linux/drivers/gpu/drm/i915/intel_lrc.c
<<
>>
Prefs
   1/*
   2 * Copyright © 2014 Intel Corporation
   3 *
   4 * Permission is hereby granted, free of charge, to any person obtaining a
   5 * copy of this software and associated documentation files (the "Software"),
   6 * to deal in the Software without restriction, including without limitation
   7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
   8 * and/or sell copies of the Software, and to permit persons to whom the
   9 * Software is furnished to do so, subject to the following conditions:
  10 *
  11 * The above copyright notice and this permission notice (including the next
  12 * paragraph) shall be included in all copies or substantial portions of the
  13 * Software.
  14 *
  15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
  18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21 * IN THE SOFTWARE.
  22 *
  23 * Authors:
  24 *    Ben Widawsky <ben@bwidawsk.net>
  25 *    Michel Thierry <michel.thierry@intel.com>
  26 *    Thomas Daniel <thomas.daniel@intel.com>
  27 *    Oscar Mateo <oscar.mateo@intel.com>
  28 *
  29 */
  30
  31/**
  32 * DOC: Logical Rings, Logical Ring Contexts and Execlists
  33 *
  34 * Motivation:
  35 * GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts".
  36 * These expanded contexts enable a number of new abilities, especially
  37 * "Execlists" (also implemented in this file).
  38 *
  39 * One of the main differences with the legacy HW contexts is that logical
  40 * ring contexts incorporate many more things to the context's state, like
  41 * PDPs or ringbuffer control registers:
  42 *
  43 * The reason why PDPs are included in the context is straightforward: as
  44 * PPGTTs (per-process GTTs) are actually per-context, having the PDPs
  45 * contained there mean you don't need to do a ppgtt->switch_mm yourself,
  46 * instead, the GPU will do it for you on the context switch.
  47 *
  48 * But, what about the ringbuffer control registers (head, tail, etc..)?
  49 * shouldn't we just need a set of those per engine command streamer? This is
  50 * where the name "Logical Rings" starts to make sense: by virtualizing the
  51 * rings, the engine cs shifts to a new "ring buffer" with every context
  52 * switch. When you want to submit a workload to the GPU you: A) choose your
  53 * context, B) find its appropriate virtualized ring, C) write commands to it
  54 * and then, finally, D) tell the GPU to switch to that context.
  55 *
  56 * Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch
  57 * to a contexts is via a context execution list, ergo "Execlists".
  58 *
  59 * LRC implementation:
  60 * Regarding the creation of contexts, we have:
  61 *
  62 * - One global default context.
  63 * - One local default context for each opened fd.
  64 * - One local extra context for each context create ioctl call.
  65 *
  66 * Now that ringbuffers belong per-context (and not per-engine, like before)
  67 * and that contexts are uniquely tied to a given engine (and not reusable,
  68 * like before) we need:
  69 *
  70 * - One ringbuffer per-engine inside each context.
  71 * - One backing object per-engine inside each context.
  72 *
  73 * The global default context starts its life with these new objects fully
  74 * allocated and populated. The local default context for each opened fd is
  75 * more complex, because we don't know at creation time which engine is going
  76 * to use them. To handle this, we have implemented a deferred creation of LR
  77 * contexts:
  78 *
  79 * The local context starts its life as a hollow or blank holder, that only
  80 * gets populated for a given engine once we receive an execbuffer. If later
  81 * on we receive another execbuffer ioctl for the same context but a different
  82 * engine, we allocate/populate a new ringbuffer and context backing object and
  83 * so on.
  84 *
  85 * Finally, regarding local contexts created using the ioctl call: as they are
  86 * only allowed with the render ring, we can allocate & populate them right
  87 * away (no need to defer anything, at least for now).
  88 *
  89 * Execlists implementation:
  90 * Execlists are the new method by which, on gen8+ hardware, workloads are
  91 * submitted for execution (as opposed to the legacy, ringbuffer-based, method).
  92 * This method works as follows:
  93 *
  94 * When a request is committed, its commands (the BB start and any leading or
  95 * trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer
  96 * for the appropriate context. The tail pointer in the hardware context is not
  97 * updated at this time, but instead, kept by the driver in the ringbuffer
  98 * structure. A structure representing this request is added to a request queue
  99 * for the appropriate engine: this structure contains a copy of the context's
 100 * tail after the request was written to the ring buffer and a pointer to the
 101 * context itself.
 102 *
 103 * If the engine's request queue was empty before the request was added, the
 104 * queue is processed immediately. Otherwise the queue will be processed during
 105 * a context switch interrupt. In any case, elements on the queue will get sent
 106 * (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a
 107 * globally unique 20-bits submission ID.
 108 *
 109 * When execution of a request completes, the GPU updates the context status
 110 * buffer with a context complete event and generates a context switch interrupt.
 111 * During the interrupt handling, the driver examines the events in the buffer:
 112 * for each context complete event, if the announced ID matches that on the head
 113 * of the request queue, then that request is retired and removed from the queue.
 114 *
 115 * After processing, if any requests were retired and the queue is not empty
 116 * then a new execution list can be submitted. The two requests at the front of
 117 * the queue are next to be submitted but since a context may not occur twice in
 118 * an execution list, if subsequent requests have the same ID as the first then
 119 * the two requests must be combined. This is done simply by discarding requests
 120 * at the head of the queue until either only one requests is left (in which case
 121 * we use a NULL second context) or the first two requests have unique IDs.
 122 *
 123 * By always executing the first two requests in the queue the driver ensures
 124 * that the GPU is kept as busy as possible. In the case where a single context
 125 * completes but a second context is still executing, the request for this second
 126 * context will be at the head of the queue when we remove the first one. This
 127 * request will then be resubmitted along with a new request for a different context,
 128 * which will cause the hardware to continue executing the second request and queue
 129 * the new request (the GPU detects the condition of a context getting preempted
 130 * with the same context and optimizes the context switch flow by not doing
 131 * preemption, but just sampling the new tail pointer).
 132 *
 133 */
 134
 135#include <drm/drmP.h>
 136#include <drm/i915_drm.h>
 137#include "i915_drv.h"
 138
 139#define GEN9_LR_CONTEXT_RENDER_SIZE (22 * PAGE_SIZE)
 140#define GEN8_LR_CONTEXT_RENDER_SIZE (20 * PAGE_SIZE)
 141#define GEN8_LR_CONTEXT_OTHER_SIZE (2 * PAGE_SIZE)
 142
 143#define RING_EXECLIST_QFULL             (1 << 0x2)
 144#define RING_EXECLIST1_VALID            (1 << 0x3)
 145#define RING_EXECLIST0_VALID            (1 << 0x4)
 146#define RING_EXECLIST_ACTIVE_STATUS     (3 << 0xE)
 147#define RING_EXECLIST1_ACTIVE           (1 << 0x11)
 148#define RING_EXECLIST0_ACTIVE           (1 << 0x12)
 149
 150#define GEN8_CTX_STATUS_IDLE_ACTIVE     (1 << 0)
 151#define GEN8_CTX_STATUS_PREEMPTED       (1 << 1)
 152#define GEN8_CTX_STATUS_ELEMENT_SWITCH  (1 << 2)
 153#define GEN8_CTX_STATUS_ACTIVE_IDLE     (1 << 3)
 154#define GEN8_CTX_STATUS_COMPLETE        (1 << 4)
 155#define GEN8_CTX_STATUS_LITE_RESTORE    (1 << 15)
 156
 157#define CTX_LRI_HEADER_0                0x01
 158#define CTX_CONTEXT_CONTROL             0x02
 159#define CTX_RING_HEAD                   0x04
 160#define CTX_RING_TAIL                   0x06
 161#define CTX_RING_BUFFER_START           0x08
 162#define CTX_RING_BUFFER_CONTROL         0x0a
 163#define CTX_BB_HEAD_U                   0x0c
 164#define CTX_BB_HEAD_L                   0x0e
 165#define CTX_BB_STATE                    0x10
 166#define CTX_SECOND_BB_HEAD_U            0x12
 167#define CTX_SECOND_BB_HEAD_L            0x14
 168#define CTX_SECOND_BB_STATE             0x16
 169#define CTX_BB_PER_CTX_PTR              0x18
 170#define CTX_RCS_INDIRECT_CTX            0x1a
 171#define CTX_RCS_INDIRECT_CTX_OFFSET     0x1c
 172#define CTX_LRI_HEADER_1                0x21
 173#define CTX_CTX_TIMESTAMP               0x22
 174#define CTX_PDP3_UDW                    0x24
 175#define CTX_PDP3_LDW                    0x26
 176#define CTX_PDP2_UDW                    0x28
 177#define CTX_PDP2_LDW                    0x2a
 178#define CTX_PDP1_UDW                    0x2c
 179#define CTX_PDP1_LDW                    0x2e
 180#define CTX_PDP0_UDW                    0x30
 181#define CTX_PDP0_LDW                    0x32
 182#define CTX_LRI_HEADER_2                0x41
 183#define CTX_R_PWR_CLK_STATE             0x42
 184#define CTX_GPGPU_CSR_BASE_ADDRESS      0x44
 185
 186#define GEN8_CTX_VALID (1<<0)
 187#define GEN8_CTX_FORCE_PD_RESTORE (1<<1)
 188#define GEN8_CTX_FORCE_RESTORE (1<<2)
 189#define GEN8_CTX_L3LLC_COHERENT (1<<5)
 190#define GEN8_CTX_PRIVILEGE (1<<8)
 191enum {
 192        ADVANCED_CONTEXT = 0,
 193        LEGACY_CONTEXT,
 194        ADVANCED_AD_CONTEXT,
 195        LEGACY_64B_CONTEXT
 196};
 197#define GEN8_CTX_MODE_SHIFT 3
 198enum {
 199        FAULT_AND_HANG = 0,
 200        FAULT_AND_HALT, /* Debug only */
 201        FAULT_AND_STREAM,
 202        FAULT_AND_CONTINUE /* Unsupported */
 203};
 204#define GEN8_CTX_ID_SHIFT 32
 205
 206static int intel_lr_context_pin(struct intel_engine_cs *ring,
 207                struct intel_context *ctx);
 208
 209/**
 210 * intel_sanitize_enable_execlists() - sanitize i915.enable_execlists
 211 * @dev: DRM device.
 212 * @enable_execlists: value of i915.enable_execlists module parameter.
 213 *
 214 * Only certain platforms support Execlists (the prerequisites being
 215 * support for Logical Ring Contexts and Aliasing PPGTT or better),
 216 * and only when enabled via module parameter.
 217 *
 218 * Return: 1 if Execlists is supported and has to be enabled.
 219 */
 220int intel_sanitize_enable_execlists(struct drm_device *dev, int enable_execlists)
 221{
 222        WARN_ON(i915.enable_ppgtt == -1);
 223
 224        if (INTEL_INFO(dev)->gen >= 9)
 225                return 1;
 226
 227        if (enable_execlists == 0)
 228                return 0;
 229
 230        if (HAS_LOGICAL_RING_CONTEXTS(dev) && USES_PPGTT(dev) &&
 231            i915.use_mmio_flip >= 0)
 232                return 1;
 233
 234        return 0;
 235}
 236
 237/**
 238 * intel_execlists_ctx_id() - get the Execlists Context ID
 239 * @ctx_obj: Logical Ring Context backing object.
 240 *
 241 * Do not confuse with ctx->id! Unfortunately we have a name overload
 242 * here: the old context ID we pass to userspace as a handler so that
 243 * they can refer to a context, and the new context ID we pass to the
 244 * ELSP so that the GPU can inform us of the context status via
 245 * interrupts.
 246 *
 247 * Return: 20-bits globally unique context ID.
 248 */
 249u32 intel_execlists_ctx_id(struct drm_i915_gem_object *ctx_obj)
 250{
 251        u32 lrca = i915_gem_obj_ggtt_offset(ctx_obj);
 252
 253        /* LRCA is required to be 4K aligned so the more significant 20 bits
 254         * are globally unique */
 255        return lrca >> 12;
 256}
 257
 258static uint64_t execlists_ctx_descriptor(struct drm_i915_gem_object *ctx_obj)
 259{
 260        uint64_t desc;
 261        uint64_t lrca = i915_gem_obj_ggtt_offset(ctx_obj);
 262
 263        WARN_ON(lrca & 0xFFFFFFFF00000FFFULL);
 264
 265        desc = GEN8_CTX_VALID;
 266        desc |= LEGACY_CONTEXT << GEN8_CTX_MODE_SHIFT;
 267        desc |= GEN8_CTX_L3LLC_COHERENT;
 268        desc |= GEN8_CTX_PRIVILEGE;
 269        desc |= lrca;
 270        desc |= (u64)intel_execlists_ctx_id(ctx_obj) << GEN8_CTX_ID_SHIFT;
 271
 272        /* TODO: WaDisableLiteRestore when we start using semaphore
 273         * signalling between Command Streamers */
 274        /* desc |= GEN8_CTX_FORCE_RESTORE; */
 275
 276        return desc;
 277}
 278
 279static void execlists_elsp_write(struct intel_engine_cs *ring,
 280                                 struct drm_i915_gem_object *ctx_obj0,
 281                                 struct drm_i915_gem_object *ctx_obj1)
 282{
 283        struct drm_device *dev = ring->dev;
 284        struct drm_i915_private *dev_priv = dev->dev_private;
 285        uint64_t temp = 0;
 286        uint32_t desc[4];
 287        unsigned long flags;
 288
 289        /* XXX: You must always write both descriptors in the order below. */
 290        if (ctx_obj1)
 291                temp = execlists_ctx_descriptor(ctx_obj1);
 292        else
 293                temp = 0;
 294        desc[1] = (u32)(temp >> 32);
 295        desc[0] = (u32)temp;
 296
 297        temp = execlists_ctx_descriptor(ctx_obj0);
 298        desc[3] = (u32)(temp >> 32);
 299        desc[2] = (u32)temp;
 300
 301        /* Set Force Wakeup bit to prevent GT from entering C6 while ELSP writes
 302         * are in progress.
 303         *
 304         * The other problem is that we can't just call gen6_gt_force_wake_get()
 305         * because that function calls intel_runtime_pm_get(), which might sleep.
 306         * Instead, we do the runtime_pm_get/put when creating/destroying requests.
 307         */
 308        spin_lock_irqsave(&dev_priv->uncore.lock, flags);
 309        if (IS_CHERRYVIEW(dev) || INTEL_INFO(dev)->gen >= 9) {
 310                if (dev_priv->uncore.fw_rendercount++ == 0)
 311                        dev_priv->uncore.funcs.force_wake_get(dev_priv,
 312                                                              FORCEWAKE_RENDER);
 313                if (dev_priv->uncore.fw_mediacount++ == 0)
 314                        dev_priv->uncore.funcs.force_wake_get(dev_priv,
 315                                                              FORCEWAKE_MEDIA);
 316                if (INTEL_INFO(dev)->gen >= 9) {
 317                        if (dev_priv->uncore.fw_blittercount++ == 0)
 318                                dev_priv->uncore.funcs.force_wake_get(dev_priv,
 319                                                        FORCEWAKE_BLITTER);
 320                }
 321        } else {
 322                if (dev_priv->uncore.forcewake_count++ == 0)
 323                        dev_priv->uncore.funcs.force_wake_get(dev_priv,
 324                                                              FORCEWAKE_ALL);
 325        }
 326        spin_unlock_irqrestore(&dev_priv->uncore.lock, flags);
 327
 328        I915_WRITE(RING_ELSP(ring), desc[1]);
 329        I915_WRITE(RING_ELSP(ring), desc[0]);
 330        I915_WRITE(RING_ELSP(ring), desc[3]);
 331        /* The context is automatically loaded after the following */
 332        I915_WRITE(RING_ELSP(ring), desc[2]);
 333
 334        /* ELSP is a wo register, so use another nearby reg for posting instead */
 335        POSTING_READ(RING_EXECLIST_STATUS(ring));
 336
 337        /* Release Force Wakeup (see the big comment above). */
 338        spin_lock_irqsave(&dev_priv->uncore.lock, flags);
 339        if (IS_CHERRYVIEW(dev) || INTEL_INFO(dev)->gen >= 9) {
 340                if (--dev_priv->uncore.fw_rendercount == 0)
 341                        dev_priv->uncore.funcs.force_wake_put(dev_priv,
 342                                                              FORCEWAKE_RENDER);
 343                if (--dev_priv->uncore.fw_mediacount == 0)
 344                        dev_priv->uncore.funcs.force_wake_put(dev_priv,
 345                                                              FORCEWAKE_MEDIA);
 346                if (INTEL_INFO(dev)->gen >= 9) {
 347                        if (--dev_priv->uncore.fw_blittercount == 0)
 348                                dev_priv->uncore.funcs.force_wake_put(dev_priv,
 349                                                        FORCEWAKE_BLITTER);
 350                }
 351        } else {
 352                if (--dev_priv->uncore.forcewake_count == 0)
 353                        dev_priv->uncore.funcs.force_wake_put(dev_priv,
 354                                                              FORCEWAKE_ALL);
 355        }
 356
 357        spin_unlock_irqrestore(&dev_priv->uncore.lock, flags);
 358}
 359
 360static int execlists_update_context(struct drm_i915_gem_object *ctx_obj,
 361                                    struct drm_i915_gem_object *ring_obj,
 362                                    u32 tail)
 363{
 364        struct page *page;
 365        uint32_t *reg_state;
 366
 367        page = i915_gem_object_get_page(ctx_obj, 1);
 368        reg_state = kmap_atomic(page);
 369
 370        reg_state[CTX_RING_TAIL+1] = tail;
 371        reg_state[CTX_RING_BUFFER_START+1] = i915_gem_obj_ggtt_offset(ring_obj);
 372
 373        kunmap_atomic(reg_state);
 374
 375        return 0;
 376}
 377
 378static void execlists_submit_contexts(struct intel_engine_cs *ring,
 379                                      struct intel_context *to0, u32 tail0,
 380                                      struct intel_context *to1, u32 tail1)
 381{
 382        struct drm_i915_gem_object *ctx_obj0 = to0->engine[ring->id].state;
 383        struct intel_ringbuffer *ringbuf0 = to0->engine[ring->id].ringbuf;
 384        struct drm_i915_gem_object *ctx_obj1 = NULL;
 385        struct intel_ringbuffer *ringbuf1 = NULL;
 386
 387        BUG_ON(!ctx_obj0);
 388        WARN_ON(!i915_gem_obj_is_pinned(ctx_obj0));
 389        WARN_ON(!i915_gem_obj_is_pinned(ringbuf0->obj));
 390
 391        execlists_update_context(ctx_obj0, ringbuf0->obj, tail0);
 392
 393        if (to1) {
 394                ringbuf1 = to1->engine[ring->id].ringbuf;
 395                ctx_obj1 = to1->engine[ring->id].state;
 396                BUG_ON(!ctx_obj1);
 397                WARN_ON(!i915_gem_obj_is_pinned(ctx_obj1));
 398                WARN_ON(!i915_gem_obj_is_pinned(ringbuf1->obj));
 399
 400                execlists_update_context(ctx_obj1, ringbuf1->obj, tail1);
 401        }
 402
 403        execlists_elsp_write(ring, ctx_obj0, ctx_obj1);
 404}
 405
 406static void execlists_context_unqueue(struct intel_engine_cs *ring)
 407{
 408        struct intel_ctx_submit_request *req0 = NULL, *req1 = NULL;
 409        struct intel_ctx_submit_request *cursor = NULL, *tmp = NULL;
 410
 411        assert_spin_locked(&ring->execlist_lock);
 412
 413        if (list_empty(&ring->execlist_queue))
 414                return;
 415
 416        /* Try to read in pairs */
 417        list_for_each_entry_safe(cursor, tmp, &ring->execlist_queue,
 418                                 execlist_link) {
 419                if (!req0) {
 420                        req0 = cursor;
 421                } else if (req0->ctx == cursor->ctx) {
 422                        /* Same ctx: ignore first request, as second request
 423                         * will update tail past first request's workload */
 424                        cursor->elsp_submitted = req0->elsp_submitted;
 425                        list_del(&req0->execlist_link);
 426                        list_add_tail(&req0->execlist_link,
 427                                &ring->execlist_retired_req_list);
 428                        req0 = cursor;
 429                } else {
 430                        req1 = cursor;
 431                        break;
 432                }
 433        }
 434
 435        WARN_ON(req1 && req1->elsp_submitted);
 436
 437        execlists_submit_contexts(ring, req0->ctx, req0->tail,
 438                                  req1 ? req1->ctx : NULL,
 439                                  req1 ? req1->tail : 0);
 440
 441        req0->elsp_submitted++;
 442        if (req1)
 443                req1->elsp_submitted++;
 444}
 445
 446static bool execlists_check_remove_request(struct intel_engine_cs *ring,
 447                                           u32 request_id)
 448{
 449        struct intel_ctx_submit_request *head_req;
 450
 451        assert_spin_locked(&ring->execlist_lock);
 452
 453        head_req = list_first_entry_or_null(&ring->execlist_queue,
 454                                            struct intel_ctx_submit_request,
 455                                            execlist_link);
 456
 457        if (head_req != NULL) {
 458                struct drm_i915_gem_object *ctx_obj =
 459                                head_req->ctx->engine[ring->id].state;
 460                if (intel_execlists_ctx_id(ctx_obj) == request_id) {
 461                        WARN(head_req->elsp_submitted == 0,
 462                             "Never submitted head request\n");
 463
 464                        if (--head_req->elsp_submitted <= 0) {
 465                                list_del(&head_req->execlist_link);
 466                                list_add_tail(&head_req->execlist_link,
 467                                        &ring->execlist_retired_req_list);
 468                                return true;
 469                        }
 470                }
 471        }
 472
 473        return false;
 474}
 475
 476/**
 477 * intel_execlists_handle_ctx_events() - handle Context Switch interrupts
 478 * @ring: Engine Command Streamer to handle.
 479 *
 480 * Check the unread Context Status Buffers and manage the submission of new
 481 * contexts to the ELSP accordingly.
 482 */
 483void intel_execlists_handle_ctx_events(struct intel_engine_cs *ring)
 484{
 485        struct drm_i915_private *dev_priv = ring->dev->dev_private;
 486        u32 status_pointer;
 487        u8 read_pointer;
 488        u8 write_pointer;
 489        u32 status;
 490        u32 status_id;
 491        u32 submit_contexts = 0;
 492
 493        status_pointer = I915_READ(RING_CONTEXT_STATUS_PTR(ring));
 494
 495        read_pointer = ring->next_context_status_buffer;
 496        write_pointer = status_pointer & 0x07;
 497        if (read_pointer > write_pointer)
 498                write_pointer += 6;
 499
 500        spin_lock(&ring->execlist_lock);
 501
 502        while (read_pointer < write_pointer) {
 503                read_pointer++;
 504                status = I915_READ(RING_CONTEXT_STATUS_BUF(ring) +
 505                                (read_pointer % 6) * 8);
 506                status_id = I915_READ(RING_CONTEXT_STATUS_BUF(ring) +
 507                                (read_pointer % 6) * 8 + 4);
 508
 509                if (status & GEN8_CTX_STATUS_PREEMPTED) {
 510                        if (status & GEN8_CTX_STATUS_LITE_RESTORE) {
 511                                if (execlists_check_remove_request(ring, status_id))
 512                                        WARN(1, "Lite Restored request removed from queue\n");
 513                        } else
 514                                WARN(1, "Preemption without Lite Restore\n");
 515                }
 516
 517                 if ((status & GEN8_CTX_STATUS_ACTIVE_IDLE) ||
 518                     (status & GEN8_CTX_STATUS_ELEMENT_SWITCH)) {
 519                        if (execlists_check_remove_request(ring, status_id))
 520                                submit_contexts++;
 521                }
 522        }
 523
 524        if (submit_contexts != 0)
 525                execlists_context_unqueue(ring);
 526
 527        spin_unlock(&ring->execlist_lock);
 528
 529        WARN(submit_contexts > 2, "More than two context complete events?\n");
 530        ring->next_context_status_buffer = write_pointer % 6;
 531
 532        I915_WRITE(RING_CONTEXT_STATUS_PTR(ring),
 533                   ((u32)ring->next_context_status_buffer & 0x07) << 8);
 534}
 535
 536static int execlists_context_queue(struct intel_engine_cs *ring,
 537                                   struct intel_context *to,
 538                                   u32 tail)
 539{
 540        struct intel_ctx_submit_request *req = NULL, *cursor;
 541        struct drm_i915_private *dev_priv = ring->dev->dev_private;
 542        unsigned long flags;
 543        int num_elements = 0;
 544
 545        req = kzalloc(sizeof(*req), GFP_KERNEL);
 546        if (req == NULL)
 547                return -ENOMEM;
 548        req->ctx = to;
 549        i915_gem_context_reference(req->ctx);
 550
 551        if (to != ring->default_context)
 552                intel_lr_context_pin(ring, to);
 553
 554        req->ring = ring;
 555        req->tail = tail;
 556
 557        intel_runtime_pm_get(dev_priv);
 558
 559        spin_lock_irqsave(&ring->execlist_lock, flags);
 560
 561        list_for_each_entry(cursor, &ring->execlist_queue, execlist_link)
 562                if (++num_elements > 2)
 563                        break;
 564
 565        if (num_elements > 2) {
 566                struct intel_ctx_submit_request *tail_req;
 567
 568                tail_req = list_last_entry(&ring->execlist_queue,
 569                                           struct intel_ctx_submit_request,
 570                                           execlist_link);
 571
 572                if (to == tail_req->ctx) {
 573                        WARN(tail_req->elsp_submitted != 0,
 574                                "More than 2 already-submitted reqs queued\n");
 575                        list_del(&tail_req->execlist_link);
 576                        list_add_tail(&tail_req->execlist_link,
 577                                &ring->execlist_retired_req_list);
 578                }
 579        }
 580
 581        list_add_tail(&req->execlist_link, &ring->execlist_queue);
 582        if (num_elements == 0)
 583                execlists_context_unqueue(ring);
 584
 585        spin_unlock_irqrestore(&ring->execlist_lock, flags);
 586
 587        return 0;
 588}
 589
 590static int logical_ring_invalidate_all_caches(struct intel_ringbuffer *ringbuf)
 591{
 592        struct intel_engine_cs *ring = ringbuf->ring;
 593        uint32_t flush_domains;
 594        int ret;
 595
 596        flush_domains = 0;
 597        if (ring->gpu_caches_dirty)
 598                flush_domains = I915_GEM_GPU_DOMAINS;
 599
 600        ret = ring->emit_flush(ringbuf, I915_GEM_GPU_DOMAINS, flush_domains);
 601        if (ret)
 602                return ret;
 603
 604        ring->gpu_caches_dirty = false;
 605        return 0;
 606}
 607
 608static int execlists_move_to_gpu(struct intel_ringbuffer *ringbuf,
 609                                 struct list_head *vmas)
 610{
 611        struct intel_engine_cs *ring = ringbuf->ring;
 612        struct i915_vma *vma;
 613        uint32_t flush_domains = 0;
 614        bool flush_chipset = false;
 615        int ret;
 616
 617        list_for_each_entry(vma, vmas, exec_list) {
 618                struct drm_i915_gem_object *obj = vma->obj;
 619
 620                ret = i915_gem_object_sync(obj, ring);
 621                if (ret)
 622                        return ret;
 623
 624                if (obj->base.write_domain & I915_GEM_DOMAIN_CPU)
 625                        flush_chipset |= i915_gem_clflush_object(obj, false);
 626
 627                flush_domains |= obj->base.write_domain;
 628        }
 629
 630        if (flush_domains & I915_GEM_DOMAIN_GTT)
 631                wmb();
 632
 633        /* Unconditionally invalidate gpu caches and ensure that we do flush
 634         * any residual writes from the previous batch.
 635         */
 636        return logical_ring_invalidate_all_caches(ringbuf);
 637}
 638
 639/**
 640 * execlists_submission() - submit a batchbuffer for execution, Execlists style
 641 * @dev: DRM device.
 642 * @file: DRM file.
 643 * @ring: Engine Command Streamer to submit to.
 644 * @ctx: Context to employ for this submission.
 645 * @args: execbuffer call arguments.
 646 * @vmas: list of vmas.
 647 * @batch_obj: the batchbuffer to submit.
 648 * @exec_start: batchbuffer start virtual address pointer.
 649 * @flags: translated execbuffer call flags.
 650 *
 651 * This is the evil twin version of i915_gem_ringbuffer_submission. It abstracts
 652 * away the submission details of the execbuffer ioctl call.
 653 *
 654 * Return: non-zero if the submission fails.
 655 */
 656int intel_execlists_submission(struct drm_device *dev, struct drm_file *file,
 657                               struct intel_engine_cs *ring,
 658                               struct intel_context *ctx,
 659                               struct drm_i915_gem_execbuffer2 *args,
 660                               struct list_head *vmas,
 661                               struct drm_i915_gem_object *batch_obj,
 662                               u64 exec_start, u32 flags)
 663{
 664        struct drm_i915_private *dev_priv = dev->dev_private;
 665        struct intel_ringbuffer *ringbuf = ctx->engine[ring->id].ringbuf;
 666        int instp_mode;
 667        u32 instp_mask;
 668        int ret;
 669
 670        instp_mode = args->flags & I915_EXEC_CONSTANTS_MASK;
 671        instp_mask = I915_EXEC_CONSTANTS_MASK;
 672        switch (instp_mode) {
 673        case I915_EXEC_CONSTANTS_REL_GENERAL:
 674        case I915_EXEC_CONSTANTS_ABSOLUTE:
 675        case I915_EXEC_CONSTANTS_REL_SURFACE:
 676                if (instp_mode != 0 && ring != &dev_priv->ring[RCS]) {
 677                        DRM_DEBUG("non-0 rel constants mode on non-RCS\n");
 678                        return -EINVAL;
 679                }
 680
 681                if (instp_mode != dev_priv->relative_constants_mode) {
 682                        if (instp_mode == I915_EXEC_CONSTANTS_REL_SURFACE) {
 683                                DRM_DEBUG("rel surface constants mode invalid on gen5+\n");
 684                                return -EINVAL;
 685                        }
 686
 687                        /* The HW changed the meaning on this bit on gen6 */
 688                        instp_mask &= ~I915_EXEC_CONSTANTS_REL_SURFACE;
 689                }
 690                break;
 691        default:
 692                DRM_DEBUG("execbuf with unknown constants: %d\n", instp_mode);
 693                return -EINVAL;
 694        }
 695
 696        if (args->num_cliprects != 0) {
 697                DRM_DEBUG("clip rectangles are only valid on pre-gen5\n");
 698                return -EINVAL;
 699        } else {
 700                if (args->DR4 == 0xffffffff) {
 701                        DRM_DEBUG("UXA submitting garbage DR4, fixing up\n");
 702                        args->DR4 = 0;
 703                }
 704
 705                if (args->DR1 || args->DR4 || args->cliprects_ptr) {
 706                        DRM_DEBUG("0 cliprects but dirt in cliprects fields\n");
 707                        return -EINVAL;
 708                }
 709        }
 710
 711        if (args->flags & I915_EXEC_GEN7_SOL_RESET) {
 712                DRM_DEBUG("sol reset is gen7 only\n");
 713                return -EINVAL;
 714        }
 715
 716        ret = execlists_move_to_gpu(ringbuf, vmas);
 717        if (ret)
 718                return ret;
 719
 720        if (ring == &dev_priv->ring[RCS] &&
 721            instp_mode != dev_priv->relative_constants_mode) {
 722                ret = intel_logical_ring_begin(ringbuf, 4);
 723                if (ret)
 724                        return ret;
 725
 726                intel_logical_ring_emit(ringbuf, MI_NOOP);
 727                intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(1));
 728                intel_logical_ring_emit(ringbuf, INSTPM);
 729                intel_logical_ring_emit(ringbuf, instp_mask << 16 | instp_mode);
 730                intel_logical_ring_advance(ringbuf);
 731
 732                dev_priv->relative_constants_mode = instp_mode;
 733        }
 734
 735        ret = ring->emit_bb_start(ringbuf, exec_start, flags);
 736        if (ret)
 737                return ret;
 738
 739        i915_gem_execbuffer_move_to_active(vmas, ring);
 740        i915_gem_execbuffer_retire_commands(dev, file, ring, batch_obj);
 741
 742        return 0;
 743}
 744
 745void intel_execlists_retire_requests(struct intel_engine_cs *ring)
 746{
 747        struct intel_ctx_submit_request *req, *tmp;
 748        struct drm_i915_private *dev_priv = ring->dev->dev_private;
 749        unsigned long flags;
 750        struct list_head retired_list;
 751
 752        WARN_ON(!mutex_is_locked(&ring->dev->struct_mutex));
 753        if (list_empty(&ring->execlist_retired_req_list))
 754                return;
 755
 756        INIT_LIST_HEAD(&retired_list);
 757        spin_lock_irqsave(&ring->execlist_lock, flags);
 758        list_replace_init(&ring->execlist_retired_req_list, &retired_list);
 759        spin_unlock_irqrestore(&ring->execlist_lock, flags);
 760
 761        list_for_each_entry_safe(req, tmp, &retired_list, execlist_link) {
 762                struct intel_context *ctx = req->ctx;
 763                struct drm_i915_gem_object *ctx_obj =
 764                                ctx->engine[ring->id].state;
 765
 766                if (ctx_obj && (ctx != ring->default_context))
 767                        intel_lr_context_unpin(ring, ctx);
 768                intel_runtime_pm_put(dev_priv);
 769                i915_gem_context_unreference(req->ctx);
 770                list_del(&req->execlist_link);
 771                kfree(req);
 772        }
 773}
 774
 775void intel_logical_ring_stop(struct intel_engine_cs *ring)
 776{
 777        struct drm_i915_private *dev_priv = ring->dev->dev_private;
 778        int ret;
 779
 780        if (!intel_ring_initialized(ring))
 781                return;
 782
 783        ret = intel_ring_idle(ring);
 784        if (ret && !i915_reset_in_progress(&to_i915(ring->dev)->gpu_error))
 785                DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
 786                          ring->name, ret);
 787
 788        /* TODO: Is this correct with Execlists enabled? */
 789        I915_WRITE_MODE(ring, _MASKED_BIT_ENABLE(STOP_RING));
 790        if (wait_for_atomic((I915_READ_MODE(ring) & MODE_IDLE) != 0, 1000)) {
 791                DRM_ERROR("%s :timed out trying to stop ring\n", ring->name);
 792                return;
 793        }
 794        I915_WRITE_MODE(ring, _MASKED_BIT_DISABLE(STOP_RING));
 795}
 796
 797int logical_ring_flush_all_caches(struct intel_ringbuffer *ringbuf)
 798{
 799        struct intel_engine_cs *ring = ringbuf->ring;
 800        int ret;
 801
 802        if (!ring->gpu_caches_dirty)
 803                return 0;
 804
 805        ret = ring->emit_flush(ringbuf, 0, I915_GEM_GPU_DOMAINS);
 806        if (ret)
 807                return ret;
 808
 809        ring->gpu_caches_dirty = false;
 810        return 0;
 811}
 812
 813/**
 814 * intel_logical_ring_advance_and_submit() - advance the tail and submit the workload
 815 * @ringbuf: Logical Ringbuffer to advance.
 816 *
 817 * The tail is updated in our logical ringbuffer struct, not in the actual context. What
 818 * really happens during submission is that the context and current tail will be placed
 819 * on a queue waiting for the ELSP to be ready to accept a new context submission. At that
 820 * point, the tail *inside* the context is updated and the ELSP written to.
 821 */
 822void intel_logical_ring_advance_and_submit(struct intel_ringbuffer *ringbuf)
 823{
 824        struct intel_engine_cs *ring = ringbuf->ring;
 825        struct intel_context *ctx = ringbuf->FIXME_lrc_ctx;
 826
 827        intel_logical_ring_advance(ringbuf);
 828
 829        if (intel_ring_stopped(ring))
 830                return;
 831
 832        execlists_context_queue(ring, ctx, ringbuf->tail);
 833}
 834
 835static int intel_lr_context_pin(struct intel_engine_cs *ring,
 836                struct intel_context *ctx)
 837{
 838        struct drm_i915_gem_object *ctx_obj = ctx->engine[ring->id].state;
 839        struct intel_ringbuffer *ringbuf = ctx->engine[ring->id].ringbuf;
 840        int ret = 0;
 841
 842        WARN_ON(!mutex_is_locked(&ring->dev->struct_mutex));
 843        if (ctx->engine[ring->id].unpin_count++ == 0) {
 844                ret = i915_gem_obj_ggtt_pin(ctx_obj,
 845                                GEN8_LR_CONTEXT_ALIGN, 0);
 846                if (ret)
 847                        goto reset_unpin_count;
 848
 849                ret = intel_pin_and_map_ringbuffer_obj(ring->dev, ringbuf);
 850                if (ret)
 851                        goto unpin_ctx_obj;
 852        }
 853
 854        return ret;
 855
 856unpin_ctx_obj:
 857        i915_gem_object_ggtt_unpin(ctx_obj);
 858reset_unpin_count:
 859        ctx->engine[ring->id].unpin_count = 0;
 860
 861        return ret;
 862}
 863
 864void intel_lr_context_unpin(struct intel_engine_cs *ring,
 865                struct intel_context *ctx)
 866{
 867        struct drm_i915_gem_object *ctx_obj = ctx->engine[ring->id].state;
 868        struct intel_ringbuffer *ringbuf = ctx->engine[ring->id].ringbuf;
 869
 870        if (ctx_obj) {
 871                WARN_ON(!mutex_is_locked(&ring->dev->struct_mutex));
 872                if (--ctx->engine[ring->id].unpin_count == 0) {
 873                        intel_unpin_ringbuffer_obj(ringbuf);
 874                        i915_gem_object_ggtt_unpin(ctx_obj);
 875                }
 876        }
 877}
 878
 879static int logical_ring_alloc_seqno(struct intel_engine_cs *ring,
 880                                    struct intel_context *ctx)
 881{
 882        int ret;
 883
 884        if (ring->outstanding_lazy_seqno)
 885                return 0;
 886
 887        if (ring->preallocated_lazy_request == NULL) {
 888                struct drm_i915_gem_request *request;
 889
 890                request = kmalloc(sizeof(*request), GFP_KERNEL);
 891                if (request == NULL)
 892                        return -ENOMEM;
 893
 894                if (ctx != ring->default_context) {
 895                        ret = intel_lr_context_pin(ring, ctx);
 896                        if (ret) {
 897                                kfree(request);
 898                                return ret;
 899                        }
 900                }
 901
 902                /* Hold a reference to the context this request belongs to
 903                 * (we will need it when the time comes to emit/retire the
 904                 * request).
 905                 */
 906                request->ctx = ctx;
 907                i915_gem_context_reference(request->ctx);
 908
 909                ring->preallocated_lazy_request = request;
 910        }
 911
 912        return i915_gem_get_seqno(ring->dev, &ring->outstanding_lazy_seqno);
 913}
 914
 915static int logical_ring_wait_request(struct intel_ringbuffer *ringbuf,
 916                                     int bytes)
 917{
 918        struct intel_engine_cs *ring = ringbuf->ring;
 919        struct drm_i915_gem_request *request;
 920        u32 seqno = 0;
 921        int ret;
 922
 923        if (ringbuf->last_retired_head != -1) {
 924                ringbuf->head = ringbuf->last_retired_head;
 925                ringbuf->last_retired_head = -1;
 926
 927                ringbuf->space = intel_ring_space(ringbuf);
 928                if (ringbuf->space >= bytes)
 929                        return 0;
 930        }
 931
 932        list_for_each_entry(request, &ring->request_list, list) {
 933                if (__intel_ring_space(request->tail, ringbuf->tail,
 934                                       ringbuf->size) >= bytes) {
 935                        seqno = request->seqno;
 936                        break;
 937                }
 938        }
 939
 940        if (seqno == 0)
 941                return -ENOSPC;
 942
 943        ret = i915_wait_seqno(ring, seqno);
 944        if (ret)
 945                return ret;
 946
 947        i915_gem_retire_requests_ring(ring);
 948        ringbuf->head = ringbuf->last_retired_head;
 949        ringbuf->last_retired_head = -1;
 950
 951        ringbuf->space = intel_ring_space(ringbuf);
 952        return 0;
 953}
 954
 955static int logical_ring_wait_for_space(struct intel_ringbuffer *ringbuf,
 956                                       int bytes)
 957{
 958        struct intel_engine_cs *ring = ringbuf->ring;
 959        struct drm_device *dev = ring->dev;
 960        struct drm_i915_private *dev_priv = dev->dev_private;
 961        unsigned long end;
 962        int ret;
 963
 964        ret = logical_ring_wait_request(ringbuf, bytes);
 965        if (ret != -ENOSPC)
 966                return ret;
 967
 968        /* Force the context submission in case we have been skipping it */
 969        intel_logical_ring_advance_and_submit(ringbuf);
 970
 971        /* With GEM the hangcheck timer should kick us out of the loop,
 972         * leaving it early runs the risk of corrupting GEM state (due
 973         * to running on almost untested codepaths). But on resume
 974         * timers don't work yet, so prevent a complete hang in that
 975         * case by choosing an insanely large timeout. */
 976        end = jiffies + 60 * HZ;
 977
 978        do {
 979                ringbuf->head = I915_READ_HEAD(ring);
 980                ringbuf->space = intel_ring_space(ringbuf);
 981                if (ringbuf->space >= bytes) {
 982                        ret = 0;
 983                        break;
 984                }
 985
 986                msleep(1);
 987
 988                if (dev_priv->mm.interruptible && signal_pending(current)) {
 989                        ret = -ERESTARTSYS;
 990                        break;
 991                }
 992
 993                ret = i915_gem_check_wedge(&dev_priv->gpu_error,
 994                                           dev_priv->mm.interruptible);
 995                if (ret)
 996                        break;
 997
 998                if (time_after(jiffies, end)) {
 999                        ret = -EBUSY;
1000                        break;
1001                }
1002        } while (1);
1003
1004        return ret;
1005}
1006
1007static int logical_ring_wrap_buffer(struct intel_ringbuffer *ringbuf)
1008{
1009        uint32_t __iomem *virt;
1010        int rem = ringbuf->size - ringbuf->tail;
1011
1012        if (ringbuf->space < rem) {
1013                int ret = logical_ring_wait_for_space(ringbuf, rem);
1014
1015                if (ret)
1016                        return ret;
1017        }
1018
1019        virt = ringbuf->virtual_start + ringbuf->tail;
1020        rem /= 4;
1021        while (rem--)
1022                iowrite32(MI_NOOP, virt++);
1023
1024        ringbuf->tail = 0;
1025        ringbuf->space = intel_ring_space(ringbuf);
1026
1027        return 0;
1028}
1029
1030static int logical_ring_prepare(struct intel_ringbuffer *ringbuf, int bytes)
1031{
1032        int ret;
1033
1034        if (unlikely(ringbuf->tail + bytes > ringbuf->effective_size)) {
1035                ret = logical_ring_wrap_buffer(ringbuf);
1036                if (unlikely(ret))
1037                        return ret;
1038        }
1039
1040        if (unlikely(ringbuf->space < bytes)) {
1041                ret = logical_ring_wait_for_space(ringbuf, bytes);
1042                if (unlikely(ret))
1043                        return ret;
1044        }
1045
1046        return 0;
1047}
1048
1049/**
1050 * intel_logical_ring_begin() - prepare the logical ringbuffer to accept some commands
1051 *
1052 * @ringbuf: Logical ringbuffer.
1053 * @num_dwords: number of DWORDs that we plan to write to the ringbuffer.
1054 *
1055 * The ringbuffer might not be ready to accept the commands right away (maybe it needs to
1056 * be wrapped, or wait a bit for the tail to be updated). This function takes care of that
1057 * and also preallocates a request (every workload submission is still mediated through
1058 * requests, same as it did with legacy ringbuffer submission).
1059 *
1060 * Return: non-zero if the ringbuffer is not ready to be written to.
1061 */
1062int intel_logical_ring_begin(struct intel_ringbuffer *ringbuf, int num_dwords)
1063{
1064        struct intel_engine_cs *ring = ringbuf->ring;
1065        struct drm_device *dev = ring->dev;
1066        struct drm_i915_private *dev_priv = dev->dev_private;
1067        int ret;
1068
1069        ret = i915_gem_check_wedge(&dev_priv->gpu_error,
1070                                   dev_priv->mm.interruptible);
1071        if (ret)
1072                return ret;
1073
1074        ret = logical_ring_prepare(ringbuf, num_dwords * sizeof(uint32_t));
1075        if (ret)
1076                return ret;
1077
1078        /* Preallocate the olr before touching the ring */
1079        ret = logical_ring_alloc_seqno(ring, ringbuf->FIXME_lrc_ctx);
1080        if (ret)
1081                return ret;
1082
1083        ringbuf->space -= num_dwords * sizeof(uint32_t);
1084        return 0;
1085}
1086
1087static int intel_logical_ring_workarounds_emit(struct intel_engine_cs *ring,
1088                                               struct intel_context *ctx)
1089{
1090        int ret, i;
1091        struct intel_ringbuffer *ringbuf = ctx->engine[ring->id].ringbuf;
1092        struct drm_device *dev = ring->dev;
1093        struct drm_i915_private *dev_priv = dev->dev_private;
1094        struct i915_workarounds *w = &dev_priv->workarounds;
1095
1096        if (WARN_ON(w->count == 0))
1097                return 0;
1098
1099        ring->gpu_caches_dirty = true;
1100        ret = logical_ring_flush_all_caches(ringbuf);
1101        if (ret)
1102                return ret;
1103
1104        ret = intel_logical_ring_begin(ringbuf, w->count * 2 + 2);
1105        if (ret)
1106                return ret;
1107
1108        intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(w->count));
1109        for (i = 0; i < w->count; i++) {
1110                intel_logical_ring_emit(ringbuf, w->reg[i].addr);
1111                intel_logical_ring_emit(ringbuf, w->reg[i].value);
1112        }
1113        intel_logical_ring_emit(ringbuf, MI_NOOP);
1114
1115        intel_logical_ring_advance(ringbuf);
1116
1117        ring->gpu_caches_dirty = true;
1118        ret = logical_ring_flush_all_caches(ringbuf);
1119        if (ret)
1120                return ret;
1121
1122        return 0;
1123}
1124
1125static int gen8_init_common_ring(struct intel_engine_cs *ring)
1126{
1127        struct drm_device *dev = ring->dev;
1128        struct drm_i915_private *dev_priv = dev->dev_private;
1129
1130        I915_WRITE_IMR(ring, ~(ring->irq_enable_mask | ring->irq_keep_mask));
1131        I915_WRITE(RING_HWSTAM(ring->mmio_base), 0xffffffff);
1132
1133        I915_WRITE(RING_MODE_GEN7(ring),
1134                   _MASKED_BIT_DISABLE(GFX_REPLAY_MODE) |
1135                   _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE));
1136        POSTING_READ(RING_MODE_GEN7(ring));
1137        DRM_DEBUG_DRIVER("Execlists enabled for %s\n", ring->name);
1138
1139        memset(&ring->hangcheck, 0, sizeof(ring->hangcheck));
1140
1141        return 0;
1142}
1143
1144static int gen8_init_render_ring(struct intel_engine_cs *ring)
1145{
1146        struct drm_device *dev = ring->dev;
1147        struct drm_i915_private *dev_priv = dev->dev_private;
1148        int ret;
1149
1150        ret = gen8_init_common_ring(ring);
1151        if (ret)
1152                return ret;
1153
1154        /* We need to disable the AsyncFlip performance optimisations in order
1155         * to use MI_WAIT_FOR_EVENT within the CS. It should already be
1156         * programmed to '1' on all products.
1157         *
1158         * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
1159         */
1160        I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
1161
1162        ret = intel_init_pipe_control(ring);
1163        if (ret)
1164                return ret;
1165
1166        I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
1167
1168        return init_workarounds_ring(ring);
1169}
1170
1171static int gen8_emit_bb_start(struct intel_ringbuffer *ringbuf,
1172                              u64 offset, unsigned flags)
1173{
1174        bool ppgtt = !(flags & I915_DISPATCH_SECURE);
1175        int ret;
1176
1177        ret = intel_logical_ring_begin(ringbuf, 4);
1178        if (ret)
1179                return ret;
1180
1181        /* FIXME(BDW): Address space and security selectors. */
1182        intel_logical_ring_emit(ringbuf, MI_BATCH_BUFFER_START_GEN8 | (ppgtt<<8));
1183        intel_logical_ring_emit(ringbuf, lower_32_bits(offset));
1184        intel_logical_ring_emit(ringbuf, upper_32_bits(offset));
1185        intel_logical_ring_emit(ringbuf, MI_NOOP);
1186        intel_logical_ring_advance(ringbuf);
1187
1188        return 0;
1189}
1190
1191static bool gen8_logical_ring_get_irq(struct intel_engine_cs *ring)
1192{
1193        struct drm_device *dev = ring->dev;
1194        struct drm_i915_private *dev_priv = dev->dev_private;
1195        unsigned long flags;
1196
1197        if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1198                return false;
1199
1200        spin_lock_irqsave(&dev_priv->irq_lock, flags);
1201        if (ring->irq_refcount++ == 0) {
1202                I915_WRITE_IMR(ring, ~(ring->irq_enable_mask | ring->irq_keep_mask));
1203                POSTING_READ(RING_IMR(ring->mmio_base));
1204        }
1205        spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1206
1207        return true;
1208}
1209
1210static void gen8_logical_ring_put_irq(struct intel_engine_cs *ring)
1211{
1212        struct drm_device *dev = ring->dev;
1213        struct drm_i915_private *dev_priv = dev->dev_private;
1214        unsigned long flags;
1215
1216        spin_lock_irqsave(&dev_priv->irq_lock, flags);
1217        if (--ring->irq_refcount == 0) {
1218                I915_WRITE_IMR(ring, ~ring->irq_keep_mask);
1219                POSTING_READ(RING_IMR(ring->mmio_base));
1220        }
1221        spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1222}
1223
1224static int gen8_emit_flush(struct intel_ringbuffer *ringbuf,
1225                           u32 invalidate_domains,
1226                           u32 unused)
1227{
1228        struct intel_engine_cs *ring = ringbuf->ring;
1229        struct drm_device *dev = ring->dev;
1230        struct drm_i915_private *dev_priv = dev->dev_private;
1231        uint32_t cmd;
1232        int ret;
1233
1234        ret = intel_logical_ring_begin(ringbuf, 4);
1235        if (ret)
1236                return ret;
1237
1238        cmd = MI_FLUSH_DW + 1;
1239
1240        if (ring == &dev_priv->ring[VCS]) {
1241                if (invalidate_domains & I915_GEM_GPU_DOMAINS)
1242                        cmd |= MI_INVALIDATE_TLB | MI_INVALIDATE_BSD |
1243                                MI_FLUSH_DW_STORE_INDEX |
1244                                MI_FLUSH_DW_OP_STOREDW;
1245        } else {
1246                if (invalidate_domains & I915_GEM_DOMAIN_RENDER)
1247                        cmd |= MI_INVALIDATE_TLB | MI_FLUSH_DW_STORE_INDEX |
1248                                MI_FLUSH_DW_OP_STOREDW;
1249        }
1250
1251        intel_logical_ring_emit(ringbuf, cmd);
1252        intel_logical_ring_emit(ringbuf,
1253                                I915_GEM_HWS_SCRATCH_ADDR |
1254                                MI_FLUSH_DW_USE_GTT);
1255        intel_logical_ring_emit(ringbuf, 0); /* upper addr */
1256        intel_logical_ring_emit(ringbuf, 0); /* value */
1257        intel_logical_ring_advance(ringbuf);
1258
1259        return 0;
1260}
1261
1262static int gen8_emit_flush_render(struct intel_ringbuffer *ringbuf,
1263                                  u32 invalidate_domains,
1264                                  u32 flush_domains)
1265{
1266        struct intel_engine_cs *ring = ringbuf->ring;
1267        u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
1268        u32 flags = 0;
1269        int ret;
1270
1271        flags |= PIPE_CONTROL_CS_STALL;
1272
1273        if (flush_domains) {
1274                flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
1275                flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
1276        }
1277
1278        if (invalidate_domains) {
1279                flags |= PIPE_CONTROL_TLB_INVALIDATE;
1280                flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
1281                flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
1282                flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
1283                flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
1284                flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
1285                flags |= PIPE_CONTROL_QW_WRITE;
1286                flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
1287        }
1288
1289        ret = intel_logical_ring_begin(ringbuf, 6);
1290        if (ret)
1291                return ret;
1292
1293        intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
1294        intel_logical_ring_emit(ringbuf, flags);
1295        intel_logical_ring_emit(ringbuf, scratch_addr);
1296        intel_logical_ring_emit(ringbuf, 0);
1297        intel_logical_ring_emit(ringbuf, 0);
1298        intel_logical_ring_emit(ringbuf, 0);
1299        intel_logical_ring_advance(ringbuf);
1300
1301        return 0;
1302}
1303
1304static u32 gen8_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
1305{
1306        return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
1307}
1308
1309static void gen8_set_seqno(struct intel_engine_cs *ring, u32 seqno)
1310{
1311        intel_write_status_page(ring, I915_GEM_HWS_INDEX, seqno);
1312}
1313
1314static int gen8_emit_request(struct intel_ringbuffer *ringbuf)
1315{
1316        struct intel_engine_cs *ring = ringbuf->ring;
1317        u32 cmd;
1318        int ret;
1319
1320        ret = intel_logical_ring_begin(ringbuf, 6);
1321        if (ret)
1322                return ret;
1323
1324        cmd = MI_STORE_DWORD_IMM_GEN8;
1325        cmd |= MI_GLOBAL_GTT;
1326
1327        intel_logical_ring_emit(ringbuf, cmd);
1328        intel_logical_ring_emit(ringbuf,
1329                                (ring->status_page.gfx_addr +
1330                                (I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT)));
1331        intel_logical_ring_emit(ringbuf, 0);
1332        intel_logical_ring_emit(ringbuf, ring->outstanding_lazy_seqno);
1333        intel_logical_ring_emit(ringbuf, MI_USER_INTERRUPT);
1334        intel_logical_ring_emit(ringbuf, MI_NOOP);
1335        intel_logical_ring_advance_and_submit(ringbuf);
1336
1337        return 0;
1338}
1339
1340/**
1341 * intel_logical_ring_cleanup() - deallocate the Engine Command Streamer
1342 *
1343 * @ring: Engine Command Streamer.
1344 *
1345 */
1346void intel_logical_ring_cleanup(struct intel_engine_cs *ring)
1347{
1348        struct drm_i915_private *dev_priv;
1349
1350        if (!intel_ring_initialized(ring))
1351                return;
1352
1353        dev_priv = ring->dev->dev_private;
1354
1355        intel_logical_ring_stop(ring);
1356        WARN_ON((I915_READ_MODE(ring) & MODE_IDLE) == 0);
1357        ring->preallocated_lazy_request = NULL;
1358        ring->outstanding_lazy_seqno = 0;
1359
1360        if (ring->cleanup)
1361                ring->cleanup(ring);
1362
1363        i915_cmd_parser_fini_ring(ring);
1364
1365        if (ring->status_page.obj) {
1366                kunmap(sg_page(ring->status_page.obj->pages->sgl));
1367                ring->status_page.obj = NULL;
1368        }
1369}
1370
1371static int logical_ring_init(struct drm_device *dev, struct intel_engine_cs *ring)
1372{
1373        int ret;
1374
1375        /* Intentionally left blank. */
1376        ring->buffer = NULL;
1377
1378        ring->dev = dev;
1379        INIT_LIST_HEAD(&ring->active_list);
1380        INIT_LIST_HEAD(&ring->request_list);
1381        init_waitqueue_head(&ring->irq_queue);
1382
1383        INIT_LIST_HEAD(&ring->execlist_queue);
1384        INIT_LIST_HEAD(&ring->execlist_retired_req_list);
1385        spin_lock_init(&ring->execlist_lock);
1386        ring->next_context_status_buffer = 0;
1387
1388        ret = i915_cmd_parser_init_ring(ring);
1389        if (ret)
1390                return ret;
1391
1392        if (ring->init) {
1393                ret = ring->init(ring);
1394                if (ret)
1395                        return ret;
1396        }
1397
1398        ret = intel_lr_context_deferred_create(ring->default_context, ring);
1399
1400        return ret;
1401}
1402
1403static int logical_render_ring_init(struct drm_device *dev)
1404{
1405        struct drm_i915_private *dev_priv = dev->dev_private;
1406        struct intel_engine_cs *ring = &dev_priv->ring[RCS];
1407
1408        ring->name = "render ring";
1409        ring->id = RCS;
1410        ring->mmio_base = RENDER_RING_BASE;
1411        ring->irq_enable_mask =
1412                GT_RENDER_USER_INTERRUPT << GEN8_RCS_IRQ_SHIFT;
1413        ring->irq_keep_mask =
1414                GT_CONTEXT_SWITCH_INTERRUPT << GEN8_RCS_IRQ_SHIFT;
1415        if (HAS_L3_DPF(dev))
1416                ring->irq_keep_mask |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
1417
1418        ring->init = gen8_init_render_ring;
1419        ring->init_context = intel_logical_ring_workarounds_emit;
1420        ring->cleanup = intel_fini_pipe_control;
1421        ring->get_seqno = gen8_get_seqno;
1422        ring->set_seqno = gen8_set_seqno;
1423        ring->emit_request = gen8_emit_request;
1424        ring->emit_flush = gen8_emit_flush_render;
1425        ring->irq_get = gen8_logical_ring_get_irq;
1426        ring->irq_put = gen8_logical_ring_put_irq;
1427        ring->emit_bb_start = gen8_emit_bb_start;
1428
1429        return logical_ring_init(dev, ring);
1430}
1431
1432static int logical_bsd_ring_init(struct drm_device *dev)
1433{
1434        struct drm_i915_private *dev_priv = dev->dev_private;
1435        struct intel_engine_cs *ring = &dev_priv->ring[VCS];
1436
1437        ring->name = "bsd ring";
1438        ring->id = VCS;
1439        ring->mmio_base = GEN6_BSD_RING_BASE;
1440        ring->irq_enable_mask =
1441                GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT;
1442        ring->irq_keep_mask =
1443                GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS1_IRQ_SHIFT;
1444
1445        ring->init = gen8_init_common_ring;
1446        ring->get_seqno = gen8_get_seqno;
1447        ring->set_seqno = gen8_set_seqno;
1448        ring->emit_request = gen8_emit_request;
1449        ring->emit_flush = gen8_emit_flush;
1450        ring->irq_get = gen8_logical_ring_get_irq;
1451        ring->irq_put = gen8_logical_ring_put_irq;
1452        ring->emit_bb_start = gen8_emit_bb_start;
1453
1454        return logical_ring_init(dev, ring);
1455}
1456
1457static int logical_bsd2_ring_init(struct drm_device *dev)
1458{
1459        struct drm_i915_private *dev_priv = dev->dev_private;
1460        struct intel_engine_cs *ring = &dev_priv->ring[VCS2];
1461
1462        ring->name = "bds2 ring";
1463        ring->id = VCS2;
1464        ring->mmio_base = GEN8_BSD2_RING_BASE;
1465        ring->irq_enable_mask =
1466                GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT;
1467        ring->irq_keep_mask =
1468                GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS2_IRQ_SHIFT;
1469
1470        ring->init = gen8_init_common_ring;
1471        ring->get_seqno = gen8_get_seqno;
1472        ring->set_seqno = gen8_set_seqno;
1473        ring->emit_request = gen8_emit_request;
1474        ring->emit_flush = gen8_emit_flush;
1475        ring->irq_get = gen8_logical_ring_get_irq;
1476        ring->irq_put = gen8_logical_ring_put_irq;
1477        ring->emit_bb_start = gen8_emit_bb_start;
1478
1479        return logical_ring_init(dev, ring);
1480}
1481
1482static int logical_blt_ring_init(struct drm_device *dev)
1483{
1484        struct drm_i915_private *dev_priv = dev->dev_private;
1485        struct intel_engine_cs *ring = &dev_priv->ring[BCS];
1486
1487        ring->name = "blitter ring";
1488        ring->id = BCS;
1489        ring->mmio_base = BLT_RING_BASE;
1490        ring->irq_enable_mask =
1491                GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
1492        ring->irq_keep_mask =
1493                GT_CONTEXT_SWITCH_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
1494
1495        ring->init = gen8_init_common_ring;
1496        ring->get_seqno = gen8_get_seqno;
1497        ring->set_seqno = gen8_set_seqno;
1498        ring->emit_request = gen8_emit_request;
1499        ring->emit_flush = gen8_emit_flush;
1500        ring->irq_get = gen8_logical_ring_get_irq;
1501        ring->irq_put = gen8_logical_ring_put_irq;
1502        ring->emit_bb_start = gen8_emit_bb_start;
1503
1504        return logical_ring_init(dev, ring);
1505}
1506
1507static int logical_vebox_ring_init(struct drm_device *dev)
1508{
1509        struct drm_i915_private *dev_priv = dev->dev_private;
1510        struct intel_engine_cs *ring = &dev_priv->ring[VECS];
1511
1512        ring->name = "video enhancement ring";
1513        ring->id = VECS;
1514        ring->mmio_base = VEBOX_RING_BASE;
1515        ring->irq_enable_mask =
1516                GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT;
1517        ring->irq_keep_mask =
1518                GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VECS_IRQ_SHIFT;
1519
1520        ring->init = gen8_init_common_ring;
1521        ring->get_seqno = gen8_get_seqno;
1522        ring->set_seqno = gen8_set_seqno;
1523        ring->emit_request = gen8_emit_request;
1524        ring->emit_flush = gen8_emit_flush;
1525        ring->irq_get = gen8_logical_ring_get_irq;
1526        ring->irq_put = gen8_logical_ring_put_irq;
1527        ring->emit_bb_start = gen8_emit_bb_start;
1528
1529        return logical_ring_init(dev, ring);
1530}
1531
1532/**
1533 * intel_logical_rings_init() - allocate, populate and init the Engine Command Streamers
1534 * @dev: DRM device.
1535 *
1536 * This function inits the engines for an Execlists submission style (the equivalent in the
1537 * legacy ringbuffer submission world would be i915_gem_init_rings). It does it only for
1538 * those engines that are present in the hardware.
1539 *
1540 * Return: non-zero if the initialization failed.
1541 */
1542int intel_logical_rings_init(struct drm_device *dev)
1543{
1544        struct drm_i915_private *dev_priv = dev->dev_private;
1545        int ret;
1546
1547        ret = logical_render_ring_init(dev);
1548        if (ret)
1549                return ret;
1550
1551        if (HAS_BSD(dev)) {
1552                ret = logical_bsd_ring_init(dev);
1553                if (ret)
1554                        goto cleanup_render_ring;
1555        }
1556
1557        if (HAS_BLT(dev)) {
1558                ret = logical_blt_ring_init(dev);
1559                if (ret)
1560                        goto cleanup_bsd_ring;
1561        }
1562
1563        if (HAS_VEBOX(dev)) {
1564                ret = logical_vebox_ring_init(dev);
1565                if (ret)
1566                        goto cleanup_blt_ring;
1567        }
1568
1569        if (HAS_BSD2(dev)) {
1570                ret = logical_bsd2_ring_init(dev);
1571                if (ret)
1572                        goto cleanup_vebox_ring;
1573        }
1574
1575        ret = i915_gem_set_seqno(dev, ((u32)~0 - 0x1000));
1576        if (ret)
1577                goto cleanup_bsd2_ring;
1578
1579        return 0;
1580
1581cleanup_bsd2_ring:
1582        intel_logical_ring_cleanup(&dev_priv->ring[VCS2]);
1583cleanup_vebox_ring:
1584        intel_logical_ring_cleanup(&dev_priv->ring[VECS]);
1585cleanup_blt_ring:
1586        intel_logical_ring_cleanup(&dev_priv->ring[BCS]);
1587cleanup_bsd_ring:
1588        intel_logical_ring_cleanup(&dev_priv->ring[VCS]);
1589cleanup_render_ring:
1590        intel_logical_ring_cleanup(&dev_priv->ring[RCS]);
1591
1592        return ret;
1593}
1594
1595int intel_lr_context_render_state_init(struct intel_engine_cs *ring,
1596                                       struct intel_context *ctx)
1597{
1598        struct intel_ringbuffer *ringbuf = ctx->engine[ring->id].ringbuf;
1599        struct render_state so;
1600        struct drm_i915_file_private *file_priv = ctx->file_priv;
1601        struct drm_file *file = file_priv ? file_priv->file : NULL;
1602        int ret;
1603
1604        ret = i915_gem_render_state_prepare(ring, &so);
1605        if (ret)
1606                return ret;
1607
1608        if (so.rodata == NULL)
1609                return 0;
1610
1611        ret = ring->emit_bb_start(ringbuf,
1612                        so.ggtt_offset,
1613                        I915_DISPATCH_SECURE);
1614        if (ret)
1615                goto out;
1616
1617        i915_vma_move_to_active(i915_gem_obj_to_ggtt(so.obj), ring);
1618
1619        ret = __i915_add_request(ring, file, so.obj, NULL);
1620        /* intel_logical_ring_add_request moves object to inactive if it
1621         * fails */
1622out:
1623        i915_gem_render_state_fini(&so);
1624        return ret;
1625}
1626
1627static int
1628populate_lr_context(struct intel_context *ctx, struct drm_i915_gem_object *ctx_obj,
1629                    struct intel_engine_cs *ring, struct intel_ringbuffer *ringbuf)
1630{
1631        struct drm_device *dev = ring->dev;
1632        struct drm_i915_private *dev_priv = dev->dev_private;
1633        struct i915_hw_ppgtt *ppgtt = ctx->ppgtt;
1634        struct page *page;
1635        uint32_t *reg_state;
1636        int ret;
1637
1638        if (!ppgtt)
1639                ppgtt = dev_priv->mm.aliasing_ppgtt;
1640
1641        ret = i915_gem_object_set_to_cpu_domain(ctx_obj, true);
1642        if (ret) {
1643                DRM_DEBUG_DRIVER("Could not set to CPU domain\n");
1644                return ret;
1645        }
1646
1647        ret = i915_gem_object_get_pages(ctx_obj);
1648        if (ret) {
1649                DRM_DEBUG_DRIVER("Could not get object pages\n");
1650                return ret;
1651        }
1652
1653        i915_gem_object_pin_pages(ctx_obj);
1654
1655        /* The second page of the context object contains some fields which must
1656         * be set up prior to the first execution. */
1657        page = i915_gem_object_get_page(ctx_obj, 1);
1658        reg_state = kmap_atomic(page);
1659
1660        /* A context is actually a big batch buffer with several MI_LOAD_REGISTER_IMM
1661         * commands followed by (reg, value) pairs. The values we are setting here are
1662         * only for the first context restore: on a subsequent save, the GPU will
1663         * recreate this batchbuffer with new values (including all the missing
1664         * MI_LOAD_REGISTER_IMM commands that we are not initializing here). */
1665        if (ring->id == RCS)
1666                reg_state[CTX_LRI_HEADER_0] = MI_LOAD_REGISTER_IMM(14);
1667        else
1668                reg_state[CTX_LRI_HEADER_0] = MI_LOAD_REGISTER_IMM(11);
1669        reg_state[CTX_LRI_HEADER_0] |= MI_LRI_FORCE_POSTED;
1670        reg_state[CTX_CONTEXT_CONTROL] = RING_CONTEXT_CONTROL(ring);
1671        reg_state[CTX_CONTEXT_CONTROL+1] =
1672                        _MASKED_BIT_ENABLE((1<<3) | MI_RESTORE_INHIBIT);
1673        reg_state[CTX_RING_HEAD] = RING_HEAD(ring->mmio_base);
1674        reg_state[CTX_RING_HEAD+1] = 0;
1675        reg_state[CTX_RING_TAIL] = RING_TAIL(ring->mmio_base);
1676        reg_state[CTX_RING_TAIL+1] = 0;
1677        reg_state[CTX_RING_BUFFER_START] = RING_START(ring->mmio_base);
1678        /* Ring buffer start address is not known until the buffer is pinned.
1679         * It is written to the context image in execlists_update_context()
1680         */
1681        reg_state[CTX_RING_BUFFER_CONTROL] = RING_CTL(ring->mmio_base);
1682        reg_state[CTX_RING_BUFFER_CONTROL+1] =
1683                        ((ringbuf->size - PAGE_SIZE) & RING_NR_PAGES) | RING_VALID;
1684        reg_state[CTX_BB_HEAD_U] = ring->mmio_base + 0x168;
1685        reg_state[CTX_BB_HEAD_U+1] = 0;
1686        reg_state[CTX_BB_HEAD_L] = ring->mmio_base + 0x140;
1687        reg_state[CTX_BB_HEAD_L+1] = 0;
1688        reg_state[CTX_BB_STATE] = ring->mmio_base + 0x110;
1689        reg_state[CTX_BB_STATE+1] = (1<<5);
1690        reg_state[CTX_SECOND_BB_HEAD_U] = ring->mmio_base + 0x11c;
1691        reg_state[CTX_SECOND_BB_HEAD_U+1] = 0;
1692        reg_state[CTX_SECOND_BB_HEAD_L] = ring->mmio_base + 0x114;
1693        reg_state[CTX_SECOND_BB_HEAD_L+1] = 0;
1694        reg_state[CTX_SECOND_BB_STATE] = ring->mmio_base + 0x118;
1695        reg_state[CTX_SECOND_BB_STATE+1] = 0;
1696        if (ring->id == RCS) {
1697                /* TODO: according to BSpec, the register state context
1698                 * for CHV does not have these. OTOH, these registers do
1699                 * exist in CHV. I'm waiting for a clarification */
1700                reg_state[CTX_BB_PER_CTX_PTR] = ring->mmio_base + 0x1c0;
1701                reg_state[CTX_BB_PER_CTX_PTR+1] = 0;
1702                reg_state[CTX_RCS_INDIRECT_CTX] = ring->mmio_base + 0x1c4;
1703                reg_state[CTX_RCS_INDIRECT_CTX+1] = 0;
1704                reg_state[CTX_RCS_INDIRECT_CTX_OFFSET] = ring->mmio_base + 0x1c8;
1705                reg_state[CTX_RCS_INDIRECT_CTX_OFFSET+1] = 0;
1706        }
1707        reg_state[CTX_LRI_HEADER_1] = MI_LOAD_REGISTER_IMM(9);
1708        reg_state[CTX_LRI_HEADER_1] |= MI_LRI_FORCE_POSTED;
1709        reg_state[CTX_CTX_TIMESTAMP] = ring->mmio_base + 0x3a8;
1710        reg_state[CTX_CTX_TIMESTAMP+1] = 0;
1711        reg_state[CTX_PDP3_UDW] = GEN8_RING_PDP_UDW(ring, 3);
1712        reg_state[CTX_PDP3_LDW] = GEN8_RING_PDP_LDW(ring, 3);
1713        reg_state[CTX_PDP2_UDW] = GEN8_RING_PDP_UDW(ring, 2);
1714        reg_state[CTX_PDP2_LDW] = GEN8_RING_PDP_LDW(ring, 2);
1715        reg_state[CTX_PDP1_UDW] = GEN8_RING_PDP_UDW(ring, 1);
1716        reg_state[CTX_PDP1_LDW] = GEN8_RING_PDP_LDW(ring, 1);
1717        reg_state[CTX_PDP0_UDW] = GEN8_RING_PDP_UDW(ring, 0);
1718        reg_state[CTX_PDP0_LDW] = GEN8_RING_PDP_LDW(ring, 0);
1719        reg_state[CTX_PDP3_UDW+1] = upper_32_bits(ppgtt->pd_dma_addr[3]);
1720        reg_state[CTX_PDP3_LDW+1] = lower_32_bits(ppgtt->pd_dma_addr[3]);
1721        reg_state[CTX_PDP2_UDW+1] = upper_32_bits(ppgtt->pd_dma_addr[2]);
1722        reg_state[CTX_PDP2_LDW+1] = lower_32_bits(ppgtt->pd_dma_addr[2]);
1723        reg_state[CTX_PDP1_UDW+1] = upper_32_bits(ppgtt->pd_dma_addr[1]);
1724        reg_state[CTX_PDP1_LDW+1] = lower_32_bits(ppgtt->pd_dma_addr[1]);
1725        reg_state[CTX_PDP0_UDW+1] = upper_32_bits(ppgtt->pd_dma_addr[0]);
1726        reg_state[CTX_PDP0_LDW+1] = lower_32_bits(ppgtt->pd_dma_addr[0]);
1727        if (ring->id == RCS) {
1728                reg_state[CTX_LRI_HEADER_2] = MI_LOAD_REGISTER_IMM(1);
1729                reg_state[CTX_R_PWR_CLK_STATE] = 0x20c8;
1730                reg_state[CTX_R_PWR_CLK_STATE+1] = 0;
1731        }
1732
1733        kunmap_atomic(reg_state);
1734
1735        ctx_obj->dirty = 1;
1736        set_page_dirty(page);
1737        i915_gem_object_unpin_pages(ctx_obj);
1738
1739        return 0;
1740}
1741
1742/**
1743 * intel_lr_context_free() - free the LRC specific bits of a context
1744 * @ctx: the LR context to free.
1745 *
1746 * The real context freeing is done in i915_gem_context_free: this only
1747 * takes care of the bits that are LRC related: the per-engine backing
1748 * objects and the logical ringbuffer.
1749 */
1750void intel_lr_context_free(struct intel_context *ctx)
1751{
1752        int i;
1753
1754        for (i = 0; i < I915_NUM_RINGS; i++) {
1755                struct drm_i915_gem_object *ctx_obj = ctx->engine[i].state;
1756
1757                if (ctx_obj) {
1758                        struct intel_ringbuffer *ringbuf =
1759                                        ctx->engine[i].ringbuf;
1760                        struct intel_engine_cs *ring = ringbuf->ring;
1761
1762                        if (ctx == ring->default_context) {
1763                                intel_unpin_ringbuffer_obj(ringbuf);
1764                                i915_gem_object_ggtt_unpin(ctx_obj);
1765                        }
1766                        intel_destroy_ringbuffer_obj(ringbuf);
1767                        kfree(ringbuf);
1768                        drm_gem_object_unreference(&ctx_obj->base);
1769                }
1770        }
1771}
1772
1773static uint32_t get_lr_context_size(struct intel_engine_cs *ring)
1774{
1775        int ret = 0;
1776
1777        WARN_ON(INTEL_INFO(ring->dev)->gen < 8);
1778
1779        switch (ring->id) {
1780        case RCS:
1781                if (INTEL_INFO(ring->dev)->gen >= 9)
1782                        ret = GEN9_LR_CONTEXT_RENDER_SIZE;
1783                else
1784                        ret = GEN8_LR_CONTEXT_RENDER_SIZE;
1785                break;
1786        case VCS:
1787        case BCS:
1788        case VECS:
1789        case VCS2:
1790                ret = GEN8_LR_CONTEXT_OTHER_SIZE;
1791                break;
1792        }
1793
1794        return ret;
1795}
1796
1797static void lrc_setup_hardware_status_page(struct intel_engine_cs *ring,
1798                struct drm_i915_gem_object *default_ctx_obj)
1799{
1800        struct drm_i915_private *dev_priv = ring->dev->dev_private;
1801
1802        /* The status page is offset 0 from the default context object
1803         * in LRC mode. */
1804        ring->status_page.gfx_addr = i915_gem_obj_ggtt_offset(default_ctx_obj);
1805        ring->status_page.page_addr =
1806                        kmap(sg_page(default_ctx_obj->pages->sgl));
1807        ring->status_page.obj = default_ctx_obj;
1808
1809        I915_WRITE(RING_HWS_PGA(ring->mmio_base),
1810                        (u32)ring->status_page.gfx_addr);
1811        POSTING_READ(RING_HWS_PGA(ring->mmio_base));
1812}
1813
1814/**
1815 * intel_lr_context_deferred_create() - create the LRC specific bits of a context
1816 * @ctx: LR context to create.
1817 * @ring: engine to be used with the context.
1818 *
1819 * This function can be called more than once, with different engines, if we plan
1820 * to use the context with them. The context backing objects and the ringbuffers
1821 * (specially the ringbuffer backing objects) suck a lot of memory up, and that's why
1822 * the creation is a deferred call: it's better to make sure first that we need to use
1823 * a given ring with the context.
1824 *
1825 * Return: non-zero on error.
1826 */
1827int intel_lr_context_deferred_create(struct intel_context *ctx,
1828                                     struct intel_engine_cs *ring)
1829{
1830        const bool is_global_default_ctx = (ctx == ring->default_context);
1831        struct drm_device *dev = ring->dev;
1832        struct drm_i915_gem_object *ctx_obj;
1833        uint32_t context_size;
1834        struct intel_ringbuffer *ringbuf;
1835        int ret;
1836
1837        WARN_ON(ctx->legacy_hw_ctx.rcs_state != NULL);
1838        if (ctx->engine[ring->id].state)
1839                return 0;
1840
1841        context_size = round_up(get_lr_context_size(ring), 4096);
1842
1843        ctx_obj = i915_gem_alloc_context_obj(dev, context_size);
1844        if (IS_ERR(ctx_obj)) {
1845                ret = PTR_ERR(ctx_obj);
1846                DRM_DEBUG_DRIVER("Alloc LRC backing obj failed: %d\n", ret);
1847                return ret;
1848        }
1849
1850        if (is_global_default_ctx) {
1851                ret = i915_gem_obj_ggtt_pin(ctx_obj, GEN8_LR_CONTEXT_ALIGN, 0);
1852                if (ret) {
1853                        DRM_DEBUG_DRIVER("Pin LRC backing obj failed: %d\n",
1854                                        ret);
1855                        drm_gem_object_unreference(&ctx_obj->base);
1856                        return ret;
1857                }
1858        }
1859
1860        ringbuf = kzalloc(sizeof(*ringbuf), GFP_KERNEL);
1861        if (!ringbuf) {
1862                DRM_DEBUG_DRIVER("Failed to allocate ringbuffer %s\n",
1863                                ring->name);
1864                ret = -ENOMEM;
1865                goto error_unpin_ctx;
1866        }
1867
1868        ringbuf->ring = ring;
1869        ringbuf->FIXME_lrc_ctx = ctx;
1870
1871        ringbuf->size = 32 * PAGE_SIZE;
1872        ringbuf->effective_size = ringbuf->size;
1873        ringbuf->head = 0;
1874        ringbuf->tail = 0;
1875        ringbuf->space = ringbuf->size;
1876        ringbuf->last_retired_head = -1;
1877
1878        if (ringbuf->obj == NULL) {
1879                ret = intel_alloc_ringbuffer_obj(dev, ringbuf);
1880                if (ret) {
1881                        DRM_DEBUG_DRIVER(
1882                                "Failed to allocate ringbuffer obj %s: %d\n",
1883                                ring->name, ret);
1884                        goto error_free_rbuf;
1885                }
1886
1887                if (is_global_default_ctx) {
1888                        ret = intel_pin_and_map_ringbuffer_obj(dev, ringbuf);
1889                        if (ret) {
1890                                DRM_ERROR(
1891                                        "Failed to pin and map ringbuffer %s: %d\n",
1892                                        ring->name, ret);
1893                                goto error_destroy_rbuf;
1894                        }
1895                }
1896
1897        }
1898
1899        ret = populate_lr_context(ctx, ctx_obj, ring, ringbuf);
1900        if (ret) {
1901                DRM_DEBUG_DRIVER("Failed to populate LRC: %d\n", ret);
1902                goto error;
1903        }
1904
1905        ctx->engine[ring->id].ringbuf = ringbuf;
1906        ctx->engine[ring->id].state = ctx_obj;
1907
1908        if (ctx == ring->default_context)
1909                lrc_setup_hardware_status_page(ring, ctx_obj);
1910
1911        if (ring->id == RCS && !ctx->rcs_initialized) {
1912                if (ring->init_context) {
1913                        ret = ring->init_context(ring, ctx);
1914                        if (ret)
1915                                DRM_ERROR("ring init context: %d\n", ret);
1916                }
1917
1918                ret = intel_lr_context_render_state_init(ring, ctx);
1919                if (ret) {
1920                        DRM_ERROR("Init render state failed: %d\n", ret);
1921                        ctx->engine[ring->id].ringbuf = NULL;
1922                        ctx->engine[ring->id].state = NULL;
1923                        goto error;
1924                }
1925                ctx->rcs_initialized = true;
1926        }
1927
1928        return 0;
1929
1930error:
1931        if (is_global_default_ctx)
1932                intel_unpin_ringbuffer_obj(ringbuf);
1933error_destroy_rbuf:
1934        intel_destroy_ringbuffer_obj(ringbuf);
1935error_free_rbuf:
1936        kfree(ringbuf);
1937error_unpin_ctx:
1938        if (is_global_default_ctx)
1939                i915_gem_object_ggtt_unpin(ctx_obj);
1940        drm_gem_object_unreference(&ctx_obj->base);
1941        return ret;
1942}
1943