linux/drivers/md/raid5.c
<<
>>
Prefs
   1/*
   2 * raid5.c : Multiple Devices driver for Linux
   3 *         Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
   4 *         Copyright (C) 1999, 2000 Ingo Molnar
   5 *         Copyright (C) 2002, 2003 H. Peter Anvin
   6 *
   7 * RAID-4/5/6 management functions.
   8 * Thanks to Penguin Computing for making the RAID-6 development possible
   9 * by donating a test server!
  10 *
  11 * This program is free software; you can redistribute it and/or modify
  12 * it under the terms of the GNU General Public License as published by
  13 * the Free Software Foundation; either version 2, or (at your option)
  14 * any later version.
  15 *
  16 * You should have received a copy of the GNU General Public License
  17 * (for example /usr/src/linux/COPYING); if not, write to the Free
  18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  19 */
  20
  21/*
  22 * BITMAP UNPLUGGING:
  23 *
  24 * The sequencing for updating the bitmap reliably is a little
  25 * subtle (and I got it wrong the first time) so it deserves some
  26 * explanation.
  27 *
  28 * We group bitmap updates into batches.  Each batch has a number.
  29 * We may write out several batches at once, but that isn't very important.
  30 * conf->seq_write is the number of the last batch successfully written.
  31 * conf->seq_flush is the number of the last batch that was closed to
  32 *    new additions.
  33 * When we discover that we will need to write to any block in a stripe
  34 * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
  35 * the number of the batch it will be in. This is seq_flush+1.
  36 * When we are ready to do a write, if that batch hasn't been written yet,
  37 *   we plug the array and queue the stripe for later.
  38 * When an unplug happens, we increment bm_flush, thus closing the current
  39 *   batch.
  40 * When we notice that bm_flush > bm_write, we write out all pending updates
  41 * to the bitmap, and advance bm_write to where bm_flush was.
  42 * This may occasionally write a bit out twice, but is sure never to
  43 * miss any bits.
  44 */
  45
  46#include <linux/blkdev.h>
  47#include <linux/kthread.h>
  48#include <linux/raid/pq.h>
  49#include <linux/async_tx.h>
  50#include <linux/module.h>
  51#include <linux/async.h>
  52#include <linux/seq_file.h>
  53#include <linux/cpu.h>
  54#include <linux/slab.h>
  55#include <linux/ratelimit.h>
  56#include <linux/nodemask.h>
  57#include <trace/events/block.h>
  58
  59#include "md.h"
  60#include "raid5.h"
  61#include "raid0.h"
  62#include "bitmap.h"
  63
  64#define cpu_to_group(cpu) cpu_to_node(cpu)
  65#define ANY_GROUP NUMA_NO_NODE
  66
  67static bool devices_handle_discard_safely = false;
  68module_param(devices_handle_discard_safely, bool, 0644);
  69MODULE_PARM_DESC(devices_handle_discard_safely,
  70                 "Set to Y if all devices in each array reliably return zeroes on reads from discarded regions");
  71static struct workqueue_struct *raid5_wq;
  72/*
  73 * Stripe cache
  74 */
  75
  76#define NR_STRIPES              256
  77#define STRIPE_SIZE             PAGE_SIZE
  78#define STRIPE_SHIFT            (PAGE_SHIFT - 9)
  79#define STRIPE_SECTORS          (STRIPE_SIZE>>9)
  80#define IO_THRESHOLD            1
  81#define BYPASS_THRESHOLD        1
  82#define NR_HASH                 (PAGE_SIZE / sizeof(struct hlist_head))
  83#define HASH_MASK               (NR_HASH - 1)
  84#define MAX_STRIPE_BATCH        8
  85
  86static inline struct hlist_head *stripe_hash(struct r5conf *conf, sector_t sect)
  87{
  88        int hash = (sect >> STRIPE_SHIFT) & HASH_MASK;
  89        return &conf->stripe_hashtbl[hash];
  90}
  91
  92static inline int stripe_hash_locks_hash(sector_t sect)
  93{
  94        return (sect >> STRIPE_SHIFT) & STRIPE_HASH_LOCKS_MASK;
  95}
  96
  97static inline void lock_device_hash_lock(struct r5conf *conf, int hash)
  98{
  99        spin_lock_irq(conf->hash_locks + hash);
 100        spin_lock(&conf->device_lock);
 101}
 102
 103static inline void unlock_device_hash_lock(struct r5conf *conf, int hash)
 104{
 105        spin_unlock(&conf->device_lock);
 106        spin_unlock_irq(conf->hash_locks + hash);
 107}
 108
 109static inline void lock_all_device_hash_locks_irq(struct r5conf *conf)
 110{
 111        int i;
 112        local_irq_disable();
 113        spin_lock(conf->hash_locks);
 114        for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++)
 115                spin_lock_nest_lock(conf->hash_locks + i, conf->hash_locks);
 116        spin_lock(&conf->device_lock);
 117}
 118
 119static inline void unlock_all_device_hash_locks_irq(struct r5conf *conf)
 120{
 121        int i;
 122        spin_unlock(&conf->device_lock);
 123        for (i = NR_STRIPE_HASH_LOCKS; i; i--)
 124                spin_unlock(conf->hash_locks + i - 1);
 125        local_irq_enable();
 126}
 127
 128/* bio's attached to a stripe+device for I/O are linked together in bi_sector
 129 * order without overlap.  There may be several bio's per stripe+device, and
 130 * a bio could span several devices.
 131 * When walking this list for a particular stripe+device, we must never proceed
 132 * beyond a bio that extends past this device, as the next bio might no longer
 133 * be valid.
 134 * This function is used to determine the 'next' bio in the list, given the sector
 135 * of the current stripe+device
 136 */
 137static inline struct bio *r5_next_bio(struct bio *bio, sector_t sector)
 138{
 139        int sectors = bio_sectors(bio);
 140        if (bio->bi_iter.bi_sector + sectors < sector + STRIPE_SECTORS)
 141                return bio->bi_next;
 142        else
 143                return NULL;
 144}
 145
 146/*
 147 * We maintain a biased count of active stripes in the bottom 16 bits of
 148 * bi_phys_segments, and a count of processed stripes in the upper 16 bits
 149 */
 150static inline int raid5_bi_processed_stripes(struct bio *bio)
 151{
 152        atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
 153        return (atomic_read(segments) >> 16) & 0xffff;
 154}
 155
 156static inline int raid5_dec_bi_active_stripes(struct bio *bio)
 157{
 158        atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
 159        return atomic_sub_return(1, segments) & 0xffff;
 160}
 161
 162static inline void raid5_inc_bi_active_stripes(struct bio *bio)
 163{
 164        atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
 165        atomic_inc(segments);
 166}
 167
 168static inline void raid5_set_bi_processed_stripes(struct bio *bio,
 169        unsigned int cnt)
 170{
 171        atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
 172        int old, new;
 173
 174        do {
 175                old = atomic_read(segments);
 176                new = (old & 0xffff) | (cnt << 16);
 177        } while (atomic_cmpxchg(segments, old, new) != old);
 178}
 179
 180static inline void raid5_set_bi_stripes(struct bio *bio, unsigned int cnt)
 181{
 182        atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
 183        atomic_set(segments, cnt);
 184}
 185
 186/* Find first data disk in a raid6 stripe */
 187static inline int raid6_d0(struct stripe_head *sh)
 188{
 189        if (sh->ddf_layout)
 190                /* ddf always start from first device */
 191                return 0;
 192        /* md starts just after Q block */
 193        if (sh->qd_idx == sh->disks - 1)
 194                return 0;
 195        else
 196                return sh->qd_idx + 1;
 197}
 198static inline int raid6_next_disk(int disk, int raid_disks)
 199{
 200        disk++;
 201        return (disk < raid_disks) ? disk : 0;
 202}
 203
 204/* When walking through the disks in a raid5, starting at raid6_d0,
 205 * We need to map each disk to a 'slot', where the data disks are slot
 206 * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
 207 * is raid_disks-1.  This help does that mapping.
 208 */
 209static int raid6_idx_to_slot(int idx, struct stripe_head *sh,
 210                             int *count, int syndrome_disks)
 211{
 212        int slot = *count;
 213
 214        if (sh->ddf_layout)
 215                (*count)++;
 216        if (idx == sh->pd_idx)
 217                return syndrome_disks;
 218        if (idx == sh->qd_idx)
 219                return syndrome_disks + 1;
 220        if (!sh->ddf_layout)
 221                (*count)++;
 222        return slot;
 223}
 224
 225static void return_io(struct bio *return_bi)
 226{
 227        struct bio *bi = return_bi;
 228        while (bi) {
 229
 230                return_bi = bi->bi_next;
 231                bi->bi_next = NULL;
 232                bi->bi_iter.bi_size = 0;
 233                trace_block_bio_complete(bdev_get_queue(bi->bi_bdev),
 234                                         bi, 0);
 235                bio_endio(bi, 0);
 236                bi = return_bi;
 237        }
 238}
 239
 240static void print_raid5_conf (struct r5conf *conf);
 241
 242static int stripe_operations_active(struct stripe_head *sh)
 243{
 244        return sh->check_state || sh->reconstruct_state ||
 245               test_bit(STRIPE_BIOFILL_RUN, &sh->state) ||
 246               test_bit(STRIPE_COMPUTE_RUN, &sh->state);
 247}
 248
 249static void raid5_wakeup_stripe_thread(struct stripe_head *sh)
 250{
 251        struct r5conf *conf = sh->raid_conf;
 252        struct r5worker_group *group;
 253        int thread_cnt;
 254        int i, cpu = sh->cpu;
 255
 256        if (!cpu_online(cpu)) {
 257                cpu = cpumask_any(cpu_online_mask);
 258                sh->cpu = cpu;
 259        }
 260
 261        if (list_empty(&sh->lru)) {
 262                struct r5worker_group *group;
 263                group = conf->worker_groups + cpu_to_group(cpu);
 264                list_add_tail(&sh->lru, &group->handle_list);
 265                group->stripes_cnt++;
 266                sh->group = group;
 267        }
 268
 269        if (conf->worker_cnt_per_group == 0) {
 270                md_wakeup_thread(conf->mddev->thread);
 271                return;
 272        }
 273
 274        group = conf->worker_groups + cpu_to_group(sh->cpu);
 275
 276        group->workers[0].working = true;
 277        /* at least one worker should run to avoid race */
 278        queue_work_on(sh->cpu, raid5_wq, &group->workers[0].work);
 279
 280        thread_cnt = group->stripes_cnt / MAX_STRIPE_BATCH - 1;
 281        /* wakeup more workers */
 282        for (i = 1; i < conf->worker_cnt_per_group && thread_cnt > 0; i++) {
 283                if (group->workers[i].working == false) {
 284                        group->workers[i].working = true;
 285                        queue_work_on(sh->cpu, raid5_wq,
 286                                      &group->workers[i].work);
 287                        thread_cnt--;
 288                }
 289        }
 290}
 291
 292static void do_release_stripe(struct r5conf *conf, struct stripe_head *sh,
 293                              struct list_head *temp_inactive_list)
 294{
 295        BUG_ON(!list_empty(&sh->lru));
 296        BUG_ON(atomic_read(&conf->active_stripes)==0);
 297        if (test_bit(STRIPE_HANDLE, &sh->state)) {
 298                if (test_bit(STRIPE_DELAYED, &sh->state) &&
 299                    !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
 300                        list_add_tail(&sh->lru, &conf->delayed_list);
 301                        if (atomic_read(&conf->preread_active_stripes)
 302                            < IO_THRESHOLD)
 303                                md_wakeup_thread(conf->mddev->thread);
 304                } else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
 305                           sh->bm_seq - conf->seq_write > 0)
 306                        list_add_tail(&sh->lru, &conf->bitmap_list);
 307                else {
 308                        clear_bit(STRIPE_DELAYED, &sh->state);
 309                        clear_bit(STRIPE_BIT_DELAY, &sh->state);
 310                        if (conf->worker_cnt_per_group == 0) {
 311                                list_add_tail(&sh->lru, &conf->handle_list);
 312                        } else {
 313                                raid5_wakeup_stripe_thread(sh);
 314                                return;
 315                        }
 316                }
 317                md_wakeup_thread(conf->mddev->thread);
 318        } else {
 319                BUG_ON(stripe_operations_active(sh));
 320                if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
 321                        if (atomic_dec_return(&conf->preread_active_stripes)
 322                            < IO_THRESHOLD)
 323                                md_wakeup_thread(conf->mddev->thread);
 324                atomic_dec(&conf->active_stripes);
 325                if (!test_bit(STRIPE_EXPANDING, &sh->state))
 326                        list_add_tail(&sh->lru, temp_inactive_list);
 327        }
 328}
 329
 330static void __release_stripe(struct r5conf *conf, struct stripe_head *sh,
 331                             struct list_head *temp_inactive_list)
 332{
 333        if (atomic_dec_and_test(&sh->count))
 334                do_release_stripe(conf, sh, temp_inactive_list);
 335}
 336
 337/*
 338 * @hash could be NR_STRIPE_HASH_LOCKS, then we have a list of inactive_list
 339 *
 340 * Be careful: Only one task can add/delete stripes from temp_inactive_list at
 341 * given time. Adding stripes only takes device lock, while deleting stripes
 342 * only takes hash lock.
 343 */
 344static void release_inactive_stripe_list(struct r5conf *conf,
 345                                         struct list_head *temp_inactive_list,
 346                                         int hash)
 347{
 348        int size;
 349        bool do_wakeup = false;
 350        unsigned long flags;
 351
 352        if (hash == NR_STRIPE_HASH_LOCKS) {
 353                size = NR_STRIPE_HASH_LOCKS;
 354                hash = NR_STRIPE_HASH_LOCKS - 1;
 355        } else
 356                size = 1;
 357        while (size) {
 358                struct list_head *list = &temp_inactive_list[size - 1];
 359
 360                /*
 361                 * We don't hold any lock here yet, get_active_stripe() might
 362                 * remove stripes from the list
 363                 */
 364                if (!list_empty_careful(list)) {
 365                        spin_lock_irqsave(conf->hash_locks + hash, flags);
 366                        if (list_empty(conf->inactive_list + hash) &&
 367                            !list_empty(list))
 368                                atomic_dec(&conf->empty_inactive_list_nr);
 369                        list_splice_tail_init(list, conf->inactive_list + hash);
 370                        do_wakeup = true;
 371                        spin_unlock_irqrestore(conf->hash_locks + hash, flags);
 372                }
 373                size--;
 374                hash--;
 375        }
 376
 377        if (do_wakeup) {
 378                wake_up(&conf->wait_for_stripe);
 379                if (conf->retry_read_aligned)
 380                        md_wakeup_thread(conf->mddev->thread);
 381        }
 382}
 383
 384/* should hold conf->device_lock already */
 385static int release_stripe_list(struct r5conf *conf,
 386                               struct list_head *temp_inactive_list)
 387{
 388        struct stripe_head *sh;
 389        int count = 0;
 390        struct llist_node *head;
 391
 392        head = llist_del_all(&conf->released_stripes);
 393        head = llist_reverse_order(head);
 394        while (head) {
 395                int hash;
 396
 397                sh = llist_entry(head, struct stripe_head, release_list);
 398                head = llist_next(head);
 399                /* sh could be readded after STRIPE_ON_RELEASE_LIST is cleard */
 400                smp_mb();
 401                clear_bit(STRIPE_ON_RELEASE_LIST, &sh->state);
 402                /*
 403                 * Don't worry the bit is set here, because if the bit is set
 404                 * again, the count is always > 1. This is true for
 405                 * STRIPE_ON_UNPLUG_LIST bit too.
 406                 */
 407                hash = sh->hash_lock_index;
 408                __release_stripe(conf, sh, &temp_inactive_list[hash]);
 409                count++;
 410        }
 411
 412        return count;
 413}
 414
 415static void release_stripe(struct stripe_head *sh)
 416{
 417        struct r5conf *conf = sh->raid_conf;
 418        unsigned long flags;
 419        struct list_head list;
 420        int hash;
 421        bool wakeup;
 422
 423        /* Avoid release_list until the last reference.
 424         */
 425        if (atomic_add_unless(&sh->count, -1, 1))
 426                return;
 427
 428        if (unlikely(!conf->mddev->thread) ||
 429                test_and_set_bit(STRIPE_ON_RELEASE_LIST, &sh->state))
 430                goto slow_path;
 431        wakeup = llist_add(&sh->release_list, &conf->released_stripes);
 432        if (wakeup)
 433                md_wakeup_thread(conf->mddev->thread);
 434        return;
 435slow_path:
 436        local_irq_save(flags);
 437        /* we are ok here if STRIPE_ON_RELEASE_LIST is set or not */
 438        if (atomic_dec_and_lock(&sh->count, &conf->device_lock)) {
 439                INIT_LIST_HEAD(&list);
 440                hash = sh->hash_lock_index;
 441                do_release_stripe(conf, sh, &list);
 442                spin_unlock(&conf->device_lock);
 443                release_inactive_stripe_list(conf, &list, hash);
 444        }
 445        local_irq_restore(flags);
 446}
 447
 448static inline void remove_hash(struct stripe_head *sh)
 449{
 450        pr_debug("remove_hash(), stripe %llu\n",
 451                (unsigned long long)sh->sector);
 452
 453        hlist_del_init(&sh->hash);
 454}
 455
 456static inline void insert_hash(struct r5conf *conf, struct stripe_head *sh)
 457{
 458        struct hlist_head *hp = stripe_hash(conf, sh->sector);
 459
 460        pr_debug("insert_hash(), stripe %llu\n",
 461                (unsigned long long)sh->sector);
 462
 463        hlist_add_head(&sh->hash, hp);
 464}
 465
 466/* find an idle stripe, make sure it is unhashed, and return it. */
 467static struct stripe_head *get_free_stripe(struct r5conf *conf, int hash)
 468{
 469        struct stripe_head *sh = NULL;
 470        struct list_head *first;
 471
 472        if (list_empty(conf->inactive_list + hash))
 473                goto out;
 474        first = (conf->inactive_list + hash)->next;
 475        sh = list_entry(first, struct stripe_head, lru);
 476        list_del_init(first);
 477        remove_hash(sh);
 478        atomic_inc(&conf->active_stripes);
 479        BUG_ON(hash != sh->hash_lock_index);
 480        if (list_empty(conf->inactive_list + hash))
 481                atomic_inc(&conf->empty_inactive_list_nr);
 482out:
 483        return sh;
 484}
 485
 486static void shrink_buffers(struct stripe_head *sh)
 487{
 488        struct page *p;
 489        int i;
 490        int num = sh->raid_conf->pool_size;
 491
 492        for (i = 0; i < num ; i++) {
 493                WARN_ON(sh->dev[i].page != sh->dev[i].orig_page);
 494                p = sh->dev[i].page;
 495                if (!p)
 496                        continue;
 497                sh->dev[i].page = NULL;
 498                put_page(p);
 499        }
 500}
 501
 502static int grow_buffers(struct stripe_head *sh)
 503{
 504        int i;
 505        int num = sh->raid_conf->pool_size;
 506
 507        for (i = 0; i < num; i++) {
 508                struct page *page;
 509
 510                if (!(page = alloc_page(GFP_KERNEL))) {
 511                        return 1;
 512                }
 513                sh->dev[i].page = page;
 514                sh->dev[i].orig_page = page;
 515        }
 516        return 0;
 517}
 518
 519static void raid5_build_block(struct stripe_head *sh, int i, int previous);
 520static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
 521                            struct stripe_head *sh);
 522
 523static void init_stripe(struct stripe_head *sh, sector_t sector, int previous)
 524{
 525        struct r5conf *conf = sh->raid_conf;
 526        int i, seq;
 527
 528        BUG_ON(atomic_read(&sh->count) != 0);
 529        BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
 530        BUG_ON(stripe_operations_active(sh));
 531
 532        pr_debug("init_stripe called, stripe %llu\n",
 533                (unsigned long long)sector);
 534retry:
 535        seq = read_seqcount_begin(&conf->gen_lock);
 536        sh->generation = conf->generation - previous;
 537        sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks;
 538        sh->sector = sector;
 539        stripe_set_idx(sector, conf, previous, sh);
 540        sh->state = 0;
 541
 542        for (i = sh->disks; i--; ) {
 543                struct r5dev *dev = &sh->dev[i];
 544
 545                if (dev->toread || dev->read || dev->towrite || dev->written ||
 546                    test_bit(R5_LOCKED, &dev->flags)) {
 547                        printk(KERN_ERR "sector=%llx i=%d %p %p %p %p %d\n",
 548                               (unsigned long long)sh->sector, i, dev->toread,
 549                               dev->read, dev->towrite, dev->written,
 550                               test_bit(R5_LOCKED, &dev->flags));
 551                        WARN_ON(1);
 552                }
 553                dev->flags = 0;
 554                raid5_build_block(sh, i, previous);
 555        }
 556        if (read_seqcount_retry(&conf->gen_lock, seq))
 557                goto retry;
 558        insert_hash(conf, sh);
 559        sh->cpu = smp_processor_id();
 560}
 561
 562static struct stripe_head *__find_stripe(struct r5conf *conf, sector_t sector,
 563                                         short generation)
 564{
 565        struct stripe_head *sh;
 566
 567        pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
 568        hlist_for_each_entry(sh, stripe_hash(conf, sector), hash)
 569                if (sh->sector == sector && sh->generation == generation)
 570                        return sh;
 571        pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
 572        return NULL;
 573}
 574
 575/*
 576 * Need to check if array has failed when deciding whether to:
 577 *  - start an array
 578 *  - remove non-faulty devices
 579 *  - add a spare
 580 *  - allow a reshape
 581 * This determination is simple when no reshape is happening.
 582 * However if there is a reshape, we need to carefully check
 583 * both the before and after sections.
 584 * This is because some failed devices may only affect one
 585 * of the two sections, and some non-in_sync devices may
 586 * be insync in the section most affected by failed devices.
 587 */
 588static int calc_degraded(struct r5conf *conf)
 589{
 590        int degraded, degraded2;
 591        int i;
 592
 593        rcu_read_lock();
 594        degraded = 0;
 595        for (i = 0; i < conf->previous_raid_disks; i++) {
 596                struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
 597                if (rdev && test_bit(Faulty, &rdev->flags))
 598                        rdev = rcu_dereference(conf->disks[i].replacement);
 599                if (!rdev || test_bit(Faulty, &rdev->flags))
 600                        degraded++;
 601                else if (test_bit(In_sync, &rdev->flags))
 602                        ;
 603                else
 604                        /* not in-sync or faulty.
 605                         * If the reshape increases the number of devices,
 606                         * this is being recovered by the reshape, so
 607                         * this 'previous' section is not in_sync.
 608                         * If the number of devices is being reduced however,
 609                         * the device can only be part of the array if
 610                         * we are reverting a reshape, so this section will
 611                         * be in-sync.
 612                         */
 613                        if (conf->raid_disks >= conf->previous_raid_disks)
 614                                degraded++;
 615        }
 616        rcu_read_unlock();
 617        if (conf->raid_disks == conf->previous_raid_disks)
 618                return degraded;
 619        rcu_read_lock();
 620        degraded2 = 0;
 621        for (i = 0; i < conf->raid_disks; i++) {
 622                struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
 623                if (rdev && test_bit(Faulty, &rdev->flags))
 624                        rdev = rcu_dereference(conf->disks[i].replacement);
 625                if (!rdev || test_bit(Faulty, &rdev->flags))
 626                        degraded2++;
 627                else if (test_bit(In_sync, &rdev->flags))
 628                        ;
 629                else
 630                        /* not in-sync or faulty.
 631                         * If reshape increases the number of devices, this
 632                         * section has already been recovered, else it
 633                         * almost certainly hasn't.
 634                         */
 635                        if (conf->raid_disks <= conf->previous_raid_disks)
 636                                degraded2++;
 637        }
 638        rcu_read_unlock();
 639        if (degraded2 > degraded)
 640                return degraded2;
 641        return degraded;
 642}
 643
 644static int has_failed(struct r5conf *conf)
 645{
 646        int degraded;
 647
 648        if (conf->mddev->reshape_position == MaxSector)
 649                return conf->mddev->degraded > conf->max_degraded;
 650
 651        degraded = calc_degraded(conf);
 652        if (degraded > conf->max_degraded)
 653                return 1;
 654        return 0;
 655}
 656
 657static struct stripe_head *
 658get_active_stripe(struct r5conf *conf, sector_t sector,
 659                  int previous, int noblock, int noquiesce)
 660{
 661        struct stripe_head *sh;
 662        int hash = stripe_hash_locks_hash(sector);
 663
 664        pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
 665
 666        spin_lock_irq(conf->hash_locks + hash);
 667
 668        do {
 669                wait_event_lock_irq(conf->wait_for_stripe,
 670                                    conf->quiesce == 0 || noquiesce,
 671                                    *(conf->hash_locks + hash));
 672                sh = __find_stripe(conf, sector, conf->generation - previous);
 673                if (!sh) {
 674                        if (!conf->inactive_blocked)
 675                                sh = get_free_stripe(conf, hash);
 676                        if (noblock && sh == NULL)
 677                                break;
 678                        if (!sh) {
 679                                conf->inactive_blocked = 1;
 680                                wait_event_lock_irq(
 681                                        conf->wait_for_stripe,
 682                                        !list_empty(conf->inactive_list + hash) &&
 683                                        (atomic_read(&conf->active_stripes)
 684                                         < (conf->max_nr_stripes * 3 / 4)
 685                                         || !conf->inactive_blocked),
 686                                        *(conf->hash_locks + hash));
 687                                conf->inactive_blocked = 0;
 688                        } else {
 689                                init_stripe(sh, sector, previous);
 690                                atomic_inc(&sh->count);
 691                        }
 692                } else if (!atomic_inc_not_zero(&sh->count)) {
 693                        spin_lock(&conf->device_lock);
 694                        if (!atomic_read(&sh->count)) {
 695                                if (!test_bit(STRIPE_HANDLE, &sh->state))
 696                                        atomic_inc(&conf->active_stripes);
 697                                BUG_ON(list_empty(&sh->lru) &&
 698                                       !test_bit(STRIPE_EXPANDING, &sh->state));
 699                                list_del_init(&sh->lru);
 700                                if (sh->group) {
 701                                        sh->group->stripes_cnt--;
 702                                        sh->group = NULL;
 703                                }
 704                        }
 705                        atomic_inc(&sh->count);
 706                        spin_unlock(&conf->device_lock);
 707                }
 708        } while (sh == NULL);
 709
 710        spin_unlock_irq(conf->hash_locks + hash);
 711        return sh;
 712}
 713
 714/* Determine if 'data_offset' or 'new_data_offset' should be used
 715 * in this stripe_head.
 716 */
 717static int use_new_offset(struct r5conf *conf, struct stripe_head *sh)
 718{
 719        sector_t progress = conf->reshape_progress;
 720        /* Need a memory barrier to make sure we see the value
 721         * of conf->generation, or ->data_offset that was set before
 722         * reshape_progress was updated.
 723         */
 724        smp_rmb();
 725        if (progress == MaxSector)
 726                return 0;
 727        if (sh->generation == conf->generation - 1)
 728                return 0;
 729        /* We are in a reshape, and this is a new-generation stripe,
 730         * so use new_data_offset.
 731         */
 732        return 1;
 733}
 734
 735static void
 736raid5_end_read_request(struct bio *bi, int error);
 737static void
 738raid5_end_write_request(struct bio *bi, int error);
 739
 740static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s)
 741{
 742        struct r5conf *conf = sh->raid_conf;
 743        int i, disks = sh->disks;
 744
 745        might_sleep();
 746
 747        for (i = disks; i--; ) {
 748                int rw;
 749                int replace_only = 0;
 750                struct bio *bi, *rbi;
 751                struct md_rdev *rdev, *rrdev = NULL;
 752                if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) {
 753                        if (test_and_clear_bit(R5_WantFUA, &sh->dev[i].flags))
 754                                rw = WRITE_FUA;
 755                        else
 756                                rw = WRITE;
 757                        if (test_bit(R5_Discard, &sh->dev[i].flags))
 758                                rw |= REQ_DISCARD;
 759                } else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
 760                        rw = READ;
 761                else if (test_and_clear_bit(R5_WantReplace,
 762                                            &sh->dev[i].flags)) {
 763                        rw = WRITE;
 764                        replace_only = 1;
 765                } else
 766                        continue;
 767                if (test_and_clear_bit(R5_SyncIO, &sh->dev[i].flags))
 768                        rw |= REQ_SYNC;
 769
 770                bi = &sh->dev[i].req;
 771                rbi = &sh->dev[i].rreq; /* For writing to replacement */
 772
 773                rcu_read_lock();
 774                rrdev = rcu_dereference(conf->disks[i].replacement);
 775                smp_mb(); /* Ensure that if rrdev is NULL, rdev won't be */
 776                rdev = rcu_dereference(conf->disks[i].rdev);
 777                if (!rdev) {
 778                        rdev = rrdev;
 779                        rrdev = NULL;
 780                }
 781                if (rw & WRITE) {
 782                        if (replace_only)
 783                                rdev = NULL;
 784                        if (rdev == rrdev)
 785                                /* We raced and saw duplicates */
 786                                rrdev = NULL;
 787                } else {
 788                        if (test_bit(R5_ReadRepl, &sh->dev[i].flags) && rrdev)
 789                                rdev = rrdev;
 790                        rrdev = NULL;
 791                }
 792
 793                if (rdev && test_bit(Faulty, &rdev->flags))
 794                        rdev = NULL;
 795                if (rdev)
 796                        atomic_inc(&rdev->nr_pending);
 797                if (rrdev && test_bit(Faulty, &rrdev->flags))
 798                        rrdev = NULL;
 799                if (rrdev)
 800                        atomic_inc(&rrdev->nr_pending);
 801                rcu_read_unlock();
 802
 803                /* We have already checked bad blocks for reads.  Now
 804                 * need to check for writes.  We never accept write errors
 805                 * on the replacement, so we don't to check rrdev.
 806                 */
 807                while ((rw & WRITE) && rdev &&
 808                       test_bit(WriteErrorSeen, &rdev->flags)) {
 809                        sector_t first_bad;
 810                        int bad_sectors;
 811                        int bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
 812                                              &first_bad, &bad_sectors);
 813                        if (!bad)
 814                                break;
 815
 816                        if (bad < 0) {
 817                                set_bit(BlockedBadBlocks, &rdev->flags);
 818                                if (!conf->mddev->external &&
 819                                    conf->mddev->flags) {
 820                                        /* It is very unlikely, but we might
 821                                         * still need to write out the
 822                                         * bad block log - better give it
 823                                         * a chance*/
 824                                        md_check_recovery(conf->mddev);
 825                                }
 826                                /*
 827                                 * Because md_wait_for_blocked_rdev
 828                                 * will dec nr_pending, we must
 829                                 * increment it first.
 830                                 */
 831                                atomic_inc(&rdev->nr_pending);
 832                                md_wait_for_blocked_rdev(rdev, conf->mddev);
 833                        } else {
 834                                /* Acknowledged bad block - skip the write */
 835                                rdev_dec_pending(rdev, conf->mddev);
 836                                rdev = NULL;
 837                        }
 838                }
 839
 840                if (rdev) {
 841                        if (s->syncing || s->expanding || s->expanded
 842                            || s->replacing)
 843                                md_sync_acct(rdev->bdev, STRIPE_SECTORS);
 844
 845                        set_bit(STRIPE_IO_STARTED, &sh->state);
 846
 847                        bio_reset(bi);
 848                        bi->bi_bdev = rdev->bdev;
 849                        bi->bi_rw = rw;
 850                        bi->bi_end_io = (rw & WRITE)
 851                                ? raid5_end_write_request
 852                                : raid5_end_read_request;
 853                        bi->bi_private = sh;
 854
 855                        pr_debug("%s: for %llu schedule op %ld on disc %d\n",
 856                                __func__, (unsigned long long)sh->sector,
 857                                bi->bi_rw, i);
 858                        atomic_inc(&sh->count);
 859                        if (use_new_offset(conf, sh))
 860                                bi->bi_iter.bi_sector = (sh->sector
 861                                                 + rdev->new_data_offset);
 862                        else
 863                                bi->bi_iter.bi_sector = (sh->sector
 864                                                 + rdev->data_offset);
 865                        if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
 866                                bi->bi_rw |= REQ_NOMERGE;
 867
 868                        if (test_bit(R5_SkipCopy, &sh->dev[i].flags))
 869                                WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
 870                        sh->dev[i].vec.bv_page = sh->dev[i].page;
 871                        bi->bi_vcnt = 1;
 872                        bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
 873                        bi->bi_io_vec[0].bv_offset = 0;
 874                        bi->bi_iter.bi_size = STRIPE_SIZE;
 875                        /*
 876                         * If this is discard request, set bi_vcnt 0. We don't
 877                         * want to confuse SCSI because SCSI will replace payload
 878                         */
 879                        if (rw & REQ_DISCARD)
 880                                bi->bi_vcnt = 0;
 881                        if (rrdev)
 882                                set_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags);
 883
 884                        if (conf->mddev->gendisk)
 885                                trace_block_bio_remap(bdev_get_queue(bi->bi_bdev),
 886                                                      bi, disk_devt(conf->mddev->gendisk),
 887                                                      sh->dev[i].sector);
 888                        generic_make_request(bi);
 889                }
 890                if (rrdev) {
 891                        if (s->syncing || s->expanding || s->expanded
 892                            || s->replacing)
 893                                md_sync_acct(rrdev->bdev, STRIPE_SECTORS);
 894
 895                        set_bit(STRIPE_IO_STARTED, &sh->state);
 896
 897                        bio_reset(rbi);
 898                        rbi->bi_bdev = rrdev->bdev;
 899                        rbi->bi_rw = rw;
 900                        BUG_ON(!(rw & WRITE));
 901                        rbi->bi_end_io = raid5_end_write_request;
 902                        rbi->bi_private = sh;
 903
 904                        pr_debug("%s: for %llu schedule op %ld on "
 905                                 "replacement disc %d\n",
 906                                __func__, (unsigned long long)sh->sector,
 907                                rbi->bi_rw, i);
 908                        atomic_inc(&sh->count);
 909                        if (use_new_offset(conf, sh))
 910                                rbi->bi_iter.bi_sector = (sh->sector
 911                                                  + rrdev->new_data_offset);
 912                        else
 913                                rbi->bi_iter.bi_sector = (sh->sector
 914                                                  + rrdev->data_offset);
 915                        if (test_bit(R5_SkipCopy, &sh->dev[i].flags))
 916                                WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
 917                        sh->dev[i].rvec.bv_page = sh->dev[i].page;
 918                        rbi->bi_vcnt = 1;
 919                        rbi->bi_io_vec[0].bv_len = STRIPE_SIZE;
 920                        rbi->bi_io_vec[0].bv_offset = 0;
 921                        rbi->bi_iter.bi_size = STRIPE_SIZE;
 922                        /*
 923                         * If this is discard request, set bi_vcnt 0. We don't
 924                         * want to confuse SCSI because SCSI will replace payload
 925                         */
 926                        if (rw & REQ_DISCARD)
 927                                rbi->bi_vcnt = 0;
 928                        if (conf->mddev->gendisk)
 929                                trace_block_bio_remap(bdev_get_queue(rbi->bi_bdev),
 930                                                      rbi, disk_devt(conf->mddev->gendisk),
 931                                                      sh->dev[i].sector);
 932                        generic_make_request(rbi);
 933                }
 934                if (!rdev && !rrdev) {
 935                        if (rw & WRITE)
 936                                set_bit(STRIPE_DEGRADED, &sh->state);
 937                        pr_debug("skip op %ld on disc %d for sector %llu\n",
 938                                bi->bi_rw, i, (unsigned long long)sh->sector);
 939                        clear_bit(R5_LOCKED, &sh->dev[i].flags);
 940                        set_bit(STRIPE_HANDLE, &sh->state);
 941                }
 942        }
 943}
 944
 945static struct dma_async_tx_descriptor *
 946async_copy_data(int frombio, struct bio *bio, struct page **page,
 947        sector_t sector, struct dma_async_tx_descriptor *tx,
 948        struct stripe_head *sh)
 949{
 950        struct bio_vec bvl;
 951        struct bvec_iter iter;
 952        struct page *bio_page;
 953        int page_offset;
 954        struct async_submit_ctl submit;
 955        enum async_tx_flags flags = 0;
 956
 957        if (bio->bi_iter.bi_sector >= sector)
 958                page_offset = (signed)(bio->bi_iter.bi_sector - sector) * 512;
 959        else
 960                page_offset = (signed)(sector - bio->bi_iter.bi_sector) * -512;
 961
 962        if (frombio)
 963                flags |= ASYNC_TX_FENCE;
 964        init_async_submit(&submit, flags, tx, NULL, NULL, NULL);
 965
 966        bio_for_each_segment(bvl, bio, iter) {
 967                int len = bvl.bv_len;
 968                int clen;
 969                int b_offset = 0;
 970
 971                if (page_offset < 0) {
 972                        b_offset = -page_offset;
 973                        page_offset += b_offset;
 974                        len -= b_offset;
 975                }
 976
 977                if (len > 0 && page_offset + len > STRIPE_SIZE)
 978                        clen = STRIPE_SIZE - page_offset;
 979                else
 980                        clen = len;
 981
 982                if (clen > 0) {
 983                        b_offset += bvl.bv_offset;
 984                        bio_page = bvl.bv_page;
 985                        if (frombio) {
 986                                if (sh->raid_conf->skip_copy &&
 987                                    b_offset == 0 && page_offset == 0 &&
 988                                    clen == STRIPE_SIZE)
 989                                        *page = bio_page;
 990                                else
 991                                        tx = async_memcpy(*page, bio_page, page_offset,
 992                                                  b_offset, clen, &submit);
 993                        } else
 994                                tx = async_memcpy(bio_page, *page, b_offset,
 995                                                  page_offset, clen, &submit);
 996                }
 997                /* chain the operations */
 998                submit.depend_tx = tx;
 999
1000                if (clen < len) /* hit end of page */
1001                        break;
1002                page_offset +=  len;
1003        }
1004
1005        return tx;
1006}
1007
1008static void ops_complete_biofill(void *stripe_head_ref)
1009{
1010        struct stripe_head *sh = stripe_head_ref;
1011        struct bio *return_bi = NULL;
1012        int i;
1013
1014        pr_debug("%s: stripe %llu\n", __func__,
1015                (unsigned long long)sh->sector);
1016
1017        /* clear completed biofills */
1018        for (i = sh->disks; i--; ) {
1019                struct r5dev *dev = &sh->dev[i];
1020
1021                /* acknowledge completion of a biofill operation */
1022                /* and check if we need to reply to a read request,
1023                 * new R5_Wantfill requests are held off until
1024                 * !STRIPE_BIOFILL_RUN
1025                 */
1026                if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
1027                        struct bio *rbi, *rbi2;
1028
1029                        BUG_ON(!dev->read);
1030                        rbi = dev->read;
1031                        dev->read = NULL;
1032                        while (rbi && rbi->bi_iter.bi_sector <
1033                                dev->sector + STRIPE_SECTORS) {
1034                                rbi2 = r5_next_bio(rbi, dev->sector);
1035                                if (!raid5_dec_bi_active_stripes(rbi)) {
1036                                        rbi->bi_next = return_bi;
1037                                        return_bi = rbi;
1038                                }
1039                                rbi = rbi2;
1040                        }
1041                }
1042        }
1043        clear_bit(STRIPE_BIOFILL_RUN, &sh->state);
1044
1045        return_io(return_bi);
1046
1047        set_bit(STRIPE_HANDLE, &sh->state);
1048        release_stripe(sh);
1049}
1050
1051static void ops_run_biofill(struct stripe_head *sh)
1052{
1053        struct dma_async_tx_descriptor *tx = NULL;
1054        struct async_submit_ctl submit;
1055        int i;
1056
1057        pr_debug("%s: stripe %llu\n", __func__,
1058                (unsigned long long)sh->sector);
1059
1060        for (i = sh->disks; i--; ) {
1061                struct r5dev *dev = &sh->dev[i];
1062                if (test_bit(R5_Wantfill, &dev->flags)) {
1063                        struct bio *rbi;
1064                        spin_lock_irq(&sh->stripe_lock);
1065                        dev->read = rbi = dev->toread;
1066                        dev->toread = NULL;
1067                        spin_unlock_irq(&sh->stripe_lock);
1068                        while (rbi && rbi->bi_iter.bi_sector <
1069                                dev->sector + STRIPE_SECTORS) {
1070                                tx = async_copy_data(0, rbi, &dev->page,
1071                                        dev->sector, tx, sh);
1072                                rbi = r5_next_bio(rbi, dev->sector);
1073                        }
1074                }
1075        }
1076
1077        atomic_inc(&sh->count);
1078        init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL);
1079        async_trigger_callback(&submit);
1080}
1081
1082static void mark_target_uptodate(struct stripe_head *sh, int target)
1083{
1084        struct r5dev *tgt;
1085
1086        if (target < 0)
1087                return;
1088
1089        tgt = &sh->dev[target];
1090        set_bit(R5_UPTODATE, &tgt->flags);
1091        BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1092        clear_bit(R5_Wantcompute, &tgt->flags);
1093}
1094
1095static void ops_complete_compute(void *stripe_head_ref)
1096{
1097        struct stripe_head *sh = stripe_head_ref;
1098
1099        pr_debug("%s: stripe %llu\n", __func__,
1100                (unsigned long long)sh->sector);
1101
1102        /* mark the computed target(s) as uptodate */
1103        mark_target_uptodate(sh, sh->ops.target);
1104        mark_target_uptodate(sh, sh->ops.target2);
1105
1106        clear_bit(STRIPE_COMPUTE_RUN, &sh->state);
1107        if (sh->check_state == check_state_compute_run)
1108                sh->check_state = check_state_compute_result;
1109        set_bit(STRIPE_HANDLE, &sh->state);
1110        release_stripe(sh);
1111}
1112
1113/* return a pointer to the address conversion region of the scribble buffer */
1114static addr_conv_t *to_addr_conv(struct stripe_head *sh,
1115                                 struct raid5_percpu *percpu)
1116{
1117        return percpu->scribble + sizeof(struct page *) * (sh->disks + 2);
1118}
1119
1120static struct dma_async_tx_descriptor *
1121ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu)
1122{
1123        int disks = sh->disks;
1124        struct page **xor_srcs = percpu->scribble;
1125        int target = sh->ops.target;
1126        struct r5dev *tgt = &sh->dev[target];
1127        struct page *xor_dest = tgt->page;
1128        int count = 0;
1129        struct dma_async_tx_descriptor *tx;
1130        struct async_submit_ctl submit;
1131        int i;
1132
1133        pr_debug("%s: stripe %llu block: %d\n",
1134                __func__, (unsigned long long)sh->sector, target);
1135        BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1136
1137        for (i = disks; i--; )
1138                if (i != target)
1139                        xor_srcs[count++] = sh->dev[i].page;
1140
1141        atomic_inc(&sh->count);
1142
1143        init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL,
1144                          ops_complete_compute, sh, to_addr_conv(sh, percpu));
1145        if (unlikely(count == 1))
1146                tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1147        else
1148                tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1149
1150        return tx;
1151}
1152
1153/* set_syndrome_sources - populate source buffers for gen_syndrome
1154 * @srcs - (struct page *) array of size sh->disks
1155 * @sh - stripe_head to parse
1156 *
1157 * Populates srcs in proper layout order for the stripe and returns the
1158 * 'count' of sources to be used in a call to async_gen_syndrome.  The P
1159 * destination buffer is recorded in srcs[count] and the Q destination
1160 * is recorded in srcs[count+1]].
1161 */
1162static int set_syndrome_sources(struct page **srcs, struct stripe_head *sh)
1163{
1164        int disks = sh->disks;
1165        int syndrome_disks = sh->ddf_layout ? disks : (disks - 2);
1166        int d0_idx = raid6_d0(sh);
1167        int count;
1168        int i;
1169
1170        for (i = 0; i < disks; i++)
1171                srcs[i] = NULL;
1172
1173        count = 0;
1174        i = d0_idx;
1175        do {
1176                int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1177
1178                srcs[slot] = sh->dev[i].page;
1179                i = raid6_next_disk(i, disks);
1180        } while (i != d0_idx);
1181
1182        return syndrome_disks;
1183}
1184
1185static struct dma_async_tx_descriptor *
1186ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu)
1187{
1188        int disks = sh->disks;
1189        struct page **blocks = percpu->scribble;
1190        int target;
1191        int qd_idx = sh->qd_idx;
1192        struct dma_async_tx_descriptor *tx;
1193        struct async_submit_ctl submit;
1194        struct r5dev *tgt;
1195        struct page *dest;
1196        int i;
1197        int count;
1198
1199        if (sh->ops.target < 0)
1200                target = sh->ops.target2;
1201        else if (sh->ops.target2 < 0)
1202                target = sh->ops.target;
1203        else
1204                /* we should only have one valid target */
1205                BUG();
1206        BUG_ON(target < 0);
1207        pr_debug("%s: stripe %llu block: %d\n",
1208                __func__, (unsigned long long)sh->sector, target);
1209
1210        tgt = &sh->dev[target];
1211        BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1212        dest = tgt->page;
1213
1214        atomic_inc(&sh->count);
1215
1216        if (target == qd_idx) {
1217                count = set_syndrome_sources(blocks, sh);
1218                blocks[count] = NULL; /* regenerating p is not necessary */
1219                BUG_ON(blocks[count+1] != dest); /* q should already be set */
1220                init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1221                                  ops_complete_compute, sh,
1222                                  to_addr_conv(sh, percpu));
1223                tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
1224        } else {
1225                /* Compute any data- or p-drive using XOR */
1226                count = 0;
1227                for (i = disks; i-- ; ) {
1228                        if (i == target || i == qd_idx)
1229                                continue;
1230                        blocks[count++] = sh->dev[i].page;
1231                }
1232
1233                init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1234                                  NULL, ops_complete_compute, sh,
1235                                  to_addr_conv(sh, percpu));
1236                tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE, &submit);
1237        }
1238
1239        return tx;
1240}
1241
1242static struct dma_async_tx_descriptor *
1243ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu)
1244{
1245        int i, count, disks = sh->disks;
1246        int syndrome_disks = sh->ddf_layout ? disks : disks-2;
1247        int d0_idx = raid6_d0(sh);
1248        int faila = -1, failb = -1;
1249        int target = sh->ops.target;
1250        int target2 = sh->ops.target2;
1251        struct r5dev *tgt = &sh->dev[target];
1252        struct r5dev *tgt2 = &sh->dev[target2];
1253        struct dma_async_tx_descriptor *tx;
1254        struct page **blocks = percpu->scribble;
1255        struct async_submit_ctl submit;
1256
1257        pr_debug("%s: stripe %llu block1: %d block2: %d\n",
1258                 __func__, (unsigned long long)sh->sector, target, target2);
1259        BUG_ON(target < 0 || target2 < 0);
1260        BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1261        BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags));
1262
1263        /* we need to open-code set_syndrome_sources to handle the
1264         * slot number conversion for 'faila' and 'failb'
1265         */
1266        for (i = 0; i < disks ; i++)
1267                blocks[i] = NULL;
1268        count = 0;
1269        i = d0_idx;
1270        do {
1271                int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1272
1273                blocks[slot] = sh->dev[i].page;
1274
1275                if (i == target)
1276                        faila = slot;
1277                if (i == target2)
1278                        failb = slot;
1279                i = raid6_next_disk(i, disks);
1280        } while (i != d0_idx);
1281
1282        BUG_ON(faila == failb);
1283        if (failb < faila)
1284                swap(faila, failb);
1285        pr_debug("%s: stripe: %llu faila: %d failb: %d\n",
1286                 __func__, (unsigned long long)sh->sector, faila, failb);
1287
1288        atomic_inc(&sh->count);
1289
1290        if (failb == syndrome_disks+1) {
1291                /* Q disk is one of the missing disks */
1292                if (faila == syndrome_disks) {
1293                        /* Missing P+Q, just recompute */
1294                        init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1295                                          ops_complete_compute, sh,
1296                                          to_addr_conv(sh, percpu));
1297                        return async_gen_syndrome(blocks, 0, syndrome_disks+2,
1298                                                  STRIPE_SIZE, &submit);
1299                } else {
1300                        struct page *dest;
1301                        int data_target;
1302                        int qd_idx = sh->qd_idx;
1303
1304                        /* Missing D+Q: recompute D from P, then recompute Q */
1305                        if (target == qd_idx)
1306                                data_target = target2;
1307                        else
1308                                data_target = target;
1309
1310                        count = 0;
1311                        for (i = disks; i-- ; ) {
1312                                if (i == data_target || i == qd_idx)
1313                                        continue;
1314                                blocks[count++] = sh->dev[i].page;
1315                        }
1316                        dest = sh->dev[data_target].page;
1317                        init_async_submit(&submit,
1318                                          ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1319                                          NULL, NULL, NULL,
1320                                          to_addr_conv(sh, percpu));
1321                        tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE,
1322                                       &submit);
1323
1324                        count = set_syndrome_sources(blocks, sh);
1325                        init_async_submit(&submit, ASYNC_TX_FENCE, tx,
1326                                          ops_complete_compute, sh,
1327                                          to_addr_conv(sh, percpu));
1328                        return async_gen_syndrome(blocks, 0, count+2,
1329                                                  STRIPE_SIZE, &submit);
1330                }
1331        } else {
1332                init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1333                                  ops_complete_compute, sh,
1334                                  to_addr_conv(sh, percpu));
1335                if (failb == syndrome_disks) {
1336                        /* We're missing D+P. */
1337                        return async_raid6_datap_recov(syndrome_disks+2,
1338                                                       STRIPE_SIZE, faila,
1339                                                       blocks, &submit);
1340                } else {
1341                        /* We're missing D+D. */
1342                        return async_raid6_2data_recov(syndrome_disks+2,
1343                                                       STRIPE_SIZE, faila, failb,
1344                                                       blocks, &submit);
1345                }
1346        }
1347}
1348
1349static void ops_complete_prexor(void *stripe_head_ref)
1350{
1351        struct stripe_head *sh = stripe_head_ref;
1352
1353        pr_debug("%s: stripe %llu\n", __func__,
1354                (unsigned long long)sh->sector);
1355}
1356
1357static struct dma_async_tx_descriptor *
1358ops_run_prexor(struct stripe_head *sh, struct raid5_percpu *percpu,
1359               struct dma_async_tx_descriptor *tx)
1360{
1361        int disks = sh->disks;
1362        struct page **xor_srcs = percpu->scribble;
1363        int count = 0, pd_idx = sh->pd_idx, i;
1364        struct async_submit_ctl submit;
1365
1366        /* existing parity data subtracted */
1367        struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1368
1369        pr_debug("%s: stripe %llu\n", __func__,
1370                (unsigned long long)sh->sector);
1371
1372        for (i = disks; i--; ) {
1373                struct r5dev *dev = &sh->dev[i];
1374                /* Only process blocks that are known to be uptodate */
1375                if (test_bit(R5_Wantdrain, &dev->flags))
1376                        xor_srcs[count++] = dev->page;
1377        }
1378
1379        init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
1380                          ops_complete_prexor, sh, to_addr_conv(sh, percpu));
1381        tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1382
1383        return tx;
1384}
1385
1386static struct dma_async_tx_descriptor *
1387ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
1388{
1389        int disks = sh->disks;
1390        int i;
1391
1392        pr_debug("%s: stripe %llu\n", __func__,
1393                (unsigned long long)sh->sector);
1394
1395        for (i = disks; i--; ) {
1396                struct r5dev *dev = &sh->dev[i];
1397                struct bio *chosen;
1398
1399                if (test_and_clear_bit(R5_Wantdrain, &dev->flags)) {
1400                        struct bio *wbi;
1401
1402                        spin_lock_irq(&sh->stripe_lock);
1403                        chosen = dev->towrite;
1404                        dev->towrite = NULL;
1405                        BUG_ON(dev->written);
1406                        wbi = dev->written = chosen;
1407                        spin_unlock_irq(&sh->stripe_lock);
1408                        WARN_ON(dev->page != dev->orig_page);
1409
1410                        while (wbi && wbi->bi_iter.bi_sector <
1411                                dev->sector + STRIPE_SECTORS) {
1412                                if (wbi->bi_rw & REQ_FUA)
1413                                        set_bit(R5_WantFUA, &dev->flags);
1414                                if (wbi->bi_rw & REQ_SYNC)
1415                                        set_bit(R5_SyncIO, &dev->flags);
1416                                if (wbi->bi_rw & REQ_DISCARD)
1417                                        set_bit(R5_Discard, &dev->flags);
1418                                else {
1419                                        tx = async_copy_data(1, wbi, &dev->page,
1420                                                dev->sector, tx, sh);
1421                                        if (dev->page != dev->orig_page) {
1422                                                set_bit(R5_SkipCopy, &dev->flags);
1423                                                clear_bit(R5_UPTODATE, &dev->flags);
1424                                                clear_bit(R5_OVERWRITE, &dev->flags);
1425                                        }
1426                                }
1427                                wbi = r5_next_bio(wbi, dev->sector);
1428                        }
1429                }
1430        }
1431
1432        return tx;
1433}
1434
1435static void ops_complete_reconstruct(void *stripe_head_ref)
1436{
1437        struct stripe_head *sh = stripe_head_ref;
1438        int disks = sh->disks;
1439        int pd_idx = sh->pd_idx;
1440        int qd_idx = sh->qd_idx;
1441        int i;
1442        bool fua = false, sync = false, discard = false;
1443
1444        pr_debug("%s: stripe %llu\n", __func__,
1445                (unsigned long long)sh->sector);
1446
1447        for (i = disks; i--; ) {
1448                fua |= test_bit(R5_WantFUA, &sh->dev[i].flags);
1449                sync |= test_bit(R5_SyncIO, &sh->dev[i].flags);
1450                discard |= test_bit(R5_Discard, &sh->dev[i].flags);
1451        }
1452
1453        for (i = disks; i--; ) {
1454                struct r5dev *dev = &sh->dev[i];
1455
1456                if (dev->written || i == pd_idx || i == qd_idx) {
1457                        if (!discard && !test_bit(R5_SkipCopy, &dev->flags))
1458                                set_bit(R5_UPTODATE, &dev->flags);
1459                        if (fua)
1460                                set_bit(R5_WantFUA, &dev->flags);
1461                        if (sync)
1462                                set_bit(R5_SyncIO, &dev->flags);
1463                }
1464        }
1465
1466        if (sh->reconstruct_state == reconstruct_state_drain_run)
1467                sh->reconstruct_state = reconstruct_state_drain_result;
1468        else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run)
1469                sh->reconstruct_state = reconstruct_state_prexor_drain_result;
1470        else {
1471                BUG_ON(sh->reconstruct_state != reconstruct_state_run);
1472                sh->reconstruct_state = reconstruct_state_result;
1473        }
1474
1475        set_bit(STRIPE_HANDLE, &sh->state);
1476        release_stripe(sh);
1477}
1478
1479static void
1480ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu,
1481                     struct dma_async_tx_descriptor *tx)
1482{
1483        int disks = sh->disks;
1484        struct page **xor_srcs = percpu->scribble;
1485        struct async_submit_ctl submit;
1486        int count = 0, pd_idx = sh->pd_idx, i;
1487        struct page *xor_dest;
1488        int prexor = 0;
1489        unsigned long flags;
1490
1491        pr_debug("%s: stripe %llu\n", __func__,
1492                (unsigned long long)sh->sector);
1493
1494        for (i = 0; i < sh->disks; i++) {
1495                if (pd_idx == i)
1496                        continue;
1497                if (!test_bit(R5_Discard, &sh->dev[i].flags))
1498                        break;
1499        }
1500        if (i >= sh->disks) {
1501                atomic_inc(&sh->count);
1502                set_bit(R5_Discard, &sh->dev[pd_idx].flags);
1503                ops_complete_reconstruct(sh);
1504                return;
1505        }
1506        /* check if prexor is active which means only process blocks
1507         * that are part of a read-modify-write (written)
1508         */
1509        if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
1510                prexor = 1;
1511                xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1512                for (i = disks; i--; ) {
1513                        struct r5dev *dev = &sh->dev[i];
1514                        if (dev->written)
1515                                xor_srcs[count++] = dev->page;
1516                }
1517        } else {
1518                xor_dest = sh->dev[pd_idx].page;
1519                for (i = disks; i--; ) {
1520                        struct r5dev *dev = &sh->dev[i];
1521                        if (i != pd_idx)
1522                                xor_srcs[count++] = dev->page;
1523                }
1524        }
1525
1526        /* 1/ if we prexor'd then the dest is reused as a source
1527         * 2/ if we did not prexor then we are redoing the parity
1528         * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
1529         * for the synchronous xor case
1530         */
1531        flags = ASYNC_TX_ACK |
1532                (prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);
1533
1534        atomic_inc(&sh->count);
1535
1536        init_async_submit(&submit, flags, tx, ops_complete_reconstruct, sh,
1537                          to_addr_conv(sh, percpu));
1538        if (unlikely(count == 1))
1539                tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1540        else
1541                tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1542}
1543
1544static void
1545ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu,
1546                     struct dma_async_tx_descriptor *tx)
1547{
1548        struct async_submit_ctl submit;
1549        struct page **blocks = percpu->scribble;
1550        int count, i;
1551
1552        pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector);
1553
1554        for (i = 0; i < sh->disks; i++) {
1555                if (sh->pd_idx == i || sh->qd_idx == i)
1556                        continue;
1557                if (!test_bit(R5_Discard, &sh->dev[i].flags))
1558                        break;
1559        }
1560        if (i >= sh->disks) {
1561                atomic_inc(&sh->count);
1562                set_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
1563                set_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
1564                ops_complete_reconstruct(sh);
1565                return;
1566        }
1567
1568        count = set_syndrome_sources(blocks, sh);
1569
1570        atomic_inc(&sh->count);
1571
1572        init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_reconstruct,
1573                          sh, to_addr_conv(sh, percpu));
1574        async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE,  &submit);
1575}
1576
1577static void ops_complete_check(void *stripe_head_ref)
1578{
1579        struct stripe_head *sh = stripe_head_ref;
1580
1581        pr_debug("%s: stripe %llu\n", __func__,
1582                (unsigned long long)sh->sector);
1583
1584        sh->check_state = check_state_check_result;
1585        set_bit(STRIPE_HANDLE, &sh->state);
1586        release_stripe(sh);
1587}
1588
1589static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu)
1590{
1591        int disks = sh->disks;
1592        int pd_idx = sh->pd_idx;
1593        int qd_idx = sh->qd_idx;
1594        struct page *xor_dest;
1595        struct page **xor_srcs = percpu->scribble;
1596        struct dma_async_tx_descriptor *tx;
1597        struct async_submit_ctl submit;
1598        int count;
1599        int i;
1600
1601        pr_debug("%s: stripe %llu\n", __func__,
1602                (unsigned long long)sh->sector);
1603
1604        count = 0;
1605        xor_dest = sh->dev[pd_idx].page;
1606        xor_srcs[count++] = xor_dest;
1607        for (i = disks; i--; ) {
1608                if (i == pd_idx || i == qd_idx)
1609                        continue;
1610                xor_srcs[count++] = sh->dev[i].page;
1611        }
1612
1613        init_async_submit(&submit, 0, NULL, NULL, NULL,
1614                          to_addr_conv(sh, percpu));
1615        tx = async_xor_val(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
1616                           &sh->ops.zero_sum_result, &submit);
1617
1618        atomic_inc(&sh->count);
1619        init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL);
1620        tx = async_trigger_callback(&submit);
1621}
1622
1623static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp)
1624{
1625        struct page **srcs = percpu->scribble;
1626        struct async_submit_ctl submit;
1627        int count;
1628
1629        pr_debug("%s: stripe %llu checkp: %d\n", __func__,
1630                (unsigned long long)sh->sector, checkp);
1631
1632        count = set_syndrome_sources(srcs, sh);
1633        if (!checkp)
1634                srcs[count] = NULL;
1635
1636        atomic_inc(&sh->count);
1637        init_async_submit(&submit, ASYNC_TX_ACK, NULL, ops_complete_check,
1638                          sh, to_addr_conv(sh, percpu));
1639        async_syndrome_val(srcs, 0, count+2, STRIPE_SIZE,
1640                           &sh->ops.zero_sum_result, percpu->spare_page, &submit);
1641}
1642
1643static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
1644{
1645        int overlap_clear = 0, i, disks = sh->disks;
1646        struct dma_async_tx_descriptor *tx = NULL;
1647        struct r5conf *conf = sh->raid_conf;
1648        int level = conf->level;
1649        struct raid5_percpu *percpu;
1650        unsigned long cpu;
1651
1652        cpu = get_cpu();
1653        percpu = per_cpu_ptr(conf->percpu, cpu);
1654        if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) {
1655                ops_run_biofill(sh);
1656                overlap_clear++;
1657        }
1658
1659        if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) {
1660                if (level < 6)
1661                        tx = ops_run_compute5(sh, percpu);
1662                else {
1663                        if (sh->ops.target2 < 0 || sh->ops.target < 0)
1664                                tx = ops_run_compute6_1(sh, percpu);
1665                        else
1666                                tx = ops_run_compute6_2(sh, percpu);
1667                }
1668                /* terminate the chain if reconstruct is not set to be run */
1669                if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request))
1670                        async_tx_ack(tx);
1671        }
1672
1673        if (test_bit(STRIPE_OP_PREXOR, &ops_request))
1674                tx = ops_run_prexor(sh, percpu, tx);
1675
1676        if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) {
1677                tx = ops_run_biodrain(sh, tx);
1678                overlap_clear++;
1679        }
1680
1681        if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) {
1682                if (level < 6)
1683                        ops_run_reconstruct5(sh, percpu, tx);
1684                else
1685                        ops_run_reconstruct6(sh, percpu, tx);
1686        }
1687
1688        if (test_bit(STRIPE_OP_CHECK, &ops_request)) {
1689                if (sh->check_state == check_state_run)
1690                        ops_run_check_p(sh, percpu);
1691                else if (sh->check_state == check_state_run_q)
1692                        ops_run_check_pq(sh, percpu, 0);
1693                else if (sh->check_state == check_state_run_pq)
1694                        ops_run_check_pq(sh, percpu, 1);
1695                else
1696                        BUG();
1697        }
1698
1699        if (overlap_clear)
1700                for (i = disks; i--; ) {
1701                        struct r5dev *dev = &sh->dev[i];
1702                        if (test_and_clear_bit(R5_Overlap, &dev->flags))
1703                                wake_up(&sh->raid_conf->wait_for_overlap);
1704                }
1705        put_cpu();
1706}
1707
1708static int grow_one_stripe(struct r5conf *conf, int hash)
1709{
1710        struct stripe_head *sh;
1711        sh = kmem_cache_zalloc(conf->slab_cache, GFP_KERNEL);
1712        if (!sh)
1713                return 0;
1714
1715        sh->raid_conf = conf;
1716
1717        spin_lock_init(&sh->stripe_lock);
1718
1719        if (grow_buffers(sh)) {
1720                shrink_buffers(sh);
1721                kmem_cache_free(conf->slab_cache, sh);
1722                return 0;
1723        }
1724        sh->hash_lock_index = hash;
1725        /* we just created an active stripe so... */
1726        atomic_set(&sh->count, 1);
1727        atomic_inc(&conf->active_stripes);
1728        INIT_LIST_HEAD(&sh->lru);
1729        release_stripe(sh);
1730        return 1;
1731}
1732
1733static int grow_stripes(struct r5conf *conf, int num)
1734{
1735        struct kmem_cache *sc;
1736        int devs = max(conf->raid_disks, conf->previous_raid_disks);
1737        int hash;
1738
1739        if (conf->mddev->gendisk)
1740                sprintf(conf->cache_name[0],
1741                        "raid%d-%s", conf->level, mdname(conf->mddev));
1742        else
1743                sprintf(conf->cache_name[0],
1744                        "raid%d-%p", conf->level, conf->mddev);
1745        sprintf(conf->cache_name[1], "%s-alt", conf->cache_name[0]);
1746
1747        conf->active_name = 0;
1748        sc = kmem_cache_create(conf->cache_name[conf->active_name],
1749                               sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
1750                               0, 0, NULL);
1751        if (!sc)
1752                return 1;
1753        conf->slab_cache = sc;
1754        conf->pool_size = devs;
1755        hash = conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS;
1756        while (num--) {
1757                if (!grow_one_stripe(conf, hash))
1758                        return 1;
1759                conf->max_nr_stripes++;
1760                hash = (hash + 1) % NR_STRIPE_HASH_LOCKS;
1761        }
1762        return 0;
1763}
1764
1765/**
1766 * scribble_len - return the required size of the scribble region
1767 * @num - total number of disks in the array
1768 *
1769 * The size must be enough to contain:
1770 * 1/ a struct page pointer for each device in the array +2
1771 * 2/ room to convert each entry in (1) to its corresponding dma
1772 *    (dma_map_page()) or page (page_address()) address.
1773 *
1774 * Note: the +2 is for the destination buffers of the ddf/raid6 case where we
1775 * calculate over all devices (not just the data blocks), using zeros in place
1776 * of the P and Q blocks.
1777 */
1778static size_t scribble_len(int num)
1779{
1780        size_t len;
1781
1782        len = sizeof(struct page *) * (num+2) + sizeof(addr_conv_t) * (num+2);
1783
1784        return len;
1785}
1786
1787static int resize_stripes(struct r5conf *conf, int newsize)
1788{
1789        /* Make all the stripes able to hold 'newsize' devices.
1790         * New slots in each stripe get 'page' set to a new page.
1791         *
1792         * This happens in stages:
1793         * 1/ create a new kmem_cache and allocate the required number of
1794         *    stripe_heads.
1795         * 2/ gather all the old stripe_heads and transfer the pages across
1796         *    to the new stripe_heads.  This will have the side effect of
1797         *    freezing the array as once all stripe_heads have been collected,
1798         *    no IO will be possible.  Old stripe heads are freed once their
1799         *    pages have been transferred over, and the old kmem_cache is
1800         *    freed when all stripes are done.
1801         * 3/ reallocate conf->disks to be suitable bigger.  If this fails,
1802         *    we simple return a failre status - no need to clean anything up.
1803         * 4/ allocate new pages for the new slots in the new stripe_heads.
1804         *    If this fails, we don't bother trying the shrink the
1805         *    stripe_heads down again, we just leave them as they are.
1806         *    As each stripe_head is processed the new one is released into
1807         *    active service.
1808         *
1809         * Once step2 is started, we cannot afford to wait for a write,
1810         * so we use GFP_NOIO allocations.
1811         */
1812        struct stripe_head *osh, *nsh;
1813        LIST_HEAD(newstripes);
1814        struct disk_info *ndisks;
1815        unsigned long cpu;
1816        int err;
1817        struct kmem_cache *sc;
1818        int i;
1819        int hash, cnt;
1820
1821        if (newsize <= conf->pool_size)
1822                return 0; /* never bother to shrink */
1823
1824        err = md_allow_write(conf->mddev);
1825        if (err)
1826                return err;
1827
1828        /* Step 1 */
1829        sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
1830                               sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
1831                               0, 0, NULL);
1832        if (!sc)
1833                return -ENOMEM;
1834
1835        for (i = conf->max_nr_stripes; i; i--) {
1836                nsh = kmem_cache_zalloc(sc, GFP_KERNEL);
1837                if (!nsh)
1838                        break;
1839
1840                nsh->raid_conf = conf;
1841                spin_lock_init(&nsh->stripe_lock);
1842
1843                list_add(&nsh->lru, &newstripes);
1844        }
1845        if (i) {
1846                /* didn't get enough, give up */
1847                while (!list_empty(&newstripes)) {
1848                        nsh = list_entry(newstripes.next, struct stripe_head, lru);
1849                        list_del(&nsh->lru);
1850                        kmem_cache_free(sc, nsh);
1851                }
1852                kmem_cache_destroy(sc);
1853                return -ENOMEM;
1854        }
1855        /* Step 2 - Must use GFP_NOIO now.
1856         * OK, we have enough stripes, start collecting inactive
1857         * stripes and copying them over
1858         */
1859        hash = 0;
1860        cnt = 0;
1861        list_for_each_entry(nsh, &newstripes, lru) {
1862                lock_device_hash_lock(conf, hash);
1863                wait_event_cmd(conf->wait_for_stripe,
1864                                    !list_empty(conf->inactive_list + hash),
1865                                    unlock_device_hash_lock(conf, hash),
1866                                    lock_device_hash_lock(conf, hash));
1867                osh = get_free_stripe(conf, hash);
1868                unlock_device_hash_lock(conf, hash);
1869                atomic_set(&nsh->count, 1);
1870                for(i=0; i<conf->pool_size; i++) {
1871                        nsh->dev[i].page = osh->dev[i].page;
1872                        nsh->dev[i].orig_page = osh->dev[i].page;
1873                }
1874                for( ; i<newsize; i++)
1875                        nsh->dev[i].page = NULL;
1876                nsh->hash_lock_index = hash;
1877                kmem_cache_free(conf->slab_cache, osh);
1878                cnt++;
1879                if (cnt >= conf->max_nr_stripes / NR_STRIPE_HASH_LOCKS +
1880                    !!((conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS) > hash)) {
1881                        hash++;
1882                        cnt = 0;
1883                }
1884        }
1885        kmem_cache_destroy(conf->slab_cache);
1886
1887        /* Step 3.
1888         * At this point, we are holding all the stripes so the array
1889         * is completely stalled, so now is a good time to resize
1890         * conf->disks and the scribble region
1891         */
1892        ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO);
1893        if (ndisks) {
1894                for (i=0; i<conf->raid_disks; i++)
1895                        ndisks[i] = conf->disks[i];
1896                kfree(conf->disks);
1897                conf->disks = ndisks;
1898        } else
1899                err = -ENOMEM;
1900
1901        get_online_cpus();
1902        conf->scribble_len = scribble_len(newsize);
1903        for_each_present_cpu(cpu) {
1904                struct raid5_percpu *percpu;
1905                void *scribble;
1906
1907                percpu = per_cpu_ptr(conf->percpu, cpu);
1908                scribble = kmalloc(conf->scribble_len, GFP_NOIO);
1909
1910                if (scribble) {
1911                        kfree(percpu->scribble);
1912                        percpu->scribble = scribble;
1913                } else {
1914                        err = -ENOMEM;
1915                        break;
1916                }
1917        }
1918        put_online_cpus();
1919
1920        /* Step 4, return new stripes to service */
1921        while(!list_empty(&newstripes)) {
1922                nsh = list_entry(newstripes.next, struct stripe_head, lru);
1923                list_del_init(&nsh->lru);
1924
1925                for (i=conf->raid_disks; i < newsize; i++)
1926                        if (nsh->dev[i].page == NULL) {
1927                                struct page *p = alloc_page(GFP_NOIO);
1928                                nsh->dev[i].page = p;
1929                                nsh->dev[i].orig_page = p;
1930                                if (!p)
1931                                        err = -ENOMEM;
1932                        }
1933                release_stripe(nsh);
1934        }
1935        /* critical section pass, GFP_NOIO no longer needed */
1936
1937        conf->slab_cache = sc;
1938        conf->active_name = 1-conf->active_name;
1939        conf->pool_size = newsize;
1940        return err;
1941}
1942
1943static int drop_one_stripe(struct r5conf *conf, int hash)
1944{
1945        struct stripe_head *sh;
1946
1947        spin_lock_irq(conf->hash_locks + hash);
1948        sh = get_free_stripe(conf, hash);
1949        spin_unlock_irq(conf->hash_locks + hash);
1950        if (!sh)
1951                return 0;
1952        BUG_ON(atomic_read(&sh->count));
1953        shrink_buffers(sh);
1954        kmem_cache_free(conf->slab_cache, sh);
1955        atomic_dec(&conf->active_stripes);
1956        return 1;
1957}
1958
1959static void shrink_stripes(struct r5conf *conf)
1960{
1961        int hash;
1962        for (hash = 0; hash < NR_STRIPE_HASH_LOCKS; hash++)
1963                while (drop_one_stripe(conf, hash))
1964                        ;
1965
1966        if (conf->slab_cache)
1967                kmem_cache_destroy(conf->slab_cache);
1968        conf->slab_cache = NULL;
1969}
1970
1971static void raid5_end_read_request(struct bio * bi, int error)
1972{
1973        struct stripe_head *sh = bi->bi_private;
1974        struct r5conf *conf = sh->raid_conf;
1975        int disks = sh->disks, i;
1976        int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1977        char b[BDEVNAME_SIZE];
1978        struct md_rdev *rdev = NULL;
1979        sector_t s;
1980
1981        for (i=0 ; i<disks; i++)
1982                if (bi == &sh->dev[i].req)
1983                        break;
1984
1985        pr_debug("end_read_request %llu/%d, count: %d, uptodate %d.\n",
1986                (unsigned long long)sh->sector, i, atomic_read(&sh->count),
1987                uptodate);
1988        if (i == disks) {
1989                BUG();
1990                return;
1991        }
1992        if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
1993                /* If replacement finished while this request was outstanding,
1994                 * 'replacement' might be NULL already.
1995                 * In that case it moved down to 'rdev'.
1996                 * rdev is not removed until all requests are finished.
1997                 */
1998                rdev = conf->disks[i].replacement;
1999        if (!rdev)
2000                rdev = conf->disks[i].rdev;
2001
2002        if (use_new_offset(conf, sh))
2003                s = sh->sector + rdev->new_data_offset;
2004        else
2005                s = sh->sector + rdev->data_offset;
2006        if (uptodate) {
2007                set_bit(R5_UPTODATE, &sh->dev[i].flags);
2008                if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
2009                        /* Note that this cannot happen on a
2010                         * replacement device.  We just fail those on
2011                         * any error
2012                         */
2013                        printk_ratelimited(
2014                                KERN_INFO
2015                                "md/raid:%s: read error corrected"
2016                                " (%lu sectors at %llu on %s)\n",
2017                                mdname(conf->mddev), STRIPE_SECTORS,
2018                                (unsigned long long)s,
2019                                bdevname(rdev->bdev, b));
2020                        atomic_add(STRIPE_SECTORS, &rdev->corrected_errors);
2021                        clear_bit(R5_ReadError, &sh->dev[i].flags);
2022                        clear_bit(R5_ReWrite, &sh->dev[i].flags);
2023                } else if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
2024                        clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2025
2026                if (atomic_read(&rdev->read_errors))
2027                        atomic_set(&rdev->read_errors, 0);
2028        } else {
2029                const char *bdn = bdevname(rdev->bdev, b);
2030                int retry = 0;
2031                int set_bad = 0;
2032
2033                clear_bit(R5_UPTODATE, &sh->dev[i].flags);
2034                atomic_inc(&rdev->read_errors);
2035                if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
2036                        printk_ratelimited(
2037                                KERN_WARNING
2038                                "md/raid:%s: read error on replacement device "
2039                                "(sector %llu on %s).\n",
2040                                mdname(conf->mddev),
2041                                (unsigned long long)s,
2042                                bdn);
2043                else if (conf->mddev->degraded >= conf->max_degraded) {
2044                        set_bad = 1;
2045                        printk_ratelimited(
2046                                KERN_WARNING
2047                                "md/raid:%s: read error not correctable "
2048                                "(sector %llu on %s).\n",
2049                                mdname(conf->mddev),
2050                                (unsigned long long)s,
2051                                bdn);
2052                } else if (test_bit(R5_ReWrite, &sh->dev[i].flags)) {
2053                        /* Oh, no!!! */
2054                        set_bad = 1;
2055                        printk_ratelimited(
2056                                KERN_WARNING
2057                                "md/raid:%s: read error NOT corrected!! "
2058                                "(sector %llu on %s).\n",
2059                                mdname(conf->mddev),
2060                                (unsigned long long)s,
2061                                bdn);
2062                } else if (atomic_read(&rdev->read_errors)
2063                         > conf->max_nr_stripes)
2064                        printk(KERN_WARNING
2065                               "md/raid:%s: Too many read errors, failing device %s.\n",
2066                               mdname(conf->mddev), bdn);
2067                else
2068                        retry = 1;
2069                if (set_bad && test_bit(In_sync, &rdev->flags)
2070                    && !test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
2071                        retry = 1;
2072                if (retry)
2073                        if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags)) {
2074                                set_bit(R5_ReadError, &sh->dev[i].flags);
2075                                clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2076                        } else
2077                                set_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2078                else {
2079                        clear_bit(R5_ReadError, &sh->dev[i].flags);
2080                        clear_bit(R5_ReWrite, &sh->dev[i].flags);
2081                        if (!(set_bad
2082                              && test_bit(In_sync, &rdev->flags)
2083                              && rdev_set_badblocks(
2084                                      rdev, sh->sector, STRIPE_SECTORS, 0)))
2085                                md_error(conf->mddev, rdev);
2086                }
2087        }
2088        rdev_dec_pending(rdev, conf->mddev);
2089        clear_bit(R5_LOCKED, &sh->dev[i].flags);
2090        set_bit(STRIPE_HANDLE, &sh->state);
2091        release_stripe(sh);
2092}
2093
2094static void raid5_end_write_request(struct bio *bi, int error)
2095{
2096        struct stripe_head *sh = bi->bi_private;
2097        struct r5conf *conf = sh->raid_conf;
2098        int disks = sh->disks, i;
2099        struct md_rdev *uninitialized_var(rdev);
2100        int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
2101        sector_t first_bad;
2102        int bad_sectors;
2103        int replacement = 0;
2104
2105        for (i = 0 ; i < disks; i++) {
2106                if (bi == &sh->dev[i].req) {
2107                        rdev = conf->disks[i].rdev;
2108                        break;
2109                }
2110                if (bi == &sh->dev[i].rreq) {
2111                        rdev = conf->disks[i].replacement;
2112                        if (rdev)
2113                                replacement = 1;
2114                        else
2115                                /* rdev was removed and 'replacement'
2116                                 * replaced it.  rdev is not removed
2117                                 * until all requests are finished.
2118                                 */
2119                                rdev = conf->disks[i].rdev;
2120                        break;
2121                }
2122        }
2123        pr_debug("end_write_request %llu/%d, count %d, uptodate: %d.\n",
2124                (unsigned long long)sh->sector, i, atomic_read(&sh->count),
2125                uptodate);
2126        if (i == disks) {
2127                BUG();
2128                return;
2129        }
2130
2131        if (replacement) {
2132                if (!uptodate)
2133                        md_error(conf->mddev, rdev);
2134                else if (is_badblock(rdev, sh->sector,
2135                                     STRIPE_SECTORS,
2136                                     &first_bad, &bad_sectors))
2137                        set_bit(R5_MadeGoodRepl, &sh->dev[i].flags);
2138        } else {
2139                if (!uptodate) {
2140                        set_bit(STRIPE_DEGRADED, &sh->state);
2141                        set_bit(WriteErrorSeen, &rdev->flags);
2142                        set_bit(R5_WriteError, &sh->dev[i].flags);
2143                        if (!test_and_set_bit(WantReplacement, &rdev->flags))
2144                                set_bit(MD_RECOVERY_NEEDED,
2145                                        &rdev->mddev->recovery);
2146                } else if (is_badblock(rdev, sh->sector,
2147                                       STRIPE_SECTORS,
2148                                       &first_bad, &bad_sectors)) {
2149                        set_bit(R5_MadeGood, &sh->dev[i].flags);
2150                        if (test_bit(R5_ReadError, &sh->dev[i].flags))
2151                                /* That was a successful write so make
2152                                 * sure it looks like we already did
2153                                 * a re-write.
2154                                 */
2155                                set_bit(R5_ReWrite, &sh->dev[i].flags);
2156                }
2157        }
2158        rdev_dec_pending(rdev, conf->mddev);
2159
2160        if (!test_and_clear_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags))
2161                clear_bit(R5_LOCKED, &sh->dev[i].flags);
2162        set_bit(STRIPE_HANDLE, &sh->state);
2163        release_stripe(sh);
2164}
2165
2166static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous);
2167
2168static void raid5_build_block(struct stripe_head *sh, int i, int previous)
2169{
2170        struct r5dev *dev = &sh->dev[i];
2171
2172        bio_init(&dev->req);
2173        dev->req.bi_io_vec = &dev->vec;
2174        dev->req.bi_max_vecs = 1;
2175        dev->req.bi_private = sh;
2176
2177        bio_init(&dev->rreq);
2178        dev->rreq.bi_io_vec = &dev->rvec;
2179        dev->rreq.bi_max_vecs = 1;
2180        dev->rreq.bi_private = sh;
2181
2182        dev->flags = 0;
2183        dev->sector = compute_blocknr(sh, i, previous);
2184}
2185
2186static void error(struct mddev *mddev, struct md_rdev *rdev)
2187{
2188        char b[BDEVNAME_SIZE];
2189        struct r5conf *conf = mddev->private;
2190        unsigned long flags;
2191        pr_debug("raid456: error called\n");
2192
2193        spin_lock_irqsave(&conf->device_lock, flags);
2194        clear_bit(In_sync, &rdev->flags);
2195        mddev->degraded = calc_degraded(conf);
2196        spin_unlock_irqrestore(&conf->device_lock, flags);
2197        set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2198
2199        set_bit(Blocked, &rdev->flags);
2200        set_bit(Faulty, &rdev->flags);
2201        set_bit(MD_CHANGE_DEVS, &mddev->flags);
2202        printk(KERN_ALERT
2203               "md/raid:%s: Disk failure on %s, disabling device.\n"
2204               "md/raid:%s: Operation continuing on %d devices.\n",
2205               mdname(mddev),
2206               bdevname(rdev->bdev, b),
2207               mdname(mddev),
2208               conf->raid_disks - mddev->degraded);
2209}
2210
2211/*
2212 * Input: a 'big' sector number,
2213 * Output: index of the data and parity disk, and the sector # in them.
2214 */
2215static sector_t raid5_compute_sector(struct r5conf *conf, sector_t r_sector,
2216                                     int previous, int *dd_idx,
2217                                     struct stripe_head *sh)
2218{
2219        sector_t stripe, stripe2;
2220        sector_t chunk_number;
2221        unsigned int chunk_offset;
2222        int pd_idx, qd_idx;
2223        int ddf_layout = 0;
2224        sector_t new_sector;
2225        int algorithm = previous ? conf->prev_algo
2226                                 : conf->algorithm;
2227        int sectors_per_chunk = previous ? conf->prev_chunk_sectors
2228                                         : conf->chunk_sectors;
2229        int raid_disks = previous ? conf->previous_raid_disks
2230                                  : conf->raid_disks;
2231        int data_disks = raid_disks - conf->max_degraded;
2232
2233        /* First compute the information on this sector */
2234
2235        /*
2236         * Compute the chunk number and the sector offset inside the chunk
2237         */
2238        chunk_offset = sector_div(r_sector, sectors_per_chunk);
2239        chunk_number = r_sector;
2240
2241        /*
2242         * Compute the stripe number
2243         */
2244        stripe = chunk_number;
2245        *dd_idx = sector_div(stripe, data_disks);
2246        stripe2 = stripe;
2247        /*
2248         * Select the parity disk based on the user selected algorithm.
2249         */
2250        pd_idx = qd_idx = -1;
2251        switch(conf->level) {
2252        case 4:
2253                pd_idx = data_disks;
2254                break;
2255        case 5:
2256                switch (algorithm) {
2257                case ALGORITHM_LEFT_ASYMMETRIC:
2258                        pd_idx = data_disks - sector_div(stripe2, raid_disks);
2259                        if (*dd_idx >= pd_idx)
2260                                (*dd_idx)++;
2261                        break;
2262                case ALGORITHM_RIGHT_ASYMMETRIC:
2263                        pd_idx = sector_div(stripe2, raid_disks);
2264                        if (*dd_idx >= pd_idx)
2265                                (*dd_idx)++;
2266                        break;
2267                case ALGORITHM_LEFT_SYMMETRIC:
2268                        pd_idx = data_disks - sector_div(stripe2, raid_disks);
2269                        *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2270                        break;
2271                case ALGORITHM_RIGHT_SYMMETRIC:
2272                        pd_idx = sector_div(stripe2, raid_disks);
2273                        *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2274                        break;
2275                case ALGORITHM_PARITY_0:
2276                        pd_idx = 0;
2277                        (*dd_idx)++;
2278                        break;
2279                case ALGORITHM_PARITY_N:
2280                        pd_idx = data_disks;
2281                        break;
2282                default:
2283                        BUG();
2284                }
2285                break;
2286        case 6:
2287
2288                switch (algorithm) {
2289                case ALGORITHM_LEFT_ASYMMETRIC:
2290                        pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2291                        qd_idx = pd_idx + 1;
2292                        if (pd_idx == raid_disks-1) {
2293                                (*dd_idx)++;    /* Q D D D P */
2294                                qd_idx = 0;
2295                        } else if (*dd_idx >= pd_idx)
2296                                (*dd_idx) += 2; /* D D P Q D */
2297                        break;
2298                case ALGORITHM_RIGHT_ASYMMETRIC:
2299                        pd_idx = sector_div(stripe2, raid_disks);
2300                        qd_idx = pd_idx + 1;
2301                        if (pd_idx == raid_disks-1) {
2302                                (*dd_idx)++;    /* Q D D D P */
2303                                qd_idx = 0;
2304                        } else if (*dd_idx >= pd_idx)
2305                                (*dd_idx) += 2; /* D D P Q D */
2306                        break;
2307                case ALGORITHM_LEFT_SYMMETRIC:
2308                        pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2309                        qd_idx = (pd_idx + 1) % raid_disks;
2310                        *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
2311                        break;
2312                case ALGORITHM_RIGHT_SYMMETRIC:
2313                        pd_idx = sector_div(stripe2, raid_disks);
2314                        qd_idx = (pd_idx + 1) % raid_disks;
2315                        *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
2316                        break;
2317
2318                case ALGORITHM_PARITY_0:
2319                        pd_idx = 0;
2320                        qd_idx = 1;
2321                        (*dd_idx) += 2;
2322                        break;
2323                case ALGORITHM_PARITY_N:
2324                        pd_idx = data_disks;
2325                        qd_idx = data_disks + 1;
2326                        break;
2327
2328                case ALGORITHM_ROTATING_ZERO_RESTART:
2329                        /* Exactly the same as RIGHT_ASYMMETRIC, but or
2330                         * of blocks for computing Q is different.
2331                         */
2332                        pd_idx = sector_div(stripe2, raid_disks);
2333                        qd_idx = pd_idx + 1;
2334                        if (pd_idx == raid_disks-1) {
2335                                (*dd_idx)++;    /* Q D D D P */
2336                                qd_idx = 0;
2337                        } else if (*dd_idx >= pd_idx)
2338                                (*dd_idx) += 2; /* D D P Q D */
2339                        ddf_layout = 1;
2340                        break;
2341
2342                case ALGORITHM_ROTATING_N_RESTART:
2343                        /* Same a left_asymmetric, by first stripe is
2344                         * D D D P Q  rather than
2345                         * Q D D D P
2346                         */
2347                        stripe2 += 1;
2348                        pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2349                        qd_idx = pd_idx + 1;
2350                        if (pd_idx == raid_disks-1) {
2351                                (*dd_idx)++;    /* Q D D D P */
2352                                qd_idx = 0;
2353                        } else if (*dd_idx >= pd_idx)
2354                                (*dd_idx) += 2; /* D D P Q D */
2355                        ddf_layout = 1;
2356                        break;
2357
2358                case ALGORITHM_ROTATING_N_CONTINUE:
2359                        /* Same as left_symmetric but Q is before P */
2360                        pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2361                        qd_idx = (pd_idx + raid_disks - 1) % raid_disks;
2362                        *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2363                        ddf_layout = 1;
2364                        break;
2365
2366                case ALGORITHM_LEFT_ASYMMETRIC_6:
2367                        /* RAID5 left_asymmetric, with Q on last device */
2368                        pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
2369                        if (*dd_idx >= pd_idx)
2370                                (*dd_idx)++;
2371                        qd_idx = raid_disks - 1;
2372                        break;
2373
2374                case ALGORITHM_RIGHT_ASYMMETRIC_6:
2375                        pd_idx = sector_div(stripe2, raid_disks-1);
2376                        if (*dd_idx >= pd_idx)
2377                                (*dd_idx)++;
2378                        qd_idx = raid_disks - 1;
2379                        break;
2380
2381                case ALGORITHM_LEFT_SYMMETRIC_6:
2382                        pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
2383                        *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2384                        qd_idx = raid_disks - 1;
2385                        break;
2386
2387                case ALGORITHM_RIGHT_SYMMETRIC_6:
2388                        pd_idx = sector_div(stripe2, raid_disks-1);
2389                        *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2390                        qd_idx = raid_disks - 1;
2391                        break;
2392
2393                case ALGORITHM_PARITY_0_6:
2394                        pd_idx = 0;
2395                        (*dd_idx)++;
2396                        qd_idx = raid_disks - 1;
2397                        break;
2398
2399                default:
2400                        BUG();
2401                }
2402                break;
2403        }
2404
2405        if (sh) {
2406                sh->pd_idx = pd_idx;
2407                sh->qd_idx = qd_idx;
2408                sh->ddf_layout = ddf_layout;
2409        }
2410        /*
2411         * Finally, compute the new sector number
2412         */
2413        new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
2414        return new_sector;
2415}
2416
2417static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous)
2418{
2419        struct r5conf *conf = sh->raid_conf;
2420        int raid_disks = sh->disks;
2421        int data_disks = raid_disks - conf->max_degraded;
2422        sector_t new_sector = sh->sector, check;
2423        int sectors_per_chunk = previous ? conf->prev_chunk_sectors
2424                                         : conf->chunk_sectors;
2425        int algorithm = previous ? conf->prev_algo
2426                                 : conf->algorithm;
2427        sector_t stripe;
2428        int chunk_offset;
2429        sector_t chunk_number;
2430        int dummy1, dd_idx = i;
2431        sector_t r_sector;
2432        struct stripe_head sh2;
2433
2434        chunk_offset = sector_div(new_sector, sectors_per_chunk);
2435        stripe = new_sector;
2436
2437        if (i == sh->pd_idx)
2438                return 0;
2439        switch(conf->level) {
2440        case 4: break;
2441        case 5:
2442                switch (algorithm) {
2443                case ALGORITHM_LEFT_ASYMMETRIC:
2444                case ALGORITHM_RIGHT_ASYMMETRIC:
2445                        if (i > sh->pd_idx)
2446                                i--;
2447                        break;
2448                case ALGORITHM_LEFT_SYMMETRIC:
2449                case ALGORITHM_RIGHT_SYMMETRIC:
2450                        if (i < sh->pd_idx)
2451                                i += raid_disks;
2452                        i -= (sh->pd_idx + 1);
2453                        break;
2454                case ALGORITHM_PARITY_0:
2455                        i -= 1;
2456                        break;
2457                case ALGORITHM_PARITY_N:
2458                        break;
2459                default:
2460                        BUG();
2461                }
2462                break;
2463        case 6:
2464                if (i == sh->qd_idx)
2465                        return 0; /* It is the Q disk */
2466                switch (algorithm) {
2467                case ALGORITHM_LEFT_ASYMMETRIC:
2468                case ALGORITHM_RIGHT_ASYMMETRIC:
2469                case ALGORITHM_ROTATING_ZERO_RESTART:
2470                case ALGORITHM_ROTATING_N_RESTART:
2471                        if (sh->pd_idx == raid_disks-1)
2472                                i--;    /* Q D D D P */
2473                        else if (i > sh->pd_idx)
2474                                i -= 2; /* D D P Q D */
2475                        break;
2476                case ALGORITHM_LEFT_SYMMETRIC:
2477                case ALGORITHM_RIGHT_SYMMETRIC:
2478                        if (sh->pd_idx == raid_disks-1)
2479                                i--; /* Q D D D P */
2480                        else {
2481                                /* D D P Q D */
2482                                if (i < sh->pd_idx)
2483                                        i += raid_disks;
2484                                i -= (sh->pd_idx + 2);
2485                        }
2486                        break;
2487                case ALGORITHM_PARITY_0:
2488                        i -= 2;
2489                        break;
2490                case ALGORITHM_PARITY_N:
2491                        break;
2492                case ALGORITHM_ROTATING_N_CONTINUE:
2493                        /* Like left_symmetric, but P is before Q */
2494                        if (sh->pd_idx == 0)
2495                                i--;    /* P D D D Q */
2496                        else {
2497                                /* D D Q P D */
2498                                if (i < sh->pd_idx)
2499                                        i += raid_disks;
2500                                i -= (sh->pd_idx + 1);
2501                        }
2502                        break;
2503                case ALGORITHM_LEFT_ASYMMETRIC_6:
2504                case ALGORITHM_RIGHT_ASYMMETRIC_6:
2505                        if (i > sh->pd_idx)
2506                                i--;
2507                        break;
2508                case ALGORITHM_LEFT_SYMMETRIC_6:
2509                case ALGORITHM_RIGHT_SYMMETRIC_6:
2510                        if (i < sh->pd_idx)
2511                                i += data_disks + 1;
2512                        i -= (sh->pd_idx + 1);
2513                        break;
2514                case ALGORITHM_PARITY_0_6:
2515                        i -= 1;
2516                        break;
2517                default:
2518                        BUG();
2519                }
2520                break;
2521        }
2522
2523        chunk_number = stripe * data_disks + i;
2524        r_sector = chunk_number * sectors_per_chunk + chunk_offset;
2525
2526        check = raid5_compute_sector(conf, r_sector,
2527                                     previous, &dummy1, &sh2);
2528        if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx
2529                || sh2.qd_idx != sh->qd_idx) {
2530                printk(KERN_ERR "md/raid:%s: compute_blocknr: map not correct\n",
2531                       mdname(conf->mddev));
2532                return 0;
2533        }
2534        return r_sector;
2535}
2536
2537static void
2538schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s,
2539                         int rcw, int expand)
2540{
2541        int i, pd_idx = sh->pd_idx, disks = sh->disks;
2542        struct r5conf *conf = sh->raid_conf;
2543        int level = conf->level;
2544
2545        if (rcw) {
2546
2547                for (i = disks; i--; ) {
2548                        struct r5dev *dev = &sh->dev[i];
2549
2550                        if (dev->towrite) {
2551                                set_bit(R5_LOCKED, &dev->flags);
2552                                set_bit(R5_Wantdrain, &dev->flags);
2553                                if (!expand)
2554                                        clear_bit(R5_UPTODATE, &dev->flags);
2555                                s->locked++;
2556                        }
2557                }
2558                /* if we are not expanding this is a proper write request, and
2559                 * there will be bios with new data to be drained into the
2560                 * stripe cache
2561                 */
2562                if (!expand) {
2563                        if (!s->locked)
2564                                /* False alarm, nothing to do */
2565                                return;
2566                        sh->reconstruct_state = reconstruct_state_drain_run;
2567                        set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2568                } else
2569                        sh->reconstruct_state = reconstruct_state_run;
2570
2571                set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2572
2573                if (s->locked + conf->max_degraded == disks)
2574                        if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
2575                                atomic_inc(&conf->pending_full_writes);
2576        } else {
2577                BUG_ON(level == 6);
2578                BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
2579                        test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));
2580
2581                for (i = disks; i--; ) {
2582                        struct r5dev *dev = &sh->dev[i];
2583                        if (i == pd_idx)
2584                                continue;
2585
2586                        if (dev->towrite &&
2587                            (test_bit(R5_UPTODATE, &dev->flags) ||
2588                             test_bit(R5_Wantcompute, &dev->flags))) {
2589                                set_bit(R5_Wantdrain, &dev->flags);
2590                                set_bit(R5_LOCKED, &dev->flags);
2591                                clear_bit(R5_UPTODATE, &dev->flags);
2592                                s->locked++;
2593                        }
2594                }
2595                if (!s->locked)
2596                        /* False alarm - nothing to do */
2597                        return;
2598                sh->reconstruct_state = reconstruct_state_prexor_drain_run;
2599                set_bit(STRIPE_OP_PREXOR, &s->ops_request);
2600                set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2601                set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2602        }
2603
2604        /* keep the parity disk(s) locked while asynchronous operations
2605         * are in flight
2606         */
2607        set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
2608        clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
2609        s->locked++;
2610
2611        if (level == 6) {
2612                int qd_idx = sh->qd_idx;
2613                struct r5dev *dev = &sh->dev[qd_idx];
2614
2615                set_bit(R5_LOCKED, &dev->flags);
2616                clear_bit(R5_UPTODATE, &dev->flags);
2617                s->locked++;
2618        }
2619
2620        pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
2621                __func__, (unsigned long long)sh->sector,
2622                s->locked, s->ops_request);
2623}
2624
2625/*
2626 * Each stripe/dev can have one or more bion attached.
2627 * toread/towrite point to the first in a chain.
2628 * The bi_next chain must be in order.
2629 */
2630static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx, int forwrite)
2631{
2632        struct bio **bip;
2633        struct r5conf *conf = sh->raid_conf;
2634        int firstwrite=0;
2635
2636        pr_debug("adding bi b#%llu to stripe s#%llu\n",
2637                (unsigned long long)bi->bi_iter.bi_sector,
2638                (unsigned long long)sh->sector);
2639
2640        /*
2641         * If several bio share a stripe. The bio bi_phys_segments acts as a
2642         * reference count to avoid race. The reference count should already be
2643         * increased before this function is called (for example, in
2644         * make_request()), so other bio sharing this stripe will not free the
2645         * stripe. If a stripe is owned by one stripe, the stripe lock will
2646         * protect it.
2647         */
2648        spin_lock_irq(&sh->stripe_lock);
2649        if (forwrite) {
2650                bip = &sh->dev[dd_idx].towrite;
2651                if (*bip == NULL)
2652                        firstwrite = 1;
2653        } else
2654                bip = &sh->dev[dd_idx].toread;
2655        while (*bip && (*bip)->bi_iter.bi_sector < bi->bi_iter.bi_sector) {
2656                if (bio_end_sector(*bip) > bi->bi_iter.bi_sector)
2657                        goto overlap;
2658                bip = & (*bip)->bi_next;
2659        }
2660        if (*bip && (*bip)->bi_iter.bi_sector < bio_end_sector(bi))
2661                goto overlap;
2662
2663        BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
2664        if (*bip)
2665                bi->bi_next = *bip;
2666        *bip = bi;
2667        raid5_inc_bi_active_stripes(bi);
2668
2669        if (forwrite) {
2670                /* check if page is covered */
2671                sector_t sector = sh->dev[dd_idx].sector;
2672                for (bi=sh->dev[dd_idx].towrite;
2673                     sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
2674                             bi && bi->bi_iter.bi_sector <= sector;
2675                     bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
2676                        if (bio_end_sector(bi) >= sector)
2677                                sector = bio_end_sector(bi);
2678                }
2679                if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
2680                        set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags);
2681        }
2682
2683        pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
2684                (unsigned long long)(*bip)->bi_iter.bi_sector,
2685                (unsigned long long)sh->sector, dd_idx);
2686        spin_unlock_irq(&sh->stripe_lock);
2687
2688        if (conf->mddev->bitmap && firstwrite) {
2689                bitmap_startwrite(conf->mddev->bitmap, sh->sector,
2690                                  STRIPE_SECTORS, 0);
2691                sh->bm_seq = conf->seq_flush+1;
2692                set_bit(STRIPE_BIT_DELAY, &sh->state);
2693        }
2694        return 1;
2695
2696 overlap:
2697        set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
2698        spin_unlock_irq(&sh->stripe_lock);
2699        return 0;
2700}
2701
2702static void end_reshape(struct r5conf *conf);
2703
2704static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
2705                            struct stripe_head *sh)
2706{
2707        int sectors_per_chunk =
2708                previous ? conf->prev_chunk_sectors : conf->chunk_sectors;
2709        int dd_idx;
2710        int chunk_offset = sector_div(stripe, sectors_per_chunk);
2711        int disks = previous ? conf->previous_raid_disks : conf->raid_disks;
2712
2713        raid5_compute_sector(conf,
2714                             stripe * (disks - conf->max_degraded)
2715                             *sectors_per_chunk + chunk_offset,
2716                             previous,
2717                             &dd_idx, sh);
2718}
2719
2720static void
2721handle_failed_stripe(struct r5conf *conf, struct stripe_head *sh,
2722                                struct stripe_head_state *s, int disks,
2723                                struct bio **return_bi)
2724{
2725        int i;
2726        for (i = disks; i--; ) {
2727                struct bio *bi;
2728                int bitmap_end = 0;
2729
2730                if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
2731                        struct md_rdev *rdev;
2732                        rcu_read_lock();
2733                        rdev = rcu_dereference(conf->disks[i].rdev);
2734                        if (rdev && test_bit(In_sync, &rdev->flags))
2735                                atomic_inc(&rdev->nr_pending);
2736                        else
2737                                rdev = NULL;
2738                        rcu_read_unlock();
2739                        if (rdev) {
2740                                if (!rdev_set_badblocks(
2741                                            rdev,
2742                                            sh->sector,
2743                                            STRIPE_SECTORS, 0))
2744                                        md_error(conf->mddev, rdev);
2745                                rdev_dec_pending(rdev, conf->mddev);
2746                        }
2747                }
2748                spin_lock_irq(&sh->stripe_lock);
2749                /* fail all writes first */
2750                bi = sh->dev[i].towrite;
2751                sh->dev[i].towrite = NULL;
2752                spin_unlock_irq(&sh->stripe_lock);
2753                if (bi)
2754                        bitmap_end = 1;
2755
2756                if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2757                        wake_up(&conf->wait_for_overlap);
2758
2759                while (bi && bi->bi_iter.bi_sector <
2760                        sh->dev[i].sector + STRIPE_SECTORS) {
2761                        struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
2762                        clear_bit(BIO_UPTODATE, &bi->bi_flags);
2763                        if (!raid5_dec_bi_active_stripes(bi)) {
2764                                md_write_end(conf->mddev);
2765                                bi->bi_next = *return_bi;
2766                                *return_bi = bi;
2767                        }
2768                        bi = nextbi;
2769                }
2770                if (bitmap_end)
2771                        bitmap_endwrite(conf->mddev->bitmap, sh->sector,
2772                                STRIPE_SECTORS, 0, 0);
2773                bitmap_end = 0;
2774                /* and fail all 'written' */
2775                bi = sh->dev[i].written;
2776                sh->dev[i].written = NULL;
2777                if (test_and_clear_bit(R5_SkipCopy, &sh->dev[i].flags)) {
2778                        WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
2779                        sh->dev[i].page = sh->dev[i].orig_page;
2780                }
2781
2782                if (bi) bitmap_end = 1;
2783                while (bi && bi->bi_iter.bi_sector <
2784                       sh->dev[i].sector + STRIPE_SECTORS) {
2785                        struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
2786                        clear_bit(BIO_UPTODATE, &bi->bi_flags);
2787                        if (!raid5_dec_bi_active_stripes(bi)) {
2788                                md_write_end(conf->mddev);
2789                                bi->bi_next = *return_bi;
2790                                *return_bi = bi;
2791                        }
2792                        bi = bi2;
2793                }
2794
2795                /* fail any reads if this device is non-operational and
2796                 * the data has not reached the cache yet.
2797                 */
2798                if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
2799                    (!test_bit(R5_Insync, &sh->dev[i].flags) ||
2800                      test_bit(R5_ReadError, &sh->dev[i].flags))) {
2801                        spin_lock_irq(&sh->stripe_lock);
2802                        bi = sh->dev[i].toread;
2803                        sh->dev[i].toread = NULL;
2804                        spin_unlock_irq(&sh->stripe_lock);
2805                        if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2806                                wake_up(&conf->wait_for_overlap);
2807                        while (bi && bi->bi_iter.bi_sector <
2808                               sh->dev[i].sector + STRIPE_SECTORS) {
2809                                struct bio *nextbi =
2810                                        r5_next_bio(bi, sh->dev[i].sector);
2811                                clear_bit(BIO_UPTODATE, &bi->bi_flags);
2812                                if (!raid5_dec_bi_active_stripes(bi)) {
2813                                        bi->bi_next = *return_bi;
2814                                        *return_bi = bi;
2815                                }
2816                                bi = nextbi;
2817                        }
2818                }
2819                if (bitmap_end)
2820                        bitmap_endwrite(conf->mddev->bitmap, sh->sector,
2821                                        STRIPE_SECTORS, 0, 0);
2822                /* If we were in the middle of a write the parity block might
2823                 * still be locked - so just clear all R5_LOCKED flags
2824                 */
2825                clear_bit(R5_LOCKED, &sh->dev[i].flags);
2826        }
2827
2828        if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
2829                if (atomic_dec_and_test(&conf->pending_full_writes))
2830                        md_wakeup_thread(conf->mddev->thread);
2831}
2832
2833static void
2834handle_failed_sync(struct r5conf *conf, struct stripe_head *sh,
2835                   struct stripe_head_state *s)
2836{
2837        int abort = 0;
2838        int i;
2839
2840        clear_bit(STRIPE_SYNCING, &sh->state);
2841        if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
2842                wake_up(&conf->wait_for_overlap);
2843        s->syncing = 0;
2844        s->replacing = 0;
2845        /* There is nothing more to do for sync/check/repair.
2846         * Don't even need to abort as that is handled elsewhere
2847         * if needed, and not always wanted e.g. if there is a known
2848         * bad block here.
2849         * For recover/replace we need to record a bad block on all
2850         * non-sync devices, or abort the recovery
2851         */
2852        if (test_bit(MD_RECOVERY_RECOVER, &conf->mddev->recovery)) {
2853                /* During recovery devices cannot be removed, so
2854                 * locking and refcounting of rdevs is not needed
2855                 */
2856                for (i = 0; i < conf->raid_disks; i++) {
2857                        struct md_rdev *rdev = conf->disks[i].rdev;
2858                        if (rdev
2859                            && !test_bit(Faulty, &rdev->flags)
2860                            && !test_bit(In_sync, &rdev->flags)
2861                            && !rdev_set_badblocks(rdev, sh->sector,
2862                                                   STRIPE_SECTORS, 0))
2863                                abort = 1;
2864                        rdev = conf->disks[i].replacement;
2865                        if (rdev
2866                            && !test_bit(Faulty, &rdev->flags)
2867                            && !test_bit(In_sync, &rdev->flags)
2868                            && !rdev_set_badblocks(rdev, sh->sector,
2869                                                   STRIPE_SECTORS, 0))
2870                                abort = 1;
2871                }
2872                if (abort)
2873                        conf->recovery_disabled =
2874                                conf->mddev->recovery_disabled;
2875        }
2876        md_done_sync(conf->mddev, STRIPE_SECTORS, !abort);
2877}
2878
2879static int want_replace(struct stripe_head *sh, int disk_idx)
2880{
2881        struct md_rdev *rdev;
2882        int rv = 0;
2883        /* Doing recovery so rcu locking not required */
2884        rdev = sh->raid_conf->disks[disk_idx].replacement;
2885        if (rdev
2886            && !test_bit(Faulty, &rdev->flags)
2887            && !test_bit(In_sync, &rdev->flags)
2888            && (rdev->recovery_offset <= sh->sector
2889                || rdev->mddev->recovery_cp <= sh->sector))
2890                rv = 1;
2891
2892        return rv;
2893}
2894
2895/* fetch_block - checks the given member device to see if its data needs
2896 * to be read or computed to satisfy a request.
2897 *
2898 * Returns 1 when no more member devices need to be checked, otherwise returns
2899 * 0 to tell the loop in handle_stripe_fill to continue
2900 */
2901static int fetch_block(struct stripe_head *sh, struct stripe_head_state *s,
2902                       int disk_idx, int disks)
2903{
2904        struct r5dev *dev = &sh->dev[disk_idx];
2905        struct r5dev *fdev[2] = { &sh->dev[s->failed_num[0]],
2906                                  &sh->dev[s->failed_num[1]] };
2907
2908        /* is the data in this block needed, and can we get it? */
2909        if (!test_bit(R5_LOCKED, &dev->flags) &&
2910            !test_bit(R5_UPTODATE, &dev->flags) &&
2911            (dev->toread ||
2912             (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)) ||
2913             s->syncing || s->expanding ||
2914             (s->replacing && want_replace(sh, disk_idx)) ||
2915             (s->failed >= 1 && fdev[0]->toread) ||
2916             (s->failed >= 2 && fdev[1]->toread) ||
2917             (sh->raid_conf->level <= 5 && s->failed && fdev[0]->towrite &&
2918              (!test_bit(R5_Insync, &dev->flags) || test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) &&
2919              !test_bit(R5_OVERWRITE, &fdev[0]->flags)) ||
2920             ((sh->raid_conf->level == 6 ||
2921               sh->sector >= sh->raid_conf->mddev->recovery_cp)
2922              && s->failed && s->to_write &&
2923              (s->to_write - s->non_overwrite <
2924               sh->raid_conf->raid_disks - sh->raid_conf->max_degraded) &&
2925              (!test_bit(R5_Insync, &dev->flags) || test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))))) {
2926                /* we would like to get this block, possibly by computing it,
2927                 * otherwise read it if the backing disk is insync
2928                 */
2929                BUG_ON(test_bit(R5_Wantcompute, &dev->flags));
2930                BUG_ON(test_bit(R5_Wantread, &dev->flags));
2931                if ((s->uptodate == disks - 1) &&
2932                    (s->failed && (disk_idx == s->failed_num[0] ||
2933                                   disk_idx == s->failed_num[1]))) {
2934                        /* have disk failed, and we're requested to fetch it;
2935                         * do compute it
2936                         */
2937                        pr_debug("Computing stripe %llu block %d\n",
2938                               (unsigned long long)sh->sector, disk_idx);
2939                        set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2940                        set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2941                        set_bit(R5_Wantcompute, &dev->flags);
2942                        sh->ops.target = disk_idx;
2943                        sh->ops.target2 = -1; /* no 2nd target */
2944                        s->req_compute = 1;
2945                        /* Careful: from this point on 'uptodate' is in the eye
2946                         * of raid_run_ops which services 'compute' operations
2947                         * before writes. R5_Wantcompute flags a block that will
2948                         * be R5_UPTODATE by the time it is needed for a
2949                         * subsequent operation.
2950                         */
2951                        s->uptodate++;
2952                        return 1;
2953                } else if (s->uptodate == disks-2 && s->failed >= 2) {
2954                        /* Computing 2-failure is *very* expensive; only
2955                         * do it if failed >= 2
2956                         */
2957                        int other;
2958                        for (other = disks; other--; ) {
2959                                if (other == disk_idx)
2960                                        continue;
2961                                if (!test_bit(R5_UPTODATE,
2962                                      &sh->dev[other].flags))
2963                                        break;
2964                        }
2965                        BUG_ON(other < 0);
2966                        pr_debug("Computing stripe %llu blocks %d,%d\n",
2967                               (unsigned long long)sh->sector,
2968                               disk_idx, other);
2969                        set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2970                        set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2971                        set_bit(R5_Wantcompute, &sh->dev[disk_idx].flags);
2972                        set_bit(R5_Wantcompute, &sh->dev[other].flags);
2973                        sh->ops.target = disk_idx;
2974                        sh->ops.target2 = other;
2975                        s->uptodate += 2;
2976                        s->req_compute = 1;
2977                        return 1;
2978                } else if (test_bit(R5_Insync, &dev->flags)) {
2979                        set_bit(R5_LOCKED, &dev->flags);
2980                        set_bit(R5_Wantread, &dev->flags);
2981                        s->locked++;
2982                        pr_debug("Reading block %d (sync=%d)\n",
2983                                disk_idx, s->syncing);
2984                }
2985        }
2986
2987        return 0;
2988}
2989
2990/**
2991 * handle_stripe_fill - read or compute data to satisfy pending requests.
2992 */
2993static void handle_stripe_fill(struct stripe_head *sh,
2994                               struct stripe_head_state *s,
2995                               int disks)
2996{
2997        int i;
2998
2999        /* look for blocks to read/compute, skip this if a compute
3000         * is already in flight, or if the stripe contents are in the
3001         * midst of changing due to a write
3002         */
3003        if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
3004            !sh->reconstruct_state)
3005                for (i = disks; i--; )
3006                        if (fetch_block(sh, s, i, disks))
3007                                break;
3008        set_bit(STRIPE_HANDLE, &sh->state);
3009}
3010
3011/* handle_stripe_clean_event
3012 * any written block on an uptodate or failed drive can be returned.
3013 * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
3014 * never LOCKED, so we don't need to test 'failed' directly.
3015 */
3016static void handle_stripe_clean_event(struct r5conf *conf,
3017        struct stripe_head *sh, int disks, struct bio **return_bi)
3018{
3019        int i;
3020        struct r5dev *dev;
3021        int discard_pending = 0;
3022
3023        for (i = disks; i--; )
3024                if (sh->dev[i].written) {
3025                        dev = &sh->dev[i];
3026                        if (!test_bit(R5_LOCKED, &dev->flags) &&
3027                            (test_bit(R5_UPTODATE, &dev->flags) ||
3028                             test_bit(R5_Discard, &dev->flags) ||
3029                             test_bit(R5_SkipCopy, &dev->flags))) {
3030                                /* We can return any write requests */
3031                                struct bio *wbi, *wbi2;
3032                                pr_debug("Return write for disc %d\n", i);
3033                                if (test_and_clear_bit(R5_Discard, &dev->flags))
3034                                        clear_bit(R5_UPTODATE, &dev->flags);
3035                                if (test_and_clear_bit(R5_SkipCopy, &dev->flags)) {
3036                                        WARN_ON(test_bit(R5_UPTODATE, &dev->flags));
3037                                        dev->page = dev->orig_page;
3038                                }
3039                                wbi = dev->written;
3040                                dev->written = NULL;
3041                                while (wbi && wbi->bi_iter.bi_sector <
3042                                        dev->sector + STRIPE_SECTORS) {
3043                                        wbi2 = r5_next_bio(wbi, dev->sector);
3044                                        if (!raid5_dec_bi_active_stripes(wbi)) {
3045                                                md_write_end(conf->mddev);
3046                                                wbi->bi_next = *return_bi;
3047                                                *return_bi = wbi;
3048                                        }
3049                                        wbi = wbi2;
3050                                }
3051                                bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3052                                                STRIPE_SECTORS,
3053                                         !test_bit(STRIPE_DEGRADED, &sh->state),
3054                                                0);
3055                        } else if (test_bit(R5_Discard, &dev->flags))
3056                                discard_pending = 1;
3057                        WARN_ON(test_bit(R5_SkipCopy, &dev->flags));
3058                        WARN_ON(dev->page != dev->orig_page);
3059                }
3060        if (!discard_pending &&
3061            test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags)) {
3062                clear_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
3063                clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
3064                if (sh->qd_idx >= 0) {
3065                        clear_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
3066                        clear_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags);
3067                }
3068                /* now that discard is done we can proceed with any sync */
3069                clear_bit(STRIPE_DISCARD, &sh->state);
3070                /*
3071                 * SCSI discard will change some bio fields and the stripe has
3072                 * no updated data, so remove it from hash list and the stripe
3073                 * will be reinitialized
3074                 */
3075                spin_lock_irq(&conf->device_lock);
3076                remove_hash(sh);
3077                spin_unlock_irq(&conf->device_lock);
3078                if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state))
3079                        set_bit(STRIPE_HANDLE, &sh->state);
3080
3081        }
3082
3083        if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
3084                if (atomic_dec_and_test(&conf->pending_full_writes))
3085                        md_wakeup_thread(conf->mddev->thread);
3086}
3087
3088static void handle_stripe_dirtying(struct r5conf *conf,
3089                                   struct stripe_head *sh,
3090                                   struct stripe_head_state *s,
3091                                   int disks)
3092{
3093        int rmw = 0, rcw = 0, i;
3094        sector_t recovery_cp = conf->mddev->recovery_cp;
3095
3096        /* RAID6 requires 'rcw' in current implementation.
3097         * Otherwise, check whether resync is now happening or should start.
3098         * If yes, then the array is dirty (after unclean shutdown or
3099         * initial creation), so parity in some stripes might be inconsistent.
3100         * In this case, we need to always do reconstruct-write, to ensure
3101         * that in case of drive failure or read-error correction, we
3102         * generate correct data from the parity.
3103         */
3104        if (conf->max_degraded == 2 ||
3105            (recovery_cp < MaxSector && sh->sector >= recovery_cp)) {
3106                /* Calculate the real rcw later - for now make it
3107                 * look like rcw is cheaper
3108                 */
3109                rcw = 1; rmw = 2;
3110                pr_debug("force RCW max_degraded=%u, recovery_cp=%llu sh->sector=%llu\n",
3111                         conf->max_degraded, (unsigned long long)recovery_cp,
3112                         (unsigned long long)sh->sector);
3113        } else for (i = disks; i--; ) {
3114                /* would I have to read this buffer for read_modify_write */
3115                struct r5dev *dev = &sh->dev[i];
3116                if ((dev->towrite || i == sh->pd_idx) &&
3117                    !test_bit(R5_LOCKED, &dev->flags) &&
3118                    !(test_bit(R5_UPTODATE, &dev->flags) ||
3119                      test_bit(R5_Wantcompute, &dev->flags))) {
3120                        if (test_bit(R5_Insync, &dev->flags))
3121                                rmw++;
3122                        else
3123                                rmw += 2*disks;  /* cannot read it */
3124                }
3125                /* Would I have to read this buffer for reconstruct_write */
3126                if (!test_bit(R5_OVERWRITE, &dev->flags) && i != sh->pd_idx &&
3127                    !test_bit(R5_LOCKED, &dev->flags) &&
3128                    !(test_bit(R5_UPTODATE, &dev->flags) ||
3129                    test_bit(R5_Wantcompute, &dev->flags))) {
3130                        if (test_bit(R5_Insync, &dev->flags))
3131                                rcw++;
3132                        else
3133                                rcw += 2*disks;
3134                }
3135        }
3136        pr_debug("for sector %llu, rmw=%d rcw=%d\n",
3137                (unsigned long long)sh->sector, rmw, rcw);
3138        set_bit(STRIPE_HANDLE, &sh->state);
3139        if (rmw < rcw && rmw > 0) {
3140                /* prefer read-modify-write, but need to get some data */
3141                if (conf->mddev->queue)
3142                        blk_add_trace_msg(conf->mddev->queue,
3143                                          "raid5 rmw %llu %d",
3144                                          (unsigned long long)sh->sector, rmw);
3145                for (i = disks; i--; ) {
3146                        struct r5dev *dev = &sh->dev[i];
3147                        if ((dev->towrite || i == sh->pd_idx) &&
3148                            !test_bit(R5_LOCKED, &dev->flags) &&
3149                            !(test_bit(R5_UPTODATE, &dev->flags) ||
3150                            test_bit(R5_Wantcompute, &dev->flags)) &&
3151                            test_bit(R5_Insync, &dev->flags)) {
3152                                if (test_bit(STRIPE_PREREAD_ACTIVE,
3153                                             &sh->state)) {
3154                                        pr_debug("Read_old block %d for r-m-w\n",
3155                                                 i);
3156                                        set_bit(R5_LOCKED, &dev->flags);
3157                                        set_bit(R5_Wantread, &dev->flags);
3158                                        s->locked++;
3159                                } else {
3160                                        set_bit(STRIPE_DELAYED, &sh->state);
3161                                        set_bit(STRIPE_HANDLE, &sh->state);
3162                                }
3163                        }
3164                }
3165        }
3166        if (rcw <= rmw && rcw > 0) {
3167                /* want reconstruct write, but need to get some data */
3168                int qread =0;
3169                rcw = 0;
3170                for (i = disks; i--; ) {
3171                        struct r5dev *dev = &sh->dev[i];
3172                        if (!test_bit(R5_OVERWRITE, &dev->flags) &&
3173                            i != sh->pd_idx && i != sh->qd_idx &&
3174                            !test_bit(R5_LOCKED, &dev->flags) &&
3175                            !(test_bit(R5_UPTODATE, &dev->flags) ||
3176                              test_bit(R5_Wantcompute, &dev->flags))) {
3177                                rcw++;
3178                                if (test_bit(R5_Insync, &dev->flags) &&
3179                                    test_bit(STRIPE_PREREAD_ACTIVE,
3180                                             &sh->state)) {
3181                                        pr_debug("Read_old block "
3182                                                "%d for Reconstruct\n", i);
3183                                        set_bit(R5_LOCKED, &dev->flags);
3184                                        set_bit(R5_Wantread, &dev->flags);
3185                                        s->locked++;
3186                                        qread++;
3187                                } else {
3188                                        set_bit(STRIPE_DELAYED, &sh->state);
3189                                        set_bit(STRIPE_HANDLE, &sh->state);
3190                                }
3191                        }
3192                }
3193                if (rcw && conf->mddev->queue)
3194                        blk_add_trace_msg(conf->mddev->queue, "raid5 rcw %llu %d %d %d",
3195                                          (unsigned long long)sh->sector,
3196                                          rcw, qread, test_bit(STRIPE_DELAYED, &sh->state));
3197        }
3198
3199        if (rcw > disks && rmw > disks &&
3200            !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3201                set_bit(STRIPE_DELAYED, &sh->state);
3202
3203        /* now if nothing is locked, and if we have enough data,
3204         * we can start a write request
3205         */
3206        /* since handle_stripe can be called at any time we need to handle the
3207         * case where a compute block operation has been submitted and then a
3208         * subsequent call wants to start a write request.  raid_run_ops only
3209         * handles the case where compute block and reconstruct are requested
3210         * simultaneously.  If this is not the case then new writes need to be
3211         * held off until the compute completes.
3212         */
3213        if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
3214            (s->locked == 0 && (rcw == 0 || rmw == 0) &&
3215            !test_bit(STRIPE_BIT_DELAY, &sh->state)))
3216                schedule_reconstruction(sh, s, rcw == 0, 0);
3217}
3218
3219static void handle_parity_checks5(struct r5conf *conf, struct stripe_head *sh,
3220                                struct stripe_head_state *s, int disks)
3221{
3222        struct r5dev *dev = NULL;
3223
3224        set_bit(STRIPE_HANDLE, &sh->state);
3225
3226        switch (sh->check_state) {
3227        case check_state_idle:
3228                /* start a new check operation if there are no failures */
3229                if (s->failed == 0) {
3230                        BUG_ON(s->uptodate != disks);
3231                        sh->check_state = check_state_run;
3232                        set_bit(STRIPE_OP_CHECK, &s->ops_request);
3233                        clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
3234                        s->uptodate--;
3235                        break;
3236                }
3237                dev = &sh->dev[s->failed_num[0]];
3238                /* fall through */
3239        case check_state_compute_result:
3240                sh->check_state = check_state_idle;
3241                if (!dev)
3242                        dev = &sh->dev[sh->pd_idx];
3243
3244                /* check that a write has not made the stripe insync */
3245                if (test_bit(STRIPE_INSYNC, &sh->state))
3246                        break;
3247
3248                /* either failed parity check, or recovery is happening */
3249                BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
3250                BUG_ON(s->uptodate != disks);
3251
3252                set_bit(R5_LOCKED, &dev->flags);
3253                s->locked++;
3254                set_bit(R5_Wantwrite, &dev->flags);
3255
3256                clear_bit(STRIPE_DEGRADED, &sh->state);
3257                set_bit(STRIPE_INSYNC, &sh->state);
3258                break;
3259        case check_state_run:
3260                break; /* we will be called again upon completion */
3261        case check_state_check_result:
3262                sh->check_state = check_state_idle;
3263
3264                /* if a failure occurred during the check operation, leave
3265                 * STRIPE_INSYNC not set and let the stripe be handled again
3266                 */
3267                if (s->failed)
3268                        break;
3269
3270                /* handle a successful check operation, if parity is correct
3271                 * we are done.  Otherwise update the mismatch count and repair
3272                 * parity if !MD_RECOVERY_CHECK
3273                 */
3274                if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0)
3275                        /* parity is correct (on disc,
3276                         * not in buffer any more)
3277                         */
3278                        set_bit(STRIPE_INSYNC, &sh->state);
3279                else {
3280                        atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches);
3281                        if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
3282                                /* don't try to repair!! */
3283                                set_bit(STRIPE_INSYNC, &sh->state);
3284                        else {
3285                                sh->check_state = check_state_compute_run;
3286                                set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3287                                set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3288                                set_bit(R5_Wantcompute,
3289                                        &sh->dev[sh->pd_idx].flags);
3290                                sh->ops.target = sh->pd_idx;
3291                                sh->ops.target2 = -1;
3292                                s->uptodate++;
3293                        }
3294                }
3295                break;
3296        case check_state_compute_run:
3297                break;
3298        default:
3299                printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
3300                       __func__, sh->check_state,
3301                       (unsigned long long) sh->sector);
3302                BUG();
3303        }
3304}
3305
3306static void handle_parity_checks6(struct r5conf *conf, struct stripe_head *sh,
3307                                  struct stripe_head_state *s,
3308                                  int disks)
3309{
3310        int pd_idx = sh->pd_idx;
3311        int qd_idx = sh->qd_idx;
3312        struct r5dev *dev;
3313
3314        set_bit(STRIPE_HANDLE, &sh->state);
3315
3316        BUG_ON(s->failed > 2);
3317
3318        /* Want to check and possibly repair P and Q.
3319         * However there could be one 'failed' device, in which
3320         * case we can only check one of them, possibly using the
3321         * other to generate missing data
3322         */
3323
3324        switch (sh->check_state) {
3325        case check_state_idle:
3326                /* start a new check operation if there are < 2 failures */
3327                if (s->failed == s->q_failed) {
3328                        /* The only possible failed device holds Q, so it
3329                         * makes sense to check P (If anything else were failed,
3330                         * we would have used P to recreate it).
3331                         */
3332                        sh->check_state = check_state_run;
3333                }
3334                if (!s->q_failed && s->failed < 2) {
3335                        /* Q is not failed, and we didn't use it to generate
3336                         * anything, so it makes sense to check it
3337                         */
3338                        if (sh->check_state == check_state_run)
3339                                sh->check_state = check_state_run_pq;
3340                        else
3341                                sh->check_state = check_state_run_q;
3342                }
3343
3344                /* discard potentially stale zero_sum_result */
3345                sh->ops.zero_sum_result = 0;
3346
3347                if (sh->check_state == check_state_run) {
3348                        /* async_xor_zero_sum destroys the contents of P */
3349                        clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
3350                        s->uptodate--;
3351                }
3352                if (sh->check_state >= check_state_run &&
3353                    sh->check_state <= check_state_run_pq) {
3354                        /* async_syndrome_zero_sum preserves P and Q, so
3355                         * no need to mark them !uptodate here
3356                         */
3357                        set_bit(STRIPE_OP_CHECK, &s->ops_request);
3358                        break;
3359                }
3360
3361                /* we have 2-disk failure */
3362                BUG_ON(s->failed != 2);
3363                /* fall through */
3364        case check_state_compute_result:
3365                sh->check_state = check_state_idle;
3366
3367                /* check that a write has not made the stripe insync */
3368                if (test_bit(STRIPE_INSYNC, &sh->state))
3369                        break;
3370
3371                /* now write out any block on a failed drive,
3372                 * or P or Q if they were recomputed
3373                 */
3374                BUG_ON(s->uptodate < disks - 1); /* We don't need Q to recover */
3375                if (s->failed == 2) {
3376                        dev = &sh->dev[s->failed_num[1]];
3377                        s->locked++;
3378                        set_bit(R5_LOCKED, &dev->flags);
3379                        set_bit(R5_Wantwrite, &dev->flags);
3380                }
3381                if (s->failed >= 1) {
3382                        dev = &sh->dev[s->failed_num[0]];
3383                        s->locked++;
3384                        set_bit(R5_LOCKED, &dev->flags);
3385                        set_bit(R5_Wantwrite, &dev->flags);
3386                }
3387                if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
3388                        dev = &sh->dev[pd_idx];
3389                        s->locked++;
3390                        set_bit(R5_LOCKED, &dev->flags);
3391                        set_bit(R5_Wantwrite, &dev->flags);
3392                }
3393                if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
3394                        dev = &sh->dev[qd_idx];
3395                        s->locked++;
3396                        set_bit(R5_LOCKED, &dev->flags);
3397                        set_bit(R5_Wantwrite, &dev->flags);
3398                }
3399                clear_bit(STRIPE_DEGRADED, &sh->state);
3400
3401                set_bit(STRIPE_INSYNC, &sh->state);
3402                break;
3403        case check_state_run:
3404        case check_state_run_q:
3405        case check_state_run_pq:
3406                break; /* we will be called again upon completion */
3407        case check_state_check_result:
3408                sh->check_state = check_state_idle;
3409
3410                /* handle a successful check operation, if parity is correct
3411                 * we are done.  Otherwise update the mismatch count and repair
3412                 * parity if !MD_RECOVERY_CHECK
3413                 */
3414                if (sh->ops.zero_sum_result == 0) {
3415                        /* both parities are correct */
3416                        if (!s->failed)
3417                                set_bit(STRIPE_INSYNC, &sh->state);
3418                        else {
3419                                /* in contrast to the raid5 case we can validate
3420                                 * parity, but still have a failure to write
3421                                 * back
3422                                 */
3423                                sh->check_state = check_state_compute_result;
3424                                /* Returning at this point means that we may go
3425                                 * off and bring p and/or q uptodate again so
3426                                 * we make sure to check zero_sum_result again
3427                                 * to verify if p or q need writeback
3428                                 */
3429                        }
3430                } else {
3431                        atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches);
3432                        if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
3433                                /* don't try to repair!! */
3434                                set_bit(STRIPE_INSYNC, &sh->state);
3435                        else {
3436                                int *target = &sh->ops.target;
3437
3438                                sh->ops.target = -1;
3439                                sh->ops.target2 = -1;
3440                                sh->check_state = check_state_compute_run;
3441                                set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3442                                set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3443                                if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
3444                                        set_bit(R5_Wantcompute,
3445                                                &sh->dev[pd_idx].flags);
3446                                        *target = pd_idx;
3447                                        target = &sh->ops.target2;
3448                                        s->uptodate++;
3449                                }
3450                                if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
3451                                        set_bit(R5_Wantcompute,
3452                                                &sh->dev[qd_idx].flags);
3453                                        *target = qd_idx;
3454                                        s->uptodate++;
3455                                }
3456                        }
3457                }
3458                break;
3459        case check_state_compute_run:
3460                break;
3461        default:
3462                printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
3463                       __func__, sh->check_state,
3464                       (unsigned long long) sh->sector);
3465                BUG();
3466        }
3467}
3468
3469static void handle_stripe_expansion(struct r5conf *conf, struct stripe_head *sh)
3470{
3471        int i;
3472
3473        /* We have read all the blocks in this stripe and now we need to
3474         * copy some of them into a target stripe for expand.
3475         */
3476        struct dma_async_tx_descriptor *tx = NULL;
3477        clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3478        for (i = 0; i < sh->disks; i++)
3479                if (i != sh->pd_idx && i != sh->qd_idx) {
3480                        int dd_idx, j;
3481                        struct stripe_head *sh2;
3482                        struct async_submit_ctl submit;
3483
3484                        sector_t bn = compute_blocknr(sh, i, 1);
3485                        sector_t s = raid5_compute_sector(conf, bn, 0,
3486                                                          &dd_idx, NULL);
3487                        sh2 = get_active_stripe(conf, s, 0, 1, 1);
3488                        if (sh2 == NULL)
3489                                /* so far only the early blocks of this stripe
3490                                 * have been requested.  When later blocks
3491                                 * get requested, we will try again
3492                                 */
3493                                continue;
3494                        if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
3495                           test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
3496                                /* must have already done this block */
3497                                release_stripe(sh2);
3498                                continue;
3499                        }
3500
3501                        /* place all the copies on one channel */
3502                        init_async_submit(&submit, 0, tx, NULL, NULL, NULL);
3503                        tx = async_memcpy(sh2->dev[dd_idx].page,
3504                                          sh->dev[i].page, 0, 0, STRIPE_SIZE,
3505                                          &submit);
3506
3507                        set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
3508                        set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
3509                        for (j = 0; j < conf->raid_disks; j++)
3510                                if (j != sh2->pd_idx &&
3511                                    j != sh2->qd_idx &&
3512                                    !test_bit(R5_Expanded, &sh2->dev[j].flags))
3513                                        break;
3514                        if (j == conf->raid_disks) {
3515                                set_bit(STRIPE_EXPAND_READY, &sh2->state);
3516                                set_bit(STRIPE_HANDLE, &sh2->state);
3517                        }
3518                        release_stripe(sh2);
3519
3520                }
3521        /* done submitting copies, wait for them to complete */
3522        async_tx_quiesce(&tx);
3523}
3524
3525/*
3526 * handle_stripe - do things to a stripe.
3527 *
3528 * We lock the stripe by setting STRIPE_ACTIVE and then examine the
3529 * state of various bits to see what needs to be done.
3530 * Possible results:
3531 *    return some read requests which now have data
3532 *    return some write requests which are safely on storage
3533 *    schedule a read on some buffers
3534 *    schedule a write of some buffers
3535 *    return confirmation of parity correctness
3536 *
3537 */
3538
3539static void analyse_stripe(struct stripe_head *sh, struct stripe_head_state *s)
3540{
3541        struct r5conf *conf = sh->raid_conf;
3542        int disks = sh->disks;
3543        struct r5dev *dev;
3544        int i;
3545        int do_recovery = 0;
3546
3547        memset(s, 0, sizeof(*s));
3548
3549        s->expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3550        s->expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
3551        s->failed_num[0] = -1;
3552        s->failed_num[1] = -1;
3553
3554        /* Now to look around and see what can be done */
3555        rcu_read_lock();
3556        for (i=disks; i--; ) {
3557                struct md_rdev *rdev;
3558                sector_t first_bad;
3559                int bad_sectors;
3560                int is_bad = 0;
3561
3562                dev = &sh->dev[i];
3563
3564                pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
3565                         i, dev->flags,
3566                         dev->toread, dev->towrite, dev->written);
3567                /* maybe we can reply to a read
3568                 *
3569                 * new wantfill requests are only permitted while
3570                 * ops_complete_biofill is guaranteed to be inactive
3571                 */
3572                if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
3573                    !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
3574                        set_bit(R5_Wantfill, &dev->flags);
3575
3576                /* now count some things */
3577                if (test_bit(R5_LOCKED, &dev->flags))
3578                        s->locked++;
3579                if (test_bit(R5_UPTODATE, &dev->flags))
3580                        s->uptodate++;
3581                if (test_bit(R5_Wantcompute, &dev->flags)) {
3582                        s->compute++;
3583                        BUG_ON(s->compute > 2);
3584                }
3585
3586                if (test_bit(R5_Wantfill, &dev->flags))
3587                        s->to_fill++;
3588                else if (dev->toread)
3589                        s->to_read++;
3590                if (dev->towrite) {
3591                        s->to_write++;
3592                        if (!test_bit(R5_OVERWRITE, &dev->flags))
3593                                s->non_overwrite++;
3594                }
3595                if (dev->written)
3596                        s->written++;
3597                /* Prefer to use the replacement for reads, but only
3598                 * if it is recovered enough and has no bad blocks.
3599                 */
3600                rdev = rcu_dereference(conf->disks[i].replacement);
3601                if (rdev && !test_bit(Faulty, &rdev->flags) &&
3602                    rdev->recovery_offset >= sh->sector + STRIPE_SECTORS &&
3603                    !is_badblock(rdev, sh->sector, STRIPE_SECTORS,
3604                                 &first_bad, &bad_sectors))
3605                        set_bit(R5_ReadRepl, &dev->flags);
3606                else {
3607                        if (rdev)
3608                                set_bit(R5_NeedReplace, &dev->flags);
3609                        rdev = rcu_dereference(conf->disks[i].rdev);
3610                        clear_bit(R5_ReadRepl, &dev->flags);
3611                }
3612                if (rdev && test_bit(Faulty, &rdev->flags))
3613                        rdev = NULL;
3614                if (rdev) {
3615                        is_bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
3616                                             &first_bad, &bad_sectors);
3617                        if (s->blocked_rdev == NULL
3618                            && (test_bit(Blocked, &rdev->flags)
3619                                || is_bad < 0)) {
3620                                if (is_bad < 0)
3621                                        set_bit(BlockedBadBlocks,
3622                                                &rdev->flags);
3623                                s->blocked_rdev = rdev;
3624                                atomic_inc(&rdev->nr_pending);
3625                        }
3626                }
3627                clear_bit(R5_Insync, &dev->flags);
3628                if (!rdev)
3629                        /* Not in-sync */;
3630                else if (is_bad) {
3631                        /* also not in-sync */
3632                        if (!test_bit(WriteErrorSeen, &rdev->flags) &&
3633                            test_bit(R5_UPTODATE, &dev->flags)) {
3634                                /* treat as in-sync, but with a read error
3635                                 * which we can now try to correct
3636                                 */
3637                                set_bit(R5_Insync, &dev->flags);
3638                                set_bit(R5_ReadError, &dev->flags);
3639                        }
3640                } else if (test_bit(In_sync, &rdev->flags))
3641                        set_bit(R5_Insync, &dev->flags);
3642                else if (sh->sector + STRIPE_SECTORS <= rdev->recovery_offset)
3643                        /* in sync if before recovery_offset */
3644                        set_bit(R5_Insync, &dev->flags);
3645                else if (test_bit(R5_UPTODATE, &dev->flags) &&
3646                         test_bit(R5_Expanded, &dev->flags))
3647                        /* If we've reshaped into here, we assume it is Insync.
3648                         * We will shortly update recovery_offset to make
3649                         * it official.
3650                         */
3651                        set_bit(R5_Insync, &dev->flags);
3652
3653                if (test_bit(R5_WriteError, &dev->flags)) {
3654                        /* This flag does not apply to '.replacement'
3655                         * only to .rdev, so make sure to check that*/
3656                        struct md_rdev *rdev2 = rcu_dereference(
3657                                conf->disks[i].rdev);
3658                        if (rdev2 == rdev)
3659                                clear_bit(R5_Insync, &dev->flags);
3660                        if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
3661                                s->handle_bad_blocks = 1;
3662                                atomic_inc(&rdev2->nr_pending);
3663                        } else
3664                                clear_bit(R5_WriteError, &dev->flags);
3665                }
3666                if (test_bit(R5_MadeGood, &dev->flags)) {
3667                        /* This flag does not apply to '.replacement'
3668                         * only to .rdev, so make sure to check that*/
3669                        struct md_rdev *rdev2 = rcu_dereference(
3670                                conf->disks[i].rdev);
3671                        if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
3672                                s->handle_bad_blocks = 1;
3673                                atomic_inc(&rdev2->nr_pending);
3674                        } else
3675                                clear_bit(R5_MadeGood, &dev->flags);
3676                }
3677                if (test_bit(R5_MadeGoodRepl, &dev->flags)) {
3678                        struct md_rdev *rdev2 = rcu_dereference(
3679                                conf->disks[i].replacement);
3680                        if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
3681                                s->handle_bad_blocks = 1;
3682                                atomic_inc(&rdev2->nr_pending);
3683                        } else
3684                                clear_bit(R5_MadeGoodRepl, &dev->flags);
3685                }
3686                if (!test_bit(R5_Insync, &dev->flags)) {
3687                        /* The ReadError flag will just be confusing now */
3688                        clear_bit(R5_ReadError, &dev->flags);
3689                        clear_bit(R5_ReWrite, &dev->flags);
3690                }
3691                if (test_bit(R5_ReadError, &dev->flags))
3692                        clear_bit(R5_Insync, &dev->flags);
3693                if (!test_bit(R5_Insync, &dev->flags)) {
3694                        if (s->failed < 2)
3695                                s->failed_num[s->failed] = i;
3696                        s->failed++;
3697                        if (rdev && !test_bit(Faulty, &rdev->flags))
3698                                do_recovery = 1;
3699                }
3700        }
3701        if (test_bit(STRIPE_SYNCING, &sh->state)) {
3702                /* If there is a failed device being replaced,
3703                 *     we must be recovering.
3704                 * else if we are after recovery_cp, we must be syncing
3705                 * else if MD_RECOVERY_REQUESTED is set, we also are syncing.
3706                 * else we can only be replacing
3707                 * sync and recovery both need to read all devices, and so
3708                 * use the same flag.
3709                 */
3710                if (do_recovery ||
3711                    sh->sector >= conf->mddev->recovery_cp ||
3712                    test_bit(MD_RECOVERY_REQUESTED, &(conf->mddev->recovery)))
3713                        s->syncing = 1;
3714                else
3715                        s->replacing = 1;
3716        }
3717        rcu_read_unlock();
3718}
3719
3720static void handle_stripe(struct stripe_head *sh)
3721{
3722        struct stripe_head_state s;
3723        struct r5conf *conf = sh->raid_conf;
3724        int i;
3725        int prexor;
3726        int disks = sh->disks;
3727        struct r5dev *pdev, *qdev;
3728
3729        clear_bit(STRIPE_HANDLE, &sh->state);
3730        if (test_and_set_bit_lock(STRIPE_ACTIVE, &sh->state)) {
3731                /* already being handled, ensure it gets handled
3732                 * again when current action finishes */
3733                set_bit(STRIPE_HANDLE, &sh->state);
3734                return;
3735        }
3736
3737        if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state)) {
3738                spin_lock(&sh->stripe_lock);
3739                /* Cannot process 'sync' concurrently with 'discard' */
3740                if (!test_bit(STRIPE_DISCARD, &sh->state) &&
3741                    test_and_clear_bit(STRIPE_SYNC_REQUESTED, &sh->state)) {
3742                        set_bit(STRIPE_SYNCING, &sh->state);
3743                        clear_bit(STRIPE_INSYNC, &sh->state);
3744                        clear_bit(STRIPE_REPLACED, &sh->state);
3745                }
3746                spin_unlock(&sh->stripe_lock);
3747        }
3748        clear_bit(STRIPE_DELAYED, &sh->state);
3749
3750        pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
3751                "pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n",
3752               (unsigned long long)sh->sector, sh->state,
3753               atomic_read(&sh->count), sh->pd_idx, sh->qd_idx,
3754               sh->check_state, sh->reconstruct_state);
3755
3756        analyse_stripe(sh, &s);
3757
3758        if (s.handle_bad_blocks) {
3759                set_bit(STRIPE_HANDLE, &sh->state);
3760                goto finish;
3761        }
3762
3763        if (unlikely(s.blocked_rdev)) {
3764                if (s.syncing || s.expanding || s.expanded ||
3765                    s.replacing || s.to_write || s.written) {
3766                        set_bit(STRIPE_HANDLE, &sh->state);
3767                        goto finish;
3768                }
3769                /* There is nothing for the blocked_rdev to block */
3770                rdev_dec_pending(s.blocked_rdev, conf->mddev);
3771                s.blocked_rdev = NULL;
3772        }
3773
3774        if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
3775                set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
3776                set_bit(STRIPE_BIOFILL_RUN, &sh->state);
3777        }
3778
3779        pr_debug("locked=%d uptodate=%d to_read=%d"
3780               " to_write=%d failed=%d failed_num=%d,%d\n",
3781               s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
3782               s.failed_num[0], s.failed_num[1]);
3783        /* check if the array has lost more than max_degraded devices and,
3784         * if so, some requests might need to be failed.
3785         */
3786        if (s.failed > conf->max_degraded) {
3787                sh->check_state = 0;
3788                sh->reconstruct_state = 0;
3789                if (s.to_read+s.to_write+s.written)
3790                        handle_failed_stripe(conf, sh, &s, disks, &s.return_bi);
3791                if (s.syncing + s.replacing)
3792                        handle_failed_sync(conf, sh, &s);
3793        }
3794
3795        /* Now we check to see if any write operations have recently
3796         * completed
3797         */
3798        prexor = 0;
3799        if (sh->reconstruct_state == reconstruct_state_prexor_drain_result)
3800                prexor = 1;
3801        if (sh->reconstruct_state == reconstruct_state_drain_result ||
3802            sh->reconstruct_state == reconstruct_state_prexor_drain_result) {
3803                sh->reconstruct_state = reconstruct_state_idle;
3804
3805                /* All the 'written' buffers and the parity block are ready to
3806                 * be written back to disk
3807                 */
3808                BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags) &&
3809                       !test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags));
3810                BUG_ON(sh->qd_idx >= 0 &&
3811                       !test_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags) &&
3812                       !test_bit(R5_Discard, &sh->dev[sh->qd_idx].flags));
3813                for (i = disks; i--; ) {
3814                        struct r5dev *dev = &sh->dev[i];
3815                        if (test_bit(R5_LOCKED, &dev->flags) &&
3816                                (i == sh->pd_idx || i == sh->qd_idx ||
3817                                 dev->written)) {
3818                                pr_debug("Writing block %d\n", i);
3819                                set_bit(R5_Wantwrite, &dev->flags);
3820                                if (prexor)
3821                                        continue;
3822                                if (s.failed > 1)
3823                                        continue;
3824                                if (!test_bit(R5_Insync, &dev->flags) ||
3825                                    ((i == sh->pd_idx || i == sh->qd_idx)  &&
3826                                     s.failed == 0))
3827                                        set_bit(STRIPE_INSYNC, &sh->state);
3828                        }
3829                }
3830                if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3831                        s.dec_preread_active = 1;
3832        }
3833
3834        /*
3835         * might be able to return some write requests if the parity blocks
3836         * are safe, or on a failed drive
3837         */
3838        pdev = &sh->dev[sh->pd_idx];
3839        s.p_failed = (s.failed >= 1 && s.failed_num[0] == sh->pd_idx)
3840                || (s.failed >= 2 && s.failed_num[1] == sh->pd_idx);
3841        qdev = &sh->dev[sh->qd_idx];
3842        s.q_failed = (s.failed >= 1 && s.failed_num[0] == sh->qd_idx)
3843                || (s.failed >= 2 && s.failed_num[1] == sh->qd_idx)
3844                || conf->level < 6;
3845
3846        if (s.written &&
3847            (s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
3848                             && !test_bit(R5_LOCKED, &pdev->flags)
3849                             && (test_bit(R5_UPTODATE, &pdev->flags) ||
3850                                 test_bit(R5_Discard, &pdev->flags))))) &&
3851            (s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
3852                             && !test_bit(R5_LOCKED, &qdev->flags)
3853                             && (test_bit(R5_UPTODATE, &qdev->flags) ||
3854                                 test_bit(R5_Discard, &qdev->flags))))))
3855                handle_stripe_clean_event(conf, sh, disks, &s.return_bi);
3856
3857        /* Now we might consider reading some blocks, either to check/generate
3858         * parity, or to satisfy requests
3859         * or to load a block that is being partially written.
3860         */
3861        if (s.to_read || s.non_overwrite
3862            || (conf->level == 6 && s.to_write && s.failed)
3863            || (s.syncing && (s.uptodate + s.compute < disks))
3864            || s.replacing
3865            || s.expanding)
3866                handle_stripe_fill(sh, &s, disks);
3867
3868        /* Now to consider new write requests and what else, if anything
3869         * should be read.  We do not handle new writes when:
3870         * 1/ A 'write' operation (copy+xor) is already in flight.
3871         * 2/ A 'check' operation is in flight, as it may clobber the parity
3872         *    block.
3873         */
3874        if (s.to_write && !sh->reconstruct_state && !sh->check_state)
3875                handle_stripe_dirtying(conf, sh, &s, disks);
3876
3877        /* maybe we need to check and possibly fix the parity for this stripe
3878         * Any reads will already have been scheduled, so we just see if enough
3879         * data is available.  The parity check is held off while parity
3880         * dependent operations are in flight.
3881         */
3882        if (sh->check_state ||
3883            (s.syncing && s.locked == 0 &&
3884             !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
3885             !test_bit(STRIPE_INSYNC, &sh->state))) {
3886                if (conf->level == 6)
3887                        handle_parity_checks6(conf, sh, &s, disks);
3888                else
3889                        handle_parity_checks5(conf, sh, &s, disks);
3890        }
3891
3892        if ((s.replacing || s.syncing) && s.locked == 0
3893            && !test_bit(STRIPE_COMPUTE_RUN, &sh->state)
3894            && !test_bit(STRIPE_REPLACED, &sh->state)) {
3895                /* Write out to replacement devices where possible */
3896                for (i = 0; i < conf->raid_disks; i++)
3897                        if (test_bit(R5_NeedReplace, &sh->dev[i].flags)) {
3898                                WARN_ON(!test_bit(R5_UPTODATE, &sh->dev[i].flags));
3899                                set_bit(R5_WantReplace, &sh->dev[i].flags);
3900                                set_bit(R5_LOCKED, &sh->dev[i].flags);
3901                                s.locked++;
3902                        }
3903                if (s.replacing)
3904                        set_bit(STRIPE_INSYNC, &sh->state);
3905                set_bit(STRIPE_REPLACED, &sh->state);
3906        }
3907        if ((s.syncing || s.replacing) && s.locked == 0 &&
3908            !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
3909            test_bit(STRIPE_INSYNC, &sh->state)) {
3910                md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
3911                clear_bit(STRIPE_SYNCING, &sh->state);
3912                if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
3913                        wake_up(&conf->wait_for_overlap);
3914        }
3915
3916        /* If the failed drives are just a ReadError, then we might need
3917         * to progress the repair/check process
3918         */
3919        if (s.failed <= conf->max_degraded && !conf->mddev->ro)
3920                for (i = 0; i < s.failed; i++) {
3921                        struct r5dev *dev = &sh->dev[s.failed_num[i]];
3922                        if (test_bit(R5_ReadError, &dev->flags)
3923                            && !test_bit(R5_LOCKED, &dev->flags)
3924                            && test_bit(R5_UPTODATE, &dev->flags)
3925                                ) {
3926                                if (!test_bit(R5_ReWrite, &dev->flags)) {
3927                                        set_bit(R5_Wantwrite, &dev->flags);
3928                                        set_bit(R5_ReWrite, &dev->flags);
3929                                        set_bit(R5_LOCKED, &dev->flags);
3930                                        s.locked++;
3931                                } else {
3932                                        /* let's read it back */
3933                                        set_bit(R5_Wantread, &dev->flags);
3934                                        set_bit(R5_LOCKED, &dev->flags);
3935                                        s.locked++;
3936                                }
3937                        }
3938                }
3939
3940        /* Finish reconstruct operations initiated by the expansion process */
3941        if (sh->reconstruct_state == reconstruct_state_result) {
3942                struct stripe_head *sh_src
3943                        = get_active_stripe(conf, sh->sector, 1, 1, 1);
3944                if (sh_src && test_bit(STRIPE_EXPAND_SOURCE, &sh_src->state)) {
3945                        /* sh cannot be written until sh_src has been read.
3946                         * so arrange for sh to be delayed a little
3947                         */
3948                        set_bit(STRIPE_DELAYED, &sh->state);
3949                        set_bit(STRIPE_HANDLE, &sh->state);
3950                        if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
3951                                              &sh_src->state))
3952                                atomic_inc(&conf->preread_active_stripes);
3953                        release_stripe(sh_src);
3954                        goto finish;
3955                }
3956                if (sh_src)
3957                        release_stripe(sh_src);
3958
3959                sh->reconstruct_state = reconstruct_state_idle;
3960                clear_bit(STRIPE_EXPANDING, &sh->state);
3961                for (i = conf->raid_disks; i--; ) {
3962                        set_bit(R5_Wantwrite, &sh->dev[i].flags);
3963                        set_bit(R5_LOCKED, &sh->dev[i].flags);
3964                        s.locked++;
3965                }
3966        }
3967
3968        if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
3969            !sh->reconstruct_state) {
3970                /* Need to write out all blocks after computing parity */
3971                sh->disks = conf->raid_disks;
3972                stripe_set_idx(sh->sector, conf, 0, sh);
3973                schedule_reconstruction(sh, &s, 1, 1);
3974        } else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
3975                clear_bit(STRIPE_EXPAND_READY, &sh->state);
3976                atomic_dec(&conf->reshape_stripes);
3977                wake_up(&conf->wait_for_overlap);
3978                md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
3979        }
3980
3981        if (s.expanding && s.locked == 0 &&
3982            !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
3983                handle_stripe_expansion(conf, sh);
3984
3985finish:
3986        /* wait for this device to become unblocked */
3987        if (unlikely(s.blocked_rdev)) {
3988                if (conf->mddev->external)
3989                        md_wait_for_blocked_rdev(s.blocked_rdev,
3990                                                 conf->mddev);
3991                else
3992                        /* Internal metadata will immediately
3993                         * be written by raid5d, so we don't
3994                         * need to wait here.
3995                         */
3996                        rdev_dec_pending(s.blocked_rdev,
3997                                         conf->mddev);
3998        }
3999
4000        if (s.handle_bad_blocks)
4001                for (i = disks; i--; ) {
4002                        struct md_rdev *rdev;
4003                        struct r5dev *dev = &sh->dev[i];
4004                        if (test_and_clear_bit(R5_WriteError, &dev->flags)) {
4005                                /* We own a safe reference to the rdev */
4006                                rdev = conf->disks[i].rdev;
4007                                if (!rdev_set_badblocks(rdev, sh->sector,
4008                                                        STRIPE_SECTORS, 0))
4009                                        md_error(conf->mddev, rdev);
4010                                rdev_dec_pending(rdev, conf->mddev);
4011                        }
4012                        if (test_and_clear_bit(R5_MadeGood, &dev->flags)) {
4013                                rdev = conf->disks[i].rdev;
4014                                rdev_clear_badblocks(rdev, sh->sector,
4015                                                     STRIPE_SECTORS, 0);
4016                                rdev_dec_pending(rdev, conf->mddev);
4017                        }
4018                        if (test_and_clear_bit(R5_MadeGoodRepl, &dev->flags)) {
4019                                rdev = conf->disks[i].replacement;
4020                                if (!rdev)
4021                                        /* rdev have been moved down */
4022                                        rdev = conf->disks[i].rdev;
4023                                rdev_clear_badblocks(rdev, sh->sector,
4024                                                     STRIPE_SECTORS, 0);
4025                                rdev_dec_pending(rdev, conf->mddev);
4026                        }
4027                }
4028
4029        if (s.ops_request)
4030                raid_run_ops(sh, s.ops_request);
4031
4032        ops_run_io(sh, &s);
4033
4034        if (s.dec_preread_active) {
4035                /* We delay this until after ops_run_io so that if make_request
4036                 * is waiting on a flush, it won't continue until the writes
4037                 * have actually been submitted.
4038                 */
4039                atomic_dec(&conf->preread_active_stripes);
4040                if (atomic_read(&conf->preread_active_stripes) <
4041                    IO_THRESHOLD)
4042                        md_wakeup_thread(conf->mddev->thread);
4043        }
4044
4045        return_io(s.return_bi);
4046
4047        clear_bit_unlock(STRIPE_ACTIVE, &sh->state);
4048}
4049
4050static void raid5_activate_delayed(struct r5conf *conf)
4051{
4052        if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
4053                while (!list_empty(&conf->delayed_list)) {
4054                        struct list_head *l = conf->delayed_list.next;
4055                        struct stripe_head *sh;
4056                        sh = list_entry(l, struct stripe_head, lru);
4057                        list_del_init(l);
4058                        clear_bit(STRIPE_DELAYED, &sh->state);
4059                        if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4060                                atomic_inc(&conf->preread_active_stripes);
4061                        list_add_tail(&sh->lru, &conf->hold_list);
4062                        raid5_wakeup_stripe_thread(sh);
4063                }
4064        }
4065}
4066
4067static void activate_bit_delay(struct r5conf *conf,
4068        struct list_head *temp_inactive_list)
4069{
4070        /* device_lock is held */
4071        struct list_head head;
4072        list_add(&head, &conf->bitmap_list);
4073        list_del_init(&conf->bitmap_list);
4074        while (!list_empty(&head)) {
4075                struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
4076                int hash;
4077                list_del_init(&sh->lru);
4078                atomic_inc(&sh->count);
4079                hash = sh->hash_lock_index;
4080                __release_stripe(conf, sh, &temp_inactive_list[hash]);
4081        }
4082}
4083
4084int md_raid5_congested(struct mddev *mddev, int bits)
4085{
4086        struct r5conf *conf = mddev->private;
4087
4088        /* No difference between reads and writes.  Just check
4089         * how busy the stripe_cache is
4090         */
4091
4092        if (conf->inactive_blocked)
4093                return 1;
4094        if (conf->quiesce)
4095                return 1;
4096        if (atomic_read(&conf->empty_inactive_list_nr))
4097                return 1;
4098
4099        return 0;
4100}
4101EXPORT_SYMBOL_GPL(md_raid5_congested);
4102
4103static int raid5_congested(void *data, int bits)
4104{
4105        struct mddev *mddev = data;
4106
4107        return mddev_congested(mddev, bits) ||
4108                md_raid5_congested(mddev, bits);
4109}
4110
4111/* We want read requests to align with chunks where possible,
4112 * but write requests don't need to.
4113 */
4114static int raid5_mergeable_bvec(struct request_queue *q,
4115                                struct bvec_merge_data *bvm,
4116                                struct bio_vec *biovec)
4117{
4118        struct mddev *mddev = q->queuedata;
4119        sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
4120        int max;
4121        unsigned int chunk_sectors = mddev->chunk_sectors;
4122        unsigned int bio_sectors = bvm->bi_size >> 9;
4123
4124        if ((bvm->bi_rw & 1) == WRITE)
4125                return biovec->bv_len; /* always allow writes to be mergeable */
4126
4127        if (mddev->new_chunk_sectors < mddev->chunk_sectors)
4128                chunk_sectors = mddev->new_chunk_sectors;
4129        max =  (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
4130        if (max < 0) max = 0;
4131        if (max <= biovec->bv_len && bio_sectors == 0)
4132                return biovec->bv_len;
4133        else
4134                return max;
4135}
4136
4137static int in_chunk_boundary(struct mddev *mddev, struct bio *bio)
4138{
4139        sector_t sector = bio->bi_iter.bi_sector + get_start_sect(bio->bi_bdev);
4140        unsigned int chunk_sectors = mddev->chunk_sectors;
4141        unsigned int bio_sectors = bio_sectors(bio);
4142
4143        if (mddev->new_chunk_sectors < mddev->chunk_sectors)
4144                chunk_sectors = mddev->new_chunk_sectors;
4145        return  chunk_sectors >=
4146                ((sector & (chunk_sectors - 1)) + bio_sectors);
4147}
4148
4149/*
4150 *  add bio to the retry LIFO  ( in O(1) ... we are in interrupt )
4151 *  later sampled by raid5d.
4152 */
4153static void add_bio_to_retry(struct bio *bi,struct r5conf *conf)
4154{
4155        unsigned long flags;
4156
4157        spin_lock_irqsave(&conf->device_lock, flags);
4158
4159        bi->bi_next = conf->retry_read_aligned_list;
4160        conf->retry_read_aligned_list = bi;
4161
4162        spin_unlock_irqrestore(&conf->device_lock, flags);
4163        md_wakeup_thread(conf->mddev->thread);
4164}
4165
4166static struct bio *remove_bio_from_retry(struct r5conf *conf)
4167{
4168        struct bio *bi;
4169
4170        bi = conf->retry_read_aligned;
4171        if (bi) {
4172                conf->retry_read_aligned = NULL;
4173                return bi;
4174        }
4175        bi = conf->retry_read_aligned_list;
4176        if(bi) {
4177                conf->retry_read_aligned_list = bi->bi_next;
4178                bi->bi_next = NULL;
4179                /*
4180                 * this sets the active strip count to 1 and the processed
4181                 * strip count to zero (upper 8 bits)
4182                 */
4183                raid5_set_bi_stripes(bi, 1); /* biased count of active stripes */
4184        }
4185
4186        return bi;
4187}
4188
4189/*
4190 *  The "raid5_align_endio" should check if the read succeeded and if it
4191 *  did, call bio_endio on the original bio (having bio_put the new bio
4192 *  first).
4193 *  If the read failed..
4194 */
4195static void raid5_align_endio(struct bio *bi, int error)
4196{
4197        struct bio* raid_bi  = bi->bi_private;
4198        struct mddev *mddev;
4199        struct r5conf *conf;
4200        int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
4201        struct md_rdev *rdev;
4202
4203        bio_put(bi);
4204
4205        rdev = (void*)raid_bi->bi_next;
4206        raid_bi->bi_next = NULL;
4207        mddev = rdev->mddev;
4208        conf = mddev->private;
4209
4210        rdev_dec_pending(rdev, conf->mddev);
4211
4212        if (!error && uptodate) {
4213                trace_block_bio_complete(bdev_get_queue(raid_bi->bi_bdev),
4214                                         raid_bi, 0);
4215                bio_endio(raid_bi, 0);
4216                if (atomic_dec_and_test(&conf->active_aligned_reads))
4217                        wake_up(&conf->wait_for_stripe);
4218                return;
4219        }
4220
4221        pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
4222
4223        add_bio_to_retry(raid_bi, conf);
4224}
4225
4226static int bio_fits_rdev(struct bio *bi)
4227{
4228        struct request_queue *q = bdev_get_queue(bi->bi_bdev);
4229
4230        if (bio_sectors(bi) > queue_max_sectors(q))
4231                return 0;
4232        blk_recount_segments(q, bi);
4233        if (bi->bi_phys_segments > queue_max_segments(q))
4234                return 0;
4235
4236        if (q->merge_bvec_fn)
4237                /* it's too hard to apply the merge_bvec_fn at this stage,
4238                 * just just give up
4239                 */
4240                return 0;
4241
4242        return 1;
4243}
4244
4245static int chunk_aligned_read(struct mddev *mddev, struct bio * raid_bio)
4246{
4247        struct r5conf *conf = mddev->private;
4248        int dd_idx;
4249        struct bio* align_bi;
4250        struct md_rdev *rdev;
4251        sector_t end_sector;
4252
4253        if (!in_chunk_boundary(mddev, raid_bio)) {
4254                pr_debug("chunk_aligned_read : non aligned\n");
4255                return 0;
4256        }
4257        /*
4258         * use bio_clone_mddev to make a copy of the bio
4259         */
4260        align_bi = bio_clone_mddev(raid_bio, GFP_NOIO, mddev);
4261        if (!align_bi)
4262                return 0;
4263        /*
4264         *   set bi_end_io to a new function, and set bi_private to the
4265         *     original bio.
4266         */
4267        align_bi->bi_end_io  = raid5_align_endio;
4268        align_bi->bi_private = raid_bio;
4269        /*
4270         *      compute position
4271         */
4272        align_bi->bi_iter.bi_sector =
4273                raid5_compute_sector(conf, raid_bio->bi_iter.bi_sector,
4274                                     0, &dd_idx, NULL);
4275
4276        end_sector = bio_end_sector(align_bi);
4277        rcu_read_lock();
4278        rdev = rcu_dereference(conf->disks[dd_idx].replacement);
4279        if (!rdev || test_bit(Faulty, &rdev->flags) ||
4280            rdev->recovery_offset < end_sector) {
4281                rdev = rcu_dereference(conf->disks[dd_idx].rdev);
4282                if (rdev &&
4283                    (test_bit(Faulty, &rdev->flags) ||
4284                    !(test_bit(In_sync, &rdev->flags) ||
4285                      rdev->recovery_offset >= end_sector)))
4286                        rdev = NULL;
4287        }
4288        if (rdev) {
4289                sector_t first_bad;
4290                int bad_sectors;
4291
4292                atomic_inc(&rdev->nr_pending);
4293                rcu_read_unlock();
4294                raid_bio->bi_next = (void*)rdev;
4295                align_bi->bi_bdev =  rdev->bdev;
4296                __clear_bit(BIO_SEG_VALID, &align_bi->bi_flags);
4297
4298                if (!bio_fits_rdev(align_bi) ||
4299                    is_badblock(rdev, align_bi->bi_iter.bi_sector,
4300                                bio_sectors(align_bi),
4301                                &first_bad, &bad_sectors)) {
4302                        /* too big in some way, or has a known bad block */
4303                        bio_put(align_bi);
4304                        rdev_dec_pending(rdev, mddev);
4305                        return 0;
4306                }
4307
4308                /* No reshape active, so we can trust rdev->data_offset */
4309                align_bi->bi_iter.bi_sector += rdev->data_offset;
4310
4311                spin_lock_irq(&conf->device_lock);
4312                wait_event_lock_irq(conf->wait_for_stripe,
4313                                    conf->quiesce == 0,
4314                                    conf->device_lock);
4315                atomic_inc(&conf->active_aligned_reads);
4316                spin_unlock_irq(&conf->device_lock);
4317
4318                if (mddev->gendisk)
4319                        trace_block_bio_remap(bdev_get_queue(align_bi->bi_bdev),
4320                                              align_bi, disk_devt(mddev->gendisk),
4321                                              raid_bio->bi_iter.bi_sector);
4322                generic_make_request(align_bi);
4323                return 1;
4324        } else {
4325                rcu_read_unlock();
4326                bio_put(align_bi);
4327                return 0;
4328        }
4329}
4330
4331/* __get_priority_stripe - get the next stripe to process
4332 *
4333 * Full stripe writes are allowed to pass preread active stripes up until
4334 * the bypass_threshold is exceeded.  In general the bypass_count
4335 * increments when the handle_list is handled before the hold_list; however, it
4336 * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
4337 * stripe with in flight i/o.  The bypass_count will be reset when the
4338 * head of the hold_list has changed, i.e. the head was promoted to the
4339 * handle_list.
4340 */
4341static struct stripe_head *__get_priority_stripe(struct r5conf *conf, int group)
4342{
4343        struct stripe_head *sh = NULL, *tmp;
4344        struct list_head *handle_list = NULL;
4345        struct r5worker_group *wg = NULL;
4346
4347        if (conf->worker_cnt_per_group == 0) {
4348                handle_list = &conf->handle_list;
4349        } else if (group != ANY_GROUP) {
4350                handle_list = &conf->worker_groups[group].handle_list;
4351                wg = &conf->worker_groups[group];
4352        } else {
4353                int i;
4354                for (i = 0; i < conf->group_cnt; i++) {
4355                        handle_list = &conf->worker_groups[i].handle_list;
4356                        wg = &conf->worker_groups[i];
4357                        if (!list_empty(handle_list))
4358                                break;
4359                }
4360        }
4361
4362        pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
4363                  __func__,
4364                  list_empty(handle_list) ? "empty" : "busy",
4365                  list_empty(&conf->hold_list) ? "empty" : "busy",
4366                  atomic_read(&conf->pending_full_writes), conf->bypass_count);
4367
4368        if (!list_empty(handle_list)) {
4369                sh = list_entry(handle_list->next, typeof(*sh), lru);
4370
4371                if (list_empty(&conf->hold_list))
4372                        conf->bypass_count = 0;
4373                else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
4374                        if (conf->hold_list.next == conf->last_hold)
4375                                conf->bypass_count++;
4376                        else {
4377                                conf->last_hold = conf->hold_list.next;
4378                                conf->bypass_count -= conf->bypass_threshold;
4379                                if (conf->bypass_count < 0)
4380                                        conf->bypass_count = 0;
4381                        }
4382                }
4383        } else if (!list_empty(&conf->hold_list) &&
4384                   ((conf->bypass_threshold &&
4385                     conf->bypass_count > conf->bypass_threshold) ||
4386                    atomic_read(&conf->pending_full_writes) == 0)) {
4387
4388                list_for_each_entry(tmp, &conf->hold_list,  lru) {
4389                        if (conf->worker_cnt_per_group == 0 ||
4390                            group == ANY_GROUP ||
4391                            !cpu_online(tmp->cpu) ||
4392                            cpu_to_group(tmp->cpu) == group) {
4393                                sh = tmp;
4394                                break;
4395                        }
4396                }
4397
4398                if (sh) {
4399                        conf->bypass_count -= conf->bypass_threshold;
4400                        if (conf->bypass_count < 0)
4401                                conf->bypass_count = 0;
4402                }
4403                wg = NULL;
4404        }
4405
4406        if (!sh)
4407                return NULL;
4408
4409        if (wg) {
4410                wg->stripes_cnt--;
4411                sh->group = NULL;
4412        }
4413        list_del_init(&sh->lru);
4414        BUG_ON(atomic_inc_return(&sh->count) != 1);
4415        return sh;
4416}
4417
4418struct raid5_plug_cb {
4419        struct blk_plug_cb      cb;
4420        struct list_head        list;
4421        struct list_head        temp_inactive_list[NR_STRIPE_HASH_LOCKS];
4422};
4423
4424static void raid5_unplug(struct blk_plug_cb *blk_cb, bool from_schedule)
4425{
4426        struct raid5_plug_cb *cb = container_of(
4427                blk_cb, struct raid5_plug_cb, cb);
4428        struct stripe_head *sh;
4429        struct mddev *mddev = cb->cb.data;
4430        struct r5conf *conf = mddev->private;
4431        int cnt = 0;
4432        int hash;
4433
4434        if (cb->list.next && !list_empty(&cb->list)) {
4435                spin_lock_irq(&conf->device_lock);
4436                while (!list_empty(&cb->list)) {
4437                        sh = list_first_entry(&cb->list, struct stripe_head, lru);
4438                        list_del_init(&sh->lru);
4439                        /*
4440                         * avoid race release_stripe_plug() sees
4441                         * STRIPE_ON_UNPLUG_LIST clear but the stripe
4442                         * is still in our list
4443                         */
4444                        smp_mb__before_atomic();
4445                        clear_bit(STRIPE_ON_UNPLUG_LIST, &sh->state);
4446                        /*
4447                         * STRIPE_ON_RELEASE_LIST could be set here. In that
4448                         * case, the count is always > 1 here
4449                         */
4450                        hash = sh->hash_lock_index;
4451                        __release_stripe(conf, sh, &cb->temp_inactive_list[hash]);
4452                        cnt++;
4453                }
4454                spin_unlock_irq(&conf->device_lock);
4455        }
4456        release_inactive_stripe_list(conf, cb->temp_inactive_list,
4457                                     NR_STRIPE_HASH_LOCKS);
4458        if (mddev->queue)
4459                trace_block_unplug(mddev->queue, cnt, !from_schedule);
4460        kfree(cb);
4461}
4462
4463static void release_stripe_plug(struct mddev *mddev,
4464                                struct stripe_head *sh)
4465{
4466        struct blk_plug_cb *blk_cb = blk_check_plugged(
4467                raid5_unplug, mddev,
4468                sizeof(struct raid5_plug_cb));
4469        struct raid5_plug_cb *cb;
4470
4471        if (!blk_cb) {
4472                release_stripe(sh);
4473                return;
4474        }
4475
4476        cb = container_of(blk_cb, struct raid5_plug_cb, cb);
4477
4478        if (cb->list.next == NULL) {
4479                int i;
4480                INIT_LIST_HEAD(&cb->list);
4481                for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
4482                        INIT_LIST_HEAD(cb->temp_inactive_list + i);
4483        }
4484
4485        if (!test_and_set_bit(STRIPE_ON_UNPLUG_LIST, &sh->state))
4486                list_add_tail(&sh->lru, &cb->list);
4487        else
4488                release_stripe(sh);
4489}
4490
4491static void make_discard_request(struct mddev *mddev, struct bio *bi)
4492{
4493        struct r5conf *conf = mddev->private;
4494        sector_t logical_sector, last_sector;
4495        struct stripe_head *sh;
4496        int remaining;
4497        int stripe_sectors;
4498
4499        if (mddev->reshape_position != MaxSector)
4500                /* Skip discard while reshape is happening */
4501                return;
4502
4503        logical_sector = bi->bi_iter.bi_sector & ~((sector_t)STRIPE_SECTORS-1);
4504        last_sector = bi->bi_iter.bi_sector + (bi->bi_iter.bi_size>>9);
4505
4506        bi->bi_next = NULL;
4507        bi->bi_phys_segments = 1; /* over-loaded to count active stripes */
4508
4509        stripe_sectors = conf->chunk_sectors *
4510                (conf->raid_disks - conf->max_degraded);
4511        logical_sector = DIV_ROUND_UP_SECTOR_T(logical_sector,
4512                                               stripe_sectors);
4513        sector_div(last_sector, stripe_sectors);
4514
4515        logical_sector *= conf->chunk_sectors;
4516        last_sector *= conf->chunk_sectors;
4517
4518        for (; logical_sector < last_sector;
4519             logical_sector += STRIPE_SECTORS) {
4520                DEFINE_WAIT(w);
4521                int d;
4522        again:
4523                sh = get_active_stripe(conf, logical_sector, 0, 0, 0);
4524                prepare_to_wait(&conf->wait_for_overlap, &w,
4525                                TASK_UNINTERRUPTIBLE);
4526                set_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
4527                if (test_bit(STRIPE_SYNCING, &sh->state)) {
4528                        release_stripe(sh);
4529                        schedule();
4530                        goto again;
4531                }
4532                clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
4533                spin_lock_irq(&sh->stripe_lock);
4534                for (d = 0; d < conf->raid_disks; d++) {
4535                        if (d == sh->pd_idx || d == sh->qd_idx)
4536                                continue;
4537                        if (sh->dev[d].towrite || sh->dev[d].toread) {
4538                                set_bit(R5_Overlap, &sh->dev[d].flags);
4539                                spin_unlock_irq(&sh->stripe_lock);
4540                                release_stripe(sh);
4541                                schedule();
4542                                goto again;
4543                        }
4544                }
4545                set_bit(STRIPE_DISCARD, &sh->state);
4546                finish_wait(&conf->wait_for_overlap, &w);
4547                for (d = 0; d < conf->raid_disks; d++) {
4548                        if (d == sh->pd_idx || d == sh->qd_idx)
4549                                continue;
4550                        sh->dev[d].towrite = bi;
4551                        set_bit(R5_OVERWRITE, &sh->dev[d].flags);
4552                        raid5_inc_bi_active_stripes(bi);
4553                }
4554                spin_unlock_irq(&sh->stripe_lock);
4555                if (conf->mddev->bitmap) {
4556                        for (d = 0;
4557                             d < conf->raid_disks - conf->max_degraded;
4558                             d++)
4559                                bitmap_startwrite(mddev->bitmap,
4560                                                  sh->sector,
4561                                                  STRIPE_SECTORS,
4562                                                  0);
4563                        sh->bm_seq = conf->seq_flush + 1;
4564                        set_bit(STRIPE_BIT_DELAY, &sh->state);
4565                }
4566
4567                set_bit(STRIPE_HANDLE, &sh->state);
4568                clear_bit(STRIPE_DELAYED, &sh->state);
4569                if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4570                        atomic_inc(&conf->preread_active_stripes);
4571                release_stripe_plug(mddev, sh);
4572        }
4573
4574        remaining = raid5_dec_bi_active_stripes(bi);
4575        if (remaining == 0) {
4576                md_write_end(mddev);
4577                bio_endio(bi, 0);
4578        }
4579}
4580
4581static void make_request(struct mddev *mddev, struct bio * bi)
4582{
4583        struct r5conf *conf = mddev->private;
4584        int dd_idx;
4585        sector_t new_sector;
4586        sector_t logical_sector, last_sector;
4587        struct stripe_head *sh;
4588        const int rw = bio_data_dir(bi);
4589        int remaining;
4590        DEFINE_WAIT(w);
4591        bool do_prepare;
4592
4593        if (unlikely(bi->bi_rw & REQ_FLUSH)) {
4594                md_flush_request(mddev, bi);
4595                return;
4596        }
4597
4598        md_write_start(mddev, bi);
4599
4600        if (rw == READ &&
4601             mddev->reshape_position == MaxSector &&
4602             chunk_aligned_read(mddev,bi))
4603                return;
4604
4605        if (unlikely(bi->bi_rw & REQ_DISCARD)) {
4606                make_discard_request(mddev, bi);
4607                return;
4608        }
4609
4610        logical_sector = bi->bi_iter.bi_sector & ~((sector_t)STRIPE_SECTORS-1);
4611        last_sector = bio_end_sector(bi);
4612        bi->bi_next = NULL;
4613        bi->bi_phys_segments = 1;       /* over-loaded to count active stripes */
4614
4615        prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
4616        for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
4617                int previous;
4618                int seq;
4619
4620                do_prepare = false;
4621        retry:
4622                seq = read_seqcount_begin(&conf->gen_lock);
4623                previous = 0;
4624                if (do_prepare)
4625                        prepare_to_wait(&conf->wait_for_overlap, &w,
4626                                TASK_UNINTERRUPTIBLE);
4627                if (unlikely(conf->reshape_progress != MaxSector)) {
4628                        /* spinlock is needed as reshape_progress may be
4629                         * 64bit on a 32bit platform, and so it might be
4630                         * possible to see a half-updated value
4631                         * Of course reshape_progress could change after
4632                         * the lock is dropped, so once we get a reference
4633                         * to the stripe that we think it is, we will have
4634                         * to check again.
4635                         */
4636                        spin_lock_irq(&conf->device_lock);
4637                        if (mddev->reshape_backwards
4638                            ? logical_sector < conf->reshape_progress
4639                            : logical_sector >= conf->reshape_progress) {
4640                                previous = 1;
4641                        } else {
4642                                if (mddev->reshape_backwards
4643                                    ? logical_sector < conf->reshape_safe
4644                                    : logical_sector >= conf->reshape_safe) {
4645                                        spin_unlock_irq(&conf->device_lock);
4646                                        schedule();
4647                                        do_prepare = true;
4648                                        goto retry;
4649                                }
4650                        }
4651                        spin_unlock_irq(&conf->device_lock);
4652                }
4653
4654                new_sector = raid5_compute_sector(conf, logical_sector,
4655                                                  previous,
4656                                                  &dd_idx, NULL);
4657                pr_debug("raid456: make_request, sector %llu logical %llu\n",
4658                        (unsigned long long)new_sector,
4659                        (unsigned long long)logical_sector);
4660
4661                sh = get_active_stripe(conf, new_sector, previous,
4662                                       (bi->bi_rw&RWA_MASK), 0);
4663                if (sh) {
4664                        if (unlikely(previous)) {
4665                                /* expansion might have moved on while waiting for a
4666                                 * stripe, so we must do the range check again.
4667                                 * Expansion could still move past after this
4668                                 * test, but as we are holding a reference to
4669                                 * 'sh', we know that if that happens,
4670                                 *  STRIPE_EXPANDING will get set and the expansion
4671                                 * won't proceed until we finish with the stripe.
4672                                 */
4673                                int must_retry = 0;
4674                                spin_lock_irq(&conf->device_lock);
4675                                if (mddev->reshape_backwards
4676                                    ? logical_sector >= conf->reshape_progress
4677                                    : logical_sector < conf->reshape_progress)
4678                                        /* mismatch, need to try again */
4679                                        must_retry = 1;
4680                                spin_unlock_irq(&conf->device_lock);
4681                                if (must_retry) {
4682                                        release_stripe(sh);
4683                                        schedule();
4684                                        do_prepare = true;
4685                                        goto retry;
4686                                }
4687                        }
4688                        if (read_seqcount_retry(&conf->gen_lock, seq)) {
4689                                /* Might have got the wrong stripe_head
4690                                 * by accident
4691                                 */
4692                                release_stripe(sh);
4693                                goto retry;
4694                        }
4695
4696                        if (rw == WRITE &&
4697                            logical_sector >= mddev->suspend_lo &&
4698                            logical_sector < mddev->suspend_hi) {
4699                                release_stripe(sh);
4700                                /* As the suspend_* range is controlled by
4701                                 * userspace, we want an interruptible
4702                                 * wait.
4703                                 */
4704                                flush_signals(current);
4705                                prepare_to_wait(&conf->wait_for_overlap,
4706                                                &w, TASK_INTERRUPTIBLE);
4707                                if (logical_sector >= mddev->suspend_lo &&
4708                                    logical_sector < mddev->suspend_hi) {
4709                                        schedule();
4710                                        do_prepare = true;
4711                                }
4712                                goto retry;
4713                        }
4714
4715                        if (test_bit(STRIPE_EXPANDING, &sh->state) ||
4716                            !add_stripe_bio(sh, bi, dd_idx, rw)) {
4717                                /* Stripe is busy expanding or
4718                                 * add failed due to overlap.  Flush everything
4719                                 * and wait a while
4720                                 */
4721                                md_wakeup_thread(mddev->thread);
4722                                release_stripe(sh);
4723                                schedule();
4724                                do_prepare = true;
4725                                goto retry;
4726                        }
4727                        set_bit(STRIPE_HANDLE, &sh->state);
4728                        clear_bit(STRIPE_DELAYED, &sh->state);
4729                        if ((bi->bi_rw & REQ_SYNC) &&
4730                            !test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4731                                atomic_inc(&conf->preread_active_stripes);
4732                        release_stripe_plug(mddev, sh);
4733                } else {
4734                        /* cannot get stripe for read-ahead, just give-up */
4735                        clear_bit(BIO_UPTODATE, &bi->bi_flags);
4736                        break;
4737                }
4738        }
4739        finish_wait(&conf->wait_for_overlap, &w);
4740
4741        remaining = raid5_dec_bi_active_stripes(bi);
4742        if (remaining == 0) {
4743
4744                if ( rw == WRITE )
4745                        md_write_end(mddev);
4746
4747                trace_block_bio_complete(bdev_get_queue(bi->bi_bdev),
4748                                         bi, 0);
4749                bio_endio(bi, 0);
4750        }
4751}
4752
4753static sector_t raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks);
4754
4755static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, int *skipped)
4756{
4757        /* reshaping is quite different to recovery/resync so it is
4758         * handled quite separately ... here.
4759         *
4760         * On each call to sync_request, we gather one chunk worth of
4761         * destination stripes and flag them as expanding.
4762         * Then we find all the source stripes and request reads.
4763         * As the reads complete, handle_stripe will copy the data
4764         * into the destination stripe and release that stripe.
4765         */
4766        struct r5conf *conf = mddev->private;
4767        struct stripe_head *sh;
4768        sector_t first_sector, last_sector;
4769        int raid_disks = conf->previous_raid_disks;
4770        int data_disks = raid_disks - conf->max_degraded;
4771        int new_data_disks = conf->raid_disks - conf->max_degraded;
4772        int i;
4773        int dd_idx;
4774        sector_t writepos, readpos, safepos;
4775        sector_t stripe_addr;
4776        int reshape_sectors;
4777        struct list_head stripes;
4778
4779        if (sector_nr == 0) {
4780                /* If restarting in the middle, skip the initial sectors */
4781                if (mddev->reshape_backwards &&
4782                    conf->reshape_progress < raid5_size(mddev, 0, 0)) {
4783                        sector_nr = raid5_size(mddev, 0, 0)
4784                                - conf->reshape_progress;
4785                } else if (!mddev->reshape_backwards &&
4786                           conf->reshape_progress > 0)
4787                        sector_nr = conf->reshape_progress;
4788                sector_div(sector_nr, new_data_disks);
4789                if (sector_nr) {
4790                        mddev->curr_resync_completed = sector_nr;
4791                        sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4792                        *skipped = 1;
4793                        return sector_nr;
4794                }
4795        }
4796
4797        /* We need to process a full chunk at a time.
4798         * If old and new chunk sizes differ, we need to process the
4799         * largest of these
4800         */
4801        if (mddev->new_chunk_sectors > mddev->chunk_sectors)
4802                reshape_sectors = mddev->new_chunk_sectors;
4803        else
4804                reshape_sectors = mddev->chunk_sectors;
4805
4806        /* We update the metadata at least every 10 seconds, or when
4807         * the data about to be copied would over-write the source of
4808         * the data at the front of the range.  i.e. one new_stripe
4809         * along from reshape_progress new_maps to after where
4810         * reshape_safe old_maps to
4811         */
4812        writepos = conf->reshape_progress;
4813        sector_div(writepos, new_data_disks);
4814        readpos = conf->reshape_progress;
4815        sector_div(readpos, data_disks);
4816        safepos = conf->reshape_safe;
4817        sector_div(safepos, data_disks);
4818        if (mddev->reshape_backwards) {
4819                writepos -= min_t(sector_t, reshape_sectors, writepos);
4820                readpos += reshape_sectors;
4821                safepos += reshape_sectors;
4822        } else {
4823                writepos += reshape_sectors;
4824                readpos -= min_t(sector_t, reshape_sectors, readpos);
4825                safepos -= min_t(sector_t, reshape_sectors, safepos);
4826        }
4827
4828        /* Having calculated the 'writepos' possibly use it
4829         * to set 'stripe_addr' which is where we will write to.
4830         */
4831        if (mddev->reshape_backwards) {
4832                BUG_ON(conf->reshape_progress == 0);
4833                stripe_addr = writepos;
4834                BUG_ON((mddev->dev_sectors &
4835                        ~((sector_t)reshape_sectors - 1))
4836                       - reshape_sectors - stripe_addr
4837                       != sector_nr);
4838        } else {
4839                BUG_ON(writepos != sector_nr + reshape_sectors);
4840                stripe_addr = sector_nr;
4841        }
4842
4843        /* 'writepos' is the most advanced device address we might write.
4844         * 'readpos' is the least advanced device address we might read.
4845         * 'safepos' is the least address recorded in the metadata as having
4846         *     been reshaped.
4847         * If there is a min_offset_diff, these are adjusted either by
4848         * increasing the safepos/readpos if diff is negative, or
4849         * increasing writepos if diff is positive.
4850         * If 'readpos' is then behind 'writepos', there is no way that we can
4851         * ensure safety in the face of a crash - that must be done by userspace
4852         * making a backup of the data.  So in that case there is no particular
4853         * rush to update metadata.
4854         * Otherwise if 'safepos' is behind 'writepos', then we really need to
4855         * update the metadata to advance 'safepos' to match 'readpos' so that
4856         * we can be safe in the event of a crash.
4857         * So we insist on updating metadata if safepos is behind writepos and
4858         * readpos is beyond writepos.
4859         * In any case, update the metadata every 10 seconds.
4860         * Maybe that number should be configurable, but I'm not sure it is
4861         * worth it.... maybe it could be a multiple of safemode_delay???
4862         */
4863        if (conf->min_offset_diff < 0) {
4864                safepos += -conf->min_offset_diff;
4865                readpos += -conf->min_offset_diff;
4866        } else
4867                writepos += conf->min_offset_diff;
4868
4869        if ((mddev->reshape_backwards
4870             ? (safepos > writepos && readpos < writepos)
4871             : (safepos < writepos && readpos > writepos)) ||
4872            time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
4873                /* Cannot proceed until we've updated the superblock... */
4874                wait_event(conf->wait_for_overlap,
4875                           atomic_read(&conf->reshape_stripes)==0
4876                           || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
4877                if (atomic_read(&conf->reshape_stripes) != 0)
4878                        return 0;
4879                mddev->reshape_position = conf->reshape_progress;
4880                mddev->curr_resync_completed = sector_nr;
4881                conf->reshape_checkpoint = jiffies;
4882                set_bit(MD_CHANGE_DEVS, &mddev->flags);
4883                md_wakeup_thread(mddev->thread);
4884                wait_event(mddev->sb_wait, mddev->flags == 0 ||
4885                           test_bit(MD_RECOVERY_INTR, &mddev->recovery));
4886                if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
4887                        return 0;
4888                spin_lock_irq(&conf->device_lock);
4889                conf->reshape_safe = mddev->reshape_position;
4890                spin_unlock_irq(&conf->device_lock);
4891                wake_up(&conf->wait_for_overlap);
4892                sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4893        }
4894
4895        INIT_LIST_HEAD(&stripes);
4896        for (i = 0; i < reshape_sectors; i += STRIPE_SECTORS) {
4897                int j;
4898                int skipped_disk = 0;
4899                sh = get_active_stripe(conf, stripe_addr+i, 0, 0, 1);
4900                set_bit(STRIPE_EXPANDING, &sh->state);
4901                atomic_inc(&conf->reshape_stripes);
4902                /* If any of this stripe is beyond the end of the old
4903                 * array, then we need to zero those blocks
4904                 */
4905                for (j=sh->disks; j--;) {
4906                        sector_t s;
4907                        if (j == sh->pd_idx)
4908                                continue;
4909                        if (conf->level == 6 &&
4910                            j == sh->qd_idx)
4911                                continue;
4912                        s = compute_blocknr(sh, j, 0);
4913                        if (s < raid5_size(mddev, 0, 0)) {
4914                                skipped_disk = 1;
4915                                continue;
4916                        }
4917                        memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
4918                        set_bit(R5_Expanded, &sh->dev[j].flags);
4919                        set_bit(R5_UPTODATE, &sh->dev[j].flags);
4920                }
4921                if (!skipped_disk) {
4922                        set_bit(STRIPE_EXPAND_READY, &sh->state);
4923                        set_bit(STRIPE_HANDLE, &sh->state);
4924                }
4925                list_add(&sh->lru, &stripes);
4926        }
4927        spin_lock_irq(&conf->device_lock);
4928        if (mddev->reshape_backwards)
4929                conf->reshape_progress -= reshape_sectors * new_data_disks;
4930        else
4931                conf->reshape_progress += reshape_sectors * new_data_disks;
4932        spin_unlock_irq(&conf->device_lock);
4933        /* Ok, those stripe are ready. We can start scheduling
4934         * reads on the source stripes.
4935         * The source stripes are determined by mapping the first and last
4936         * block on the destination stripes.
4937         */
4938        first_sector =
4939                raid5_compute_sector(conf, stripe_addr*(new_data_disks),
4940                                     1, &dd_idx, NULL);
4941        last_sector =
4942                raid5_compute_sector(conf, ((stripe_addr+reshape_sectors)
4943                                            * new_data_disks - 1),
4944                                     1, &dd_idx, NULL);
4945        if (last_sector >= mddev->dev_sectors)
4946                last_sector = mddev->dev_sectors - 1;
4947        while (first_sector <= last_sector) {
4948                sh = get_active_stripe(conf, first_sector, 1, 0, 1);
4949                set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
4950                set_bit(STRIPE_HANDLE, &sh->state);
4951                release_stripe(sh);
4952                first_sector += STRIPE_SECTORS;
4953        }
4954        /* Now that the sources are clearly marked, we can release
4955         * the destination stripes
4956         */
4957        while (!list_empty(&stripes)) {
4958                sh = list_entry(stripes.next, struct stripe_head, lru);
4959                list_del_init(&sh->lru);
4960                release_stripe(sh);
4961        }
4962        /* If this takes us to the resync_max point where we have to pause,
4963         * then we need to write out the superblock.
4964         */
4965        sector_nr += reshape_sectors;
4966        if ((sector_nr - mddev->curr_resync_completed) * 2
4967            >= mddev->resync_max - mddev->curr_resync_completed) {
4968                /* Cannot proceed until we've updated the superblock... */
4969                wait_event(conf->wait_for_overlap,
4970                           atomic_read(&conf->reshape_stripes) == 0
4971                           || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
4972                if (atomic_read(&conf->reshape_stripes) != 0)
4973                        goto ret;
4974                mddev->reshape_position = conf->reshape_progress;
4975                mddev->curr_resync_completed = sector_nr;
4976                conf->reshape_checkpoint = jiffies;
4977                set_bit(MD_CHANGE_DEVS, &mddev->flags);
4978                md_wakeup_thread(mddev->thread);
4979                wait_event(mddev->sb_wait,
4980                           !test_bit(MD_CHANGE_DEVS, &mddev->flags)
4981                           || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
4982                if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
4983                        goto ret;
4984                spin_lock_irq(&conf->device_lock);
4985                conf->reshape_safe = mddev->reshape_position;
4986                spin_unlock_irq(&conf->device_lock);
4987                wake_up(&conf->wait_for_overlap);
4988                sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4989        }
4990ret:
4991        return reshape_sectors;
4992}
4993
4994/* FIXME go_faster isn't used */
4995static inline sector_t sync_request(struct mddev *mddev, sector_t sector_nr, int *skipped, int go_faster)
4996{
4997        struct r5conf *conf = mddev->private;
4998        struct stripe_head *sh;
4999        sector_t max_sector = mddev->dev_sectors;
5000        sector_t sync_blocks;
5001        int still_degraded = 0;
5002        int i;
5003
5004        if (sector_nr >= max_sector) {
5005                /* just being told to finish up .. nothing much to do */
5006
5007                if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
5008                        end_reshape(conf);
5009                        return 0;
5010                }
5011
5012                if (mddev->curr_resync < max_sector) /* aborted */
5013                        bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
5014                                        &sync_blocks, 1);
5015                else /* completed sync */
5016                        conf->fullsync = 0;
5017                bitmap_close_sync(mddev->bitmap);
5018
5019                return 0;
5020        }
5021
5022        /* Allow raid5_quiesce to complete */
5023        wait_event(conf->wait_for_overlap, conf->quiesce != 2);
5024
5025        if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
5026                return reshape_request(mddev, sector_nr, skipped);
5027
5028        /* No need to check resync_max as we never do more than one
5029         * stripe, and as resync_max will always be on a chunk boundary,
5030         * if the check in md_do_sync didn't fire, there is no chance
5031         * of overstepping resync_max here
5032         */
5033
5034        /* if there is too many failed drives and we are trying
5035         * to resync, then assert that we are finished, because there is
5036         * nothing we can do.
5037         */
5038        if (mddev->degraded >= conf->max_degraded &&
5039            test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
5040                sector_t rv = mddev->dev_sectors - sector_nr;
5041                *skipped = 1;
5042                return rv;
5043        }
5044        if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
5045            !conf->fullsync &&
5046            !bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
5047            sync_blocks >= STRIPE_SECTORS) {
5048                /* we can skip this block, and probably more */
5049                sync_blocks /= STRIPE_SECTORS;
5050                *skipped = 1;
5051                return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
5052        }
5053
5054        bitmap_cond_end_sync(mddev->bitmap, sector_nr);
5055
5056        sh = get_active_stripe(conf, sector_nr, 0, 1, 0);
5057        if (sh == NULL) {
5058                sh = get_active_stripe(conf, sector_nr, 0, 0, 0);
5059                /* make sure we don't swamp the stripe cache if someone else
5060                 * is trying to get access
5061                 */
5062                schedule_timeout_uninterruptible(1);
5063        }
5064        /* Need to check if array will still be degraded after recovery/resync
5065         * We don't need to check the 'failed' flag as when that gets set,
5066         * recovery aborts.
5067         */
5068        for (i = 0; i < conf->raid_disks; i++)
5069                if (conf->disks[i].rdev == NULL)
5070                        still_degraded = 1;
5071
5072        bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);
5073
5074        set_bit(STRIPE_SYNC_REQUESTED, &sh->state);
5075        set_bit(STRIPE_HANDLE, &sh->state);
5076
5077        release_stripe(sh);
5078
5079        return STRIPE_SECTORS;
5080}
5081
5082static int  retry_aligned_read(struct r5conf *conf, struct bio *raid_bio)
5083{
5084        /* We may not be able to submit a whole bio at once as there
5085         * may not be enough stripe_heads available.
5086         * We cannot pre-allocate enough stripe_heads as we may need
5087         * more than exist in the cache (if we allow ever large chunks).
5088         * So we do one stripe head at a time and record in
5089         * ->bi_hw_segments how many have been done.
5090         *
5091         * We *know* that this entire raid_bio is in one chunk, so
5092         * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
5093         */
5094        struct stripe_head *sh;
5095        int dd_idx;
5096        sector_t sector, logical_sector, last_sector;
5097        int scnt = 0;
5098        int remaining;
5099        int handled = 0;
5100
5101        logical_sector = raid_bio->bi_iter.bi_sector &
5102                ~((sector_t)STRIPE_SECTORS-1);
5103        sector = raid5_compute_sector(conf, logical_sector,
5104                                      0, &dd_idx, NULL);
5105        last_sector = bio_end_sector(raid_bio);
5106
5107        for (; logical_sector < last_sector;
5108             logical_sector += STRIPE_SECTORS,
5109                     sector += STRIPE_SECTORS,
5110                     scnt++) {
5111
5112                if (scnt < raid5_bi_processed_stripes(raid_bio))
5113                        /* already done this stripe */
5114                        continue;
5115
5116                sh = get_active_stripe(conf, sector, 0, 1, 1);
5117
5118                if (!sh) {
5119                        /* failed to get a stripe - must wait */
5120                        raid5_set_bi_processed_stripes(raid_bio, scnt);
5121                        conf->retry_read_aligned = raid_bio;
5122                        return handled;
5123                }
5124
5125                if (!add_stripe_bio(sh, raid_bio, dd_idx, 0)) {
5126                        release_stripe(sh);
5127                        raid5_set_bi_processed_stripes(raid_bio, scnt);
5128                        conf->retry_read_aligned = raid_bio;
5129                        return handled;
5130                }
5131
5132                set_bit(R5_ReadNoMerge, &sh->dev[dd_idx].flags);
5133                handle_stripe(sh);
5134                release_stripe(sh);
5135                handled++;
5136        }
5137        remaining = raid5_dec_bi_active_stripes(raid_bio);
5138        if (remaining == 0) {
5139                trace_block_bio_complete(bdev_get_queue(raid_bio->bi_bdev),
5140                                         raid_bio, 0);
5141                bio_endio(raid_bio, 0);
5142        }
5143        if (atomic_dec_and_test(&conf->active_aligned_reads))
5144                wake_up(&conf->wait_for_stripe);
5145        return handled;
5146}
5147
5148static int handle_active_stripes(struct r5conf *conf, int group,
5149                                 struct r5worker *worker,
5150                                 struct list_head *temp_inactive_list)
5151{
5152        struct stripe_head *batch[MAX_STRIPE_BATCH], *sh;
5153        int i, batch_size = 0, hash;
5154        bool release_inactive = false;
5155
5156        while (batch_size < MAX_STRIPE_BATCH &&
5157                        (sh = __get_priority_stripe(conf, group)) != NULL)
5158                batch[batch_size++] = sh;
5159
5160        if (batch_size == 0) {
5161                for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
5162                        if (!list_empty(temp_inactive_list + i))
5163                                break;
5164                if (i == NR_STRIPE_HASH_LOCKS)
5165                        return batch_size;
5166                release_inactive = true;
5167        }
5168        spin_unlock_irq(&conf->device_lock);
5169
5170        release_inactive_stripe_list(conf, temp_inactive_list,
5171                                     NR_STRIPE_HASH_LOCKS);
5172
5173        if (release_inactive) {
5174                spin_lock_irq(&conf->device_lock);
5175                return 0;
5176        }
5177
5178        for (i = 0; i < batch_size; i++)
5179                handle_stripe(batch[i]);
5180
5181        cond_resched();
5182
5183        spin_lock_irq(&conf->device_lock);
5184        for (i = 0; i < batch_size; i++) {
5185                hash = batch[i]->hash_lock_index;
5186                __release_stripe(conf, batch[i], &temp_inactive_list[hash]);
5187        }
5188        return batch_size;
5189}
5190
5191static void raid5_do_work(struct work_struct *work)
5192{
5193        struct r5worker *worker = container_of(work, struct r5worker, work);
5194        struct r5worker_group *group = worker->group;
5195        struct r5conf *conf = group->conf;
5196        int group_id = group - conf->worker_groups;
5197        int handled;
5198        struct blk_plug plug;
5199
5200        pr_debug("+++ raid5worker active\n");
5201
5202        blk_start_plug(&plug);
5203        handled = 0;
5204        spin_lock_irq(&conf->device_lock);
5205        while (1) {
5206                int batch_size, released;
5207
5208                released = release_stripe_list(conf, worker->temp_inactive_list);
5209
5210                batch_size = handle_active_stripes(conf, group_id, worker,
5211                                                   worker->temp_inactive_list);
5212                worker->working = false;
5213                if (!batch_size && !released)
5214                        break;
5215                handled += batch_size;
5216        }
5217        pr_debug("%d stripes handled\n", handled);
5218
5219        spin_unlock_irq(&conf->device_lock);
5220        blk_finish_plug(&plug);
5221
5222        pr_debug("--- raid5worker inactive\n");
5223}
5224
5225/*
5226 * This is our raid5 kernel thread.
5227 *
5228 * We scan the hash table for stripes which can be handled now.
5229 * During the scan, completed stripes are saved for us by the interrupt
5230 * handler, so that they will not have to wait for our next wakeup.
5231 */
5232static void raid5d(struct md_thread *thread)
5233{
5234        struct mddev *mddev = thread->mddev;
5235        struct r5conf *conf = mddev->private;
5236        int handled;
5237        struct blk_plug plug;
5238
5239        pr_debug("+++ raid5d active\n");
5240
5241        md_check_recovery(mddev);
5242
5243        blk_start_plug(&plug);
5244        handled = 0;
5245        spin_lock_irq(&conf->device_lock);
5246        while (1) {
5247                struct bio *bio;
5248                int batch_size, released;
5249
5250                released = release_stripe_list(conf, conf->temp_inactive_list);
5251
5252                if (
5253                    !list_empty(&conf->bitmap_list)) {
5254                        /* Now is a good time to flush some bitmap updates */
5255                        conf->seq_flush++;
5256                        spin_unlock_irq(&conf->device_lock);
5257                        bitmap_unplug(mddev->bitmap);
5258                        spin_lock_irq(&conf->device_lock);
5259                        conf->seq_write = conf->seq_flush;
5260                        activate_bit_delay(conf, conf->temp_inactive_list);
5261                }
5262                raid5_activate_delayed(conf);
5263
5264                while ((bio = remove_bio_from_retry(conf))) {
5265                        int ok;
5266                        spin_unlock_irq(&conf->device_lock);
5267                        ok = retry_aligned_read(conf, bio);
5268                        spin_lock_irq(&conf->device_lock);
5269                        if (!ok)
5270                                break;
5271                        handled++;
5272                }
5273
5274                batch_size = handle_active_stripes(conf, ANY_GROUP, NULL,
5275                                                   conf->temp_inactive_list);
5276                if (!batch_size && !released)
5277                        break;
5278                handled += batch_size;
5279
5280                if (mddev->flags & ~(1<<MD_CHANGE_PENDING)) {
5281                        spin_unlock_irq(&conf->device_lock);
5282                        md_check_recovery(mddev);
5283                        spin_lock_irq(&conf->device_lock);
5284                }
5285        }
5286        pr_debug("%d stripes handled\n", handled);
5287
5288        spin_unlock_irq(&conf->device_lock);
5289
5290        async_tx_issue_pending_all();
5291        blk_finish_plug(&plug);
5292
5293        pr_debug("--- raid5d inactive\n");
5294}
5295
5296static ssize_t
5297raid5_show_stripe_cache_size(struct mddev *mddev, char *page)
5298{
5299        struct r5conf *conf = mddev->private;
5300        if (conf)
5301                return sprintf(page, "%d\n", conf->max_nr_stripes);
5302        else
5303                return 0;
5304}
5305
5306int
5307raid5_set_cache_size(struct mddev *mddev, int size)
5308{
5309        struct r5conf *conf = mddev->private;
5310        int err;
5311        int hash;
5312
5313        if (size <= 16 || size > 32768)
5314                return -EINVAL;
5315        hash = (conf->max_nr_stripes - 1) % NR_STRIPE_HASH_LOCKS;
5316        while (size < conf->max_nr_stripes) {
5317                if (drop_one_stripe(conf, hash))
5318                        conf->max_nr_stripes--;
5319                else
5320                        break;
5321                hash--;
5322                if (hash < 0)
5323                        hash = NR_STRIPE_HASH_LOCKS - 1;
5324        }
5325        err = md_allow_write(mddev);
5326        if (err)
5327                return err;
5328        hash = conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS;
5329        while (size > conf->max_nr_stripes) {
5330                if (grow_one_stripe(conf, hash))
5331                        conf->max_nr_stripes++;
5332                else break;
5333                hash = (hash + 1) % NR_STRIPE_HASH_LOCKS;
5334        }
5335        return 0;
5336}
5337EXPORT_SYMBOL(raid5_set_cache_size);
5338
5339static ssize_t
5340raid5_store_stripe_cache_size(struct mddev *mddev, const char *page, size_t len)
5341{
5342        struct r5conf *conf = mddev->private;
5343        unsigned long new;
5344        int err;
5345
5346        if (len >= PAGE_SIZE)
5347                return -EINVAL;
5348        if (!conf)
5349                return -ENODEV;
5350
5351        if (kstrtoul(page, 10, &new))
5352                return -EINVAL;
5353        err = raid5_set_cache_size(mddev, new);
5354        if (err)
5355                return err;
5356        return len;
5357}
5358
5359static struct md_sysfs_entry
5360raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
5361                                raid5_show_stripe_cache_size,
5362                                raid5_store_stripe_cache_size);
5363
5364static ssize_t
5365raid5_show_preread_threshold(struct mddev *mddev, char *page)
5366{
5367        struct r5conf *conf = mddev->private;
5368        if (conf)
5369                return sprintf(page, "%d\n", conf->bypass_threshold);
5370        else
5371                return 0;
5372}
5373
5374static ssize_t
5375raid5_store_preread_threshold(struct mddev *mddev, const char *page, size_t len)
5376{
5377        struct r5conf *conf = mddev->private;
5378        unsigned long new;
5379        if (len >= PAGE_SIZE)
5380                return -EINVAL;
5381        if (!conf)
5382                return -ENODEV;
5383
5384        if (kstrtoul(page, 10, &new))
5385                return -EINVAL;
5386        if (new > conf->max_nr_stripes)
5387                return -EINVAL;
5388        conf->bypass_threshold = new;
5389        return len;
5390}
5391
5392static struct md_sysfs_entry
5393raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
5394                                        S_IRUGO | S_IWUSR,
5395                                        raid5_show_preread_threshold,
5396                                        raid5_store_preread_threshold);
5397
5398static ssize_t
5399raid5_show_skip_copy(struct mddev *mddev, char *page)
5400{
5401        struct r5conf *conf = mddev->private;
5402        if (conf)
5403                return sprintf(page, "%d\n", conf->skip_copy);
5404        else
5405                return 0;
5406}
5407
5408static ssize_t
5409raid5_store_skip_copy(struct mddev *mddev, const char *page, size_t len)
5410{
5411        struct r5conf *conf = mddev->private;
5412        unsigned long new;
5413        if (len >= PAGE_SIZE)
5414                return -EINVAL;
5415        if (!conf)
5416                return -ENODEV;
5417
5418        if (kstrtoul(page, 10, &new))
5419                return -EINVAL;
5420        new = !!new;
5421        if (new == conf->skip_copy)
5422                return len;
5423
5424        mddev_suspend(mddev);
5425        conf->skip_copy = new;
5426        if (new)
5427                mddev->queue->backing_dev_info.capabilities |=
5428                                                BDI_CAP_STABLE_WRITES;
5429        else
5430                mddev->queue->backing_dev_info.capabilities &=
5431                                                ~BDI_CAP_STABLE_WRITES;
5432        mddev_resume(mddev);
5433        return len;
5434}
5435
5436static struct md_sysfs_entry
5437raid5_skip_copy = __ATTR(skip_copy, S_IRUGO | S_IWUSR,
5438                                        raid5_show_skip_copy,
5439                                        raid5_store_skip_copy);
5440
5441static ssize_t
5442stripe_cache_active_show(struct mddev *mddev, char *page)
5443{
5444        struct r5conf *conf = mddev->private;
5445        if (conf)
5446                return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
5447        else
5448                return 0;
5449}
5450
5451static struct md_sysfs_entry
5452raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
5453
5454static ssize_t
5455raid5_show_group_thread_cnt(struct mddev *mddev, char *page)
5456{
5457        struct r5conf *conf = mddev->private;
5458        if (conf)
5459                return sprintf(page, "%d\n", conf->worker_cnt_per_group);
5460        else
5461                return 0;
5462}
5463
5464static int alloc_thread_groups(struct r5conf *conf, int cnt,
5465                               int *group_cnt,
5466                               int *worker_cnt_per_group,
5467                               struct r5worker_group **worker_groups);
5468static ssize_t
5469raid5_store_group_thread_cnt(struct mddev *mddev, const char *page, size_t len)
5470{
5471        struct r5conf *conf = mddev->private;
5472        unsigned long new;
5473        int err;
5474        struct r5worker_group *new_groups, *old_groups;
5475        int group_cnt, worker_cnt_per_group;
5476
5477        if (len >= PAGE_SIZE)
5478                return -EINVAL;
5479        if (!conf)
5480                return -ENODEV;
5481
5482        if (kstrtoul(page, 10, &new))
5483                return -EINVAL;
5484
5485        if (new == conf->worker_cnt_per_group)
5486                return len;
5487
5488        mddev_suspend(mddev);
5489
5490        old_groups = conf->worker_groups;
5491        if (old_groups)
5492                flush_workqueue(raid5_wq);
5493
5494        err = alloc_thread_groups(conf, new,
5495                                  &group_cnt, &worker_cnt_per_group,
5496                                  &new_groups);
5497        if (!err) {
5498                spin_lock_irq(&conf->device_lock);
5499                conf->group_cnt = group_cnt;
5500                conf->worker_cnt_per_group = worker_cnt_per_group;
5501                conf->worker_groups = new_groups;
5502                spin_unlock_irq(&conf->device_lock);
5503
5504                if (old_groups)
5505                        kfree(old_groups[0].workers);
5506                kfree(old_groups);
5507        }
5508
5509        mddev_resume(mddev);
5510
5511        if (err)
5512                return err;
5513        return len;
5514}
5515
5516static struct md_sysfs_entry
5517raid5_group_thread_cnt = __ATTR(group_thread_cnt, S_IRUGO | S_IWUSR,
5518                                raid5_show_group_thread_cnt,
5519                                raid5_store_group_thread_cnt);
5520
5521static struct attribute *raid5_attrs[] =  {
5522        &raid5_stripecache_size.attr,
5523        &raid5_stripecache_active.attr,
5524        &raid5_preread_bypass_threshold.attr,
5525        &raid5_group_thread_cnt.attr,
5526        &raid5_skip_copy.attr,
5527        NULL,
5528};
5529static struct attribute_group raid5_attrs_group = {
5530        .name = NULL,
5531        .attrs = raid5_attrs,
5532};
5533
5534static int alloc_thread_groups(struct r5conf *conf, int cnt,
5535                               int *group_cnt,
5536                               int *worker_cnt_per_group,
5537                               struct r5worker_group **worker_groups)
5538{
5539        int i, j, k;
5540        ssize_t size;
5541        struct r5worker *workers;
5542
5543        *worker_cnt_per_group = cnt;
5544        if (cnt == 0) {
5545                *group_cnt = 0;
5546                *worker_groups = NULL;
5547                return 0;
5548        }
5549        *group_cnt = num_possible_nodes();
5550        size = sizeof(struct r5worker) * cnt;
5551        workers = kzalloc(size * *group_cnt, GFP_NOIO);
5552        *worker_groups = kzalloc(sizeof(struct r5worker_group) *
5553                                *group_cnt, GFP_NOIO);
5554        if (!*worker_groups || !workers) {
5555                kfree(workers);
5556                kfree(*worker_groups);
5557                return -ENOMEM;
5558        }
5559
5560        for (i = 0; i < *group_cnt; i++) {
5561                struct r5worker_group *group;
5562
5563                group = &(*worker_groups)[i];
5564                INIT_LIST_HEAD(&group->handle_list);
5565                group->conf = conf;
5566                group->workers = workers + i * cnt;
5567
5568                for (j = 0; j < cnt; j++) {
5569                        struct r5worker *worker = group->workers + j;
5570                        worker->group = group;
5571                        INIT_WORK(&worker->work, raid5_do_work);
5572
5573                        for (k = 0; k < NR_STRIPE_HASH_LOCKS; k++)
5574                                INIT_LIST_HEAD(worker->temp_inactive_list + k);
5575                }
5576        }
5577
5578        return 0;
5579}
5580
5581static void free_thread_groups(struct r5conf *conf)
5582{
5583        if (conf->worker_groups)
5584                kfree(conf->worker_groups[0].workers);
5585        kfree(conf->worker_groups);
5586        conf->worker_groups = NULL;
5587}
5588
5589static sector_t
5590raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks)
5591{
5592        struct r5conf *conf = mddev->private;
5593
5594        if (!sectors)
5595                sectors = mddev->dev_sectors;
5596        if (!raid_disks)
5597                /* size is defined by the smallest of previous and new size */
5598                raid_disks = min(conf->raid_disks, conf->previous_raid_disks);
5599
5600        sectors &= ~((sector_t)mddev->chunk_sectors - 1);
5601        sectors &= ~((sector_t)mddev->new_chunk_sectors - 1);
5602        return sectors * (raid_disks - conf->max_degraded);
5603}
5604
5605static void free_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu)
5606{
5607        safe_put_page(percpu->spare_page);
5608        kfree(percpu->scribble);
5609        percpu->spare_page = NULL;
5610        percpu->scribble = NULL;
5611}
5612
5613static int alloc_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu)
5614{
5615        if (conf->level == 6 && !percpu->spare_page)
5616                percpu->spare_page = alloc_page(GFP_KERNEL);
5617        if (!percpu->scribble)
5618                percpu->scribble = kmalloc(conf->scribble_len, GFP_KERNEL);
5619
5620        if (!percpu->scribble || (conf->level == 6 && !percpu->spare_page)) {
5621                free_scratch_buffer(conf, percpu);
5622                return -ENOMEM;
5623        }
5624
5625        return 0;
5626}
5627
5628static void raid5_free_percpu(struct r5conf *conf)
5629{
5630        unsigned long cpu;
5631
5632        if (!conf->percpu)
5633                return;
5634
5635#ifdef CONFIG_HOTPLUG_CPU
5636        unregister_cpu_notifier(&conf->cpu_notify);
5637#endif
5638
5639        get_online_cpus();
5640        for_each_possible_cpu(cpu)
5641                free_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu));
5642        put_online_cpus();
5643
5644        free_percpu(conf->percpu);
5645}
5646
5647static void free_conf(struct r5conf *conf)
5648{
5649        free_thread_groups(conf);
5650        shrink_stripes(conf);
5651        raid5_free_percpu(conf);
5652        kfree(conf->disks);
5653        kfree(conf->stripe_hashtbl);
5654        kfree(conf);
5655}
5656
5657#ifdef CONFIG_HOTPLUG_CPU
5658static int raid456_cpu_notify(struct notifier_block *nfb, unsigned long action,
5659                              void *hcpu)
5660{
5661        struct r5conf *conf = container_of(nfb, struct r5conf, cpu_notify);
5662        long cpu = (long)hcpu;
5663        struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu);
5664
5665        switch (action) {
5666        case CPU_UP_PREPARE:
5667        case CPU_UP_PREPARE_FROZEN:
5668                if (alloc_scratch_buffer(conf, percpu)) {
5669                        pr_err("%s: failed memory allocation for cpu%ld\n",
5670                               __func__, cpu);
5671                        return notifier_from_errno(-ENOMEM);
5672                }
5673                break;
5674        case CPU_DEAD:
5675        case CPU_DEAD_FROZEN:
5676                free_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu));
5677                break;
5678        default:
5679                break;
5680        }
5681        return NOTIFY_OK;
5682}
5683#endif
5684
5685static int raid5_alloc_percpu(struct r5conf *conf)
5686{
5687        unsigned long cpu;
5688        int err = 0;
5689
5690        conf->percpu = alloc_percpu(struct raid5_percpu);
5691        if (!conf->percpu)
5692                return -ENOMEM;
5693
5694#ifdef CONFIG_HOTPLUG_CPU
5695        conf->cpu_notify.notifier_call = raid456_cpu_notify;
5696        conf->cpu_notify.priority = 0;
5697        err = register_cpu_notifier(&conf->cpu_notify);
5698        if (err)
5699                return err;
5700#endif
5701
5702        get_online_cpus();
5703        for_each_present_cpu(cpu) {
5704                err = alloc_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu));
5705                if (err) {
5706                        pr_err("%s: failed memory allocation for cpu%ld\n",
5707                               __func__, cpu);
5708                        break;
5709                }
5710        }
5711        put_online_cpus();
5712
5713        return err;
5714}
5715
5716static struct r5conf *setup_conf(struct mddev *mddev)
5717{
5718        struct r5conf *conf;
5719        int raid_disk, memory, max_disks;
5720        struct md_rdev *rdev;
5721        struct disk_info *disk;
5722        char pers_name[6];
5723        int i;
5724        int group_cnt, worker_cnt_per_group;
5725        struct r5worker_group *new_group;
5726
5727        if (mddev->new_level != 5
5728            && mddev->new_level != 4
5729            && mddev->new_level != 6) {
5730                printk(KERN_ERR "md/raid:%s: raid level not set to 4/5/6 (%d)\n",
5731                       mdname(mddev), mddev->new_level);
5732                return ERR_PTR(-EIO);
5733        }
5734        if ((mddev->new_level == 5
5735             && !algorithm_valid_raid5(mddev->new_layout)) ||
5736            (mddev->new_level == 6
5737             && !algorithm_valid_raid6(mddev->new_layout))) {
5738                printk(KERN_ERR "md/raid:%s: layout %d not supported\n",
5739                       mdname(mddev), mddev->new_layout);
5740                return ERR_PTR(-EIO);
5741        }
5742        if (mddev->new_level == 6 && mddev->raid_disks < 4) {
5743                printk(KERN_ERR "md/raid:%s: not enough configured devices (%d, minimum 4)\n",
5744                       mdname(mddev), mddev->raid_disks);
5745                return ERR_PTR(-EINVAL);
5746        }
5747
5748        if (!mddev->new_chunk_sectors ||
5749            (mddev->new_chunk_sectors << 9) % PAGE_SIZE ||
5750            !is_power_of_2(mddev->new_chunk_sectors)) {
5751                printk(KERN_ERR "md/raid:%s: invalid chunk size %d\n",
5752                       mdname(mddev), mddev->new_chunk_sectors << 9);
5753                return ERR_PTR(-EINVAL);
5754        }
5755
5756        conf = kzalloc(sizeof(struct r5conf), GFP_KERNEL);
5757        if (conf == NULL)
5758                goto abort;
5759        /* Don't enable multi-threading by default*/
5760        if (!alloc_thread_groups(conf, 0, &group_cnt, &worker_cnt_per_group,
5761                                 &new_group)) {
5762                conf->group_cnt = group_cnt;
5763                conf->worker_cnt_per_group = worker_cnt_per_group;
5764                conf->worker_groups = new_group;
5765        } else
5766                goto abort;
5767        spin_lock_init(&conf->device_lock);
5768        seqcount_init(&conf->gen_lock);
5769        init_waitqueue_head(&conf->wait_for_stripe);
5770        init_waitqueue_head(&conf->wait_for_overlap);
5771        INIT_LIST_HEAD(&conf->handle_list);
5772        INIT_LIST_HEAD(&conf->hold_list);
5773        INIT_LIST_HEAD(&conf->delayed_list);
5774        INIT_LIST_HEAD(&conf->bitmap_list);
5775        init_llist_head(&conf->released_stripes);
5776        atomic_set(&conf->active_stripes, 0);
5777        atomic_set(&conf->preread_active_stripes, 0);
5778        atomic_set(&conf->active_aligned_reads, 0);
5779        conf->bypass_threshold = BYPASS_THRESHOLD;
5780        conf->recovery_disabled = mddev->recovery_disabled - 1;
5781
5782        conf->raid_disks = mddev->raid_disks;
5783        if (mddev->reshape_position == MaxSector)
5784                conf->previous_raid_disks = mddev->raid_disks;
5785        else
5786                conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
5787        max_disks = max(conf->raid_disks, conf->previous_raid_disks);
5788        conf->scribble_len = scribble_len(max_disks);
5789
5790        conf->disks = kzalloc(max_disks * sizeof(struct disk_info),
5791                              GFP_KERNEL);
5792        if (!conf->disks)
5793                goto abort;
5794
5795        conf->mddev = mddev;
5796
5797        if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
5798                goto abort;
5799
5800        /* We init hash_locks[0] separately to that it can be used
5801         * as the reference lock in the spin_lock_nest_lock() call
5802         * in lock_all_device_hash_locks_irq in order to convince
5803         * lockdep that we know what we are doing.
5804         */
5805        spin_lock_init(conf->hash_locks);
5806        for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++)
5807                spin_lock_init(conf->hash_locks + i);
5808
5809        for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
5810                INIT_LIST_HEAD(conf->inactive_list + i);
5811
5812        for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
5813                INIT_LIST_HEAD(conf->temp_inactive_list + i);
5814
5815        conf->level = mddev->new_level;
5816        if (raid5_alloc_percpu(conf) != 0)
5817                goto abort;
5818
5819        pr_debug("raid456: run(%s) called.\n", mdname(mddev));
5820
5821        rdev_for_each(rdev, mddev) {
5822                raid_disk = rdev->raid_disk;
5823                if (raid_disk >= max_disks
5824                    || raid_disk < 0)
5825                        continue;
5826                disk = conf->disks + raid_disk;
5827
5828                if (test_bit(Replacement, &rdev->flags)) {
5829                        if (disk->replacement)
5830                                goto abort;
5831                        disk->replacement = rdev;
5832                } else {
5833                        if (disk->rdev)
5834                                goto abort;
5835                        disk->rdev = rdev;
5836                }
5837
5838                if (test_bit(In_sync, &rdev->flags)) {
5839                        char b[BDEVNAME_SIZE];
5840                        printk(KERN_INFO "md/raid:%s: device %s operational as raid"
5841                               " disk %d\n",
5842                               mdname(mddev), bdevname(rdev->bdev, b), raid_disk);
5843                } else if (rdev->saved_raid_disk != raid_disk)
5844                        /* Cannot rely on bitmap to complete recovery */
5845                        conf->fullsync = 1;
5846        }
5847
5848        conf->chunk_sectors = mddev->new_chunk_sectors;
5849        conf->level = mddev->new_level;
5850        if (conf->level == 6)
5851                conf->max_degraded = 2;
5852        else
5853                conf->max_degraded = 1;
5854        conf->algorithm = mddev->new_layout;
5855        conf->reshape_progress = mddev->reshape_position;
5856        if (conf->reshape_progress != MaxSector) {
5857                conf->prev_chunk_sectors = mddev->chunk_sectors;
5858                conf->prev_algo = mddev->layout;
5859        }
5860
5861        memory = conf->max_nr_stripes * (sizeof(struct stripe_head) +
5862                 max_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
5863        atomic_set(&conf->empty_inactive_list_nr, NR_STRIPE_HASH_LOCKS);
5864        if (grow_stripes(conf, NR_STRIPES)) {
5865                printk(KERN_ERR
5866                       "md/raid:%s: couldn't allocate %dkB for buffers\n",
5867                       mdname(mddev), memory);
5868                goto abort;
5869        } else
5870                printk(KERN_INFO "md/raid:%s: allocated %dkB\n",
5871                       mdname(mddev), memory);
5872
5873        sprintf(pers_name, "raid%d", mddev->new_level);
5874        conf->thread = md_register_thread(raid5d, mddev, pers_name);
5875        if (!conf->thread) {
5876                printk(KERN_ERR
5877                       "md/raid:%s: couldn't allocate thread.\n",
5878                       mdname(mddev));
5879                goto abort;
5880        }
5881
5882        return conf;
5883
5884 abort:
5885        if (conf) {
5886                free_conf(conf);
5887                return ERR_PTR(-EIO);
5888        } else
5889                return ERR_PTR(-ENOMEM);
5890}
5891
5892static int only_parity(int raid_disk, int algo, int raid_disks, int max_degraded)
5893{
5894        switch (algo) {
5895        case ALGORITHM_PARITY_0:
5896                if (raid_disk < max_degraded)
5897                        return 1;
5898                break;
5899        case ALGORITHM_PARITY_N:
5900                if (raid_disk >= raid_disks - max_degraded)
5901                        return 1;
5902                break;
5903        case ALGORITHM_PARITY_0_6:
5904                if (raid_disk == 0 ||
5905                    raid_disk == raid_disks - 1)
5906                        return 1;
5907                break;
5908        case ALGORITHM_LEFT_ASYMMETRIC_6:
5909        case ALGORITHM_RIGHT_ASYMMETRIC_6:
5910        case ALGORITHM_LEFT_SYMMETRIC_6:
5911        case ALGORITHM_RIGHT_SYMMETRIC_6:
5912                if (raid_disk == raid_disks - 1)
5913                        return 1;
5914        }
5915        return 0;
5916}
5917
5918static int run(struct mddev *mddev)
5919{
5920        struct r5conf *conf;
5921        int working_disks = 0;
5922        int dirty_parity_disks = 0;
5923        struct md_rdev *rdev;
5924        sector_t reshape_offset = 0;
5925        int i;
5926        long long min_offset_diff = 0;
5927        int first = 1;
5928
5929        if (mddev->recovery_cp != MaxSector)
5930                printk(KERN_NOTICE "md/raid:%s: not clean"
5931                       " -- starting background reconstruction\n",
5932                       mdname(mddev));
5933
5934        rdev_for_each(rdev, mddev) {
5935                long long diff;
5936                if (rdev->raid_disk < 0)
5937                        continue;
5938                diff = (rdev->new_data_offset - rdev->data_offset);
5939                if (first) {
5940                        min_offset_diff = diff;
5941                        first = 0;
5942                } else if (mddev->reshape_backwards &&
5943                         diff < min_offset_diff)
5944                        min_offset_diff = diff;
5945                else if (!mddev->reshape_backwards &&
5946                         diff > min_offset_diff)
5947                        min_offset_diff = diff;
5948        }
5949
5950        if (mddev->reshape_position != MaxSector) {
5951                /* Check that we can continue the reshape.
5952                 * Difficulties arise if the stripe we would write to
5953                 * next is at or after the stripe we would read from next.
5954                 * For a reshape that changes the number of devices, this
5955                 * is only possible for a very short time, and mdadm makes
5956                 * sure that time appears to have past before assembling
5957                 * the array.  So we fail if that time hasn't passed.
5958                 * For a reshape that keeps the number of devices the same
5959                 * mdadm must be monitoring the reshape can keeping the
5960                 * critical areas read-only and backed up.  It will start
5961                 * the array in read-only mode, so we check for that.
5962                 */
5963                sector_t here_new, here_old;
5964                int old_disks;
5965                int max_degraded = (mddev->level == 6 ? 2 : 1);
5966
5967                if (mddev->new_level != mddev->level) {
5968                        printk(KERN_ERR "md/raid:%s: unsupported reshape "
5969                               "required - aborting.\n",
5970                               mdname(mddev));
5971                        return -EINVAL;
5972                }
5973                old_disks = mddev->raid_disks - mddev->delta_disks;
5974                /* reshape_position must be on a new-stripe boundary, and one
5975                 * further up in new geometry must map after here in old
5976                 * geometry.
5977                 */
5978                here_new = mddev->reshape_position;
5979                if (sector_div(here_new, mddev->new_chunk_sectors *
5980                               (mddev->raid_disks - max_degraded))) {
5981                        printk(KERN_ERR "md/raid:%s: reshape_position not "
5982                               "on a stripe boundary\n", mdname(mddev));
5983                        return -EINVAL;
5984                }
5985                reshape_offset = here_new * mddev->new_chunk_sectors;
5986                /* here_new is the stripe we will write to */
5987                here_old = mddev->reshape_position;
5988                sector_div(here_old, mddev->chunk_sectors *
5989                           (old_disks-max_degraded));
5990                /* here_old is the first stripe that we might need to read
5991                 * from */
5992                if (mddev->delta_disks == 0) {
5993                        if ((here_new * mddev->new_chunk_sectors !=
5994                             here_old * mddev->chunk_sectors)) {
5995                                printk(KERN_ERR "md/raid:%s: reshape position is"
5996                                       " confused - aborting\n", mdname(mddev));
5997                                return -EINVAL;
5998                        }
5999                        /* We cannot be sure it is safe to start an in-place
6000                         * reshape.  It is only safe if user-space is monitoring
6001                         * and taking constant backups.
6002                         * mdadm always starts a situation like this in
6003                         * readonly mode so it can take control before
6004                         * allowing any writes.  So just check for that.
6005                         */
6006                        if (abs(min_offset_diff) >= mddev->chunk_sectors &&
6007                            abs(min_offset_diff) >= mddev->new_chunk_sectors)
6008                                /* not really in-place - so OK */;
6009                        else if (mddev->ro == 0) {
6010                                printk(KERN_ERR "md/raid:%s: in-place reshape "
6011                                       "must be started in read-only mode "
6012                                       "- aborting\n",
6013                                       mdname(mddev));
6014                                return -EINVAL;
6015                        }
6016                } else if (mddev->reshape_backwards
6017                    ? (here_new * mddev->new_chunk_sectors + min_offset_diff <=
6018                       here_old * mddev->chunk_sectors)
6019                    : (here_new * mddev->new_chunk_sectors >=
6020                       here_old * mddev->chunk_sectors + (-min_offset_diff))) {
6021                        /* Reading from the same stripe as writing to - bad */
6022                        printk(KERN_ERR "md/raid:%s: reshape_position too early for "
6023                               "auto-recovery - aborting.\n",
6024                               mdname(mddev));
6025                        return -EINVAL;
6026                }
6027                printk(KERN_INFO "md/raid:%s: reshape will continue\n",
6028                       mdname(mddev));
6029                /* OK, we should be able to continue; */
6030        } else {
6031                BUG_ON(mddev->level != mddev->new_level);
6032                BUG_ON(mddev->layout != mddev->new_layout);
6033                BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors);
6034                BUG_ON(mddev->delta_disks != 0);
6035        }
6036
6037        if (mddev->private == NULL)
6038                conf = setup_conf(mddev);
6039        else
6040                conf = mddev->private;
6041
6042        if (IS_ERR(conf))
6043                return PTR_ERR(conf);
6044
6045        conf->min_offset_diff = min_offset_diff;
6046        mddev->thread = conf->thread;
6047        conf->thread = NULL;
6048        mddev->private = conf;
6049
6050        for (i = 0; i < conf->raid_disks && conf->previous_raid_disks;
6051             i++) {
6052                rdev = conf->disks[i].rdev;
6053                if (!rdev && conf->disks[i].replacement) {
6054                        /* The replacement is all we have yet */
6055                        rdev = conf->disks[i].replacement;
6056                        conf->disks[i].replacement = NULL;
6057                        clear_bit(Replacement, &rdev->flags);
6058                        conf->disks[i].rdev = rdev;
6059                }
6060                if (!rdev)
6061                        continue;
6062                if (conf->disks[i].replacement &&
6063                    conf->reshape_progress != MaxSector) {
6064                        /* replacements and reshape simply do not mix. */
6065                        printk(KERN_ERR "md: cannot handle concurrent "
6066                               "replacement and reshape.\n");
6067                        goto abort;
6068                }
6069                if (test_bit(In_sync, &rdev->flags)) {
6070                        working_disks++;
6071                        continue;
6072                }
6073                /* This disc is not fully in-sync.  However if it
6074                 * just stored parity (beyond the recovery_offset),
6075                 * when we don't need to be concerned about the
6076                 * array being dirty.
6077                 * When reshape goes 'backwards', we never have
6078                 * partially completed devices, so we only need
6079                 * to worry about reshape going forwards.
6080                 */
6081                /* Hack because v0.91 doesn't store recovery_offset properly. */
6082                if (mddev->major_version == 0 &&
6083                    mddev->minor_version > 90)
6084                        rdev->recovery_offset = reshape_offset;
6085
6086                if (rdev->recovery_offset < reshape_offset) {
6087                        /* We need to check old and new layout */
6088                        if (!only_parity(rdev->raid_disk,
6089                                         conf->algorithm,
6090                                         conf->raid_disks,
6091                                         conf->max_degraded))
6092                                continue;
6093                }
6094                if (!only_parity(rdev->raid_disk,
6095                                 conf->prev_algo,
6096                                 conf->previous_raid_disks,
6097                                 conf->max_degraded))
6098                        continue;
6099                dirty_parity_disks++;
6100        }
6101
6102        /*
6103         * 0 for a fully functional array, 1 or 2 for a degraded array.
6104         */
6105        mddev->degraded = calc_degraded(conf);
6106
6107        if (has_failed(conf)) {
6108                printk(KERN_ERR "md/raid:%s: not enough operational devices"
6109                        " (%d/%d failed)\n",
6110                        mdname(mddev), mddev->degraded, conf->raid_disks);
6111                goto abort;
6112        }
6113
6114        /* device size must be a multiple of chunk size */
6115        mddev->dev_sectors &= ~(mddev->chunk_sectors - 1);
6116        mddev->resync_max_sectors = mddev->dev_sectors;
6117
6118        if (mddev->degraded > dirty_parity_disks &&
6119            mddev->recovery_cp != MaxSector) {
6120                if (mddev->ok_start_degraded)
6121                        printk(KERN_WARNING
6122                               "md/raid:%s: starting dirty degraded array"
6123                               " - data corruption possible.\n",
6124                               mdname(mddev));
6125                else {
6126                        printk(KERN_ERR
6127                               "md/raid:%s: cannot start dirty degraded array.\n",
6128                               mdname(mddev));
6129                        goto abort;
6130                }
6131        }
6132
6133        if (mddev->degraded == 0)
6134                printk(KERN_INFO "md/raid:%s: raid level %d active with %d out of %d"
6135                       " devices, algorithm %d\n", mdname(mddev), conf->level,
6136                       mddev->raid_disks-mddev->degraded, mddev->raid_disks,
6137                       mddev->new_layout);
6138        else
6139                printk(KERN_ALERT "md/raid:%s: raid level %d active with %d"
6140                       " out of %d devices, algorithm %d\n",
6141                       mdname(mddev), conf->level,
6142                       mddev->raid_disks - mddev->degraded,
6143                       mddev->raid_disks, mddev->new_layout);
6144
6145        print_raid5_conf(conf);
6146
6147        if (conf->reshape_progress != MaxSector) {
6148                conf->reshape_safe = conf->reshape_progress;
6149                atomic_set(&conf->reshape_stripes, 0);
6150                clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
6151                clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
6152                set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
6153                set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
6154                mddev->sync_thread = md_register_thread(md_do_sync, mddev,
6155                                                        "reshape");
6156        }
6157
6158        /* Ok, everything is just fine now */
6159        if (mddev->to_remove == &raid5_attrs_group)
6160                mddev->to_remove = NULL;
6161        else if (mddev->kobj.sd &&
6162            sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
6163                printk(KERN_WARNING
6164                       "raid5: failed to create sysfs attributes for %s\n",
6165                       mdname(mddev));
6166        md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
6167
6168        if (mddev->queue) {
6169                int chunk_size;
6170                bool discard_supported = true;
6171                /* read-ahead size must cover two whole stripes, which
6172                 * is 2 * (datadisks) * chunksize where 'n' is the
6173                 * number of raid devices
6174                 */
6175                int data_disks = conf->previous_raid_disks - conf->max_degraded;
6176                int stripe = data_disks *
6177                        ((mddev->chunk_sectors << 9) / PAGE_SIZE);
6178                if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
6179                        mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
6180
6181                blk_queue_merge_bvec(mddev->queue, raid5_mergeable_bvec);
6182
6183                mddev->queue->backing_dev_info.congested_data = mddev;
6184                mddev->queue->backing_dev_info.congested_fn = raid5_congested;
6185
6186                chunk_size = mddev->chunk_sectors << 9;
6187                blk_queue_io_min(mddev->queue, chunk_size);
6188                blk_queue_io_opt(mddev->queue, chunk_size *
6189                                 (conf->raid_disks - conf->max_degraded));
6190                mddev->queue->limits.raid_partial_stripes_expensive = 1;
6191                /*
6192                 * We can only discard a whole stripe. It doesn't make sense to
6193                 * discard data disk but write parity disk
6194                 */
6195                stripe = stripe * PAGE_SIZE;
6196                /* Round up to power of 2, as discard handling
6197                 * currently assumes that */
6198                while ((stripe-1) & stripe)
6199                        stripe = (stripe | (stripe-1)) + 1;
6200                mddev->queue->limits.discard_alignment = stripe;
6201                mddev->queue->limits.discard_granularity = stripe;
6202                /*
6203                 * unaligned part of discard request will be ignored, so can't
6204                 * guarantee discard_zeroes_data
6205                 */
6206                mddev->queue->limits.discard_zeroes_data = 0;
6207
6208                blk_queue_max_write_same_sectors(mddev->queue, 0);
6209
6210                rdev_for_each(rdev, mddev) {
6211                        disk_stack_limits(mddev->gendisk, rdev->bdev,
6212                                          rdev->data_offset << 9);
6213                        disk_stack_limits(mddev->gendisk, rdev->bdev,
6214                                          rdev->new_data_offset << 9);
6215                        /*
6216                         * discard_zeroes_data is required, otherwise data
6217                         * could be lost. Consider a scenario: discard a stripe
6218                         * (the stripe could be inconsistent if
6219                         * discard_zeroes_data is 0); write one disk of the
6220                         * stripe (the stripe could be inconsistent again
6221                         * depending on which disks are used to calculate
6222                         * parity); the disk is broken; The stripe data of this
6223                         * disk is lost.
6224                         */
6225                        if (!blk_queue_discard(bdev_get_queue(rdev->bdev)) ||
6226                            !bdev_get_queue(rdev->bdev)->
6227                                                limits.discard_zeroes_data)
6228                                discard_supported = false;
6229                        /* Unfortunately, discard_zeroes_data is not currently
6230                         * a guarantee - just a hint.  So we only allow DISCARD
6231                         * if the sysadmin has confirmed that only safe devices
6232                         * are in use by setting a module parameter.
6233                         */
6234                        if (!devices_handle_discard_safely) {
6235                                if (discard_supported) {
6236                                        pr_info("md/raid456: discard support disabled due to uncertainty.\n");
6237                                        pr_info("Set raid456.devices_handle_discard_safely=Y to override.\n");
6238                                }
6239                                discard_supported = false;
6240                        }
6241                }
6242
6243                if (discard_supported &&
6244                   mddev->queue->limits.max_discard_sectors >= stripe &&
6245                   mddev->queue->limits.discard_granularity >= stripe)
6246                        queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
6247                                                mddev->queue);
6248                else
6249                        queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
6250                                                mddev->queue);
6251        }
6252
6253        return 0;
6254abort:
6255        md_unregister_thread(&mddev->thread);
6256        print_raid5_conf(conf);
6257        free_conf(conf);
6258        mddev->private = NULL;
6259        printk(KERN_ALERT "md/raid:%s: failed to run raid set.\n", mdname(mddev));
6260        return -EIO;
6261}
6262
6263static int stop(struct mddev *mddev)
6264{
6265        struct r5conf *conf = mddev->private;
6266
6267        md_unregister_thread(&mddev->thread);
6268        if (mddev->queue)
6269                mddev->queue->backing_dev_info.congested_fn = NULL;
6270        free_conf(conf);
6271        mddev->private = NULL;
6272        mddev->to_remove = &raid5_attrs_group;
6273        return 0;
6274}
6275
6276static void status(struct seq_file *seq, struct mddev *mddev)
6277{
6278        struct r5conf *conf = mddev->private;
6279        int i;
6280
6281        seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level,
6282                mddev->chunk_sectors / 2, mddev->layout);
6283        seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
6284        for (i = 0; i < conf->raid_disks; i++)
6285                seq_printf (seq, "%s",
6286                               conf->disks[i].rdev &&
6287                               test_bit(In_sync, &conf->disks[i].rdev->flags) ? "U" : "_");
6288        seq_printf (seq, "]");
6289}
6290
6291static void print_raid5_conf (struct r5conf *conf)
6292{
6293        int i;
6294        struct disk_info *tmp;
6295
6296        printk(KERN_DEBUG "RAID conf printout:\n");
6297        if (!conf) {
6298                printk("(conf==NULL)\n");
6299                return;
6300        }
6301        printk(KERN_DEBUG " --- level:%d rd:%d wd:%d\n", conf->level,
6302               conf->raid_disks,
6303               conf->raid_disks - conf->mddev->degraded);
6304
6305        for (i = 0; i < conf->raid_disks; i++) {
6306                char b[BDEVNAME_SIZE];
6307                tmp = conf->disks + i;
6308                if (tmp->rdev)
6309                        printk(KERN_DEBUG " disk %d, o:%d, dev:%s\n",
6310                               i, !test_bit(Faulty, &tmp->rdev->flags),
6311                               bdevname(tmp->rdev->bdev, b));
6312        }
6313}
6314
6315static int raid5_spare_active(struct mddev *mddev)
6316{
6317        int i;
6318        struct r5conf *conf = mddev->private;
6319        struct disk_info *tmp;
6320        int count = 0;
6321        unsigned long flags;
6322
6323        for (i = 0; i < conf->raid_disks; i++) {
6324                tmp = conf->disks + i;
6325                if (tmp->replacement
6326                    && tmp->replacement->recovery_offset == MaxSector
6327                    && !test_bit(Faulty, &tmp->replacement->flags)
6328                    && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
6329                        /* Replacement has just become active. */
6330                        if (!tmp->rdev
6331                            || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
6332                                count++;
6333                        if (tmp->rdev) {
6334                                /* Replaced device not technically faulty,
6335                                 * but we need to be sure it gets removed
6336                                 * and never re-added.
6337                                 */
6338                                set_bit(Faulty, &tmp->rdev->flags);
6339                                sysfs_notify_dirent_safe(
6340                                        tmp->rdev->sysfs_state);
6341                        }
6342                        sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
6343                } else if (tmp->rdev
6344                    && tmp->rdev->recovery_offset == MaxSector
6345                    && !test_bit(Faulty, &tmp->rdev->flags)
6346                    && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
6347                        count++;
6348                        sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
6349                }
6350        }
6351        spin_lock_irqsave(&conf->device_lock, flags);
6352        mddev->degraded = calc_degraded(conf);
6353        spin_unlock_irqrestore(&conf->device_lock, flags);
6354        print_raid5_conf(conf);
6355        return count;
6356}
6357
6358static int raid5_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
6359{
6360        struct r5conf *conf = mddev->private;
6361        int err = 0;
6362        int number = rdev->raid_disk;
6363        struct md_rdev **rdevp;
6364        struct disk_info *p = conf->disks + number;
6365
6366        print_raid5_conf(conf);
6367        if (rdev == p->rdev)
6368                rdevp = &p->rdev;
6369        else if (rdev == p->replacement)
6370                rdevp = &p->replacement;
6371        else
6372                return 0;
6373
6374        if (number >= conf->raid_disks &&
6375            conf->reshape_progress == MaxSector)
6376                clear_bit(In_sync, &rdev->flags);
6377
6378        if (test_bit(In_sync, &rdev->flags) ||
6379            atomic_read(&rdev->nr_pending)) {
6380                err = -EBUSY;
6381                goto abort;
6382        }
6383        /* Only remove non-faulty devices if recovery
6384         * isn't possible.
6385         */
6386        if (!test_bit(Faulty, &rdev->flags) &&
6387            mddev->recovery_disabled != conf->recovery_disabled &&
6388            !has_failed(conf) &&
6389            (!p->replacement || p->replacement == rdev) &&
6390            number < conf->raid_disks) {
6391                err = -EBUSY;
6392                goto abort;
6393        }
6394        *rdevp = NULL;
6395        synchronize_rcu();
6396        if (atomic_read(&rdev->nr_pending)) {
6397                /* lost the race, try later */
6398                err = -EBUSY;
6399                *rdevp = rdev;
6400        } else if (p->replacement) {
6401                /* We must have just cleared 'rdev' */
6402                p->rdev = p->replacement;
6403                clear_bit(Replacement, &p->replacement->flags);
6404                smp_mb(); /* Make sure other CPUs may see both as identical
6405                           * but will never see neither - if they are careful
6406                           */
6407                p->replacement = NULL;
6408                clear_bit(WantReplacement, &rdev->flags);
6409        } else
6410                /* We might have just removed the Replacement as faulty-
6411                 * clear the bit just in case
6412                 */
6413                clear_bit(WantReplacement, &rdev->flags);
6414abort:
6415
6416        print_raid5_conf(conf);
6417        return err;
6418}
6419
6420static int raid5_add_disk(struct mddev *mddev, struct md_rdev *rdev)
6421{
6422        struct r5conf *conf = mddev->private;
6423        int err = -EEXIST;
6424        int disk;
6425        struct disk_info *p;
6426        int first = 0;
6427        int last = conf->raid_disks - 1;
6428
6429        if (mddev->recovery_disabled == conf->recovery_disabled)
6430                return -EBUSY;
6431
6432        if (rdev->saved_raid_disk < 0 && has_failed(conf))
6433                /* no point adding a device */
6434                return -EINVAL;
6435
6436        if (rdev->raid_disk >= 0)
6437                first = last = rdev->raid_disk;
6438
6439        /*
6440         * find the disk ... but prefer rdev->saved_raid_disk
6441         * if possible.
6442         */
6443        if (rdev->saved_raid_disk >= 0 &&
6444            rdev->saved_raid_disk >= first &&
6445            conf->disks[rdev->saved_raid_disk].rdev == NULL)
6446                first = rdev->saved_raid_disk;
6447
6448        for (disk = first; disk <= last; disk++) {
6449                p = conf->disks + disk;
6450                if (p->rdev == NULL) {
6451                        clear_bit(In_sync, &rdev->flags);
6452                        rdev->raid_disk = disk;
6453                        err = 0;
6454                        if (rdev->saved_raid_disk != disk)
6455                                conf->fullsync = 1;
6456                        rcu_assign_pointer(p->rdev, rdev);
6457                        goto out;
6458                }
6459        }
6460        for (disk = first; disk <= last; disk++) {
6461                p = conf->disks + disk;
6462                if (test_bit(WantReplacement, &p->rdev->flags) &&
6463                    p->replacement == NULL) {
6464                        clear_bit(In_sync, &rdev->flags);
6465                        set_bit(Replacement, &rdev->flags);
6466                        rdev->raid_disk = disk;
6467                        err = 0;
6468                        conf->fullsync = 1;
6469                        rcu_assign_pointer(p->replacement, rdev);
6470                        break;
6471                }
6472        }
6473out:
6474        print_raid5_conf(conf);
6475        return err;
6476}
6477
6478static int raid5_resize(struct mddev *mddev, sector_t sectors)
6479{
6480        /* no resync is happening, and there is enough space
6481         * on all devices, so we can resize.
6482         * We need to make sure resync covers any new space.
6483         * If the array is shrinking we should possibly wait until
6484         * any io in the removed space completes, but it hardly seems
6485         * worth it.
6486         */
6487        sector_t newsize;
6488        sectors &= ~((sector_t)mddev->chunk_sectors - 1);
6489        newsize = raid5_size(mddev, sectors, mddev->raid_disks);
6490        if (mddev->external_size &&
6491            mddev->array_sectors > newsize)
6492                return -EINVAL;
6493        if (mddev->bitmap) {
6494                int ret = bitmap_resize(mddev->bitmap, sectors, 0, 0);
6495                if (ret)
6496                        return ret;
6497        }
6498        md_set_array_sectors(mddev, newsize);
6499        set_capacity(mddev->gendisk, mddev->array_sectors);
6500        revalidate_disk(mddev->gendisk);
6501        if (sectors > mddev->dev_sectors &&
6502            mddev->recovery_cp > mddev->dev_sectors) {
6503                mddev->recovery_cp = mddev->dev_sectors;
6504                set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6505        }
6506        mddev->dev_sectors = sectors;
6507        mddev->resync_max_sectors = sectors;
6508        return 0;
6509}
6510
6511static int check_stripe_cache(struct mddev *mddev)
6512{
6513        /* Can only proceed if there are plenty of stripe_heads.
6514         * We need a minimum of one full stripe,, and for sensible progress
6515         * it is best to have about 4 times that.
6516         * If we require 4 times, then the default 256 4K stripe_heads will
6517         * allow for chunk sizes up to 256K, which is probably OK.
6518         * If the chunk size is greater, user-space should request more
6519         * stripe_heads first.
6520         */
6521        struct r5conf *conf = mddev->private;
6522        if (((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4
6523            > conf->max_nr_stripes ||
6524            ((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4
6525            > conf->max_nr_stripes) {
6526                printk(KERN_WARNING "md/raid:%s: reshape: not enough stripes.  Needed %lu\n",
6527                       mdname(mddev),
6528                       ((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9)
6529                        / STRIPE_SIZE)*4);
6530                return 0;
6531        }
6532        return 1;
6533}
6534
6535static int check_reshape(struct mddev *mddev)
6536{
6537        struct r5conf *conf = mddev->private;
6538
6539        if (mddev->delta_disks == 0 &&
6540            mddev->new_layout == mddev->layout &&
6541            mddev->new_chunk_sectors == mddev->chunk_sectors)
6542                return 0; /* nothing to do */
6543        if (has_failed(conf))
6544                return -EINVAL;
6545        if (mddev->delta_disks < 0 && mddev->reshape_position == MaxSector) {
6546                /* We might be able to shrink, but the devices must
6547                 * be made bigger first.
6548                 * For raid6, 4 is the minimum size.
6549                 * Otherwise 2 is the minimum
6550                 */
6551                int min = 2;
6552                if (mddev->level == 6)
6553                        min = 4;
6554                if (mddev->raid_disks + mddev->delta_disks < min)
6555                        return -EINVAL;
6556        }
6557
6558        if (!check_stripe_cache(mddev))
6559                return -ENOSPC;
6560
6561        return resize_stripes(conf, (conf->previous_raid_disks
6562                                     + mddev->delta_disks));
6563}
6564
6565static int raid5_start_reshape(struct mddev *mddev)
6566{
6567        struct r5conf *conf = mddev->private;
6568        struct md_rdev *rdev;
6569        int spares = 0;
6570        unsigned long flags;
6571
6572        if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
6573                return -EBUSY;
6574
6575        if (!check_stripe_cache(mddev))
6576                return -ENOSPC;
6577
6578        if (has_failed(conf))
6579                return -EINVAL;
6580
6581        rdev_for_each(rdev, mddev) {
6582                if (!test_bit(In_sync, &rdev->flags)
6583                    && !test_bit(Faulty, &rdev->flags))
6584                        spares++;
6585        }
6586
6587        if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
6588                /* Not enough devices even to make a degraded array
6589                 * of that size
6590                 */
6591                return -EINVAL;
6592
6593        /* Refuse to reduce size of the array.  Any reductions in
6594         * array size must be through explicit setting of array_size
6595         * attribute.
6596         */
6597        if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks)
6598            < mddev->array_sectors) {
6599                printk(KERN_ERR "md/raid:%s: array size must be reduced "
6600                       "before number of disks\n", mdname(mddev));
6601                return -EINVAL;
6602        }
6603
6604        atomic_set(&conf->reshape_stripes, 0);
6605        spin_lock_irq(&conf->device_lock);
6606        write_seqcount_begin(&conf->gen_lock);
6607        conf->previous_raid_disks = conf->raid_disks;
6608        conf->raid_disks += mddev->delta_disks;
6609        conf->prev_chunk_sectors = conf->chunk_sectors;
6610        conf->chunk_sectors = mddev->new_chunk_sectors;
6611        conf->prev_algo = conf->algorithm;
6612        conf->algorithm = mddev->new_layout;
6613        conf->generation++;
6614        /* Code that selects data_offset needs to see the generation update
6615         * if reshape_progress has been set - so a memory barrier needed.
6616         */
6617        smp_mb();
6618        if (mddev->reshape_backwards)
6619                conf->reshape_progress = raid5_size(mddev, 0, 0);
6620        else
6621                conf->reshape_progress = 0;
6622        conf->reshape_safe = conf->reshape_progress;
6623        write_seqcount_end(&conf->gen_lock);
6624        spin_unlock_irq(&conf->device_lock);
6625
6626        /* Now make sure any requests that proceeded on the assumption
6627         * the reshape wasn't running - like Discard or Read - have
6628         * completed.
6629         */
6630        mddev_suspend(mddev);
6631        mddev_resume(mddev);
6632
6633        /* Add some new drives, as many as will fit.
6634         * We know there are enough to make the newly sized array work.
6635         * Don't add devices if we are reducing the number of
6636         * devices in the array.  This is because it is not possible
6637         * to correctly record the "partially reconstructed" state of
6638         * such devices during the reshape and confusion could result.
6639         */
6640        if (mddev->delta_disks >= 0) {
6641                rdev_for_each(rdev, mddev)
6642                        if (rdev->raid_disk < 0 &&
6643                            !test_bit(Faulty, &rdev->flags)) {
6644                                if (raid5_add_disk(mddev, rdev) == 0) {
6645                                        if (rdev->raid_disk
6646                                            >= conf->previous_raid_disks)
6647                                                set_bit(In_sync, &rdev->flags);
6648                                        else
6649                                                rdev->recovery_offset = 0;
6650
6651                                        if (sysfs_link_rdev(mddev, rdev))
6652                                                /* Failure here is OK */;
6653                                }
6654                        } else if (rdev->raid_disk >= conf->previous_raid_disks
6655                                   && !test_bit(Faulty, &rdev->flags)) {
6656                                /* This is a spare that was manually added */
6657                                set_bit(In_sync, &rdev->flags);
6658                        }
6659
6660                /* When a reshape changes the number of devices,
6661                 * ->degraded is measured against the larger of the
6662                 * pre and post number of devices.
6663                 */
6664                spin_lock_irqsave(&conf->device_lock, flags);
6665                mddev->degraded = calc_degraded(conf);
6666                spin_unlock_irqrestore(&conf->device_lock, flags);
6667        }
6668        mddev->raid_disks = conf->raid_disks;
6669        mddev->reshape_position = conf->reshape_progress;
6670        set_bit(MD_CHANGE_DEVS, &mddev->flags);
6671
6672        clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
6673        clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
6674        set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
6675        set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
6676        mddev->sync_thread = md_register_thread(md_do_sync, mddev,
6677                                                "reshape");
6678        if (!mddev->sync_thread) {
6679                mddev->recovery = 0;
6680                spin_lock_irq(&conf->device_lock);
6681                write_seqcount_begin(&conf->gen_lock);
6682                mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
6683                mddev->new_chunk_sectors =
6684                        conf->chunk_sectors = conf->prev_chunk_sectors;
6685                mddev->new_layout = conf->algorithm = conf->prev_algo;
6686                rdev_for_each(rdev, mddev)
6687                        rdev->new_data_offset = rdev->data_offset;
6688                smp_wmb();
6689                conf->generation --;
6690                conf->reshape_progress = MaxSector;
6691                mddev->reshape_position = MaxSector;
6692                write_seqcount_end(&conf->gen_lock);
6693                spin_unlock_irq(&conf->device_lock);
6694                return -EAGAIN;
6695        }
6696        conf->reshape_checkpoint = jiffies;
6697        md_wakeup_thread(mddev->sync_thread);
6698        md_new_event(mddev);
6699        return 0;
6700}
6701
6702/* This is called from the reshape thread and should make any
6703 * changes needed in 'conf'
6704 */
6705static void end_reshape(struct r5conf *conf)
6706{
6707
6708        if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
6709                struct md_rdev *rdev;
6710
6711                spin_lock_irq(&conf->device_lock);
6712                conf->previous_raid_disks = conf->raid_disks;
6713                rdev_for_each(rdev, conf->mddev)
6714                        rdev->data_offset = rdev->new_data_offset;
6715                smp_wmb();
6716                conf->reshape_progress = MaxSector;
6717                spin_unlock_irq(&conf->device_lock);
6718                wake_up(&conf->wait_for_overlap);
6719
6720                /* read-ahead size must cover two whole stripes, which is
6721                 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
6722                 */
6723                if (conf->mddev->queue) {
6724                        int data_disks = conf->raid_disks - conf->max_degraded;
6725                        int stripe = data_disks * ((conf->chunk_sectors << 9)
6726                                                   / PAGE_SIZE);
6727                        if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
6728                                conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
6729                }
6730        }
6731}
6732
6733/* This is called from the raid5d thread with mddev_lock held.
6734 * It makes config changes to the device.
6735 */
6736static void raid5_finish_reshape(struct mddev *mddev)
6737{
6738        struct r5conf *conf = mddev->private;
6739
6740        if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
6741
6742                if (mddev->delta_disks > 0) {
6743                        md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
6744                        set_capacity(mddev->gendisk, mddev->array_sectors);
6745                        revalidate_disk(mddev->gendisk);
6746                } else {
6747                        int d;
6748                        spin_lock_irq(&conf->device_lock);
6749                        mddev->degraded = calc_degraded(conf);
6750                        spin_unlock_irq(&conf->device_lock);
6751                        for (d = conf->raid_disks ;
6752                             d < conf->raid_disks - mddev->delta_disks;
6753                             d++) {
6754                                struct md_rdev *rdev = conf->disks[d].rdev;
6755                                if (rdev)
6756                                        clear_bit(In_sync, &rdev->flags);
6757                                rdev = conf->disks[d].replacement;
6758                                if (rdev)
6759                                        clear_bit(In_sync, &rdev->flags);
6760                        }
6761                }
6762                mddev->layout = conf->algorithm;
6763                mddev->chunk_sectors = conf->chunk_sectors;
6764                mddev->reshape_position = MaxSector;
6765                mddev->delta_disks = 0;
6766                mddev->reshape_backwards = 0;
6767        }
6768}
6769
6770static void raid5_quiesce(struct mddev *mddev, int state)
6771{
6772        struct r5conf *conf = mddev->private;
6773
6774        switch(state) {
6775        case 2: /* resume for a suspend */
6776                wake_up(&conf->wait_for_overlap);
6777                break;
6778
6779        case 1: /* stop all writes */
6780                lock_all_device_hash_locks_irq(conf);
6781                /* '2' tells resync/reshape to pause so that all
6782                 * active stripes can drain
6783                 */
6784                conf->quiesce = 2;
6785                wait_event_cmd(conf->wait_for_stripe,
6786                                    atomic_read(&conf->active_stripes) == 0 &&
6787                                    atomic_read(&conf->active_aligned_reads) == 0,
6788                                    unlock_all_device_hash_locks_irq(conf),
6789                                    lock_all_device_hash_locks_irq(conf));
6790                conf->quiesce = 1;
6791                unlock_all_device_hash_locks_irq(conf);
6792                /* allow reshape to continue */
6793                wake_up(&conf->wait_for_overlap);
6794                break;
6795
6796        case 0: /* re-enable writes */
6797                lock_all_device_hash_locks_irq(conf);
6798                conf->quiesce = 0;
6799                wake_up(&conf->wait_for_stripe);
6800                wake_up(&conf->wait_for_overlap);
6801                unlock_all_device_hash_locks_irq(conf);
6802                break;
6803        }
6804}
6805
6806static void *raid45_takeover_raid0(struct mddev *mddev, int level)
6807{
6808        struct r0conf *raid0_conf = mddev->private;
6809        sector_t sectors;
6810
6811        /* for raid0 takeover only one zone is supported */
6812        if (raid0_conf->nr_strip_zones > 1) {
6813                printk(KERN_ERR "md/raid:%s: cannot takeover raid0 with more than one zone.\n",
6814                       mdname(mddev));
6815                return ERR_PTR(-EINVAL);
6816        }
6817
6818        sectors = raid0_conf->strip_zone[0].zone_end;
6819        sector_div(sectors, raid0_conf->strip_zone[0].nb_dev);
6820        mddev->dev_sectors = sectors;
6821        mddev->new_level = level;
6822        mddev->new_layout = ALGORITHM_PARITY_N;
6823        mddev->new_chunk_sectors = mddev->chunk_sectors;
6824        mddev->raid_disks += 1;
6825        mddev->delta_disks = 1;
6826        /* make sure it will be not marked as dirty */
6827        mddev->recovery_cp = MaxSector;
6828
6829        return setup_conf(mddev);
6830}
6831
6832static void *raid5_takeover_raid1(struct mddev *mddev)
6833{
6834        int chunksect;
6835
6836        if (mddev->raid_disks != 2 ||
6837            mddev->degraded > 1)
6838                return ERR_PTR(-EINVAL);
6839
6840        /* Should check if there are write-behind devices? */
6841
6842        chunksect = 64*2; /* 64K by default */
6843
6844        /* The array must be an exact multiple of chunksize */
6845        while (chunksect && (mddev->array_sectors & (chunksect-1)))
6846                chunksect >>= 1;
6847
6848        if ((chunksect<<9) < STRIPE_SIZE)
6849                /* array size does not allow a suitable chunk size */
6850                return ERR_PTR(-EINVAL);
6851
6852        mddev->new_level = 5;
6853        mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC;
6854        mddev->new_chunk_sectors = chunksect;
6855
6856        return setup_conf(mddev);
6857}
6858
6859static void *raid5_takeover_raid6(struct mddev *mddev)
6860{
6861        int new_layout;
6862
6863        switch (mddev->layout) {
6864        case ALGORITHM_LEFT_ASYMMETRIC_6:
6865                new_layout = ALGORITHM_LEFT_ASYMMETRIC;
6866                break;
6867        case ALGORITHM_RIGHT_ASYMMETRIC_6:
6868                new_layout = ALGORITHM_RIGHT_ASYMMETRIC;
6869                break;
6870        case ALGORITHM_LEFT_SYMMETRIC_6:
6871                new_layout = ALGORITHM_LEFT_SYMMETRIC;
6872                break;
6873        case ALGORITHM_RIGHT_SYMMETRIC_6:
6874                new_layout = ALGORITHM_RIGHT_SYMMETRIC;
6875                break;
6876        case ALGORITHM_PARITY_0_6:
6877                new_layout = ALGORITHM_PARITY_0;
6878                break;
6879        case ALGORITHM_PARITY_N:
6880                new_layout = ALGORITHM_PARITY_N;
6881                break;
6882        default:
6883                return ERR_PTR(-EINVAL);
6884        }
6885        mddev->new_level = 5;
6886        mddev->new_layout = new_layout;
6887        mddev->delta_disks = -1;
6888        mddev->raid_disks -= 1;
6889        return setup_conf(mddev);
6890}
6891
6892static int raid5_check_reshape(struct mddev *mddev)
6893{
6894        /* For a 2-drive array, the layout and chunk size can be changed
6895         * immediately as not restriping is needed.
6896         * For larger arrays we record the new value - after validation
6897         * to be used by a reshape pass.
6898         */
6899        struct r5conf *conf = mddev->private;
6900        int new_chunk = mddev->new_chunk_sectors;
6901
6902        if (mddev->new_layout >= 0 && !algorithm_valid_raid5(mddev->new_layout))
6903                return -EINVAL;
6904        if (new_chunk > 0) {
6905                if (!is_power_of_2(new_chunk))
6906                        return -EINVAL;
6907                if (new_chunk < (PAGE_SIZE>>9))
6908                        return -EINVAL;
6909                if (mddev->array_sectors & (new_chunk-1))
6910                        /* not factor of array size */
6911                        return -EINVAL;
6912        }
6913
6914        /* They look valid */
6915
6916        if (mddev->raid_disks == 2) {
6917                /* can make the change immediately */
6918                if (mddev->new_layout >= 0) {
6919                        conf->algorithm = mddev->new_layout;
6920                        mddev->layout = mddev->new_layout;
6921                }
6922                if (new_chunk > 0) {
6923                        conf->chunk_sectors = new_chunk ;
6924                        mddev->chunk_sectors = new_chunk;
6925                }
6926                set_bit(MD_CHANGE_DEVS, &mddev->flags);
6927                md_wakeup_thread(mddev->thread);
6928        }
6929        return check_reshape(mddev);
6930}
6931
6932static int raid6_check_reshape(struct mddev *mddev)
6933{
6934        int new_chunk = mddev->new_chunk_sectors;
6935
6936        if (mddev->new_layout >= 0 && !algorithm_valid_raid6(mddev->new_layout))
6937                return -EINVAL;
6938        if (new_chunk > 0) {
6939                if (!is_power_of_2(new_chunk))
6940                        return -EINVAL;
6941                if (new_chunk < (PAGE_SIZE >> 9))
6942                        return -EINVAL;
6943                if (mddev->array_sectors & (new_chunk-1))
6944                        /* not factor of array size */
6945                        return -EINVAL;
6946        }
6947
6948        /* They look valid */
6949        return check_reshape(mddev);
6950}
6951
6952static void *raid5_takeover(struct mddev *mddev)
6953{
6954        /* raid5 can take over:
6955         *  raid0 - if there is only one strip zone - make it a raid4 layout
6956         *  raid1 - if there are two drives.  We need to know the chunk size
6957         *  raid4 - trivial - just use a raid4 layout.
6958         *  raid6 - Providing it is a *_6 layout
6959         */
6960        if (mddev->level == 0)
6961                return raid45_takeover_raid0(mddev, 5);
6962        if (mddev->level == 1)
6963                return raid5_takeover_raid1(mddev);
6964        if (mddev->level == 4) {
6965                mddev->new_layout = ALGORITHM_PARITY_N;
6966                mddev->new_level = 5;
6967                return setup_conf(mddev);
6968        }
6969        if (mddev->level == 6)
6970                return raid5_takeover_raid6(mddev);
6971
6972        return ERR_PTR(-EINVAL);
6973}
6974
6975static void *raid4_takeover(struct mddev *mddev)
6976{
6977        /* raid4 can take over:
6978         *  raid0 - if there is only one strip zone
6979         *  raid5 - if layout is right
6980         */
6981        if (mddev->level == 0)
6982                return raid45_takeover_raid0(mddev, 4);
6983        if (mddev->level == 5 &&
6984            mddev->layout == ALGORITHM_PARITY_N) {
6985                mddev->new_layout = 0;
6986                mddev->new_level = 4;
6987                return setup_conf(mddev);
6988        }
6989        return ERR_PTR(-EINVAL);
6990}
6991
6992static struct md_personality raid5_personality;
6993
6994static void *raid6_takeover(struct mddev *mddev)
6995{
6996        /* Currently can only take over a raid5.  We map the
6997         * personality to an equivalent raid6 personality
6998         * with the Q block at the end.
6999         */
7000        int new_layout;
7001
7002        if (mddev->pers != &raid5_personality)
7003                return ERR_PTR(-EINVAL);
7004        if (mddev->degraded > 1)
7005                return ERR_PTR(-EINVAL);
7006        if (mddev->raid_disks > 253)
7007                return ERR_PTR(-EINVAL);
7008        if (mddev->raid_disks < 3)
7009                return ERR_PTR(-EINVAL);
7010
7011        switch (mddev->layout) {
7012        case ALGORITHM_LEFT_ASYMMETRIC:
7013                new_layout = ALGORITHM_LEFT_ASYMMETRIC_6;
7014                break;
7015        case ALGORITHM_RIGHT_ASYMMETRIC:
7016                new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6;
7017                break;
7018        case ALGORITHM_LEFT_SYMMETRIC:
7019                new_layout = ALGORITHM_LEFT_SYMMETRIC_6;
7020                break;
7021        case ALGORITHM_RIGHT_SYMMETRIC:
7022                new_layout = ALGORITHM_RIGHT_SYMMETRIC_6;
7023                break;
7024        case ALGORITHM_PARITY_0:
7025                new_layout = ALGORITHM_PARITY_0_6;
7026                break;
7027        case ALGORITHM_PARITY_N:
7028                new_layout = ALGORITHM_PARITY_N;
7029                break;
7030        default:
7031                return ERR_PTR(-EINVAL);
7032        }
7033        mddev->new_level = 6;
7034        mddev->new_layout = new_layout;
7035        mddev->delta_disks = 1;
7036        mddev->raid_disks += 1;
7037        return setup_conf(mddev);
7038}
7039
7040static struct md_personality raid6_personality =
7041{
7042        .name           = "raid6",
7043        .level          = 6,
7044        .owner          = THIS_MODULE,
7045        .make_request   = make_request,
7046        .run            = run,
7047        .stop           = stop,
7048        .status         = status,
7049        .error_handler  = error,
7050        .hot_add_disk   = raid5_add_disk,
7051        .hot_remove_disk= raid5_remove_disk,
7052        .spare_active   = raid5_spare_active,
7053        .sync_request   = sync_request,
7054        .resize         = raid5_resize,
7055        .size           = raid5_size,
7056        .check_reshape  = raid6_check_reshape,
7057        .start_reshape  = raid5_start_reshape,
7058        .finish_reshape = raid5_finish_reshape,
7059        .quiesce        = raid5_quiesce,
7060        .takeover       = raid6_takeover,
7061};
7062static struct md_personality raid5_personality =
7063{
7064        .name           = "raid5",
7065        .level          = 5,
7066        .owner          = THIS_MODULE,
7067        .make_request   = make_request,
7068        .run            = run,
7069        .stop           = stop,
7070        .status         = status,
7071        .error_handler  = error,
7072        .hot_add_disk   = raid5_add_disk,
7073        .hot_remove_disk= raid5_remove_disk,
7074        .spare_active   = raid5_spare_active,
7075        .sync_request   = sync_request,
7076        .resize         = raid5_resize,
7077        .size           = raid5_size,
7078        .check_reshape  = raid5_check_reshape,
7079        .start_reshape  = raid5_start_reshape,
7080        .finish_reshape = raid5_finish_reshape,
7081        .quiesce        = raid5_quiesce,
7082        .takeover       = raid5_takeover,
7083};
7084
7085static struct md_personality raid4_personality =
7086{
7087        .name           = "raid4",
7088        .level          = 4,
7089        .owner          = THIS_MODULE,
7090        .make_request   = make_request,
7091        .run            = run,
7092        .stop           = stop,
7093        .status         = status,
7094        .error_handler  = error,
7095        .hot_add_disk   = raid5_add_disk,
7096        .hot_remove_disk= raid5_remove_disk,
7097        .spare_active   = raid5_spare_active,
7098        .sync_request   = sync_request,
7099        .resize         = raid5_resize,
7100        .size           = raid5_size,
7101        .check_reshape  = raid5_check_reshape,
7102        .start_reshape  = raid5_start_reshape,
7103        .finish_reshape = raid5_finish_reshape,
7104        .quiesce        = raid5_quiesce,
7105        .takeover       = raid4_takeover,
7106};
7107
7108static int __init raid5_init(void)
7109{
7110        raid5_wq = alloc_workqueue("raid5wq",
7111                WQ_UNBOUND|WQ_MEM_RECLAIM|WQ_CPU_INTENSIVE|WQ_SYSFS, 0);
7112        if (!raid5_wq)
7113                return -ENOMEM;
7114        register_md_personality(&raid6_personality);
7115        register_md_personality(&raid5_personality);
7116        register_md_personality(&raid4_personality);
7117        return 0;
7118}
7119
7120static void raid5_exit(void)
7121{
7122        unregister_md_personality(&raid6_personality);
7123        unregister_md_personality(&raid5_personality);
7124        unregister_md_personality(&raid4_personality);
7125        destroy_workqueue(raid5_wq);
7126}
7127
7128module_init(raid5_init);
7129module_exit(raid5_exit);
7130MODULE_LICENSE("GPL");
7131MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD");
7132MODULE_ALIAS("md-personality-4"); /* RAID5 */
7133MODULE_ALIAS("md-raid5");
7134MODULE_ALIAS("md-raid4");
7135MODULE_ALIAS("md-level-5");
7136MODULE_ALIAS("md-level-4");
7137MODULE_ALIAS("md-personality-8"); /* RAID6 */
7138MODULE_ALIAS("md-raid6");
7139MODULE_ALIAS("md-level-6");
7140
7141/* This used to be two separate modules, they were: */
7142MODULE_ALIAS("raid5");
7143MODULE_ALIAS("raid6");
7144