linux/drivers/iommu/arm-smmu.c
<<
>>
Prefs
   1/*
   2 * IOMMU API for ARM architected SMMU implementations.
   3 *
   4 * This program is free software; you can redistribute it and/or modify
   5 * it under the terms of the GNU General Public License version 2 as
   6 * published by the Free Software Foundation.
   7 *
   8 * This program is distributed in the hope that it will be useful,
   9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  11 * GNU General Public License for more details.
  12 *
  13 * You should have received a copy of the GNU General Public License
  14 * along with this program; if not, write to the Free Software
  15 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
  16 *
  17 * Copyright (C) 2013 ARM Limited
  18 *
  19 * Author: Will Deacon <will.deacon@arm.com>
  20 *
  21 * This driver currently supports:
  22 *      - SMMUv1 and v2 implementations
  23 *      - Stream-matching and stream-indexing
  24 *      - v7/v8 long-descriptor format
  25 *      - Non-secure access to the SMMU
  26 *      - 4k and 64k pages, with contiguous pte hints.
  27 *      - Up to 48-bit addressing (dependent on VA_BITS)
  28 *      - Context fault reporting
  29 */
  30
  31#define pr_fmt(fmt) "arm-smmu: " fmt
  32
  33#include <linux/delay.h>
  34#include <linux/dma-mapping.h>
  35#include <linux/err.h>
  36#include <linux/interrupt.h>
  37#include <linux/io.h>
  38#include <linux/iommu.h>
  39#include <linux/mm.h>
  40#include <linux/module.h>
  41#include <linux/of.h>
  42#include <linux/pci.h>
  43#include <linux/platform_device.h>
  44#include <linux/slab.h>
  45#include <linux/spinlock.h>
  46
  47#include <linux/amba/bus.h>
  48
  49#include <asm/pgalloc.h>
  50
  51/* Maximum number of stream IDs assigned to a single device */
  52#define MAX_MASTER_STREAMIDS            MAX_PHANDLE_ARGS
  53
  54/* Maximum number of context banks per SMMU */
  55#define ARM_SMMU_MAX_CBS                128
  56
  57/* Maximum number of mapping groups per SMMU */
  58#define ARM_SMMU_MAX_SMRS               128
  59
  60/* SMMU global address space */
  61#define ARM_SMMU_GR0(smmu)              ((smmu)->base)
  62#define ARM_SMMU_GR1(smmu)              ((smmu)->base + (1 << (smmu)->pgshift))
  63
  64/*
  65 * SMMU global address space with conditional offset to access secure
  66 * aliases of non-secure registers (e.g. nsCR0: 0x400, nsGFSR: 0x448,
  67 * nsGFSYNR0: 0x450)
  68 */
  69#define ARM_SMMU_GR0_NS(smmu)                                           \
  70        ((smmu)->base +                                                 \
  71                ((smmu->options & ARM_SMMU_OPT_SECURE_CFG_ACCESS)       \
  72                        ? 0x400 : 0))
  73
  74/* Page table bits */
  75#define ARM_SMMU_PTE_XN                 (((pteval_t)3) << 53)
  76#define ARM_SMMU_PTE_CONT               (((pteval_t)1) << 52)
  77#define ARM_SMMU_PTE_AF                 (((pteval_t)1) << 10)
  78#define ARM_SMMU_PTE_SH_NS              (((pteval_t)0) << 8)
  79#define ARM_SMMU_PTE_SH_OS              (((pteval_t)2) << 8)
  80#define ARM_SMMU_PTE_SH_IS              (((pteval_t)3) << 8)
  81#define ARM_SMMU_PTE_PAGE               (((pteval_t)3) << 0)
  82
  83#if PAGE_SIZE == SZ_4K
  84#define ARM_SMMU_PTE_CONT_ENTRIES       16
  85#elif PAGE_SIZE == SZ_64K
  86#define ARM_SMMU_PTE_CONT_ENTRIES       32
  87#else
  88#define ARM_SMMU_PTE_CONT_ENTRIES       1
  89#endif
  90
  91#define ARM_SMMU_PTE_CONT_SIZE          (PAGE_SIZE * ARM_SMMU_PTE_CONT_ENTRIES)
  92#define ARM_SMMU_PTE_CONT_MASK          (~(ARM_SMMU_PTE_CONT_SIZE - 1))
  93
  94/* Stage-1 PTE */
  95#define ARM_SMMU_PTE_AP_UNPRIV          (((pteval_t)1) << 6)
  96#define ARM_SMMU_PTE_AP_RDONLY          (((pteval_t)2) << 6)
  97#define ARM_SMMU_PTE_ATTRINDX_SHIFT     2
  98#define ARM_SMMU_PTE_nG                 (((pteval_t)1) << 11)
  99
 100/* Stage-2 PTE */
 101#define ARM_SMMU_PTE_HAP_FAULT          (((pteval_t)0) << 6)
 102#define ARM_SMMU_PTE_HAP_READ           (((pteval_t)1) << 6)
 103#define ARM_SMMU_PTE_HAP_WRITE          (((pteval_t)2) << 6)
 104#define ARM_SMMU_PTE_MEMATTR_OIWB       (((pteval_t)0xf) << 2)
 105#define ARM_SMMU_PTE_MEMATTR_NC         (((pteval_t)0x5) << 2)
 106#define ARM_SMMU_PTE_MEMATTR_DEV        (((pteval_t)0x1) << 2)
 107
 108/* Configuration registers */
 109#define ARM_SMMU_GR0_sCR0               0x0
 110#define sCR0_CLIENTPD                   (1 << 0)
 111#define sCR0_GFRE                       (1 << 1)
 112#define sCR0_GFIE                       (1 << 2)
 113#define sCR0_GCFGFRE                    (1 << 4)
 114#define sCR0_GCFGFIE                    (1 << 5)
 115#define sCR0_USFCFG                     (1 << 10)
 116#define sCR0_VMIDPNE                    (1 << 11)
 117#define sCR0_PTM                        (1 << 12)
 118#define sCR0_FB                         (1 << 13)
 119#define sCR0_BSU_SHIFT                  14
 120#define sCR0_BSU_MASK                   0x3
 121
 122/* Identification registers */
 123#define ARM_SMMU_GR0_ID0                0x20
 124#define ARM_SMMU_GR0_ID1                0x24
 125#define ARM_SMMU_GR0_ID2                0x28
 126#define ARM_SMMU_GR0_ID3                0x2c
 127#define ARM_SMMU_GR0_ID4                0x30
 128#define ARM_SMMU_GR0_ID5                0x34
 129#define ARM_SMMU_GR0_ID6                0x38
 130#define ARM_SMMU_GR0_ID7                0x3c
 131#define ARM_SMMU_GR0_sGFSR              0x48
 132#define ARM_SMMU_GR0_sGFSYNR0           0x50
 133#define ARM_SMMU_GR0_sGFSYNR1           0x54
 134#define ARM_SMMU_GR0_sGFSYNR2           0x58
 135#define ARM_SMMU_GR0_PIDR0              0xfe0
 136#define ARM_SMMU_GR0_PIDR1              0xfe4
 137#define ARM_SMMU_GR0_PIDR2              0xfe8
 138
 139#define ID0_S1TS                        (1 << 30)
 140#define ID0_S2TS                        (1 << 29)
 141#define ID0_NTS                         (1 << 28)
 142#define ID0_SMS                         (1 << 27)
 143#define ID0_PTFS_SHIFT                  24
 144#define ID0_PTFS_MASK                   0x2
 145#define ID0_PTFS_V8_ONLY                0x2
 146#define ID0_CTTW                        (1 << 14)
 147#define ID0_NUMIRPT_SHIFT               16
 148#define ID0_NUMIRPT_MASK                0xff
 149#define ID0_NUMSIDB_SHIFT               9
 150#define ID0_NUMSIDB_MASK                0xf
 151#define ID0_NUMSMRG_SHIFT               0
 152#define ID0_NUMSMRG_MASK                0xff
 153
 154#define ID1_PAGESIZE                    (1 << 31)
 155#define ID1_NUMPAGENDXB_SHIFT           28
 156#define ID1_NUMPAGENDXB_MASK            7
 157#define ID1_NUMS2CB_SHIFT               16
 158#define ID1_NUMS2CB_MASK                0xff
 159#define ID1_NUMCB_SHIFT                 0
 160#define ID1_NUMCB_MASK                  0xff
 161
 162#define ID2_OAS_SHIFT                   4
 163#define ID2_OAS_MASK                    0xf
 164#define ID2_IAS_SHIFT                   0
 165#define ID2_IAS_MASK                    0xf
 166#define ID2_UBS_SHIFT                   8
 167#define ID2_UBS_MASK                    0xf
 168#define ID2_PTFS_4K                     (1 << 12)
 169#define ID2_PTFS_16K                    (1 << 13)
 170#define ID2_PTFS_64K                    (1 << 14)
 171
 172#define PIDR2_ARCH_SHIFT                4
 173#define PIDR2_ARCH_MASK                 0xf
 174
 175/* Global TLB invalidation */
 176#define ARM_SMMU_GR0_STLBIALL           0x60
 177#define ARM_SMMU_GR0_TLBIVMID           0x64
 178#define ARM_SMMU_GR0_TLBIALLNSNH        0x68
 179#define ARM_SMMU_GR0_TLBIALLH           0x6c
 180#define ARM_SMMU_GR0_sTLBGSYNC          0x70
 181#define ARM_SMMU_GR0_sTLBGSTATUS        0x74
 182#define sTLBGSTATUS_GSACTIVE            (1 << 0)
 183#define TLB_LOOP_TIMEOUT                1000000 /* 1s! */
 184
 185/* Stream mapping registers */
 186#define ARM_SMMU_GR0_SMR(n)             (0x800 + ((n) << 2))
 187#define SMR_VALID                       (1 << 31)
 188#define SMR_MASK_SHIFT                  16
 189#define SMR_MASK_MASK                   0x7fff
 190#define SMR_ID_SHIFT                    0
 191#define SMR_ID_MASK                     0x7fff
 192
 193#define ARM_SMMU_GR0_S2CR(n)            (0xc00 + ((n) << 2))
 194#define S2CR_CBNDX_SHIFT                0
 195#define S2CR_CBNDX_MASK                 0xff
 196#define S2CR_TYPE_SHIFT                 16
 197#define S2CR_TYPE_MASK                  0x3
 198#define S2CR_TYPE_TRANS                 (0 << S2CR_TYPE_SHIFT)
 199#define S2CR_TYPE_BYPASS                (1 << S2CR_TYPE_SHIFT)
 200#define S2CR_TYPE_FAULT                 (2 << S2CR_TYPE_SHIFT)
 201
 202/* Context bank attribute registers */
 203#define ARM_SMMU_GR1_CBAR(n)            (0x0 + ((n) << 2))
 204#define CBAR_VMID_SHIFT                 0
 205#define CBAR_VMID_MASK                  0xff
 206#define CBAR_S1_BPSHCFG_SHIFT           8
 207#define CBAR_S1_BPSHCFG_MASK            3
 208#define CBAR_S1_BPSHCFG_NSH             3
 209#define CBAR_S1_MEMATTR_SHIFT           12
 210#define CBAR_S1_MEMATTR_MASK            0xf
 211#define CBAR_S1_MEMATTR_WB              0xf
 212#define CBAR_TYPE_SHIFT                 16
 213#define CBAR_TYPE_MASK                  0x3
 214#define CBAR_TYPE_S2_TRANS              (0 << CBAR_TYPE_SHIFT)
 215#define CBAR_TYPE_S1_TRANS_S2_BYPASS    (1 << CBAR_TYPE_SHIFT)
 216#define CBAR_TYPE_S1_TRANS_S2_FAULT     (2 << CBAR_TYPE_SHIFT)
 217#define CBAR_TYPE_S1_TRANS_S2_TRANS     (3 << CBAR_TYPE_SHIFT)
 218#define CBAR_IRPTNDX_SHIFT              24
 219#define CBAR_IRPTNDX_MASK               0xff
 220
 221#define ARM_SMMU_GR1_CBA2R(n)           (0x800 + ((n) << 2))
 222#define CBA2R_RW64_32BIT                (0 << 0)
 223#define CBA2R_RW64_64BIT                (1 << 0)
 224
 225/* Translation context bank */
 226#define ARM_SMMU_CB_BASE(smmu)          ((smmu)->base + ((smmu)->size >> 1))
 227#define ARM_SMMU_CB(smmu, n)            ((n) * (1 << (smmu)->pgshift))
 228
 229#define ARM_SMMU_CB_SCTLR               0x0
 230#define ARM_SMMU_CB_RESUME              0x8
 231#define ARM_SMMU_CB_TTBCR2              0x10
 232#define ARM_SMMU_CB_TTBR0_LO            0x20
 233#define ARM_SMMU_CB_TTBR0_HI            0x24
 234#define ARM_SMMU_CB_TTBCR               0x30
 235#define ARM_SMMU_CB_S1_MAIR0            0x38
 236#define ARM_SMMU_CB_FSR                 0x58
 237#define ARM_SMMU_CB_FAR_LO              0x60
 238#define ARM_SMMU_CB_FAR_HI              0x64
 239#define ARM_SMMU_CB_FSYNR0              0x68
 240#define ARM_SMMU_CB_S1_TLBIASID         0x610
 241
 242#define SCTLR_S1_ASIDPNE                (1 << 12)
 243#define SCTLR_CFCFG                     (1 << 7)
 244#define SCTLR_CFIE                      (1 << 6)
 245#define SCTLR_CFRE                      (1 << 5)
 246#define SCTLR_E                         (1 << 4)
 247#define SCTLR_AFE                       (1 << 2)
 248#define SCTLR_TRE                       (1 << 1)
 249#define SCTLR_M                         (1 << 0)
 250#define SCTLR_EAE_SBOP                  (SCTLR_AFE | SCTLR_TRE)
 251
 252#define RESUME_RETRY                    (0 << 0)
 253#define RESUME_TERMINATE                (1 << 0)
 254
 255#define TTBCR_EAE                       (1 << 31)
 256
 257#define TTBCR_PASIZE_SHIFT              16
 258#define TTBCR_PASIZE_MASK               0x7
 259
 260#define TTBCR_TG0_4K                    (0 << 14)
 261#define TTBCR_TG0_64K                   (1 << 14)
 262
 263#define TTBCR_SH0_SHIFT                 12
 264#define TTBCR_SH0_MASK                  0x3
 265#define TTBCR_SH_NS                     0
 266#define TTBCR_SH_OS                     2
 267#define TTBCR_SH_IS                     3
 268
 269#define TTBCR_ORGN0_SHIFT               10
 270#define TTBCR_IRGN0_SHIFT               8
 271#define TTBCR_RGN_MASK                  0x3
 272#define TTBCR_RGN_NC                    0
 273#define TTBCR_RGN_WBWA                  1
 274#define TTBCR_RGN_WT                    2
 275#define TTBCR_RGN_WB                    3
 276
 277#define TTBCR_SL0_SHIFT                 6
 278#define TTBCR_SL0_MASK                  0x3
 279#define TTBCR_SL0_LVL_2                 0
 280#define TTBCR_SL0_LVL_1                 1
 281
 282#define TTBCR_T1SZ_SHIFT                16
 283#define TTBCR_T0SZ_SHIFT                0
 284#define TTBCR_SZ_MASK                   0xf
 285
 286#define TTBCR2_SEP_SHIFT                15
 287#define TTBCR2_SEP_MASK                 0x7
 288
 289#define TTBCR2_PASIZE_SHIFT             0
 290#define TTBCR2_PASIZE_MASK              0x7
 291
 292/* Common definitions for PASize and SEP fields */
 293#define TTBCR2_ADDR_32                  0
 294#define TTBCR2_ADDR_36                  1
 295#define TTBCR2_ADDR_40                  2
 296#define TTBCR2_ADDR_42                  3
 297#define TTBCR2_ADDR_44                  4
 298#define TTBCR2_ADDR_48                  5
 299
 300#define TTBRn_HI_ASID_SHIFT             16
 301
 302#define MAIR_ATTR_SHIFT(n)              ((n) << 3)
 303#define MAIR_ATTR_MASK                  0xff
 304#define MAIR_ATTR_DEVICE                0x04
 305#define MAIR_ATTR_NC                    0x44
 306#define MAIR_ATTR_WBRWA                 0xff
 307#define MAIR_ATTR_IDX_NC                0
 308#define MAIR_ATTR_IDX_CACHE             1
 309#define MAIR_ATTR_IDX_DEV               2
 310
 311#define FSR_MULTI                       (1 << 31)
 312#define FSR_SS                          (1 << 30)
 313#define FSR_UUT                         (1 << 8)
 314#define FSR_ASF                         (1 << 7)
 315#define FSR_TLBLKF                      (1 << 6)
 316#define FSR_TLBMCF                      (1 << 5)
 317#define FSR_EF                          (1 << 4)
 318#define FSR_PF                          (1 << 3)
 319#define FSR_AFF                         (1 << 2)
 320#define FSR_TF                          (1 << 1)
 321
 322#define FSR_IGN                         (FSR_AFF | FSR_ASF | \
 323                                         FSR_TLBMCF | FSR_TLBLKF)
 324#define FSR_FAULT                       (FSR_MULTI | FSR_SS | FSR_UUT | \
 325                                         FSR_EF | FSR_PF | FSR_TF | FSR_IGN)
 326
 327#define FSYNR0_WNR                      (1 << 4)
 328
 329static int force_stage;
 330module_param_named(force_stage, force_stage, int, S_IRUGO | S_IWUSR);
 331MODULE_PARM_DESC(force_stage,
 332        "Force SMMU mappings to be installed at a particular stage of translation. A value of '1' or '2' forces the corresponding stage. All other values are ignored (i.e. no stage is forced). Note that selecting a specific stage will disable support for nested translation.");
 333
 334enum arm_smmu_arch_version {
 335        ARM_SMMU_V1 = 1,
 336        ARM_SMMU_V2,
 337};
 338
 339struct arm_smmu_smr {
 340        u8                              idx;
 341        u16                             mask;
 342        u16                             id;
 343};
 344
 345struct arm_smmu_master_cfg {
 346        int                             num_streamids;
 347        u16                             streamids[MAX_MASTER_STREAMIDS];
 348        struct arm_smmu_smr             *smrs;
 349};
 350
 351struct arm_smmu_master {
 352        struct device_node              *of_node;
 353        struct rb_node                  node;
 354        struct arm_smmu_master_cfg      cfg;
 355};
 356
 357struct arm_smmu_device {
 358        struct device                   *dev;
 359
 360        void __iomem                    *base;
 361        unsigned long                   size;
 362        unsigned long                   pgshift;
 363
 364#define ARM_SMMU_FEAT_COHERENT_WALK     (1 << 0)
 365#define ARM_SMMU_FEAT_STREAM_MATCH      (1 << 1)
 366#define ARM_SMMU_FEAT_TRANS_S1          (1 << 2)
 367#define ARM_SMMU_FEAT_TRANS_S2          (1 << 3)
 368#define ARM_SMMU_FEAT_TRANS_NESTED      (1 << 4)
 369        u32                             features;
 370
 371#define ARM_SMMU_OPT_SECURE_CFG_ACCESS (1 << 0)
 372        u32                             options;
 373        enum arm_smmu_arch_version      version;
 374
 375        u32                             num_context_banks;
 376        u32                             num_s2_context_banks;
 377        DECLARE_BITMAP(context_map, ARM_SMMU_MAX_CBS);
 378        atomic_t                        irptndx;
 379
 380        u32                             num_mapping_groups;
 381        DECLARE_BITMAP(smr_map, ARM_SMMU_MAX_SMRS);
 382
 383        unsigned long                   s1_input_size;
 384        unsigned long                   s1_output_size;
 385        unsigned long                   s2_input_size;
 386        unsigned long                   s2_output_size;
 387
 388        u32                             num_global_irqs;
 389        u32                             num_context_irqs;
 390        unsigned int                    *irqs;
 391
 392        struct list_head                list;
 393        struct rb_root                  masters;
 394};
 395
 396struct arm_smmu_cfg {
 397        u8                              cbndx;
 398        u8                              irptndx;
 399        u32                             cbar;
 400        pgd_t                           *pgd;
 401};
 402#define INVALID_IRPTNDX                 0xff
 403
 404#define ARM_SMMU_CB_ASID(cfg)           ((cfg)->cbndx)
 405#define ARM_SMMU_CB_VMID(cfg)           ((cfg)->cbndx + 1)
 406
 407enum arm_smmu_domain_stage {
 408        ARM_SMMU_DOMAIN_S1 = 0,
 409        ARM_SMMU_DOMAIN_S2,
 410        ARM_SMMU_DOMAIN_NESTED,
 411};
 412
 413struct arm_smmu_domain {
 414        struct arm_smmu_device          *smmu;
 415        struct arm_smmu_cfg             cfg;
 416        enum arm_smmu_domain_stage      stage;
 417        spinlock_t                      lock;
 418};
 419
 420static DEFINE_SPINLOCK(arm_smmu_devices_lock);
 421static LIST_HEAD(arm_smmu_devices);
 422
 423struct arm_smmu_option_prop {
 424        u32 opt;
 425        const char *prop;
 426};
 427
 428static struct arm_smmu_option_prop arm_smmu_options[] = {
 429        { ARM_SMMU_OPT_SECURE_CFG_ACCESS, "calxeda,smmu-secure-config-access" },
 430        { 0, NULL},
 431};
 432
 433static void parse_driver_options(struct arm_smmu_device *smmu)
 434{
 435        int i = 0;
 436
 437        do {
 438                if (of_property_read_bool(smmu->dev->of_node,
 439                                                arm_smmu_options[i].prop)) {
 440                        smmu->options |= arm_smmu_options[i].opt;
 441                        dev_notice(smmu->dev, "option %s\n",
 442                                arm_smmu_options[i].prop);
 443                }
 444        } while (arm_smmu_options[++i].opt);
 445}
 446
 447static struct device_node *dev_get_dev_node(struct device *dev)
 448{
 449        if (dev_is_pci(dev)) {
 450                struct pci_bus *bus = to_pci_dev(dev)->bus;
 451
 452                while (!pci_is_root_bus(bus))
 453                        bus = bus->parent;
 454                return bus->bridge->parent->of_node;
 455        }
 456
 457        return dev->of_node;
 458}
 459
 460static struct arm_smmu_master *find_smmu_master(struct arm_smmu_device *smmu,
 461                                                struct device_node *dev_node)
 462{
 463        struct rb_node *node = smmu->masters.rb_node;
 464
 465        while (node) {
 466                struct arm_smmu_master *master;
 467
 468                master = container_of(node, struct arm_smmu_master, node);
 469
 470                if (dev_node < master->of_node)
 471                        node = node->rb_left;
 472                else if (dev_node > master->of_node)
 473                        node = node->rb_right;
 474                else
 475                        return master;
 476        }
 477
 478        return NULL;
 479}
 480
 481static struct arm_smmu_master_cfg *
 482find_smmu_master_cfg(struct device *dev)
 483{
 484        struct arm_smmu_master_cfg *cfg = NULL;
 485        struct iommu_group *group = iommu_group_get(dev);
 486
 487        if (group) {
 488                cfg = iommu_group_get_iommudata(group);
 489                iommu_group_put(group);
 490        }
 491
 492        return cfg;
 493}
 494
 495static int insert_smmu_master(struct arm_smmu_device *smmu,
 496                              struct arm_smmu_master *master)
 497{
 498        struct rb_node **new, *parent;
 499
 500        new = &smmu->masters.rb_node;
 501        parent = NULL;
 502        while (*new) {
 503                struct arm_smmu_master *this
 504                        = container_of(*new, struct arm_smmu_master, node);
 505
 506                parent = *new;
 507                if (master->of_node < this->of_node)
 508                        new = &((*new)->rb_left);
 509                else if (master->of_node > this->of_node)
 510                        new = &((*new)->rb_right);
 511                else
 512                        return -EEXIST;
 513        }
 514
 515        rb_link_node(&master->node, parent, new);
 516        rb_insert_color(&master->node, &smmu->masters);
 517        return 0;
 518}
 519
 520static int register_smmu_master(struct arm_smmu_device *smmu,
 521                                struct device *dev,
 522                                struct of_phandle_args *masterspec)
 523{
 524        int i;
 525        struct arm_smmu_master *master;
 526
 527        master = find_smmu_master(smmu, masterspec->np);
 528        if (master) {
 529                dev_err(dev,
 530                        "rejecting multiple registrations for master device %s\n",
 531                        masterspec->np->name);
 532                return -EBUSY;
 533        }
 534
 535        if (masterspec->args_count > MAX_MASTER_STREAMIDS) {
 536                dev_err(dev,
 537                        "reached maximum number (%d) of stream IDs for master device %s\n",
 538                        MAX_MASTER_STREAMIDS, masterspec->np->name);
 539                return -ENOSPC;
 540        }
 541
 542        master = devm_kzalloc(dev, sizeof(*master), GFP_KERNEL);
 543        if (!master)
 544                return -ENOMEM;
 545
 546        master->of_node                 = masterspec->np;
 547        master->cfg.num_streamids       = masterspec->args_count;
 548
 549        for (i = 0; i < master->cfg.num_streamids; ++i) {
 550                u16 streamid = masterspec->args[i];
 551
 552                if (!(smmu->features & ARM_SMMU_FEAT_STREAM_MATCH) &&
 553                     (streamid >= smmu->num_mapping_groups)) {
 554                        dev_err(dev,
 555                                "stream ID for master device %s greater than maximum allowed (%d)\n",
 556                                masterspec->np->name, smmu->num_mapping_groups);
 557                        return -ERANGE;
 558                }
 559                master->cfg.streamids[i] = streamid;
 560        }
 561        return insert_smmu_master(smmu, master);
 562}
 563
 564static struct arm_smmu_device *find_smmu_for_device(struct device *dev)
 565{
 566        struct arm_smmu_device *smmu;
 567        struct arm_smmu_master *master = NULL;
 568        struct device_node *dev_node = dev_get_dev_node(dev);
 569
 570        spin_lock(&arm_smmu_devices_lock);
 571        list_for_each_entry(smmu, &arm_smmu_devices, list) {
 572                master = find_smmu_master(smmu, dev_node);
 573                if (master)
 574                        break;
 575        }
 576        spin_unlock(&arm_smmu_devices_lock);
 577
 578        return master ? smmu : NULL;
 579}
 580
 581static int __arm_smmu_alloc_bitmap(unsigned long *map, int start, int end)
 582{
 583        int idx;
 584
 585        do {
 586                idx = find_next_zero_bit(map, end, start);
 587                if (idx == end)
 588                        return -ENOSPC;
 589        } while (test_and_set_bit(idx, map));
 590
 591        return idx;
 592}
 593
 594static void __arm_smmu_free_bitmap(unsigned long *map, int idx)
 595{
 596        clear_bit(idx, map);
 597}
 598
 599/* Wait for any pending TLB invalidations to complete */
 600static void arm_smmu_tlb_sync(struct arm_smmu_device *smmu)
 601{
 602        int count = 0;
 603        void __iomem *gr0_base = ARM_SMMU_GR0(smmu);
 604
 605        writel_relaxed(0, gr0_base + ARM_SMMU_GR0_sTLBGSYNC);
 606        while (readl_relaxed(gr0_base + ARM_SMMU_GR0_sTLBGSTATUS)
 607               & sTLBGSTATUS_GSACTIVE) {
 608                cpu_relax();
 609                if (++count == TLB_LOOP_TIMEOUT) {
 610                        dev_err_ratelimited(smmu->dev,
 611                        "TLB sync timed out -- SMMU may be deadlocked\n");
 612                        return;
 613                }
 614                udelay(1);
 615        }
 616}
 617
 618static void arm_smmu_tlb_inv_context(struct arm_smmu_domain *smmu_domain)
 619{
 620        struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
 621        struct arm_smmu_device *smmu = smmu_domain->smmu;
 622        void __iomem *base = ARM_SMMU_GR0(smmu);
 623        bool stage1 = cfg->cbar != CBAR_TYPE_S2_TRANS;
 624
 625        if (stage1) {
 626                base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, cfg->cbndx);
 627                writel_relaxed(ARM_SMMU_CB_ASID(cfg),
 628                               base + ARM_SMMU_CB_S1_TLBIASID);
 629        } else {
 630                base = ARM_SMMU_GR0(smmu);
 631                writel_relaxed(ARM_SMMU_CB_VMID(cfg),
 632                               base + ARM_SMMU_GR0_TLBIVMID);
 633        }
 634
 635        arm_smmu_tlb_sync(smmu);
 636}
 637
 638static irqreturn_t arm_smmu_context_fault(int irq, void *dev)
 639{
 640        int flags, ret;
 641        u32 fsr, far, fsynr, resume;
 642        unsigned long iova;
 643        struct iommu_domain *domain = dev;
 644        struct arm_smmu_domain *smmu_domain = domain->priv;
 645        struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
 646        struct arm_smmu_device *smmu = smmu_domain->smmu;
 647        void __iomem *cb_base;
 648
 649        cb_base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, cfg->cbndx);
 650        fsr = readl_relaxed(cb_base + ARM_SMMU_CB_FSR);
 651
 652        if (!(fsr & FSR_FAULT))
 653                return IRQ_NONE;
 654
 655        if (fsr & FSR_IGN)
 656                dev_err_ratelimited(smmu->dev,
 657                                    "Unexpected context fault (fsr 0x%x)\n",
 658                                    fsr);
 659
 660        fsynr = readl_relaxed(cb_base + ARM_SMMU_CB_FSYNR0);
 661        flags = fsynr & FSYNR0_WNR ? IOMMU_FAULT_WRITE : IOMMU_FAULT_READ;
 662
 663        far = readl_relaxed(cb_base + ARM_SMMU_CB_FAR_LO);
 664        iova = far;
 665#ifdef CONFIG_64BIT
 666        far = readl_relaxed(cb_base + ARM_SMMU_CB_FAR_HI);
 667        iova |= ((unsigned long)far << 32);
 668#endif
 669
 670        if (!report_iommu_fault(domain, smmu->dev, iova, flags)) {
 671                ret = IRQ_HANDLED;
 672                resume = RESUME_RETRY;
 673        } else {
 674                dev_err_ratelimited(smmu->dev,
 675                    "Unhandled context fault: iova=0x%08lx, fsynr=0x%x, cb=%d\n",
 676                    iova, fsynr, cfg->cbndx);
 677                ret = IRQ_NONE;
 678                resume = RESUME_TERMINATE;
 679        }
 680
 681        /* Clear the faulting FSR */
 682        writel(fsr, cb_base + ARM_SMMU_CB_FSR);
 683
 684        /* Retry or terminate any stalled transactions */
 685        if (fsr & FSR_SS)
 686                writel_relaxed(resume, cb_base + ARM_SMMU_CB_RESUME);
 687
 688        return ret;
 689}
 690
 691static irqreturn_t arm_smmu_global_fault(int irq, void *dev)
 692{
 693        u32 gfsr, gfsynr0, gfsynr1, gfsynr2;
 694        struct arm_smmu_device *smmu = dev;
 695        void __iomem *gr0_base = ARM_SMMU_GR0_NS(smmu);
 696
 697        gfsr = readl_relaxed(gr0_base + ARM_SMMU_GR0_sGFSR);
 698        gfsynr0 = readl_relaxed(gr0_base + ARM_SMMU_GR0_sGFSYNR0);
 699        gfsynr1 = readl_relaxed(gr0_base + ARM_SMMU_GR0_sGFSYNR1);
 700        gfsynr2 = readl_relaxed(gr0_base + ARM_SMMU_GR0_sGFSYNR2);
 701
 702        if (!gfsr)
 703                return IRQ_NONE;
 704
 705        dev_err_ratelimited(smmu->dev,
 706                "Unexpected global fault, this could be serious\n");
 707        dev_err_ratelimited(smmu->dev,
 708                "\tGFSR 0x%08x, GFSYNR0 0x%08x, GFSYNR1 0x%08x, GFSYNR2 0x%08x\n",
 709                gfsr, gfsynr0, gfsynr1, gfsynr2);
 710
 711        writel(gfsr, gr0_base + ARM_SMMU_GR0_sGFSR);
 712        return IRQ_HANDLED;
 713}
 714
 715static void arm_smmu_flush_pgtable(struct arm_smmu_device *smmu, void *addr,
 716                                   size_t size)
 717{
 718        unsigned long offset = (unsigned long)addr & ~PAGE_MASK;
 719
 720
 721        /* Ensure new page tables are visible to the hardware walker */
 722        if (smmu->features & ARM_SMMU_FEAT_COHERENT_WALK) {
 723                dsb(ishst);
 724        } else {
 725                /*
 726                 * If the SMMU can't walk tables in the CPU caches, treat them
 727                 * like non-coherent DMA since we need to flush the new entries
 728                 * all the way out to memory. There's no possibility of
 729                 * recursion here as the SMMU table walker will not be wired
 730                 * through another SMMU.
 731                 */
 732                dma_map_page(smmu->dev, virt_to_page(addr), offset, size,
 733                                DMA_TO_DEVICE);
 734        }
 735}
 736
 737static void arm_smmu_init_context_bank(struct arm_smmu_domain *smmu_domain)
 738{
 739        u32 reg;
 740        bool stage1;
 741        struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
 742        struct arm_smmu_device *smmu = smmu_domain->smmu;
 743        void __iomem *cb_base, *gr0_base, *gr1_base;
 744
 745        gr0_base = ARM_SMMU_GR0(smmu);
 746        gr1_base = ARM_SMMU_GR1(smmu);
 747        stage1 = cfg->cbar != CBAR_TYPE_S2_TRANS;
 748        cb_base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, cfg->cbndx);
 749
 750        /* CBAR */
 751        reg = cfg->cbar;
 752        if (smmu->version == ARM_SMMU_V1)
 753                reg |= cfg->irptndx << CBAR_IRPTNDX_SHIFT;
 754
 755        /*
 756         * Use the weakest shareability/memory types, so they are
 757         * overridden by the ttbcr/pte.
 758         */
 759        if (stage1) {
 760                reg |= (CBAR_S1_BPSHCFG_NSH << CBAR_S1_BPSHCFG_SHIFT) |
 761                        (CBAR_S1_MEMATTR_WB << CBAR_S1_MEMATTR_SHIFT);
 762        } else {
 763                reg |= ARM_SMMU_CB_VMID(cfg) << CBAR_VMID_SHIFT;
 764        }
 765        writel_relaxed(reg, gr1_base + ARM_SMMU_GR1_CBAR(cfg->cbndx));
 766
 767        if (smmu->version > ARM_SMMU_V1) {
 768                /* CBA2R */
 769#ifdef CONFIG_64BIT
 770                reg = CBA2R_RW64_64BIT;
 771#else
 772                reg = CBA2R_RW64_32BIT;
 773#endif
 774                writel_relaxed(reg,
 775                               gr1_base + ARM_SMMU_GR1_CBA2R(cfg->cbndx));
 776
 777                /* TTBCR2 */
 778                switch (smmu->s1_input_size) {
 779                case 32:
 780                        reg = (TTBCR2_ADDR_32 << TTBCR2_SEP_SHIFT);
 781                        break;
 782                case 36:
 783                        reg = (TTBCR2_ADDR_36 << TTBCR2_SEP_SHIFT);
 784                        break;
 785                case 39:
 786                case 40:
 787                        reg = (TTBCR2_ADDR_40 << TTBCR2_SEP_SHIFT);
 788                        break;
 789                case 42:
 790                        reg = (TTBCR2_ADDR_42 << TTBCR2_SEP_SHIFT);
 791                        break;
 792                case 44:
 793                        reg = (TTBCR2_ADDR_44 << TTBCR2_SEP_SHIFT);
 794                        break;
 795                case 48:
 796                        reg = (TTBCR2_ADDR_48 << TTBCR2_SEP_SHIFT);
 797                        break;
 798                }
 799
 800                switch (smmu->s1_output_size) {
 801                case 32:
 802                        reg |= (TTBCR2_ADDR_32 << TTBCR2_PASIZE_SHIFT);
 803                        break;
 804                case 36:
 805                        reg |= (TTBCR2_ADDR_36 << TTBCR2_PASIZE_SHIFT);
 806                        break;
 807                case 39:
 808                case 40:
 809                        reg |= (TTBCR2_ADDR_40 << TTBCR2_PASIZE_SHIFT);
 810                        break;
 811                case 42:
 812                        reg |= (TTBCR2_ADDR_42 << TTBCR2_PASIZE_SHIFT);
 813                        break;
 814                case 44:
 815                        reg |= (TTBCR2_ADDR_44 << TTBCR2_PASIZE_SHIFT);
 816                        break;
 817                case 48:
 818                        reg |= (TTBCR2_ADDR_48 << TTBCR2_PASIZE_SHIFT);
 819                        break;
 820                }
 821
 822                if (stage1)
 823                        writel_relaxed(reg, cb_base + ARM_SMMU_CB_TTBCR2);
 824        }
 825
 826        /* TTBR0 */
 827        arm_smmu_flush_pgtable(smmu, cfg->pgd,
 828                               PTRS_PER_PGD * sizeof(pgd_t));
 829        reg = __pa(cfg->pgd);
 830        writel_relaxed(reg, cb_base + ARM_SMMU_CB_TTBR0_LO);
 831        reg = (phys_addr_t)__pa(cfg->pgd) >> 32;
 832        if (stage1)
 833                reg |= ARM_SMMU_CB_ASID(cfg) << TTBRn_HI_ASID_SHIFT;
 834        writel_relaxed(reg, cb_base + ARM_SMMU_CB_TTBR0_HI);
 835
 836        /*
 837         * TTBCR
 838         * We use long descriptor, with inner-shareable WBWA tables in TTBR0.
 839         */
 840        if (smmu->version > ARM_SMMU_V1) {
 841                if (PAGE_SIZE == SZ_4K)
 842                        reg = TTBCR_TG0_4K;
 843                else
 844                        reg = TTBCR_TG0_64K;
 845
 846                if (!stage1) {
 847                        reg |= (64 - smmu->s2_input_size) << TTBCR_T0SZ_SHIFT;
 848
 849                        switch (smmu->s2_output_size) {
 850                        case 32:
 851                                reg |= (TTBCR2_ADDR_32 << TTBCR_PASIZE_SHIFT);
 852                                break;
 853                        case 36:
 854                                reg |= (TTBCR2_ADDR_36 << TTBCR_PASIZE_SHIFT);
 855                                break;
 856                        case 40:
 857                                reg |= (TTBCR2_ADDR_40 << TTBCR_PASIZE_SHIFT);
 858                                break;
 859                        case 42:
 860                                reg |= (TTBCR2_ADDR_42 << TTBCR_PASIZE_SHIFT);
 861                                break;
 862                        case 44:
 863                                reg |= (TTBCR2_ADDR_44 << TTBCR_PASIZE_SHIFT);
 864                                break;
 865                        case 48:
 866                                reg |= (TTBCR2_ADDR_48 << TTBCR_PASIZE_SHIFT);
 867                                break;
 868                        }
 869                } else {
 870                        reg |= (64 - smmu->s1_input_size) << TTBCR_T0SZ_SHIFT;
 871                }
 872        } else {
 873                reg = 0;
 874        }
 875
 876        reg |= TTBCR_EAE |
 877              (TTBCR_SH_IS << TTBCR_SH0_SHIFT) |
 878              (TTBCR_RGN_WBWA << TTBCR_ORGN0_SHIFT) |
 879              (TTBCR_RGN_WBWA << TTBCR_IRGN0_SHIFT);
 880
 881        if (!stage1)
 882                reg |= (TTBCR_SL0_LVL_1 << TTBCR_SL0_SHIFT);
 883
 884        writel_relaxed(reg, cb_base + ARM_SMMU_CB_TTBCR);
 885
 886        /* MAIR0 (stage-1 only) */
 887        if (stage1) {
 888                reg = (MAIR_ATTR_NC << MAIR_ATTR_SHIFT(MAIR_ATTR_IDX_NC)) |
 889                      (MAIR_ATTR_WBRWA << MAIR_ATTR_SHIFT(MAIR_ATTR_IDX_CACHE)) |
 890                      (MAIR_ATTR_DEVICE << MAIR_ATTR_SHIFT(MAIR_ATTR_IDX_DEV));
 891                writel_relaxed(reg, cb_base + ARM_SMMU_CB_S1_MAIR0);
 892        }
 893
 894        /* SCTLR */
 895        reg = SCTLR_CFCFG | SCTLR_CFIE | SCTLR_CFRE | SCTLR_M | SCTLR_EAE_SBOP;
 896        if (stage1)
 897                reg |= SCTLR_S1_ASIDPNE;
 898#ifdef __BIG_ENDIAN
 899        reg |= SCTLR_E;
 900#endif
 901        writel_relaxed(reg, cb_base + ARM_SMMU_CB_SCTLR);
 902}
 903
 904static int arm_smmu_init_domain_context(struct iommu_domain *domain,
 905                                        struct arm_smmu_device *smmu)
 906{
 907        int irq, start, ret = 0;
 908        unsigned long flags;
 909        struct arm_smmu_domain *smmu_domain = domain->priv;
 910        struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
 911
 912        spin_lock_irqsave(&smmu_domain->lock, flags);
 913        if (smmu_domain->smmu)
 914                goto out_unlock;
 915
 916        /*
 917         * Mapping the requested stage onto what we support is surprisingly
 918         * complicated, mainly because the spec allows S1+S2 SMMUs without
 919         * support for nested translation. That means we end up with the
 920         * following table:
 921         *
 922         * Requested        Supported        Actual
 923         *     S1               N              S1
 924         *     S1             S1+S2            S1
 925         *     S1               S2             S2
 926         *     S1               S1             S1
 927         *     N                N              N
 928         *     N              S1+S2            S2
 929         *     N                S2             S2
 930         *     N                S1             S1
 931         *
 932         * Note that you can't actually request stage-2 mappings.
 933         */
 934        if (!(smmu->features & ARM_SMMU_FEAT_TRANS_S1))
 935                smmu_domain->stage = ARM_SMMU_DOMAIN_S2;
 936        if (!(smmu->features & ARM_SMMU_FEAT_TRANS_S2))
 937                smmu_domain->stage = ARM_SMMU_DOMAIN_S1;
 938
 939        switch (smmu_domain->stage) {
 940        case ARM_SMMU_DOMAIN_S1:
 941                cfg->cbar = CBAR_TYPE_S1_TRANS_S2_BYPASS;
 942                start = smmu->num_s2_context_banks;
 943                break;
 944        case ARM_SMMU_DOMAIN_NESTED:
 945                /*
 946                 * We will likely want to change this if/when KVM gets
 947                 * involved.
 948                 */
 949        case ARM_SMMU_DOMAIN_S2:
 950                cfg->cbar = CBAR_TYPE_S2_TRANS;
 951                start = 0;
 952                break;
 953        default:
 954                ret = -EINVAL;
 955                goto out_unlock;
 956        }
 957
 958        ret = __arm_smmu_alloc_bitmap(smmu->context_map, start,
 959                                      smmu->num_context_banks);
 960        if (IS_ERR_VALUE(ret))
 961                goto out_unlock;
 962
 963        cfg->cbndx = ret;
 964        if (smmu->version == ARM_SMMU_V1) {
 965                cfg->irptndx = atomic_inc_return(&smmu->irptndx);
 966                cfg->irptndx %= smmu->num_context_irqs;
 967        } else {
 968                cfg->irptndx = cfg->cbndx;
 969        }
 970
 971        ACCESS_ONCE(smmu_domain->smmu) = smmu;
 972        arm_smmu_init_context_bank(smmu_domain);
 973        spin_unlock_irqrestore(&smmu_domain->lock, flags);
 974
 975        irq = smmu->irqs[smmu->num_global_irqs + cfg->irptndx];
 976        ret = request_irq(irq, arm_smmu_context_fault, IRQF_SHARED,
 977                          "arm-smmu-context-fault", domain);
 978        if (IS_ERR_VALUE(ret)) {
 979                dev_err(smmu->dev, "failed to request context IRQ %d (%u)\n",
 980                        cfg->irptndx, irq);
 981                cfg->irptndx = INVALID_IRPTNDX;
 982        }
 983
 984        return 0;
 985
 986out_unlock:
 987        spin_unlock_irqrestore(&smmu_domain->lock, flags);
 988        return ret;
 989}
 990
 991static void arm_smmu_destroy_domain_context(struct iommu_domain *domain)
 992{
 993        struct arm_smmu_domain *smmu_domain = domain->priv;
 994        struct arm_smmu_device *smmu = smmu_domain->smmu;
 995        struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
 996        void __iomem *cb_base;
 997        int irq;
 998
 999        if (!smmu)
1000                return;
1001
1002        /* Disable the context bank and nuke the TLB before freeing it. */
1003        cb_base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, cfg->cbndx);
1004        writel_relaxed(0, cb_base + ARM_SMMU_CB_SCTLR);
1005        arm_smmu_tlb_inv_context(smmu_domain);
1006
1007        if (cfg->irptndx != INVALID_IRPTNDX) {
1008                irq = smmu->irqs[smmu->num_global_irqs + cfg->irptndx];
1009                free_irq(irq, domain);
1010        }
1011
1012        __arm_smmu_free_bitmap(smmu->context_map, cfg->cbndx);
1013}
1014
1015static int arm_smmu_domain_init(struct iommu_domain *domain)
1016{
1017        struct arm_smmu_domain *smmu_domain;
1018        pgd_t *pgd;
1019
1020        /*
1021         * Allocate the domain and initialise some of its data structures.
1022         * We can't really do anything meaningful until we've added a
1023         * master.
1024         */
1025        smmu_domain = kzalloc(sizeof(*smmu_domain), GFP_KERNEL);
1026        if (!smmu_domain)
1027                return -ENOMEM;
1028
1029        pgd = kcalloc(PTRS_PER_PGD, sizeof(pgd_t), GFP_KERNEL);
1030        if (!pgd)
1031                goto out_free_domain;
1032        smmu_domain->cfg.pgd = pgd;
1033
1034        spin_lock_init(&smmu_domain->lock);
1035        domain->priv = smmu_domain;
1036        return 0;
1037
1038out_free_domain:
1039        kfree(smmu_domain);
1040        return -ENOMEM;
1041}
1042
1043static void arm_smmu_free_ptes(pmd_t *pmd)
1044{
1045        pgtable_t table = pmd_pgtable(*pmd);
1046
1047        __free_page(table);
1048}
1049
1050static void arm_smmu_free_pmds(pud_t *pud)
1051{
1052        int i;
1053        pmd_t *pmd, *pmd_base = pmd_offset(pud, 0);
1054
1055        pmd = pmd_base;
1056        for (i = 0; i < PTRS_PER_PMD; ++i) {
1057                if (pmd_none(*pmd))
1058                        continue;
1059
1060                arm_smmu_free_ptes(pmd);
1061                pmd++;
1062        }
1063
1064        pmd_free(NULL, pmd_base);
1065}
1066
1067static void arm_smmu_free_puds(pgd_t *pgd)
1068{
1069        int i;
1070        pud_t *pud, *pud_base = pud_offset(pgd, 0);
1071
1072        pud = pud_base;
1073        for (i = 0; i < PTRS_PER_PUD; ++i) {
1074                if (pud_none(*pud))
1075                        continue;
1076
1077                arm_smmu_free_pmds(pud);
1078                pud++;
1079        }
1080
1081        pud_free(NULL, pud_base);
1082}
1083
1084static void arm_smmu_free_pgtables(struct arm_smmu_domain *smmu_domain)
1085{
1086        int i;
1087        struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
1088        pgd_t *pgd, *pgd_base = cfg->pgd;
1089
1090        /*
1091         * Recursively free the page tables for this domain. We don't
1092         * care about speculative TLB filling because the tables should
1093         * not be active in any context bank at this point (SCTLR.M is 0).
1094         */
1095        pgd = pgd_base;
1096        for (i = 0; i < PTRS_PER_PGD; ++i) {
1097                if (pgd_none(*pgd))
1098                        continue;
1099                arm_smmu_free_puds(pgd);
1100                pgd++;
1101        }
1102
1103        kfree(pgd_base);
1104}
1105
1106static void arm_smmu_domain_destroy(struct iommu_domain *domain)
1107{
1108        struct arm_smmu_domain *smmu_domain = domain->priv;
1109
1110        /*
1111         * Free the domain resources. We assume that all devices have
1112         * already been detached.
1113         */
1114        arm_smmu_destroy_domain_context(domain);
1115        arm_smmu_free_pgtables(smmu_domain);
1116        kfree(smmu_domain);
1117}
1118
1119static int arm_smmu_master_configure_smrs(struct arm_smmu_device *smmu,
1120                                          struct arm_smmu_master_cfg *cfg)
1121{
1122        int i;
1123        struct arm_smmu_smr *smrs;
1124        void __iomem *gr0_base = ARM_SMMU_GR0(smmu);
1125
1126        if (!(smmu->features & ARM_SMMU_FEAT_STREAM_MATCH))
1127                return 0;
1128
1129        if (cfg->smrs)
1130                return -EEXIST;
1131
1132        smrs = kmalloc_array(cfg->num_streamids, sizeof(*smrs), GFP_KERNEL);
1133        if (!smrs) {
1134                dev_err(smmu->dev, "failed to allocate %d SMRs\n",
1135                        cfg->num_streamids);
1136                return -ENOMEM;
1137        }
1138
1139        /* Allocate the SMRs on the SMMU */
1140        for (i = 0; i < cfg->num_streamids; ++i) {
1141                int idx = __arm_smmu_alloc_bitmap(smmu->smr_map, 0,
1142                                                  smmu->num_mapping_groups);
1143                if (IS_ERR_VALUE(idx)) {
1144                        dev_err(smmu->dev, "failed to allocate free SMR\n");
1145                        goto err_free_smrs;
1146                }
1147
1148                smrs[i] = (struct arm_smmu_smr) {
1149                        .idx    = idx,
1150                        .mask   = 0, /* We don't currently share SMRs */
1151                        .id     = cfg->streamids[i],
1152                };
1153        }
1154
1155        /* It worked! Now, poke the actual hardware */
1156        for (i = 0; i < cfg->num_streamids; ++i) {
1157                u32 reg = SMR_VALID | smrs[i].id << SMR_ID_SHIFT |
1158                          smrs[i].mask << SMR_MASK_SHIFT;
1159                writel_relaxed(reg, gr0_base + ARM_SMMU_GR0_SMR(smrs[i].idx));
1160        }
1161
1162        cfg->smrs = smrs;
1163        return 0;
1164
1165err_free_smrs:
1166        while (--i >= 0)
1167                __arm_smmu_free_bitmap(smmu->smr_map, smrs[i].idx);
1168        kfree(smrs);
1169        return -ENOSPC;
1170}
1171
1172static void arm_smmu_master_free_smrs(struct arm_smmu_device *smmu,
1173                                      struct arm_smmu_master_cfg *cfg)
1174{
1175        int i;
1176        void __iomem *gr0_base = ARM_SMMU_GR0(smmu);
1177        struct arm_smmu_smr *smrs = cfg->smrs;
1178
1179        if (!smrs)
1180                return;
1181
1182        /* Invalidate the SMRs before freeing back to the allocator */
1183        for (i = 0; i < cfg->num_streamids; ++i) {
1184                u8 idx = smrs[i].idx;
1185
1186                writel_relaxed(~SMR_VALID, gr0_base + ARM_SMMU_GR0_SMR(idx));
1187                __arm_smmu_free_bitmap(smmu->smr_map, idx);
1188        }
1189
1190        cfg->smrs = NULL;
1191        kfree(smrs);
1192}
1193
1194static int arm_smmu_domain_add_master(struct arm_smmu_domain *smmu_domain,
1195                                      struct arm_smmu_master_cfg *cfg)
1196{
1197        int i, ret;
1198        struct arm_smmu_device *smmu = smmu_domain->smmu;
1199        void __iomem *gr0_base = ARM_SMMU_GR0(smmu);
1200
1201        /* Devices in an IOMMU group may already be configured */
1202        ret = arm_smmu_master_configure_smrs(smmu, cfg);
1203        if (ret)
1204                return ret == -EEXIST ? 0 : ret;
1205
1206        for (i = 0; i < cfg->num_streamids; ++i) {
1207                u32 idx, s2cr;
1208
1209                idx = cfg->smrs ? cfg->smrs[i].idx : cfg->streamids[i];
1210                s2cr = S2CR_TYPE_TRANS |
1211                       (smmu_domain->cfg.cbndx << S2CR_CBNDX_SHIFT);
1212                writel_relaxed(s2cr, gr0_base + ARM_SMMU_GR0_S2CR(idx));
1213        }
1214
1215        return 0;
1216}
1217
1218static void arm_smmu_domain_remove_master(struct arm_smmu_domain *smmu_domain,
1219                                          struct arm_smmu_master_cfg *cfg)
1220{
1221        int i;
1222        struct arm_smmu_device *smmu = smmu_domain->smmu;
1223        void __iomem *gr0_base = ARM_SMMU_GR0(smmu);
1224
1225        /* An IOMMU group is torn down by the first device to be removed */
1226        if ((smmu->features & ARM_SMMU_FEAT_STREAM_MATCH) && !cfg->smrs)
1227                return;
1228
1229        /*
1230         * We *must* clear the S2CR first, because freeing the SMR means
1231         * that it can be re-allocated immediately.
1232         */
1233        for (i = 0; i < cfg->num_streamids; ++i) {
1234                u32 idx = cfg->smrs ? cfg->smrs[i].idx : cfg->streamids[i];
1235
1236                writel_relaxed(S2CR_TYPE_BYPASS,
1237                               gr0_base + ARM_SMMU_GR0_S2CR(idx));
1238        }
1239
1240        arm_smmu_master_free_smrs(smmu, cfg);
1241}
1242
1243static int arm_smmu_attach_dev(struct iommu_domain *domain, struct device *dev)
1244{
1245        int ret;
1246        struct arm_smmu_domain *smmu_domain = domain->priv;
1247        struct arm_smmu_device *smmu, *dom_smmu;
1248        struct arm_smmu_master_cfg *cfg;
1249
1250        smmu = find_smmu_for_device(dev);
1251        if (!smmu) {
1252                dev_err(dev, "cannot attach to SMMU, is it on the same bus?\n");
1253                return -ENXIO;
1254        }
1255
1256        if (dev->archdata.iommu) {
1257                dev_err(dev, "already attached to IOMMU domain\n");
1258                return -EEXIST;
1259        }
1260
1261        /*
1262         * Sanity check the domain. We don't support domains across
1263         * different SMMUs.
1264         */
1265        dom_smmu = ACCESS_ONCE(smmu_domain->smmu);
1266        if (!dom_smmu) {
1267                /* Now that we have a master, we can finalise the domain */
1268                ret = arm_smmu_init_domain_context(domain, smmu);
1269                if (IS_ERR_VALUE(ret))
1270                        return ret;
1271
1272                dom_smmu = smmu_domain->smmu;
1273        }
1274
1275        if (dom_smmu != smmu) {
1276                dev_err(dev,
1277                        "cannot attach to SMMU %s whilst already attached to domain on SMMU %s\n",
1278                        dev_name(smmu_domain->smmu->dev), dev_name(smmu->dev));
1279                return -EINVAL;
1280        }
1281
1282        /* Looks ok, so add the device to the domain */
1283        cfg = find_smmu_master_cfg(dev);
1284        if (!cfg)
1285                return -ENODEV;
1286
1287        ret = arm_smmu_domain_add_master(smmu_domain, cfg);
1288        if (!ret)
1289                dev->archdata.iommu = domain;
1290        return ret;
1291}
1292
1293static void arm_smmu_detach_dev(struct iommu_domain *domain, struct device *dev)
1294{
1295        struct arm_smmu_domain *smmu_domain = domain->priv;
1296        struct arm_smmu_master_cfg *cfg;
1297
1298        cfg = find_smmu_master_cfg(dev);
1299        if (!cfg)
1300                return;
1301
1302        dev->archdata.iommu = NULL;
1303        arm_smmu_domain_remove_master(smmu_domain, cfg);
1304}
1305
1306static bool arm_smmu_pte_is_contiguous_range(unsigned long addr,
1307                                             unsigned long end)
1308{
1309        return !(addr & ~ARM_SMMU_PTE_CONT_MASK) &&
1310                (addr + ARM_SMMU_PTE_CONT_SIZE <= end);
1311}
1312
1313static int arm_smmu_alloc_init_pte(struct arm_smmu_device *smmu, pmd_t *pmd,
1314                                   unsigned long addr, unsigned long end,
1315                                   unsigned long pfn, int prot, int stage)
1316{
1317        pte_t *pte, *start;
1318        pteval_t pteval = ARM_SMMU_PTE_PAGE | ARM_SMMU_PTE_AF;
1319
1320        if (pmd_none(*pmd)) {
1321                /* Allocate a new set of tables */
1322                pgtable_t table = alloc_page(GFP_ATOMIC|__GFP_ZERO);
1323
1324                if (!table)
1325                        return -ENOMEM;
1326
1327                arm_smmu_flush_pgtable(smmu, page_address(table), PAGE_SIZE);
1328                pmd_populate(NULL, pmd, table);
1329                arm_smmu_flush_pgtable(smmu, pmd, sizeof(*pmd));
1330        }
1331
1332        if (stage == 1) {
1333                pteval |= ARM_SMMU_PTE_AP_UNPRIV | ARM_SMMU_PTE_nG;
1334                if (!(prot & IOMMU_WRITE) && (prot & IOMMU_READ))
1335                        pteval |= ARM_SMMU_PTE_AP_RDONLY;
1336
1337                if (prot & IOMMU_CACHE)
1338                        pteval |= (MAIR_ATTR_IDX_CACHE <<
1339                                   ARM_SMMU_PTE_ATTRINDX_SHIFT);
1340        } else {
1341                pteval |= ARM_SMMU_PTE_HAP_FAULT;
1342                if (prot & IOMMU_READ)
1343                        pteval |= ARM_SMMU_PTE_HAP_READ;
1344                if (prot & IOMMU_WRITE)
1345                        pteval |= ARM_SMMU_PTE_HAP_WRITE;
1346                if (prot & IOMMU_CACHE)
1347                        pteval |= ARM_SMMU_PTE_MEMATTR_OIWB;
1348                else
1349                        pteval |= ARM_SMMU_PTE_MEMATTR_NC;
1350        }
1351
1352        if (prot & IOMMU_NOEXEC)
1353                pteval |= ARM_SMMU_PTE_XN;
1354
1355        /* If no access, create a faulting entry to avoid TLB fills */
1356        if (!(prot & (IOMMU_READ | IOMMU_WRITE)))
1357                pteval &= ~ARM_SMMU_PTE_PAGE;
1358
1359        pteval |= ARM_SMMU_PTE_SH_IS;
1360        start = pmd_page_vaddr(*pmd) + pte_index(addr);
1361        pte = start;
1362
1363        /*
1364         * Install the page table entries. This is fairly complicated
1365         * since we attempt to make use of the contiguous hint in the
1366         * ptes where possible. The contiguous hint indicates a series
1367         * of ARM_SMMU_PTE_CONT_ENTRIES ptes mapping a physically
1368         * contiguous region with the following constraints:
1369         *
1370         *   - The region start is aligned to ARM_SMMU_PTE_CONT_SIZE
1371         *   - Each pte in the region has the contiguous hint bit set
1372         *
1373         * This complicates unmapping (also handled by this code, when
1374         * neither IOMMU_READ or IOMMU_WRITE are set) because it is
1375         * possible, yet highly unlikely, that a client may unmap only
1376         * part of a contiguous range. This requires clearing of the
1377         * contiguous hint bits in the range before installing the new
1378         * faulting entries.
1379         *
1380         * Note that re-mapping an address range without first unmapping
1381         * it is not supported, so TLB invalidation is not required here
1382         * and is instead performed at unmap and domain-init time.
1383         */
1384        do {
1385                int i = 1;
1386
1387                pteval &= ~ARM_SMMU_PTE_CONT;
1388
1389                if (arm_smmu_pte_is_contiguous_range(addr, end)) {
1390                        i = ARM_SMMU_PTE_CONT_ENTRIES;
1391                        pteval |= ARM_SMMU_PTE_CONT;
1392                } else if (pte_val(*pte) &
1393                           (ARM_SMMU_PTE_CONT | ARM_SMMU_PTE_PAGE)) {
1394                        int j;
1395                        pte_t *cont_start;
1396                        unsigned long idx = pte_index(addr);
1397
1398                        idx &= ~(ARM_SMMU_PTE_CONT_ENTRIES - 1);
1399                        cont_start = pmd_page_vaddr(*pmd) + idx;
1400                        for (j = 0; j < ARM_SMMU_PTE_CONT_ENTRIES; ++j)
1401                                pte_val(*(cont_start + j)) &=
1402                                        ~ARM_SMMU_PTE_CONT;
1403
1404                        arm_smmu_flush_pgtable(smmu, cont_start,
1405                                               sizeof(*pte) *
1406                                               ARM_SMMU_PTE_CONT_ENTRIES);
1407                }
1408
1409                do {
1410                        *pte = pfn_pte(pfn, __pgprot(pteval));
1411                } while (pte++, pfn++, addr += PAGE_SIZE, --i);
1412        } while (addr != end);
1413
1414        arm_smmu_flush_pgtable(smmu, start, sizeof(*pte) * (pte - start));
1415        return 0;
1416}
1417
1418static int arm_smmu_alloc_init_pmd(struct arm_smmu_device *smmu, pud_t *pud,
1419                                   unsigned long addr, unsigned long end,
1420                                   phys_addr_t phys, int prot, int stage)
1421{
1422        int ret;
1423        pmd_t *pmd;
1424        unsigned long next, pfn = __phys_to_pfn(phys);
1425
1426#ifndef __PAGETABLE_PMD_FOLDED
1427        if (pud_none(*pud)) {
1428                pmd = (pmd_t *)get_zeroed_page(GFP_ATOMIC);
1429                if (!pmd)
1430                        return -ENOMEM;
1431
1432                arm_smmu_flush_pgtable(smmu, pmd, PAGE_SIZE);
1433                pud_populate(NULL, pud, pmd);
1434                arm_smmu_flush_pgtable(smmu, pud, sizeof(*pud));
1435
1436                pmd += pmd_index(addr);
1437        } else
1438#endif
1439                pmd = pmd_offset(pud, addr);
1440
1441        do {
1442                next = pmd_addr_end(addr, end);
1443                ret = arm_smmu_alloc_init_pte(smmu, pmd, addr, next, pfn,
1444                                              prot, stage);
1445                phys += next - addr;
1446                pfn = __phys_to_pfn(phys);
1447        } while (pmd++, addr = next, addr < end);
1448
1449        return ret;
1450}
1451
1452static int arm_smmu_alloc_init_pud(struct arm_smmu_device *smmu, pgd_t *pgd,
1453                                   unsigned long addr, unsigned long end,
1454                                   phys_addr_t phys, int prot, int stage)
1455{
1456        int ret = 0;
1457        pud_t *pud;
1458        unsigned long next;
1459
1460#ifndef __PAGETABLE_PUD_FOLDED
1461        if (pgd_none(*pgd)) {
1462                pud = (pud_t *)get_zeroed_page(GFP_ATOMIC);
1463                if (!pud)
1464                        return -ENOMEM;
1465
1466                arm_smmu_flush_pgtable(smmu, pud, PAGE_SIZE);
1467                pgd_populate(NULL, pgd, pud);
1468                arm_smmu_flush_pgtable(smmu, pgd, sizeof(*pgd));
1469
1470                pud += pud_index(addr);
1471        } else
1472#endif
1473                pud = pud_offset(pgd, addr);
1474
1475        do {
1476                next = pud_addr_end(addr, end);
1477                ret = arm_smmu_alloc_init_pmd(smmu, pud, addr, next, phys,
1478                                              prot, stage);
1479                phys += next - addr;
1480        } while (pud++, addr = next, addr < end);
1481
1482        return ret;
1483}
1484
1485static int arm_smmu_handle_mapping(struct arm_smmu_domain *smmu_domain,
1486                                   unsigned long iova, phys_addr_t paddr,
1487                                   size_t size, int prot)
1488{
1489        int ret, stage;
1490        unsigned long end;
1491        phys_addr_t input_mask, output_mask;
1492        struct arm_smmu_device *smmu = smmu_domain->smmu;
1493        struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
1494        pgd_t *pgd = cfg->pgd;
1495        unsigned long flags;
1496
1497        if (cfg->cbar == CBAR_TYPE_S2_TRANS) {
1498                stage = 2;
1499                input_mask = (1ULL << smmu->s2_input_size) - 1;
1500                output_mask = (1ULL << smmu->s2_output_size) - 1;
1501        } else {
1502                stage = 1;
1503                input_mask = (1ULL << smmu->s1_input_size) - 1;
1504                output_mask = (1ULL << smmu->s1_output_size) - 1;
1505        }
1506
1507        if (!pgd)
1508                return -EINVAL;
1509
1510        if (size & ~PAGE_MASK)
1511                return -EINVAL;
1512
1513        if ((phys_addr_t)iova & ~input_mask)
1514                return -ERANGE;
1515
1516        if (paddr & ~output_mask)
1517                return -ERANGE;
1518
1519        spin_lock_irqsave(&smmu_domain->lock, flags);
1520        pgd += pgd_index(iova);
1521        end = iova + size;
1522        do {
1523                unsigned long next = pgd_addr_end(iova, end);
1524
1525                ret = arm_smmu_alloc_init_pud(smmu, pgd, iova, next, paddr,
1526                                              prot, stage);
1527                if (ret)
1528                        goto out_unlock;
1529
1530                paddr += next - iova;
1531                iova = next;
1532        } while (pgd++, iova != end);
1533
1534out_unlock:
1535        spin_unlock_irqrestore(&smmu_domain->lock, flags);
1536
1537        return ret;
1538}
1539
1540static int arm_smmu_map(struct iommu_domain *domain, unsigned long iova,
1541                        phys_addr_t paddr, size_t size, int prot)
1542{
1543        struct arm_smmu_domain *smmu_domain = domain->priv;
1544
1545        if (!smmu_domain)
1546                return -ENODEV;
1547
1548        return arm_smmu_handle_mapping(smmu_domain, iova, paddr, size, prot);
1549}
1550
1551static size_t arm_smmu_unmap(struct iommu_domain *domain, unsigned long iova,
1552                             size_t size)
1553{
1554        int ret;
1555        struct arm_smmu_domain *smmu_domain = domain->priv;
1556
1557        ret = arm_smmu_handle_mapping(smmu_domain, iova, 0, size, 0);
1558        arm_smmu_tlb_inv_context(smmu_domain);
1559        return ret ? 0 : size;
1560}
1561
1562static phys_addr_t arm_smmu_iova_to_phys(struct iommu_domain *domain,
1563                                         dma_addr_t iova)
1564{
1565        pgd_t *pgdp, pgd;
1566        pud_t pud;
1567        pmd_t pmd;
1568        pte_t pte;
1569        struct arm_smmu_domain *smmu_domain = domain->priv;
1570        struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
1571
1572        pgdp = cfg->pgd;
1573        if (!pgdp)
1574                return 0;
1575
1576        pgd = *(pgdp + pgd_index(iova));
1577        if (pgd_none(pgd))
1578                return 0;
1579
1580        pud = *pud_offset(&pgd, iova);
1581        if (pud_none(pud))
1582                return 0;
1583
1584        pmd = *pmd_offset(&pud, iova);
1585        if (pmd_none(pmd))
1586                return 0;
1587
1588        pte = *(pmd_page_vaddr(pmd) + pte_index(iova));
1589        if (pte_none(pte))
1590                return 0;
1591
1592        return __pfn_to_phys(pte_pfn(pte)) | (iova & ~PAGE_MASK);
1593}
1594
1595static bool arm_smmu_capable(enum iommu_cap cap)
1596{
1597        switch (cap) {
1598        case IOMMU_CAP_CACHE_COHERENCY:
1599                /*
1600                 * Return true here as the SMMU can always send out coherent
1601                 * requests.
1602                 */
1603                return true;
1604        case IOMMU_CAP_INTR_REMAP:
1605                return true; /* MSIs are just memory writes */
1606        case IOMMU_CAP_NOEXEC:
1607                return true;
1608        default:
1609                return false;
1610        }
1611}
1612
1613static int __arm_smmu_get_pci_sid(struct pci_dev *pdev, u16 alias, void *data)
1614{
1615        *((u16 *)data) = alias;
1616        return 0; /* Continue walking */
1617}
1618
1619static void __arm_smmu_release_pci_iommudata(void *data)
1620{
1621        kfree(data);
1622}
1623
1624static int arm_smmu_add_device(struct device *dev)
1625{
1626        struct arm_smmu_device *smmu;
1627        struct arm_smmu_master_cfg *cfg;
1628        struct iommu_group *group;
1629        void (*releasefn)(void *) = NULL;
1630        int ret;
1631
1632        smmu = find_smmu_for_device(dev);
1633        if (!smmu)
1634                return -ENODEV;
1635
1636        group = iommu_group_alloc();
1637        if (IS_ERR(group)) {
1638                dev_err(dev, "Failed to allocate IOMMU group\n");
1639                return PTR_ERR(group);
1640        }
1641
1642        if (dev_is_pci(dev)) {
1643                struct pci_dev *pdev = to_pci_dev(dev);
1644
1645                cfg = kzalloc(sizeof(*cfg), GFP_KERNEL);
1646                if (!cfg) {
1647                        ret = -ENOMEM;
1648                        goto out_put_group;
1649                }
1650
1651                cfg->num_streamids = 1;
1652                /*
1653                 * Assume Stream ID == Requester ID for now.
1654                 * We need a way to describe the ID mappings in FDT.
1655                 */
1656                pci_for_each_dma_alias(pdev, __arm_smmu_get_pci_sid,
1657                                       &cfg->streamids[0]);
1658                releasefn = __arm_smmu_release_pci_iommudata;
1659        } else {
1660                struct arm_smmu_master *master;
1661
1662                master = find_smmu_master(smmu, dev->of_node);
1663                if (!master) {
1664                        ret = -ENODEV;
1665                        goto out_put_group;
1666                }
1667
1668                cfg = &master->cfg;
1669        }
1670
1671        iommu_group_set_iommudata(group, cfg, releasefn);
1672        ret = iommu_group_add_device(group, dev);
1673
1674out_put_group:
1675        iommu_group_put(group);
1676        return ret;
1677}
1678
1679static void arm_smmu_remove_device(struct device *dev)
1680{
1681        iommu_group_remove_device(dev);
1682}
1683
1684static int arm_smmu_domain_get_attr(struct iommu_domain *domain,
1685                                    enum iommu_attr attr, void *data)
1686{
1687        struct arm_smmu_domain *smmu_domain = domain->priv;
1688
1689        switch (attr) {
1690        case DOMAIN_ATTR_NESTING:
1691                *(int *)data = (smmu_domain->stage == ARM_SMMU_DOMAIN_NESTED);
1692                return 0;
1693        default:
1694                return -ENODEV;
1695        }
1696}
1697
1698static int arm_smmu_domain_set_attr(struct iommu_domain *domain,
1699                                    enum iommu_attr attr, void *data)
1700{
1701        struct arm_smmu_domain *smmu_domain = domain->priv;
1702
1703        switch (attr) {
1704        case DOMAIN_ATTR_NESTING:
1705                if (smmu_domain->smmu)
1706                        return -EPERM;
1707                if (*(int *)data)
1708                        smmu_domain->stage = ARM_SMMU_DOMAIN_NESTED;
1709                else
1710                        smmu_domain->stage = ARM_SMMU_DOMAIN_S1;
1711
1712                return 0;
1713        default:
1714                return -ENODEV;
1715        }
1716}
1717
1718static const struct iommu_ops arm_smmu_ops = {
1719        .capable                = arm_smmu_capable,
1720        .domain_init            = arm_smmu_domain_init,
1721        .domain_destroy         = arm_smmu_domain_destroy,
1722        .attach_dev             = arm_smmu_attach_dev,
1723        .detach_dev             = arm_smmu_detach_dev,
1724        .map                    = arm_smmu_map,
1725        .unmap                  = arm_smmu_unmap,
1726        .map_sg                 = default_iommu_map_sg,
1727        .iova_to_phys           = arm_smmu_iova_to_phys,
1728        .add_device             = arm_smmu_add_device,
1729        .remove_device          = arm_smmu_remove_device,
1730        .domain_get_attr        = arm_smmu_domain_get_attr,
1731        .domain_set_attr        = arm_smmu_domain_set_attr,
1732        .pgsize_bitmap          = (SECTION_SIZE |
1733                                   ARM_SMMU_PTE_CONT_SIZE |
1734                                   PAGE_SIZE),
1735};
1736
1737static void arm_smmu_device_reset(struct arm_smmu_device *smmu)
1738{
1739        void __iomem *gr0_base = ARM_SMMU_GR0(smmu);
1740        void __iomem *cb_base;
1741        int i = 0;
1742        u32 reg;
1743
1744        /* clear global FSR */
1745        reg = readl_relaxed(ARM_SMMU_GR0_NS(smmu) + ARM_SMMU_GR0_sGFSR);
1746        writel(reg, ARM_SMMU_GR0_NS(smmu) + ARM_SMMU_GR0_sGFSR);
1747
1748        /* Mark all SMRn as invalid and all S2CRn as bypass */
1749        for (i = 0; i < smmu->num_mapping_groups; ++i) {
1750                writel_relaxed(0, gr0_base + ARM_SMMU_GR0_SMR(i));
1751                writel_relaxed(S2CR_TYPE_BYPASS,
1752                        gr0_base + ARM_SMMU_GR0_S2CR(i));
1753        }
1754
1755        /* Make sure all context banks are disabled and clear CB_FSR  */
1756        for (i = 0; i < smmu->num_context_banks; ++i) {
1757                cb_base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, i);
1758                writel_relaxed(0, cb_base + ARM_SMMU_CB_SCTLR);
1759                writel_relaxed(FSR_FAULT, cb_base + ARM_SMMU_CB_FSR);
1760        }
1761
1762        /* Invalidate the TLB, just in case */
1763        writel_relaxed(0, gr0_base + ARM_SMMU_GR0_STLBIALL);
1764        writel_relaxed(0, gr0_base + ARM_SMMU_GR0_TLBIALLH);
1765        writel_relaxed(0, gr0_base + ARM_SMMU_GR0_TLBIALLNSNH);
1766
1767        reg = readl_relaxed(ARM_SMMU_GR0_NS(smmu) + ARM_SMMU_GR0_sCR0);
1768
1769        /* Enable fault reporting */
1770        reg |= (sCR0_GFRE | sCR0_GFIE | sCR0_GCFGFRE | sCR0_GCFGFIE);
1771
1772        /* Disable TLB broadcasting. */
1773        reg |= (sCR0_VMIDPNE | sCR0_PTM);
1774
1775        /* Enable client access, but bypass when no mapping is found */
1776        reg &= ~(sCR0_CLIENTPD | sCR0_USFCFG);
1777
1778        /* Disable forced broadcasting */
1779        reg &= ~sCR0_FB;
1780
1781        /* Don't upgrade barriers */
1782        reg &= ~(sCR0_BSU_MASK << sCR0_BSU_SHIFT);
1783
1784        /* Push the button */
1785        arm_smmu_tlb_sync(smmu);
1786        writel(reg, ARM_SMMU_GR0_NS(smmu) + ARM_SMMU_GR0_sCR0);
1787}
1788
1789static int arm_smmu_id_size_to_bits(int size)
1790{
1791        switch (size) {
1792        case 0:
1793                return 32;
1794        case 1:
1795                return 36;
1796        case 2:
1797                return 40;
1798        case 3:
1799                return 42;
1800        case 4:
1801                return 44;
1802        case 5:
1803        default:
1804                return 48;
1805        }
1806}
1807
1808static int arm_smmu_device_cfg_probe(struct arm_smmu_device *smmu)
1809{
1810        unsigned long size;
1811        void __iomem *gr0_base = ARM_SMMU_GR0(smmu);
1812        u32 id;
1813
1814        dev_notice(smmu->dev, "probing hardware configuration...\n");
1815        dev_notice(smmu->dev, "SMMUv%d with:\n", smmu->version);
1816
1817        /* ID0 */
1818        id = readl_relaxed(gr0_base + ARM_SMMU_GR0_ID0);
1819#ifndef CONFIG_64BIT
1820        if (((id >> ID0_PTFS_SHIFT) & ID0_PTFS_MASK) == ID0_PTFS_V8_ONLY) {
1821                dev_err(smmu->dev, "\tno v7 descriptor support!\n");
1822                return -ENODEV;
1823        }
1824#endif
1825
1826        /* Restrict available stages based on module parameter */
1827        if (force_stage == 1)
1828                id &= ~(ID0_S2TS | ID0_NTS);
1829        else if (force_stage == 2)
1830                id &= ~(ID0_S1TS | ID0_NTS);
1831
1832        if (id & ID0_S1TS) {
1833                smmu->features |= ARM_SMMU_FEAT_TRANS_S1;
1834                dev_notice(smmu->dev, "\tstage 1 translation\n");
1835        }
1836
1837        if (id & ID0_S2TS) {
1838                smmu->features |= ARM_SMMU_FEAT_TRANS_S2;
1839                dev_notice(smmu->dev, "\tstage 2 translation\n");
1840        }
1841
1842        if (id & ID0_NTS) {
1843                smmu->features |= ARM_SMMU_FEAT_TRANS_NESTED;
1844                dev_notice(smmu->dev, "\tnested translation\n");
1845        }
1846
1847        if (!(smmu->features &
1848                (ARM_SMMU_FEAT_TRANS_S1 | ARM_SMMU_FEAT_TRANS_S2))) {
1849                dev_err(smmu->dev, "\tno translation support!\n");
1850                return -ENODEV;
1851        }
1852
1853        if (id & ID0_CTTW) {
1854                smmu->features |= ARM_SMMU_FEAT_COHERENT_WALK;
1855                dev_notice(smmu->dev, "\tcoherent table walk\n");
1856        }
1857
1858        if (id & ID0_SMS) {
1859                u32 smr, sid, mask;
1860
1861                smmu->features |= ARM_SMMU_FEAT_STREAM_MATCH;
1862                smmu->num_mapping_groups = (id >> ID0_NUMSMRG_SHIFT) &
1863                                           ID0_NUMSMRG_MASK;
1864                if (smmu->num_mapping_groups == 0) {
1865                        dev_err(smmu->dev,
1866                                "stream-matching supported, but no SMRs present!\n");
1867                        return -ENODEV;
1868                }
1869
1870                smr = SMR_MASK_MASK << SMR_MASK_SHIFT;
1871                smr |= (SMR_ID_MASK << SMR_ID_SHIFT);
1872                writel_relaxed(smr, gr0_base + ARM_SMMU_GR0_SMR(0));
1873                smr = readl_relaxed(gr0_base + ARM_SMMU_GR0_SMR(0));
1874
1875                mask = (smr >> SMR_MASK_SHIFT) & SMR_MASK_MASK;
1876                sid = (smr >> SMR_ID_SHIFT) & SMR_ID_MASK;
1877                if ((mask & sid) != sid) {
1878                        dev_err(smmu->dev,
1879                                "SMR mask bits (0x%x) insufficient for ID field (0x%x)\n",
1880                                mask, sid);
1881                        return -ENODEV;
1882                }
1883
1884                dev_notice(smmu->dev,
1885                           "\tstream matching with %u register groups, mask 0x%x",
1886                           smmu->num_mapping_groups, mask);
1887        } else {
1888                smmu->num_mapping_groups = (id >> ID0_NUMSIDB_SHIFT) &
1889                                           ID0_NUMSIDB_MASK;
1890        }
1891
1892        /* ID1 */
1893        id = readl_relaxed(gr0_base + ARM_SMMU_GR0_ID1);
1894        smmu->pgshift = (id & ID1_PAGESIZE) ? 16 : 12;
1895
1896        /* Check for size mismatch of SMMU address space from mapped region */
1897        size = 1 <<
1898                (((id >> ID1_NUMPAGENDXB_SHIFT) & ID1_NUMPAGENDXB_MASK) + 1);
1899        size *= 2 << smmu->pgshift;
1900        if (smmu->size != size)
1901                dev_warn(smmu->dev,
1902                        "SMMU address space size (0x%lx) differs from mapped region size (0x%lx)!\n",
1903                        size, smmu->size);
1904
1905        smmu->num_s2_context_banks = (id >> ID1_NUMS2CB_SHIFT) &
1906                                      ID1_NUMS2CB_MASK;
1907        smmu->num_context_banks = (id >> ID1_NUMCB_SHIFT) & ID1_NUMCB_MASK;
1908        if (smmu->num_s2_context_banks > smmu->num_context_banks) {
1909                dev_err(smmu->dev, "impossible number of S2 context banks!\n");
1910                return -ENODEV;
1911        }
1912        dev_notice(smmu->dev, "\t%u context banks (%u stage-2 only)\n",
1913                   smmu->num_context_banks, smmu->num_s2_context_banks);
1914
1915        /* ID2 */
1916        id = readl_relaxed(gr0_base + ARM_SMMU_GR0_ID2);
1917        size = arm_smmu_id_size_to_bits((id >> ID2_IAS_SHIFT) & ID2_IAS_MASK);
1918        smmu->s1_output_size = min_t(unsigned long, PHYS_MASK_SHIFT, size);
1919
1920        /* Stage-2 input size limited due to pgd allocation (PTRS_PER_PGD) */
1921#ifdef CONFIG_64BIT
1922        smmu->s2_input_size = min_t(unsigned long, VA_BITS, size);
1923#else
1924        smmu->s2_input_size = min(32UL, size);
1925#endif
1926
1927        /* The stage-2 output mask is also applied for bypass */
1928        size = arm_smmu_id_size_to_bits((id >> ID2_OAS_SHIFT) & ID2_OAS_MASK);
1929        smmu->s2_output_size = min_t(unsigned long, PHYS_MASK_SHIFT, size);
1930
1931        if (smmu->version == ARM_SMMU_V1) {
1932                smmu->s1_input_size = 32;
1933        } else {
1934#ifdef CONFIG_64BIT
1935                size = (id >> ID2_UBS_SHIFT) & ID2_UBS_MASK;
1936                size = min(VA_BITS, arm_smmu_id_size_to_bits(size));
1937#else
1938                size = 32;
1939#endif
1940                smmu->s1_input_size = size;
1941
1942                if ((PAGE_SIZE == SZ_4K && !(id & ID2_PTFS_4K)) ||
1943                    (PAGE_SIZE == SZ_64K && !(id & ID2_PTFS_64K)) ||
1944                    (PAGE_SIZE != SZ_4K && PAGE_SIZE != SZ_64K)) {
1945                        dev_err(smmu->dev, "CPU page size 0x%lx unsupported\n",
1946                                PAGE_SIZE);
1947                        return -ENODEV;
1948                }
1949        }
1950
1951        if (smmu->features & ARM_SMMU_FEAT_TRANS_S1)
1952                dev_notice(smmu->dev, "\tStage-1: %lu-bit VA -> %lu-bit IPA\n",
1953                           smmu->s1_input_size, smmu->s1_output_size);
1954
1955        if (smmu->features & ARM_SMMU_FEAT_TRANS_S2)
1956                dev_notice(smmu->dev, "\tStage-2: %lu-bit IPA -> %lu-bit PA\n",
1957                           smmu->s2_input_size, smmu->s2_output_size);
1958
1959        return 0;
1960}
1961
1962static const struct of_device_id arm_smmu_of_match[] = {
1963        { .compatible = "arm,smmu-v1", .data = (void *)ARM_SMMU_V1 },
1964        { .compatible = "arm,smmu-v2", .data = (void *)ARM_SMMU_V2 },
1965        { .compatible = "arm,mmu-400", .data = (void *)ARM_SMMU_V1 },
1966        { .compatible = "arm,mmu-401", .data = (void *)ARM_SMMU_V1 },
1967        { .compatible = "arm,mmu-500", .data = (void *)ARM_SMMU_V2 },
1968        { },
1969};
1970MODULE_DEVICE_TABLE(of, arm_smmu_of_match);
1971
1972static int arm_smmu_device_dt_probe(struct platform_device *pdev)
1973{
1974        const struct of_device_id *of_id;
1975        struct resource *res;
1976        struct arm_smmu_device *smmu;
1977        struct device *dev = &pdev->dev;
1978        struct rb_node *node;
1979        struct of_phandle_args masterspec;
1980        int num_irqs, i, err;
1981
1982        smmu = devm_kzalloc(dev, sizeof(*smmu), GFP_KERNEL);
1983        if (!smmu) {
1984                dev_err(dev, "failed to allocate arm_smmu_device\n");
1985                return -ENOMEM;
1986        }
1987        smmu->dev = dev;
1988
1989        of_id = of_match_node(arm_smmu_of_match, dev->of_node);
1990        smmu->version = (enum arm_smmu_arch_version)of_id->data;
1991
1992        res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1993        smmu->base = devm_ioremap_resource(dev, res);
1994        if (IS_ERR(smmu->base))
1995                return PTR_ERR(smmu->base);
1996        smmu->size = resource_size(res);
1997
1998        if (of_property_read_u32(dev->of_node, "#global-interrupts",
1999                                 &smmu->num_global_irqs)) {
2000                dev_err(dev, "missing #global-interrupts property\n");
2001                return -ENODEV;
2002        }
2003
2004        num_irqs = 0;
2005        while ((res = platform_get_resource(pdev, IORESOURCE_IRQ, num_irqs))) {
2006                num_irqs++;
2007                if (num_irqs > smmu->num_global_irqs)
2008                        smmu->num_context_irqs++;
2009        }
2010
2011        if (!smmu->num_context_irqs) {
2012                dev_err(dev, "found %d interrupts but expected at least %d\n",
2013                        num_irqs, smmu->num_global_irqs + 1);
2014                return -ENODEV;
2015        }
2016
2017        smmu->irqs = devm_kzalloc(dev, sizeof(*smmu->irqs) * num_irqs,
2018                                  GFP_KERNEL);
2019        if (!smmu->irqs) {
2020                dev_err(dev, "failed to allocate %d irqs\n", num_irqs);
2021                return -ENOMEM;
2022        }
2023
2024        for (i = 0; i < num_irqs; ++i) {
2025                int irq = platform_get_irq(pdev, i);
2026
2027                if (irq < 0) {
2028                        dev_err(dev, "failed to get irq index %d\n", i);
2029                        return -ENODEV;
2030                }
2031                smmu->irqs[i] = irq;
2032        }
2033
2034        err = arm_smmu_device_cfg_probe(smmu);
2035        if (err)
2036                return err;
2037
2038        i = 0;
2039        smmu->masters = RB_ROOT;
2040        while (!of_parse_phandle_with_args(dev->of_node, "mmu-masters",
2041                                           "#stream-id-cells", i,
2042                                           &masterspec)) {
2043                err = register_smmu_master(smmu, dev, &masterspec);
2044                if (err) {
2045                        dev_err(dev, "failed to add master %s\n",
2046                                masterspec.np->name);
2047                        goto out_put_masters;
2048                }
2049
2050                i++;
2051        }
2052        dev_notice(dev, "registered %d master devices\n", i);
2053
2054        parse_driver_options(smmu);
2055
2056        if (smmu->version > ARM_SMMU_V1 &&
2057            smmu->num_context_banks != smmu->num_context_irqs) {
2058                dev_err(dev,
2059                        "found only %d context interrupt(s) but %d required\n",
2060                        smmu->num_context_irqs, smmu->num_context_banks);
2061                err = -ENODEV;
2062                goto out_put_masters;
2063        }
2064
2065        for (i = 0; i < smmu->num_global_irqs; ++i) {
2066                err = request_irq(smmu->irqs[i],
2067                                  arm_smmu_global_fault,
2068                                  IRQF_SHARED,
2069                                  "arm-smmu global fault",
2070                                  smmu);
2071                if (err) {
2072                        dev_err(dev, "failed to request global IRQ %d (%u)\n",
2073                                i, smmu->irqs[i]);
2074                        goto out_free_irqs;
2075                }
2076        }
2077
2078        INIT_LIST_HEAD(&smmu->list);
2079        spin_lock(&arm_smmu_devices_lock);
2080        list_add(&smmu->list, &arm_smmu_devices);
2081        spin_unlock(&arm_smmu_devices_lock);
2082
2083        arm_smmu_device_reset(smmu);
2084        return 0;
2085
2086out_free_irqs:
2087        while (i--)
2088                free_irq(smmu->irqs[i], smmu);
2089
2090out_put_masters:
2091        for (node = rb_first(&smmu->masters); node; node = rb_next(node)) {
2092                struct arm_smmu_master *master
2093                        = container_of(node, struct arm_smmu_master, node);
2094                of_node_put(master->of_node);
2095        }
2096
2097        return err;
2098}
2099
2100static int arm_smmu_device_remove(struct platform_device *pdev)
2101{
2102        int i;
2103        struct device *dev = &pdev->dev;
2104        struct arm_smmu_device *curr, *smmu = NULL;
2105        struct rb_node *node;
2106
2107        spin_lock(&arm_smmu_devices_lock);
2108        list_for_each_entry(curr, &arm_smmu_devices, list) {
2109                if (curr->dev == dev) {
2110                        smmu = curr;
2111                        list_del(&smmu->list);
2112                        break;
2113                }
2114        }
2115        spin_unlock(&arm_smmu_devices_lock);
2116
2117        if (!smmu)
2118                return -ENODEV;
2119
2120        for (node = rb_first(&smmu->masters); node; node = rb_next(node)) {
2121                struct arm_smmu_master *master
2122                        = container_of(node, struct arm_smmu_master, node);
2123                of_node_put(master->of_node);
2124        }
2125
2126        if (!bitmap_empty(smmu->context_map, ARM_SMMU_MAX_CBS))
2127                dev_err(dev, "removing device with active domains!\n");
2128
2129        for (i = 0; i < smmu->num_global_irqs; ++i)
2130                free_irq(smmu->irqs[i], smmu);
2131
2132        /* Turn the thing off */
2133        writel(sCR0_CLIENTPD, ARM_SMMU_GR0_NS(smmu) + ARM_SMMU_GR0_sCR0);
2134        return 0;
2135}
2136
2137static struct platform_driver arm_smmu_driver = {
2138        .driver = {
2139                .name           = "arm-smmu",
2140                .of_match_table = of_match_ptr(arm_smmu_of_match),
2141        },
2142        .probe  = arm_smmu_device_dt_probe,
2143        .remove = arm_smmu_device_remove,
2144};
2145
2146static int __init arm_smmu_init(void)
2147{
2148        struct device_node *np;
2149        int ret;
2150
2151        /*
2152         * Play nice with systems that don't have an ARM SMMU by checking that
2153         * an ARM SMMU exists in the system before proceeding with the driver
2154         * and IOMMU bus operation registration.
2155         */
2156        np = of_find_matching_node(NULL, arm_smmu_of_match);
2157        if (!np)
2158                return 0;
2159
2160        of_node_put(np);
2161
2162        ret = platform_driver_register(&arm_smmu_driver);
2163        if (ret)
2164                return ret;
2165
2166        /* Oh, for a proper bus abstraction */
2167        if (!iommu_present(&platform_bus_type))
2168                bus_set_iommu(&platform_bus_type, &arm_smmu_ops);
2169
2170#ifdef CONFIG_ARM_AMBA
2171        if (!iommu_present(&amba_bustype))
2172                bus_set_iommu(&amba_bustype, &arm_smmu_ops);
2173#endif
2174
2175#ifdef CONFIG_PCI
2176        if (!iommu_present(&pci_bus_type))
2177                bus_set_iommu(&pci_bus_type, &arm_smmu_ops);
2178#endif
2179
2180        return 0;
2181}
2182
2183static void __exit arm_smmu_exit(void)
2184{
2185        return platform_driver_unregister(&arm_smmu_driver);
2186}
2187
2188subsys_initcall(arm_smmu_init);
2189module_exit(arm_smmu_exit);
2190
2191MODULE_DESCRIPTION("IOMMU API for ARM architected SMMU implementations");
2192MODULE_AUTHOR("Will Deacon <will.deacon@arm.com>");
2193MODULE_LICENSE("GPL v2");
2194