        struct drm_device *dev = crtc->base.dev;
5942        struct drm_i915_private *dev_priv = dev->dev_private;
5943        int pipe = crtc->pipe;
5944        u32 mdiv;
5945        u32 bestn, bestm1, bestm2, bestp1, bestp2;
5946        u32 coreclk, reg_val;
5947
5948        mutex_lock(&dev_priv->dpio_lock);
5949
5950        bestn = pipe_config->dpll.n;
5951        bestm1 = pipe_config->dpll.m1;
5952        bestm2 = pipe_config->dpll.m2;
5953        bestp1 = pipe_config->dpll.p1;
5954        bestp2 = pipe_config->dpll.p2;
5955
5956        /* See eDP HDMI DPIO driver vbios notes doc */
5957
5958        /* PLL B needs special handling */
5959        if (pipe == PIPE_B)
5960                vlv_pllb_recal_opamp(dev_priv, pipe);
5961
5962        /* Set up Tx target for periodic Rcomp update */
5963        vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9_BCAST, 0x0100000f);
5964
5965        /* Disable target IRef on PLL */
5966        reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW8(pipe));
5967        reg_val &= 0x00ffffff;
5968        vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW8(pipe), reg_val);
5969
5970        /* Disable fast lock */
5971        vlv_dpio_write(dev_priv, pipe, VLV_CMN_DW0, 0x610);
5972
5973        /* Set idtafcrecal before PLL is enabled */
5974        mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
5975        mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
5976        mdiv |= ((bestn << DPIO_N_SHIFT));
5977        mdiv |= (1 << DPIO_K_SHIFT);
5978
5979        /*
5980         * Post divider depends on pixel clock rate, DAC vs digital (and LVDS,
5981         * but we don't support that).
5982         * Note: don't use the DAC post divider as it seems unstable.
5983         */
5984        mdiv |= (DPIO_POST_DIV_HDMIDP << DPIO_POST_DIV_SHIFT);
5985        vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
5986
5987        mdiv |= DPIO_ENABLE_CALIBRATION;
5988        vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
5989
5990        /* Set HBR and RBR LPF coefficients */
5991        if (pipe_config->port_clock == 162000 ||
5992            intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG) ||
5993            intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI))
5994                vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
5995                                 0x009f0003);
5996        else
5997                vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
5998                                 0x00d0000f);
5999
6000        if (crtc->config.has_dp_encoder) {
6001                /* Use SSC source */
6002                if (pipe == PIPE_A)
6003                        vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
6004                                         0x0df40000);
6005                else
6006                        vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
6007                                         0x0df70000);
6008        } else { /* HDMI or VGA */
6009                /* Use bend source */
6010                if (pipe == PIPE_A)
6011                        vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
6012                                         0x0df70000);
6013                else
6014                        vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
6015                                         0x0df40000);
6016        }
6017
6018        coreclk = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW7(pipe));
6019        coreclk = (coreclk & 0x0000ff00) | 0x01c00000;
6020        if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
6021            intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))
6022                coreclk |= 0x01000000;
6023        vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW7(pipe), coreclk);
6024
6025        vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW11(pipe), 0x87871000);
6026        mutex_unlock(&dev_priv->dpio_lock);
6027}
6028
6029static void chv_update_pll(struct intel_crtc *crtc,
6030                           struct intel_crtc_config *pipe_config)
6031{
6032        pipe_config->dpll_hw_state.dpll = DPLL_SSC_REF_CLOCK_CHV |
6033                DPLL_REFA_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS |
6034                DPLL_VCO_ENABLE;
6035        if (crtc->pipe != PIPE_A)
6036                pipe_config->dpll_hw_state.dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
6037
6038        pipe_config->dpll_hw_state.dpll_md =
6039                (pipe_config->pixel_multiplier - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
6040}
6041
6042static void chv_prepare_pll(struct intel_crtc *crtc,
6043                            const struct intel_crtc_config *pipe_config)
6044{
6045        struct drm_device *dev = crtc->base.dev;
6046        struct drm_i915_private *dev_priv = dev->dev_private;
6047        int pipe = crtc->pipe;
6048        int dpll_reg = DPLL(crtc->pipe);
6049        enum dpio_channel port = vlv_pipe_to_channel(pipe);
6050        u32 loopfilter, intcoeff;
6051        u32 bestn, bestm1, bestm2, bestp1, bestp2, bestm2_frac;
6052        int refclk;
6053
6054        bestn = pipe_config->dpll.n;
6055        bestm2_frac = pipe_config->dpll.m2 & 0x3fffff;
6056        bestm1 = pipe_config->dpll.m1;
6057        bestm2 = pipe_config->dpll.m2 >> 22;
6058        bestp1 = pipe_config->dpll.p1;
6059        bestp2 = pipe_config->dpll.p2;
6060
6061        /*
6062         * Enable Refclk and SSC
6063         */
6064        I915_WRITE(dpll_reg,
6065                   pipe_config->dpll_hw_state.dpll & ~DPLL_VCO_ENABLE);
6066
6067        mutex_lock(&dev_priv->dpio_lock);
6068
6069        /* p1 and p2 divider */
6070        vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW13(port),
6071                        5 << DPIO_CHV_S1_DIV_SHIFT |
6072                        bestp1 << DPIO_CHV_P1_DIV_SHIFT |
6073                        bestp2 << DPIO_CHV_P2_DIV_SHIFT |
6074                        1 << DPIO_CHV_K_DIV_SHIFT);
6075
6076        /* Feedback post-divider - m2 */
6077        vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW0(port), bestm2);
6078
6079        /* Feedback refclk divider - n and m1 */
6080        vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW1(port),
6081                        DPIO_CHV_M1_DIV_BY_2 |
6082                        1 << DPIO_CHV_N_DIV_SHIFT);
6083
6084        /* M2 fraction division */
6085        vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW2(port), bestm2_frac);
6086
6087        /* M2 fraction division enable */
6088        vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW3(port),
6089                       DPIO_CHV_FRAC_DIV_EN |
6090                       (2 << DPIO_CHV_FEEDFWD_GAIN_SHIFT));
6091
6092        /* Loop filter */
6093        refclk = i9xx_get_refclk(crtc, 0);
6094        loopfilter = 5 << DPIO_CHV_PROP_COEFF_SHIFT |
6095                2 << DPIO_CHV_GAIN_CTRL_SHIFT;
6096        if (refclk == 100000)
6097                intcoeff = 11;
6098        else if (refclk == 38400)
6099                intcoeff = 10;
6100        else
6101                intcoeff = 9;
6102        loopfilter |= intcoeff << DPIO_CHV_INT_COEFF_SHIFT;
6103        vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW6(port), loopfilter);
6104
6105        /* AFC Recal */
6106        vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port),
6107                        vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port)) |
6108                        DPIO_AFC_RECAL);
6109
6110        mutex_unlock(&dev_priv->dpio_lock);
6111}
6112
6113/**
6114 * vlv_force_pll_on - forcibly enable just the PLL
6115 * @dev_priv: i915 private structure
6116 * @pipe: pipe PLL to enable
6117 * @dpll: PLL configuration
6118 *
6119 * Enable the PLL for @pipe using the supplied @dpll config. To be used
6120 * in cases where we need the PLL enabled even when @pipe is not going to
6121 * be enabled.
6122 */
6123void vlv_force_pll_on(struct drm_device *dev, enum pipe pipe,
6124                      const struct dpll *dpll)
6125{
6126        struct intel_crtc *crtc =
6127                to_intel_crtc(intel_get_crtc_for_pipe(dev, pipe));
6128        struct intel_crtc_config pipe_config = {
6129                .pixel_multiplier = 1,
6130                .dpll = *dpll,
6131        };
6132
6133        if (IS_CHERRYVIEW(dev)) {
6134                chv_update_pll(crtc, &pipe_config);
6135                chv_prepare_pll(crtc, &pipe_config);
6136                chv_enable_pll(crtc, &pipe_config);
6137        } else {
6138                vlv_update_pll(crtc, &pipe_config);
6139                vlv_prepare_pll(crtc, &pipe_config);
6140                vlv_enable_pll(crtc, &pipe_config);
6141        }
6142}
6143
6144/**
6145 * vlv_force_pll_off - forcibly disable just the PLL
6146 * @dev_priv: i915 private structure
6147 * @pipe: pipe PLL to disable
6148 *
6149 * Disable the PLL for @pipe. To be used in cases where we need
6150 * the PLL enabled even when @pipe is not going to be enabled.
6151 */
6152void vlv_force_pll_off(struct drm_device *dev, enum pipe pipe)
6153{
6154        if (IS_CHERRYVIEW(dev))
6155                chv_disable_pll(to_i915(dev), pipe);
6156        else
6157                vlv_disable_pll(to_i915(dev), pipe);
6158}
6159
6160static void i9xx_update_pll(struct intel_crtc *crtc,
6161                            intel_clock_t *reduced_clock,
6162                            int num_connectors)
6163{
6164        struct drm_device *dev = crtc->base.dev;
6165        struct drm_i915_private *dev_priv = dev->dev_private;
6166        u32 dpll;
6167        bool is_sdvo;
6168        struct dpll *clock = &crtc->new_config->dpll;
6169
6170        i9xx_update_pll_dividers(crtc, reduced_clock);
6171
6172        is_sdvo = intel_pipe_will_have_type(crtc, INTEL_OUTPUT_SDVO) ||
6173                intel_pipe_will_have_type(crtc, INTEL_OUTPUT_HDMI);
6174
6175        dpll = DPLL_VGA_MODE_DIS;
6176
6177        if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS))
6178                dpll |= DPLLB_MODE_LVDS;
6179        else
6180                dpll |= DPLLB_MODE_DAC_SERIAL;
6181
6182        if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
6183                dpll |= (crtc->new_config->pixel_multiplier - 1)
6184                        << SDVO_MULTIPLIER_SHIFT_HIRES;
6185        }
6186
6187        if (is_sdvo)
6188                dpll |= DPLL_SDVO_HIGH_SPEED;
6189
6190        if (crtc->new_config->has_dp_encoder)
6191                dpll |= DPLL_SDVO_HIGH_SPEED;
6192
6193        /* compute bitmask from p1 value */
6194        if (IS_PINEVIEW(dev))
6195                dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
6196        else {
6197                dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
6198                if (IS_G4X(dev) && reduced_clock)
6199                        dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
6200        }
6201        switch (clock->p2) {
6202        case 5:
6203                dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
6204                break;
6205        case 7:
6206                dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
6207                break;
6208        case 10:
6209                dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
6210                break;
6211        case 14:
6212                dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
6213                break;
6214        }
6215        if (INTEL_INFO(dev)->gen >= 4)
6216                dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
6217
6218        if (crtc->new_config->sdvo_tv_clock)
6219                dpll |= PLL_REF_INPUT_TVCLKINBC;
6220        else if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS) &&
6221                 intel_panel_use_ssc(dev_priv) && num_connectors < 2)
6222                dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
6223        else
6224                dpll |= PLL_REF_INPUT_DREFCLK;
6225
6226        dpll |= DPLL_VCO_ENABLE;
6227        crtc->new_config->dpll_hw_state.dpll = dpll;
6228
6229        if (INTEL_INFO(dev)->gen >= 4) {
6230                u32 dpll_md = (crtc->new_config->pixel_multiplier - 1)
6231                        << DPLL_MD_UDI_MULTIPLIER_SHIFT;
6232                crtc->new_config->dpll_hw_state.dpll_md = dpll_md;
6233        }
6234}
6235
6236static void i8xx_update_pll(struct intel_crtc *crtc,
6237                            intel_clock_t *reduced_clock,
6238                            int num_connectors)
6239{
6240        struct drm_device *dev = crtc->base.dev;
6241        struct drm_i915_private *dev_priv = dev->dev_private;
6242        u32 dpll;
6243        struct dpll *clock = &crtc->new_config->dpll;
6244
6245        i9xx_update_pll_dividers(crtc, reduced_clock);
6246
6247        dpll = DPLL_VGA_MODE_DIS;
6248
6249        if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS)) {
6250                dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
6251        } else {
6252                if (clock->p1 == 2)
6253                        dpll |= PLL_P1_DIVIDE_BY_TWO;
6254                else
6255                        dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
6256                if (clock->p2 == 4)
6257                        dpll |= PLL_P2_DIVIDE_BY_4;
6258        }
6259
6260        if (!IS_I830(dev) && intel_pipe_will_have_type(crtc, INTEL_OUTPUT_DVO))
6261                dpll |= DPLL_DVO_2X_MODE;
6262
6263        if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS) &&
6264                 intel_panel_use_ssc(dev_priv) && num_connectors < 2)
6265                dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
6266        else
6267                dpll |= PLL_REF_INPUT_DREFCLK;
6268
6269        dpll |= DPLL_VCO_ENABLE;
6270        crtc->new_config->dpll_hw_state.dpll = dpll;
6271}
6272
6273static void intel_set_pipe_timings(struct intel_crtc *intel_crtc)
6274{
6275        struct drm_device *dev = intel_crtc->base.dev;
6276        struct drm_i915_private *dev_priv = dev->dev_private;
6277        enum pipe pipe = intel_crtc->pipe;
6278        enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
6279        struct drm_display_mode *adjusted_mode =
6280                &intel_crtc->config.adjusted_mode;
6281        uint32_t crtc_vtotal, crtc_vblank_end;
6282        int vsyncshift = 0;
6283
6284        /* We need to be careful not to changed the adjusted mode, for otherwise
6285         * the hw state checker will get angry at the mismatch. */
6286        crtc_vtotal = adjusted_mode->crtc_vtotal;
6287        crtc_vblank_end = adjusted_mode->crtc_vblank_end;
6288
6289        if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
6290                /* the chip adds 2 halflines automatically */
6291                crtc_vtotal -= 1;
6292                crtc_vblank_end -= 1;
6293
6294                if (intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_SDVO))
6295                        vsyncshift = (adjusted_mode->crtc_htotal - 1) / 2;
6296                else
6297                        vsyncshift = adjusted_mode->crtc_hsync_start -
6298                                adjusted_mode->crtc_htotal / 2;
6299                if (vsyncshift < 0)
6300                        vsyncshift += adjusted_mode->crtc_htotal;
6301        }
6302
6303        if (INTEL_INFO(dev)->gen > 3)
6304                I915_WRITE(VSYNCSHIFT(cpu_transcoder), vsyncshift);
6305
6306        I915_WRITE(HTOTAL(cpu_transcoder),
6307                   (adjusted_mode->crtc_hdisplay - 1) |
6308                   ((adjusted_mode->crtc_htotal - 1) << 16));
6309        I915_WRITE(HBLANK(cpu_transcoder),
6310                   (adjusted_mode->crtc_hblank_start - 1) |
6311                   ((adjusted_mode->crtc_hblank_end - 1) << 16));
6312        I915_WRITE(HSYNC(cpu_transcoder),
6313                   (adjusted_mode->crtc_hsync_start - 1) |
6314                   ((adjusted_mode->crtc_hsync_end - 1) << 16));
6315
6316        I915_WRITE(VTOTAL(cpu_transcoder),
6317                   (adjusted_mode->crtc_vdisplay - 1) |
6318                   ((crtc_vtotal - 1) << 16));
6319        I915_WRITE(VBLANK(cpu_transcoder),
6320                   (adjusted_mode->crtc_vblank_start - 1) |
6321                   ((crtc_vblank_end - 1) << 16));
6322        I915_WRITE(VSYNC(cpu_transcoder),
6323                   (adjusted_mode->crtc_vsync_start - 1) |
6324                   ((adjusted_mode->crtc_vsync_end - 1) << 16));
6325
6326        /* Workaround: when the EDP input selection is B, the VTOTAL_B must be
6327         * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is
6328         * documented on the DDI_FUNC_CTL register description, EDP Input Select
6329         * bits. */
6330        if (IS_HASWELL(dev) && cpu_transcoder == TRANSCODER_EDP &&
6331            (pipe == PIPE_B || pipe == PIPE_C))
6332                I915_WRITE(VTOTAL(pipe), I915_READ(VTOTAL(cpu_transcoder)));
6333
6334        /* pipesrc controls the size that is scaled from, which should
6335         * always be the user's requested size.
6336         */
6337        I915_WRITE(PIPESRC(pipe),
6338                   ((intel_crtc->config.pipe_src_w - 1) << 16) |
6339                   (intel_crtc->config.pipe_src_h - 1));
6340}
6341
6342static void intel_get_pipe_timings(struct intel_crtc *crtc,
6343                                   struct intel_crtc_config *pipe_config)
6344{
6345        struct drm_device *dev = crtc->base.dev;
6346        struct drm_i915_private *dev_priv = dev->dev_private;
6347        enum transcoder cpu_transcoder = pipe_config->cpu_transcoder;
6348        uint32_t tmp;
6349
6350        tmp = I915_READ(HTOTAL(cpu_transcoder));
6351        pipe_config->adjusted_mode.crtc_hdisplay = (tmp & 0xffff) + 1;
6352        pipe_config->adjusted_mode.crtc_htotal = ((tmp >> 16) & 0xffff) + 1;
6353        tmp = I915_READ(HBLANK(cpu_transcoder));
6354        pipe_config->adjusted_mode.crtc_hblank_start = (tmp & 0xffff) + 1;
6355        pipe_config->adjusted_mode.crtc_hblank_end = ((tmp >> 16) & 0xffff) + 1;
6356        tmp = I915_READ(HSYNC(cpu_transcoder));
6357        pipe_config->adjusted_mode.crtc_hsync_start = (tmp & 0xffff) + 1;
6358        pipe_config->adjusted_mode.crtc_hsync_end = ((tmp >> 16) & 0xffff) + 1;
6359
6360        tmp = I915_READ(VTOTAL(cpu_transcoder));
6361        pipe_config->adjusted_mode.crtc_vdisplay = (tmp & 0xffff) + 1;
6362        pipe_config->adjusted_mode.crtc_vtotal = ((tmp >> 16) & 0xffff) + 1;
6363        tmp = I915_READ(VBLANK(cpu_transcoder));
6364        pipe_config->adjusted_mode.crtc_vblank_start = (tmp & 0xffff) + 1;
6365        pipe_config->adjusted_mode.crtc_vblank_end = ((tmp >> 16) & 0xffff) + 1;
6366        tmp = I915_READ(VSYNC(cpu_transcoder));
6367        pipe_config->adjusted_mode.crtc_vsync_start = (tmp & 0xffff) + 1;
6368        pipe_config->adjusted_mode.crtc_vsync_end = ((tmp >> 16) & 0xffff) + 1;
6369
6370        if (I915_READ(PIPECONF(cpu_transcoder)) & PIPECONF_INTERLACE_MASK) {
6371                pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_INTERLACE;
6372                pipe_config->adjusted_mode.crtc_vtotal += 1;
6373                pipe_config->adjusted_mode.crtc_vblank_end += 1;
6374        }
6375
6376        tmp = I915_READ(PIPESRC(crtc->pipe));
6377        pipe_config->pipe_src_h = (tmp & 0xffff) + 1;
6378        pipe_config->pipe_src_w = ((tmp >> 16) & 0xffff) + 1;
6379
6380        pipe_config->requested_mode.vdisplay = pipe_config->pipe_src_h;
6381        pipe_config->requested_mode.hdisplay = pipe_config->pipe_src_w;
6382}
6383
6384void intel_mode_from_pipe_config(struct drm_display_mode *mode,
6385                                 struct intel_crtc_config *pipe_config)
6386{
6387        mode->hdisplay = pipe_config->adjusted_mode.crtc_hdisplay;
6388        mode->htotal = pipe_config->adjusted_mode.crtc_htotal;
6389        mode->hsync_start = pipe_config->adjusted_mode.crtc_hsync_start;
6390        mode->hsync_end = pipe_config->adjusted_mode.crtc_hsync_end;
6391
6392        mode->vdisplay = pipe_config->adjusted_mode.crtc_vdisplay;
6393        mode->vtotal = pipe_config->adjusted_mode.crtc_vtotal;
6394        mode->vsync_start = pipe_config->adjusted_mode.crtc_vsync_start;
6395        mode->vsync_end = pipe_config->adjusted_mode.crtc_vsync_end;
6396
6397        mode->flags = pipe_config->adjusted_mode.flags;
6398
6399        mode->clock = pipe_config->adjusted_mode.crtc_clock;
6400        mode->flags |= pipe_config->adjusted_mode.flags;
6401}
6402
6403static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc)
6404{
6405        struct drm_device *dev = intel_crtc->base.dev;
6406        struct drm_i915_private *dev_priv = dev->dev_private;
6407        uint32_t pipeconf;
6408
6409        pipeconf = 0;
6410
6411        if ((intel_crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
6412            (intel_crtc->pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
6413                pipeconf |= I915_READ(PIPECONF(intel_crtc->pipe)) & PIPECONF_ENABLE;
6414
6415        if (intel_crtc->config.double_wide)
6416                pipeconf |= PIPECONF_DOUBLE_WIDE;
6417
6418        /* only g4x and later have fancy bpc/dither controls */
6419        if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
6420                /* Bspec claims that we can't use dithering for 30bpp pipes. */
6421                if (intel_crtc->config.dither && intel_crtc->config.pipe_bpp != 30)
6422                        pipeconf |= PIPECONF_DITHER_EN |
6423                                    PIPECONF_DITHER_TYPE_SP;
6424
6425                switch (intel_crtc->config.pipe_bpp) {
6426                case 18:
6427                        pipeconf |= PIPECONF_6BPC;
6428                        break;
6429                case 24:
6430                        pipeconf |= PIPECONF_8BPC;
6431                        break;
6432                case 30:
6433                        pipeconf |= PIPECONF_10BPC;
6434                        break;
6435                default:
6436                        /* Case prevented by intel_choose_pipe_bpp_dither. */
6437                        BUG();
6438                }
6439        }
6440
6441        if (HAS_PIPE_CXSR(dev)) {
6442                if (intel_crtc->lowfreq_avail) {
6443                        DRM_DEBUG_KMS("enabling CxSR downclocking\n");
6444                        pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
6445                } else {
6446                        DRM_DEBUG_KMS("disabling CxSR downclocking\n");
6447                }
6448        }
6449
6450        if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) {
6451                if (INTEL_INFO(dev)->gen < 4 ||
6452                    intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_SDVO))
6453                        pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
6454                else
6455                        pipeconf |= PIPECONF_INTERLACE_W_SYNC_SHIFT;
6456        } else
6457                pipeconf |= PIPECONF_PROGRESSIVE;
6458
6459        if (IS_VALLEYVIEW(dev) && intel_crtc->config.limited_color_range)
6460                pipeconf |= PIPECONF_COLOR_RANGE_SELECT;
6461
6462        I915_WRITE(PIPECONF(intel_crtc->pipe), pipeconf);
6463        POSTING_READ(PIPECONF(intel_crtc->pipe));
6464}
6465
6466static int i9xx_crtc_compute_clock(struct intel_crtc *crtc)
6467{
6468        struct drm_device *dev = crtc->base.dev;
6469        struct drm_i915_private *dev_priv = dev->dev_private;
6470        int refclk, num_connectors = 0;
6471        intel_clock_t clock, reduced_clock;
6472        bool ok, has_reduced_clock = false;
6473        bool is_lvds = false, is_dsi = false;
6474        struct intel_encoder *encoder;
6475        const intel_limit_t *limit;
6476
6477        for_each_intel_encoder(dev, encoder) {
6478                if (encoder->new_crtc != crtc)
6479                        continue;
6480
6481                switch (encoder->type) {
6482                case INTEL_OUTPUT_LVDS:
6483                        is_lvds = true;
6484                        break;
6485                case INTEL_OUTPUT_DSI:
6486                        is_dsi = true;
6487                        break;
6488                default:
6489                        break;
6490                }
6491
6492                num_connectors++;
6493        }
6494
6495        if (is_dsi)
6496                return 0;
6497
6498        if (!crtc->new_config->clock_set) {
6499                refclk = i9xx_get_refclk(crtc, num_connectors);
6500
6501                /*
6502                 * Returns a set of divisors for the desired target clock with
6503                 * the given refclk, or FALSE.  The returned values represent
6504                 * the clock equation: reflck * (5 * (m1 + 2) + (m2 + 2)) / (n +
6505                 * 2) / p1 / p2.
6506                 */
6507                limit = intel_limit(crtc, refclk);
6508                ok = dev_priv->display.find_dpll(limit, crtc,
6509                                                 crtc->new_config->port_clock,
6510                                                 refclk, NULL, &clock);
6511                if (!ok) {
6512                        DRM_ERROR("Couldn't find PLL settings for mode!\n");
6513                        return -EINVAL;
6514                }
6515
6516                if (is_lvds && dev_priv->lvds_downclock_avail) {
6517                        /*
6518                         * Ensure we match the reduced clock's P to the target
6519                         * clock.  If the clocks don't match, we can't switch
6520                         * the display clock by using the FP0/FP1. In such case
6521                         * we will disable the LVDS downclock feature.
6522                         */
6523                        has_reduced_clock =
6524                                dev_priv->display.find_dpll(limit, crtc,
6525                                                            dev_priv->lvds_downclock,
6526                                                            refclk, &clock,
6527                                                            &reduced_clock);
6528                }
6529                /* Compat-code for transition, will disappear. */
6530                crtc->new_config->dpll.n = clock.n;
6531                crtc->new_config->dpll.m1 = clock.m1;
6532                crtc->new_config->dpll.m2 = clock.m2;
6533                crtc->new_config->dpll.p1 = clock.p1;
6534                crtc->new_config->dpll.p2 = clock.p2;
6535        }
6536
6537        if (IS_GEN2(dev)) {
6538                i8xx_update_pll(crtc,
6539                                has_reduced_clock ? &reduced_clock : NULL,
6540                                num_connectors);
6541        } else if (IS_CHERRYVIEW(dev)) {
6542                chv_update_pll(crtc, crtc->new_config);
6543        } else if (IS_VALLEYVIEW(dev)) {
6544                vlv_update_pll(crtc, crtc->new_config);
6545        } else {
6546                i9xx_update_pll(crtc,
6547                                has_reduced_clock ? &reduced_clock : NULL,
6548                                num_connectors);
6549        }
6550
6551        return 0;
6552}
6553
6554static void i9xx_get_pfit_config(struct intel_crtc *crtc,
6555                                 struct intel_crtc_config *pipe_config)
6556{
6557        struct drm_device *dev = crtc->base.dev;
6558        struct drm_i915_private *dev_priv = dev->dev_private;
6559        uint32_t tmp;
6560
6561        if (INTEL_INFO(dev)->gen <= 3 && (IS_I830(dev) || !IS_MOBILE(dev)))
6562                return;
6563
6564        tmp = I915_READ(PFIT_CONTROL);
6565        if (!(tmp & PFIT_ENABLE))
6566                return;
6567
6568        /* Check whether the pfit is attached to our pipe. */
6569        if (INTEL_INFO(dev)->gen < 4) {
6570                if (crtc->pipe != PIPE_B)
6571                        return;
6572        } else {
6573                if ((tmp & PFIT_PIPE_MASK) != (crtc->pipe << PFIT_PIPE_SHIFT))
6574                        return;
6575        }
6576
6577        pipe_config->gmch_pfit.control = tmp;
6578        pipe_config->gmch_pfit.pgm_ratios = I915_READ(PFIT_PGM_RATIOS);
6579        if (INTEL_INFO(dev)->gen < 5)
6580                pipe_config->gmch_pfit.lvds_border_bits =
6581                        I915_READ(LVDS) & LVDS_BORDER_ENABLE;
6582}
6583
6584static void vlv_crtc_clock_get(struct intel_crtc *crtc,
6585                               struct intel_crtc_config *pipe_config)
6586{
6587        struct drm_device *dev = crtc->base.dev;
6588        struct drm_i915_private *dev_priv = dev->dev_private;
6589        int pipe = pipe_config->cpu_transcoder;
6590        intel_clock_t clock;
6591        u32 mdiv;
6592        int refclk = 100000;
6593
6594        /* In case of MIPI DPLL will not even be used */
6595        if (!(pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE))
6596                return;
6597
6598        mutex_lock(&dev_priv->dpio_lock);
6599        mdiv = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW3(pipe));
6600        mutex_unlock(&dev_priv->dpio_lock);
6601
6602        clock.m1 = (mdiv >> DPIO_M1DIV_SHIFT) & 7;
6603        clock.m2 = mdiv & DPIO_M2DIV_MASK;
6604        clock.n = (mdiv >> DPIO_N_SHIFT) & 0xf;
6605        clock.p1 = (mdiv >> DPIO_P1_SHIFT) & 7;
6606        clock.p2 = (mdiv >> DPIO_P2_SHIFT) & 0x1f;
6607
6608        vlv_clock(refclk, &clock);
6609
6610        /* clock.dot is the fast clock */
6611        pipe_config->port_clock = clock.dot / 5;
6612}
6613
6614static void i9xx_get_plane_config(struct intel_crtc *crtc,
6615                                  struct intel_plane_config *plane_config)
6616{
6617        struct drm_device *dev = crtc->base.dev;
6618        struct drm_i915_private *dev_priv = dev->dev_private;
6619        u32 val, base, offset;
6620        int pipe = crtc->pipe, plane = crtc->plane;
6621        int fourcc, pixel_format;
6622        int aligned_height;
6623
6624        crtc->base.primary->fb = kzalloc(sizeof(struct intel_framebuffer), GFP_KERNEL);
6625        if (!crtc->base.primary->fb) {
6626                DRM_DEBUG_KMS("failed to alloc fb\n");
6627                return;
6628        }
6629
6630        val = I915_READ(DSPCNTR(plane));
6631
6632        if (INTEL_INFO(dev)->gen >= 4)
6633                if (val & DISPPLANE_TILED)
6634                        plane_config->tiled = true;
6635
6636        pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
6637        fourcc = intel_format_to_fourcc(pixel_format);
6638        crtc->base.primary->fb->pixel_format = fourcc;
6639        crtc->base.primary->fb->bits_per_pixel =
6640                drm_format_plane_cpp(fourcc, 0) * 8;
6641
6642        if (INTEL_INFO(dev)->gen >= 4) {
6643                if (plane_config->tiled)
6644                        offset = I915_READ(DSPTILEOFF(plane));
6645                else
6646                        offset = I915_READ(DSPLINOFF(plane));
6647                base = I915_READ(DSPSURF(plane)) & 0xfffff000;
6648        } else {
6649                base = I915_READ(DSPADDR(plane));
6650        }
6651        plane_config->base = base;
6652
6653        val = I915_READ(PIPESRC(pipe));
6654        crtc->base.primary->fb->width = ((val >> 16) & 0xfff) + 1;
6655        crtc->base.primary->fb->height = ((val >> 0) & 0xfff) + 1;
6656
6657        val = I915_READ(DSPSTRIDE(pipe));
6658        crtc->base.primary->fb->pitches[0] = val & 0xffffffc0;
6659
6660        aligned_height = intel_align_height(dev, crtc->base.primary->fb->height,
6661                                            plane_config->tiled);
6662
6663        plane_config->size = PAGE_ALIGN(crtc->base.primary->fb->pitches[0] *
6664                                        aligned_height);
6665
6666        DRM_DEBUG_KMS("pipe/plane %d/%d with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
6667                      pipe, plane, crtc->base.primary->fb->width,
6668                      crtc->base.primary->fb->height,
6669                      crtc->base.primary->fb->bits_per_pixel, base,
6670                      crtc->base.primary->fb->pitches[0],
6671                      plane_config->size);
6672
6673}
6674
6675static void chv_crtc_clock_get(struct intel_crtc *crtc,
6676                               struct intel_crtc_config *pipe_config)
6677{
6678        struct drm_device *dev = crtc->base.dev;
6679        struct drm_i915_private *dev_priv = dev->dev_private;
6680        int pipe = pipe_config->cpu_transcoder;
6681        enum dpio_channel port = vlv_pipe_to_channel(pipe);
6682        intel_clock_t clock;
6683        u32 cmn_dw13, pll_dw0, pll_dw1, pll_dw2;
6684        int refclk = 100000;
6685
6686        mutex_lock(&dev_priv->dpio_lock);
6687        cmn_dw13 = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW13(port));
6688        pll_dw0 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW0(port));
6689        pll_dw1 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW1(port));
6690        pll_dw2 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW2(port));
6691        mutex_unlock(&dev_priv->dpio_lock);
6692
6693        clock.m1 = (pll_dw1 & 0x7) == DPIO_CHV_M1_DIV_BY_2 ? 2 : 0;
6694        clock.m2 = ((pll_dw0 & 0xff) << 22) | (pll_dw2 & 0x3fffff);
6695        clock.n = (pll_dw1 >> DPIO_CHV_N_DIV_SHIFT) & 0xf;
6696        clock.p1 = (cmn_dw13 >> DPIO_CHV_P1_DIV_SHIFT) & 0x7;
6697        clock.p2 = (cmn_dw13 >> DPIO_CHV_P2_DIV_SHIFT) & 0x1f;
6698
6699        chv_clock(refclk, &clock);
6700
6701        /* clock.dot is the fast clock */
6702        pipe_config->port_clock = clock.dot / 5;
6703}
6704
6705static bool i9xx_get_pipe_config(struct intel_crtc *crtc,
6706                                 struct intel_crtc_config *pipe_config)
6707{
6708        struct drm_device *dev = crtc->base.dev;
6709        struct drm_i915_private *dev_priv = dev->dev_private;
6710        uint32_t tmp;
6711
6712        if (!intel_display_power_is_enabled(dev_priv,
6713                                            POWER_DOMAIN_PIPE(crtc->pipe)))
6714                return false;
6715
6716        pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
6717        pipe_config->shared_dpll = DPLL_ID_PRIVATE;
6718
6719        tmp = I915_READ(PIPECONF(crtc->pipe));
6720        if (!(tmp & PIPECONF_ENABLE))
6721                return false;
6722
6723        if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
6724                switch (tmp & PIPECONF_BPC_MASK) {
6725                case PIPECONF_6BPC:
6726                        pipe_config->pipe_bpp = 18;
6727                        break;
6728                case PIPECONF_8BPC:
6729                        pipe_config->pipe_bpp = 24;
6730                        break;
6731                case PIPECONF_10BPC:
6732                        pipe_config->pipe_bpp = 30;
6733                        break;
6734                default:
6735                        break;
6736                }
6737        }
6738
6739        if (IS_VALLEYVIEW(dev) && (tmp & PIPECONF_COLOR_RANGE_SELECT))
6740                pipe_config->limited_color_range = true;
6741
6742        if (INTEL_INFO(dev)->gen < 4)
6743                pipe_config->double_wide = tmp & PIPECONF_DOUBLE_WIDE;
6744
6745        intel_get_pipe_timings(crtc, pipe_config);
6746
6747        i9xx_get_pfit_config(crtc, pipe_config);
6748
6749        if (INTEL_INFO(dev)->gen >= 4) {
6750                tmp = I915_READ(DPLL_MD(crtc->pipe));
6751                pipe_config->pixel_multiplier =
6752                        ((tmp & DPLL_MD_UDI_MULTIPLIER_MASK)
6753                         >> DPLL_MD_UDI_MULTIPLIER_SHIFT) + 1;
6754                pipe_config->dpll_hw_state.dpll_md = tmp;
6755        } else if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
6756                tmp = I915_READ(DPLL(crtc->pipe));
6757                pipe_config->pixel_multiplier =
6758                        ((tmp & SDVO_MULTIPLIER_MASK)
6759                         >> SDVO_MULTIPLIER_SHIFT_HIRES) + 1;
6760        } else {
6761                /* Note that on i915G/GM the pixel multiplier is in the sdvo
6762                 * port and will be fixed up in the encoder->get_config
6763                 * function. */
6764                pipe_config->pixel_multiplier = 1;
6765        }
6766        pipe_config->dpll_hw_state.dpll = I915_READ(DPLL(crtc->pipe));
6767        if (!IS_VALLEYVIEW(dev)) {
6768                /*
6769                 * DPLL_DVO_2X_MODE must be enabled for both DPLLs
6770                 * on 830. Filter it out here so that we don't
6771                 * report errors due to that.
6772                 */
6773                if (IS_I830(dev))
6774                        pipe_config->dpll_hw_state.dpll &= ~DPLL_DVO_2X_MODE;
6775
6776                pipe_config->dpll_hw_state.fp0 = I915_READ(FP0(crtc->pipe));
6777                pipe_config->dpll_hw_state.fp1 = I915_READ(FP1(crtc->pipe));
6778        } else {
6779                /* Mask out read-only status bits. */
6780                pipe_config->dpll_hw_state.dpll &= ~(DPLL_LOCK_VLV |
6781                                                     DPLL_PORTC_READY_MASK |
6782                                                     DPLL_PORTB_READY_MASK);
6783        }
6784
6785        if (IS_CHERRYVIEW(dev))
6786                chv_crtc_clock_get(crtc, pipe_config);
6787        else if (IS_VALLEYVIEW(dev))
6788                vlv_crtc_clock_get(crtc, pipe_config);
6789        else
6790                i9xx_crtc_clock_get(crtc, pipe_config);
6791
6792        return true;
6793}
6794
6795static void ironlake_init_pch_refclk(struct drm_device *dev)
6796{
6797        struct drm_i915_private *dev_priv = dev->dev_private;
6798        struct intel_encoder *encoder;
6799        u32 val, final;
6800        bool has_lvds = false;
6801        bool has_cpu_edp = false;
6802        bool has_panel = false;
6803        bool has_ck505 = false;
6804        bool can_ssc = false;
6805
6806        /* We need to take the global config into account */
6807        for_each_intel_encoder(dev, encoder) {
6808                switch (encoder->type) {
6809                case INTEL_OUTPUT_LVDS:
6810                        has_panel = true;
6811                        has_lvds = true;
6812                        break;
6813                case INTEL_OUTPUT_EDP:
6814                        has_panel = true;
6815                        if (enc_to_dig_port(&encoder->base)->port == PORT_A)
6816                                has_cpu_edp = true;
6817                        break;
6818                default:
6819                        break;
6820                }
6821        }
6822
6823        if (HAS_PCH_IBX(dev)) {
6824                has_ck505 = dev_priv->vbt.display_clock_mode;
6825                can_ssc = has_ck505;
6826        } else {
6827                has_ck505 = false;
6828                can_ssc = true;
6829        }
6830
6831        DRM_DEBUG_KMS("has_panel %d has_lvds %d has_ck505 %d\n",
6832                      has_panel, has_lvds, has_ck505);
6833
6834        /* Ironlake: try to setup display ref clock before DPLL
6835         * enabling. This is only under driver's control after
6836         * PCH B stepping, previous chipset stepping should be
6837         * ignoring this setting.
6838         */
6839        val = I915_READ(PCH_DREF_CONTROL);
6840
6841        /* As we must carefully and slowly disable/enable each source in turn,
6842         * compute the final state we want first and check if we need to
6843         * make any changes at all.
6844         */
6845        final = val;
6846        final &= ~DREF_NONSPREAD_SOURCE_MASK;
6847        if (has_ck505)
6848                final |= DREF_NONSPREAD_CK505_ENABLE;
6849        else
6850                final |= DREF_NONSPREAD_SOURCE_ENABLE;
6851
6852        final &= ~DREF_SSC_SOURCE_MASK;
6853        final &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
6854        final &= ~DREF_SSC1_ENABLE;
6855
6856        if (has_panel) {
6857                final |= DREF_SSC_SOURCE_ENABLE;
6858
6859                if (intel_panel_use_ssc(dev_priv) && can_ssc)
6860                        final |= DREF_SSC1_ENABLE;
6861
6862                if (has_cpu_edp) {
6863                        if (intel_panel_use_ssc(dev_priv) && can_ssc)
6864                                final |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
6865                        else
6866                                final |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
6867                } else
6868                        final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
6869        } else {
6870                final |= DREF_SSC_SOURCE_DISABLE;
6871                final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
6872        }
6873
6874        if (final == val)
6875                return;
6876
6877        /* Always enable nonspread source */
6878        val &= ~DREF_NONSPREAD_SOURCE_MASK;
6879
6880        if (has_ck505)
6881                val |= DREF_NONSPREAD_CK505_ENABLE;
6882        else
6883                val |= DREF_NONSPREAD_SOURCE_ENABLE;
6884
6885        if (has_panel) {
6886                val &= ~DREF_SSC_SOURCE_MASK;
6887                val |= DREF_SSC_SOURCE_ENABLE;
6888
6889                /* SSC must be turned on before enabling the CPU output  */
6890                if (intel_panel_use_ssc(dev_priv) && can_ssc) {
6891                        DRM_DEBUG_KMS("Using SSC on panel\n");
6892                        val |= DREF_SSC1_ENABLE;
6893                } else
6894                        val &= ~DREF_SSC1_ENABLE;
6895
6896                /* Get SSC going before enabling the outputs */
6897                I915_WRITE(PCH_DREF_CONTROL, val);
6898                POSTING_READ(PCH_DREF_CONTROL);
6899                udelay(200);
6900
6901                val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
6902
6903                /* Enable CPU source on CPU attached eDP */
6904                if (has_cpu_edp) {
6905                        if (intel_panel_use_ssc(dev_priv) && can_ssc) {
6906                                DRM_DEBUG_KMS("Using SSC on eDP\n");
6907                                val |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
6908                        } else
6909                                val |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
6910                } else
6911                        val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
6912
6913                I915_WRITE(PCH_DREF_CONTROL, val);
6914                POSTING_READ(PCH_DREF_CONTROL);
6915                udelay(200);
6916        } else {
6917                DRM_DEBUG_KMS("Disabling SSC entirely\n");
6918
6919                val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
6920
6921                /* Turn off CPU output */
6922                val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
6923
6924                I915_WRITE(PCH_DREF_CONTROL, val);
6925                POSTING_READ(PCH_DREF_CONTROL);
6926                udelay(200);
6927
6928                /* Turn off the SSC source */
6929                val &= ~DREF_SSC_SOURCE_MASK;
6930                val |= DREF_SSC_SOURCE_DISABLE;
6931
6932                /* Turn off SSC1 */
6933                val &= ~DREF_SSC1_ENABLE;
6934
6935                I915_WRITE(PCH_DREF_CONTROL, val);
6936                POSTING_READ(PCH_DREF_CONTROL);
6937                udelay(200);
6938        }
6939
6940        BUG_ON(val != final);
6941}
6942
6943static void lpt_reset_fdi_mphy(struct drm_i915_private *dev_priv)
6944{
6945        uint32_t tmp;
6946
6947        tmp = I915_READ(SOUTH_CHICKEN2);
6948        tmp |= FDI_MPHY_IOSFSB_RESET_CTL;
6949        I915_WRITE(SOUTH_CHICKEN2, tmp);
6950
6951        if (wait_for_atomic_us(I915_READ(SOUTH_CHICKEN2) &
6952                               FDI_MPHY_IOSFSB_RESET_STATUS, 100))
6953                DRM_ERROR("FDI mPHY reset assert timeout\n");
6954
6955        tmp = I915_READ(SOUTH_CHICKEN2);
6956        tmp &= ~FDI_MPHY_IOSFSB_RESET_CTL;
6957        I915_WRITE(SOUTH_CHICKEN2, tmp);
6958
6959        if (wait_for_atomic_us((I915_READ(SOUTH_CHICKEN2) &
6960                                FDI_MPHY_IOSFSB_RESET_STATUS) == 0, 100))
6961                DRM_ERROR("FDI mPHY reset de-assert timeout\n");
6962}
6963
6964/* WaMPhyProgramming:hsw */
6965static void lpt_program_fdi_mphy(struct drm_i915_private *dev_priv)
6966{
6967        uint32_t tmp;
6968
6969        tmp = intel_sbi_read(dev_priv, 0x8008, SBI_MPHY);
6970        tmp &= ~(0xFF << 24);
6971        tmp |= (0x12 << 24);
6972        intel_sbi_write(dev_priv, 0x8008, tmp, SBI_MPHY);
6973
6974        tmp = intel_sbi_read(dev_priv, 0x2008, SBI_MPHY);
6975        tmp |= (1 << 11);
6976        intel_sbi_write(dev_priv, 0x2008, tmp, SBI_MPHY);
6977
6978        tmp = intel_sbi_read(dev_priv, 0x2108, SBI_MPHY);
6979        tmp |= (1 << 11);
6980        intel_sbi_write(dev_priv, 0x2108, tmp, SBI_MPHY);
6981
6982        tmp = intel_sbi_read(dev_priv, 0x206C, SBI_MPHY);
6983        tmp |= (1 << 24) | (1 << 21) | (1 << 18);
6984        intel_sbi_write(dev_priv, 0x206C, tmp, SBI_MPHY);
6985
6986        tmp = intel_sbi_read(dev_priv, 0x216C, SBI_MPHY);
6987        tmp |= (1 << 24) | (1 << 21) | (1 << 18);
6988        intel_sbi_write(dev_priv, 0x216C, tmp, SBI_MPHY);
6989
6990        tmp = intel_sbi_read(dev_priv, 0x2080, SBI_MPHY);
6991        tmp &= ~(7 << 13);
6992        tmp |= (5 << 13);
6993        intel_sbi_write(dev_priv, 0x2080, tmp, SBI_MPHY);
6994
6995        tmp = intel_sbi_read(dev_priv, 0x2180, SBI_MPHY);
6996        tmp &= ~(7 << 13);
6997        tmp |= (5 << 13);
6998        intel_sbi_write(dev_priv, 0x2180, tmp, SBI_MPHY);
6999
7000        tmp = intel_sbi_read(dev_priv, 0x208C, SBI_MPHY);
7001        tmp &= ~0xFF;
7002        tmp |= 0x1C;
7003        intel_sbi_write(dev_priv, 0x208C, tmp, SBI_MPHY);
7004
7005        tmp = intel_sbi_read(dev_priv, 0x218C, SBI_MPHY);
7006        tmp &= ~0xFF;
7007        tmp |= 0x1C;
7008        intel_sbi_write(dev_priv, 0x218C, tmp, SBI_MPHY);
7009
7010        tmp = intel_sbi_read(dev_priv, 0x2098, SBI_MPHY);
7011        tmp &= ~(0xFF << 16);
7012        tmp |= (0x1C << 16);
7013        intel_sbi_write(dev_priv, 0x2098, tmp, SBI_MPHY);
7014
7015        tmp = intel_sbi_read(dev_priv, 0x2198, SBI_MPHY);
7016        tmp &= ~(0xFF << 16);
7017        tmp |= (0x1C << 16);
7018        intel_sbi_write(dev_priv, 0x2198, tmp, SBI_MPHY);
7019
7020        tmp = intel_sbi_read(dev_priv, 0x20C4, SBI_MPHY);
7021        tmp |= (1 << 27);
7022        intel_sbi_write(dev_priv, 0x20C4, tmp, SBI_MPHY);
7023
7024        tmp = intel_sbi_read(dev_priv, 0x21C4, SBI_MPHY);
7025        tmp |= (1 << 27);
7026        intel_sbi_write(dev_priv, 0x21C4, tmp, SBI_MPHY);
7027
7028        tmp = intel_sbi_read(dev_priv, 0x20EC, SBI_MPHY);
7029        tmp &= ~(0xF << 28);
7030        tmp |= (4 << 28);
7031        intel_sbi_write(dev_priv, 0x20EC, tmp, SBI_MPHY);
7032
7033        tmp = intel_sbi_read(dev_priv, 0x21EC, SBI_MPHY);
7034        tmp &= ~(0xF << 28);
7035        tmp |= (4 << 28);
7036        intel_sbi_write(dev_priv, 0x21EC, tmp, SBI_MPHY);
7037}
7038
7039/* Implements 3 different sequences from BSpec chapter "Display iCLK
7040 * Programming" based on the parameters passed:
7041 * - Sequence to enable CLKOUT_DP
7042 * - Sequence to enable CLKOUT_DP without spread
7043 * - Sequence to enable CLKOUT_DP for FDI usage and configure PCH FDI I/O
7044 */
7045static void lpt_enable_clkout_dp(struct drm_device *dev, bool with_spread,
7046                                 bool with_fdi)
7047{
7048        struct drm_i915_private *dev_priv = dev->dev_private;
7049        uint32_t reg, tmp;
7050
7051        if (WARN(with_fdi && !with_spread, "FDI requires downspread\n"))
7052                with_spread = true;
7053        if (WARN(dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE &&
7054                 with_fdi, "LP PCH doesn't have FDI\n"))
7055                with_fdi = false;
7056
7057        mutex_lock(&dev_priv->dpio_lock);
7058
7059        tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
7060        tmp &= ~SBI_SSCCTL_DISABLE;
7061        tmp |= SBI_SSCCTL_PATHALT;
7062        intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
7063
7064        udelay(24);
7065
7066        if (with_spread) {
7067                tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
7068                tmp &= ~SBI_SSCCTL_PATHALT;
7069                intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
7070
7071                if (with_fdi) {
7072                        lpt_reset_fdi_mphy(dev_priv);
7073                        lpt_program_fdi_mphy(dev_priv);
7074                }
7075        }
7076
7077        reg = (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) ?
7078               SBI_GEN0 : SBI_DBUFF0;
7079        tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
7080        tmp |= SBI_GEN0_CFG_BUFFENABLE_DISABLE;
7081        intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
7082
7083        mutex_unlock(&dev_priv->dpio_lock);
7084}
7085
7086/* Sequence to disable CLKOUT_DP */
7087static void lpt_disable_clkout_dp(struct drm_device *dev)
7088{
7089        struct drm_i915_private *dev_priv = dev->dev_private;
7090        uint32_t reg, tmp;
7091
7092        mutex_lock(&dev_priv->dpio_lock);
7093
7094        reg = (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) ?
7095               SBI_GEN0 : SBI_DBUFF0;
7096        tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
7097        tmp &= ~SBI_GEN0_CFG_BUFFENABLE_DISABLE;
7098        intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
7099
7100        tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
7101        if (!(tmp & SBI_SSCCTL_DISABLE)) {
7102                if (!(tmp & SBI_SSCCTL_PATHALT)) {
7103                        tmp |= SBI_SSCCTL_PATHALT;
7104                        intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
7105                        udelay(32);
7106                }
7107                tmp |= SBI_SSCCTL_DISABLE;
7108                intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
7109        }
7110
7111        mutex_unlock(&dev_priv->dpio_lock);
7112}
7113
7114static void lpt_init_pch_refclk(struct drm_device *dev)
7115{
7116        struct intel_encoder *encoder;
7117        bool has_vga = false;
7118
7119        for_each_intel_encoder(dev, encoder) {
7120                switch (encoder->type) {
7121                case INTEL_OUTPUT_ANALOG:
7122                        has_vga = true;
7123                        break;
7124                default:
7125                        break;
7126                }
7127        }
7128
7129        if (has_vga)
7130                lpt_enable_clkout_dp(dev, true, true);
7131        else
7132                lpt_disable_clkout_dp(dev);
7133}
7134
7135/*
7136 * Initialize reference clocks when the driver loads
7137 */
7138void intel_init_pch_refclk(struct drm_device *dev)
7139{
7140        if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
7141                ironlake_init_pch_refclk(dev);
7142        else if (HAS_PCH_LPT(dev))
7143                lpt_init_pch_refclk(dev);
7144}
7145
7146static int ironlake_get_refclk(struct drm_crtc *crtc)
7147{
7148        struct drm_device *dev = crtc->dev;
7149        struct drm_i915_private *dev_priv = dev->dev_private;
7150        struct intel_encoder *encoder;
7151        int num_connectors = 0;
7152        bool is_lvds = false;
7153
7154        for_each_intel_encoder(dev, encoder) {
7155                if (encoder->new_crtc != to_intel_crtc(crtc))
7156                        continue;
7157
7158                switch (encoder->type) {
7159                case INTEL_OUTPUT_LVDS:
7160                        is_lvds = true;
7161                        break;
7162                default:
7163                        break;
7164                }
7165                num_connectors++;
7166        }
7167
7168        if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
7169                DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n",
7170                              dev_priv->vbt.lvds_ssc_freq);
7171                return dev_priv->vbt.lvds_ssc_freq;
7172        }
7173
7174        return 120000;
7175}
7176
7177static void ironlake_set_pipeconf(struct drm_crtc *crtc)
7178{
7179        struct drm_i915_private *dev_priv = crtc->dev->dev_private;
7180        struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7181        int pipe = intel_crtc->pipe;
7182        uint32_t val;
7183
7184        val = 0;
7185
7186        switch (intel_crtc->config.pipe_bpp) {
7187        case 18:
7188                val |= PIPECONF_6BPC;
7189                break;
7190        case 24:
7191                val |= PIPECONF_8BPC;
7192                break;
7193        case 30:
7194                val |= PIPECONF_10BPC;
7195                break;
7196        case 36:
7197                val |= PIPECONF_12BPC;
7198                break;
7199        default:
7200                /* Case prevented by intel_choose_pipe_bpp_dither. */
7201                BUG();
7202        }
7203
7204        if (intel_crtc->config.dither)
7205                val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
7206
7207        if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
7208                val |= PIPECONF_INTERLACED_ILK;
7209        else
7210                val |= PIPECONF_PROGRESSIVE;
7211
7212        if (intel_crtc->config.limited_color_range)
7213                val |= PIPECONF_COLOR_RANGE_SELECT;
7214
7215        I915_WRITE(PIPECONF(pipe), val);
7216        POSTING_READ(PIPECONF(pipe));
7217}
7218
7219/*
7220 * Set up the pipe CSC unit.
7221 *
7222 * Currently only full range RGB to limited range RGB conversion
7223 * is supported, but eventually this should handle various
7224 * RGB<->YCbCr scenarios as well.
7225 */
7226static void intel_set_pipe_csc(struct drm_crtc *crtc)
7227{
7228        struct drm_device *dev = crtc->dev;
7229        struct drm_i915_private *dev_priv = dev->dev_private;
7230        struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7231        int pipe = intel_crtc->pipe;
7232        uint16_t coeff = 0x7800; /* 1.0 */
7233
7234        /*
7235         * TODO: Check what kind of values actually come out of the pipe
7236         * with these coeff/postoff values and adjust to get the best
7237         * accuracy. Perhaps we even need to take the bpc value into
7238         * consideration.
7239         */
7240
7241        if (intel_crtc->config.limited_color_range)
7242                coeff = ((235 - 16) * (1 << 12) / 255) & 0xff8; /* 0.xxx... */
7243
7244        /*
7245         * GY/GU and RY/RU should be the other way around according
7246         * to BSpec, but reality doesn't agree. Just set them up in
7247         * a way that results in the correct picture.
7248         */
7249        I915_WRITE(PIPE_CSC_COEFF_RY_GY(pipe), coeff << 16);
7250        I915_WRITE(PIPE_CSC_COEFF_BY(pipe), 0);
7251
7252        I915_WRITE(PIPE_CSC_COEFF_RU_GU(pipe), coeff);
7253        I915_WRITE(PIPE_CSC_COEFF_BU(pipe), 0);
7254
7255        I915_WRITE(PIPE_CSC_COEFF_RV_GV(pipe), 0);
7256        I915_WRITE(PIPE_CSC_COEFF_BV(pipe), coeff << 16);
7257
7258        I915_WRITE(PIPE_CSC_PREOFF_HI(pipe), 0);
7259        I915_WRITE(PIPE_CSC_PREOFF_ME(pipe), 0);
7260        I915_WRITE(PIPE_CSC_PREOFF_LO(pipe), 0);
7261
7262        if (INTEL_INFO(dev)->gen > 6) {
7263                uint16_t postoff = 0;
7264
7265                if (intel_crtc->config.limited_color_range)
7266                        postoff = (16 * (1 << 12) / 255) & 0x1fff;
7267
7268                I915_WRITE(PIPE_CSC_POSTOFF_HI(pipe), postoff);
7269                I915_WRITE(PIPE_CSC_POSTOFF_ME(pipe), postoff);
7270                I915_WRITE(PIPE_CSC_POSTOFF_LO(pipe), postoff);
7271
7272                I915_WRITE(PIPE_CSC_MODE(pipe), 0);
7273        } else {
7274                uint32_t mode = CSC_MODE_YUV_TO_RGB;
7275
7276                if (intel_crtc->config.limited_color_range)
7277                        mode |= CSC_BLACK_SCREEN_OFFSET;
7278
7279                I915_WRITE(PIPE_CSC_MODE(pipe), mode);
7280        }
7281}
7282
7283static void haswell_set_pipeconf(struct drm_crtc *crtc)
7284{
7285        struct drm_device *dev = crtc->dev;
7286        struct drm_i915_private *dev_priv = dev->dev_private;
7287        struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7288        enum pipe pipe = intel_crtc->pipe;
7289        enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
7290        uint32_t val;
7291
7292        val = 0;
7293
7294        if (IS_HASWELL(dev) && intel_crtc->config.dither)
7295                val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
7296
7297        if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
7298                val |= PIPECONF_INTERLACED_ILK;
7299        else
7300                val |= PIPECONF_PROGRESSIVE;
7301
7302        I915_WRITE(PIPECONF(cpu_transcoder), val);
7303        POSTING_READ(PIPECONF(cpu_transcoder));
7304
7305        I915_WRITE(GAMMA_MODE(intel_crtc->pipe), GAMMA_MODE_MODE_8BIT);
7306        POSTING_READ(GAMMA_MODE(intel_crtc->pipe));
7307
7308        if (IS_BROADWELL(dev) || INTEL_INFO(dev)->gen >= 9) {
7309                val = 0;
7310
7311                switch (intel_crtc->config.pipe_bpp) {
7312                case 18:
7313                        val |= PIPEMISC_DITHER_6_BPC;
7314                        break;
7315                case 24:
7316                        val |= PIPEMISC_DITHER_8_BPC;
7317                        break;
7318                case 30:
7319                        val |= PIPEMISC_DITHER_10_BPC;
7320                        break;
7321                case 36:
7322                        val |= PIPEMISC_DITHER_12_BPC;
7323                        break;
7324                default:
7325                        /* Case prevented by pipe_config_set_bpp. */
7326                        BUG();
7327                }
7328
7329                if (intel_crtc->config.dither)
7330                        val |= PIPEMISC_DITHER_ENABLE | PIPEMISC_DITHER_TYPE_SP;
7331
7332                I915_WRITE(PIPEMISC(pipe), val);
7333        }
7334}
7335
7336static bool ironlake_compute_clocks(struct drm_crtc *crtc,
7337                                    intel_clock_t *clock,
7338                                    bool *has_reduced_clock,
7339                                    intel_clock_t *reduced_clock)
7340{
7341        struct drm_device *dev = crtc->dev;
7342        struct drm_i915_private *dev_priv = dev->dev_private;
7343        struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7344        int refclk;
7345        const intel_limit_t *limit;
7346        bool ret, is_lvds = false;
7347
7348        is_lvds = intel_pipe_will_have_type(intel_crtc, INTEL_OUTPUT_LVDS);
7349
7350        refclk = ironlake_get_refclk(crtc);
7351
7352        /*
7353         * Returns a set of divisors for the desired target clock with the given
7354         * refclk, or FALSE.  The returned values represent the clock equation:
7355         * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
7356         */
7357        limit = intel_limit(intel_crtc, refclk);
7358        ret = dev_priv->display.find_dpll(limit, intel_crtc,
7359                                          intel_crtc->new_config->port_clock,
7360                                          refclk, NULL, clock);
7361        if (!ret)
7362                return false;
7363
7364        if (is_lvds && dev_priv->lvds_downclock_avail) {
7365                /*
7366                 * Ensure we match the reduced clock's P to the target clock.
7367                 * If the clocks don't match, we can't switch the display clock
7368                 * by using the FP0/FP1. In such case we will disable the LVDS
7369                 * downclock feature.
7370                */
7371                *has_reduced_clock =
7372                        dev_priv->display.find_dpll(limit, intel_crtc,
7373                                                    dev_priv->lvds_downclock,
7374                                                    refclk, clock,
7375                                                    reduced_clock);
7376        }
7377
7378        return true;
7379}
7380
7381int ironlake_get_lanes_required(int target_clock, int link_bw, int bpp)
7382{
7383        /*
7384         * Account for spread spectrum to avoid
7385         * oversubscribing the link. Max center spread
7386         * is 2.5%; use 5% for safety's sake.
7387         */
7388        u32 bps = target_clock * bpp * 21 / 20;
7389        return DIV_ROUND_UP(bps, link_bw * 8);
7390}
7391
7392static bool ironlake_needs_fb_cb_tune(struct dpll *dpll, int factor)
7393{
7394        return i9xx_dpll_compute_m(dpll) < factor * dpll->n;
7395}
7396
7397static uint32_t ironlake_compute_dpll(struct intel_crtc *intel_crtc,
7398                                      u32 *fp,
7399                                      intel_clock_t *reduced_clock, u32 *fp2)
7400{
7401        struct drm_crtc *crtc = &intel_crtc->base;
7402        struct drm_device *dev = crtc->dev;
7403        struct drm_i915_private *dev_priv = dev->dev_private;
7404        struct intel_encoder *intel_encoder;
7405        uint32_t dpll;
7406        int factor, num_connectors = 0;
7407        bool is_lvds = false, is_sdvo = false;
7408
7409        for_each_intel_encoder(dev, intel_encoder) {
7410                if (intel_encoder->new_crtc != to_intel_crtc(crtc))
7411                        continue;
7412
7413                switch (intel_encoder->type) {
7414                case INTEL_OUTPUT_LVDS:
7415                        is_lvds = true;
7416                        break;
7417                case INTEL_OUTPUT_SDVO:
7418                case INTEL_OUTPUT_HDMI:
7419                        is_sdvo = true;
7420                        break;
7421                default:
7422                        break;
7423                }
7424
7425                num_connectors++;
7426        }
7427
7428        /* Enable autotuning of the PLL clock (if permissible) */
7429        factor = 21;
7430        if (is_lvds) {
7431                if ((intel_panel_use_ssc(dev_priv) &&
7432                     dev_priv->vbt.lvds_ssc_freq == 100000) ||
7433                    (HAS_PCH_IBX(dev) && intel_is_dual_link_lvds(dev)))
7434                        factor = 25;
7435        } else if (intel_crtc->new_config->sdvo_tv_clock)
7436                factor = 20;
7437
7438        if (ironlake_needs_fb_cb_tune(&intel_crtc->new_config->dpll, factor))
7439                *fp |= FP_CB_TUNE;
7440
7441        if (fp2 && (reduced_clock->m < factor * reduced_clock->n))
7442                *fp2 |= FP_CB_TUNE;
7443
7444        dpll = 0;
7445
7446        if (is_lvds)
7447                dpll |= DPLLB_MODE_LVDS;
7448        else
7449                dpll |= DPLLB_MODE_DAC_SERIAL;
7450
7451        dpll |= (intel_crtc->new_config->pixel_multiplier - 1)
7452                << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
7453
7454        if (is_sdvo)
7455                dpll |= DPLL_SDVO_HIGH_SPEED;
7456        if (intel_crtc->new_config->has_dp_encoder)
7457                dpll |= DPLL_SDVO_HIGH_SPEED;
7458
7459        /* compute bitmask from p1 value */
7460        dpll |= (1 << (intel_crtc->new_config->dpll.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
7461        /* also FPA1 */
7462        dpll |= (1 << (intel_crtc->new_config->dpll.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
7463
7464        switch (intel_crtc->new_config->dpll.p2) {
7465        case 5:
7466                dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
7467                break;
7468        case 7:
7469                dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
7470                break;
7471        case 10:
7472                dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
7473                break;
7474        case 14:
7475                dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
7476                break;
7477        }
7478
7479        if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
7480                dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
7481        else
7482                dpll |= PLL_REF_INPUT_DREFCLK;
7483
7484        return dpll | DPLL_VCO_ENABLE;
7485}
7486
7487static int ironlake_crtc_compute_clock(struct intel_crtc *crtc)
7488{
7489        struct drm_device *dev = crtc->base.dev;
7490        intel_clock_t clock, reduced_clock;
7491        u32 dpll = 0, fp = 0, fp2 = 0;
7492        bool ok, has_reduced_clock = false;
7493        bool is_lvds = false;
7494        struct intel_shared_dpll *pll;
7495
7496        is_lvds = intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS);
7497
7498        WARN(!(HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)),
7499             "Unexpected PCH type %d\n", INTEL_PCH_TYPE(dev));
7500
7501        ok = ironlake_compute_clocks(&crtc->base, &clock,
7502                                     &has_reduced_clock, &reduced_clock);
7503        if (!ok && !crtc->new_config->clock_set) {
7504                DRM_ERROR("Couldn't find PLL settings for mode!\n");
7505                return -EINVAL;
7506        }
7507        /* Compat-code for transition, will disappear. */
7508        if (!crtc->new_config->clock_set) {
7509                crtc->new_config->dpll.n = clock.n;
7510                crtc->new_config->dpll.m1 = clock.m1;
7511                crtc->new_config->dpll.m2 = clock.m2;
7512                crtc->new_config->dpll.p1 = clock.p1;
7513                crtc->new_config->dpll.p2 = clock.p2;
7514        }
7515
7516        /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
7517        if (crtc->new_config->has_pch_encoder) {
7518                fp = i9xx_dpll_compute_fp(&crtc->new_config->dpll);
7519                if (has_reduced_clock)
7520                        fp2 = i9xx_dpll_compute_fp(&reduced_clock);
7521
7522                dpll = ironlake_compute_dpll(crtc,
7523                                             &fp, &reduced_clock,
7524                                             has_reduced_clock ? &fp2 : NULL);
7525
7526                crtc->new_config->dpll_hw_state.dpll = dpll;
7527                crtc->new_config->dpll_hw_state.fp0 = fp;
7528                if (has_reduced_clock)
7529                        crtc->new_config->dpll_hw_state.fp1 = fp2;
7530                else
7531                        crtc->new_config->dpll_hw_state.fp1 = fp;
7532
7533                pll = intel_get_shared_dpll(crtc);
7534                if (pll == NULL) {
7535                        DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
7536                                         pipe_name(crtc->pipe));
7537                        return -EINVAL;
7538                }
7539        }
7540
7541        if (is_lvds && has_reduced_clock && i915.powersave)
7542                crtc->lowfreq_avail = true;
7543        else
7544                crtc->lowfreq_avail = false;
7545
7546        return 0;
7547}
7548
7549static void intel_pch_transcoder_get_m_n(struct intel_crtc *crtc,
7550                                         struct intel_link_m_n *m_n)
7551{
7552        struct drm_device *dev = crtc->base.dev;
7553        struct drm_i915_private *dev_priv = dev->dev_private;
7554        enum pipe pipe = crtc->pipe;
7555
7556        m_n->link_m = I915_READ(PCH_TRANS_LINK_M1(pipe));
7557        m_n->link_n = I915_READ(PCH_TRANS_LINK_N1(pipe));
7558        m_n->gmch_m = I915_READ(PCH_TRANS_DATA_M1(pipe))
7559                & ~TU_SIZE_MASK;
7560        m_n->gmch_n = I915_READ(PCH_TRANS_DATA_N1(pipe));
7561        m_n->tu = ((I915_READ(PCH_TRANS_DATA_M1(pipe))
7562                    & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
7563}
7564
7565static void intel_cpu_transcoder_get_m_n(struct intel_crtc *crtc,
7566                                         enum transcoder transcoder,
7567                                         struct intel_link_m_n *m_n,
7568                                         struct intel_link_m_n *m2_n2)
7569{
7570        struct drm_device *dev = crtc->base.dev;
7571        struct drm_i915_private *dev_priv = dev->dev_private;
7572        enum pipe pipe = crtc->pipe;
7573
7574        if (INTEL_INFO(dev)->gen >= 5) {
7575                m_n->link_m = I915_READ(PIPE_LINK_M1(transcoder));
7576                m_n->link_n = I915_READ(PIPE_LINK_N1(transcoder));
7577                m_n->gmch_m = I915_READ(PIPE_DATA_M1(transcoder))
7578                        & ~TU_SIZE_MASK;
7579                m_n->gmch_n = I915_READ(PIPE_DATA_N1(transcoder));
7580                m_n->tu = ((I915_READ(PIPE_DATA_M1(transcoder))
7581                            & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
7582                /* Read M2_N2 registers only for gen < 8 (M2_N2 available for
7583                 * gen < 8) and if DRRS is supported (to make sure the
7584                 * registers are not unnecessarily read).
7585                 */
7586                if (m2_n2 && INTEL_INFO(dev)->gen < 8 &&
7587                        crtc->config.has_drrs) {
7588                        m2_n2->link_m = I915_READ(PIPE_LINK_M2(transcoder));
7589                        m2_n2->link_n = I915_READ(PIPE_LINK_N2(transcoder));
7590                        m2_n2->gmch_m = I915_READ(PIPE_DATA_M2(transcoder))
7591                                        & ~TU_SIZE_MASK;
7592                        m2_n2->gmch_n = I915_READ(PIPE_DATA_N2(transcoder));
7593                        m2_n2->tu = ((I915_READ(PIPE_DATA_M2(transcoder))
7594                                        & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
7595                }
7596        } else {
7597                m_n->link_m = I915_READ(PIPE_LINK_M_G4X(pipe));
7598                m_n->link_n = I915_READ(PIPE_LINK_N_G4X(pipe));
7599                m_n->gmch_m = I915_READ(PIPE_DATA_M_G4X(pipe))
7600                        & ~TU_SIZE_MASK;
7601                m_n->gmch_n = I915_READ(PIPE_DATA_N_G4X(pipe));
7602                m_n->tu = ((I915_READ(PIPE_DATA_M_G4X(pipe))
7603                            & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
7604        }
7605}
7606
7607void intel_dp_get_m_n(struct intel_crtc *crtc,
7608                      struct intel_crtc_config *pipe_config)
7609{
7610        if (crtc->config.has_pch_encoder)
7611                intel_pch_transcoder_get_m_n(crtc, &pipe_config->dp_m_n);
7612        else
7613                intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
7614                                             &pipe_config->dp_m_n,
7615                                             &pipe_config->dp_m2_n2);
7616}
7617
7618static void ironlake_get_fdi_m_n_config(struct intel_crtc *crtc,
7619                                        struct intel_crtc_config *pipe_config)
7620{
7621        intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
7622                                     &pipe_config->fdi_m_n, NULL);
7623}
7624
7625static void skylake_get_pfit_config(struct intel_crtc *crtc,
7626                                    struct intel_crtc_config *pipe_config)
7627{
7628        struct drm_device *dev = crtc->base.dev;
7629        struct drm_i915_private *dev_priv = dev->dev_private;
7630        uint32_t tmp;
7631
7632        tmp = I915_READ(PS_CTL(crtc->pipe));
7633
7634        if (tmp & PS_ENABLE) {
7635                pipe_config->pch_pfit.enabled = true;
7636                pipe_config->pch_pfit.pos = I915_READ(PS_WIN_POS(crtc->pipe));
7637                pipe_config->pch_pfit.size = I915_READ(PS_WIN_SZ(crtc->pipe));
7638        }
7639}
7640
7641static void ironlake_get_pfit_config(struct intel_crtc *crtc,
7642                                     struct intel_crtc_config *pipe_config)
7643{
7644        struct drm_device *dev = crtc->base.dev;
7645        struct drm_i915_private *dev_priv = dev->dev_private;
7646        uint32_t tmp;
7647
7648        tmp = I915_READ(PF_CTL(crtc->pipe));
7649
7650        if (tmp & PF_ENABLE) {
7651                pipe_config->pch_pfit.enabled = true;
7652                pipe_config->pch_pfit.pos = I915_READ(PF_WIN_POS(crtc->pipe));
7653                pipe_config->pch_pfit.size = I915_READ(PF_WIN_SZ(crtc->pipe));
7654
7655                /* We currently do not free assignements of panel fitters on
7656                 * ivb/hsw (since we don't use the higher upscaling modes which
7657                 * differentiates them) so just WARN about this case for now. */
7658                if (IS_GEN7(dev)) {
7659                        WARN_ON((tmp & PF_PIPE_SEL_MASK_IVB) !=
7660                                PF_PIPE_SEL_IVB(crtc->pipe));
7661                }
7662        }
7663}
7664
7665static void ironlake_get_plane_config(struct intel_crtc *crtc,
7666                                      struct intel_plane_config *plane_config)
7667{
7668        struct drm_device *dev = crtc->base.dev;
7669        struct drm_i915_private *dev_priv = dev->dev_private;
7670        u32 val, base, offset;
7671        int pipe = crtc->pipe, plane = crtc->plane;
7672        int fourcc, pixel_format;
7673        int aligned_height;
7674
7675        crtc->base.primary->fb = kzalloc(sizeof(struct intel_framebuffer), GFP_KERNEL);
7676        if (!crtc->base.primary->fb) {
7677                DRM_DEBUG_KMS("failed to alloc fb\n");
7678                return;
7679        }
7680
7681        val = I915_READ(DSPCNTR(plane));
7682
7683        if (INTEL_INFO(dev)->gen >= 4)
7684                if (val & DISPPLANE_TILED)
7685                        plane_config->tiled = true;
7686
7687        pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
7688        fourcc = intel_format_to_fourcc(pixel_format);
7689        crtc->base.primary->fb->pixel_format = fourcc;
7690        crtc->base.primary->fb->bits_per_pixel =
7691                drm_format_plane_cpp(fourcc, 0) * 8;
7692
7693        base = I915_READ(DSPSURF(plane)) & 0xfffff000;
7694        if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
7695                offset = I915_READ(DSPOFFSET(plane));
7696        } else {
7697                if (plane_config->tiled)
7698                        offset = I915_READ(DSPTILEOFF(plane));
7699                else
7700                        offset = I915_READ(DSPLINOFF(plane));
7701        }
7702        plane_config->base = base;
7703
7704        val = I915_READ(PIPESRC(pipe));
7705        crtc->base.primary->fb->width = ((val >> 16) & 0xfff) + 1;
7706        crtc->base.primary->fb->height = ((val >> 0) & 0xfff) + 1;
7707
7708        val = I915_READ(DSPSTRIDE(pipe));
7709        crtc->base.primary->fb->pitches[0] = val & 0xffffffc0;
7710
7711        aligned_height = intel_align_height(dev, crtc->base.primary->fb->height,
7712                                            plane_config->tiled);
7713
7714        plane_config->size = PAGE_ALIGN(crtc->base.primary->fb->pitches[0] *
7715                                        aligned_height);
7716
7717        DRM_DEBUG_KMS("pipe/plane %d/%d with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
7718                      pipe, plane, crtc->base.primary->fb->width,
7719                      crtc->base.primary->fb->height,
7720                      crtc->base.primary->fb->bits_per_pixel, base,
7721                      crtc->base.primary->fb->pitches[0],
7722                      plane_config->size);
7723}
7724
7725static bool ironlake_get_pipe_config(struct intel_crtc *crtc,
7726                                     struct intel_crtc_config *pipe_config)
7727{
7728        struct drm_device *dev = crtc->base.dev;
7729        struct drm_i915_private *dev_priv = dev->dev_private;
7730        uint32_t tmp;
7731
7732        if (!intel_display_power_is_enabled(dev_priv,
7733                                            POWER_DOMAIN_PIPE(crtc->pipe)))
7734                return false;
7735
7736        pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
7737        pipe_config->shared_dpll = DPLL_ID_PRIVATE;
7738
7739        tmp = I915_READ(PIPECONF(crtc->pipe));
7740        if (!(tmp & PIPECONF_ENABLE))
7741                return false;
7742
7743        switch (tmp & PIPECONF_BPC_MASK) {
7744        case PIPECONF_6BPC:
7745                pipe_config->pipe_bpp = 18;
7746                break;
7747        case PIPECONF_8BPC:
7748                pipe_config->pipe_bpp = 24;
7749                break;
7750        case PIPECONF_10BPC:
7751                pipe_config->pipe_bpp = 30;
7752                break;
7753        case PIPECONF_12BPC:
7754                pipe_config->pipe_bpp = 36;
7755                break;
7756        default:
7757                break;
7758        }
7759
7760        if (tmp & PIPECONF_COLOR_RANGE_SELECT)
7761                pipe_config->limited_color_range = true;
7762
7763        if (I915_READ(PCH_TRANSCONF(crtc->pipe)) & TRANS_ENABLE) {
7764                struct intel_shared_dpll *pll;
7765
7766                pipe_config->has_pch_encoder = true;
7767
7768                tmp = I915_READ(FDI_RX_CTL(crtc->pipe));
7769                pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
7770                                          FDI_DP_PORT_WIDTH_SHIFT) + 1;
7771
7772                ironlake_get_fdi_m_n_config(crtc, pipe_config);
7773
7774                if (HAS_PCH_IBX(dev_priv->dev)) {
7775                        pipe_config->shared_dpll =
7776                                (enum intel_dpll_id) crtc->pipe;
7777                } else {
7778                        tmp = I915_READ(PCH_DPLL_SEL);
7779                        if (tmp & TRANS_DPLLB_SEL(crtc->pipe))
7780                                pipe_config->shared_dpll = DPLL_ID_PCH_PLL_B;
7781                        else
7782                                pipe_config->shared_dpll = DPLL_ID_PCH_PLL_A;
7783                }
7784
7785                pll = &dev_priv->shared_dplls[pipe_config->shared_dpll];
7786
7787                WARN_ON(!pll->get_hw_state(dev_priv, pll,
7788                                           &pipe_config->dpll_hw_state));
7789
7790                tmp = pipe_config->dpll_hw_state.dpll;
7791                pipe_config->pixel_multiplier =
7792                        ((tmp & PLL_REF_SDVO_HDMI_MULTIPLIER_MASK)
7793                         >> PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT) + 1;
7794
7795                ironlake_pch_clock_get(crtc, pipe_config);
7796        } else {
7797                pipe_config->pixel_multiplier = 1;
7798        }
7799
7800        intel_get_pipe_timings(crtc, pipe_config);
7801
7802        ironlake_get_pfit_config(crtc, pipe_config);
7803
7804        return true;
7805}
7806
7807static void assert_can_disable_lcpll(struct drm_i915_private *dev_priv)
7808{
7809        struct drm_device *dev = dev_priv->dev;
7810        struct intel_crtc *crtc;
7811
7812        for_each_intel_crtc(dev, crtc)
7813                WARN(crtc->active, "CRTC for pipe %c enabled\n",
7814                     pipe_name(crtc->pipe));
7815
7816        WARN(I915_READ(HSW_PWR_WELL_DRIVER), "Power well on\n");
7817        WARN(I915_READ(SPLL_CTL) & SPLL_PLL_ENABLE, "SPLL enabled\n");
7818        WARN(I915_READ(WRPLL_CTL1) & WRPLL_PLL_ENABLE, "WRPLL1 enabled\n");
7819        WARN(I915_READ(WRPLL_CTL2) & WRPLL_PLL_ENABLE, "WRPLL2 enabled\n");
7820        WARN(I915_READ(PCH_PP_STATUS) & PP_ON, "Panel power on\n");
7821        WARN(I915_READ(BLC_PWM_CPU_CTL2) & BLM_PWM_ENABLE,
7822             "CPU PWM1 enabled\n");
7823        if (IS_HASWELL(dev))
7824                WARN(I915_READ(HSW_BLC_PWM2_CTL) & BLM_PWM_ENABLE,
7825                     "CPU PWM2 enabled\n");
7826        WARN(I915_READ(BLC_PWM_PCH_CTL1) & BLM_PCH_PWM_ENABLE,
7827             "PCH PWM1 enabled\n");
7828        WARN(I915_READ(UTIL_PIN_CTL) & UTIL_PIN_ENABLE,
7829             "Utility pin enabled\n");
7830        WARN(I915_READ(PCH_GTC_CTL) & PCH_GTC_ENABLE, "PCH GTC enabled\n");
7831
7832        /*
7833         * In theory we can still leave IRQs enabled, as long as only the HPD
7834         * interrupts remain enabled. We used to check for that, but since it's
7835         * gen-specific and since we only disable LCPLL after we fully disable
7836         * the interrupts, the check below should be enough.
7837         */
7838        WARN(intel_irqs_enabled(dev_priv), "IRQs enabled\n");
7839}
7840
7841static uint32_t hsw_read_dcomp(struct drm_i915_private *dev_priv)
7842{
7843        struct drm_device *dev = dev_priv->dev;
7844
7845        if (IS_HASWELL(dev))
7846                return I915_READ(D_COMP_HSW);
7847        else
7848                return I915_READ(D_COMP_BDW);
7849}
7850
7851static void hsw_write_dcomp(struct drm_i915_private *dev_priv, uint32_t val)
7852{
7853        struct drm_device *dev = dev_priv->dev;
7854
7855        if (IS_HASWELL(dev)) {
7856                mutex_lock(&dev_priv->rps.hw_lock);
7857                if (sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_D_COMP,
7858                                            val))
7859                        DRM_ERROR("Failed to write to D_COMP\n");
7860                mutex_unlock(&dev_priv->rps.hw_lock);
7861        } else {
7862                I915_WRITE(D_COMP_BDW, val);
7863                POSTING_READ(D_COMP_BDW);
7864        }
7865}
7866
7867/*
7868 * This function implements pieces of two sequences from BSpec:
7869 * - Sequence for display software to disable LCPLL
7870 * - Sequence for display software to allow package C8+
7871 * The steps implemented here are just the steps that actually touch the LCPLL
7872 * register. Callers should take care of disabling all the display engine
7873 * functions, doing the mode unset, fixing interrupts, etc.
7874 */
7875static void hsw_disable_lcpll(struct drm_i915_private *dev_priv,
7876                              bool switch_to_fclk, bool allow_power_down)
7877{
7878        uint32_t val;
7879
7880        assert_can_disable_lcpll(dev_priv);
7881
7882        val = I915_READ(LCPLL_CTL);
7883
7884        if (switch_to_fclk) {
7885                val |= LCPLL_CD_SOURCE_FCLK;
7886                I915_WRITE(LCPLL_CTL, val);
7887
7888                if (wait_for_atomic_us(I915_READ(LCPLL_CTL) &
7889                                       LCPLL_CD_SOURCE_FCLK_DONE, 1))
7890                        DRM_ERROR("Switching to FCLK failed\n");
7891
7892                val = I915_READ(LCPLL_CTL);
7893        }
7894
7895        val |= LCPLL_PLL_DISABLE;
7896        I915_WRITE(LCPLL_CTL, val);
7897        POSTING_READ(LCPLL_CTL);
7898
7899        if (wait_for((I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK) == 0, 1))
7900                DRM_ERROR("LCPLL still locked\n");
7901
7902        val = hsw_read_dcomp(dev_priv);
7903        val |= D_COMP_COMP_DISABLE;
7904        hsw_write_dcomp(dev_priv, val);
7905        ndelay(100);
7906
7907        if (wait_for((hsw_read_dcomp(dev_priv) & D_COMP_RCOMP_IN_PROGRESS) == 0,
7908                     1))
7909                DRM_ERROR("D_COMP RCOMP still in progress\n");
7910
7911        if (allow_power_down) {
7912                val = I915_READ(LCPLL_CTL);
7913                val |= LCPLL_POWER_DOWN_ALLOW;
7914                I915_WRITE(LCPLL_CTL, val);
7915                POSTING_READ(LCPLL_CTL);
7916        }
7917}
7918
7919/*
7920 * Fully restores LCPLL, disallowing power down and switching back to LCPLL
7921 * source.
7922 */
7923static void hsw_restore_lcpll(struct drm_i915_private *dev_priv)
7924{
7925        uint32_t val;
7926
7927        val = I915_READ(LCPLL_CTL);
7928
7929        if ((val & (LCPLL_PLL_LOCK | LCPLL_PLL_DISABLE | LCPLL_CD_SOURCE_FCLK |
7930                    LCPLL_POWER_DOWN_ALLOW)) == LCPLL_PLL_LOCK)
7931                return;
7932
7933        /*
7934         * Make sure we're not on PC8 state before disabling PC8, otherwise
7935         * we'll hang the machine. To prevent PC8 state, just enable force_wake.
7936         *
7937         * The other problem is that hsw_restore_lcpll() is called as part of
7938         * the runtime PM resume sequence, so we can't just call
7939         * gen6_gt_force_wake_get() because that function calls
7940         * intel_runtime_pm_get(), and we can't change the runtime PM refcount
7941         * while we are on the resume sequence. So to solve this problem we have
7942         * to call special forcewake code that doesn't touch runtime PM and
7943         * doesn't enable the forcewake delayed work.
7944         */
7945        spin_lock_irq(&dev_priv->uncore.lock);
7946        if (dev_priv->uncore.forcewake_count++ == 0)
7947                dev_priv->uncore.funcs.force_wake_get(dev_priv, FORCEWAKE_ALL);
7948        spin_unlock_irq(&dev_priv->uncore.lock);
7949
7950        if (val & LCPLL_POWER_DOWN_ALLOW) {
7951                val &= ~LCPLL_POWER_DOWN_ALLOW;
7952                I915_WRITE(LCPLL_CTL, val);
7953                POSTING_READ(LCPLL_CTL);
7954        }
7955
7956        val = hsw_read_dcomp(dev_priv);
7957        val |= D_COMP_COMP_FORCE;
7958        val &= ~D_COMP_COMP_DISABLE;
7959        hsw_write_dcomp(dev_priv, val);
7960
7961        val = I915_READ(LCPLL_CTL);
7962        val &= ~LCPLL_PLL_DISABLE;
7963        I915_WRITE(LCPLL_CTL, val);
7964
7965        if (wait_for(I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK, 5))
7966                DRM_ERROR("LCPLL not locked yet\n");
7967
7968        if (val & LCPLL_CD_SOURCE_FCLK) {
7969                val = I915_READ(LCPLL_CTL);
7970                val &= ~LCPLL_CD_SOURCE_FCLK;
7971                I915_WRITE(LCPLL_CTL, val);
7972
7973                if (wait_for_atomic_us((I915_READ(LCPLL_CTL) &
7974                                        LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1))
7975                        DRM_ERROR("Switching back to LCPLL failed\n");
7976        }
7977
7978        /* See the big comment above. */
7979        spin_lock_irq(&dev_priv->uncore.lock);
7980        if (--dev_priv->uncore.forcewake_count == 0)
7981                dev_priv->uncore.funcs.force_wake_put(dev_priv, FORCEWAKE_ALL);
7982        spin_unlock_irq(&dev_priv->uncore.lock);
7983}
7984
7985/*
7986 * Package states C8 and deeper are really deep PC states that can only be
7987 * reached when all the devices on the system allow it, so even if the graphics
7988 * device allows PC8+, it doesn't mean the system will actually get to these
7989 * states. Our driver only allows PC8+ when going into runtime PM.
7990 *
7991 * The requirements for PC8+ are that all the outputs are disabled, the power
7992 * well is disabled and most interrupts are disabled, and these are also
7993 * requirements for runtime PM. When these conditions are met, we manually do
7994 * the other conditions: disable the interrupts, clocks and switch LCPLL refclk
7995 * to Fclk. If we're in PC8+ and we get an non-hotplug interrupt, we can hard
7996 * hang the machine.
7997 *
7998 * When we really reach PC8 or deeper states (not just when we allow it) we lose
7999 * the state of some registers, so when we come back from PC8+ we need to
8000 * restore this state. We don't get into PC8+ if we're not in RC6, so we don't
8001 * need to take care of the registers kept by RC6. Notice that this happens even
8002 * if we don't put the device in PCI D3 state (which is what currently happens
8003 * because of the runtime PM support).
8004 *
8005 * For more, read "Display Sequences for Package C8" on the hardware
8006 * documentation.
8007 */
8008void hsw_enable_pc8(struct drm_i915_private *dev_priv)
8009{
8010        struct drm_device *dev = dev_priv->dev;
8011        uint32_t val;
8012
8013        DRM_DEBUG_KMS("Enabling package C8+\n");
8014
8015        if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
8016                val = I915_READ(SOUTH_DSPCLK_GATE_D);
8017                val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
8018                I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
8019        }
8020
8021        lpt_disable_clkout_dp(dev);
8022        hsw_disable_lcpll(dev_priv, true, true);
8023}
8024
8025void hsw_disable_pc8(struct drm_i915_private *dev_priv)
8026{
8027        struct drm_device *dev = dev_priv->dev;
8028        uint32_t val;
8029
8030        DRM_DEBUG_KMS("Disabling package C8+\n");
8031
8032        hsw_restore_lcpll(dev_priv);
8033        lpt_init_pch_refclk(dev);
8034
8035        if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
8036                val = I915_READ(SOUTH_DSPCLK_GATE_D);
8037                val |= PCH_LP_PARTITION_LEVEL_DISABLE;
8038                I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
8039        }
8040
8041        intel_prepare_ddi(dev);
8042}
8043
8044static int haswell_crtc_compute_clock(struct intel_crtc *crtc)
8045{
8046        if (!intel_ddi_pll_select(crtc))
8047                return -EINVAL;
8048
8049        crtc->lowfreq_avail = false;
8050
8051        return 0;
8052}
8053
8054static void skylake_get_ddi_pll(struct drm_i915_private *dev_priv,
8055                                enum port port,
8056                                struct intel_crtc_config *pipe_config)
8057{
8058        u32 temp;
8059
8060        temp = I915_READ(DPLL_CTRL2) & DPLL_CTRL2_DDI_CLK_SEL_MASK(port);
8061        pipe_config->ddi_pll_sel = temp >> (port * 3 + 1);
8062
8063        switch (pipe_config->ddi_pll_sel) {
8064        case SKL_DPLL1:
8065                pipe_config->shared_dpll = DPLL_ID_SKL_DPLL1;
8066                break;
8067        case SKL_DPLL2:
8068                pipe_config->shared_dpll = DPLL_ID_SKL_DPLL2;
8069                break;
8070        case SKL_DPLL3:
8071                pipe_config->shared_dpll = DPLL_ID_SKL_DPLL3;
8072                break;
8073        }
8074}
8075
8076static void haswell_get_ddi_pll(struct drm_i915_private *dev_priv,
8077                                enum port port,
8078                                struct intel_crtc_config *pipe_config)
8079{
8080        pipe_config->ddi_pll_sel = I915_READ(PORT_CLK_SEL(port));
8081
8082        switch (pipe_config->ddi_pll_sel) {
8083        case PORT_CLK_SEL_WRPLL1:
8084                pipe_config->shared_dpll = DPLL_ID_WRPLL1;
8085                break;
8086        case PORT_CLK_SEL_WRPLL2:
8087                pipe_config->shared_dpll = DPLL_ID_WRPLL2;
8088                break;
8089        }
8090}
8091
8092static void haswell_get_ddi_port_state(struct intel_crtc *crtc,
8093                                       struct intel_crtc_config *pipe_config)
8094{
8095        struct drm_device *dev = crtc->base.dev;
8096        struct drm_i915_private *dev_priv = dev->dev_private;
8097        struct intel_shared_dpll *pll;
8098        enum port port;
8099        uint32_t tmp;
8100
8101        tmp = I915_READ(TRANS_DDI_FUNC_CTL(pipe_config->cpu_transcoder));
8102
8103        port = (tmp & TRANS_DDI_PORT_MASK) >> TRANS_DDI_PORT_SHIFT;
8104
8105        if (IS_SKYLAKE(dev))
8106                skylake_get_ddi_pll(dev_priv, port, pipe_config);
8107        else
8108                haswell_get_ddi_pll(dev_priv, port, pipe_config);
8109
8110        if (pipe_config->shared_dpll >= 0) {
8111                pll = &dev_priv->shared_dplls[pipe_config->shared_dpll];
8112
8113                WARN_ON(!pll->get_hw_state(dev_priv, pll,
8114                                           &pipe_config->dpll_hw_state));
8115        }
8116
8117        /*
8118         * Haswell has only FDI/PCH transcoder A. It is which is connected to
8119         * DDI E. So just check whether this pipe is wired to DDI E and whether
8120         * the PCH transcoder is on.
8121         */
8122        if (INTEL_INFO(dev)->gen < 9 &&
8123            (port == PORT_E) && I915_READ(LPT_TRANSCONF) & TRANS_ENABLE) {
8124                pipe_config->has_pch_encoder = true;
8125
8126                tmp = I915_READ(FDI_RX_CTL(PIPE_A));
8127                pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
8128                                          FDI_DP_PORT_WIDTH_SHIFT) + 1;
8129
8130                ironlake_get_fdi_m_n_config(crtc, pipe_config);
8131        }
8132}
8133
8134static bool haswell_get_pipe_config(struct intel_crtc *crtc,
8135                                    struct intel_crtc_config *pipe_config)
8136{
8137        struct drm_device *dev = crtc->base.dev;
8138        struct drm_i915_private *dev_priv = dev->dev_private;
8139        enum intel_display_power_domain pfit_domain;
8140        uint32_t tmp;
8141
8142        if (!intel_display_power_is_enabled(dev_priv,
8143                                         POWER_DOMAIN_PIPE(crtc->pipe)))
8144                return false;
8145
8146        pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
8147        pipe_config->shared_dpll = DPLL_ID_PRIVATE;
8148
8149        tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
8150        if (tmp & TRANS_DDI_FUNC_ENABLE) {
8151                enum pipe trans_edp_pipe;
8152                switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
8153                default:
8154                        WARN(1, "unknown pipe linked to edp transcoder\n");
8155                case TRANS_DDI_EDP_INPUT_A_ONOFF:
8156                case TRANS_DDI_EDP_INPUT_A_ON:
8157                        trans_edp_pipe = PIPE_A;
8158                        break;
8159                case TRANS_DDI_EDP_INPUT_B_ONOFF:
8160                        trans_edp_pipe = PIPE_B;
8161                        break;
8162                case TRANS_DDI_EDP_INPUT_C_ONOFF:
8163                        trans_edp_pipe = PIPE_C;
8164                        break;
8165                }
8166
8167                if (trans_edp_pipe == crtc->pipe)
8168                        pipe_config->cpu_transcoder = TRANSCODER_EDP;
8169        }
8170
8171        if (!intel_display_power_is_enabled(dev_priv,
8172                        POWER_DOMAIN_TRANSCODER(pipe_config->cpu_transcoder)))
8173                return false;
8174
8175        tmp = I915_READ(PIPECONF(pipe_config->cpu_transcoder));
8176        if (!(tmp & PIPECONF_ENABLE))
8177                return false;
8178
8179        haswell_get_ddi_port_state(crtc, pipe_config);
8180
8181        intel_get_pipe_timings(crtc, pipe_config);
8182
8183        pfit_domain = POWER_DOMAIN_PIPE_PANEL_FITTER(crtc->pipe);
8184        if (intel_display_power_is_enabled(dev_priv, pfit_domain)) {
8185                if (IS_SKYLAKE(dev))
8186                        skylake_get_pfit_config(crtc, pipe_config);
8187                else
8188                        ironlake_get_pfit_config(crtc, pipe_config);
8189        }
8190
8191        if (IS_HASWELL(dev))
8192                pipe_config->ips_enabled = hsw_crtc_supports_ips(crtc) &&
8193                        (I915_READ(IPS_CTL) & IPS_ENABLE);
8194
8195        if (pipe_config->cpu_transcoder != TRANSCODER_EDP) {
8196                pipe_config->pixel_multiplier =
8197                        I915_READ(PIPE_MULT(pipe_config->cpu_transcoder)) + 1;
8198        } else {
8199                pipe_config->pixel_multiplier = 1;
8200        }
8201
8202        return true;
8203}
8204
8205static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
8206{
8207        struct drm_device *dev = crtc->dev;
8208        struct drm_i915_private *dev_priv = dev->dev_private;
8209        struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8210        uint32_t cntl = 0, size = 0;
8211
8212        if (base) {
8213                unsigned int width = intel_crtc->cursor_width;
8214                unsigned int height = intel_crtc->cursor_height;
8215                unsigned int stride = roundup_pow_of_two(width) * 4;
8216
8217                switch (stride) {
8218                default:
8219                        WARN_ONCE(1, "Invalid cursor width/stride, width=%u, stride=%u\n",
8220                                  width, stride);
8221                        stride = 256;
8222                        /* fallthrough */
8223                case 256:
8224                case 512:
8225                case 1024:
8226                case 2048:
8227                        break;
8228                }
8229
8230                cntl |= CURSOR_ENABLE |
8231                        CURSOR_GAMMA_ENABLE |
8232                        CURSOR_FORMAT_ARGB |
8233                        CURSOR_STRIDE(stride);
8234
8235                size = (height << 12) | width;
8236        }
8237
8238        if (intel_crtc->cursor_cntl != 0 &&
8239            (intel_crtc->cursor_base != base ||
8240             intel_crtc->cursor_size != size ||
8241             intel_crtc->cursor_cntl != cntl)) {
8242                /* On these chipsets we can only modify the base/size/stride
8243                 * whilst the cursor is disabled.
8244                 */
8245                I915_WRITE(_CURACNTR, 0);
8246                POSTING_READ(_CURACNTR);
8247                intel_crtc->cursor_cntl = 0;
8248        }
8249
8250        if (intel_crtc->cursor_base != base) {
8251                I915_WRITE(_CURABASE, base);
8252                intel_crtc->cursor_base = base;
8253        }
8254
8255        if (intel_crtc->cursor_size != size) {
8256                I915_WRITE(CURSIZE, size);
8257                intel_crtc->cursor_size = size;
8258        }
8259
8260        if (intel_crtc->cursor_cntl != cntl) {
8261                I915_WRITE(_CURACNTR, cntl);
8262                POSTING_READ(_CURACNTR);
8263                intel_crtc->cursor_cntl = cntl;
8264        }
8265}
8266
8267static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
8268{
8269        struct drm_device *dev = crtc->dev;
8270        struct drm_i915_private *dev_priv = dev->dev_private;
8271        struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8272        int pipe = intel_crtc->pipe;
8273        uint32_t cntl;
8274
8275        cntl = 0;
8276        if (base) {
8277                cntl = MCURSOR_GAMMA_ENABLE;
8278                switch (intel_crtc->cursor_width) {
8279                        case 64:
8280                                cntl |= CURSOR_MODE_64_ARGB_AX;
8281                                break;
8282                        case 128:
8283                                cntl |= CURSOR_MODE_128_ARGB_AX;
8284                                break;
8285                        case 256:
8286                                cntl |= CURSOR_MODE_256_ARGB_AX;
8287                                break;
8288                        default:
8289                                WARN_ON(1);
8290                                return;
8291                }
8292                cntl |= pipe << 28; /* Connect to correct pipe */
8293
8294                if (IS_HASWELL(dev) || IS_BROADWELL(dev))
8295                        cntl |= CURSOR_PIPE_CSC_ENABLE;
8296        }
8297
8298        if (to_intel_plane(crtc->cursor)->rotation == BIT(DRM_ROTATE_180))
8299                cntl |= CURSOR_ROTATE_180;
8300
8301        if (intel_crtc->cursor_cntl != cntl) {
8302                I915_WRITE(CURCNTR(pipe), cntl);
8303                POSTING_READ(CURCNTR(pipe));
8304                intel_crtc->cursor_cntl = cntl;
8305        }
8306
8307        /* and commit changes on next vblank */
8308        I915_WRITE(CURBASE(pipe), base);
8309        POSTING_READ(CURBASE(pipe));
8310
8311        intel_crtc->cursor_base = base;
8312}
8313
8314/* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
8315static void intel_crtc_update_cursor(struct drm_crtc *crtc,
8316                                     bool on)
8317{
8318        struct drm_device *dev = crtc->dev;
8319        struct drm_i915_private *dev_priv = dev->dev_private;
8320        struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8321        int pipe = intel_crtc->pipe;
8322        int x = crtc->cursor_x;
8323        int y = crtc->cursor_y;
8324        u32 base = 0, pos = 0;
8325
8326        if (on)
8327                base = intel_crtc->cursor_addr;
8328
8329        if (x >= intel_crtc->config.pipe_src_w)
8330                base = 0;
8331
8332        if (y >= intel_crtc->config.pipe_src_h)
8333                base = 0;
8334
8335        if (x < 0) {
8336                if (x + intel_crtc->cursor_width <= 0)
8337                        base = 0;
8338
8339                pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
8340                x = -x;
8341        }
8342        pos |= x << CURSOR_X_SHIFT;
8343
8344        if (y < 0) {
8345                if (y + intel_crtc->cursor_height <= 0)
8346                        base = 0;
8347
8348                pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
8349                y = -y;
8350        }
8351        pos |= y << CURSOR_Y_SHIFT;
8352
8353        if (base == 0 && intel_crtc->cursor_base == 0)
8354                return;
8355
8356        I915_WRITE(CURPOS(pipe), pos);
8357
8358        /* ILK+ do this automagically */
8359        if (HAS_GMCH_DISPLAY(dev) &&
8360                to_intel_plane(crtc->cursor)->rotation == BIT(DRM_ROTATE_180)) {
8361                base += (intel_crtc->cursor_height *
8362                        intel_crtc->cursor_width - 1) * 4;
8363        }
8364
8365        if (IS_845G(dev) || IS_I865G(dev))
8366                i845_update_cursor(crtc, base);
8367        else
8368                i9xx_update_cursor(crtc, base);
8369}
8370
8371static bool cursor_size_ok(struct drm_device *dev,
8372                           uint32_t width, uint32_t height)
8373{
8374        if (width == 0 || height == 0)
8375                return false;
8376
8377        /*
8378         * 845g/865g are special in that they are only limited by
8379         * the width of their cursors, the height is arbitrary up to
8380         * the precision of the register. Everything else requires
8381         * square cursors, limited to a few power-of-two sizes.
8382         */
8383        if (IS_845G(dev) || IS_I865G(dev)) {
8384                if ((width & 63) != 0)
8385                        return false;
8386
8387                if (width > (IS_845G(dev) ? 64 : 512))
8388                        return false;
8389
8390                if (height > 1023)
8391                        return false;
8392        } else {
8393                switch (width | height) {
8394                case 256:
8395                case 128:
8396                        if (IS_GEN2(dev))
8397                                return false;
8398                case 64:
8399                        break;
8400                default:
8401                        return false;
8402                }
8403        }
8404
8405        return true;
8406}
8407
8408static int intel_crtc_cursor_set_obj(struct drm_crtc *crtc,
8409                                     struct drm_i915_gem_object *obj,
8410                                     uint32_t width, uint32_t height)
8411{
8412        struct drm_device *dev = crtc->dev;
8413        struct drm_i915_private *dev_priv = to_i915(dev);
8414        struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8415        enum pipe pipe = intel_crtc->pipe;
8416        unsigned old_width;
8417        uint32_t addr;
8418        int ret;
8419
8420        /* if we want to turn off the cursor ignore width and height */
8421        if (!obj) {
8422                DRM_DEBUG_KMS("cursor off\n");
8423                addr = 0;
8424                mutex_lock(&dev->struct_mutex);
8425                goto finish;
8426        }
8427
8428        /* we only need to pin inside GTT if cursor is non-phy */
8429        mutex_lock(&dev->struct_mutex);
8430        if (!INTEL_INFO(dev)->cursor_needs_physical) {
8431                unsigned alignment;
8432
8433                /*
8434                 * Global gtt pte registers are special registers which actually
8435                 * forward writes to a chunk of system memory. Which means that
8436                 * there is no risk that the register values disappear as soon
8437                 * as we call intel_runtime_pm_put(), so it is correct to wrap
8438                 * only the pin/unpin/fence and not more.
8439                 */
8440                intel_runtime_pm_get(dev_priv);
8441
8442                /* Note that the w/a also requires 2 PTE of padding following
8443                 * the bo. We currently fill all unused PTE with the shadow
8444                 * page and so we should always have valid PTE following the
8445                 * cursor preventing the VT-d warning.
8446                 */
8447                alignment = 0;
8448                if (need_vtd_wa(dev))
8449                        alignment = 64*1024;
8450
8451                ret = i915_gem_object_pin_to_display_plane(obj, alignment, NULL);
8452                if (ret) {
8453                        DRM_DEBUG_KMS("failed to move cursor bo into the GTT\n");
8454                        intel_runtime_pm_put(dev_priv);
8455                        goto fail_locked;
8456                }
8457
8458                ret = i915_gem_object_put_fence(obj);
8459                if (ret) {
8460                        DRM_DEBUG_KMS("failed to release fence for cursor");
8461                        intel_runtime_pm_put(dev_priv);
8462                        goto fail_unpin;
8463                }
8464
8465                addr = i915_gem_obj_ggtt_offset(obj);
8466
8467                intel_runtime_pm_put(dev_priv);
8468        } else {
8469                int align = IS_I830(dev) ? 16 * 1024 : 256;
8470                ret = i915_gem_object_attach_phys(obj, align);
8471                if (ret) {
8472                        DRM_DEBUG_KMS("failed to attach phys object\n");
8473                        goto fail_locked;
8474                }
8475                addr = obj->phys_handle->busaddr;
8476        }
8477
8478 finish:
8479        if (intel_crtc->cursor_bo) {
8480                if (!INTEL_INFO(dev)->cursor_needs_physical)
8481                        i915_gem_object_unpin_from_display_plane(intel_crtc->cursor_bo);
8482        }
8483
8484        i915_gem_track_fb(intel_crtc->cursor_bo, obj,
8485                          INTEL_FRONTBUFFER_CURSOR(pipe));
8486        mutex_unlock(&dev->struct_mutex);
8487
8488        old_width = intel_crtc->cursor_width;
8489
8490        intel_crtc->cursor_addr = addr;
8491        intel_crtc->cursor_bo = obj;
8492        intel_crtc->cursor_width = width;
8493        intel_crtc->cursor_height = height;
8494
8495        if (intel_crtc->active) {
8496                if (old_width != width)
8497                        intel_update_watermarks(crtc);
8498                intel_crtc_update_cursor(crtc, intel_crtc->cursor_bo != NULL);
8499
8500                intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_CURSOR(pipe));
8501        }
8502
8503        return 0;
8504fail_unpin:
8505        i915_gem_object_unpin_from_display_plane(obj);
8506fail_locked:
8507        mutex_unlock(&dev->struct_mutex);
8508        return ret;
8509}
8510
8511static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
8512                                 u16 *blue, uint32_t start, uint32_t size)
8513{
8514        int end = (start + size > 256) ? 256 : start + size, i;
8515        struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8516
8517        for (i = start; i < end; i++) {
8518                intel_crtc->lut_r[i] = red[i] >> 8;
8519                intel_crtc->lut_g[i] = green[i] >> 8;
8520                intel_crtc->lut_b[i] = blue[i] >> 8;
8521        }
8522
8523        intel_crtc_load_lut(crtc);
8524}
8525
8526/* VESA 640x480x72Hz mode to set on the pipe */
8527static struct drm_display_mode load_detect_mode = {
8528        DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
8529                 704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
8530};
8531
8532struct drm_framebuffer *
8533__intel_framebuffer_create(struct drm_device *dev,
8534                           struct drm_mode_fb_cmd2 *mode_cmd,
8535                           struct drm_i915_gem_object *obj)
8536{
8537        struct intel_framebuffer *intel_fb;
8538        int ret;
8539
8540        intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
8541        if (!intel_fb) {
8542                drm_gem_object_unreference(&obj->base);
8543                return ERR_PTR(-ENOMEM);
8544        }
8545
8546        ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
8547        if (ret)
8548                goto err;
8549
8550        return &intel_fb->base;
8551err:
8552        drm_gem_object_unreference(&obj->base);
8553        kfree(intel_fb);
8554
8555        return ERR_PTR(ret);
8556}
8557
8558static struct drm_framebuffer *
8559intel_framebuffer_create(struct drm_device *dev,
8560                         struct drm_mode_fb_cmd2 *mode_cmd,
8561                         struct drm_i915_gem_object *obj)
8562{
8563        struct drm_framebuffer *fb;
8564        int ret;
8565
8566        ret = i915_mutex_lock_interruptible(dev);
8567        if (ret)
8568                return ERR_PTR(ret);
8569        fb = __intel_framebuffer_create(dev, mode_cmd, obj);
8570        mutex_unlock(&dev->struct_mutex);
8571
8572        return fb;
8573}
8574
8575static u32
8576intel_framebuffer_pitch_for_width(int width, int bpp)
8577{
8578        u32 pitch = DIV_ROUND_UP(width * bpp, 8);
8579        return ALIGN(pitch, 64);
8580}
8581
8582static u32
8583intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
8584{
8585        u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
8586        return PAGE_ALIGN(pitch * mode->vdisplay);
8587}
8588
8589static struct drm_framebuffer *
8590intel_framebuffer_create_for_mode(struct drm_device *dev,
8591                                  struct drm_display_mode *mode,
8592                                  int depth, int bpp)
8593{
8594        struct drm_i915_gem_object *obj;
8595        struct drm_mode_fb_cmd2 mode_cmd = { 0 };
8596
8597        obj = i915_gem_alloc_object(dev,
8598                                    intel_framebuffer_size_for_mode(mode, bpp));
8599        if (obj == NULL)
8600                return ERR_PTR(-ENOMEM);
8601
8602        mode_cmd.width = mode->hdisplay;
8603        mode_cmd.height = mode->vdisplay;
8604        mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
8605                                                                bpp);
8606        mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
8607
8608        return intel_framebuffer_create(dev, &mode_cmd, obj);
8609}
8610
8611static struct drm_framebuffer *
8612mode_fits_in_fbdev(struct drm_device *dev,
8613                   struct drm_display_mode *mode)
8614{
8615#ifdef CONFIG_DRM_I915_FBDEV
8616        struct drm_i915_private *dev_priv = dev->dev_private;
8617        struct drm_i915_gem_object *obj;
8618        struct drm_framebuffer *fb;
8619
8620        if (!dev_priv->fbdev)
8621                return NULL;
8622
8623        if (!dev_priv->fbdev->fb)
8624                return NULL;
8625
8626        obj = dev_priv->fbdev->fb->obj;
8627        BUG_ON(!obj);
8628
8629        fb = &dev_priv->fbdev->fb->base;
8630        if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
8631                                                               fb->bits_per_pixel))
8632                return NULL;
8633
8634        if (obj->base.size < mode->vdisplay * fb->pitches[0])
8635                return NULL;
8636
8637        return fb;
8638#else
8639        return NULL;
8640#endif
8641}
8642
8643bool intel_get_load_detect_pipe(struct drm_connector *connector,
8644                                struct drm_display_mode *mode,
8645                                struct intel_load_detect_pipe *old,
8646                                struct drm_modeset_acquire_ctx *ctx)
8647{
8648        struct intel_crtc *intel_crtc;
8649        struct intel_encoder *intel_encoder =
8650                intel_attached_encoder(connector);
8651        struct drm_crtc *possible_crtc;
8652        struct drm_encoder *encoder = &intel_encoder->base;
8653        struct drm_crtc *crtc = NULL;
8654        struct drm_device *dev = encoder->dev;
8655        struct drm_framebuffer *fb;
8656        struct drm_mode_config *config = &dev->mode_config;
8657        int ret, i = -1;
8658
8659        DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
8660                      connector->base.id, connector->name,
8661                      encoder->base.id, encoder->name);
8662
8663retry:
8664        ret = drm_modeset_lock(&config->connection_mutex, ctx);
8665        if (ret)
8666                goto fail_unlock;
8667
8668        /*
8669         * Algorithm gets a little messy:
8670         *
8671         *   - if the connector already has an assigned crtc, use it (but make
8672         *     sure it's on first)
8673         *
8674         *   - try to find the first unused crtc that can drive this connector,
8675         *     and use that if we find one
8676         */
8677
8678        /* See if we already have a CRTC for this connector */
8679        if (encoder->crtc) {
8680                crtc = encoder->crtc;
8681
8682                ret = drm_modeset_lock(&crtc->mutex, ctx);
8683                if (ret)
8684                        goto fail_unlock;
8685                ret = drm_modeset_lock(&crtc->primary->mutex, ctx);
8686                if (ret)
8687                        goto fail_unlock;
8688
8689                old->dpms_mode = connector->dpms;
8690                old->load_detect_temp = false;
8691
8692                /* Make sure the crtc and connector are running */
8693                if (connector->dpms != DRM_MODE_DPMS_ON)
8694                        connector->funcs->dpms(connector, DRM_MODE_DPMS_ON);
8695
8696                return true;
8697        }
8698
8699        /* Find an unused one (if possible) */
8700        for_each_crtc(dev, possible_crtc) {
8701                i++;
8702                if (!(encoder->possible_crtcs & (1 << i)))
8703                        continue;
8704                if (possible_crtc->enabled)
8705                        continue;
8706                /* This can occur when applying the pipe A quirk on resume. */
8707                if (to_intel_crtc(possible_crtc)->new_enabled)
8708                        continue;
8709
8710                crtc = possible_crtc;
8711                break;
8712        }
8713
8714        /*
8715         * If we didn't find an unused CRTC, don't use any.
8716         */
8717        if (!crtc) {
8718                DRM_DEBUG_KMS("no pipe available for load-detect\n");
8719                goto fail_unlock;
8720        }
8721
8722        ret = drm_modeset_lock(&crtc->mutex, ctx);
8723        if (ret)
8724                goto fail_unlock;
8725        ret = drm_modeset_lock(&crtc->primary->mutex, ctx);
8726        if (ret)
8727                goto fail_unlock;
8728        intel_encoder->new_crtc = to_intel_crtc(crtc);
8729        to_intel_connector(connector)->new_encoder = intel_encoder;
8730
8731        intel_crtc = to_intel_crtc(crtc);
8732        intel_crtc->new_enabled = true;
8733        intel_crtc->new_config = &intel_crtc->config;
8734        old->dpms_mode = connector->dpms;
8735        old->load_detect_temp = true;
8736        old->release_fb = NULL;
8737
8738        if (!mode)
8739                mode = &load_detect_mode;
8740
8741        /* We need a framebuffer large enough to accommodate all accesses
8742         * that the plane may generate whilst we perform load detection.
8743         * We can not rely on the fbcon either being present (we get called
8744         * during its initialisation to detect all boot displays, or it may
8745         * not even exist) or that it is large enough to satisfy the
8746         * requested mode.
8747         */
8748        fb = mode_fits_in_fbdev(dev, mode);
8749        if (fb == NULL) {
8750                DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
8751                fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
8752                old->release_fb = fb;
8753        } else
8754                DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
8755        if (IS_ERR(fb)) {
8756                DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
8757                goto fail;
8758        }
8759
8760        if (intel_set_mode(crtc, mode, 0, 0, fb)) {
8761                DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
8762                if (old->release_fb)
8763                        old->release_fb->funcs->destroy(old->release_fb);
8764                goto fail;
8765        }
8766
8767        /* let the connector get through one full cycle before testing */
8768        intel_wait_for_vblank(dev, intel_crtc->pipe);
8769        return true;
8770
8771 fail:
8772        intel_crtc->new_enabled = crtc->enabled;
8773        if (intel_crtc->new_enabled)
8774                intel_crtc->new_config = &intel_crtc->config;
8775        else
8776                intel_crtc->new_config = NULL;
8777fail_unlock:
8778        if (ret == -EDEADLK) {
8779                drm_modeset_backoff(ctx);
8780                goto retry;
8781        }
8782
8783        return false;
8784}
8785
8786void intel_release_load_detect_pipe(struct drm_connector *connector,
8787                                    struct intel_load_detect_pipe *old)
8788{
8789        struct intel_encoder *intel_encoder =
8790                intel_attached_encoder(connector);
8791        struct drm_encoder *encoder = &intel_encoder->base;
8792        struct drm_crtc *crtc = encoder->crtc;
8793        struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8794
8795        DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
8796                      connector->base.id, connector->name,
8797                      encoder->base.id, encoder->name);
8798
8799        if (old->load_detect_temp) {
8800                to_intel_connector(connector)->new_encoder = NULL;
8801                intel_encoder->new_crtc = NULL;
8802                intel_crtc->new_enabled = false;
8803                intel_crtc->new_config = NULL;
8804                intel_set_mode(crtc, NULL, 0, 0, NULL);
8805
8806                if (old->release_fb) {
8807                        drm_framebuffer_unregister_private(old->release_fb);
8808                        drm_framebuffer_unreference(old->release_fb);
8809                }
8810
8811                return;
8812        }
8813
8814        /* Switch crtc and encoder back off if necessary */
8815        if (old->dpms_mode != DRM_MODE_DPMS_ON)
8816                connector->funcs->dpms(connector, old->dpms_mode);
8817}
8818
8819static int i9xx_pll_refclk(struct drm_device *dev,
8820                           const struct intel_crtc_config *pipe_config)
8821{
8822        struct drm_i915_private *dev_priv = dev->dev_private;
8823        u32 dpll = pipe_config->dpll_hw_state.dpll;
8824
8825        if ((dpll & PLL_REF_INPUT_MASK) == PLLB_REF_INPUT_SPREADSPECTRUMIN)
8826                return dev_priv->vbt.lvds_ssc_freq;
8827        else if (HAS_PCH_SPLIT(dev))
8828                return 120000;
8829        else if (!IS_GEN2(dev))
8830                return 96000;
8831        else
8832                return 48000;
8833}
8834
8835/* Returns the clock of the currently programmed mode of the given pipe. */
8836static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
8837                                struct intel_crtc_config *pipe_config)
8838{
8839        struct drm_device *dev = crtc->base.dev;
8840        struct drm_i915_private *dev_priv = dev->dev_private;
8841        int pipe = pipe_config->cpu_transcoder;
8842        u32 dpll = pipe_config->dpll_hw_state.dpll;
8843        u32 fp;
8844        intel_clock_t clock;
8845        int refclk = i9xx_pll_refclk(dev, pipe_config);
8846
8847        if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
8848                fp = pipe_config->dpll_hw_state.fp0;
8849        else
8850                fp = pipe_config->dpll_hw_state.fp1;
8851
8852        clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
8853        if (IS_PINEVIEW(dev)) {
8854                clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
8855                clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
8856        } else {
8857                clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
8858                clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
8859        }
8860
8861        if (!IS_GEN2(dev)) {
8862                if (IS_PINEVIEW(dev))
8863                        clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
8864                                DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
8865                else
8866                        clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
8867                               DPLL_FPA01_P1_POST_DIV_SHIFT);
8868
8869                switch (dpll & DPLL_MODE_MASK) {
8870                case DPLLB_MODE_DAC_SERIAL:
8871                        clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
8872                                5 : 10;
8873                        break;
8874                case DPLLB_MODE_LVDS:
8875                        clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
8876                                7 : 14;
8877                        break;
8878                default:
8879                        DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
8880                                  "mode\n", (int)(dpll & DPLL_MODE_MASK));
8881                        return;
8882                }
8883
8884                if (IS_PINEVIEW(dev))
8885                        pineview_clock(refclk, &clock);
8886                else
8887                        i9xx_clock(refclk, &clock);
8888        } else {
8889                u32 lvds = IS_I830(dev) ? 0 : I915_READ(LVDS);
8890                bool is_lvds = (pipe == 1) && (lvds & LVDS_PORT_EN);
8891
8892                if (is_lvds) {
8893                        clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
8894                                       DPLL_FPA01_P1_POST_DIV_SHIFT);
8895
8896                        if (lvds & LVDS_CLKB_POWER_UP)
8897                                clock.p2 = 7;
8898                        else
8899                                clock.p2 = 14;
8900                } else {
8901                        if (dpll & PLL_P1_DIVIDE_BY_TWO)
8902                                clock.p1 = 2;
8903                        else {
8904                                clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
8905                                            DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
8906                        }
8907                        if (dpll & PLL_P2_DIVIDE_BY_4)
8908                                clock.p2 = 4;
8909                        else
8910                                clock.p2 = 2;
8911                }
8912
8913                i9xx_clock(refclk, &clock);
8914        }
8915
8916        /*
8917         * This value includes pixel_multiplier. We will use
8918         * port_clock to compute adjusted_mode.crtc_clock in the
8919         * encoder's get_config() function.
8920         */
8921        pipe_config->port_clock = clock.dot;
8922}
8923
8924int intel_dotclock_calculate(int link_freq,
8925                             const struct intel_link_m_n *m_n)
8926{
8927        /*
8928         * The calculation for the data clock is:
8929         * pixel_clock = ((m/n)*(link_clock * nr_lanes))/bpp
8930         * But we want to avoid losing precison if possible, so:
8931         * pixel_clock = ((m * link_clock * nr_lanes)/(n*bpp))
8932         *
8933         * and the link clock is simpler:
8934         * link_clock = (m * link_clock) / n
8935         */
8936
8937        if (!m_n->link_n)
8938                return 0;
8939
8940        return div_u64((u64)m_n->link_m * link_freq, m_n->link_n);
8941}
8942
8943static void ironlake_pch_clock_get(struct intel_crtc *crtc,
8944                                   struct intel_crtc_config *pipe_config)
8945{
8946        struct drm_device *dev = crtc->base.dev;
8947
8948        /* read out port_clock from the DPLL */
8949        i9xx_crtc_clock_get(crtc, pipe_config);
8950
8951        /*
8952         * This value does not include pixel_multiplier.
8953         * We will check that port_clock and adjusted_mode.crtc_clock
8954         * agree once we know their relationship in the encoder's
8955         * get_config() function.
8956         */
8957        pipe_config->adjusted_mode.crtc_clock =
8958                intel_dotclock_calculate(intel_fdi_link_freq(dev) * 10000,
8959                                         &pipe_config->fdi_m_n);
8960}
8961
8962/** Returns the currently programmed mode of the given pipe. */
8963struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
8964                                             struct drm_crtc *crtc)
8965{
8966        struct drm_i915_private *dev_priv = dev->dev_private;
8967        struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8968        enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
8969        struct drm_display_mode *mode;
8970        struct intel_crtc_config pipe_config;
8971        int htot = I915_READ(HTOTAL(cpu_transcoder));
8972        int hsync = I915_READ(HSYNC(cpu_transcoder));
8973        int vtot = I915_READ(VTOTAL(cpu_transcoder));
8974        int vsync = I915_READ(VSYNC(cpu_transcoder));
8975        enum pipe pipe = intel_crtc->pipe;
8976
8977        mode = kzalloc(sizeof(*mode), GFP_KERNEL);
8978        if (!mode)
8979                return NULL;
8980
8981        /*
8982         * Construct a pipe_config sufficient for getting the clock info
8983         * back out of crtc_clock_get.
8984         *
8985         * Note, if LVDS ever uses a non-1 pixel multiplier, we'll need
8986         * to use a real value here instead.
8987         */
8988        pipe_config.cpu_transcoder = (enum transcoder) pipe;
8989        pipe_config.pixel_multiplier = 1;
8990        pipe_config.dpll_hw_state.dpll = I915_READ(DPLL(pipe));
8991        pipe_config.dpll_hw_state.fp0 = I915_READ(FP0(pipe));
8992        pipe_config.dpll_hw_state.fp1 = I915_READ(FP1(pipe));
8993        i9xx_crtc_clock_get(intel_crtc, &pipe_config);
8994
8995        mode->clock = pipe_config.port_clock / pipe_config.pixel_multiplier;
8996        mode->hdisplay = (htot & 0xffff) + 1;
8997        mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
8998        mode->hsync_start = (hsync & 0xffff) + 1;
8999        mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
9000        mode->vdisplay = (vtot & 0xffff) + 1;
9001        mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
9002        mode->vsync_start = (vsync & 0xffff) + 1;
9003        mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
9004
9005        drm_mode_set_name(mode);
9006
9007        return mode;
9008}
9009
9010static void intel_decrease_pllclock(struct drm_crtc *crtc)
9011{
9012        struct drm_device *dev = crtc->dev;
9013        struct drm_i915_private *dev_priv = dev->dev_private;
9014        struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9015
9016        if (!HAS_GMCH_DISPLAY(dev))
9017                return;
9018
9019        if (!dev_priv->lvds_downclock_avail)
9020                return;
9021
9022        /*
9023         * Since this is called by a timer, we should never get here in
9024         * the manual case.
9025         */
9026        if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
9027                int pipe = intel_crtc->pipe;
9028                int dpll_reg = DPLL(pipe);
9029                int dpll;
9030
9031                DRM_DEBUG_DRIVER("downclocking LVDS\n");
9032
9033                assert_panel_unlocked(dev_priv, pipe);
9034
9035                dpll = I915_READ(dpll_reg);
9036                dpll |= DISPLAY_RATE_SELECT_FPA1;
9037                I915_WRITE(dpll_reg, dpll);
9038                intel_wait_for_vblank(dev, pipe);
9039                dpll = I915_READ(dpll_reg);
9040                if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
9041                        DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
9042        }
9043
9044}
9045
9046void intel_mark_busy(struct drm_device *dev)
9047{
9048        struct drm_i915_private *dev_priv = dev->dev_private;
9049
9050        if (dev_priv->mm.busy)
9051                return;
9052
9053        intel_runtime_pm_get(dev_priv);
9054        i915_update_gfx_val(dev_priv);
9055        dev_priv->mm.busy = true;
9056}
9057
9058void intel_mark_idle(struct drm_device *dev)
9059{
9060        struct drm_i915_private *dev_priv = dev->dev_private;
9061        struct drm_crtc *crtc;
9062
9063        if (!dev_priv->mm.busy)
9064                return;
9065
9066        dev_priv->mm.busy = false;
9067
9068        if (!i915.powersave)
9069                goto out;
9070
9071        for_each_crtc(dev, crtc) {
9072                if (!crtc->primary->fb)
9073                        continue;
9074
9075                intel_decrease_pllclock(crtc);
9076        }
9077
9078        if (INTEL_INFO(dev)->gen >= 6)
9079                gen6_rps_idle(dev->dev_private);
9080
9081out:
9082        intel_runtime_pm_put(dev_priv);
9083}
9084
9085static void intel_crtc_destroy(struct drm_crtc *crtc)
9086{
9087        struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9088        struct drm_device *dev = crtc->dev;
9089        struct intel_unpin_work *work;
9090
9091        spin_lock_irq(&dev->event_lock);
9092        work = intel_crtc->unpin_work;
9093        intel_crtc->unpin_work = NULL;
9094        spin_unlock_irq(&dev->event_lock);
9095
9096        if (work) {
9097                cancel_work_sync(&work->work);
9098                kfree(work);
9099        }
9100
9101        drm_crtc_cleanup(crtc);
9102
9103        kfree(intel_crtc);
9104}
9105
9106static void intel_unpin_work_fn(struct work_struct *__work)
9107{
9108        struct intel_unpin_work *work =
9109                container_of(__work, struct intel_unpin_work, work);
9110        struct drm_device *dev = work->crtc->dev;
9111        enum pipe pipe = to_intel_crtc(work->crtc)->pipe;
9112
9113        mutex_lock(&dev->struct_mutex);
9114        intel_unpin_fb_obj(work->old_fb_obj);
9115        drm_gem_object_unreference(&work->pending_flip_obj->base);
9116        drm_gem_object_unreference(&work->old_fb_obj->base);
9117
9118        intel_update_fbc(dev);
9119        mutex_unlock(&dev->struct_mutex);
9120
9121        intel_frontbuffer_flip_complete(dev, INTEL_FRONTBUFFER_PRIMARY(pipe));
9122
9123        BUG_ON(atomic_read(&to_intel_crtc(work->crtc)->unpin_work_count) == 0);
9124        atomic_dec(&to_intel_crtc(work->crtc)->unpin_work_count);
9125
9126        kfree(work);
9127}
9128
9129static void do_intel_finish_page_flip(struct drm_device *dev,
9130                                      struct drm_crtc *crtc)
9131{
9132        struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9133        struct intel_unpin_work *work;
9134        unsigned long flags;
9135
9136        /* Ignore early vblank irqs */
9137        if (intel_crtc == NULL)
9138                return;
9139
9140        /*
9141         * This is called both by irq handlers and the reset code (to complete
9142         * lost pageflips) so needs the full irqsave spinlocks.
9143         */
9144        spin_lock_irqsave(&dev->event_lock, flags);
9145        work = intel_crtc->unpin_work;
9146
9147        /* Ensure we don't miss a work->pending update ... */
9148        smp_rmb();
9149
9150        if (work == NULL || atomic_read(&work->pending) < INTEL_FLIP_COMPLETE) {
9151                spin_unlock_irqrestore(&dev->event_lock, flags);
9152                return;
9153        }
9154
9155        page_flip_completed(intel_crtc);
9156
9157        spin_unlock_irqrestore(&dev->event_lock, flags);
9158}
9159
9160void intel_finish_page_flip(struct drm_device *dev, int pipe)
9161{
9162        struct drm_i915_private *dev_priv = dev->dev_private;
9163        struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
9164
9165        do_intel_finish_page_flip(dev, crtc);
9166}
9167
9168void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
9169{
9170        struct drm_i915_private *dev_priv = dev->dev_private;
9171        struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
9172
9173        do_intel_finish_page_flip(dev, crtc);
9174}
9175
9176/* Is 'a' after or equal to 'b'? */
9177static bool g4x_flip_count_after_eq(u32 a, u32 b)
9178{
9179        return !((a - b) & 0x80000000);
9180}
9181
9182static bool page_flip_finished(struct intel_crtc *crtc)
9183{
9184        struct drm_device *dev = crtc->base.dev;
9185        struct drm_i915_private *dev_priv = dev->dev_private;
9186
9187        if (i915_reset_in_progress(&dev_priv->gpu_error) ||
9188            crtc->reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
9189                return true;
9190
9191        /*
9192         * The relevant registers doen't exist on pre-ctg.
9193         * As the flip done interrupt doesn't trigger for mmio
9194         * flips on gmch platforms, a flip count check isn't
9195         * really needed there. But since ctg has the registers,
9196         * include it in the check anyway.
9197         */
9198        if (INTEL_INFO(dev)->gen < 5 && !IS_G4X(dev))
9199                return true;
9200
9201        /*
9202         * A DSPSURFLIVE check isn't enough in case the mmio and CS flips
9203         * used the same base address. In that case the mmio flip might
9204         * have completed, but the CS hasn't even executed the flip yet.
9205         *
9206         * A flip count check isn't enough as the CS might have updated
9207         * the base address just after start of vblank, but before we
9208         * managed to process the interrupt. This means we'd complete the
9209         * CS flip too soon.
9210         *
9211         * Combining both checks should get us a good enough result. It may
9212         * still happen that the CS flip has been executed, but has not
9213         * yet actually completed. But in case the base address is the same
9214         * anyway, we don't really care.
9215         */
9216        return (I915_READ(DSPSURFLIVE(crtc->plane)) & ~0xfff) ==
9217                crtc->unpin_work->gtt_offset &&
9218                g4x_flip_count_after_eq(I915_READ(PIPE_FLIPCOUNT_GM45(crtc->pipe)),
9219                                    crtc->unpin_work->flip_count);
9220}
9221
9222void intel_prepare_page_flip(struct drm_device *dev, int plane)
9223{
9224        struct drm_i915_private *dev_priv = dev->dev_private;
9225        struct intel_crtc *intel_crtc =
9226                to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
9227        unsigned long flags;
9228
9229
9230        /*
9231         * This is called both by irq handlers and the reset code (to complete
9232         * lost pageflips) so needs the full irqsave spinlocks.
9233         *
9234         * NB: An MMIO update of the plane base pointer will also
9235         * generate a page-flip completion irq, i.e. every modeset
9236         * is also accompanied by a spurious intel_prepare_page_flip().
9237         */
9238        spin_lock_irqsave(&dev->event_lock, flags);
9239        if (intel_crtc->unpin_work && page_flip_finished(intel_crtc))
9240                atomic_inc_not_zero(&intel_crtc->unpin_work->pending);
9241        spin_unlock_irqrestore(&dev->event_lock, flags);
9242}
9243
9244static inline void intel_mark_page_flip_active(struct intel_crtc *intel_crtc)
9245{
9246        /* Ensure that the work item is consistent when activating it ... */
9247        smp_wmb();
9248        atomic_set(&intel_crtc->unpin_work->pending, INTEL_FLIP_PENDING);
9249        /* and that it is marked active as soon as the irq could fire. */
9250        smp_wmb();
9251}
9252
9253static int intel_gen2_queue_flip(struct drm_device *dev,
9254                                 struct drm_crtc *crtc,
9255                                 struct drm_framebuffer *fb,
9256                                 struct drm_i915_gem_object *obj,
9257                                 struct intel_engine_cs *ring,
9258                                 uint32_t flags)
9259{
9260        struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9261        u32 flip_mask;
9262        int ret;
9263
9264        ret = intel_ring_begin(ring, 6);
9265        if (ret)
9266                return ret;
9267
9268        /* Can't queue multiple flips, so wait for the previous
9269         * one to finish before executing the next.
9270         */
9271        if (intel_crtc->plane)
9272                flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
9273        else
9274                flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
9275        intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
9276        intel_ring_emit(ring, MI_NOOP);
9277        intel_ring_emit(ring, MI_DISPLAY_FLIP |
9278                        MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
9279        intel_ring_emit(ring, fb->pitches[0]);
9280        intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
9281        intel_ring_emit(ring, 0); /* aux display base address, unused */
9282
9283        intel_mark_page_flip_active(intel_crtc);
9284        __intel_ring_advance(ring);
9285        return 0;
9286}
9287
9288static int intel_gen3_queue_flip(struct drm_device *dev,
9289                                 struct drm_crtc *crtc,
9290                                 struct drm_framebuffer *fb,
9291                                 struct drm_i915_gem_object *obj,
9292                                 struct intel_engine_cs *ring,
9293                                 uint32_t flags)
9294{
9295        struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9296        u32 flip_mask;
9297        int ret;
9298
9299        ret = intel_ring_begin(ring, 6);
9300        if (ret)
9301                return ret;
9302
9303        if (intel_crtc->plane)
9304                flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
9305        else
9306                flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
9307        intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
9308        intel_ring_emit(ring, MI_NOOP);
9309        intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 |
9310                        MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
9311        intel_ring_emit(ring, fb->pitches[0]);
9312        intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
9313        intel_ring_emit(ring, MI_NOOP);
9314
9315        intel_mark_page_flip_active(intel_crtc);
9316        __intel_ring_advance(ring);
9317        return 0;
9318}
9319
9320static int intel_gen4_queue_flip(struct drm_device *dev,
9321                                 struct drm_crtc *crtc,
9322                                 struct drm_framebuffer *fb,
9323                                 struct drm_i915_gem_object *obj,
9324                                 struct intel_engine_cs *ring,
9325                                 uint32_t flags)
9326{
9327        struct drm_i915_private *dev_priv = dev->dev_private;
9328        struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9329        uint32_t pf, pipesrc;
9330        int ret;
9331
9332        ret = intel_ring_begin(ring, 4);
9333        if (ret)
9334                return ret;
9335
9336        /* i965+ uses the linear or tiled offsets from the
9337         * Display Registers (which do not change across a page-flip)
9338         * so we need only reprogram the base address.
9339         */
9340        intel_ring_emit(ring, MI_DISPLAY_FLIP |
9341                        MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
9342        intel_ring_emit(ring, fb->pitches[0]);
9343        intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset |
9344                        obj->tiling_mode);
9345
9346        /* XXX Enabling the panel-fitter across page-flip is so far
9347         * untested on non-native modes, so ignore it for now.
9348         * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
9349         */
9350        pf = 0;
9351        pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
9352        intel_ring_emit(ring, pf | pipesrc);
9353
9354        intel_mark_page_flip_active(intel_crtc);
9355        __intel_ring_advance(ring);
9356        return 0;
9357}
9358
9359static int intel_gen6_queue_flip(struct drm_device *dev,
9360                                 struct drm_crtc *crtc,
9361                                 struct drm_framebuffer *fb,
9362                                 struct drm_i915_gem_object *obj,
9363                                 struct intel_engine_cs *ring,
9364                                 uint32_t flags)
9365{
9366        struct drm_i915_private *dev_priv = dev->dev_private;
9367        struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9368        uint32_t pf, pipesrc;
9369        int ret;
9370
9371        ret = intel_ring_begin(ring, 4);
9372        if (ret)
9373                return ret;
9374
9375        intel_ring_emit(ring, MI_DISPLAY_FLIP |
9376                        MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
9377        intel_ring_emit(ring, fb->pitches[0] | obj->tiling_mode);
9378        intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
9379
9380        /* Contrary to the suggestions in the documentation,
9381         * "Enable Panel Fitter" does not seem to be required when page
9382         * flipping with a non-native mode, and worse causes a normal
9383         * modeset to fail.
9384         * pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
9385         */
9386        pf = 0;
9387        pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
9388        intel_ring_emit(ring, pf | pipesrc);
9389
9390        intel_mark_page_flip_active(intel_crtc);
9391        __intel_ring_advance(ring);
9392        return 0;
9393}
9394
9395static int intel_gen7_queue_flip(struct drm_device *dev,
9396                                 struct drm_crtc *crtc,
9397                                 struct drm_framebuffer *fb,
9398                                 struct drm_i915_gem_object *obj,
9399                                 struct intel_engine_cs *ring,
9400                                 uint32_t flags)
9401{
9402        struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9403        uint32_t plane_bit = 0;
9404        int len, ret;
9405
9406        switch (intel_crtc->plane) {
9407        case PLANE_A:
9408                plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_A;
9409                break;
9410        case PLANE_B:
9411                plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_B;
9412                break;
9413        case PLANE_C:
9414                plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_C;
9415                break;
9416        default:
9417                WARN_ONCE(1, "unknown plane in flip command\n");
9418                return -ENODEV;
9419        }
9420
9421        len = 4;
9422        if (ring->id == RCS) {
9423                len += 6;
9424                /*
9425                 * On Gen 8, SRM is now taking an extra dword to accommodate
9426                 * 48bits addresses, and we need a NOOP for the batch size to
9427                 * stay even.
9428                 */
9429                if (IS_GEN8(dev))
9430                        len += 2;
9431        }
9432
9433        /*
9434         * BSpec MI_DISPLAY_FLIP for IVB:
9435         * "The full packet must be contained within the same cache line."
9436         *
9437         * Currently the LRI+SRM+MI_DISPLAY_FLIP all fit within the same
9438         * cacheline, if we ever start emitting more commands before
9439         * the MI_DISPLAY_FLIP we may need to first emit everything else,
9440         * then do the cacheline alignment, and finally emit the
9441         * MI_DISPLAY_FLIP.
9442         */
9443        ret = intel_ring_cacheline_align(ring);
9444        if (ret)
9445                return ret;
9446
9447        ret = intel_ring_begin(ring, len);
9448        if (ret)
9449                return ret;
9450
9451        /* Unmask the flip-done completion message. Note that the bspec says that
9452         * we should do this for both the BCS and RCS, and that we must not unmask
9453         * more than one flip event at any time (or ensure that one flip message
9454         * can be sent by waiting for flip-done prior to queueing new flips).
9455         * Experimentation says that BCS works despite DERRMR masking all
9456         * flip-done completion events and that unmasking all planes at once
9457         * for the RCS also doesn't appear to drop events. Setting the DERRMR
9458         * to zero does lead to lockups within MI_DISPLAY_FLIP.
9459         */
9460        if (ring->id == RCS) {
9461                intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
9462                intel_ring_emit(ring, DERRMR);
9463                intel_ring_emit(ring, ~(DERRMR_PIPEA_PRI_FLIP_DONE |
9464                                        DERRMR_PIPEB_PRI_FLIP_DONE |
9465                                        DERRMR_PIPEC_PRI_FLIP_DONE));
9466                if (IS_GEN8(dev))
9467                        intel_ring_emit(ring, MI_STORE_REGISTER_MEM_GEN8(1) |
9468                                              MI_SRM_LRM_GLOBAL_GTT);
9469                else
9470                        intel_ring_emit(ring, MI_STORE_REGISTER_MEM(1) |
9471                                              MI_SRM_LRM_GLOBAL_GTT);
9472                intel_ring_emit(ring, DERRMR);
9473                intel_ring_emit(ring, ring->scratch.gtt_offset + 256);
9474                if (IS_GEN8(dev)) {
9475                        intel_ring_emit(ring, 0);
9476                        intel_ring_emit(ring, MI_NOOP);
9477                }
9478        }
9479
9480        intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | plane_bit);
9481        intel_ring_emit(ring, (fb->pitches[0] | obj->tiling_mode));
9482        intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
9483        intel_ring_emit(ring, (MI_NOOP));
9484
9485        intel_mark_page_flip_active(intel_crtc);
9486        __intel_ring_advance(ring);
9487        return 0;
9488}
9489
9490static bool use_mmio_flip(struct intel_engine_cs *ring,
9491                          struct drm_i915_gem_object *obj)
9492{
9493        /*
9494         * This is not being used for older platforms, because
9495         * non-availability of flip done interrupt forces us to use
9496         * CS flips. Older platforms derive flip done using some clever
9497         * tricks involving the flip_pending status bits and vblank irqs.
9498         * So using MMIO flips there would disrupt this mechanism.
9499         */
9500
9501        if (ring == NULL)
9502                return true;
9503
9504        if (INTEL_INFO(ring->dev)->gen < 5)
9505                return false;
9506
9507        if (i915.use_mmio_flip < 0)
9508                return false;
9509        else if (i915.use_mmio_flip > 0)
9510                return true;
9511        else if (i915.enable_execlists)
9512                return true;
9513        else
9514                return ring != obj->ring;
9515}
9516
9517static void intel_do_mmio_flip(struct intel_crtc *intel_crtc)
9518{
9519        struct drm_device *dev = intel_crtc->base.dev;
9520        struct drm_i915_private *dev_priv = dev->dev_private;
9521        struct intel_framebuffer *intel_fb =
9522                to_intel_framebuffer(intel_crtc->base.primary->fb);
9523        struct drm_i915_gem_object *obj = intel_fb->obj;
9524        bool atomic_update;
9525        u32 start_vbl_count;
9526        u32 dspcntr;
9527        u32 reg;
9528
9529        intel_mark_page_flip_active(intel_crtc);
9530
9531        atomic_update = intel_pipe_update_start(intel_crtc, &start_vbl_count);
9532
9533        reg = DSPCNTR(intel_crtc->plane);
9534        dspcntr = I915_READ(reg);
9535
9536        if (obj->tiling_mode != I915_TILING_NONE)
9537                dspcntr |= DISPPLANE_TILED;
9538        else
9539                dspcntr &= ~DISPPLANE_TILED;
9540
9541        I915_WRITE(reg, dspcntr);
9542
9543        I915_WRITE(DSPSURF(intel_crtc->plane),
9544                   intel_crtc->unpin_work->gtt_offset);
9545        POSTING_READ(DSPSURF(intel_crtc->plane));
9546
9547        if (atomic_update)
9548                intel_pipe_update_end(intel_crtc, start_vbl_count);
9549}
9550
9551static void intel_mmio_flip_work_func(struct work_struct *work)
9552{
9553        struct intel_crtc *intel_crtc =
9554                container_of(work, struct intel_crtc, mmio_flip.work);
9555        struct intel_engine_cs *ring;
9556        uint32_t seqno;
9557
9558        seqno = intel_crtc->mmio_flip.seqno;
9559        ring = intel_crtc->mmio_flip.ring;
9560
9561        if (seqno)
9562                WARN_ON(__i915_wait_seqno(ring, seqno,
9563                                          intel_crtc->reset_counter,
9564                                          false, NULL, NULL) != 0);
9565
9566        intel_do_mmio_flip(intel_crtc);
9567}
9568
9569static int intel_queue_mmio_flip(struct drm_device *dev,
9570                                 struct drm_crtc *crtc,
9571                                 struct drm_framebuffer *fb,
9572                                 struct drm_i915_gem_object *obj,
9573                                 struct intel_engine_cs *ring,
9574                                 uint32_t flags)
9575{
9576        struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9577
9578        intel_crtc->mmio_flip.seqno = obj->last_write_seqno;
9579        intel_crtc->mmio_flip.ring = obj->ring;
9580
9581        schedule_work(&intel_crtc->mmio_flip.work);
9582
9583        return 0;
9584}
9585
9586static int intel_gen9_queue_flip(struct drm_device *dev,
9587                                 struct drm_crtc *crtc,
9588                                 struct drm_framebuffer *fb,
9589                                 struct drm_i915_gem_object *obj,
9590                                 struct intel_engine_cs *ring,
9591                                 uint32_t flags)
9592{
9593        struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9594        uint32_t plane = 0, stride;
9595        int ret;
9596
9597        switch(intel_crtc->pipe) {
9598        case PIPE_A:
9599                plane = MI_DISPLAY_FLIP_SKL_PLANE_1_A;
9600                break;
9601        case PIPE_B:
9602                plane = MI_DISPLAY_FLIP_SKL_PLANE_1_B;
9603                break;
9604        case PIPE_C:
9605                plane = MI_DISPLAY_FLIP_SKL_PLANE_1_C;
9606                break;
9607        default:
9608                WARN_ONCE(1, "unknown plane in flip command\n");
9609                return -ENODEV;
9610        }
9611
9612        switch (obj->tiling_mode) {
9613        case I915_TILING_NONE:
9614                stride = fb->pitches[0] >> 6;
9615                break;
9616        case I915_TILING_X:
9617                stride = fb->pitches[0] >> 9;
9618                break;
9619        default:
9620                WARN_ONCE(1, "unknown tiling in flip command\n");
9621                return -ENODEV;
9622        }
9623
9624        ret = intel_ring_begin(ring, 10);
9625        if (ret)
9626                return ret;
9627
9628        intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
9629        intel_ring_emit(ring, DERRMR);
9630        intel_ring_emit(ring, ~(DERRMR_PIPEA_PRI_FLIP_DONE |
9631                                DERRMR_PIPEB_PRI_FLIP_DONE |
9632                                DERRMR_PIPEC_PRI_FLIP_DONE));
9633        intel_ring_emit(ring, MI_STORE_REGISTER_MEM_GEN8(1) |
9634                              MI_SRM_LRM_GLOBAL_GTT);
9635        intel_ring_emit(ring, DERRMR);
9636        intel_ring_emit(ring, ring->scratch.gtt_offset + 256);
9637        intel_ring_emit(ring, 0);
9638
9639        intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | plane);
9640        intel_ring_emit(ring, stride << 6 | obj->tiling_mode);
9641        intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
9642
9643        intel_mark_page_flip_active(intel_crtc);
9644        __intel_ring_advance(ring);
9645
9646        return 0;
9647}
9648
9649static int intel_default_queue_flip(struct drm_device *dev,
9650                                    struct drm_crtc *crtc,
9651                                    struct drm_framebuffer *fb,
9652                                    struct drm_i915_gem_object *obj,
9653                                    struct intel_engine_cs *ring,
9654                                    uint32_t flags)
9655{
9656        return -ENODEV;
9657}
9658
9659static bool __intel_pageflip_stall_check(struct drm_device *dev,
9660                                         struct drm_crtc *crtc)
9661{
9662        struct drm_i915_private *dev_priv = dev->dev_private;
9663        struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9664        struct intel_unpin_work *work = intel_crtc->unpin_work;
9665        u32 addr;
9666
9667        if (atomic_read(&work->pending) >= INTEL_FLIP_COMPLETE)
9668                return true;
9669
9670        if (!work->enable_stall_check)
9671                return false;
9672
9673        if (work->flip_ready_vblank == 0) {
9674                if (work->flip_queued_ring &&
9675                    !i915_seqno_passed(work->flip_queued_ring->get_seqno(work->flip_queued_ring, true),
9676                                       work->flip_queued_seqno))
9677                        return false;
9678
9679                work->flip_ready_vblank = drm_vblank_count(dev, intel_crtc->pipe);
9680        }
9681
9682        if (drm_vblank_count(dev, intel_crtc->pipe) - work->flip_ready_vblank < 3)
9683                return false;
9684
9685        /* Potential stall - if we see that the flip has happened,
9686         * assume a missed interrupt. */
9687        if (INTEL_INFO(dev)->gen >= 4)
9688                addr = I915_HI_DISPBASE(I915_READ(DSPSURF(intel_crtc->plane)));
9689        else
9690                addr = I915_READ(DSPADDR(intel_crtc->plane));
9691
9692        /* There is a potential issue here with a false positive after a flip
9693         * to the same address. We could address this by checking for a
9694         * non-incrementing frame counter.
9695         */
9696        return addr == work->gtt_offset;
9697}
9698
9699void intel_check_page_flip(struct drm_device *dev, int pipe)
9700{
9701        struct drm_i915_private *dev_priv = dev->dev_private;
9702        struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
9703        struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9704
9705        WARN_ON(!in_irq());
9706
9707        if (crtc == NULL)
9708                return;
9709
9710        spin_lock(&dev->event_lock);
9711        if (intel_crtc->unpin_work && __intel_pageflip_stall_check(dev, crtc)) {
9712                WARN_ONCE(1, "Kicking stuck page flip: queued at %d, now %d\n",
9713                         intel_crtc->unpin_work->flip_queued_vblank, drm_vblank_count(dev, pipe));
9714                page_flip_completed(intel_crtc);
9715        }
9716        spin_unlock(&dev->event_lock);
9717}
9718
9719static int intel_crtc_page_flip(struct drm_crtc *crtc,
9720                                struct drm_framebuffer *fb,
9721                                struct drm_pending_vblank_event *event,
9722                                uint32_t page_flip_flags)
9723{
9724        struct drm_device *dev = crtc->dev;
9725        struct drm_i915_private *dev_priv = dev->dev_private;
9726        struct drm_framebuffer *old_fb = crtc->primary->fb;
9727        struct drm_i915_gem_object *obj = intel_fb_obj(fb);
9728        struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9729        enum pipe pipe = intel_crtc->pipe;
9730        struct intel_unpin_work *work;
9731        struct intel_engine_cs *ring;
9732        int ret;
9733
9734        /*
9735         * drm_mode_page_flip_ioctl() should already catch this, but double
9736         * check to be safe.  In the future we may enable pageflipping from
9737         * a disabled primary plane.
9738         */
9739        if (WARN_ON(intel_fb_obj(old_fb) == NULL))
9740                return -EBUSY;
9741
9742        /* Can't change pixel format via MI display flips. */
9743        if (fb->pixel_format != crtc->primary->fb->pixel_format)
9744                return -EINVAL;
9745
9746        /*
9747         * TILEOFF/LINOFF registers can't be changed via MI display flips.
9748         * Note that pitch changes could also affect these register.
9749         */
9750        if (INTEL_INFO(dev)->gen > 3 &&
9751            (fb->offsets[0] != crtc->primary->fb->offsets[0] ||
9752             fb->pitches[0] != crtc->primary->fb->pitches[0]))
9753                return -EINVAL;
9754
9755        if (i915_terminally_wedged(&dev_priv->gpu_error))
9756                goto out_hang;
9757
9758        work = kzalloc(sizeof(*work), GFP_KERNEL);
9759        if (work == NULL)
9760                return -ENOMEM;
9761
9762        work->event = event;
9763        work->crtc = crtc;
9764        work->old_fb_obj = intel_fb_obj(old_fb);
9765        INIT_WORK(&work->work, intel_unpin_work_fn);
9766
9767        ret = drm_crtc_vblank_get(crtc);
9768        if (ret)
9769                goto free_work;
9770
9771        /* We borrow the event spin lock for protecting unpin_work */
9772        spin_lock_irq(&dev->event_lock);
9773        if (intel_crtc->unpin_work) {
9774                /* Before declaring the flip queue wedged, check if
9775                 * the hardware completed the operation behind our backs.
9776                 */
9777                if (__intel_pageflip_stall_check(dev, crtc)) {
9778                        DRM_DEBUG_DRIVER("flip queue: previous flip completed, continuing\n");
9779                        page_flip_completed(intel_crtc);
9780                } else {
9781                        DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
9782                        spin_unlock_irq(&dev->event_lock);
9783
9784                        drm_crtc_vblank_put(crtc);
9785                        kfree(work);
9786                        return -EBUSY;
9787                }
9788        }
9789        intel_crtc->unpin_work = work;
9790        spin_unlock_irq(&dev->event_lock);
9791
9792        if (atomic_read(&intel_crtc->unpin_work_count) >= 2)
9793                flush_workqueue(dev_priv->wq);
9794
9795        ret = i915_mutex_lock_interruptible(dev);
9796        if (ret)
9797                goto cleanup;
9798
9799        /* Reference the objects for the scheduled work. */
9800        drm_gem_object_reference(&work->old_fb_obj->base);
9801        drm_gem_object_reference(&obj->base);
9802
9803        crtc->primary->fb = fb;
9804
9805        work->pending_flip_obj = obj;
9806
9807        atomic_inc(&intel_crtc->unpin_work_count);
9808        intel_crtc->reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
9809
9810        if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
9811                work->flip_count = I915_READ(PIPE_FLIPCOUNT_GM45(pipe)) + 1;
9812
9813        if (IS_VALLEYVIEW(dev)) {
9814                ring = &dev_priv->ring[BCS];
9815                if (obj->tiling_mode != work->old_fb_obj->tiling_mode)
9816                        /* vlv: DISPLAY_FLIP fails to change tiling */
9817                        ring = NULL;
9818        } else if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev)) {
9819                ring = &dev_priv->ring[BCS];
9820        } else if (INTEL_INFO(dev)->gen >= 7) {
9821                ring = obj->ring;
9822                if (ring == NULL || ring->id != RCS)
9823                        ring = &dev_priv->ring[BCS];
9824        } else {
9825                ring = &dev_priv->ring[RCS];
9826        }
9827
9828        ret = intel_pin_and_fence_fb_obj(crtc->primary, fb, ring);
9829        if (ret)
9830                goto cleanup_pending;
9831
9832        work->gtt_offset =
9833                i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset;
9834
9835        if (use_mmio_flip(ring, obj)) {
9836                ret = intel_queue_mmio_flip(dev, crtc, fb, obj, ring,
9837                                            page_flip_flags);
9838                if (ret)
9839                        goto cleanup_unpin;
9840
9841                work->flip_queued_seqno = obj->last_write_seqno;
9842                work->flip_queued_ring = obj->ring;
9843        } else {
9844                ret = dev_priv->display.queue_flip(dev, crtc, fb, obj, ring,
9845                                                   page_flip_flags);
9846                if (ret)
9847                        goto cleanup_unpin;
9848
9849                work->flip_queued_seqno = intel_ring_get_seqno(ring);
9850                work->flip_queued_ring = ring;
9851        }
9852
9853        work->flip_queued_vblank = drm_vblank_count(dev, intel_crtc->pipe);
9854        work->enable_stall_check = true;
9855
9856        i915_gem_track_fb(work->old_fb_obj, obj,
9857                          INTEL_FRONTBUFFER_PRIMARY(pipe));
9858
9859        intel_disable_fbc(dev);
9860        intel_frontbuffer_flip_prepare(dev, INTEL_FRONTBUFFER_PRIMARY(pipe));
9861        mutex_unlock(&dev->struct_mutex);
9862
9863        trace_i915_flip_request(intel_crtc->plane, obj);
9864
9865        return 0;
9866
9867cleanup_unpin:
9868        intel_unpin_fb_obj(obj);
9869cleanup_pending:
9870        atomic_dec(&intel_crtc->unpin_work_count);
9871        crtc->primary->fb = old_fb;
9872        drm_gem_object_unreference(&work->old_fb_obj->base);
9873        drm_gem_object_unreference(&obj->base);
9874        mutex_unlock(&dev->struct_mutex);
9875
9876cleanup:
9877        spin_lock_irq(&dev->event_lock);
9878        intel_crtc->unpin_work = NULL;
9879        spin_unlock_irq(&dev->event_lock);
9880
9881        drm_crtc_vblank_put(crtc);
9882free_work:
9883        kfree(work);
9884
9885        if (ret == -EIO) {
9886out_hang:
9887                intel_crtc_wait_for_pending_flips(crtc);
9888                ret = intel_pipe_set_base(crtc, crtc->x, crtc->y, fb);
9889                if (ret == 0 && event) {
9890                        spin_lock_irq(&dev->event_lock);
9891                        drm_send_vblank_event(dev, pipe, event);
9892                        spin_unlock_irq(&dev->event_lock);
9893                }
9894        }
9895        return ret;
9896}
9897
9898static struct drm_crtc_helper_funcs intel_helper_funcs = {
9899        .mode_set_base_atomic = intel_pipe_set_base_atomic,
9900        .load_lut = intel_crtc_load_lut,
9901};
9902
9903/**
9904 * intel_modeset_update_staged_output_state
9905 *
9906 * Updates the staged output configuration state, e.g. after we've read out the
9907 * current hw state.
9908 */
9909static void intel_modeset_update_staged_output_state(struct drm_device *dev)
9910{
9911        struct intel_crtc *crtc;
9912        struct intel_encoder *encoder;
9913        struct intel_connector *connector;
9914
9915        list_for_each_entry(connector, &dev->mode_config.connector_list,
9916                            base.head) {
9917                connector->new_encoder =
9918                        to_intel_encoder(connector->base.encoder);
9919        }
9920
9921        for_each_intel_encoder(dev, encoder) {
9922                encoder->new_crtc =
9923                        to_intel_crtc(encoder->base.crtc);
9924        }
9925
9926        for_each_intel_crtc(dev, crtc) {
9927                crtc->new_enabled = crtc->base.enabled;
9928
9929                if (crtc->new_enabled)
9930                        crtc->new_config = &crtc->config;
9931                else
9932                        crtc->new_config = NULL;
9933        }
9934}
9935
9936/**
9937 * intel_modeset_commit_output_state
9938 *
9939 * This function copies the stage display pipe configuration to the real one.
9940 */
9941static void intel_modeset_commit_output_state(struct drm_device *dev)
9942{
9943        struct intel_crtc *crtc;
9944        struct intel_encoder *encoder;
9945        struct intel_connector *connector;
9946
9947        list_for_each_entry(connector, &dev->mode_config.connector_list,
9948                            base.head) {
9949                connector->base.encoder = &connector->new_encoder->base;
9950        }
9951
9952        for_each_intel_encoder(dev, encoder) {
9953                encoder->base.crtc = &encoder->new_crtc->base;
9954        }
9955
9956        for_each_intel_crtc(dev, crtc) {
9957                crtc->base.enabled = crtc->new_enabled;
9958        }
9959}
9960
9961static void
9962connected_sink_compute_bpp(struct intel_connector *connector,
9963                           struct intel_crtc_config *pipe_config)
9964{
9965        int bpp = pipe_config->pipe_bpp;
9966
9967        DRM_DEBUG_KMS("[CONNECTOR:%d:%s] checking for sink bpp constrains\n",
9968                connector->base.base.id,
9969                connector->base.name);
9970
9971        /* Don't use an invalid EDID bpc value */
9972        if (connector->base.display_info.bpc &&
9973            connector->base.display_info.bpc * 3 < bpp) {
9974                DRM_DEBUG_KMS("clamping display bpp (was %d) to EDID reported max of %d\n",
9975                              bpp, connector->base.display_info.bpc*3);
9976                pipe_config->pipe_bpp = connector->base.display_info.bpc*3;
9977        }
9978
9979        /* Clamp bpp to 8 on screens without EDID 1.4 */
9980        if (connector->base.display_info.bpc == 0 && bpp > 24) {
9981                DRM_DEBUG_KMS("clamping display bpp (was %d) to default limit of 24\n",
9982                              bpp);
9983                pipe_config->pipe_bpp = 24;
9984        }
9985}
9986
9987static int
9988compute_baseline_pipe_bpp(struct intel_crtc *crtc,
9989                          struct drm_framebuffer *fb,
9990                          struct intel_crtc_config *pipe_config)
9991{
9992        struct drm_device *dev = crtc->base.dev;
9993        struct intel_connector *connector;
9994        int bpp;
9995
9996        switch (fb->pixel_format) {
9997        case DRM_FORMAT_C8:
9998                bpp = 8*3; /* since we go through a colormap */
9999                break;
10000        case DRM_FORMAT_XRGB1555:
10001        case DRM_FORMAT_ARGB1555:
10002                /* checked in intel_framebuffer_init already */
10003                if (WARN_ON(INTEL_INFO(dev)->gen > 3))
10004                        return -EINVAL;
10005        case DRM_FORMAT_RGB565:
10006                bpp = 6*3; /* min is 18bpp */
10007                break;
10008        case DRM_FORMAT_XBGR8888:
10009        case DRM_FORMAT_ABGR8888:
10010                /* checked in intel_framebuffer_init already */
10011                if (WARN_ON(INTEL_INFO(dev)->gen < 4))
10012                        return -EINVAL;
10013        case DRM_FORMAT_XRGB8888:
10014        case DRM_FORMAT_ARGB8888:
10015                bpp = 8*3;
10016                break;
10017        case DRM_FORMAT_XRGB2101010:
10018        case DRM_FORMAT_ARGB2101010:
10019        case DRM_FORMAT_XBGR2101010:
10020        case DRM_FORMAT_ABGR2101010:
10021                /* checked in intel_framebuffer_init already */
10022                if (WARN_ON(INTEL_INFO(dev)->gen < 4))
10023                        return -EINVAL;
10024                bpp = 10*3;
10025                break;
10026        /* TODO: gen4+ supports 16 bpc floating point, too. */
10027        default:
10028                DRM_DEBUG_KMS("unsupported depth\n");
10029                return -EINVAL;
10030        }
10031
10032        pipe_config->pipe_bpp = bpp;
10033
10034        /* Clamp display bpp to EDID value */
10035        list_for_each_entry(connector, &dev->mode_config.connector_list,
10036                            base.head) {
10037                if (!connector->new_encoder ||
10038                    connector->new_encoder->new_crtc != crtc)
10039                        continue;
10040
10041                connected_sink_compute_bpp(connector, pipe_config);
10042        }
10043
10044        return bpp;
10045}
10046
10047static void intel_dump_crtc_timings(const struct drm_display_mode *mode)
10048{
10049        DRM_DEBUG_KMS("crtc timings: %d %d %d %d %d %d %d %d %d, "
10050                        "type: 0x%x flags: 0x%x\n",
10051                mode->crtc_clock,
10052                mode->crtc_hdisplay, mode->crtc_hsync_start,
10053                mode->crtc_hsync_end, mode->crtc_htotal,
10054                mode->crtc_vdisplay, mode->crtc_vsync_start,
10055                mode->crtc_vsync_end, mode->crtc_vtotal, mode->type, mode->flags);
10056}
10057
10058static void intel_dump_pipe_config(struct intel_crtc *crtc,
10059                                   struct intel_crtc_config *pipe_config,
10060                                   const char *context)
10061{
10062        DRM_DEBUG_KMS("[CRTC:%d]%s config for pipe %c\n", crtc->base.base.id,
10063                      context, pipe_name(crtc->pipe));
10064
10065        DRM_DEBUG_KMS("cpu_transcoder: %c\n", transcoder_name(pipe_config->cpu_transcoder));
10066        DRM_DEBUG_KMS("pipe bpp: %i, dithering: %i\n",
10067                      pipe_config->pipe_bpp, pipe_config->dither);
10068        DRM_DEBUG_KMS("fdi/pch: %i, lanes: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
10069                      pipe_config->has_pch_encoder,
10070                      pipe_config->fdi_lanes,
10071                      pipe_config->fdi_m_n.gmch_m, pipe_config->fdi_m_n.gmch_n,
10072                      pipe_config->fdi_m_n.link_m, pipe_config->fdi_m_n.link_n,
10073                      pipe_config->fdi_m_n.tu);
10074        DRM_DEBUG_KMS("dp: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
10075                      pipe_config->has_dp_encoder,
10076                      pipe_config->dp_m_n.gmch_m, pipe_config->dp_m_n.gmch_n,
10077                      pipe_config->dp_m_n.link_m, pipe_config->dp_m_n.link_n,
10078                      pipe_config->dp_m_n.tu);
10079
10080        DRM_DEBUG_KMS("dp: %i, gmch_m2: %u, gmch_n2: %u, link_m2: %u, link_n2: %u, tu2: %u\n",
10081                      pipe_config->has_dp_encoder,
10082                      pipe_config->dp_m2_n2.gmch_m,
10083                      pipe_config->dp_m2_n2.gmch_n,
10084                      pipe_config->dp_m2_n2.link_m,
10085                      pipe_config->dp_m2_n2.link_n,
10086                      pipe_config->dp_m2_n2.tu);
10087
10088        DRM_DEBUG_KMS("audio: %i, infoframes: %i\n",
10089                      pipe_config->has_audio,
10090                      pipe_config->has_infoframe);
10091
10092        DRM_DEBUG_KMS("requested mode:\n");
10093        drm_mode_debug_printmodeline(&pipe_config->requested_mode);
10094        DRM_DEBUG_KMS("adjusted mode:\n");
10095        drm_mode_debug_printmodeline(&pipe_config->adjusted_mode);
10096        intel_dump_crtc_timings(&pipe_config->adjusted_mode);
10097        DRM_DEBUG_KMS("port clock: %d\n", pipe_config->port_clock);
10098        DRM_DEBUG_KMS("pipe src size: %dx%d\n",
10099                      pipe_config->pipe_src_w, pipe_config->pipe_src_h);
10100        DRM_DEBUG_KMS("gmch pfit: control: 0x%08x, ratios: 0x%08x, lvds border: 0x%08x\n",
10101                      pipe_config->gmch_pfit.control,
10102                      pipe_config->gmch_pfit.pgm_ratios,
10103                      pipe_config->gmch_pfit.lvds_border_bits);
10104        DRM_DEBUG_KMS("pch pfit: pos: 0x%08x, size: 0x%08x, %s\n",
10105                      pipe_config->pch_pfit.pos,
10106                      pipe_config->pch_pfit.size,
10107                      pipe_config->pch_pfit.enabled ? "enabled" : "disabled");
10108        DRM_DEBUG_KMS("ips: %i\n", pipe_config->ips_enabled);
10109        DRM_DEBUG_KMS("double wide: %i\n", pipe_config->double_wide);
10110}
10111
10112static bool encoders_cloneable(const struct intel_encoder *a,
10113                               const struct intel_encoder *b)
10114{
10115        /* masks could be asymmetric, so check both ways */
10116        return a == b || (a->cloneable & (1 << b->type) &&
10117                          b->cloneable & (1 << a->type));
10118}
10119
10120static bool check_single_encoder_cloning(struct intel_crtc *crtc,
10121                                         struct intel_encoder *encoder)
10122{
10123        struct drm_device *dev = crtc->base.dev;
10124        struct intel_encoder *source_encoder;
10125
10126        for_each_intel_encoder(dev, source_encoder) {
10127                if (source_encoder->new_crtc != crtc)
10128                        continue;
10129
10130                if (!encoders_cloneable(encoder, source_encoder))
10131                        return false;
10132        }
10133
10134        return true;
10135}
10136
10137static bool check_encoder_cloning(struct intel_crtc *crtc)
10138{
10139        struct drm_device *dev = crtc->base.dev;
10140        struct intel_encoder *encoder;
10141
10142        for_each_intel_encoder(dev, encoder) {
10143                if (encoder->new_crtc != crtc)
10144                        continue;
10145
10146                if (!check_single_encoder_cloning(crtc, encoder))
10147                        return false;
10148        }
10149
10150        return true;
10151}
10152
10153static bool check_digital_port_conflicts(struct drm_device *dev)
10154{
10155        struct intel_connector *connector;
10156        unsigned int used_ports = 0;
10157
10158        /*
10159         * Walk the connector list instead of the encoder
10160         * list to detect the problem on ddi platforms
10161         * where there's just one encoder per digital port.
10162         */
10163        list_for_each_entry(connector,
10164                            &dev->mode_config.connector_list, base.head) {
10165                struct intel_encoder *encoder = connector->new_encoder;
10166
10167                if (!encoder)
10168                        continue;
10169
10170                WARN_ON(!encoder->new_crtc);
10171
10172                switch (encoder->type) {
10173                        unsigned int port_mask;
10174                case INTEL_OUTPUT_UNKNOWN:
10175                        if (WARN_ON(!HAS_DDI(dev)))
10176                                break;
10177                case INTEL_OUTPUT_DISPLAYPORT:
10178                case INTEL_OUTPUT_HDMI:
10179                case INTEL_OUTPUT_EDP:
10180                        port_mask = 1 << enc_to_dig_port(&encoder->base)->port;
10181
10182                        /* the same port mustn't appear more than once */
10183                        if (used_ports & port_mask)
10184                                return false;
10185
10186                        used_ports |= port_mask;
10187                default:
10188                        break;
10189                }
10190        }
10191
10192        return true;
10193}
10194
10195static struct intel_crtc_config *
10196intel_modeset_pipe_config(struct drm_crtc *crtc,
10197                          struct drm_framebuffer *fb,
10198                          struct drm_display_mode *mode)
10199{
10200        struct drm_device *dev = crtc->dev;
10201        struct intel_encoder *encoder;
10202        struct intel_crtc_config *pipe_config;
10203        int plane_bpp, ret = -EINVAL;
10204        bool retry = true;
10205
10206        if (!check_encoder_cloning(to_intel_crtc(crtc))) {
10207                DRM_DEBUG_KMS("rejecting invalid cloning configuration\n");
10208                return ERR_PTR(-EINVAL);
10209        }
10210
10211        if (!check_digital_port_conflicts(dev)) {
10212                DRM_DEBUG_KMS("rejecting conflicting digital port configuration\n");
10213                return ERR_PTR(-EINVAL);
10214        }
10215
10216        pipe_config = kzalloc(sizeof(*pipe_config), GFP_KERNEL);
10217        if (!pipe_config)
10218                return ERR_PTR(-ENOMEM);
10219
10220        drm_mode_copy(&pipe_config->adjusted_mode, mode);
10221        drm_mode_copy(&pipe_config->requested_mode, mode);
10222
10223        pipe_config->cpu_transcoder =
10224                (enum transcoder) to_intel_crtc(crtc)->pipe;
10225        pipe_config->shared_dpll = DPLL_ID_PRIVATE;
10226
10227        /*
10228         * Sanitize sync polarity flags based on requested ones. If neither
10229         * positive or negative polarity is requested, treat this as meaning
10230         * negative polarity.
10231         */
10232        if (!(pipe_config->adjusted_mode.flags &
10233              (DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NHSYNC)))
10234                pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_NHSYNC;
10235
10236        if (!(pipe_config->adjusted_mode.flags &
10237              (DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_NVSYNC)))
10238                pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_NVSYNC;
10239
10240        /* Compute a starting value for pipe_config->pipe_bpp taking the source
10241         * plane pixel format and any sink constraints into account. Returns the
10242         * source plane bpp so that dithering can be selected on mismatches
10243         * after encoders and crtc also have had their say. */
10244        plane_bpp = compute_baseline_pipe_bpp(to_intel_crtc(crtc),
10245                                              fb, pipe_config);
10246        if (plane_bpp < 0)
10247                goto fail;
10248
10249        /*
10250         * Determine the real pipe dimensions. Note that stereo modes can
10251         * increase the actual pipe size due to the frame doubling and
10252         * insertion of additional space for blanks between the frame. This
10253         * is stored in the crtc timings. We use the requested mode to do this
10254         * computation to clearly distinguish it from the adjusted mode, which
10255         * can be changed by the connectors in the below retry loop.
10256         */
10257        drm_mode_set_crtcinfo(&pipe_config->requested_mode, CRTC_STEREO_DOUBLE);
10258        pipe_config->pipe_src_w = pipe_config->requested_mode.crtc_hdisplay;
10259        pipe_config->pipe_src_h = pipe_config->requested_mode.crtc_vdisplay;
10260
10261encoder_retry:
10262        /* Ensure the port clock defaults are reset when retrying. */
10263        pipe_config->port_clock = 0;
10264        pipe_config->pixel_multiplier = 1;
10265
10266        /* Fill in default crtc timings, allow encoders to overwrite them. */
10267        drm_mode_set_crtcinfo(&pipe_config->adjusted_mode, CRTC_STEREO_DOUBLE);
10268
10269        /* Pass our mode to the connectors and the CRTC to give them a chance to
10270         * adjust it according to limitations or connector properties, and also
10271         * a chance to reject the mode entirely.
10272         */
10273        for_each_intel_encoder(dev, encoder) {
10274
10275                if (&encoder->new_crtc->base != crtc)
10276                        continue;
10277
10278                if (!(encoder->compute_config(encoder, pipe_config))) {
10279                        DRM_DEBUG_KMS("Encoder config failure\n");
10280                        goto fail;
10281                }
10282        }
10283
10284        /* Set default port clock if not overwritten by the encoder. Needs to be
10285         * done afterwards in case the encoder adjusts the mode. */
10286        if (!pipe_config->port_clock)
10287                pipe_config->port_clock = pipe_config->adjusted_mode.crtc_clock
10288                        * pipe_config->pixel_multiplier;
10289
10290        ret = intel_crtc_compute_config(to_intel_crtc(crtc), pipe_config);
10291        if (ret < 0) {
10292                DRM_DEBUG_KMS("CRTC fixup failed\n");
10293                goto fail;
10294        }
10295
10296        if (ret == RETRY) {
10297                if (WARN(!retry, "loop in pipe configuration computation\n")) {
10298                        ret = -EINVAL;
10299                        goto fail;
10300                }
10301
10302                DRM_DEBUG_KMS("CRTC bw constrained, retrying\n");
10303                retry = false;
10304                goto encoder_retry;
10305        }
10306
10307        pipe_config->dither = pipe_config->pipe_bpp != plane_bpp;
10308        DRM_DEBUG_KMS("plane bpp: %i, pipe bpp: %i, dithering: %i\n",
10309                      plane_bpp, pipe_config->pipe_bpp, pipe_config->dither);
10310
10311        return pipe_config;
10312fail:
10313        kfree(pipe_config);
10314        return ERR_PTR(ret);
10315}
10316
10317/* Computes which crtcs are affected and sets the relevant bits in the mask. For
10318 * simplicity we use the crtc's pipe number (because it's easier to obtain). */
10319static void
10320intel_modeset_affected_pipes(struct drm_crtc *crtc, unsigned *modeset_pipes,
10321                             unsigned *prepare_pipes, unsigned *disable_pipes)
10322{
10323        struct intel_crtc *intel_crtc;
10324        struct drm_device *dev = crtc->dev;
10325        struct intel_encoder *encoder;
10326        struct intel_connector *connector;
10327        struct drm_crtc *tmp_crtc;
10328
10329        *disable_pipes = *modeset_pipes = *prepare_pipes = 0;
10330
10331        /* Check which crtcs have changed outputs connected to them, these need
10332         * to be part of the prepare_pipes mask. We don't (yet) support global
10333         * modeset across multiple crtcs, so modeset_pipes will only have one
10334         * bit set at most. */
10335        list_for_each_entry(connector, &dev->mode_config.connector_list,
10336                            base.head) {
10337                if (connector->base.encoder == &connector->new_encoder->base)
10338                        continue;
10339
10340                if (connector->base.encoder) {
10341                        tmp_crtc = connector->base.encoder->crtc;
10342
10343                        *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
10344                }
10345
10346                if (connector->new_encoder)
10347                        *prepare_pipes |=
10348                                1 << connector->new_encoder->new_crtc->pipe;
10349        }
10350
10351        for_each_intel_encoder(dev, encoder) {
10352                if (encoder->base.crtc == &encoder->new_crtc->base)
10353                        continue;
10354
10355                if (encoder->base.crtc) {
10356                        tmp_crtc = encoder->base.crtc;
10357
10358                        *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
10359                }
10360
10361                if (encoder->new_crtc)
10362                        *prepare_pipes |= 1 << encoder->new_crtc->pipe;
10363        }
10364
10365        /* Check for pipes that will be enabled/disabled ... */
10366        for_each_intel_crtc(dev, intel_crtc) {
10367                if (intel_crtc->base.enabled == intel_crtc->new_enabled)
10368                        continue;
10369
10370                if (!intel_crtc->new_enabled)
10371                        *disable_pipes |= 1 << intel_crtc->pipe;
10372                else
10373                        *prepare_pipes |= 1 << intel_crtc->pipe;
10374        }
10375
10376
10377        /* set_mode is also used to update properties on life display pipes. */
10378        intel_crtc = to_intel_crtc(crtc);
10379        if (intel_crtc->new_enabled)
10380                *prepare_pipes |= 1 << intel_crtc->pipe;
10381
10382        /*
10383         * For simplicity do a full modeset on any pipe where the output routing
10384         * changed. We could be more clever, but that would require us to be
10385         * more careful with calling the relevant encoder->mode_set functions.
10386         */
10387        if (*prepare_pipes)
10388                *modeset_pipes = *prepare_pipes;
10389
10390        /* ... and mask these out. */
10391        *modeset_pipes &= ~(*disable_pipes);
10392        *prepare_pipes &= ~(*disable_pipes);
10393
10394        /*
10395         * HACK: We don't (yet) fully support global modesets. intel_set_config
10396         * obies this rule, but the modeset restore mode of
10397         * intel_modeset_setup_hw_state does not.
10398         */
10399        *modeset_pipes &= 1 << intel_crtc->pipe;
10400        *prepare_pipes &= 1 << intel_crtc->pipe;
10401
10402        DRM_DEBUG_KMS("set mode pipe masks: modeset: %x, prepare: %x, disable: %x\n",
10403                      *modeset_pipes, *prepare_pipes, *disable_pipes);
10404}
10405
10406static bool intel_crtc_in_use(struct drm_crtc *crtc)
10407{
10408        struct drm_encoder *encoder;
10409        struct drm_device *dev = crtc->dev;
10410
10411        list_for_each_entry(encoder, &dev->mode_config.encoder_list, head)
10412                if (encoder->crtc == crtc)
10413                        return true;
10414
10415        return false;
10416}
10417
10418static void
10419intel_modeset_update_state(struct drm_device *dev, unsigned prepare_pipes)
10420{
10421        struct drm_i915_private *dev_priv = dev->dev_private;
10422        struct intel_encoder *intel_encoder;
10423        struct intel_crtc *intel_crtc;
10424        struct drm_connector *connector;
10425
10426        intel_shared_dpll_commit(dev_priv);
10427
10428        for_each_intel_encoder(dev, intel_encoder) {
10429                if (!intel_encoder->base.crtc)
10430                        continue;
10431
10432                intel_crtc = to_intel_crtc(intel_encoder->base.crtc);
10433
10434                if (prepare_pipes & (1 << intel_crtc->pipe))
10435                        intel_encoder->connectors_active = false;
10436        }
10437
10438        intel_modeset_commit_output_state(dev);
10439
10440        /* Double check state. */
10441        for_each_intel_crtc(dev, intel_crtc) {
10442                WARN_ON(intel_crtc->base.enabled != intel_crtc_in_use(&intel_crtc->base));
10443                WARN_ON(intel_crtc->new_config &&
10444                        intel_crtc->new_config != &intel_crtc->config);
10445                WARN_ON(intel_crtc->base.enabled != !!intel_crtc->new_config);
10446        }
10447
10448        list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
10449                if (!connector->encoder || !connector->encoder->crtc)
10450                        continue;
10451
10452                intel_crtc = to_intel_crtc(connector->encoder->crtc);
10453
10454                if (prepare_pipes & (1 << intel_crtc->pipe)) {
10455                        struct drm_property *dpms_property =
10456                                dev->mode_config.dpms_property;
10457
10458                        connector->dpms = DRM_MODE_DPMS_ON;
10459                        drm_object_property_set_value(&connector->base,
10460                                                         dpms_property,
10461                                                         DRM_MODE_DPMS_ON);
10462
10463                        intel_encoder = to_intel_encoder(connector->encoder);
10464                        intel_encoder->connectors_active = true;
10465                }
10466        }
10467
10468}
10469
10470static bool intel_fuzzy_clock_check(int clock1, int clock2)
10471{
10472        int diff;
10473
10474        if (clock1 == clock2)
10475                return true;
10476
10477        if (!clock1 || !clock2)
10478                return false;
10479
10480        diff = abs(clock1 - clock2);
10481
10482        if (((((diff + clock1 + clock2) * 100)) / (clock1 + clock2)) < 105)
10483                return true;
10484
10485        return false;
10486}
10487
10488#define for_each_intel_crtc_masked(dev, mask, intel_crtc) \
10489        list_for_each_entry((intel_crtc), \
10490                            &(dev)->mode_config.crtc_list, \
10491                            base.head) \
10492                if (mask & (1 <<(intel_crtc)->pipe))
10493
10494static bool
10495intel_pipe_config_compare(struct drm_device *dev,
10496                          struct intel_crtc_config *current_config,
10497                          struct intel_crtc_config *pipe_config)
10498{
10499#define PIPE_CONF_CHECK_X(name) \
10500        if (current_config->name != pipe_config->name) { \
10501                DRM_ERROR("mismatch in " #name " " \
10502                          "(expected 0x%08x, found 0x%08x)\n", \
10503                          current_config->name, \
10504                          pipe_config->name); \
10505                return false; \
10506        }
10507
10508#define PIPE_CONF_CHECK_I(name) \
10509        if (current_config->name != pipe_config->name) { \
10510                DRM_ERROR("mismatch in " #name " " \
10511                          "(expected %i, found %i)\n", \
10512                          current_config->name, \
10513                          pipe_config->name); \
10514                return false; \
10515        }
10516
10517/* This is required for BDW+ where there is only one set of registers for
10518 * switching between high and low RR.
10519 * This macro can be used whenever a comparison has to be made between one
10520 * hw state and multiple sw state variables.
10521 */
10522#define PIPE_CONF_CHECK_I_ALT(name, alt_name) \
10523        if ((current_config->name != pipe_config->name) && \
10524                (current_config->alt_name != pipe_config->name)) { \
10525                        DRM_ERROR("mismatch in " #name " " \
10526                                  "(expected %i or %i, found %i)\n", \
10527                                  current_config->name, \
10528                                  current_config->alt_name, \
10529                                  pipe_config->name); \
10530                        return false; \
10531        }
10532
10533#define PIPE_CONF_CHECK_FLAGS(name, mask)       \
10534        if ((current_config->name ^ pipe_config->name) & (mask)) { \
10535                DRM_ERROR("mismatch in " #name "(" #mask ") "      \
10536                          "(expected %i, found %i)\n", \
10537                          current_config->name & (mask), \
10538                          pipe_config->name & (mask)); \
10539                return false; \
10540        }
10541
10542#define PIPE_CONF_CHECK_CLOCK_FUZZY(name) \
10543        if (!intel_fuzzy_clock_check(current_config->name, pipe_config->name)) { \
10544                DRM_ERROR("mismatch in " #name " " \
10545                          "(expected %i, found %i)\n", \
10546                          current_config->name, \
10547                          pipe_config->name); \
10548                return false; \
10549        }
10550
10551#define PIPE_CONF_QUIRK(quirk)  \
10552        ((current_config->quirks | pipe_config->quirks) & (quirk))
10553
10554        PIPE_CONF_CHECK_I(cpu_transcoder);
10555
10556        PIPE_CONF_CHECK_I(has_pch_encoder);
10557        PIPE_CONF_CHECK_I(fdi_lanes);
10558        PIPE_CONF_CHECK_I(fdi_m_n.gmch_m);
10559        PIPE_CONF_CHECK_I(fdi_m_n.gmch_n);
10560        PIPE_CONF_CHECK_I(fdi_m_n.link_m);
10561        PIPE_CONF_CHECK_I(fdi_m_n.link_n);
10562        PIPE_CONF_CHECK_I(fdi_m_n.tu);
10563
10564        PIPE_CONF_CHECK_I(has_dp_encoder);
10565
10566        if (INTEL_INFO(dev)->gen < 8) {
10567                PIPE_CONF_CHECK_I(dp_m_n.gmch_m);
10568                PIPE_CONF_CHECK_I(dp_m_n.gmch_n);
10569                PIPE_CONF_CHECK_I(dp_m_n.link_m);
10570                PIPE_CONF_CHECK_I(dp_m_n.link_n);
10571                PIPE_CONF_CHECK_I(dp_m_n.tu);
10572
10573                if (current_config->has_drrs) {
10574                        PIPE_CONF_CHECK_I(dp_m2_n2.gmch_m);
10575                        PIPE_CONF_CHECK_I(dp_m2_n2.gmch_n);
10576                        PIPE_CONF_CHECK_I(dp_m2_n2.link_m);
10577                        PIPE_CONF_CHECK_I(dp_m2_n2.link_n);
10578                        PIPE_CONF_CHECK_I(dp_m2_n2.tu);
10579                }
10580        } else {
10581                PIPE_CONF_CHECK_I_ALT(dp_m_n.gmch_m, dp_m2_n2.gmch_m);
10582                PIPE_CONF_CHECK_I_ALT(dp_m_n.gmch_n, dp_m2_n2.gmch_n);
10583                PIPE_CONF_CHECK_I_ALT(dp_m_n.link_m, dp_m2_n2.link_m);
10584                PIPE_CONF_CHECK_I_ALT(dp_m_n.link_n, dp_m2_n2.link_n);
10585                PIPE_CONF_CHECK_I_ALT(dp_m_n.tu, dp_m2_n2.tu);
10586        }
10587
10588        PIPE_CONF_CHECK_I(adjusted_mode.crtc_hdisplay);
10589        PIPE_CONF_CHECK_I(adjusted_mode.crtc_htotal);
10590        PIPE_CONF_CHECK_I(adjusted_mode.crtc_hblank_start);
10591        PIPE_CONF_CHECK_I(adjusted_mode.crtc_hblank_end);
10592        PIPE_CONF_CHECK_I(adjusted_mode.crtc_hsync_start);
10593        PIPE_CONF_CHECK_I(adjusted_mode.crtc_hsync_end);
10594
10595        PIPE_CONF_CHECK_I(adjusted_mode.crtc_vdisplay);
10596        PIPE_CONF_CHECK_I(adjusted_mode.crtc_vtotal);
10597        PIPE_CONF_CHECK_I(adjusted_mode.crtc_vblank_start);
10598        PIPE_CONF_CHECK_I(adjusted_mode.crtc_vblank_end);
10599        PIPE_CONF_CHECK_I(adjusted_mode.crtc_vsync_start);
10600        PIPE_CONF_CHECK_I(adjusted_mode.crtc_vsync_end);
10601
10602        PIPE_CONF_CHECK_I(pixel_multiplier);
10603        PIPE_CONF_CHECK_I(has_hdmi_sink);
10604        if ((INTEL_INFO(dev)->gen < 8 && !IS_HASWELL(dev)) ||
10605            IS_VALLEYVIEW(dev))
10606                PIPE_CONF_CHECK_I(limited_color_range);
10607        PIPE_CONF_CHECK_I(has_infoframe);
10608
10609        PIPE_CONF_CHECK_I(has_audio);
10610
10611        PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
10612                              DRM_MODE_FLAG_INTERLACE);
10613
10614        if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_MODE_SYNC_FLAGS)) {
10615                PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
10616                                      DRM_MODE_FLAG_PHSYNC);
10617                PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
10618                                      DRM_MODE_FLAG_NHSYNC);
10619                PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
10620                                      DRM_MODE_FLAG_PVSYNC);
10621                PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
10622                                      DRM_MODE_FLAG_NVSYNC);
10623        }
10624
10625        PIPE_CONF_CHECK_I(pipe_src_w);
10626        PIPE_CONF_CHECK_I(pipe_src_h);
10627
10628        /*
10629         * FIXME: BIOS likes to set up a cloned config with lvds+external
10630         * screen. Since we don't yet re-compute the pipe config when moving
10631         * just the lvds port away to another pipe the sw tracking won't match.
10632         *
10633         * Proper atomic modesets with recomputed global state will fix this.
10634         * Until then just don't check gmch state for inherited modes.
10635         */
10636        if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_INHERITED_MODE)) {
10637                PIPE_CONF_CHECK_I(gmch_pfit.control);
10638                /* pfit ratios are autocomputed by the hw on gen4+ */
10639                if (INTEL_INFO(dev)->gen < 4)
10640                        PIPE_CONF_CHECK_I(gmch_pfit.pgm_ratios);
10641                PIPE_CONF_CHECK_I(gmch_pfit.lvds_border_bits);
10642        }
10643
10644        PIPE_CONF_CHECK_I(pch_pfit.enabled);
10645        if (current_config->pch_pfit.enabled) {
10646                PIPE_CONF_CHECK_I(pch_pfit.pos);
10647                PIPE_CONF_CHECK_I(pch_pfit.size);
10648        }
10649
10650        /* BDW+ don't expose a synchronous way to read the state */
10651        if (IS_HASWELL(dev))
10652                PIPE_CONF_CHECK_I(ips_enabled);
10653
10654        PIPE_CONF_CHECK_I(double_wide);
10655
10656        PIPE_CONF_CHECK_X(ddi_pll_sel);
10657
10658        PIPE_CONF_CHECK_I(shared_dpll);
10659        PIPE_CONF_CHECK_X(dpll_hw_state.dpll);
10660        PIPE_CONF_CHECK_X(dpll_hw_state.dpll_md);
10661        PIPE_CONF_CHECK_X(dpll_hw_state.fp0);
10662        PIPE_CONF_CHECK_X(dpll_hw_state.fp1);
10663        PIPE_CONF_CHECK_X(dpll_hw_state.wrpll);
10664        PIPE_CONF_CHECK_X(dpll_hw_state.ctrl1);
10665        PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr1);
10666        PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr2);
10667
10668        if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5)
10669                PIPE_CONF_CHECK_I(pipe_bpp);
10670
10671        PIPE_CONF_CHECK_CLOCK_FUZZY(adjusted_mode.crtc_clock);
10672        PIPE_CONF_CHECK_CLOCK_FUZZY(port_clock);
10673
10674#undef PIPE_CONF_CHECK_X
10675#undef PIPE_CONF_CHECK_I
10676#undef PIPE_CONF_CHECK_I_ALT
10677#undef PIPE_CONF_CHECK_FLAGS
10678#undef PIPE_CONF_CHECK_CLOCK_FUZZY
10679#undef PIPE_CONF_QUIRK
10680
10681        return true;
10682}
10683
10684static void check_wm_state(struct drm_device *dev)
10685{
10686        struct drm_i915_private *dev_priv = dev->dev_private;
10687        struct skl_ddb_allocation hw_ddb, *sw_ddb;
10688        struct intel_crtc *intel_crtc;
10689        int plane;
10690
10691        if (INTEL_INFO(dev)->gen < 9)
10692                return;
10693
10694        skl_ddb_get_hw_state(dev_priv, &hw_ddb);
10695        sw_ddb = &dev_priv->wm.skl_hw.ddb;
10696
10697        for_each_intel_crtc(dev, intel_crtc) {
10698                struct skl_ddb_entry *hw_entry, *sw_entry;
10699                const enum pipe pipe = intel_crtc->pipe;
10700
10701                if (!intel_crtc->active)
10702                        continue;
10703
10704                /* planes */
10705                for_each_plane(pipe, plane) {
10706                        hw_entry = &hw_ddb.plane[pipe][plane];
10707                        sw_entry = &sw_ddb->plane[pipe][plane];
10708
10709                        if (skl_ddb_entry_equal(hw_entry, sw_entry))
10710                                continue;
10711
10712                        DRM_ERROR("mismatch in DDB state pipe %c plane %d "
10713                                  "(expected (%u,%u), found (%u,%u))\n",
10714                                  pipe_name(pipe), plane + 1,
10715                                  sw_entry->start, sw_entry->end,
10716                                  hw_entry->start, hw_entry->end);
10717                }
10718
10719                /* cursor */
10720                hw_entry = &hw_ddb.cursor[pipe];
10721                sw_entry = &sw_ddb->cursor[pipe];
10722
10723                if (skl_ddb_entry_equal(hw_entry, sw_entry))
10724                        continue;
10725
10726                DRM_ERROR("mismatch in DDB state pipe %c cursor "
10727                          "(expected (%u,%u), found (%u,%u))\n",
10728                          pipe_name(pipe),
10729                          sw_entry->start, sw_entry->end,
10730                          hw_entry->start, hw_entry->end);
10731        }
10732}
10733
10734static void
10735check_connector_state(struct drm_device *dev)
10736{
10737        struct intel_connector *connector;
10738
10739        list_for_each_entry(connector, &dev->mode_config.connector_list,
10740                            base.head) {
10741                /* This also checks the encoder/connector hw state with the
10742                 * ->get_hw_state callbacks. */
10743                intel_connector_check_state(connector);
10744
10745                WARN(&connector->new_encoder->base != connector->base.encoder,
10746                     "connector's staged encoder doesn't match current encoder\n");
10747        }
10748}
10749
10750static void
10751check_encoder_state(struct drm_device *dev)
10752{
10753        struct intel_encoder *encoder;
10754        struct intel_connector *connector;
10755
10756        for_each_intel_encoder(dev, encoder) {
10757                bool enabled = false;
10758                bool active = false;
10759                enum pipe pipe, tracked_pipe;
10760
10761                DRM_DEBUG_KMS("[ENCODER:%d:%s]\n",
10762                              encoder->base.base.id,
10763                              encoder->base.name);
10764
10765                WARN(&encoder->new_crtc->base != encoder->base.crtc,
10766                     "encoder's stage crtc doesn't match current crtc\n");
10767                WARN(encoder->connectors_active && !encoder->base.crtc,
10768                     "encoder's active_connectors set, but no crtc\n");
10769
10770                list_for_each_entry(connector, &dev->mode_config.connector_list,
10771                                    base.head) {
10772                        if (connector->base.encoder != &encoder->base)
10773                                continue;
10774                        enabled = true;
10775                        if (connector->base.dpms != DRM_MODE_DPMS_OFF)
10776                                active = true;
10777                }
10778                /*
10779                 * for MST connectors if we unplug the connector is gone
10780                 * away but the encoder is still connected to a crtc
10781                 * until a modeset happens in response to the hotplug.
10782                 */
10783                if (!enabled && encoder->base.encoder_type == DRM_MODE_ENCODER_DPMST)
10784                        continue;
10785
10786                WARN(!!encoder->base.crtc != enabled,
10787                     "encoder's enabled state mismatch "
10788                     "(expected %i, found %i)\n",
10789                     !!encoder->base.crtc, enabled);
10790                WARN(active && !encoder->base.crtc,
10791                     "active encoder with no crtc\n");
10792
10793                WARN(encoder->connectors_active != active,
10794                     "encoder's computed active state doesn't match tracked active state "
10795                     "(expected %i, found %i)\n", active, encoder->connectors_active);
10796
10797                active = encoder->get_hw_state(encoder, &pipe);
10798                WARN(active != encoder->connectors_active,
10799                     "encoder's hw state doesn't match sw tracking "
10800                     "(expected %i, found %i)\n",
10801                     encoder->connectors_active, active);
10802
10803                if (!encoder->base.crtc)
10804                        continue;
10805
10806                tracked_pipe = to_intel_crtc(encoder->base.crtc)->pipe;
10807                WARN(active && pipe != tracked_pipe,
10808                     "active encoder's pipe doesn't match"
10809                     "(expected %i, found %i)\n",
10810                     tracked_pipe, pipe);
10811
10812        }
10813}
10814
10815static void
10816check_crtc_state(struct drm_device *dev)
10817{
10818        struct drm_i915_private *dev_priv = dev->dev_private;
10819        struct intel_crtc *crtc;
10820        struct intel_encoder *encoder;
10821        struct intel_crtc_config pipe_config;
10822
10823        for_each_intel_crtc(dev, crtc) {
10824                bool enabled = false;
10825                bool active = false;
10826
10827                memset(&pipe_config, 0, sizeof(pipe_config));
10828
10829                DRM_DEBUG_KMS("[CRTC:%d]\n",
10830                              crtc->base.base.id);
10831
10832                WARN(crtc->active && !crtc->base.enabled,
10833                     "active crtc, but not enabled in sw tracking\n");
10834
10835                for_each_intel_encoder(dev, encoder) {
10836                        if (encoder->base.crtc != &crtc->base)
10837                                continue;
10838                        enabled = true;
10839                        if (encoder->connectors_active)
10840                                active = true;
10841                }
10842
10843                WARN(active != crtc->active,
10844                     "crtc's computed active state doesn't match tracked active state "
10845                     "(expected %i, found %i)\n", active, crtc->active);
10846                WARN(enabled != crtc->base.enabled,
10847                     "crtc's computed enabled state doesn't match tracked enabled state "
10848                     "(expected %i, found %i)\n", enabled, crtc->base.enabled);
10849
10850                active = dev_priv->display.get_pipe_config(crtc,
10851                                                           &pipe_config);
10852
10853                /* hw state is inconsistent with the pipe quirk */
10854                if ((crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
10855                    (crtc->pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
10856                        active = crtc->active;
10857
10858                for_each_intel_encoder(dev, encoder) {
10859                        enum pipe pipe;
10860                        if (encoder->base.crtc != &crtc->base)
10861                                continue;
10862                        if (encoder->get_hw_state(encoder, &pipe))
10863                                encoder->get_config(encoder, &pipe_config);
10864                }
10865
10866                WARN(crtc->active != active,
10867                     "crtc active state doesn't match with hw state "
10868                     "(expected %i, found %i)\n", crtc->active, active);
10869
10870                if (active &&
10871                    !intel_pipe_config_compare(dev, &crtc->config, &pipe_config)) {
10872                        WARN(1, "pipe state doesn't match!\n");
10873                        intel_dump_pipe_config(crtc, &pipe_config,
10874                                               "[hw state]");
10875                        intel_dump_pipe_config(crtc, &crtc->config,
10876                                               "[sw state]");
10877                }
10878        }
10879}
10880
10881static void
10882check_shared_dpll_state(struct drm_device *dev)
10883{
10884        struct drm_i915_private *dev_priv = dev->dev_private;
10885        struct intel_crtc *crtc;
10886        struct intel_dpll_hw_state dpll_hw_state;
10887        int i;
10888
10889        for (i = 0; i < dev_priv->num_shared_dpll; i++) {
10890                struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
10891                int enabled_crtcs = 0, active_crtcs = 0;
10892                bool active;
10893
10894                memset(&dpll_hw_state, 0, sizeof(dpll_hw_state));
10895
10896                DRM_DEBUG_KMS("%s\n", pll->name);
10897
10898                active = pll->get_hw_state(dev_priv, pll, &dpll_hw_state);
10899
10900                WARN(pll->active > hweight32(pll->config.crtc_mask),
10901                     "more active pll users than references: %i vs %i\n",
10902                     pll->active, hweight32(pll->config.crtc_mask));
10903                WARN(pll->active && !pll->on,
10904                     "pll in active use but not on in sw tracking\n");
10905                WARN(pll->on && !pll->active,
10906                     "pll in on but not on in use in sw tracking\n");
10907                WARN(pll->on != active,
10908                     "pll on state mismatch (expected %i, found %i)\n",
10909                     pll->on, active);
10910
10911                for_each_intel_crtc(dev, crtc) {
10912                        if (crtc->base.enabled && intel_crtc_to_shared_dpll(crtc) == pll)
10913                                enabled_crtcs++;
10914                        if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll)
10915                                active_crtcs++;
10916                }
10917                WARN(pll->active != active_crtcs,
10918                     "pll active crtcs mismatch (expected %i, found %i)\n",
10919                     pll->active, active_crtcs);
10920                WARN(hweight32(pll->config.crtc_mask) != enabled_crtcs,
10921                     "pll enabled crtcs mismatch (expected %i, found %i)\n",
10922                     hweight32(pll->config.crtc_mask), enabled_crtcs);
10923
10924                WARN(pll->on && memcmp(&pll->config.hw_state, &dpll_hw_state,
10925                                       sizeof(dpll_hw_state)),
10926                     "pll hw state mismatch\n");
10927        }
10928}
10929
10930void
10931intel_modeset_check_state(struct drm_device *dev)
10932{
10933        check_wm_state(dev);
10934        check_connector_state(dev);
10935        check_encoder_state(dev);
10936        check_crtc_state(dev);
10937        check_shared_dpll_state(dev);
10938}
10939
10940void ironlake_check_encoder_dotclock(const struct intel_crtc_config *pipe_config,
10941                                     int dotclock)
10942{
10943        /*
10944         * FDI already provided one idea for the dotclock.
10945         * Yell if the encoder disagrees.
10946         */
10947        WARN(!intel_fuzzy_clock_check(pipe_config->adjusted_mode.crtc_clock, dotclock),
10948             "FDI dotclock and encoder dotclock mismatch, fdi: %i, encoder: %i\n",
10949             pipe_config->adjusted_mode.crtc_clock, dotclock);
10950}
10951
10952static void update_scanline_offset(struct intel_crtc *crtc)
10953{
10954        struct drm_device *dev = crtc->base.dev;
10955
10956        /*
10957         * The scanline counter increments at the leading edge of hsync.
10958         *
10959         * On most platforms it starts counting from vtotal-1 on the
10960         * first active line. That means the scanline counter value is
10961         * always one less than what we would expect. Ie. just after
10962         * start of vblank, which also occurs at start of hsync (on the
10963         * last active line), the scanline counter will read vblank_start-1.
10964         *
10965         * On gen2 the scanline counter starts counting from 1 instead
10966         * of vtotal-1, so we have to subtract one (or rather add vtotal-1
10967         * to keep the value positive), instead of adding one.
10968         *
10969         * On HSW+ the behaviour of the scanline counter depends on the output
10970         * type. For DP ports it behaves like most other platforms, but on HDMI
10971         * there's an extra 1 line difference. So we need to add two instead of
10972         * one to the value.
10973         */
10974        if (IS_GEN2(dev)) {
10975                const struct drm_display_mode *mode = &crtc->config.adjusted_mode;
10976                int vtotal;
10977
10978                vtotal = mode->crtc_vtotal;
10979                if (mode->flags & DRM_MODE_FLAG_INTERLACE)
10980                        vtotal /= 2;
10981
10982                crtc->scanline_offset = vtotal - 1;
10983        } else if (HAS_DDI(dev) &&
10984                   intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI)) {
10985                crtc->scanline_offset = 2;
10986        } else
10987                crtc->scanline_offset = 1;
10988}
10989
10990static struct intel_crtc_config *
10991intel_modeset_compute_config(struct drm_crtc *crtc,
10992                             struct drm_display_mode *mode,
10993                             struct drm_framebuffer *fb,
10994                             unsigned *modeset_pipes,
10995                             unsigned *prepare_pipes,
10996                             unsigned *disable_pipes)
10997{
10998        struct intel_crtc_config *pipe_config = NULL;
10999
11000        intel_modeset_affected_pipes(crtc, modeset_pipes,
11001                                     prepare_pipes, disable_pipes);
11002
11003        if ((*modeset_pipes) == 0)
11004                goto out;
11005
11006        /*
11007         * Note this needs changes when we start tracking multiple modes
11008         * and crtcs.  At that point we'll need to compute the whole config
11009         * (i.e. one pipe_config for each crtc) rather than just the one
11010         * for this crtc.
11011         */
11012        pipe_config = intel_modeset_pipe_config(crtc, fb, mode);
11013        if (IS_ERR(pipe_config)) {
11014                goto out;
11015        }
11016        intel_dump_pipe_config(to_intel_crtc(crtc), pipe_config,
11017                               "[modeset]");
11018
11019out:
11020        return pipe_config;
11021}
11022
11023static int __intel_set_mode(struct drm_crtc *crtc,
11024                            struct drm_display_mode *mode,
11025                            int x, int y, struct drm_framebuffer *fb,
11026                            struct intel_crtc_config *pipe_config,
11027                            unsigned modeset_pipes,
11028                            unsigned prepare_pipes,
11029                            unsigned disable_pipes)
11030{
11031        struct drm_device *dev = crtc->dev;
11032        struct drm_i915_private *dev_priv = dev->dev_private;
11033        struct drm_display_mode *saved_mode;
11034        struct intel_crtc *intel_crtc;
11035        int ret = 0;
11036
11037        saved_mode = kmalloc(sizeof(*saved_mode), GFP_KERNEL);
11038        if (!saved_mode)
11039                return -ENOMEM;
11040
11041        *saved_mode = crtc->mode;
11042
11043        if (modeset_pipes)
11044                to_intel_crtc(crtc)->new_config = pipe_config;
11045
11046        /*
11047         * See if the config requires any additional preparation, e.g.
11048         * to adjust global state with pipes off.  We need to do this
11049         * here so we can get the modeset_pipe updated config for the new
11050         * mode set on this crtc.  For other crtcs we need to use the
11051         * adjusted_mode bits in the crtc directly.
11052         */
11053        if (IS_VALLEYVIEW(dev)) {
11054                valleyview_modeset_global_pipes(dev, &prepare_pipes);
11055
11056                /* may have added more to prepare_pipes than we should */
11057                prepare_pipes &= ~disable_pipes;
11058        }
11059
11060        if (dev_priv->display.crtc_compute_clock) {
11061                unsigned clear_pipes = modeset_pipes | disable_pipes;
11062
11063                ret = intel_shared_dpll_start_config(dev_priv, clear_pipes);
11064                if (ret)
11065                        goto done;
11066
11067                for_each_intel_crtc_masked(dev, modeset_pipes, intel_crtc) {
11068                        ret = dev_priv->display.crtc_compute_clock(intel_crtc);
11069                        if (ret) {
11070                                intel_shared_dpll_abort_config(dev_priv);
11071                                goto done;
11072                        }
11073                }
11074        }
11075
11076        for_each_intel_crtc_masked(dev, disable_pipes, intel_crtc)
11077                intel_crtc_disable(&intel_crtc->base);
11078
11079        for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc) {
11080                if (intel_crtc->base.enabled)
11081                        dev_priv->display.crtc_disable(&intel_crtc->base);
11082        }
11083
11084        /* crtc->mode is already used by the ->mode_set callbacks, hence we need
11085         * to set it here already despite that we pass it down the callchain.
11086         *
11087         * Note we'll need to fix this up when we start tracking multiple
11088         * pipes; here we assume a single modeset_pipe and only track the
11089         * single crtc and mode.
11090         */
11091        if (modeset_pipes) {
11092                crtc->mode = *mode;
11093                /* mode_set/enable/disable functions rely on a correct pipe
11094                 * config. */
11095                to_intel_crtc(crtc)->config = *pipe_config;
11096                to_intel_crtc(crtc)->new_config = &to_intel_crtc(crtc)->config;
11097
11098                /*
11099                 * Calculate and store various constants which
11100                 * are later needed by vblank and swap-completion
11101                 * timestamping. They are derived from true hwmode.
11102                 */
11103                drm_calc_timestamping_constants(crtc,
11104                                                &pipe_config->adjusted_mode);
11105        }
11106
11107        /* Only after disabling all output pipelines that will be changed can we
11108         * update the the output configuration. */
11109        intel_modeset_update_state(dev, prepare_pipes);
11110
11111        modeset_update_crtc_power_domains(dev);
11112
11113        /* Set up the DPLL and any encoders state that needs to adjust or depend
11114         * on the DPLL.
11115         */
11116        for_each_intel_crtc_masked(dev, modeset_pipes, intel_crtc) {
11117                struct drm_framebuffer *old_fb = crtc->primary->fb;
11118                struct drm_i915_gem_object *old_obj = intel_fb_obj(old_fb);
11119                struct drm_i915_gem_object *obj = intel_fb_obj(fb);
11120
11121                mutex_lock(&dev->struct_mutex);
11122                ret = intel_pin_and_fence_fb_obj(crtc->primary, fb, NULL);
11123                if (ret != 0) {
11124                        DRM_ERROR("pin & fence failed\n");
11125                        mutex_unlock(&dev->struct_mutex);
11126                        goto done;
11127                }
11128                if (old_fb)
11129                        intel_unpin_fb_obj(old_obj);
11130                i915_gem_track_fb(old_obj, obj,
11131                                  INTEL_FRONTBUFFER_PRIMARY(intel_crtc->pipe));
11132                mutex_unlock(&dev->struct_mutex);
11133
11134                crtc->primary->fb = fb;
11135                crtc->x = x;
11136                crtc->y = y;
11137        }
11138
11139        /* Now enable the clocks, plane, pipe, and connectors that we set up. */
11140        for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc) {
11141                update_scanline_offset(intel_crtc);
11142
11143                dev_priv->display.crtc_enable(&intel_crtc->base);
11144        }
11145
11146        /* FIXME: add subpixel order */
11147done:
11148        if (ret && crtc->enabled)
11149                crtc->mode = *saved_mode;
11150
11151        kfree(pipe_config);
11152        kfree(saved_mode);
11153        return ret;
11154}
11155
11156static int intel_set_mode_pipes(struct drm_crtc *crtc,
11157                                struct drm_display_mode *mode,
11158                                int x, int y, struct drm_framebuffer *fb,
11159                                struct intel_crtc_config *pipe_config,
11160                                unsigned modeset_pipes,
11161                                unsigned prepare_pipes,
11162                                unsigned disable_pipes)
11163{
11164        int ret;
11165
11166        ret = __intel_set_mode(crtc, mode, x, y, fb, pipe_config, modeset_pipes,
11167                               prepare_pipes, disable_pipes);
11168
11169        if (ret == 0)
11170                intel_modeset_check_state(crtc->dev);
11171
11172        return ret;
11173}
11174
11175static int intel_set_mode(struct drm_crtc *crtc,
11176                          struct drm_display_mode *mode,
11177                          int x, int y, struct drm_framebuffer *fb)
11178{
11179        struct intel_crtc_config *pipe_config;
11180        unsigned modeset_pipes, prepare_pipes, disable_pipes;
11181
11182        pipe_config = intel_modeset_compute_config(crtc, mode, fb,
11183                                                   &modeset_pipes,
11184                                                   &prepare_pipes,
11185                                                   &disable_pipes);
11186
11187        if (IS_ERR(pipe_config))
11188                return PTR_ERR(pipe_config);
11189
11190        return intel_set_mode_pipes(crtc, mode, x, y, fb, pipe_config,
11191                                    modeset_pipes, prepare_pipes,
11192                                    disable_pipes);
11193}
11194
11195void intel_crtc_restore_mode(struct drm_crtc *crtc)
11196{
11197        intel_set_mode(crtc, &crtc->mode, crtc->x, crtc->y, crtc->primary->fb);
11198}
11199
11200#undef for_each_intel_crtc_masked
11201
11202static void intel_set_config_free(struct intel_set_config *config)
11203{
11204        if (!config)
11205                return;
11206
11207        kfree(config->save_connector_encoders);
11208        kfree(config->save_encoder_crtcs);
11209        kfree(config->save_crtc_enabled);
11210        kfree(config);
11211}
11212
11213static int intel_set_config_save_state(struct drm_device *dev,
11214                                       struct intel_set_config *config)
11215{
11216        struct drm_crtc *crtc;
11217        struct drm_encoder *encoder;
11218        struct drm_connector *connector;
11219        int count;
11220
11221        config->save_crtc_enabled =
11222                kcalloc(dev->mode_config.num_crtc,
11223                        sizeof(bool), GFP_KERNEL);
11224        if (!config->save_crtc_enabled)
11225                return -ENOMEM;
11226
11227        config->save_encoder_crtcs =
11228                kcalloc(dev->mode_config.num_encoder,
11229                        sizeof(struct drm_crtc *), GFP_KERNEL);
11230        if (!config->save_encoder_crtcs)
11231                return -ENOMEM;
11232
11233        config->save_connector_encoders =
11234                kcalloc(dev->mode_config.num_connector,
11235                        sizeof(struct drm_encoder *), GFP_KERNEL);
11236        if (!config->save_connector_encoders)
11237                return -ENOMEM;
11238
11239        /* Copy data. Note that driver private data is not affected.
11240         * Should anything bad happen only the expected state is
11241         * restored, not the drivers personal bookkeeping.
11242         */
11243        count = 0;
11244        for_each_crtc(dev, crtc) {
11245                config->save_crtc_enabled[count++] = crtc->enabled;
11246        }
11247
11248        count = 0;
11249        list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
11250                config->save_encoder_crtcs[count++] = encoder->crtc;
11251        }
11252
11253        count = 0;
11254        list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
11255                config->save_connector_encoders[count++] = connector->encoder;
11256        }
11257
11258        return 0;
11259}
11260
11261static void intel_set_config_restore_state(struct drm_device *dev,
11262                                           struct intel_set_config *config)
11263{
11264        struct intel_crtc *crtc;
11265        struct intel_encoder *encoder;
11266        struct intel_connector *connector;
11267        int count;
11268
11269        count = 0;
11270        for_each_intel_crtc(dev, crtc) {
11271                crtc->new_enabled = config->save_crtc_enabled[count++];
11272
11273                if (crtc->new_enabled)
11274                        crtc->new_config = &crtc->config;
11275                else
11276                        crtc->new_config = NULL;
11277        }
11278
11279        count = 0;
11280        for_each_intel_encoder(dev, encoder) {
11281                encoder->new_crtc =
11282                        to_intel_crtc(config->save_encoder_crtcs[count++]);
11283        }
11284
11285        count = 0;
11286        list_for_each_entry(connector, &dev->mode_config.connector_list, base.head) {
11287                connector->new_encoder =
11288                        to_intel_encoder(config->save_connector_encoders[count++]);
11289        }
11290}
11291
11292static bool
11293is_crtc_connector_off(struct drm_mode_set *set)
11294{
11295        int i;
11296
11297        if (set->num_connectors == 0)
11298                return false;
11299
11300        if (WARN_ON(set->connectors == NULL))
11301                return false;
11302
11303        for (i = 0; i < set->num_connectors; i++)
11304                if (set->connectors[i]->encoder &&
11305                    set->connectors[i]->encoder->crtc == set->crtc &&
11306                    set->connectors[i]->dpms != DRM_MODE_DPMS_ON)
11307                        return true;
11308
11309        return false;
11310}
11311
11312static void
11313intel_set_config_compute_mode_changes(struct drm_mode_set *set,
11314                                      struct intel_set_config *config)
11315{
11316
11317        /* We should be able to check here if the fb has the same properties
11318         * and then just flip_or_move it */
11319        if (is_crtc_connector_off(set)) {
11320                config->mode_changed = true;
11321        } else if (set->crtc->primary->fb != set->fb) {
11322                /*
11323                 * If we have no fb, we can only flip as long as the crtc is
11324                 * active, otherwise we need a full mode set.  The crtc may
11325                 * be active if we've only disabled the primary plane, or
11326                 * in fastboot situations.
11327                 */
11328                if (set->crtc->primary->fb == NULL) {
11329                        struct intel_crtc *intel_crtc =
11330                                to_intel_crtc(set->crtc);
11331
11332                        if (intel_crtc->active) {
11333                                DRM_DEBUG_KMS("crtc has no fb, will flip\n");
11334                                config->fb_changed = true;
11335                        } else {
11336                                DRM_DEBUG_KMS("inactive crtc, full mode set\n");
11337                                config->mode_changed = true;
11338                        }
11339                } else if (set->fb == NULL) {
11340                        config->mode_changed = true;
11341                } else if (set->fb->pixel_format !=
11342                           set->crtc->primary->fb->pixel_format) {
11343                        config->mode_changed = true;
11344                } else {
11345                        config->fb_changed = true;
11346                }
11347        }
11348
11349        if (set->fb && (set->x != set->crtc->x || set->y != set->crtc->y))
11350                config->fb_changed = true;
11351
11352        if (set->mode && !drm_mode_equal(set->mode, &set->crtc->mode)) {
11353                DRM_DEBUG_KMS("modes are different, full mode set\n");
11354                drm_mode_debug_printmodeline(&set->crtc->mode);
11355                drm_mode_debug_printmodeline(set->mode);
11356                config->mode_changed = true;
11357        }
11358
11359        DRM_DEBUG_KMS("computed changes for [CRTC:%d], mode_changed=%d, fb_changed=%d\n",
11360                        set->crtc->base.id, config->mode_changed, config->fb_changed);
11361}
11362
11363static int
11364intel_modeset_stage_output_state(struct drm_device *dev,
11365                                 struct drm_mode_set *set,
11366                                 struct intel_set_config *config)
11367{
11368        struct intel_connector *connector;
11369        struct intel_encoder *encoder;
11370        struct intel_crtc *crtc;
11371        int ro;
11372
11373        /* The upper layers ensure that we either disable a crtc or have a list
11374         * of connectors. For paranoia, double-check this. */
11375        WARN_ON(!set->fb && (set->num_connectors != 0));
11376        WARN_ON(set->fb && (set->num_connectors == 0));
11377
11378        list_for_each_entry(connector, &dev->mode_config.connector_list,
11379                            base.head) {
11380                /* Otherwise traverse passed in connector list and get encoders
11381                 * for them. */
11382                for (ro = 0; ro < set->num_connectors; ro++) {
11383                        if (set->connectors[ro] == &connector->base) {
11384                                connector->new_encoder = intel_find_encoder(connector, to_intel_crtc(set->crtc)->pipe);
11385                                break;
11386                        }
11387                }
11388
11389                /* If we disable the crtc, disable all its connectors. Also, if
11390                 * the connector is on the changing crtc but not on the new
11391                 * connector list, disable it. */
11392                if ((!set->fb || ro == set->num_connectors) &&
11393                    connector->base.encoder &&
11394                    connector->base.encoder->crtc == set->crtc) {
11395                        connector->new_encoder = NULL;
11396
11397                        DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [NOCRTC]\n",
11398                                connector->base.base.id,
11399                                connector->base.name);
11400                }
11401
11402
11403                if (&connector->new_encoder->base != connector->base.encoder) {
11404                        DRM_DEBUG_KMS("encoder changed, full mode switch\n");
11405                        config->mode_changed = true;
11406                }
11407        }
11408        /* connector->new_encoder is now updated for all connectors. */
11409
11410        /* Update crtc of enabled connectors. */
11411        list_for_each_entry(connector, &dev->mode_config.connector_list,
11412                            base.head) {
11413                struct drm_crtc *new_crtc;
11414
11415                if (!connector->new_encoder)
11416                        continue;
11417
11418                new_crtc = connector->new_encoder->base.crtc;
11419
11420                for (ro = 0; ro < set->num_connectors; ro++) {
11421                        if (set->connectors[ro] == &connector->base)
11422                                new_crtc = set->crtc;
11423                }
11424
11425                /* Make sure the new CRTC will work with the encoder */
11426                if (!drm_encoder_crtc_ok(&connector->new_encoder->base,
11427                                         new_crtc)) {
11428                        return -EINVAL;
11429                }
11430                connector->new_encoder->new_crtc = to_intel_crtc(new_crtc);
11431
11432                DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [CRTC:%d]\n",
11433                        connector->base.base.id,
11434                        connector->base.name,
11435                        new_crtc->base.id);
11436        }
11437
11438        /* Check for any encoders that needs to be disabled. */
11439        for_each_intel_encoder(dev, encoder) {
11440                int num_connectors = 0;
11441                list_for_each_entry(connector,
11442                                    &dev->mode_config.connector_list,
11443                                    base.head) {
11444                        if (connector->new_encoder == encoder) {
11445                                WARN_ON(!connector->new_encoder->new_crtc);
11446                                num_connectors++;
11447                        }
11448                }
11449
11450                if (num_connectors == 0)
11451                        encoder->new_crtc = NULL;
11452                else if (num_connectors > 1)
11453                        return -EINVAL;
11454
11455                /* Only now check for crtc changes so we don't miss encoders
11456                 * that will be disabled. */
11457                if (&encoder->new_crtc->base != encoder->base.crtc) {
11458                        DRM_DEBUG_KMS("crtc changed, full mode switch\n");
11459                        config->mode_changed = true;
11460                }
11461        }
11462        /* Now we've also updated encoder->new_crtc for all encoders. */
11463        list_for_each_entry(connector, &dev->mode_config.connector_list,
11464                            base.head) {
11465                if (connector->new_encoder)
11466                        if (connector->new_encoder != connector->encoder)
11467                                connector->encoder = connector->new_encoder;
11468        }
11469        for_each_intel_crtc(dev, crtc) {
11470                crtc->new_enabled = false;
11471
11472                for_each_intel_encoder(dev, encoder) {
11473                        if (encoder->new_crtc == crtc) {
11474                                crtc->new_enabled = true;
11475                                break;
11476                        }
11477                }
11478
11479                if (crtc->new_enabled != crtc->base.enabled) {
11480                        DRM_DEBUG_KMS("crtc %sabled, full mode switch\n",
11481                                      crtc->new_enabled ? "en" : "dis");
11482                        config->mode_changed = true;
11483                }
11484
11485                if (crtc->new_enabled)
11486                        crtc->new_config = &crtc->config;
11487                else
11488                        crtc->new_config = NULL;
11489        }
11490
11491        return 0;
11492}
11493
11494static void disable_crtc_nofb(struct intel_crtc *crtc)
11495{
11496        struct drm_device *dev = crtc->base.dev;
11497        struct intel_encoder *encoder;
11498        struct intel_connector *connector;
11499
11500        DRM_DEBUG_KMS("Trying to restore without FB -> disabling pipe %c\n",
11501                      pipe_name(crtc->pipe));
11502
11503        list_for_each_entry(connector, &dev->mode_config.connector_list, base.head) {
11504                if (connector->new_encoder &&
11505                    connector->new_encoder->new_crtc == crtc)
11506                        connector->new_encoder = NULL;
11507        }
11508
11509        for_each_intel_encoder(dev, encoder) {
11510                if (encoder->new_crtc == crtc)
11511                        encoder->new_crtc = NULL;
11512        }
11513
11514        crtc->new_enabled = false;
11515        crtc->new_config = NULL;
11516}
11517
11518static int intel_crtc_set_config(struct drm_mode_set *set)
11519{
11520        struct drm_device *dev;
11521        struct drm_mode_set save_set;
11522        struct intel_set_config *config;
11523        struct intel_crtc_config *pipe_config;
11524        unsigned modeset_pipes, prepare_pipes, disable_pipes;
11525        int ret;
11526
11527        BUG_ON(!set);
11528        BUG_ON(!set->crtc);
11529        BUG_ON(!set->crtc->helper_private);
11530
11531        /* Enforce sane interface api - has been abused by the fb helper. */
11532        BUG_ON(!set->mode && set->fb);
11533        BUG_ON(set->fb && set->num_connectors == 0);
11534
11535        if (set->fb) {
11536                DRM_DEBUG_KMS("[CRTC:%d] [FB:%d] #connectors=%d (x y) (%i %i)\n",
11537                                set->crtc->base.id, set->fb->base.id,
11538                                (int)set->num_connectors, set->x, set->y);
11539        } else {
11540                DRM_DEBUG_KMS("[CRTC:%d] [NOFB]\n", set->crtc->base.id);
11541        }
11542
11543        dev = set->crtc->dev;
11544
11545        ret = -ENOMEM;
11546        config = kzalloc(sizeof(*config), GFP_KERNEL);
11547        if (!config)
11548                goto out_config;
11549
11550        ret = intel_set_config_save_state(dev, config);
11551        if (ret)
11552                goto out_config;
11553
11554        save_set.crtc = set->crtc;
11555        save_set.mode = &set->crtc->mode;
11556        save_set.x = set->crtc->x;
11557        save_set.y = set->crtc->y;
11558        save_set.fb = set->crtc->primary->fb;
11559
11560        /* Compute whether we need a full modeset, only an fb base update or no
11561         * change at all. In the future we might also check whether only the
11562         * mode changed, e.g. for LVDS where we only change the panel fitter in
11563         * such cases. */
11564        intel_set_config_compute_mode_changes(set, config);
11565
11566        ret = intel_modeset_stage_output_state(dev, set, config);
11567        if (ret)
11568                goto fail;
11569
11570        pipe_config = intel_modeset_compute_config(set->crtc, set->mode,
11571                                                   set->fb,
11572                                                   &modeset_pipes,
11573                                                   &prepare_pipes,
11574                                                   &disable_pipes);
11575        if (IS_ERR(pipe_config)) {
11576                ret = PTR_ERR(pipe_config);
11577                goto fail;
11578        } else if (pipe_config) {
11579                if (pipe_config->has_audio !=
11580                    to_intel_crtc(set->crtc)->config.has_audio)
11581                        config->mode_changed = true;
11582
11583                /*
11584                 * Note we have an issue here with infoframes: current code
11585                 * only updates them on the full mode set path per hw
11586                 * requirements.  So here we should be checking for any
11587                 * required changes and forcing a mode set.
11588                 */
11589        }
11590
11591        /* set_mode will free it in the mode_changed case */
11592        if (!config->mode_changed)
11593                kfree(pipe_config);
11594
11595        intel_update_pipe_size(to_intel_crtc(set->crtc));
11596
11597        if (config->mode_changed) {
11598                ret = intel_set_mode_pipes(set->crtc, set->mode,
11599                                           set->x, set->y, set->fb, pipe_config,
11600                                           modeset_pipes, prepare_pipes,
11601                                           disable_pipes);
11602        } else if (config->fb_changed) {
11603                struct intel_crtc *intel_crtc = to_intel_crtc(set->crtc);
11604
11605                intel_crtc_wait_for_pending_flips(set->crtc);
11606
11607                ret = intel_pipe_set_base(set->crtc,
11608                                          set->x, set->y, set->fb);
11609
11610                /*
11611                 * We need to make sure the primary plane is re-enabled if it
11612                 * has previously been turned off.
11613                 */
11614                if (!intel_crtc->primary_enabled && ret == 0) {
11615                        WARN_ON(!intel_crtc->active);
11616                        intel_enable_primary_hw_plane(set->crtc->primary, set->crtc);
11617                }
11618
11619                /*
11620                 * In the fastboot case this may be our only check of the
11621                 * state after boot.  It would be better to only do it on
11622                 * the first update, but we don't have a nice way of doing that
11623                 * (and really, set_config isn't used much for high freq page
11624                 * flipping, so increasing its cost here shouldn't be a big
11625                 * deal).
11626                 */
11627                if (i915.fastboot && ret == 0)
11628                        intel_modeset_check_state(set->crtc->dev);
11629        }
11630
11631        if (ret) {
11632                DRM_DEBUG_KMS("failed to set mode on [CRTC:%d], err = %d\n",
11633                              set->crtc->base.id, ret);
11634fail:
11635                intel_set_config_restore_state(dev, config);
11636
11637                /*
11638                 * HACK: if the pipe was on, but we didn't have a framebuffer,
11639                 * force the pipe off to avoid oopsing in the modeset code
11640                 * due to fb==NULL. This should only happen during boot since
11641                 * we don't yet reconstruct the FB from the hardware state.
11642                 */
11643                if (to_intel_crtc(save_set.crtc)->new_enabled && !save_set.fb)
11644                        disable_crtc_nofb(to_intel_crtc(save_set.crtc));
11645
11646                /* Try to restore the config */
11647                if (config->mode_changed &&
11648                    intel_set_mode(save_set.crtc, save_set.mode,
11649                                   save_set.x, save_set.y, save_set.fb))
11650                        DRM_ERROR("failed to restore config after modeset failure\n");
11651        }
11652
11653out_config:
11654        intel_set_config_free(config);
11655        return ret;
11656}
11657
11658static const struct drm_crtc_funcs intel_crtc_funcs = {
11659        .gamma_set = intel_crtc_gamma_set,
11660        .set_config = intel_crtc_set_config,
11661        .destroy = intel_crtc_destroy,
11662        .page_flip = intel_crtc_page_flip,
11663};
11664
11665static bool ibx_pch_dpll_get_hw_state(struct drm_i915_private *dev_priv,
11666                                      struct intel_shared_dpll *pll,
11667                                      struct intel_dpll_hw_state *hw_state)
11668{
11669        uint32_t val;
11670
11671        if (!intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_PLLS))
11672                return false;
11673
11674        val = I915_READ(PCH_DPLL(pll->id));
11675        hw_state->dpll = val;
11676        hw_state->fp0 = I915_READ(PCH_FP0(pll->id));
11677        hw_state->fp1 = I915_READ(PCH_FP1(pll->id));
11678
11679        return val & DPLL_VCO_ENABLE;
11680}
11681
11682static void ibx_pch_dpll_mode_set(struct drm_i915_private *dev_priv,
11683                                  struct intel_shared_dpll *pll)
11684{
11685        I915_WRITE(PCH_FP0(pll->id), pll->config.hw_state.fp0);
11686        I915_WRITE(PCH_FP1(pll->id), pll->config.hw_state.fp1);
11687}
11688
11689static void ibx_pch_dpll_enable(struct drm_i915_private *dev_priv,
11690                                struct intel_shared_dpll *pll)
11691{
11692        /* PCH refclock must be enabled first */
11693        ibx_assert_pch_refclk_enabled(dev_priv);
11694
11695        I915_WRITE(PCH_DPLL(pll->id), pll->config.hw_state.dpll);
11696
11697        /* Wait for the clocks to stabilize. */
11698        POSTING_READ(PCH_DPLL(pll->id));
11699        udelay(150);
11700
11701        /* The pixel multiplier can only be updated once the
11702         * DPLL is enabled and the clocks are stable.
11703         *
11704         * So write it again.
11705         */
11706        I915_WRITE(PCH_DPLL(pll->id), pll->config.hw_state.dpll);
11707        POSTING_READ(PCH_DPLL(pll->id));
11708        udelay(200);
11709}
11710
11711static void ibx_pch_dpll_disable(struct drm_i915_private *dev_priv,
11712                                 struct intel_shared_dpll *pll)
11713{
11714        struct drm_device *dev = dev_priv->dev;
11715        struct intel_crtc *crtc;
11716
11717        /* Make sure no transcoder isn't still depending on us. */
11718        for_each_intel_crtc(dev, crtc) {
11719                if (intel_crtc_to_shared_dpll(crtc) == pll)
11720                        assert_pch_transcoder_disabled(dev_priv, crtc->pipe);
11721        }
11722
11723        I915_WRITE(PCH_DPLL(pll->id), 0);
11724        POSTING_READ(PCH_DPLL(pll->id));
11725        udelay(200);
11726}
11727
11728static char *ibx_pch_dpll_names[] = {
11729        "PCH DPLL A",
11730        "PCH DPLL B",
11731};
11732
11733static void ibx_pch_dpll_init(struct drm_device *dev)
11734{
11735        struct drm_i915_private *dev_priv = dev->dev_private;
11736        int i;
11737
11738        dev_priv->num_shared_dpll = 2;
11739
11740        for (i = 0; i < dev_priv->num_shared_dpll; i++) {
11741                dev_priv->shared_dplls[i].id = i;
11742                dev_priv->shared_dplls[i].name = ibx_pch_dpll_names[i];
11743                dev_priv->shared_dplls[i].mode_set = ibx_pch_dpll_mode_set;
11744                dev_priv->shared_dplls[i].enable = ibx_pch_dpll_enable;
11745                dev_priv->shared_dplls[i].disable = ibx_pch_dpll_disable;
11746                dev_priv->shared_dplls[i].get_hw_state =
11747                        ibx_pch_dpll_get_hw_state;
11748        }
11749}
11750
11751static void intel_shared_dpll_init(struct drm_device *dev)
11752{
11753        struct drm_i915_private *dev_priv = dev->dev_private;
11754
11755        if (HAS_DDI(dev))
11756                intel_ddi_pll_init(dev);
11757        else if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
11758                ibx_pch_dpll_init(dev);
11759        else
11760                dev_priv->num_shared_dpll = 0;
11761
11762        BUG_ON(dev_priv->num_shared_dpll > I915_NUM_PLLS);
11763}
11764
11765static int
11766intel_primary_plane_disable(struct drm_plane *plane)
11767{
11768        struct drm_device *dev = plane->dev;
11769        struct intel_crtc *intel_crtc;
11770
11771        if (!plane->fb)
11772                return 0;
11773
11774        BUG_ON(!plane->crtc);
11775
11776        intel_crtc = to_intel_crtc(plane->crtc);
11777
11778        /*
11779         * Even though we checked plane->fb above, it's still possible that
11780         * the primary plane has been implicitly disabled because the crtc
11781         * coordinates given weren't visible, or because we detected
11782         * that it was 100% covered by a sprite plane.  Or, the CRTC may be
11783         * off and we've set a fb, but haven't actually turned on the CRTC yet.
11784         * In either case, we need to unpin the FB and let the fb pointer get
11785         * updated, but otherwise we don't need to touch the hardware.
11786         */
11787        if (!intel_crtc->primary_enabled)
11788                goto disable_unpin;
11789
11790        intel_crtc_wait_for_pending_flips(plane->crtc);
11791        intel_disable_primary_hw_plane(plane, plane->crtc);
11792
11793disable_unpin:
11794        mutex_lock(&dev->struct_mutex);
11795        i915_gem_track_fb(intel_fb_obj(plane->fb), NULL,
11796                          INTEL_FRONTBUFFER_PRIMARY(intel_crtc->pipe));
11797        intel_unpin_fb_obj(intel_fb_obj(plane->fb));
11798        mutex_unlock(&dev->struct_mutex);
11799        plane->fb = NULL;
11800
11801        return 0;
11802}
11803
11804static int
11805intel_check_primary_plane(struct drm_plane *plane,
11806                          struct intel_plane_state *state)
11807{
11808        struct drm_crtc *crtc = state->crtc;
11809        struct drm_framebuffer *fb = state->fb;
11810        struct drm_rect *dest = &state->dst;
11811        struct drm_rect *src = &state->src;
11812        const struct drm_rect *clip = &state->clip;
11813
11814        return drm_plane_helper_check_update(plane, crtc, fb,
11815                                             src, dest, clip,
11816                                             DRM_PLANE_HELPER_NO_SCALING,
11817                                             DRM_PLANE_HELPER_NO_SCALING,
11818                                             false, true, &state->visible);
11819}
11820
11821static int
11822intel_prepare_primary_plane(struct drm_plane *plane,
11823                            struct intel_plane_state *state)
11824{
11825        struct drm_crtc *crtc = state->crtc;
11826        struct drm_framebuffer *fb = state->fb;
11827        struct drm_device *dev = crtc->dev;
11828        struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11829        enum pipe pipe = intel_crtc->pipe;
11830        struct drm_i915_gem_object *obj = intel_fb_obj(fb);
11831        struct drm_i915_gem_object *old_obj = intel_fb_obj(plane->fb);
11832        int ret;
11833
11834        intel_crtc_wait_for_pending_flips(crtc);
11835
11836        if (intel_crtc_has_pending_flip(crtc)) {
11837                DRM_ERROR("pipe is still busy with an old pageflip\n");
11838                return -EBUSY;
11839        }
11840
11841        if (old_obj != obj) {
11842                mutex_lock(&dev->struct_mutex);
11843                ret = intel_pin_and_fence_fb_obj(plane, fb, NULL);
11844                if (ret == 0)
11845                        i915_gem_track_fb(old_obj, obj,
11846                                          INTEL_FRONTBUFFER_PRIMARY(pipe));
11847                mutex_unlock(&dev->struct_mutex);
11848                if (ret != 0) {
11849                        DRM_DEBUG_KMS("pin & fence failed\n");
11850                        return ret;
11851                }
11852        }
11853
11854        return 0;
11855}
11856
11857static void
11858intel_commit_primary_plane(struct drm_plane *plane,
11859                           struct intel_plane_state *state)
11860{
11861        struct drm_crtc *crtc = state->crtc;
11862        struct drm_framebuffer *fb = state->fb;
11863        struct drm_device *dev = crtc->dev;
11864        struct drm_i915_private *dev_priv = dev->dev_private;
11865        struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11866        enum pipe pipe = intel_crtc->pipe;
11867        struct drm_framebuffer *old_fb = plane->fb;
11868        struct drm_i915_gem_object *obj = intel_fb_obj(fb);
11869        struct drm_i915_gem_object *old_obj = intel_fb_obj(plane->fb);
11870        struct intel_plane *intel_plane = to_intel_plane(plane);
11871        struct drm_rect *src = &state->src;
11872
11873        crtc->primary->fb = fb;
11874        crtc->x = src->x1 >> 16;
11875        crtc->y = src->y1 >> 16;
11876
11877        intel_plane->crtc_x = state->orig_dst.x1;
11878        intel_plane->crtc_y = state->orig_dst.y1;
11879        intel_plane->crtc_w = drm_rect_width(&state->orig_dst);
11880        intel_plane->crtc_h = drm_rect_height(&state->orig_dst);
11881        intel_plane->src_x = state->orig_src.x1;
11882        intel_plane->src_y = state->orig_src.y1;
11883        intel_plane->src_w = drm_rect_width(&state->orig_src);
11884        intel_plane->src_h = drm_rect_height(&state->orig_src);
11885        intel_plane->obj = obj;
11886
11887        if (intel_crtc->active) {
11888                /*
11889                 * FBC does not work on some platforms for rotated
11890                 * planes, so disable it when rotation is not 0 and
11891                 * update it when rotation is set back to 0.
11892                 *
11893                 * FIXME: This is redundant with the fbc update done in
11894                 * the primary plane enable function except that that
11895                 * one is done too late. We eventually need to unify
11896                 * this.
11897                 */
11898                if (intel_crtc->primary_enabled &&
11899                    INTEL_INFO(dev)->gen <= 4 && !IS_G4X(dev) &&
11900                    dev_priv->fbc.plane == intel_crtc->plane &&
11901                    intel_plane->rotation != BIT(DRM_ROTATE_0)) {
11902                        intel_disable_fbc(dev);
11903                }
11904
11905                if (state->visible) {
11906                        bool was_enabled = intel_crtc->primary_enabled;
11907
11908                        /* FIXME: kill this fastboot hack */
11909                        intel_update_pipe_size(intel_crtc);
11910
11911                        intel_crtc->primary_enabled = true;
11912
11913                        dev_priv->display.update_primary_plane(crtc, plane->fb,
11914                                        crtc->x, crtc->y);
11915
11916                        /*
11917                         * BDW signals flip done immediately if the plane
11918                         * is disabled, even if the plane enable is already
11919                         * armed to occur at the next vblank :(
11920                         */
11921                        if (IS_BROADWELL(dev) && !was_enabled)
11922                                intel_wait_for_vblank(dev, intel_crtc->pipe);
11923                } else {
11924                        /*
11925                         * If clipping results in a non-visible primary plane,
11926                         * we'll disable the primary plane.  Note that this is
11927                         * a bit different than what happens if userspace
11928                         * explicitly disables the plane by passing fb=0
11929                         * because plane->fb still gets set and pinned.
11930                         */
11931                        intel_disable_primary_hw_plane(plane, crtc);
11932                }
11933
11934                intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_PRIMARY(pipe));
11935
11936                mutex_lock(&dev->struct_mutex);
11937                intel_update_fbc(dev);
11938                mutex_unlock(&dev->struct_mutex);
11939        }
11940
11941        if (old_fb && old_fb != fb) {
11942                if (intel_crtc->active)
11943                        intel_wait_for_vblank(dev, intel_crtc->pipe);
11944
11945                mutex_lock(&dev->struct_mutex);
11946                intel_unpin_fb_obj(old_obj);
11947                mutex_unlock(&dev->struct_mutex);
11948        }
11949}
11950
11951static int
11952intel_primary_plane_setplane(struct drm_plane *plane, struct drm_crtc *crtc,
11953                             struct drm_framebuffer *fb, int crtc_x, int crtc_y,
11954                             unsigned int crtc_w, unsigned int crtc_h,
11955                             uint32_t src_x, uint32_t src_y,
11956                             uint32_t src_w, uint32_t src_h)
11957{
11958        struct intel_plane_state state;
11959        struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11960        int ret;
11961
11962        state.crtc = crtc;
11963        state.fb = fb;
11964
11965        /* sample coordinates in 16.16 fixed point */
11966        state.src.x1 = src_x;
11967        state.src.x2 = src_x + src_w;
11968        state.src.y1 = src_y;
11969        state.src.y2 = src_y + src_h;
11970
11971        /* integer pixels */
11972        state.dst.x1 = crtc_x;
11973        state.dst.x2 = crtc_x + crtc_w;
11974        state.dst.y1 = crtc_y;
11975        state.dst.y2 = crtc_y + crtc_h;
11976
11977        state.clip.x1 = 0;
11978        state.clip.y1 = 0;
11979        state.clip.x2 = intel_crtc->active ? intel_crtc->config.pipe_src_w : 0;
11980        state.clip.y2 = intel_crtc->active ? intel_crtc->config.pipe_src_h : 0;
11981
11982        state.orig_src = state.src;
11983        state.orig_dst = state.dst;
11984
11985        ret = intel_check_primary_plane(plane, &state);
11986        if (ret)
11987                return ret;
11988
11989        ret = intel_prepare_primary_plane(plane, &state);
11990        if (ret)
11991                return ret;
11992
11993        intel_commit_primary_plane(plane, &state);
11994
11995        return 0;
11996}
11997
11998/* Common destruction function for both primary and cursor planes */
11999static void intel_plane_destroy(struct drm_plane *plane)
12000{
12001        struct intel_plane *intel_plane = to_intel_plane(plane);
12002        drm_plane_cleanup(plane);
12003        kfree(intel_plane);
12004}
12005
12006static const struct drm_plane_funcs intel_primary_plane_funcs = {
12007        .update_plane = intel_primary_plane_setplane,
12008        .disable_plane = intel_primary_plane_disable,
12009        .destroy = intel_plane_destroy,
12010        .set_property = intel_plane_set_property
12011};
12012
12013static struct drm_plane *intel_primary_plane_create(struct drm_device *dev,
12014                                                    int pipe)
12015{
12016        struct intel_plane *primary;
12017        const uint32_t *intel_primary_formats;
12018        int num_formats;
12019
12020        primary = kzalloc(sizeof(*primary), GFP_KERNEL);
12021        if (primary == NULL)
12022                return NULL;
12023
12024        primary->can_scale = false;
12025        primary->max_downscale = 1;
12026        primary->pipe = pipe;
12027        primary->plane = pipe;
12028        primary->rotation = BIT(DRM_ROTATE_0);
12029        if (HAS_FBC(dev) && INTEL_INFO(dev)->gen < 4)
12030                primary->plane = !pipe;
12031
12032        if (INTEL_INFO(dev)->gen <= 3) {
12033                intel_primary_formats = intel_primary_formats_gen2;
12034                num_formats = ARRAY_SIZE(intel_primary_formats_gen2);
12035        } else {
12036                intel_primary_formats = intel_primary_formats_gen4;
12037                num_formats = ARRAY_SIZE(intel_primary_formats_gen4);
12038        }
12039
12040        drm_universal_plane_init(dev, &primary->base, 0,
12041                                 &intel_primary_plane_funcs,
12042                                 intel_primary_formats, num_formats,
12043                                 DRM_PLANE_TYPE_PRIMARY);
12044
12045        if (INTEL_INFO(dev)->gen >= 4) {
12046                if (!dev->mode_config.rotation_property)
12047                        dev->mode_config.rotation_property =
12048                                drm_mode_create_rotation_property(dev,
12049                                                        BIT(DRM_ROTATE_0) |
12050                                                        BIT(DRM_ROTATE_180));
12051                if (dev->mode_config.rotation_property)
12052                        drm_object_attach_property(&primary->base.base,
12053                                dev->mode_config.rotation_property,
12054                                primary->rotation);
12055        }
12056
12057        return &primary->base;
12058}
12059
12060static int
12061intel_cursor_plane_disable(struct drm_plane *plane)
12062{
12063        if (!plane->fb)
12064                return 0;
12065
12066        BUG_ON(!plane->crtc);
12067
12068        return intel_crtc_cursor_set_obj(plane->crtc, NULL, 0, 0);
12069}
12070
12071static int
12072intel_check_cursor_plane(struct drm_plane *plane,
12073                         struct intel_plane_state *state)
12074{
12075        struct drm_crtc *crtc = state->crtc;
12076        struct drm_device *dev = crtc->dev;
12077        struct drm_framebuffer *fb = state->fb;
12078        struct drm_rect *dest = &state->dst;
12079        struct drm_rect *src = &state->src;
12080        const struct drm_rect *clip = &state->clip;
12081        struct drm_i915_gem_object *obj = intel_fb_obj(fb);
12082        int crtc_w, crtc_h;
12083        unsigned stride;
12084        int ret;
12085
12086        ret = drm_plane_helper_check_update(plane, crtc, fb,
12087                                            src, dest, clip,
12088                                            DRM_PLANE_HELPER_NO_SCALING,
12089                                            DRM_PLANE_HELPER_NO_SCALING,
12090                                            true, true, &state->visible);
12091        if (ret)
12092                return ret;
12093
12094
12095        /* if we want to turn off the cursor ignore width and height */
12096        if (!obj)
12097                return 0;
12098
12099        /* Check for which cursor types we support */
12100        crtc_w = drm_rect_width(&state->orig_dst);
12101        crtc_h = drm_rect_height(&state->orig_dst);
12102        if (!cursor_size_ok(dev, crtc_w, crtc_h)) {
12103                DRM_DEBUG("Cursor dimension not supported\n");
12104                return -EINVAL;
12105        }
12106
12107        stride = roundup_pow_of_two(crtc_w) * 4;
12108        if (obj->base.size < stride * crtc_h) {
12109                DRM_DEBUG_KMS("buffer is too small\n");
12110                return -ENOMEM;
12111        }
12112
12113        if (fb == crtc->cursor->fb)
12114                return 0;
12115
12116        /* we only need to pin inside GTT if cursor is non-phy */
12117        mutex_lock(&dev->struct_mutex);
12118        if (!INTEL_INFO(dev)->cursor_needs_physical && obj->tiling_mode) {
12119                DRM_DEBUG_KMS("cursor cannot be tiled\n");
12120                ret = -EINVAL;
12121        }
12122        mutex_unlock(&dev->struct_mutex);
12123
12124        return ret;
12125}
12126
12127static int
12128intel_commit_cursor_plane(struct drm_plane *plane,
12129                          struct intel_plane_state *state)
12130{
12131        struct drm_crtc *crtc = state->crtc;
12132        struct drm_framebuffer *fb = state->fb;
12133        struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
12134        struct intel_plane *intel_plane = to_intel_plane(plane);
12135        struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
12136        struct drm_i915_gem_object *obj = intel_fb->obj;
12137        int crtc_w, crtc_h;
12138
12139        crtc->cursor_x = state->orig_dst.x1;
12140        crtc->cursor_y = state->orig_dst.y1;
12141
12142        intel_plane->crtc_x = state->orig_dst.x1;
12143        intel_plane->crtc_y = state->orig_dst.y1;
12144        intel_plane->crtc_w = drm_rect_width(&state->orig_dst);
12145        intel_plane->crtc_h = drm_rect_height(&state->orig_dst);
12146        intel_plane->src_x = state->orig_src.x1;
12147        intel_plane->src_y = state->orig_src.y1;
12148        intel_plane->src_w = drm_rect_width(&state->orig_src);
12149        intel_plane->src_h = drm_rect_height(&state->orig_src);
12150        intel_plane->obj = obj;
12151
12152        if (fb != crtc->cursor->fb) {
12153                crtc_w = drm_rect_width(&state->orig_dst);
12154                crtc_h = drm_rect_height(&state->orig_dst);
12155                return intel_crtc_cursor_set_obj(crtc, obj, crtc_w, crtc_h);
12156        } else {
12157                intel_crtc_update_cursor(crtc, state->visible);
12158
12159                intel_frontbuffer_flip(crtc->dev,
12160                                       INTEL_FRONTBUFFER_CURSOR(intel_crtc->pipe));
12161
12162                return 0;
12163        }
12164}
12165
12166static int
12167intel_cursor_plane_update(struct drm_plane *plane, struct drm_crtc *crtc,
12168                          struct drm_framebuffer *fb, int crtc_x, int crtc_y,
12169                          unsigned int crtc_w, unsigned int crtc_h,
12170                          uint32_t src_x, uint32_t src_y,
12171                          uint32_t src_w, uint32_t src_h)
12172{
12173        struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
12174        struct intel_plane_state state;
12175        int ret;
12176
12177        state.crtc = crtc;
12178        state.fb = fb;
12179
12180        /* sample coordinates in 16.16 fixed point */
12181        state.src.x1 = src_x;
12182        state.src.x2 = src_x + src_w;
12183        state.src.y1 = src_y;
12184        state.src.y2 = src_y + src_h;
12185
12186        /* integer pixels */
12187        state.dst.x1 = crtc_x;
12188        state.dst.x2 = crtc_x + crtc_w;
12189        state.dst.y1 = crtc_y;
12190        state.dst.y2 = crtc_y + crtc_h;
12191
12192        state.clip.x1 = 0;
12193        state.clip.y1 = 0;
12194        state.clip.x2 = intel_crtc->active ? intel_crtc->config.pipe_src_w : 0;
12195        state.clip.y2 = intel_crtc->active ? intel_crtc->config.pipe_src_h : 0;
12196
12197        state.orig_src = state.src;
12198        state.orig_dst = state.dst;
12199
12200        ret = intel_check_cursor_plane(plane, &state);
12201        if (ret)
12202                return ret;
12203
12204        return intel_commit_cursor_plane(plane, &state);
12205}
12206
12207static const struct drm_plane_funcs intel_cursor_plane_funcs = {
12208        .update_plane = intel_cursor_plane_update,
12209        .disable_plane = intel_cursor_plane_disable,
12210        .destroy = intel_plane_destroy,
12211        .set_property = intel_plane_set_property,
12212};
12213
12214static struct drm_plane *intel_cursor_plane_create(struct drm_device *dev,
12215                                                   int pipe)
12216{
12217        struct intel_plane *cursor;
12218
12219        cursor = kzalloc(sizeof(*cursor), GFP_KERNEL);
12220        if (cursor == NULL)
12221                return NULL;
12222
12223        cursor->can_scale = false;
12224        cursor->max_downscale = 1;
12225        cursor->pipe = pipe;
12226        cursor->plane = pipe;
12227        cursor->rotation = BIT(DRM_ROTATE_0);
12228
12229        drm_universal_plane_init(dev, &cursor->base, 0,
12230                                 &intel_cursor_plane_funcs,
12231                                 intel_cursor_formats,
12232                                 ARRAY_SIZE(intel_cursor_formats),
12233                                 DRM_PLANE_TYPE_CURSOR);
12234
12235        if (INTEL_INFO(dev)->gen >= 4) {
12236                if (!dev->mode_config.rotation_property)
12237                        dev->mode_config.rotation_property =
12238                                drm_mode_create_rotation_property(dev,
12239                                                        BIT(DRM_ROTATE_0) |
12240                                                        BIT(DRM_ROTATE_180));
12241                if (dev->mode_config.rotation_property)
12242                        drm_object_attach_property(&cursor->base.base,
12243                                dev->mode_config.rotation_property,
12244                                cursor->rotation);
12245        }
12246
12247        return &cursor->base;
12248}
12249
12250static void intel_crtc_init(struct drm_device *dev, int pipe)
12251{
12252        struct drm_i915_private *dev_priv = dev->dev_private;
12253        struct intel_crtc *intel_crtc;
12254        struct drm_plane *primary = NULL;
12255        struct drm_plane *cursor = NULL;
12256        int i, ret;
12257
12258        intel_crtc = kzalloc(sizeof(*intel_crtc), GFP_KERNEL);
12259        if (intel_crtc == NULL)
12260                return;
12261
12262        primary = intel_primary_plane_create(dev, pipe);
12263        if (!primary)
12264                goto fail;
12265
12266        cursor = intel_cursor_plane_create(dev, pipe);
12267        if (!cursor)
12268                goto fail;
12269
12270        ret = drm_crtc_init_with_planes(dev, &intel_crtc->base, primary,
12271                                        cursor, &intel_crtc_funcs);
12272        if (ret)
12273                goto fail;
12274
12275        drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
12276        for (i = 0; i < 256; i++) {
12277                intel_crtc->lut_r[i] = i;
12278                intel_crtc->lut_g[i] = i;
12279                intel_crtc->lut_b[i] = i;
12280        }
12281
12282        /*
12283         * On gen2/3 only plane A can do fbc, but the panel fitter and lvds port
12284         * is hooked to pipe B. Hence we want plane A feeding pipe B.
12285         */
12286        intel_crtc->pipe = pipe;
12287        intel_crtc->plane = pipe;
12288        if (HAS_FBC(dev) && INTEL_INFO(dev)->gen < 4) {
12289                DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
12290                intel_crtc->plane = !pipe;
12291        }
12292
12293        intel_crtc->cursor_base = ~0;
12294        intel_crtc->cursor_cntl = ~0;
12295        intel_crtc->cursor_size = ~0;
12296
12297        BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
12298               dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
12299        dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
12300        dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
12301
12302        INIT_WORK(&intel_crtc->mmio_flip.work, intel_mmio_flip_work_func);
12303
12304        drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
12305
12306        WARN_ON(drm_crtc_index(&intel_crtc->base) != intel_crtc->pipe);
12307        return;
12308
12309fail:
12310        if (primary)
12311                drm_plane_cleanup(primary);
12312        if (cursor)
12313                drm_plane_cleanup(cursor);
12314        kfree(intel_crtc);
12315}
12316
12317enum pipe intel_get_pipe_from_connector(struct intel_connector *connector)
12318{
12319        struct drm_encoder *encoder = connector->base.encoder;
12320        struct drm_device *dev = connector->base.dev;
12321
12322        WARN_ON(!drm_modeset_is_locked(&dev->mode_config.connection_mutex));
12323
12324        if (!encoder || WARN_ON(!encoder->crtc))
12325                return INVALID_PIPE;
12326
12327        return to_intel_crtc(encoder->crtc)->pipe;
12328}
12329
12330int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
12331                                struct drm_file *file)
12332{
12333        struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
12334        struct drm_crtc *drmmode_crtc;
12335        struct intel_crtc *crtc;
12336
12337        if (!drm_core_check_feature(dev, DRIVER_MODESET))
12338                return -ENODEV;
12339
12340        drmmode_crtc = drm_crtc_find(dev, pipe_from_crtc_id->crtc_id);
12341
12342        if (!drmmode_crtc) {
12343                DRM_ERROR("no such CRTC id\n");
12344                return -ENOENT;
12345        }
12346
12347        crtc = to_intel_crtc(drmmode_crtc);
12348        pipe_from_crtc_id->pipe = crtc->pipe;
12349
12350        return 0;
12351}
12352
12353static int intel_encoder_clones(struct intel_encoder *encoder)
12354{
12355        struct drm_device *dev = encoder->base.dev;
12356        struct intel_encoder *source_encoder;
12357        int index_mask = 0;
12358        int entry = 0;
12359
12360        for_each_intel_encoder(dev, source_encoder) {
12361                if (encoders_cloneable(encoder, source_encoder))
12362                        index_mask |= (1 << entry);
12363
12364                entry++;
12365        }
12366
12367        return index_mask;
12368}
12369
12370static bool has_edp_a(struct drm_device *dev)
12371{
12372        struct drm_i915_private *dev_priv = dev->dev_private;
12373
12374        if (!IS_MOBILE(dev))
12375                return false;
12376
12377        if ((I915_READ(DP_A) & DP_DETECTED) == 0)
12378                return false;
12379
12380        if (IS_GEN5(dev) && (I915_READ(FUSE_STRAP) & ILK_eDP_A_DISABLE))
12381                return false;
12382
12383        return true;
12384}
12385
12386const char *intel_output_name(int output)
12387{
12388        static const char *names[] = {
12389                [INTEL_OUTPUT_UNUSED] = "Unused",
12390                [INTEL_OUTPUT_ANALOG] = "Analog",
12391                [INTEL_OUTPUT_DVO] = "DVO",
12392                [INTEL_OUTPUT_SDVO] = "SDVO",
12393                [INTEL_OUTPUT_LVDS] = "LVDS",
12394                [INTEL_OUTPUT_TVOUT] = "TV",
12395                [INTEL_OUTPUT_HDMI] = "HDMI",
12396                [INTEL_OUTPUT_DISPLAYPORT] = "DisplayPort",
12397                [INTEL_OUTPUT_EDP] = "eDP",
12398                [INTEL_OUTPUT_DSI] = "DSI",
12399                [INTEL_OUTPUT_UNKNOWN] = "Unknown",
12400        };
12401
12402        if (output < 0 || output >= ARRAY_SIZE(names) || !names[output])
12403                return "Invalid";
12404
12405        return names[output];
12406}
12407
12408static bool intel_crt_present(struct drm_device *dev)
12409{
12410        struct drm_i915_private *dev_priv = dev->dev_private;
12411
12412        if (INTEL_INFO(dev)->gen >= 9)
12413                return false;
12414
12415        if (IS_HSW_ULT(dev) || IS_BDW_ULT(dev))
12416                return false;
12417
12418        if (IS_CHERRYVIEW(dev))
12419                return false;
12420
12421        if (IS_VALLEYVIEW(dev) && !dev_priv->vbt.int_crt_support)
12422                return false;
12423
12424        return true;
12425}
12426
12427static void intel_setup_outputs(struct drm_device *dev)
12428{
12429        struct drm_i915_private *dev_priv = dev->dev_private;
12430        struct intel_encoder *encoder;
12431        bool dpd_is_edp = false;
12432
12433        intel_lvds_init(dev);
12434
12435        if (intel_crt_present(dev))
12436                intel_crt_init(dev);
12437
12438        if (HAS_DDI(dev)) {
12439                int found;
12440
12441                /* Haswell uses DDI functions to detect digital outputs */
12442                found = I915_READ(DDI_BUF_CTL_A) & DDI_INIT_DISPLAY_DETECTED;
12443                /* DDI A only supports eDP */
12444                if (found)
12445                        intel_ddi_init(dev, PORT_A);
12446
12447                /* DDI B, C and D detection is indicated by the SFUSE_STRAP
12448                 * register */
12449                found = I915_READ(SFUSE_STRAP);
12450
12451                if (found & SFUSE_STRAP_DDIB_DETECTED)
12452                        intel_ddi_init(dev, PORT_B);
12453                if (found & SFUSE_STRAP_DDIC_DETECTED)
12454                        intel_ddi_init(dev, PORT_C);
12455                if (found & SFUSE_STRAP_DDID_DETECTED)
12456                        intel_ddi_init(dev, PORT_D);
12457        } else if (HAS_PCH_SPLIT(dev)) {
12458                int found;
12459                dpd_is_edp = intel_dp_is_edp(dev, PORT_D);
12460
12461                if (has_edp_a(dev))
12462                        intel_dp_init(dev, DP_A, PORT_A);
12463
12464                if (I915_READ(PCH_HDMIB) & SDVO_DETECTED) {
12465                        /* PCH SDVOB multiplex with HDMIB */
12466                        found = intel_sdvo_init(dev, PCH_SDVOB, true);
12467                        if (!found)
12468                                intel_hdmi_init(dev, PCH_HDMIB, PORT_B);
12469                        if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
12470                                intel_dp_init(dev, PCH_DP_B, PORT_B);
12471                }
12472
12473                if (I915_READ(PCH_HDMIC) & SDVO_DETECTED)
12474                        intel_hdmi_init(dev, PCH_HDMIC, PORT_C);
12475
12476                if (!dpd_is_edp && I915_READ(PCH_HDMID) & SDVO_DETECTED)
12477                        intel_hdmi_init(dev, PCH_HDMID, PORT_D);
12478
12479                if (I915_READ(PCH_DP_C) & DP_DETECTED)
12480                        intel_dp_init(dev, PCH_DP_C, PORT_C);
12481
12482                if (I915_READ(PCH_DP_D) & DP_DETECTED)
12483                        intel_dp_init(dev, PCH_DP_D, PORT_D);
12484        } else if (IS_VALLEYVIEW(dev)) {
12485                /*
12486                 * The DP_DETECTED bit is the latched state of the DDC
12487                 * SDA pin at boot. However since eDP doesn't require DDC
12488                 * (no way to plug in a DP->HDMI dongle) the DDC pins for
12489                 * eDP ports may have been muxed to an alternate function.
12490                 * Thus we can't rely on the DP_DETECTED bit alone to detect
12491                 * eDP ports. Consult the VBT as well as DP_DETECTED to
12492                 * detect eDP ports.
12493                 */
12494                if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIB) & SDVO_DETECTED)
12495                        intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIB,
12496                                        PORT_B);
12497                if (I915_READ(VLV_DISPLAY_BASE + DP_B) & DP_DETECTED ||
12498                    intel_dp_is_edp(dev, PORT_B))
12499                        intel_dp_init(dev, VLV_DISPLAY_BASE + DP_B, PORT_B);
12500
12501                if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIC) & SDVO_DETECTED)
12502                        intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIC,
12503                                        PORT_C);
12504                if (I915_READ(VLV_DISPLAY_BASE + DP_C) & DP_DETECTED ||
12505                    intel_dp_is_edp(dev, PORT_C))
12506                        intel_dp_init(dev, VLV_DISPLAY_BASE + DP_C, PORT_C);
12507
12508                if (IS_CHERRYVIEW(dev)) {
12509                        if (I915_READ(VLV_DISPLAY_BASE + CHV_HDMID) & SDVO_DETECTED)
12510                                intel_hdmi_init(dev, VLV_DISPLAY_BASE + CHV_HDMID,
12511                                                PORT_D);
12512                        /* eDP not supported on port D, so don't check VBT */
12513                        if (I915_READ(VLV_DISPLAY_BASE + DP_D) & DP_DETECTED)
12514                                intel_dp_init(dev, VLV_DISPLAY_BASE + DP_D, PORT_D);
12515                }
12516
12517                intel_dsi_init(dev);
12518        } else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
12519                bool found = false;
12520
12521                if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
12522                        DRM_DEBUG_KMS("probing SDVOB\n");
12523                        found = intel_sdvo_init(dev, GEN3_SDVOB, true);
12524                        if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
12525                                DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
12526                                intel_hdmi_init(dev, GEN4_HDMIB, PORT_B);
12527                        }
12528
12529                        if (!found && SUPPORTS_INTEGRATED_DP(dev))
12530                                intel_dp_init(dev, DP_B, PORT_B);
12531                }
12532
12533                /* Before G4X SDVOC doesn't have its own detect register */
12534
12535                if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
12536                        DRM_DEBUG_KMS("probing SDVOC\n");
12537                        found = intel_sdvo_init(dev, GEN3_SDVOC, false);
12538                }
12539
12540                if (!found && (I915_READ(GEN3_SDVOC) & SDVO_DETECTED)) {
12541
12542                        if (SUPPORTS_INTEGRATED_HDMI(dev)) {
12543                                DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
12544                                intel_hdmi_init(dev, GEN4_HDMIC, PORT_C);
12545                        }
12546                        if (SUPPORTS_INTEGRATED_DP(dev))
12547                                intel_dp_init(dev, DP_C, PORT_C);
12548                }
12549
12550                if (SUPPORTS_INTEGRATED_DP(dev) &&
12551                    (I915_READ(DP_D) & DP_DETECTED))
12552                        intel_dp_init(dev, DP_D, PORT_D);
12553        } else if (IS_GEN2(dev))
12554                intel_dvo_init(dev);
12555
12556        if (SUPPORTS_TV(dev))
12557                intel_tv_init(dev);
12558
12559        intel_psr_init(dev);
12560
12561        for_each_intel_encoder(dev, encoder) {
12562                encoder->base.possible_crtcs = encoder->crtc_mask;
12563                encoder->base.possible_clones =
12564                        intel_encoder_clones(encoder);
12565        }
12566
12567        intel_init_pch_refclk(dev);
12568
12569        drm_helper_move_panel_connectors_to_head(dev);
12570}
12571
12572static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
12573{
12574        struct drm_device *dev = fb->dev;
12575        struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
12576
12577        drm_framebuffer_cleanup(fb);
12578        mutex_lock(&dev->struct_mutex);
12579        WARN_ON(!intel_fb->obj->framebuffer_references--);
12580        drm_gem_object_unreference(&intel_fb->obj->base);
12581        mutex_unlock(&dev->struct_mutex);
12582        kfree(intel_fb);
12583}
12584
12585static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
12586                                                struct drm_file *file,
12587                                                unsigned int *handle)
12588{
12589        struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
12590        struct drm_i915_gem_object *obj = intel_fb->obj;
12591
12592        return drm_gem_handle_create(file, &obj->base, handle);
12593}
12594
12595static const struct drm_framebuffer_funcs intel_fb_funcs = {
12596        .destroy = intel_user_framebuffer_destroy,
12597        .create_handle = intel_user_framebuffer_create_handle,
12598};
12599
12600static int intel_framebuffer_init(struct drm_device *dev,
12601                                  struct intel_framebuffer *intel_fb,
12602                                  struct drm_mode_fb_cmd2 *mode_cmd,
12603                                  struct drm_i915_gem_object *obj)
12604{
12605        int aligned_height;
12606        int pitch_limit;
12607        int ret;
12608
12609        WARN_ON(!mutex_is_locked(&dev->struct_mutex));
12610
12611        if (obj->tiling_mode == I915_TILING_Y) {
12612                DRM_DEBUG("hardware does not support tiling Y\n");
12613                return -EINVAL;
12614        }
12615
12616        if (mode_cmd->pitches[0] & 63) {
12617                DRM_DEBUG("pitch (%d) must be at least 64 byte aligned\n",
12618                          mode_cmd->pitches[0]);
12619                return -EINVAL;
12620        }
12621
12622        if (INTEL_INFO(dev)->gen >= 5 && !IS_VALLEYVIEW(dev)) {
12623                pitch_limit = 32*1024;
12624        } else if (INTEL_INFO(dev)->gen >= 4) {
12625                if (obj->tiling_mode)
12626                        pitch_limit = 16*1024;
12627                else
12628                        pitch_limit = 32*1024;
12629        } else if (INTEL_INFO(dev)->gen >= 3) {
12630                if (obj->tiling_mode)
12631                        pitch_limit = 8*1024;
12632                else
12633                        pitch_limit = 16*1024;
12634        } else
12635                /* XXX DSPC is limited to 4k tiled */
12636                pitch_limit = 8*1024;
12637
12638        if (mode_cmd->pitches[0] > pitch_limit) {
12639                DRM_DEBUG("%s pitch (%d) must be at less than %d\n",
12640                          obj->tiling_mode ? "tiled" : "linear",
12641                          mode_cmd->pitches[0], pitch_limit);
12642                return -EINVAL;
12643        }
12644
12645        if (obj->tiling_mode != I915_TILING_NONE &&
12646            mode_cmd->pitches[0] != obj->stride) {
12647                DRM_DEBUG("pitch (%d) must match tiling stride (%d)\n",
12648                          mode_cmd->pitches[0], obj->stride);
12649                return -EINVAL;
12650        }
12651
12652        /* Reject formats not supported by any plane early. */
12653        switch (mode_cmd->pixel_format) {
12654        case DRM_FORMAT_C8:
12655        case DRM_FORMAT_RGB565:
12656        case DRM_FORMAT_XRGB8888:
12657        case DRM_FORMAT_ARGB8888:
12658                break;
12659        case DRM_FORMAT_XRGB1555:
12660        case DRM_FORMAT_ARGB1555:
12661                if (INTEL_INFO(dev)->gen > 3) {
12662                        DRM_DEBUG("unsupported pixel format: %s\n",
12663                                  drm_get_format_name(mode_cmd->pixel_format));
12664                        return -EINVAL;
12665                }
12666                break;
12667        case DRM_FORMAT_XBGR8888:
12668        case DRM_FORMAT_ABGR8888:
12669        case DRM_FORMAT_XRGB2101010:
12670        case DRM_FORMAT_ARGB2101010:
12671        case DRM_FORMAT_XBGR2101010:
12672        case DRM_FORMAT_ABGR2101010:
12673                if (INTEL_INFO(dev)->gen < 4) {
12674                        DRM_DEBUG("unsupported pixel format: %s\n",
12675                                  drm_get_format_name(mode_cmd->pixel_format));
12676                        return -EINVAL;
12677                }
12678                break;
12679        case DRM_FORMAT_YUYV:
12680        case DRM_FORMAT_UYVY:
12681        case DRM_FORMAT_YVYU:
12682        case DRM_FORMAT_VYUY:
12683                if (INTEL_INFO(dev)->gen < 5) {
12684                        DRM_DEBUG("unsupported pixel format: %s\n",
12685                                  drm_get_format_name(mode_cmd->pixel_format));
12686                        return -EINVAL;
12687                }
12688                break;
12689        default:
12690                DRM_DEBUG("unsupported pixel format: %s\n",
12691                          drm_get_format_name(mode_cmd->pixel_format));
12692                return -EINVAL;
12693        }
12694
12695        /* FIXME need to adjust LINOFF/TILEOFF accordingly. */
12696        if (mode_cmd->offsets[0] != 0)
12697                return -EINVAL;
12698
12699        aligned_height = intel_align_height(dev, mode_cmd->height,
12700                                            obj->tiling_mode);
12701        /* FIXME drm helper for size checks (especially planar formats)? */
12702        if (obj->base.size < aligned_height * mode_cmd->pitches[0])
12703                return -EINVAL;
12704
12705        drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
12706        intel_fb->obj = obj;
12707        intel_fb->obj->framebuffer_references++;
12708
12709        ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
12710        if (ret) {
12711                DRM_ERROR("framebuffer init failed %d\n", ret);
12712                return ret;
12713        }
12714
12715        return 0;
12716}
12717
12718static struct drm_framebuffer *
12719intel_user_framebuffer_create(struct drm_device *dev,
12720                              struct drm_file *filp,
12721                              struct drm_mode_fb_cmd2 *mode_cmd)
12722{
12723        struct drm_i915_gem_object *obj;
12724
12725        obj = to_intel_bo(drm_gem_object_lookup(dev, filp,
12726                                                mode_cmd->handles[0]));
12727        if (&obj->base == NULL)
12728                return ERR_PTR(-ENOENT);
12729
12730        return intel_framebuffer_create(dev, mode_cmd, obj);
12731}
12732
12733#ifndef CONFIG_DRM_I915_FBDEV
12734static inline void intel_fbdev_output_poll_changed(struct drm_device *dev)
12735{
12736}
12737#endif
12738
12739static const struct drm_mode_config_funcs intel_mode_funcs = {
12740        .fb_create = intel_user_framebuffer_create,
12741        .output_poll_changed = intel_fbdev_output_poll_changed,
12742};
12743
12744/* Set up chip specific display functions */
12745static void intel_init_display(struct drm_device *dev)
12746{
12747        struct drm_i915_private *dev_priv = dev->dev_private;
12748
12749        if (HAS_PCH_SPLIT(dev) || IS_G4X(dev))
12750                dev_priv->display.find_dpll = g4x_find_best_dpll;
12751        else if (IS_CHERRYVIEW(dev))
12752                dev_priv->display.find_dpll = chv_find_best_dpll;
12753        else if (IS_VALLEYVIEW(dev))
12754                dev_priv->display.find_dpll = vlv_find_best_dpll;
12755        else if (IS_PINEVIEW(dev))
12756                dev_priv->display.find_dpll = pnv_find_best_dpll;
12757        else
12758                dev_priv->display.find_dpll = i9xx_find_best_dpll;
12759
12760        if (HAS_DDI(dev)) {
12761                dev_priv->display.get_pipe_config = haswell_get_pipe_config;
12762                dev_priv->display.get_plane_config = ironlake_get_plane_config;
12763                dev_priv->display.crtc_compute_clock =
12764                        haswell_crtc_compute_clock;
12765                dev_priv->display.crtc_enable = haswell_crtc_enable;
12766                dev_priv->display.crtc_disable = haswell_crtc_disable;
12767                dev_priv->display.off = ironlake_crtc_off;
12768                if (INTEL_INFO(dev)->gen >= 9)
12769                        dev_priv->display.update_primary_plane =
12770                                skylake_update_primary_plane;
12771                else
12772                        dev_priv->display.update_primary_plane =
12773                                ironlake_update_primary_plane;
12774        } else if (HAS_PCH_SPLIT(dev)) {
12775                dev_priv->display.get_pipe_config = ironlake_get_pipe_config;
12776                dev_priv->display.get_plane_config = ironlake_get_plane_config;
12777                dev_priv->display.crtc_compute_clock =
12778                        ironlake_crtc_compute_clock;
12779                dev_priv->display.crtc_enable = ironlake_crtc_enable;
12780                dev_priv->display.crtc_disable = ironlake_crtc_disable;
12781                dev_priv->display.off = ironlake_crtc_off;
12782                dev_priv->display.update_primary_plane =
12783                        ironlake_update_primary_plane;
12784        } else if (IS_VALLEYVIEW(dev)) {
12785                dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
12786                dev_priv->display.get_plane_config = i9xx_get_plane_config;
12787                dev_priv->display.crtc_compute_clock = i9xx_crtc_compute_clock;
12788                dev_priv->display.crtc_enable = valleyview_crtc_enable;
12789                dev_priv->display.crtc_disable = i9xx_crtc_disable;
12790                dev_priv->display.off = i9xx_crtc_off;
12791                dev_priv->display.update_primary_plane =
12792                        i9xx_update_primary_plane;
12793        } else {
12794                dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
12795                dev_priv->display.get_plane_config = i9xx_get_plane_config;
12796                dev_priv->display.crtc_compute_clock = i9xx_crtc_compute_clock;
12797                dev_priv->display.crtc_enable = i9xx_crtc_enable;
12798                dev_priv->display.crtc_disable = i9xx_crtc_disable;
12799                dev_priv->display.off = i9xx_crtc_off;
12800                dev_priv->display.update_primary_plane =
12801                        i9xx_update_primary_plane;
12802        }
12803
12804        /* Returns the core display clock speed */
12805        if (IS_VALLEYVIEW(dev))
12806                dev_priv->display.get_display_clock_speed =
12807                        valleyview_get_display_clock_speed;
12808        else if (IS_I945G(dev) || (IS_G33(dev) && !IS_PINEVIEW_M(dev)))
12809                dev_priv->display.get_display_clock_speed =
12810                        i945_get_display_clock_speed;
12811        else if (IS_I915G(dev))
12812                dev_priv->display.get_display_clock_speed =
12813                        i915_get_display_clock_speed;
12814        else if (IS_I945GM(dev) || IS_845G(dev))
12815                dev_priv->display.get_display_clock_speed =
12816                        i9xx_misc_get_display_clock_speed;
12817        else if (IS_PINEVIEW(dev))
12818                dev_priv->display.get_display_clock_speed =
12819                        pnv_get_display_clock_speed;
12820        else if (IS_I915GM(dev))
12821                dev_priv->display.get_display_clock_speed =
12822                        i915gm_get_display_clock_speed;
12823        else if (IS_I865G(dev))
12824                dev_priv->display.get_display_clock_speed =
12825                        i865_get_display_clock_speed;
12826        else if (IS_I85X(dev))
12827                dev_priv->display.get_display_clock_speed =
12828                        i855_get_display_clock_speed;
12829        else /* 852, 830 */
12830                dev_priv->display.get_display_clock_speed =
12831                        i830_get_display_clock_speed;
12832
12833        if (IS_GEN5(dev)) {
12834                dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
12835        } else if (IS_GEN6(dev)) {
12836                dev_priv->display.fdi_link_train = gen6_fdi_link_train;
12837        } else if (IS_IVYBRIDGE(dev)) {
12838                /* FIXME: detect B0+ stepping and use auto training */
12839                dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
12840                dev_priv->display.modeset_global_resources =
12841                        ivb_modeset_global_resources;
12842        } else if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
12843                dev_priv->display.fdi_link_train = hsw_fdi_link_train;
12844        } else if (IS_VALLEYVIEW(dev)) {
12845                dev_priv->display.modeset_global_resources =
12846                        valleyview_modeset_global_resources;
12847        }
12848
12849        /* Default just returns -ENODEV to indicate unsupported */
12850        dev_priv->display.queue_flip = intel_default_queue_flip;
12851
12852        switch (INTEL_INFO(dev)->gen) {
12853        case 2:
12854                dev_priv->display.queue_flip = intel_gen2_queue_flip;
12855                break;
12856
12857        case 3:
12858                dev_priv->display.queue_flip = intel_gen3_queue_flip;
12859                break;
12860
12861        case 4:
12862        case 5:
12863                dev_priv->display.queue_flip = intel_gen4_queue_flip;
12864                break;
12865
12866        case 6:
12867                dev_priv->display.queue_flip = intel_gen6_queue_flip;
12868                break;
12869        case 7:
12870        case 8: /* FIXME(BDW): Check that the gen8 RCS flip works. */
12871                dev_priv->display.queue_flip = intel_gen7_queue_flip;
12872                break;
12873        case 9:
12874                dev_priv->display.queue_flip = intel_gen9_queue_flip;
12875                break;
12876        }
12877
12878        intel_panel_init_backlight_funcs(dev);
12879
12880        mutex_init(&dev_priv->pps_mutex);
12881}
12882
12883/*
12884 * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
12885 * resume, or other times.  This quirk makes sure that's the case for
12886 * affected systems.
12887 */
12888static void quirk_pipea_force(struct drm_device *dev)
12889{
12890        struct drm_i915_private *dev_priv = dev->dev_private;
12891
12892        dev_priv->quirks |= QUIRK_PIPEA_FORCE;
12893        DRM_INFO("applying pipe a force quirk\n");
12894}
12895
12896static void quirk_pipeb_force(struct drm_device *dev)
12897{
12898        struct drm_i915_private *dev_priv = dev->dev_private;
12899
12900        dev_priv->quirks |= QUIRK_PIPEB_FORCE;
12901        DRM_INFO("applying pipe b force quirk\n");
12902}
12903
12904/*
12905 * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
12906 */
12907static void quirk_ssc_force_disable(struct drm_device *dev)
12908{
12909        struct drm_i915_private *dev_priv = dev->dev_private;
12910        dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
12911        DRM_INFO("applying lvds SSC disable quirk\n");
12912}
12913
12914/*
12915 * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
12916 * brightness value
12917 */
12918static void quirk_invert_brightness(struct drm_device *dev)
12919{
12920        struct drm_i915_private *dev_priv = dev->dev_private;
12921        dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
12922        DRM_INFO("applying inverted panel brightness quirk\n");
12923}
12924
12925/* Some VBT's incorrectly indicate no backlight is present */
12926static void quirk_backlight_present(struct drm_device *dev)
12927{
12928        struct drm_i915_private *dev_priv = dev->dev_private;
12929        dev_priv->quirks |= QUIRK_BACKLIGHT_PRESENT;
12930        DRM_INFO("applying backlight present quirk\n");
12931}
12932
12933struct intel_quirk {
12934        int device;
12935        int subsystem_vendor;
12936        int subsystem_device;
12937        void (*hook)(struct drm_device *dev);
12938};
12939
12940/* For systems that don't have a meaningful PCI subdevice/subvendor ID */
12941struct intel_dmi_quirk {
12942        void (*hook)(struct drm_device *dev);
12943        const struct dmi_system_id (*dmi_id_list)[];
12944};
12945
12946static int intel_dmi_reverse_brightness(const struct dmi_system_id *id)
12947{
12948        DRM_INFO("Backlight polarity reversed on %s\n", id->ident);
12949        return 1;
12950}
12951
12952static const struct intel_dmi_quirk intel_dmi_quirks[] = {
12953        {
12954                .dmi_id_list = &(const struct dmi_system_id[]) {
12955                        {
12956                                .callback = intel_dmi_reverse_brightness,
12957                                .ident = "NCR Corporation",
12958                                .matches = {DMI_MATCH(DMI_SYS_VENDOR, "NCR Corporation"),
12959                                            DMI_MATCH(DMI_PRODUCT_NAME, ""),
12960                                },
12961                        },
12962                        { }  /* terminating entry */
12963                },
12964                .hook = quirk_invert_brightness,
12965        },
12966};
12967
12968static struct intel_quirk intel_quirks[] = {
12969        /* HP Mini needs pipe A force quirk (LP: #322104) */
12970        { 0x27ae, 0x103c, 0x361a, quirk_pipea_force },
12971
12972        /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
12973        { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
12974
12975        /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
12976        { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
12977
12978        /* 830 needs to leave pipe A & dpll A up */
12979        { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
12980
12981        /* 830 needs to leave pipe B & dpll B up */
12982        { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipeb_force },
12983
12984        /* Lenovo U160 cannot use SSC on LVDS */
12985        { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
12986
12987        /* Sony Vaio Y cannot use SSC on LVDS */
12988        { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
12989
12990        /* Acer Aspire 5734Z must invert backlight brightness */
12991        { 0x2a42, 0x1025, 0x0459, quirk_invert_brightness },
12992
12993        /* Acer/eMachines G725 */
12994        { 0x2a42, 0x1025, 0x0210, quirk_invert_brightness },
12995
12996        /* Acer/eMachines e725 */
12997        { 0x2a42, 0x1025, 0x0212, quirk_invert_brightness },
12998
12999        /* Acer/Packard Bell NCL20 */
13000        { 0x2a42, 0x1025, 0x034b, quirk_invert_brightness },
13001
13002        /* Acer Aspire 4736Z */
13003        { 0x2a42, 0x1025, 0x0260, quirk_invert_brightness },
13004
13005        /* Acer Aspire 5336 */
13006        { 0x2a42, 0x1025, 0x048a, quirk_invert_brightness },
13007
13008        /* Acer C720 and C720P Chromebooks (Celeron 2955U) have backlights */
13009        { 0x0a06, 0x1025, 0x0a11, quirk_backlight_present },
13010
13011        /* Acer C720 Chromebook (Core i3 4005U) */
13012        { 0x0a16, 0x1025, 0x0a11, quirk_backlight_present },
13013
13014        /* Apple Macbook 2,1 (Core 2 T7400) */
13015        { 0x27a2, 0x8086, 0x7270, quirk_backlight_present },
13016
13017        /* Toshiba CB35 Chromebook (Celeron 2955U) */
13018        { 0x0a06, 0x1179, 0x0a88, quirk_backlight_present },
13019
13020        /* HP Chromebook 14 (Celeron 2955U) */
13021        { 0x0a06, 0x103c, 0x21ed, quirk_backlight_present },
13022};
13023
13024static void intel_init_quirks(struct drm_device *dev)
13025{
13026        struct pci_dev *d = dev->pdev;
13027        int i;
13028
13029        for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
13030                struct intel_quirk *q = &intel_quirks[i];
13031
13032                if (d->device == q->device &&
13033                    (d->subsystem_vendor == q->subsystem_vendor ||
13034                     q->subsystem_vendor == PCI_ANY_ID) &&
13035                    (d->subsystem_device == q->subsystem_device ||
13036                     q->subsystem_device == PCI_ANY_ID))
13037                        q->hook(dev);
13038        }
13039        for (i = 0; i < ARRAY_SIZE(intel_dmi_quirks); i++) {
13040                if (dmi_check_system(*intel_dmi_quirks[i].dmi_id_list) != 0)
13041                        intel_dmi_quirks[i].hook(dev);
13042        }
13043}
13044
13045/* Disable the VGA plane that we never use */
13046static void i915_disable_vga(struct drm_device *dev)
13047{
13048        struct drm_i915_private *dev_priv = dev->dev_private;
13049        u8 sr1;
13050        u32 vga_reg = i915_vgacntrl_reg(dev);
13051
13052        /* WaEnableVGAAccessThroughIOPort:ctg,elk,ilk,snb,ivb,vlv,hsw */
13053        vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
13054        outb(SR01, VGA_SR_INDEX);
13055        sr1 = inb(VGA_SR_DATA);
13056        outb(sr1 | 1<<5, VGA_SR_DATA);
13057        vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
13058        udelay(300);
13059
13060        I915_WRITE(vga_reg, VGA_DISP_DISABLE);
13061        POSTING_READ(vga_reg);
13062}
13063
13064void intel_modeset_init_hw(struct drm_device *dev)
13065{
13066        intel_prepare_ddi(dev);
13067
13068        if (IS_VALLEYVIEW(dev))
13069                vlv_update_cdclk(dev);
13070
13071        intel_init_clock_gating(dev);
13072
13073        intel_enable_gt_powersave(dev);
13074}
13075
13076void intel_modeset_init(struct drm_device *dev)
13077{
13078        struct drm_i915_private *dev_priv = dev->dev_private;
13079        int sprite, ret;
13080        enum pipe pipe;
13081        struct intel_crtc *crtc;
13082
13083        drm_mode_config_init(dev);
13084
13085        dev->mode_config.min_width = 0;
13086        dev->mode_config.min_height = 0;
13087
13088        dev->mode_config.preferred_depth = 24;
13089        dev->mode_config.prefer_shadow = 1;
13090
13091        dev->mode_config.funcs = &intel_mode_funcs;
13092
13093        intel_init_quirks(dev);
13094
13095        intel_init_pm(dev);
13096
13097        if (INTEL_INFO(dev)->num_pipes == 0)
13098                return;
13099
13100        intel_init_display(dev);
13101        intel_init_audio(dev);
13102
13103        if (IS_GEN2(dev)) {
13104                dev->mode_config.max_width = 2048;
13105                dev->mode_config.max_height = 2048;
13106        } else if (IS_GEN3(dev)) {
13107                dev->mode_config.max_width = 4096;
13108                dev->mode_config.max_height = 4096;
13109        } else {
13110                dev->mode_config.max_width = 8192;
13111                dev->mode_config.max_height = 8192;
13112        }
13113
13114        if (IS_845G(dev) || IS_I865G(dev)) {
13115                dev->mode_config.cursor_width = IS_845G(dev) ? 64 : 512;
13116                dev->mode_config.cursor_height = 1023;
13117        } else if (IS_GEN2(dev)) {
13118                dev->mode_config.cursor_width = GEN2_CURSOR_WIDTH;
13119                dev->mode_config.cursor_height = GEN2_CURSOR_HEIGHT;
13120        } else {
13121                dev->mode_config.cursor_width = MAX_CURSOR_WIDTH;
13122                dev->mode_config.cursor_height = MAX_CURSOR_HEIGHT;
13123        }
13124
13125        dev->mode_config.fb_base = dev_priv->gtt.mappable_base;
13126
13127        DRM_DEBUG_KMS("%d display pipe%s available.\n",
13128                      INTEL_INFO(dev)->num_pipes,
13129                      INTEL_INFO(dev)->num_pipes > 1 ? "s" : "");
13130
13131        for_each_pipe(dev_priv, pipe) {
13132                intel_crtc_init(dev, pipe);
13133                for_each_sprite(pipe, sprite) {
13134                        ret = intel_plane_init(dev, pipe, sprite);
13135                        if (ret)
13136                                DRM_DEBUG_KMS("pipe %c sprite %c init failed: %d\n",
13137                                              pipe_name(pipe), sprite_name(pipe, sprite), ret);
13138                }
13139        }
13140
13141        intel_init_dpio(dev);
13142
13143        intel_shared_dpll_init(dev);
13144
13145        /* Just disable it once at startup */
13146        i915_disable_vga(dev);
13147        intel_setup_outputs(dev);
13148
13149        /* Just in case the BIOS is doing something questionable. */
13150        intel_disable_fbc(dev);
13151
13152        drm_modeset_lock_all(dev);
13153        intel_modeset_setup_hw_state(dev, false);
13154        drm_modeset_unlock_all(dev);
13155
13156        for_each_intel_crtc(dev, crtc) {
13157                if (!crtc->active)
13158                        continue;
13159
13160                /*
13161                 * Note that reserving the BIOS fb up front prevents us
13162                 * from stuffing other stolen allocations like the ring
13163                 * on top.  This prevents some ugliness at boot time, and
13164                 * can even allow for smooth boot transitions if the BIOS
13165                 * fb is large enough for the active pipe configuration.
13166                 */
13167                if (dev_priv->display.get_plane_config) {
13168                        dev_priv->display.get_plane_config(crtc,
13169                                                           &crtc->plane_config);
13170                        /*
13171                         * If the fb is shared between multiple heads, we'll
13172                         * just get the first one.
13173                         */
13174                        intel_find_plane_obj(crtc, &crtc->plane_config);
13175                }
13176        }
13177}
13178
13179static void intel_enable_pipe_a(struct drm_device *dev)
13180{
13181        struct intel_connector *connector;
13182        struct drm_connector *crt = NULL;
13183        struct intel_load_detect_pipe load_detect_temp;
13184        struct drm_modeset_acquire_ctx *ctx = dev->mode_config.acquire_ctx;
13185
13186        /* We can't just switch on the pipe A, we need to set things up with a
13187         * proper mode and output configuration. As a gross hack, enable pipe A
13188         * by enabling the load detect pipe once. */
13189        list_for_each_entry(connector,
13190                            &dev->mode_config.connector_list,
13191                            base.head) {
13192                if (connector->encoder->type == INTEL_OUTPUT_ANALOG) {
13193                        crt = &connector->base;
13194                        break;
13195                }
13196        }
13197
13198        if (!crt)
13199                return;
13200
13201        if (intel_get_load_detect_pipe(crt, NULL, &load_detect_temp, ctx))
13202                intel_release_load_detect_pipe(crt, &load_detect_temp);
13203}
13204
13205static bool
13206intel_check_plane_mapping(struct intel_crtc *crtc)
13207{
13208        struct drm_device *dev = crtc->base.dev;
13209        struct drm_i915_private *dev_priv = dev->dev_private;
13210        u32 reg, val;
13211
13212        if (INTEL_INFO(dev)->num_pipes == 1)
13213                return true;
13214
13215        reg = DSPCNTR(!crtc->plane);
13216        val = I915_READ(reg);
13217
13218        if ((val & DISPLAY_PLANE_ENABLE) &&
13219            (!!(val & DISPPLANE_SEL_PIPE_MASK) == crtc->pipe))
13220                return false;
13221
13222        return true;
13223}
13224
13225static void intel_sanitize_crtc(struct intel_crtc *crtc)
13226{
13227        struct drm_device *dev = crtc->base.dev;
13228        struct drm_i915_private *dev_priv = dev->dev_private;
13229        u32 reg;
13230
13231        /* Clear any frame start delays used for debugging left by the BIOS */
13232        reg = PIPECONF(crtc->config.cpu_transcoder);
13233        I915_WRITE(reg, I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
13234
13235        /* restore vblank interrupts to correct state */
13236        if (crtc->active) {
13237                update_scanline_offset(crtc);
13238                drm_vblank_on(dev, crtc->pipe);
13239        } else
13240                drm_vblank_off(dev, crtc->pipe);
13241
13242        /* We need to sanitize the plane -> pipe mapping first because this will
13243         * disable the crtc (and hence change the state) if it is wrong. Note
13244         * that gen4+ has a fixed plane -> pipe mapping.  */
13245        if (INTEL_INFO(dev)->gen < 4 && !intel_check_plane_mapping(crtc)) {
13246                struct intel_connector *connector;
13247                bool plane;
13248
13249                DRM_DEBUG_KMS("[CRTC:%d] wrong plane connection detected!\n",
13250                              crtc->base.base.id);
13251
13252                /* Pipe has the wrong plane attached and the plane is active.
13253                 * Temporarily change the plane mapping and disable everything
13254                 * ...  */
13255                plane = crtc->plane;
13256                crtc->plane = !plane;
13257                crtc->primary_enabled = true;
13258                dev_priv->display.crtc_disable(&crtc->base);
13259                crtc->plane = plane;
13260
13261                /* ... and break all links. */
13262                list_for_each_entry(connector, &dev->mode_config.connector_list,
13263                                    base.head) {
13264                        if (connector->encoder->base.crtc != &crtc->base)
13265                                continue;
13266
13267                        connector->base.dpms = DRM_MODE_DPMS_OFF;
13268                        connector->base.encoder = NULL;
13269                }
13270                /* multiple connectors may have the same encoder:
13271                 *  handle them and break crtc link separately */
13272                list_for_each_entry(connector, &dev->mode_config.connector_list,
13273                                    base.head)
13274                        if (connector->encoder->base.crtc == &crtc->base) {
13275                                connector->encoder->base.crtc = NULL;
13276                                connector->encoder->connectors_active = false;
13277                        }
13278
13279                WARN_ON(crtc->active);
13280                crtc->base.enabled = false;
13281        }
13282
13283        if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
13284            crtc->pipe == PIPE_A && !crtc->active) {
13285                /* BIOS forgot to enable pipe A, this mostly happens after
13286                 * resume. Force-enable the pipe to fix this, the update_dpms
13287                 * call below we restore the pipe to the right state, but leave
13288                 * the required bits on. */
13289                intel_enable_pipe_a(dev);
13290        }
13291
13292        /* Adjust the state of the output pipe according to whether we
13293         * have active connectors/encoders. */
13294        intel_crtc_update_dpms(&crtc->base);
13295
13296        if (crtc->active != crtc->base.enabled) {
13297                struct intel_encoder *encoder;
13298
13299                /* This can happen either due to bugs in the get_hw_state
13300                 * functions or because the pipe is force-enabled due to the
13301                 * pipe A quirk. */
13302                DRM_DEBUG_KMS("[CRTC:%d] hw state adjusted, was %s, now %s\n",
13303                              crtc->base.base.id,
13304                              crtc->base.enabled ? "enabled" : "disabled",
13305                              crtc->active ? "enabled" : "disabled");
13306
13307                crtc->base.enabled = crtc->active;
13308
13309                /* Because we only establish the connector -> encoder ->
13310                 * crtc links if something is active, this means the
13311                 * crtc is now deactivated. Break the links. connector
13312                 * -> encoder links are only establish when things are
13313                 *  actually up, hence no need to break them. */
13314                WARN_ON(crtc->active);
13315
13316                for_each_encoder_on_crtc(dev, &crtc->base, encoder) {
13317                        WARN_ON(encoder->connectors_active);
13318                        encoder->base.crtc = NULL;
13319                }
13320        }
13321
13322        if (crtc->active || HAS_GMCH_DISPLAY(dev)) {
13323                /*
13324                 * We start out with underrun reporting disabled to avoid races.
13325                 * For correct bookkeeping mark this on active crtcs.
13326                 *
13327                 * Also on gmch platforms we dont have any hardware bits to
13328                 * disable the underrun reporting. Which means we need to start
13329                 * out with underrun reporting disabled also on inactive pipes,
13330                 * since otherwise we'll complain about the garbage we read when
13331                 * e.g. coming up after runtime pm.
13332                 *
13333                 * No protection against concurrent access is required - at
13334                 * worst a fifo underrun happens which also sets this to false.
13335                 */
13336                crtc->cpu_fifo_underrun_disabled = true;
13337                crtc->pch_fifo_underrun_disabled = true;
13338        }
13339}
13340
13341static void intel_sanitize_encoder(struct intel_encoder *encoder)
13342{
13343        struct intel_connector *connector;
13344        struct drm_device *dev = encoder->base.dev;
13345
13346        /* We need to check both for a crtc link (meaning that the
13347         * encoder is active and trying to read from a pipe) and the
13348         * pipe itself being active. */
13349        bool has_active_crtc = encoder->base.crtc &&
13350                to_intel_crtc(encoder->base.crtc)->active;
13351
13352        if (encoder->connectors_active && !has_active_crtc) {
13353                DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n",
13354                              encoder->base.base.id,
13355                              encoder->base.name);
13356
13357                /* Connector is active, but has no active pipe. This is
13358                 * fallout from our resume register restoring. Disable
13359                 * the encoder manually again. */
13360                if (encoder->base.crtc) {
13361                        DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n",
13362                                      encoder->base.base.id,
13363                                      encoder->base.name);
13364                        encoder->disable(encoder);
13365                        if (encoder->post_disable)
13366                                encoder->post_disable(encoder);
13367                }
13368                encoder->base.crtc = NULL;
13369                encoder->connectors_active = false;
13370
13371                /* Inconsistent output/port/pipe state happens presumably due to
13372                 * a bug in one of the get_hw_state functions. Or someplace else
13373                 * in our code, like the register restore mess on resume. Clamp
13374                 * things to off as a safer default. */
13375                list_for_each_entry(connector,
13376                                    &dev->mode_config.connector_list,
13377                                    base.head) {
13378                        if (connector->encoder != encoder)
13379                                continue;
13380                        connector->base.dpms = DRM_MODE_DPMS_OFF;
13381                        connector->base.encoder = NULL;
13382                }
13383        }
13384        /* Enabled encoders without active connectors will be fixed in
13385         * the crtc fixup. */
13386}
13387
13388void i915_redisable_vga_power_on(struct drm_device *dev)
13389{
13390        struct drm_i915_private *dev_priv = dev->dev_private;
13391        u32 vga_reg = i915_vgacntrl_reg(dev);
13392
13393        if (!(I915_READ(vga_reg) & VGA_DISP_DISABLE)) {
13394                DRM_DEBUG_KMS("Something enabled VGA plane, disabling it\n");
13395                i915_disable_vga(dev);
13396        }
13397}
13398
13399void i915_redisable_vga(struct drm_device *dev)
13400{
13401        struct drm_i915_private *dev_priv = dev->dev_private;
13402
13403        /* This function can be called both from intel_modeset_setup_hw_state or
13404         * at a very early point in our resume sequence, where the power well
13405         * structures are not yet restored. Since this function is at a very
13406         * paranoid "someone might have enabled VGA while we were not looking"
13407         * level, just check if the power well is enabled instead of trying to
13408         * follow the "don't touch the power well if we don't need it" policy
13409         * the rest of the driver uses. */
13410        if (!intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_VGA))
13411                return;
13412
13413        i915_redisable_vga_power_on(dev);
13414}
13415
13416static bool primary_get_hw_state(struct intel_crtc *crtc)
13417{
13418        struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
13419
13420        if (!crtc->active)
13421                return false;
13422
13423        return I915_READ(DSPCNTR(crtc->plane)) & DISPLAY_PLANE_ENABLE;
13424}
13425
13426static void intel_modeset_readout_hw_state(struct drm_device *dev)
13427{
13428        struct drm_i915_private *dev_priv = dev->dev_private;
13429        enum pipe pipe;
13430        struct intel_crtc *crtc;
13431        struct intel_encoder *encoder;
13432        struct intel_connector *connector;
13433        int i;
13434
13435        for_each_intel_crtc(dev, crtc) {
13436                memset(&crtc->config, 0, sizeof(crtc->config));
13437
13438                crtc->config.quirks |= PIPE_CONFIG_QUIRK_INHERITED_MODE;
13439
13440                crtc->active = dev_priv->display.get_pipe_config(crtc,
13441                                                                 &crtc->config);
13442
13443                crtc->base.enabled = crtc->active;
13444                crtc->primary_enabled = primary_get_hw_state(crtc);
13445
13446                DRM_DEBUG_KMS("[CRTC:%d] hw state readout: %s\n",
13447                              crtc->base.base.id,
13448                              crtc->active ? "enabled" : "disabled");
13449        }
13450
13451        for (i = 0; i < dev_priv->num_shared_dpll; i++) {
13452                struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
13453
13454                pll->on = pll->get_hw_state(dev_priv, pll,
13455                                            &pll->config.hw_state);
13456                pll->active = 0;
13457                pll->config.crtc_mask = 0;
13458                for_each_intel_crtc(dev, crtc) {
13459                        if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll) {
13460                                pll->active++;
13461                                pll->config.crtc_mask |= 1 << crtc->pipe;
13462                        }
13463                }
13464
13465                DRM_DEBUG_KMS("%s hw state readout: crtc_mask 0x%08x, on %i\n",
13466                              pll->name, pll->config.crtc_mask, pll->on);
13467
13468                if (pll->config.crtc_mask)
13469                        intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
13470        }
13471
13472        for_each_intel_encoder(dev, encoder) {
13473                pipe = 0;
13474
13475                if (encoder->get_hw_state(encoder, &pipe)) {
13476                        crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
13477                        encoder->base.crtc = &crtc->base;
13478                        encoder->get_config(encoder, &crtc->config);
13479                } else {
13480                        encoder->base.crtc = NULL;
13481                }
13482
13483                encoder->connectors_active = false;
13484                DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe %c\n",
13485                              encoder->base.base.id,
13486                              encoder->base.name,
13487                              encoder->base.crtc ? "enabled" : "disabled",
13488                              pipe_name(pipe));
13489        }
13490
13491        list_for_each_entry(connector, &dev->mode_config.connector_list,
13492                            base.head) {
13493                if (connector->get_hw_state(connector)) {
13494                        connector->base.dpms = DRM_MODE_DPMS_ON;
13495                        connector->encoder->connectors_active = true;
13496                        connector->base.encoder = &connector->encoder->base;
13497                } else {
13498                        connector->base.dpms = DRM_MODE_DPMS_OFF;
13499                        connector->base.encoder = NULL;
13500                }
13501                DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n",
13502                              connector->base.base.id,
13503                              connector->base.name,
13504                              connector->base.encoder ? "enabled" : "disabled");
13505        }
13506}
13507
13508/* Scan out the current hw modeset state, sanitizes it and maps it into the drm
13509 * and i915 state tracking structures. */
13510void intel_modeset_setup_hw_state(struct drm_device *dev,
13511                                  bool force_restore)
13512{
13513        struct drm_i915_private *dev_priv = dev->dev_private;
13514        enum pipe pipe;
13515        struct intel_crtc *crtc;
13516        struct intel_encoder *encoder;
13517        int i;
13518
13519        intel_modeset_readout_hw_state(dev);
13520
13521        /*
13522         * Now that we have the config, copy it to each CRTC struct
13523         * Note that this could go away if we move to using crtc_config
13524         * checking everywhere.
13525         */
13526        for_each_intel_crtc(dev, crtc) {
13527                if (crtc->active && i915.fastboot) {
13528                        intel_mode_from_pipe_config(&crtc->base.mode, &crtc->config);
13529                        DRM_DEBUG_KMS("[CRTC:%d] found active mode: ",
13530                                      crtc->base.base.id);
13531                        drm_mode_debug_printmodeline(&crtc->base.mode);
13532                }
13533        }
13534
13535        /* HW state is read out, now we need to sanitize this mess. */
13536        for_each_intel_encoder(dev, encoder) {
13537                intel_sanitize_encoder(encoder);
13538        }
13539
13540        for_each_pipe(dev_priv, pipe) {
13541                crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
13542                intel_sanitize_crtc(crtc);
13543                intel_dump_pipe_config(crtc, &crtc->config, "[setup_hw_state]");
13544        }
13545
13546        for (i = 0; i < dev_priv->num_shared_dpll; i++) {
13547                struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
13548
13549                if (!pll->on || pll->active)
13550                        continue;
13551
13552                DRM_DEBUG_KMS("%s enabled but not in use, disabling\n", pll->name);
13553
13554                pll->disable(dev_priv, pll);
13555                pll->on = false;
13556        }
13557
13558        if (IS_GEN9(dev))
13559                skl_wm_get_hw_state(dev);
13560        else if (HAS_PCH_SPLIT(dev))
13561                ilk_wm_get_hw_state(dev);
13562
13563        if (force_restore) {
13564                i915_redisable_vga(dev);
13565
13566                /*
13567                 * We need to use raw interfaces for restoring state to avoid
13568                 * checking (bogus) intermediate states.
13569                 */
13570                for_each_pipe(dev_priv, pipe) {
13571                        struct drm_crtc *crtc =
13572                                dev_priv->pipe_to_crtc_mapping[pipe];
13573
13574                        intel_set_mode(crtc, &crtc->mode, crtc->x, crtc->y,
13575                                       crtc->primary->fb);
13576                }
13577        } else {
13578                intel_modeset_update_staged_output_state(dev);
13579        }
13580
13581        intel_modeset_check_state(dev);
13582}
13583
13584void intel_modeset_gem_init(struct drm_device *dev)
13585{
13586        struct drm_i915_private *dev_priv = dev->dev_private;
13587        struct drm_crtc *c;
13588        struct drm_i915_gem_object *obj;
13589
13590        mutex_lock(&dev->struct_mutex);
13591        intel_init_gt_powersave(dev);
13592        mutex_unlock(&dev->struct_mutex);
13593
13594        /*
13595         * There may be no VBT; and if the BIOS enabled SSC we can
13596         * just keep using it to avoid unnecessary flicker.  Whereas if the
13597         * BIOS isn't using it, don't assume it will work even if the VBT
13598         * indicates as much.
13599         */
13600        if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
13601                dev_priv->vbt.lvds_use_ssc = !!(I915_READ(PCH_DREF_CONTROL) &
13602                                                DREF_SSC1_ENABLE);
13603
13604        intel_modeset_init_hw(dev);
13605
13606        intel_setup_overlay(dev);
13607
13608        /*
13609         * Make sure any fbs we allocated at startup are properly
13610         * pinned & fenced.  When we do the allocation it's too early
13611         * for this.
13612         */
13613        mutex_lock(&dev->struct_mutex);
13614        for_each_crtc(dev, c) {
13615                obj = intel_fb_obj(c->primary->fb);
13616                if (obj == NULL)
13617                        continue;
13618
13619                if (intel_pin_and_fence_fb_obj(c->primary,
13620                                               c->primary->fb,
13621                                               NULL)) {
13622                        DRM_ERROR("failed to pin boot fb on pipe %d\n",
13623                                  to_intel_crtc(c)->pipe);
13624                        drm_framebuffer_unreference(c->primary->fb);
13625                        c->primary->fb = NULL;
13626                }
13627        }
13628        mutex_unlock(&dev->struct_mutex);
13629
13630        intel_backlight_register(dev);
13631}
13632
13633void intel_connector_unregister(struct intel_connector *intel_connector)
13634{
13635        struct drm_connector *connector = &intel_connector->base;
13636
13637        intel_panel_destroy_backlight(connector);
13638        drm_connector_unregister(connector);
13639}
13640
13641void intel_modeset_cleanup(struct drm_device *dev)
13642{
13643        struct drm_i915_private *dev_priv = dev->dev_private;
13644        struct drm_connector *connector;
13645
13646        intel_disable_gt_powersave(dev);
13647
13648        intel_backlight_unregister(dev);
13649
13650        /*
13651         * Interrupts and polling as the first thing to avoid creating havoc.
13652         * Too much stuff here (turning of connectors, ...) would
13653         * experience fancy races otherwise.
13654         */
13655        intel_irq_uninstall(dev_priv);
13656
13657        /*
13658         * Due to the hpd irq storm handling the hotplug work can re-arm the
13659         * poll handlers. Hence disable polling after hpd handling is shut down.
13660         */
13661        drm_kms_helper_poll_fini(dev);
13662
13663        mutex_lock(&dev->struct_mutex);
13664
13665        intel_unregister_dsm_handler();
13666
13667        intel_disable_fbc(dev);
13668
13669        ironlake_teardown_rc6(dev);
13670
13671        mutex_unlock(&dev->struct_mutex);
13672
13673        /* flush any delayed tasks or pending work */
13674        flush_scheduled_work();
13675
13676        /* destroy the backlight and sysfs files before encoders/connectors */
13677        list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
13678                struct intel_connector *intel_connector;
13679
13680                intel_connector = to_intel_connector(connector);
13681                intel_connector->unregister(intel_connector);
13682        }
13683
13684        drm_mode_config_cleanup(dev);
13685
13686        intel_cleanup_overlay(dev);
13687
13688        mutex_lock(&dev->struct_mutex);
13689        intel_cleanup_gt_powersave(dev);
13690        mutex_unlock(&dev->struct_mutex);
13691}
13692
13693/*
13694 * Return which encoder is currently attached for connector.
13695 */
13696struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
13697{
13698        return &intel_attached_encoder(connector)->base;
13699}
13700
13701void intel_connector_attach_encoder(struct intel_connector *connector,
13702                                    struct intel_encoder *encoder)
13703{
13704        connector->encoder = encoder;
13705        drm_mode_connector_attach_encoder(&connector->base,
13706                                          &encoder->base);
13707}
13708
13709/*
13710 * set vga decode state - true == enable VGA decode
13711 */
13712int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
13713{
13714        struct drm_i915_private *dev_priv = dev->dev_private;
13715        unsigned reg = INTEL_INFO(dev)->gen >= 6 ? SNB_GMCH_CTRL : INTEL_GMCH_CTRL;
13716        u16 gmch_ctrl;
13717
13718        if (pci_read_config_word(dev_priv->bridge_dev, reg, &gmch_ctrl)) {
13719                DRM_ERROR("failed to read control word\n");
13720                return -EIO;
13721        }
13722
13723        if (!!(gmch_ctrl & INTEL_GMCH_VGA_DISABLE) == !state)
13724                return 0;
13725
13726        if (state)
13727                gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
13728        else
13729                gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
13730
13731        if (pci_write_config_word(dev_priv->bridge_dev, reg, gmch_ctrl)) {
13732                DRM_ERROR("failed to write control word\n");
13733                return -EIO;
13734        }
13735
13736        return 0;
13737}
13738
13739struct intel_display_error_state {
13740
13741        u32 power_well_driver;
13742
13743        int num_transcoders;
13744
13745        struct intel_cursor_error_state {
13746                u32 control;
13747                u32 position;
13748                u32 base;
13749                u32 size;
13750        } cursor[I915_MAX_PIPES];
13751
13752        struct intel_pipe_error_state {
13753                bool power_domain_on;
13754                u32 source;
13755                u32 stat;
13756        } pipe[I915_MAX_PIPES];
13757
13758        struct intel_plane_error_state {
13759                u32 control;
13760                u32 stride;
13761                u32 size;
13762                u32 pos;
13763                u32 addr;
13764                u32 surface;
13765                u32 tile_offset;
13766        } plane[I915_MAX_PIPES];
13767
13768        struct intel_transcoder_error_state {
13769                bool power_domain_on;
13770                enum transcoder cpu_transcoder;
13771
13772                u32 conf;
13773
13774                u32 htotal;
13775                u32 hblank;
13776                u32 hsync;
13777                u32 vtotal;
13778                u32 vblank;
13779                u32 vsync;
13780        } transcoder[4];
13781};
13782
13783struct intel_display_error_state *
13784intel_display_capture_error_state(struct drm_device *dev)
13785{
13786        struct drm_i915_private *dev_priv = dev->dev_private;
13787        struct intel_display_error_state *error;
13788        int transcoders[] = {
13789                TRANSCODER_A,
13790                TRANSCODER_B,
13791                TRANSCODER_C,
13792                TRANSCODER_EDP,
13793        };
13794        int i;
13795
13796        if (INTEL_INFO(dev)->num_pipes == 0)
13797                return NULL;
13798
13799        error = kzalloc(sizeof(*error), GFP_ATOMIC);
13800        if (error == NULL)
13801                return NULL;
13802
13803        if (IS_HASWELL(dev) || IS_BROADWELL(dev))
13804                error->power_well_driver = I915_READ(HSW_PWR_WELL_DRIVER);
13805
13806        for_each_pipe(dev_priv, i) {
13807                error->pipe[i].power_domain_on =
13808                        __intel_display_power_is_enabled(dev_priv,
13809                                                         POWER_DOMAIN_PIPE(i));
13810                if (!error->pipe[i].power_domain_on)
13811                        continue;
13812
13813                error->cursor[i].control = I915_READ(CURCNTR(i));
13814                error->cursor[i].position = I915_READ(CURPOS(i));
13815                error->cursor[i].base = I915_READ(CURBASE(i));
13816
13817                error->plane[i].control = I915_READ(DSPCNTR(i));
13818                error->plane[i].stride = I915_READ(DSPSTRIDE(i));
13819                if (INTEL_INFO(dev)->gen <= 3) {
13820                        error->plane[i].size = I915_READ(DSPSIZE(i));
13821                        error->plane[i].pos = I915_READ(DSPPOS(i));
13822                }
13823                if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
13824                        error->plane[i].addr = I915_READ(DSPADDR(i));
13825                if (INTEL_INFO(dev)->gen >= 4) {
13826                        error->plane[i].surface = I915_READ(DSPSURF(i));
13827                        error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
13828                }
13829
13830                error->pipe[i].source = I915_READ(PIPESRC(i));
13831
13832                if (HAS_GMCH_DISPLAY(dev))
13833                        error->pipe[i].stat = I915_READ(PIPESTAT(i));
13834        }
13835
13836        error->num_transcoders = INTEL_INFO(dev)->num_pipes;
13837        if (HAS_DDI(dev_priv->dev))
13838                error->num_transcoders++; /* Account for eDP. */
13839
13840        for (i = 0; i < error->num_transcoders; i++) {
13841                enum transcoder cpu_transcoder = transcoders[i];
13842
13843                error->transcoder[i].power_domain_on =
13844                        __intel_display_power_is_enabled(dev_priv,
13845                                POWER_DOMAIN_TRANSCODER(cpu_transcoder));
13846                if (!error->transcoder[i].power_domain_on)
13847                        continue;
13848
13849                error->transcoder[i].cpu_transcoder = cpu_transcoder;
13850
13851                error->transcoder[i].conf = I915_READ(PIPECONF(cpu_transcoder));
13852                error->transcoder[i].htotal = I915_READ(HTOTAL(cpu_transcoder));
13853                error->transcoder[i].hblank = I915_READ(HBLANK(cpu_transcoder));
13854                error->transcoder[i].hsync = I915_READ(HSYNC(cpu_transcoder));
13855                error->transcoder[i].vtotal = I915_READ(VTOTAL(cpu_transcoder));
13856                error->transcoder[i].vblank = I915_READ(VBLANK(cpu_transcoder));
13857                error->transcoder[i].vsync = I915_READ(VSYNC(cpu_transcoder));
13858        }
13859
13860        return error;
13861}
13862
13863#define err_printf(e, ...) i915_error_printf(e, __VA_ARGS__)
13864
13865void
13866intel_display_print_error_state(struct drm_i915_error_state_buf *m,
13867                                struct drm_device *dev,
13868                                struct intel_display_error_state *error)
13869{
13870        struct drm_i915_private *dev_priv = dev->dev_private;
13871        int i;
13872
13873        if (!error)
13874                return;
13875
13876        err_printf(m, "Num Pipes: %d\n", INTEL_INFO(dev)->num_pipes);
13877        if (IS_HASWELL(dev) || IS_BROADWELL(dev))
13878                err_printf(m, "PWR_WELL_CTL2: %08x\n",
13879                           error->power_well_driver);
13880        for_each_pipe(dev_priv, i) {
13881                err_printf(m, "Pipe [%d]:\n", i);
13882                err_printf(m, "  Power: %s\n",
13883                           error->pipe[i].power_domain_on ? "on" : "off");
13884                err_printf(m, "  SRC: %08x\n", error->pipe[i].source);
13885                err_printf(m, "  STAT: %08x\n", error->pipe[i].stat);
13886
13887                err_printf(m, "Plane [%d]:\n", i);
13888                err_printf(m, "  CNTR: %08x\n", error->plane[i].control);
13889                err_printf(m, "  STRIDE: %08x\n", error->plane[i].stride);
13890                if (INTEL_INFO(dev)->gen <= 3) {
13891                        err_printf(m, "  SIZE: %08x\n", error->plane[i].size);
13892                        err_printf(m, "  POS: %08x\n", error->plane[i].pos);
13893                }
13894                if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
13895                        err_printf(m, "  ADDR: %08x\n", error->plane[i].addr);
13896                if (INTEL_INFO(dev)->gen >= 4) {
13897                        err_printf(m, "  SURF: %08x\n", error->plane[i].surface);
13898                        err_printf(m, "  TILEOFF: %08x\n", error->plane[i].tile_offset);
13899                }
13900
13901                err_printf(m, "Cursor [%d]:\n", i);
13902                err_printf(m, "  CNTR: %08x\n", error->cursor[i].control);
13903                err_printf(m, "  POS: %08x\n", error->cursor[i].position);
13904                err_printf(m, "  BASE: %08x\n", error->cursor[i].base);
13905        }
13906
13907        for (i = 0; i < error->num_transcoders; i++) {
13908                err_printf(m, "CPU transcoder: %c\n",
13909                           transcoder_name(error->transcoder[i].cpu_transcoder));
13910                err_printf(m, "  Power: %s\n",
13911                           error->transcoder[i].power_domain_on ? "on" : "off");
13912                err_printf(m, "  CONF: %08x\n", error->transcoder[i].conf);
13913                err_printf(m, "  HTOTAL: %08x\n", error->transcoder[i].htotal);
13914                err_printf(m, "  HBLANK: %08x\n", error->transcoder[i].hblank);
13915                err_printf(m, "  HSYNC: %08x\n", error->transcoder[i].hsync);
13916                err_printf(m, "  VTOTAL: %08x\n", error->transcoder[i].vtotal);
13917                err_printf(m, "  VBLANK: %08x\n", error->transcoder[i].vblank);
13918                err_printf(m, "  VSYNC: %08x\n", error->transcoder[i].vsync);
13919        }
13920}
13921
13922void intel_modeset_preclose(struct drm_device *dev, struct drm_file *file)
13923{
13924        struct intel_crtc *crtc;
13925
13926        for_each_intel_crtc(dev, crtc) {
13927                struct intel_unpin_work *work;
13928
13929                spin_lock_irq(&dev->event_lock);
13930
13931                work = crtc->unpin_work;
13932
13933                if (work && work->event &&
13934                    work->event->base.file_priv == file) {
13935                        kfree(work->event);
13936                        work->event = NULL;
13937                }
13938
13939                spin_unlock_irq(&dev->event_lock);
13940        }
13941}
13942