linux/drivers/mtd/nand/nand_base.c
<<
>>
Prefs
   1/*
   2 *  drivers/mtd/nand.c
   3 *
   4 *  Overview:
   5 *   This is the generic MTD driver for NAND flash devices. It should be
   6 *   capable of working with almost all NAND chips currently available.
   7 *
   8 *      Additional technical information is available on
   9 *      http://www.linux-mtd.infradead.org/doc/nand.html
  10 *
  11 *  Copyright (C) 2000 Steven J. Hill (sjhill@realitydiluted.com)
  12 *                2002-2006 Thomas Gleixner (tglx@linutronix.de)
  13 *
  14 *  Credits:
  15 *      David Woodhouse for adding multichip support
  16 *
  17 *      Aleph One Ltd. and Toby Churchill Ltd. for supporting the
  18 *      rework for 2K page size chips
  19 *
  20 *  TODO:
  21 *      Enable cached programming for 2k page size chips
  22 *      Check, if mtd->ecctype should be set to MTD_ECC_HW
  23 *      if we have HW ECC support.
  24 *      BBT table is not serialized, has to be fixed
  25 *
  26 * This program is free software; you can redistribute it and/or modify
  27 * it under the terms of the GNU General Public License version 2 as
  28 * published by the Free Software Foundation.
  29 *
  30 */
  31
  32#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  33
  34#include <linux/module.h>
  35#include <linux/delay.h>
  36#include <linux/errno.h>
  37#include <linux/err.h>
  38#include <linux/sched.h>
  39#include <linux/slab.h>
  40#include <linux/mm.h>
  41#include <linux/types.h>
  42#include <linux/mtd/mtd.h>
  43#include <linux/mtd/nand.h>
  44#include <linux/mtd/nand_ecc.h>
  45#include <linux/mtd/nand_bch.h>
  46#include <linux/interrupt.h>
  47#include <linux/bitops.h>
  48#include <linux/leds.h>
  49#include <linux/io.h>
  50#include <linux/mtd/partitions.h>
  51
  52/* Define default oob placement schemes for large and small page devices */
  53static struct nand_ecclayout nand_oob_8 = {
  54        .eccbytes = 3,
  55        .eccpos = {0, 1, 2},
  56        .oobfree = {
  57                {.offset = 3,
  58                 .length = 2},
  59                {.offset = 6,
  60                 .length = 2} }
  61};
  62
  63static struct nand_ecclayout nand_oob_16 = {
  64        .eccbytes = 6,
  65        .eccpos = {0, 1, 2, 3, 6, 7},
  66        .oobfree = {
  67                {.offset = 8,
  68                 . length = 8} }
  69};
  70
  71static struct nand_ecclayout nand_oob_64 = {
  72        .eccbytes = 24,
  73        .eccpos = {
  74                   40, 41, 42, 43, 44, 45, 46, 47,
  75                   48, 49, 50, 51, 52, 53, 54, 55,
  76                   56, 57, 58, 59, 60, 61, 62, 63},
  77        .oobfree = {
  78                {.offset = 2,
  79                 .length = 38} }
  80};
  81
  82static struct nand_ecclayout nand_oob_128 = {
  83        .eccbytes = 48,
  84        .eccpos = {
  85                   80, 81, 82, 83, 84, 85, 86, 87,
  86                   88, 89, 90, 91, 92, 93, 94, 95,
  87                   96, 97, 98, 99, 100, 101, 102, 103,
  88                   104, 105, 106, 107, 108, 109, 110, 111,
  89                   112, 113, 114, 115, 116, 117, 118, 119,
  90                   120, 121, 122, 123, 124, 125, 126, 127},
  91        .oobfree = {
  92                {.offset = 2,
  93                 .length = 78} }
  94};
  95
  96static int nand_get_device(struct mtd_info *mtd, int new_state);
  97
  98static int nand_do_write_oob(struct mtd_info *mtd, loff_t to,
  99                             struct mtd_oob_ops *ops);
 100
 101/*
 102 * For devices which display every fart in the system on a separate LED. Is
 103 * compiled away when LED support is disabled.
 104 */
 105DEFINE_LED_TRIGGER(nand_led_trigger);
 106
 107static int check_offs_len(struct mtd_info *mtd,
 108                                        loff_t ofs, uint64_t len)
 109{
 110        struct nand_chip *chip = mtd->priv;
 111        int ret = 0;
 112
 113        /* Start address must align on block boundary */
 114        if (ofs & ((1ULL << chip->phys_erase_shift) - 1)) {
 115                pr_debug("%s: unaligned address\n", __func__);
 116                ret = -EINVAL;
 117        }
 118
 119        /* Length must align on block boundary */
 120        if (len & ((1ULL << chip->phys_erase_shift) - 1)) {
 121                pr_debug("%s: length not block aligned\n", __func__);
 122                ret = -EINVAL;
 123        }
 124
 125        return ret;
 126}
 127
 128/**
 129 * nand_release_device - [GENERIC] release chip
 130 * @mtd: MTD device structure
 131 *
 132 * Release chip lock and wake up anyone waiting on the device.
 133 */
 134static void nand_release_device(struct mtd_info *mtd)
 135{
 136        struct nand_chip *chip = mtd->priv;
 137
 138        /* Release the controller and the chip */
 139        spin_lock(&chip->controller->lock);
 140        chip->controller->active = NULL;
 141        chip->state = FL_READY;
 142        wake_up(&chip->controller->wq);
 143        spin_unlock(&chip->controller->lock);
 144}
 145
 146/**
 147 * nand_read_byte - [DEFAULT] read one byte from the chip
 148 * @mtd: MTD device structure
 149 *
 150 * Default read function for 8bit buswidth
 151 */
 152static uint8_t nand_read_byte(struct mtd_info *mtd)
 153{
 154        struct nand_chip *chip = mtd->priv;
 155        return readb(chip->IO_ADDR_R);
 156}
 157
 158/**
 159 * nand_read_byte16 - [DEFAULT] read one byte endianness aware from the chip
 160 * nand_read_byte16 - [DEFAULT] read one byte endianness aware from the chip
 161 * @mtd: MTD device structure
 162 *
 163 * Default read function for 16bit buswidth with endianness conversion.
 164 *
 165 */
 166static uint8_t nand_read_byte16(struct mtd_info *mtd)
 167{
 168        struct nand_chip *chip = mtd->priv;
 169        return (uint8_t) cpu_to_le16(readw(chip->IO_ADDR_R));
 170}
 171
 172/**
 173 * nand_read_word - [DEFAULT] read one word from the chip
 174 * @mtd: MTD device structure
 175 *
 176 * Default read function for 16bit buswidth without endianness conversion.
 177 */
 178static u16 nand_read_word(struct mtd_info *mtd)
 179{
 180        struct nand_chip *chip = mtd->priv;
 181        return readw(chip->IO_ADDR_R);
 182}
 183
 184/**
 185 * nand_select_chip - [DEFAULT] control CE line
 186 * @mtd: MTD device structure
 187 * @chipnr: chipnumber to select, -1 for deselect
 188 *
 189 * Default select function for 1 chip devices.
 190 */
 191static void nand_select_chip(struct mtd_info *mtd, int chipnr)
 192{
 193        struct nand_chip *chip = mtd->priv;
 194
 195        switch (chipnr) {
 196        case -1:
 197                chip->cmd_ctrl(mtd, NAND_CMD_NONE, 0 | NAND_CTRL_CHANGE);
 198                break;
 199        case 0:
 200                break;
 201
 202        default:
 203                BUG();
 204        }
 205}
 206
 207/**
 208 * nand_write_byte - [DEFAULT] write single byte to chip
 209 * @mtd: MTD device structure
 210 * @byte: value to write
 211 *
 212 * Default function to write a byte to I/O[7:0]
 213 */
 214static void nand_write_byte(struct mtd_info *mtd, uint8_t byte)
 215{
 216        struct nand_chip *chip = mtd->priv;
 217
 218        chip->write_buf(mtd, &byte, 1);
 219}
 220
 221/**
 222 * nand_write_byte16 - [DEFAULT] write single byte to a chip with width 16
 223 * @mtd: MTD device structure
 224 * @byte: value to write
 225 *
 226 * Default function to write a byte to I/O[7:0] on a 16-bit wide chip.
 227 */
 228static void nand_write_byte16(struct mtd_info *mtd, uint8_t byte)
 229{
 230        struct nand_chip *chip = mtd->priv;
 231        uint16_t word = byte;
 232
 233        /*
 234         * It's not entirely clear what should happen to I/O[15:8] when writing
 235         * a byte. The ONFi spec (Revision 3.1; 2012-09-19, Section 2.16) reads:
 236         *
 237         *    When the host supports a 16-bit bus width, only data is
 238         *    transferred at the 16-bit width. All address and command line
 239         *    transfers shall use only the lower 8-bits of the data bus. During
 240         *    command transfers, the host may place any value on the upper
 241         *    8-bits of the data bus. During address transfers, the host shall
 242         *    set the upper 8-bits of the data bus to 00h.
 243         *
 244         * One user of the write_byte callback is nand_onfi_set_features. The
 245         * four parameters are specified to be written to I/O[7:0], but this is
 246         * neither an address nor a command transfer. Let's assume a 0 on the
 247         * upper I/O lines is OK.
 248         */
 249        chip->write_buf(mtd, (uint8_t *)&word, 2);
 250}
 251
 252/**
 253 * nand_write_buf - [DEFAULT] write buffer to chip
 254 * @mtd: MTD device structure
 255 * @buf: data buffer
 256 * @len: number of bytes to write
 257 *
 258 * Default write function for 8bit buswidth.
 259 */
 260static void nand_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
 261{
 262        struct nand_chip *chip = mtd->priv;
 263
 264        iowrite8_rep(chip->IO_ADDR_W, buf, len);
 265}
 266
 267/**
 268 * nand_read_buf - [DEFAULT] read chip data into buffer
 269 * @mtd: MTD device structure
 270 * @buf: buffer to store date
 271 * @len: number of bytes to read
 272 *
 273 * Default read function for 8bit buswidth.
 274 */
 275static void nand_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
 276{
 277        struct nand_chip *chip = mtd->priv;
 278
 279        ioread8_rep(chip->IO_ADDR_R, buf, len);
 280}
 281
 282/**
 283 * nand_write_buf16 - [DEFAULT] write buffer to chip
 284 * @mtd: MTD device structure
 285 * @buf: data buffer
 286 * @len: number of bytes to write
 287 *
 288 * Default write function for 16bit buswidth.
 289 */
 290static void nand_write_buf16(struct mtd_info *mtd, const uint8_t *buf, int len)
 291{
 292        struct nand_chip *chip = mtd->priv;
 293        u16 *p = (u16 *) buf;
 294
 295        iowrite16_rep(chip->IO_ADDR_W, p, len >> 1);
 296}
 297
 298/**
 299 * nand_read_buf16 - [DEFAULT] read chip data into buffer
 300 * @mtd: MTD device structure
 301 * @buf: buffer to store date
 302 * @len: number of bytes to read
 303 *
 304 * Default read function for 16bit buswidth.
 305 */
 306static void nand_read_buf16(struct mtd_info *mtd, uint8_t *buf, int len)
 307{
 308        struct nand_chip *chip = mtd->priv;
 309        u16 *p = (u16 *) buf;
 310
 311        ioread16_rep(chip->IO_ADDR_R, p, len >> 1);
 312}
 313
 314/**
 315 * nand_block_bad - [DEFAULT] Read bad block marker from the chip
 316 * @mtd: MTD device structure
 317 * @ofs: offset from device start
 318 * @getchip: 0, if the chip is already selected
 319 *
 320 * Check, if the block is bad.
 321 */
 322static int nand_block_bad(struct mtd_info *mtd, loff_t ofs, int getchip)
 323{
 324        int page, chipnr, res = 0, i = 0;
 325        struct nand_chip *chip = mtd->priv;
 326        u16 bad;
 327
 328        if (chip->bbt_options & NAND_BBT_SCANLASTPAGE)
 329                ofs += mtd->erasesize - mtd->writesize;
 330
 331        page = (int)(ofs >> chip->page_shift) & chip->pagemask;
 332
 333        if (getchip) {
 334                chipnr = (int)(ofs >> chip->chip_shift);
 335
 336                nand_get_device(mtd, FL_READING);
 337
 338                /* Select the NAND device */
 339                chip->select_chip(mtd, chipnr);
 340        }
 341
 342        do {
 343                if (chip->options & NAND_BUSWIDTH_16) {
 344                        chip->cmdfunc(mtd, NAND_CMD_READOOB,
 345                                        chip->badblockpos & 0xFE, page);
 346                        bad = cpu_to_le16(chip->read_word(mtd));
 347                        if (chip->badblockpos & 0x1)
 348                                bad >>= 8;
 349                        else
 350                                bad &= 0xFF;
 351                } else {
 352                        chip->cmdfunc(mtd, NAND_CMD_READOOB, chip->badblockpos,
 353                                        page);
 354                        bad = chip->read_byte(mtd);
 355                }
 356
 357                if (likely(chip->badblockbits == 8))
 358                        res = bad != 0xFF;
 359                else
 360                        res = hweight8(bad) < chip->badblockbits;
 361                ofs += mtd->writesize;
 362                page = (int)(ofs >> chip->page_shift) & chip->pagemask;
 363                i++;
 364        } while (!res && i < 2 && (chip->bbt_options & NAND_BBT_SCAN2NDPAGE));
 365
 366        if (getchip) {
 367                chip->select_chip(mtd, -1);
 368                nand_release_device(mtd);
 369        }
 370
 371        return res;
 372}
 373
 374/**
 375 * nand_default_block_markbad - [DEFAULT] mark a block bad via bad block marker
 376 * @mtd: MTD device structure
 377 * @ofs: offset from device start
 378 *
 379 * This is the default implementation, which can be overridden by a hardware
 380 * specific driver. It provides the details for writing a bad block marker to a
 381 * block.
 382 */
 383static int nand_default_block_markbad(struct mtd_info *mtd, loff_t ofs)
 384{
 385        struct nand_chip *chip = mtd->priv;
 386        struct mtd_oob_ops ops;
 387        uint8_t buf[2] = { 0, 0 };
 388        int ret = 0, res, i = 0;
 389
 390        ops.datbuf = NULL;
 391        ops.oobbuf = buf;
 392        ops.ooboffs = chip->badblockpos;
 393        if (chip->options & NAND_BUSWIDTH_16) {
 394                ops.ooboffs &= ~0x01;
 395                ops.len = ops.ooblen = 2;
 396        } else {
 397                ops.len = ops.ooblen = 1;
 398        }
 399        ops.mode = MTD_OPS_PLACE_OOB;
 400
 401        /* Write to first/last page(s) if necessary */
 402        if (chip->bbt_options & NAND_BBT_SCANLASTPAGE)
 403                ofs += mtd->erasesize - mtd->writesize;
 404        do {
 405                res = nand_do_write_oob(mtd, ofs, &ops);
 406                if (!ret)
 407                        ret = res;
 408
 409                i++;
 410                ofs += mtd->writesize;
 411        } while ((chip->bbt_options & NAND_BBT_SCAN2NDPAGE) && i < 2);
 412
 413        return ret;
 414}
 415
 416/**
 417 * nand_block_markbad_lowlevel - mark a block bad
 418 * @mtd: MTD device structure
 419 * @ofs: offset from device start
 420 *
 421 * This function performs the generic NAND bad block marking steps (i.e., bad
 422 * block table(s) and/or marker(s)). We only allow the hardware driver to
 423 * specify how to write bad block markers to OOB (chip->block_markbad).
 424 *
 425 * We try operations in the following order:
 426 *  (1) erase the affected block, to allow OOB marker to be written cleanly
 427 *  (2) write bad block marker to OOB area of affected block (unless flag
 428 *      NAND_BBT_NO_OOB_BBM is present)
 429 *  (3) update the BBT
 430 * Note that we retain the first error encountered in (2) or (3), finish the
 431 * procedures, and dump the error in the end.
 432*/
 433static int nand_block_markbad_lowlevel(struct mtd_info *mtd, loff_t ofs)
 434{
 435        struct nand_chip *chip = mtd->priv;
 436        int res, ret = 0;
 437
 438        if (!(chip->bbt_options & NAND_BBT_NO_OOB_BBM)) {
 439                struct erase_info einfo;
 440
 441                /* Attempt erase before marking OOB */
 442                memset(&einfo, 0, sizeof(einfo));
 443                einfo.mtd = mtd;
 444                einfo.addr = ofs;
 445                einfo.len = 1ULL << chip->phys_erase_shift;
 446                nand_erase_nand(mtd, &einfo, 0);
 447
 448                /* Write bad block marker to OOB */
 449                nand_get_device(mtd, FL_WRITING);
 450                ret = chip->block_markbad(mtd, ofs);
 451                nand_release_device(mtd);
 452        }
 453
 454        /* Mark block bad in BBT */
 455        if (chip->bbt) {
 456                res = nand_markbad_bbt(mtd, ofs);
 457                if (!ret)
 458                        ret = res;
 459        }
 460
 461        if (!ret)
 462                mtd->ecc_stats.badblocks++;
 463
 464        return ret;
 465}
 466
 467/**
 468 * nand_check_wp - [GENERIC] check if the chip is write protected
 469 * @mtd: MTD device structure
 470 *
 471 * Check, if the device is write protected. The function expects, that the
 472 * device is already selected.
 473 */
 474static int nand_check_wp(struct mtd_info *mtd)
 475{
 476        struct nand_chip *chip = mtd->priv;
 477
 478        /* Broken xD cards report WP despite being writable */
 479        if (chip->options & NAND_BROKEN_XD)
 480                return 0;
 481
 482        /* Check the WP bit */
 483        chip->cmdfunc(mtd, NAND_CMD_STATUS, -1, -1);
 484        return (chip->read_byte(mtd) & NAND_STATUS_WP) ? 0 : 1;
 485}
 486
 487/**
 488 * nand_block_isreserved - [GENERIC] Check if a block is marked reserved.
 489 * @mtd: MTD device structure
 490 * @ofs: offset from device start
 491 *
 492 * Check if the block is marked as reserved.
 493 */
 494static int nand_block_isreserved(struct mtd_info *mtd, loff_t ofs)
 495{
 496        struct nand_chip *chip = mtd->priv;
 497
 498        if (!chip->bbt)
 499                return 0;
 500        /* Return info from the table */
 501        return nand_isreserved_bbt(mtd, ofs);
 502}
 503
 504/**
 505 * nand_block_checkbad - [GENERIC] Check if a block is marked bad
 506 * @mtd: MTD device structure
 507 * @ofs: offset from device start
 508 * @getchip: 0, if the chip is already selected
 509 * @allowbbt: 1, if its allowed to access the bbt area
 510 *
 511 * Check, if the block is bad. Either by reading the bad block table or
 512 * calling of the scan function.
 513 */
 514static int nand_block_checkbad(struct mtd_info *mtd, loff_t ofs, int getchip,
 515                               int allowbbt)
 516{
 517        struct nand_chip *chip = mtd->priv;
 518
 519        if (!chip->bbt)
 520                return chip->block_bad(mtd, ofs, getchip);
 521
 522        /* Return info from the table */
 523        return nand_isbad_bbt(mtd, ofs, allowbbt);
 524}
 525
 526/**
 527 * panic_nand_wait_ready - [GENERIC] Wait for the ready pin after commands.
 528 * @mtd: MTD device structure
 529 * @timeo: Timeout
 530 *
 531 * Helper function for nand_wait_ready used when needing to wait in interrupt
 532 * context.
 533 */
 534static void panic_nand_wait_ready(struct mtd_info *mtd, unsigned long timeo)
 535{
 536        struct nand_chip *chip = mtd->priv;
 537        int i;
 538
 539        /* Wait for the device to get ready */
 540        for (i = 0; i < timeo; i++) {
 541                if (chip->dev_ready(mtd))
 542                        break;
 543                touch_softlockup_watchdog();
 544                mdelay(1);
 545        }
 546}
 547
 548/* Wait for the ready pin, after a command. The timeout is caught later. */
 549void nand_wait_ready(struct mtd_info *mtd)
 550{
 551        struct nand_chip *chip = mtd->priv;
 552        unsigned long timeo = jiffies + msecs_to_jiffies(20);
 553
 554        /* 400ms timeout */
 555        if (in_interrupt() || oops_in_progress)
 556                return panic_nand_wait_ready(mtd, 400);
 557
 558        led_trigger_event(nand_led_trigger, LED_FULL);
 559        /* Wait until command is processed or timeout occurs */
 560        do {
 561                if (chip->dev_ready(mtd))
 562                        break;
 563                touch_softlockup_watchdog();
 564        } while (time_before(jiffies, timeo));
 565        led_trigger_event(nand_led_trigger, LED_OFF);
 566}
 567EXPORT_SYMBOL_GPL(nand_wait_ready);
 568
 569/**
 570 * nand_command - [DEFAULT] Send command to NAND device
 571 * @mtd: MTD device structure
 572 * @command: the command to be sent
 573 * @column: the column address for this command, -1 if none
 574 * @page_addr: the page address for this command, -1 if none
 575 *
 576 * Send command to NAND device. This function is used for small page devices
 577 * (512 Bytes per page).
 578 */
 579static void nand_command(struct mtd_info *mtd, unsigned int command,
 580                         int column, int page_addr)
 581{
 582        register struct nand_chip *chip = mtd->priv;
 583        int ctrl = NAND_CTRL_CLE | NAND_CTRL_CHANGE;
 584
 585        /* Write out the command to the device */
 586        if (command == NAND_CMD_SEQIN) {
 587                int readcmd;
 588
 589                if (column >= mtd->writesize) {
 590                        /* OOB area */
 591                        column -= mtd->writesize;
 592                        readcmd = NAND_CMD_READOOB;
 593                } else if (column < 256) {
 594                        /* First 256 bytes --> READ0 */
 595                        readcmd = NAND_CMD_READ0;
 596                } else {
 597                        column -= 256;
 598                        readcmd = NAND_CMD_READ1;
 599                }
 600                chip->cmd_ctrl(mtd, readcmd, ctrl);
 601                ctrl &= ~NAND_CTRL_CHANGE;
 602        }
 603        chip->cmd_ctrl(mtd, command, ctrl);
 604
 605        /* Address cycle, when necessary */
 606        ctrl = NAND_CTRL_ALE | NAND_CTRL_CHANGE;
 607        /* Serially input address */
 608        if (column != -1) {
 609                /* Adjust columns for 16 bit buswidth */
 610                if (chip->options & NAND_BUSWIDTH_16 &&
 611                                !nand_opcode_8bits(command))
 612                        column >>= 1;
 613                chip->cmd_ctrl(mtd, column, ctrl);
 614                ctrl &= ~NAND_CTRL_CHANGE;
 615        }
 616        if (page_addr != -1) {
 617                chip->cmd_ctrl(mtd, page_addr, ctrl);
 618                ctrl &= ~NAND_CTRL_CHANGE;
 619                chip->cmd_ctrl(mtd, page_addr >> 8, ctrl);
 620                /* One more address cycle for devices > 32MiB */
 621                if (chip->chipsize > (32 << 20))
 622                        chip->cmd_ctrl(mtd, page_addr >> 16, ctrl);
 623        }
 624        chip->cmd_ctrl(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
 625
 626        /*
 627         * Program and erase have their own busy handlers status and sequential
 628         * in needs no delay
 629         */
 630        switch (command) {
 631
 632        case NAND_CMD_PAGEPROG:
 633        case NAND_CMD_ERASE1:
 634        case NAND_CMD_ERASE2:
 635        case NAND_CMD_SEQIN:
 636        case NAND_CMD_STATUS:
 637                return;
 638
 639        case NAND_CMD_RESET:
 640                if (chip->dev_ready)
 641                        break;
 642                udelay(chip->chip_delay);
 643                chip->cmd_ctrl(mtd, NAND_CMD_STATUS,
 644                               NAND_CTRL_CLE | NAND_CTRL_CHANGE);
 645                chip->cmd_ctrl(mtd,
 646                               NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
 647                while (!(chip->read_byte(mtd) & NAND_STATUS_READY))
 648                                ;
 649                return;
 650
 651                /* This applies to read commands */
 652        default:
 653                /*
 654                 * If we don't have access to the busy pin, we apply the given
 655                 * command delay
 656                 */
 657                if (!chip->dev_ready) {
 658                        udelay(chip->chip_delay);
 659                        return;
 660                }
 661        }
 662        /*
 663         * Apply this short delay always to ensure that we do wait tWB in
 664         * any case on any machine.
 665         */
 666        ndelay(100);
 667
 668        nand_wait_ready(mtd);
 669}
 670
 671/**
 672 * nand_command_lp - [DEFAULT] Send command to NAND large page device
 673 * @mtd: MTD device structure
 674 * @command: the command to be sent
 675 * @column: the column address for this command, -1 if none
 676 * @page_addr: the page address for this command, -1 if none
 677 *
 678 * Send command to NAND device. This is the version for the new large page
 679 * devices. We don't have the separate regions as we have in the small page
 680 * devices. We must emulate NAND_CMD_READOOB to keep the code compatible.
 681 */
 682static void nand_command_lp(struct mtd_info *mtd, unsigned int command,
 683                            int column, int page_addr)
 684{
 685        register struct nand_chip *chip = mtd->priv;
 686
 687        /* Emulate NAND_CMD_READOOB */
 688        if (command == NAND_CMD_READOOB) {
 689                column += mtd->writesize;
 690                command = NAND_CMD_READ0;
 691        }
 692
 693        /* Command latch cycle */
 694        chip->cmd_ctrl(mtd, command, NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
 695
 696        if (column != -1 || page_addr != -1) {
 697                int ctrl = NAND_CTRL_CHANGE | NAND_NCE | NAND_ALE;
 698
 699                /* Serially input address */
 700                if (column != -1) {
 701                        /* Adjust columns for 16 bit buswidth */
 702                        if (chip->options & NAND_BUSWIDTH_16 &&
 703                                        !nand_opcode_8bits(command))
 704                                column >>= 1;
 705                        chip->cmd_ctrl(mtd, column, ctrl);
 706                        ctrl &= ~NAND_CTRL_CHANGE;
 707                        chip->cmd_ctrl(mtd, column >> 8, ctrl);
 708                }
 709                if (page_addr != -1) {
 710                        chip->cmd_ctrl(mtd, page_addr, ctrl);
 711                        chip->cmd_ctrl(mtd, page_addr >> 8,
 712                                       NAND_NCE | NAND_ALE);
 713                        /* One more address cycle for devices > 128MiB */
 714                        if (chip->chipsize > (128 << 20))
 715                                chip->cmd_ctrl(mtd, page_addr >> 16,
 716                                               NAND_NCE | NAND_ALE);
 717                }
 718        }
 719        chip->cmd_ctrl(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
 720
 721        /*
 722         * Program and erase have their own busy handlers status, sequential
 723         * in and status need no delay.
 724         */
 725        switch (command) {
 726
 727        case NAND_CMD_CACHEDPROG:
 728        case NAND_CMD_PAGEPROG:
 729        case NAND_CMD_ERASE1:
 730        case NAND_CMD_ERASE2:
 731        case NAND_CMD_SEQIN:
 732        case NAND_CMD_RNDIN:
 733        case NAND_CMD_STATUS:
 734                return;
 735
 736        case NAND_CMD_RESET:
 737                if (chip->dev_ready)
 738                        break;
 739                udelay(chip->chip_delay);
 740                chip->cmd_ctrl(mtd, NAND_CMD_STATUS,
 741                               NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
 742                chip->cmd_ctrl(mtd, NAND_CMD_NONE,
 743                               NAND_NCE | NAND_CTRL_CHANGE);
 744                while (!(chip->read_byte(mtd) & NAND_STATUS_READY))
 745                                ;
 746                return;
 747
 748        case NAND_CMD_RNDOUT:
 749                /* No ready / busy check necessary */
 750                chip->cmd_ctrl(mtd, NAND_CMD_RNDOUTSTART,
 751                               NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
 752                chip->cmd_ctrl(mtd, NAND_CMD_NONE,
 753                               NAND_NCE | NAND_CTRL_CHANGE);
 754                return;
 755
 756        case NAND_CMD_READ0:
 757                chip->cmd_ctrl(mtd, NAND_CMD_READSTART,
 758                               NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
 759                chip->cmd_ctrl(mtd, NAND_CMD_NONE,
 760                               NAND_NCE | NAND_CTRL_CHANGE);
 761
 762                /* This applies to read commands */
 763        default:
 764                /*
 765                 * If we don't have access to the busy pin, we apply the given
 766                 * command delay.
 767                 */
 768                if (!chip->dev_ready) {
 769                        udelay(chip->chip_delay);
 770                        return;
 771                }
 772        }
 773
 774        /*
 775         * Apply this short delay always to ensure that we do wait tWB in
 776         * any case on any machine.
 777         */
 778        ndelay(100);
 779
 780        nand_wait_ready(mtd);
 781}
 782
 783/**
 784 * panic_nand_get_device - [GENERIC] Get chip for selected access
 785 * @chip: the nand chip descriptor
 786 * @mtd: MTD device structure
 787 * @new_state: the state which is requested
 788 *
 789 * Used when in panic, no locks are taken.
 790 */
 791static void panic_nand_get_device(struct nand_chip *chip,
 792                      struct mtd_info *mtd, int new_state)
 793{
 794        /* Hardware controller shared among independent devices */
 795        chip->controller->active = chip;
 796        chip->state = new_state;
 797}
 798
 799/**
 800 * nand_get_device - [GENERIC] Get chip for selected access
 801 * @mtd: MTD device structure
 802 * @new_state: the state which is requested
 803 *
 804 * Get the device and lock it for exclusive access
 805 */
 806static int
 807nand_get_device(struct mtd_info *mtd, int new_state)
 808{
 809        struct nand_chip *chip = mtd->priv;
 810        spinlock_t *lock = &chip->controller->lock;
 811        wait_queue_head_t *wq = &chip->controller->wq;
 812        DECLARE_WAITQUEUE(wait, current);
 813retry:
 814        spin_lock(lock);
 815
 816        /* Hardware controller shared among independent devices */
 817        if (!chip->controller->active)
 818                chip->controller->active = chip;
 819
 820        if (chip->controller->active == chip && chip->state == FL_READY) {
 821                chip->state = new_state;
 822                spin_unlock(lock);
 823                return 0;
 824        }
 825        if (new_state == FL_PM_SUSPENDED) {
 826                if (chip->controller->active->state == FL_PM_SUSPENDED) {
 827                        chip->state = FL_PM_SUSPENDED;
 828                        spin_unlock(lock);
 829                        return 0;
 830                }
 831        }
 832        set_current_state(TASK_UNINTERRUPTIBLE);
 833        add_wait_queue(wq, &wait);
 834        spin_unlock(lock);
 835        schedule();
 836        remove_wait_queue(wq, &wait);
 837        goto retry;
 838}
 839
 840/**
 841 * panic_nand_wait - [GENERIC] wait until the command is done
 842 * @mtd: MTD device structure
 843 * @chip: NAND chip structure
 844 * @timeo: timeout
 845 *
 846 * Wait for command done. This is a helper function for nand_wait used when
 847 * we are in interrupt context. May happen when in panic and trying to write
 848 * an oops through mtdoops.
 849 */
 850static void panic_nand_wait(struct mtd_info *mtd, struct nand_chip *chip,
 851                            unsigned long timeo)
 852{
 853        int i;
 854        for (i = 0; i < timeo; i++) {
 855                if (chip->dev_ready) {
 856                        if (chip->dev_ready(mtd))
 857                                break;
 858                } else {
 859                        if (chip->read_byte(mtd) & NAND_STATUS_READY)
 860                                break;
 861                }
 862                mdelay(1);
 863        }
 864}
 865
 866/**
 867 * nand_wait - [DEFAULT] wait until the command is done
 868 * @mtd: MTD device structure
 869 * @chip: NAND chip structure
 870 *
 871 * Wait for command done. This applies to erase and program only. Erase can
 872 * take up to 400ms and program up to 20ms according to general NAND and
 873 * SmartMedia specs.
 874 */
 875static int nand_wait(struct mtd_info *mtd, struct nand_chip *chip)
 876{
 877
 878        int status, state = chip->state;
 879        unsigned long timeo = (state == FL_ERASING ? 400 : 20);
 880
 881        led_trigger_event(nand_led_trigger, LED_FULL);
 882
 883        /*
 884         * Apply this short delay always to ensure that we do wait tWB in any
 885         * case on any machine.
 886         */
 887        ndelay(100);
 888
 889        chip->cmdfunc(mtd, NAND_CMD_STATUS, -1, -1);
 890
 891        if (in_interrupt() || oops_in_progress)
 892                panic_nand_wait(mtd, chip, timeo);
 893        else {
 894                timeo = jiffies + msecs_to_jiffies(timeo);
 895                while (time_before(jiffies, timeo)) {
 896                        if (chip->dev_ready) {
 897                                if (chip->dev_ready(mtd))
 898                                        break;
 899                        } else {
 900                                if (chip->read_byte(mtd) & NAND_STATUS_READY)
 901                                        break;
 902                        }
 903                        cond_resched();
 904                }
 905        }
 906        led_trigger_event(nand_led_trigger, LED_OFF);
 907
 908        status = (int)chip->read_byte(mtd);
 909        /* This can happen if in case of timeout or buggy dev_ready */
 910        WARN_ON(!(status & NAND_STATUS_READY));
 911        return status;
 912}
 913
 914/**
 915 * __nand_unlock - [REPLACEABLE] unlocks specified locked blocks
 916 * @mtd: mtd info
 917 * @ofs: offset to start unlock from
 918 * @len: length to unlock
 919 * @invert: when = 0, unlock the range of blocks within the lower and
 920 *                    upper boundary address
 921 *          when = 1, unlock the range of blocks outside the boundaries
 922 *                    of the lower and upper boundary address
 923 *
 924 * Returs unlock status.
 925 */
 926static int __nand_unlock(struct mtd_info *mtd, loff_t ofs,
 927                                        uint64_t len, int invert)
 928{
 929        int ret = 0;
 930        int status, page;
 931        struct nand_chip *chip = mtd->priv;
 932
 933        /* Submit address of first page to unlock */
 934        page = ofs >> chip->page_shift;
 935        chip->cmdfunc(mtd, NAND_CMD_UNLOCK1, -1, page & chip->pagemask);
 936
 937        /* Submit address of last page to unlock */
 938        page = (ofs + len) >> chip->page_shift;
 939        chip->cmdfunc(mtd, NAND_CMD_UNLOCK2, -1,
 940                                (page | invert) & chip->pagemask);
 941
 942        /* Call wait ready function */
 943        status = chip->waitfunc(mtd, chip);
 944        /* See if device thinks it succeeded */
 945        if (status & NAND_STATUS_FAIL) {
 946                pr_debug("%s: error status = 0x%08x\n",
 947                                        __func__, status);
 948                ret = -EIO;
 949        }
 950
 951        return ret;
 952}
 953
 954/**
 955 * nand_unlock - [REPLACEABLE] unlocks specified locked blocks
 956 * @mtd: mtd info
 957 * @ofs: offset to start unlock from
 958 * @len: length to unlock
 959 *
 960 * Returns unlock status.
 961 */
 962int nand_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
 963{
 964        int ret = 0;
 965        int chipnr;
 966        struct nand_chip *chip = mtd->priv;
 967
 968        pr_debug("%s: start = 0x%012llx, len = %llu\n",
 969                        __func__, (unsigned long long)ofs, len);
 970
 971        if (check_offs_len(mtd, ofs, len))
 972                ret = -EINVAL;
 973
 974        /* Align to last block address if size addresses end of the device */
 975        if (ofs + len == mtd->size)
 976                len -= mtd->erasesize;
 977
 978        nand_get_device(mtd, FL_UNLOCKING);
 979
 980        /* Shift to get chip number */
 981        chipnr = ofs >> chip->chip_shift;
 982
 983        chip->select_chip(mtd, chipnr);
 984
 985        /*
 986         * Reset the chip.
 987         * If we want to check the WP through READ STATUS and check the bit 7
 988         * we must reset the chip
 989         * some operation can also clear the bit 7 of status register
 990         * eg. erase/program a locked block
 991         */
 992        chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
 993
 994        /* Check, if it is write protected */
 995        if (nand_check_wp(mtd)) {
 996                pr_debug("%s: device is write protected!\n",
 997                                        __func__);
 998                ret = -EIO;
 999                goto out;
1000        }
1001
1002        ret = __nand_unlock(mtd, ofs, len, 0);
1003
1004out:
1005        chip->select_chip(mtd, -1);
1006        nand_release_device(mtd);
1007
1008        return ret;
1009}
1010EXPORT_SYMBOL(nand_unlock);
1011
1012/**
1013 * nand_lock - [REPLACEABLE] locks all blocks present in the device
1014 * @mtd: mtd info
1015 * @ofs: offset to start unlock from
1016 * @len: length to unlock
1017 *
1018 * This feature is not supported in many NAND parts. 'Micron' NAND parts do
1019 * have this feature, but it allows only to lock all blocks, not for specified
1020 * range for block. Implementing 'lock' feature by making use of 'unlock', for
1021 * now.
1022 *
1023 * Returns lock status.
1024 */
1025int nand_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
1026{
1027        int ret = 0;
1028        int chipnr, status, page;
1029        struct nand_chip *chip = mtd->priv;
1030
1031        pr_debug("%s: start = 0x%012llx, len = %llu\n",
1032                        __func__, (unsigned long long)ofs, len);
1033
1034        if (check_offs_len(mtd, ofs, len))
1035                ret = -EINVAL;
1036
1037        nand_get_device(mtd, FL_LOCKING);
1038
1039        /* Shift to get chip number */
1040        chipnr = ofs >> chip->chip_shift;
1041
1042        chip->select_chip(mtd, chipnr);
1043
1044        /*
1045         * Reset the chip.
1046         * If we want to check the WP through READ STATUS and check the bit 7
1047         * we must reset the chip
1048         * some operation can also clear the bit 7 of status register
1049         * eg. erase/program a locked block
1050         */
1051        chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
1052
1053        /* Check, if it is write protected */
1054        if (nand_check_wp(mtd)) {
1055                pr_debug("%s: device is write protected!\n",
1056                                        __func__);
1057                status = MTD_ERASE_FAILED;
1058                ret = -EIO;
1059                goto out;
1060        }
1061
1062        /* Submit address of first page to lock */
1063        page = ofs >> chip->page_shift;
1064        chip->cmdfunc(mtd, NAND_CMD_LOCK, -1, page & chip->pagemask);
1065
1066        /* Call wait ready function */
1067        status = chip->waitfunc(mtd, chip);
1068        /* See if device thinks it succeeded */
1069        if (status & NAND_STATUS_FAIL) {
1070                pr_debug("%s: error status = 0x%08x\n",
1071                                        __func__, status);
1072                ret = -EIO;
1073                goto out;
1074        }
1075
1076        ret = __nand_unlock(mtd, ofs, len, 0x1);
1077
1078out:
1079        chip->select_chip(mtd, -1);
1080        nand_release_device(mtd);
1081
1082        return ret;
1083}
1084EXPORT_SYMBOL(nand_lock);
1085
1086/**
1087 * nand_read_page_raw - [INTERN] read raw page data without ecc
1088 * @mtd: mtd info structure
1089 * @chip: nand chip info structure
1090 * @buf: buffer to store read data
1091 * @oob_required: caller requires OOB data read to chip->oob_poi
1092 * @page: page number to read
1093 *
1094 * Not for syndrome calculating ECC controllers, which use a special oob layout.
1095 */
1096static int nand_read_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
1097                              uint8_t *buf, int oob_required, int page)
1098{
1099        chip->read_buf(mtd, buf, mtd->writesize);
1100        if (oob_required)
1101                chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1102        return 0;
1103}
1104
1105/**
1106 * nand_read_page_raw_syndrome - [INTERN] read raw page data without ecc
1107 * @mtd: mtd info structure
1108 * @chip: nand chip info structure
1109 * @buf: buffer to store read data
1110 * @oob_required: caller requires OOB data read to chip->oob_poi
1111 * @page: page number to read
1112 *
1113 * We need a special oob layout and handling even when OOB isn't used.
1114 */
1115static int nand_read_page_raw_syndrome(struct mtd_info *mtd,
1116                                       struct nand_chip *chip, uint8_t *buf,
1117                                       int oob_required, int page)
1118{
1119        int eccsize = chip->ecc.size;
1120        int eccbytes = chip->ecc.bytes;
1121        uint8_t *oob = chip->oob_poi;
1122        int steps, size;
1123
1124        for (steps = chip->ecc.steps; steps > 0; steps--) {
1125                chip->read_buf(mtd, buf, eccsize);
1126                buf += eccsize;
1127
1128                if (chip->ecc.prepad) {
1129                        chip->read_buf(mtd, oob, chip->ecc.prepad);
1130                        oob += chip->ecc.prepad;
1131                }
1132
1133                chip->read_buf(mtd, oob, eccbytes);
1134                oob += eccbytes;
1135
1136                if (chip->ecc.postpad) {
1137                        chip->read_buf(mtd, oob, chip->ecc.postpad);
1138                        oob += chip->ecc.postpad;
1139                }
1140        }
1141
1142        size = mtd->oobsize - (oob - chip->oob_poi);
1143        if (size)
1144                chip->read_buf(mtd, oob, size);
1145
1146        return 0;
1147}
1148
1149/**
1150 * nand_read_page_swecc - [REPLACEABLE] software ECC based page read function
1151 * @mtd: mtd info structure
1152 * @chip: nand chip info structure
1153 * @buf: buffer to store read data
1154 * @oob_required: caller requires OOB data read to chip->oob_poi
1155 * @page: page number to read
1156 */
1157static int nand_read_page_swecc(struct mtd_info *mtd, struct nand_chip *chip,
1158                                uint8_t *buf, int oob_required, int page)
1159{
1160        int i, eccsize = chip->ecc.size;
1161        int eccbytes = chip->ecc.bytes;
1162        int eccsteps = chip->ecc.steps;
1163        uint8_t *p = buf;
1164        uint8_t *ecc_calc = chip->buffers->ecccalc;
1165        uint8_t *ecc_code = chip->buffers->ecccode;
1166        uint32_t *eccpos = chip->ecc.layout->eccpos;
1167        unsigned int max_bitflips = 0;
1168
1169        chip->ecc.read_page_raw(mtd, chip, buf, 1, page);
1170
1171        for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize)
1172                chip->ecc.calculate(mtd, p, &ecc_calc[i]);
1173
1174        for (i = 0; i < chip->ecc.total; i++)
1175                ecc_code[i] = chip->oob_poi[eccpos[i]];
1176
1177        eccsteps = chip->ecc.steps;
1178        p = buf;
1179
1180        for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1181                int stat;
1182
1183                stat = chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]);
1184                if (stat < 0) {
1185                        mtd->ecc_stats.failed++;
1186                } else {
1187                        mtd->ecc_stats.corrected += stat;
1188                        max_bitflips = max_t(unsigned int, max_bitflips, stat);
1189                }
1190        }
1191        return max_bitflips;
1192}
1193
1194/**
1195 * nand_read_subpage - [REPLACEABLE] ECC based sub-page read function
1196 * @mtd: mtd info structure
1197 * @chip: nand chip info structure
1198 * @data_offs: offset of requested data within the page
1199 * @readlen: data length
1200 * @bufpoi: buffer to store read data
1201 * @page: page number to read
1202 */
1203static int nand_read_subpage(struct mtd_info *mtd, struct nand_chip *chip,
1204                        uint32_t data_offs, uint32_t readlen, uint8_t *bufpoi,
1205                        int page)
1206{
1207        int start_step, end_step, num_steps;
1208        uint32_t *eccpos = chip->ecc.layout->eccpos;
1209        uint8_t *p;
1210        int data_col_addr, i, gaps = 0;
1211        int datafrag_len, eccfrag_len, aligned_len, aligned_pos;
1212        int busw = (chip->options & NAND_BUSWIDTH_16) ? 2 : 1;
1213        int index;
1214        unsigned int max_bitflips = 0;
1215
1216        /* Column address within the page aligned to ECC size (256bytes) */
1217        start_step = data_offs / chip->ecc.size;
1218        end_step = (data_offs + readlen - 1) / chip->ecc.size;
1219        num_steps = end_step - start_step + 1;
1220        index = start_step * chip->ecc.bytes;
1221
1222        /* Data size aligned to ECC ecc.size */
1223        datafrag_len = num_steps * chip->ecc.size;
1224        eccfrag_len = num_steps * chip->ecc.bytes;
1225
1226        data_col_addr = start_step * chip->ecc.size;
1227        /* If we read not a page aligned data */
1228        if (data_col_addr != 0)
1229                chip->cmdfunc(mtd, NAND_CMD_RNDOUT, data_col_addr, -1);
1230
1231        p = bufpoi + data_col_addr;
1232        chip->read_buf(mtd, p, datafrag_len);
1233
1234        /* Calculate ECC */
1235        for (i = 0; i < eccfrag_len ; i += chip->ecc.bytes, p += chip->ecc.size)
1236                chip->ecc.calculate(mtd, p, &chip->buffers->ecccalc[i]);
1237
1238        /*
1239         * The performance is faster if we position offsets according to
1240         * ecc.pos. Let's make sure that there are no gaps in ECC positions.
1241         */
1242        for (i = 0; i < eccfrag_len - 1; i++) {
1243                if (eccpos[i + index] + 1 != eccpos[i + index + 1]) {
1244                        gaps = 1;
1245                        break;
1246                }
1247        }
1248        if (gaps) {
1249                chip->cmdfunc(mtd, NAND_CMD_RNDOUT, mtd->writesize, -1);
1250                chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1251        } else {
1252                /*
1253                 * Send the command to read the particular ECC bytes take care
1254                 * about buswidth alignment in read_buf.
1255                 */
1256                aligned_pos = eccpos[index] & ~(busw - 1);
1257                aligned_len = eccfrag_len;
1258                if (eccpos[index] & (busw - 1))
1259                        aligned_len++;
1260                if (eccpos[index + (num_steps * chip->ecc.bytes)] & (busw - 1))
1261                        aligned_len++;
1262
1263                chip->cmdfunc(mtd, NAND_CMD_RNDOUT,
1264                                        mtd->writesize + aligned_pos, -1);
1265                chip->read_buf(mtd, &chip->oob_poi[aligned_pos], aligned_len);
1266        }
1267
1268        for (i = 0; i < eccfrag_len; i++)
1269                chip->buffers->ecccode[i] = chip->oob_poi[eccpos[i + index]];
1270
1271        p = bufpoi + data_col_addr;
1272        for (i = 0; i < eccfrag_len ; i += chip->ecc.bytes, p += chip->ecc.size) {
1273                int stat;
1274
1275                stat = chip->ecc.correct(mtd, p,
1276                        &chip->buffers->ecccode[i], &chip->buffers->ecccalc[i]);
1277                if (stat < 0) {
1278                        mtd->ecc_stats.failed++;
1279                } else {
1280                        mtd->ecc_stats.corrected += stat;
1281                        max_bitflips = max_t(unsigned int, max_bitflips, stat);
1282                }
1283        }
1284        return max_bitflips;
1285}
1286
1287/**
1288 * nand_read_page_hwecc - [REPLACEABLE] hardware ECC based page read function
1289 * @mtd: mtd info structure
1290 * @chip: nand chip info structure
1291 * @buf: buffer to store read data
1292 * @oob_required: caller requires OOB data read to chip->oob_poi
1293 * @page: page number to read
1294 *
1295 * Not for syndrome calculating ECC controllers which need a special oob layout.
1296 */
1297static int nand_read_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip,
1298                                uint8_t *buf, int oob_required, int page)
1299{
1300        int i, eccsize = chip->ecc.size;
1301        int eccbytes = chip->ecc.bytes;
1302        int eccsteps = chip->ecc.steps;
1303        uint8_t *p = buf;
1304        uint8_t *ecc_calc = chip->buffers->ecccalc;
1305        uint8_t *ecc_code = chip->buffers->ecccode;
1306        uint32_t *eccpos = chip->ecc.layout->eccpos;
1307        unsigned int max_bitflips = 0;
1308
1309        for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1310                chip->ecc.hwctl(mtd, NAND_ECC_READ);
1311                chip->read_buf(mtd, p, eccsize);
1312                chip->ecc.calculate(mtd, p, &ecc_calc[i]);
1313        }
1314        chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1315
1316        for (i = 0; i < chip->ecc.total; i++)
1317                ecc_code[i] = chip->oob_poi[eccpos[i]];
1318
1319        eccsteps = chip->ecc.steps;
1320        p = buf;
1321
1322        for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1323                int stat;
1324
1325                stat = chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]);
1326                if (stat < 0) {
1327                        mtd->ecc_stats.failed++;
1328                } else {
1329                        mtd->ecc_stats.corrected += stat;
1330                        max_bitflips = max_t(unsigned int, max_bitflips, stat);
1331                }
1332        }
1333        return max_bitflips;
1334}
1335
1336/**
1337 * nand_read_page_hwecc_oob_first - [REPLACEABLE] hw ecc, read oob first
1338 * @mtd: mtd info structure
1339 * @chip: nand chip info structure
1340 * @buf: buffer to store read data
1341 * @oob_required: caller requires OOB data read to chip->oob_poi
1342 * @page: page number to read
1343 *
1344 * Hardware ECC for large page chips, require OOB to be read first. For this
1345 * ECC mode, the write_page method is re-used from ECC_HW. These methods
1346 * read/write ECC from the OOB area, unlike the ECC_HW_SYNDROME support with
1347 * multiple ECC steps, follows the "infix ECC" scheme and reads/writes ECC from
1348 * the data area, by overwriting the NAND manufacturer bad block markings.
1349 */
1350static int nand_read_page_hwecc_oob_first(struct mtd_info *mtd,
1351        struct nand_chip *chip, uint8_t *buf, int oob_required, int page)
1352{
1353        int i, eccsize = chip->ecc.size;
1354        int eccbytes = chip->ecc.bytes;
1355        int eccsteps = chip->ecc.steps;
1356        uint8_t *p = buf;
1357        uint8_t *ecc_code = chip->buffers->ecccode;
1358        uint32_t *eccpos = chip->ecc.layout->eccpos;
1359        uint8_t *ecc_calc = chip->buffers->ecccalc;
1360        unsigned int max_bitflips = 0;
1361
1362        /* Read the OOB area first */
1363        chip->cmdfunc(mtd, NAND_CMD_READOOB, 0, page);
1364        chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1365        chip->cmdfunc(mtd, NAND_CMD_READ0, 0, page);
1366
1367        for (i = 0; i < chip->ecc.total; i++)
1368                ecc_code[i] = chip->oob_poi[eccpos[i]];
1369
1370        for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1371                int stat;
1372
1373                chip->ecc.hwctl(mtd, NAND_ECC_READ);
1374                chip->read_buf(mtd, p, eccsize);
1375                chip->ecc.calculate(mtd, p, &ecc_calc[i]);
1376
1377                stat = chip->ecc.correct(mtd, p, &ecc_code[i], NULL);
1378                if (stat < 0) {
1379                        mtd->ecc_stats.failed++;
1380                } else {
1381                        mtd->ecc_stats.corrected += stat;
1382                        max_bitflips = max_t(unsigned int, max_bitflips, stat);
1383                }
1384        }
1385        return max_bitflips;
1386}
1387
1388/**
1389 * nand_read_page_syndrome - [REPLACEABLE] hardware ECC syndrome based page read
1390 * @mtd: mtd info structure
1391 * @chip: nand chip info structure
1392 * @buf: buffer to store read data
1393 * @oob_required: caller requires OOB data read to chip->oob_poi
1394 * @page: page number to read
1395 *
1396 * The hw generator calculates the error syndrome automatically. Therefore we
1397 * need a special oob layout and handling.
1398 */
1399static int nand_read_page_syndrome(struct mtd_info *mtd, struct nand_chip *chip,
1400                                   uint8_t *buf, int oob_required, int page)
1401{
1402        int i, eccsize = chip->ecc.size;
1403        int eccbytes = chip->ecc.bytes;
1404        int eccsteps = chip->ecc.steps;
1405        uint8_t *p = buf;
1406        uint8_t *oob = chip->oob_poi;
1407        unsigned int max_bitflips = 0;
1408
1409        for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1410                int stat;
1411
1412                chip->ecc.hwctl(mtd, NAND_ECC_READ);
1413                chip->read_buf(mtd, p, eccsize);
1414
1415                if (chip->ecc.prepad) {
1416                        chip->read_buf(mtd, oob, chip->ecc.prepad);
1417                        oob += chip->ecc.prepad;
1418                }
1419
1420                chip->ecc.hwctl(mtd, NAND_ECC_READSYN);
1421                chip->read_buf(mtd, oob, eccbytes);
1422                stat = chip->ecc.correct(mtd, p, oob, NULL);
1423
1424                if (stat < 0) {
1425                        mtd->ecc_stats.failed++;
1426                } else {
1427                        mtd->ecc_stats.corrected += stat;
1428                        max_bitflips = max_t(unsigned int, max_bitflips, stat);
1429                }
1430
1431                oob += eccbytes;
1432
1433                if (chip->ecc.postpad) {
1434                        chip->read_buf(mtd, oob, chip->ecc.postpad);
1435                        oob += chip->ecc.postpad;
1436                }
1437        }
1438
1439        /* Calculate remaining oob bytes */
1440        i = mtd->oobsize - (oob - chip->oob_poi);
1441        if (i)
1442                chip->read_buf(mtd, oob, i);
1443
1444        return max_bitflips;
1445}
1446
1447/**
1448 * nand_transfer_oob - [INTERN] Transfer oob to client buffer
1449 * @chip: nand chip structure
1450 * @oob: oob destination address
1451 * @ops: oob ops structure
1452 * @len: size of oob to transfer
1453 */
1454static uint8_t *nand_transfer_oob(struct nand_chip *chip, uint8_t *oob,
1455                                  struct mtd_oob_ops *ops, size_t len)
1456{
1457        switch (ops->mode) {
1458
1459        case MTD_OPS_PLACE_OOB:
1460        case MTD_OPS_RAW:
1461                memcpy(oob, chip->oob_poi + ops->ooboffs, len);
1462                return oob + len;
1463
1464        case MTD_OPS_AUTO_OOB: {
1465                struct nand_oobfree *free = chip->ecc.layout->oobfree;
1466                uint32_t boffs = 0, roffs = ops->ooboffs;
1467                size_t bytes = 0;
1468
1469                for (; free->length && len; free++, len -= bytes) {
1470                        /* Read request not from offset 0? */
1471                        if (unlikely(roffs)) {
1472                                if (roffs >= free->length) {
1473                                        roffs -= free->length;
1474                                        continue;
1475                                }
1476                                boffs = free->offset + roffs;
1477                                bytes = min_t(size_t, len,
1478                                              (free->length - roffs));
1479                                roffs = 0;
1480                        } else {
1481                                bytes = min_t(size_t, len, free->length);
1482                                boffs = free->offset;
1483                        }
1484                        memcpy(oob, chip->oob_poi + boffs, bytes);
1485                        oob += bytes;
1486                }
1487                return oob;
1488        }
1489        default:
1490                BUG();
1491        }
1492        return NULL;
1493}
1494
1495/**
1496 * nand_setup_read_retry - [INTERN] Set the READ RETRY mode
1497 * @mtd: MTD device structure
1498 * @retry_mode: the retry mode to use
1499 *
1500 * Some vendors supply a special command to shift the Vt threshold, to be used
1501 * when there are too many bitflips in a page (i.e., ECC error). After setting
1502 * a new threshold, the host should retry reading the page.
1503 */
1504static int nand_setup_read_retry(struct mtd_info *mtd, int retry_mode)
1505{
1506        struct nand_chip *chip = mtd->priv;
1507
1508        pr_debug("setting READ RETRY mode %d\n", retry_mode);
1509
1510        if (retry_mode >= chip->read_retries)
1511                return -EINVAL;
1512
1513        if (!chip->setup_read_retry)
1514                return -EOPNOTSUPP;
1515
1516        return chip->setup_read_retry(mtd, retry_mode);
1517}
1518
1519/**
1520 * nand_do_read_ops - [INTERN] Read data with ECC
1521 * @mtd: MTD device structure
1522 * @from: offset to read from
1523 * @ops: oob ops structure
1524 *
1525 * Internal function. Called with chip held.
1526 */
1527static int nand_do_read_ops(struct mtd_info *mtd, loff_t from,
1528                            struct mtd_oob_ops *ops)
1529{
1530        int chipnr, page, realpage, col, bytes, aligned, oob_required;
1531        struct nand_chip *chip = mtd->priv;
1532        int ret = 0;
1533        uint32_t readlen = ops->len;
1534        uint32_t oobreadlen = ops->ooblen;
1535        uint32_t max_oobsize = ops->mode == MTD_OPS_AUTO_OOB ?
1536                mtd->oobavail : mtd->oobsize;
1537
1538        uint8_t *bufpoi, *oob, *buf;
1539        int use_bufpoi;
1540        unsigned int max_bitflips = 0;
1541        int retry_mode = 0;
1542        bool ecc_fail = false;
1543
1544        chipnr = (int)(from >> chip->chip_shift);
1545        chip->select_chip(mtd, chipnr);
1546
1547        realpage = (int)(from >> chip->page_shift);
1548        page = realpage & chip->pagemask;
1549
1550        col = (int)(from & (mtd->writesize - 1));
1551
1552        buf = ops->datbuf;
1553        oob = ops->oobbuf;
1554        oob_required = oob ? 1 : 0;
1555
1556        while (1) {
1557                unsigned int ecc_failures = mtd->ecc_stats.failed;
1558
1559                bytes = min(mtd->writesize - col, readlen);
1560                aligned = (bytes == mtd->writesize);
1561
1562                if (!aligned)
1563                        use_bufpoi = 1;
1564                else if (chip->options & NAND_USE_BOUNCE_BUFFER)
1565                        use_bufpoi = !virt_addr_valid(buf);
1566                else
1567                        use_bufpoi = 0;
1568
1569                /* Is the current page in the buffer? */
1570                if (realpage != chip->pagebuf || oob) {
1571                        bufpoi = use_bufpoi ? chip->buffers->databuf : buf;
1572
1573                        if (use_bufpoi && aligned)
1574                                pr_debug("%s: using read bounce buffer for buf@%p\n",
1575                                                 __func__, buf);
1576
1577read_retry:
1578                        chip->cmdfunc(mtd, NAND_CMD_READ0, 0x00, page);
1579
1580                        /*
1581                         * Now read the page into the buffer.  Absent an error,
1582                         * the read methods return max bitflips per ecc step.
1583                         */
1584                        if (unlikely(ops->mode == MTD_OPS_RAW))
1585                                ret = chip->ecc.read_page_raw(mtd, chip, bufpoi,
1586                                                              oob_required,
1587                                                              page);
1588                        else if (!aligned && NAND_HAS_SUBPAGE_READ(chip) &&
1589                                 !oob)
1590                                ret = chip->ecc.read_subpage(mtd, chip,
1591                                                        col, bytes, bufpoi,
1592                                                        page);
1593                        else
1594                                ret = chip->ecc.read_page(mtd, chip, bufpoi,
1595                                                          oob_required, page);
1596                        if (ret < 0) {
1597                                if (use_bufpoi)
1598                                        /* Invalidate page cache */
1599                                        chip->pagebuf = -1;
1600                                break;
1601                        }
1602
1603                        max_bitflips = max_t(unsigned int, max_bitflips, ret);
1604
1605                        /* Transfer not aligned data */
1606                        if (use_bufpoi) {
1607                                if (!NAND_HAS_SUBPAGE_READ(chip) && !oob &&
1608                                    !(mtd->ecc_stats.failed - ecc_failures) &&
1609                                    (ops->mode != MTD_OPS_RAW)) {
1610                                        chip->pagebuf = realpage;
1611                                        chip->pagebuf_bitflips = ret;
1612                                } else {
1613                                        /* Invalidate page cache */
1614                                        chip->pagebuf = -1;
1615                                }
1616                                memcpy(buf, chip->buffers->databuf + col, bytes);
1617                        }
1618
1619                        if (unlikely(oob)) {
1620                                int toread = min(oobreadlen, max_oobsize);
1621
1622                                if (toread) {
1623                                        oob = nand_transfer_oob(chip,
1624                                                oob, ops, toread);
1625                                        oobreadlen -= toread;
1626                                }
1627                        }
1628
1629                        if (chip->options & NAND_NEED_READRDY) {
1630                                /* Apply delay or wait for ready/busy pin */
1631                                if (!chip->dev_ready)
1632                                        udelay(chip->chip_delay);
1633                                else
1634                                        nand_wait_ready(mtd);
1635                        }
1636
1637                        if (mtd->ecc_stats.failed - ecc_failures) {
1638                                if (retry_mode + 1 < chip->read_retries) {
1639                                        retry_mode++;
1640                                        ret = nand_setup_read_retry(mtd,
1641                                                        retry_mode);
1642                                        if (ret < 0)
1643                                                break;
1644
1645                                        /* Reset failures; retry */
1646                                        mtd->ecc_stats.failed = ecc_failures;
1647                                        goto read_retry;
1648                                } else {
1649                                        /* No more retry modes; real failure */
1650                                        ecc_fail = true;
1651                                }
1652                        }
1653
1654                        buf += bytes;
1655                } else {
1656                        memcpy(buf, chip->buffers->databuf + col, bytes);
1657                        buf += bytes;
1658                        max_bitflips = max_t(unsigned int, max_bitflips,
1659                                             chip->pagebuf_bitflips);
1660                }
1661
1662                readlen -= bytes;
1663
1664                /* Reset to retry mode 0 */
1665                if (retry_mode) {
1666                        ret = nand_setup_read_retry(mtd, 0);
1667                        if (ret < 0)
1668                                break;
1669                        retry_mode = 0;
1670                }
1671
1672                if (!readlen)
1673                        break;
1674
1675                /* For subsequent reads align to page boundary */
1676                col = 0;
1677                /* Increment page address */
1678                realpage++;
1679
1680                page = realpage & chip->pagemask;
1681                /* Check, if we cross a chip boundary */
1682                if (!page) {
1683                        chipnr++;
1684                        chip->select_chip(mtd, -1);
1685                        chip->select_chip(mtd, chipnr);
1686                }
1687        }
1688        chip->select_chip(mtd, -1);
1689
1690        ops->retlen = ops->len - (size_t) readlen;
1691        if (oob)
1692                ops->oobretlen = ops->ooblen - oobreadlen;
1693
1694        if (ret < 0)
1695                return ret;
1696
1697        if (ecc_fail)
1698                return -EBADMSG;
1699
1700        return max_bitflips;
1701}
1702
1703/**
1704 * nand_read - [MTD Interface] MTD compatibility function for nand_do_read_ecc
1705 * @mtd: MTD device structure
1706 * @from: offset to read from
1707 * @len: number of bytes to read
1708 * @retlen: pointer to variable to store the number of read bytes
1709 * @buf: the databuffer to put data
1710 *
1711 * Get hold of the chip and call nand_do_read.
1712 */
1713static int nand_read(struct mtd_info *mtd, loff_t from, size_t len,
1714                     size_t *retlen, uint8_t *buf)
1715{
1716        struct mtd_oob_ops ops;
1717        int ret;
1718
1719        nand_get_device(mtd, FL_READING);
1720        ops.len = len;
1721        ops.datbuf = buf;
1722        ops.oobbuf = NULL;
1723        ops.mode = MTD_OPS_PLACE_OOB;
1724        ret = nand_do_read_ops(mtd, from, &ops);
1725        *retlen = ops.retlen;
1726        nand_release_device(mtd);
1727        return ret;
1728}
1729
1730/**
1731 * nand_read_oob_std - [REPLACEABLE] the most common OOB data read function
1732 * @mtd: mtd info structure
1733 * @chip: nand chip info structure
1734 * @page: page number to read
1735 */
1736static int nand_read_oob_std(struct mtd_info *mtd, struct nand_chip *chip,
1737                             int page)
1738{
1739        chip->cmdfunc(mtd, NAND_CMD_READOOB, 0, page);
1740        chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1741        return 0;
1742}
1743
1744/**
1745 * nand_read_oob_syndrome - [REPLACEABLE] OOB data read function for HW ECC
1746 *                          with syndromes
1747 * @mtd: mtd info structure
1748 * @chip: nand chip info structure
1749 * @page: page number to read
1750 */
1751static int nand_read_oob_syndrome(struct mtd_info *mtd, struct nand_chip *chip,
1752                                  int page)
1753{
1754        uint8_t *buf = chip->oob_poi;
1755        int length = mtd->oobsize;
1756        int chunk = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad;
1757        int eccsize = chip->ecc.size;
1758        uint8_t *bufpoi = buf;
1759        int i, toread, sndrnd = 0, pos;
1760
1761        chip->cmdfunc(mtd, NAND_CMD_READ0, chip->ecc.size, page);
1762        for (i = 0; i < chip->ecc.steps; i++) {
1763                if (sndrnd) {
1764                        pos = eccsize + i * (eccsize + chunk);
1765                        if (mtd->writesize > 512)
1766                                chip->cmdfunc(mtd, NAND_CMD_RNDOUT, pos, -1);
1767                        else
1768                                chip->cmdfunc(mtd, NAND_CMD_READ0, pos, page);
1769                } else
1770                        sndrnd = 1;
1771                toread = min_t(int, length, chunk);
1772                chip->read_buf(mtd, bufpoi, toread);
1773                bufpoi += toread;
1774                length -= toread;
1775        }
1776        if (length > 0)
1777                chip->read_buf(mtd, bufpoi, length);
1778
1779        return 0;
1780}
1781
1782/**
1783 * nand_write_oob_std - [REPLACEABLE] the most common OOB data write function
1784 * @mtd: mtd info structure
1785 * @chip: nand chip info structure
1786 * @page: page number to write
1787 */
1788static int nand_write_oob_std(struct mtd_info *mtd, struct nand_chip *chip,
1789                              int page)
1790{
1791        int status = 0;
1792        const uint8_t *buf = chip->oob_poi;
1793        int length = mtd->oobsize;
1794
1795        chip->cmdfunc(mtd, NAND_CMD_SEQIN, mtd->writesize, page);
1796        chip->write_buf(mtd, buf, length);
1797        /* Send command to program the OOB data */
1798        chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
1799
1800        status = chip->waitfunc(mtd, chip);
1801
1802        return status & NAND_STATUS_FAIL ? -EIO : 0;
1803}
1804
1805/**
1806 * nand_write_oob_syndrome - [REPLACEABLE] OOB data write function for HW ECC
1807 *                           with syndrome - only for large page flash
1808 * @mtd: mtd info structure
1809 * @chip: nand chip info structure
1810 * @page: page number to write
1811 */
1812static int nand_write_oob_syndrome(struct mtd_info *mtd,
1813                                   struct nand_chip *chip, int page)
1814{
1815        int chunk = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad;
1816        int eccsize = chip->ecc.size, length = mtd->oobsize;
1817        int i, len, pos, status = 0, sndcmd = 0, steps = chip->ecc.steps;
1818        const uint8_t *bufpoi = chip->oob_poi;
1819
1820        /*
1821         * data-ecc-data-ecc ... ecc-oob
1822         * or
1823         * data-pad-ecc-pad-data-pad .... ecc-pad-oob
1824         */
1825        if (!chip->ecc.prepad && !chip->ecc.postpad) {
1826                pos = steps * (eccsize + chunk);
1827                steps = 0;
1828        } else
1829                pos = eccsize;
1830
1831        chip->cmdfunc(mtd, NAND_CMD_SEQIN, pos, page);
1832        for (i = 0; i < steps; i++) {
1833                if (sndcmd) {
1834                        if (mtd->writesize <= 512) {
1835                                uint32_t fill = 0xFFFFFFFF;
1836
1837                                len = eccsize;
1838                                while (len > 0) {
1839                                        int num = min_t(int, len, 4);
1840                                        chip->write_buf(mtd, (uint8_t *)&fill,
1841                                                        num);
1842                                        len -= num;
1843                                }
1844                        } else {
1845                                pos = eccsize + i * (eccsize + chunk);
1846                                chip->cmdfunc(mtd, NAND_CMD_RNDIN, pos, -1);
1847                        }
1848                } else
1849                        sndcmd = 1;
1850                len = min_t(int, length, chunk);
1851                chip->write_buf(mtd, bufpoi, len);
1852                bufpoi += len;
1853                length -= len;
1854        }
1855        if (length > 0)
1856                chip->write_buf(mtd, bufpoi, length);
1857
1858        chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
1859        status = chip->waitfunc(mtd, chip);
1860
1861        return status & NAND_STATUS_FAIL ? -EIO : 0;
1862}
1863
1864/**
1865 * nand_do_read_oob - [INTERN] NAND read out-of-band
1866 * @mtd: MTD device structure
1867 * @from: offset to read from
1868 * @ops: oob operations description structure
1869 *
1870 * NAND read out-of-band data from the spare area.
1871 */
1872static int nand_do_read_oob(struct mtd_info *mtd, loff_t from,
1873                            struct mtd_oob_ops *ops)
1874{
1875        int page, realpage, chipnr;
1876        struct nand_chip *chip = mtd->priv;
1877        struct mtd_ecc_stats stats;
1878        int readlen = ops->ooblen;
1879        int len;
1880        uint8_t *buf = ops->oobbuf;
1881        int ret = 0;
1882
1883        pr_debug("%s: from = 0x%08Lx, len = %i\n",
1884                        __func__, (unsigned long long)from, readlen);
1885
1886        stats = mtd->ecc_stats;
1887
1888        if (ops->mode == MTD_OPS_AUTO_OOB)
1889                len = chip->ecc.layout->oobavail;
1890        else
1891                len = mtd->oobsize;
1892
1893        if (unlikely(ops->ooboffs >= len)) {
1894                pr_debug("%s: attempt to start read outside oob\n",
1895                                __func__);
1896                return -EINVAL;
1897        }
1898
1899        /* Do not allow reads past end of device */
1900        if (unlikely(from >= mtd->size ||
1901                     ops->ooboffs + readlen > ((mtd->size >> chip->page_shift) -
1902                                        (from >> chip->page_shift)) * len)) {
1903                pr_debug("%s: attempt to read beyond end of device\n",
1904                                __func__);
1905                return -EINVAL;
1906        }
1907
1908        chipnr = (int)(from >> chip->chip_shift);
1909        chip->select_chip(mtd, chipnr);
1910
1911        /* Shift to get page */
1912        realpage = (int)(from >> chip->page_shift);
1913        page = realpage & chip->pagemask;
1914
1915        while (1) {
1916                if (ops->mode == MTD_OPS_RAW)
1917                        ret = chip->ecc.read_oob_raw(mtd, chip, page);
1918                else
1919                        ret = chip->ecc.read_oob(mtd, chip, page);
1920
1921                if (ret < 0)
1922                        break;
1923
1924                len = min(len, readlen);
1925                buf = nand_transfer_oob(chip, buf, ops, len);
1926
1927                if (chip->options & NAND_NEED_READRDY) {
1928                        /* Apply delay or wait for ready/busy pin */
1929                        if (!chip->dev_ready)
1930                                udelay(chip->chip_delay);
1931                        else
1932                                nand_wait_ready(mtd);
1933                }
1934
1935                readlen -= len;
1936                if (!readlen)
1937                        break;
1938
1939                /* Increment page address */
1940                realpage++;
1941
1942                page = realpage & chip->pagemask;
1943                /* Check, if we cross a chip boundary */
1944                if (!page) {
1945                        chipnr++;
1946                        chip->select_chip(mtd, -1);
1947                        chip->select_chip(mtd, chipnr);
1948                }
1949        }
1950        chip->select_chip(mtd, -1);
1951
1952        ops->oobretlen = ops->ooblen - readlen;
1953
1954        if (ret < 0)
1955                return ret;
1956
1957        if (mtd->ecc_stats.failed - stats.failed)
1958                return -EBADMSG;
1959
1960        return  mtd->ecc_stats.corrected - stats.corrected ? -EUCLEAN : 0;
1961}
1962
1963/**
1964 * nand_read_oob - [MTD Interface] NAND read data and/or out-of-band
1965 * @mtd: MTD device structure
1966 * @from: offset to read from
1967 * @ops: oob operation description structure
1968 *
1969 * NAND read data and/or out-of-band data.
1970 */
1971static int nand_read_oob(struct mtd_info *mtd, loff_t from,
1972                         struct mtd_oob_ops *ops)
1973{
1974        int ret = -ENOTSUPP;
1975
1976        ops->retlen = 0;
1977
1978        /* Do not allow reads past end of device */
1979        if (ops->datbuf && (from + ops->len) > mtd->size) {
1980                pr_debug("%s: attempt to read beyond end of device\n",
1981                                __func__);
1982                return -EINVAL;
1983        }
1984
1985        nand_get_device(mtd, FL_READING);
1986
1987        switch (ops->mode) {
1988        case MTD_OPS_PLACE_OOB:
1989        case MTD_OPS_AUTO_OOB:
1990        case MTD_OPS_RAW:
1991                break;
1992
1993        default:
1994                goto out;
1995        }
1996
1997        if (!ops->datbuf)
1998                ret = nand_do_read_oob(mtd, from, ops);
1999        else
2000                ret = nand_do_read_ops(mtd, from, ops);
2001
2002out:
2003        nand_release_device(mtd);
2004        return ret;
2005}
2006
2007
2008/**
2009 * nand_write_page_raw - [INTERN] raw page write function
2010 * @mtd: mtd info structure
2011 * @chip: nand chip info structure
2012 * @buf: data buffer
2013 * @oob_required: must write chip->oob_poi to OOB
2014 *
2015 * Not for syndrome calculating ECC controllers, which use a special oob layout.
2016 */
2017static int nand_write_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
2018                                const uint8_t *buf, int oob_required)
2019{
2020        chip->write_buf(mtd, buf, mtd->writesize);
2021        if (oob_required)
2022                chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
2023
2024        return 0;
2025}
2026
2027/**
2028 * nand_write_page_raw_syndrome - [INTERN] raw page write function
2029 * @mtd: mtd info structure
2030 * @chip: nand chip info structure
2031 * @buf: data buffer
2032 * @oob_required: must write chip->oob_poi to OOB
2033 *
2034 * We need a special oob layout and handling even when ECC isn't checked.
2035 */
2036static int nand_write_page_raw_syndrome(struct mtd_info *mtd,
2037                                        struct nand_chip *chip,
2038                                        const uint8_t *buf, int oob_required)
2039{
2040        int eccsize = chip->ecc.size;
2041        int eccbytes = chip->ecc.bytes;
2042        uint8_t *oob = chip->oob_poi;
2043        int steps, size;
2044
2045        for (steps = chip->ecc.steps; steps > 0; steps--) {
2046                chip->write_buf(mtd, buf, eccsize);
2047                buf += eccsize;
2048
2049                if (chip->ecc.prepad) {
2050                        chip->write_buf(mtd, oob, chip->ecc.prepad);
2051                        oob += chip->ecc.prepad;
2052                }
2053
2054                chip->write_buf(mtd, oob, eccbytes);
2055                oob += eccbytes;
2056
2057                if (chip->ecc.postpad) {
2058                        chip->write_buf(mtd, oob, chip->ecc.postpad);
2059                        oob += chip->ecc.postpad;
2060                }
2061        }
2062
2063        size = mtd->oobsize - (oob - chip->oob_poi);
2064        if (size)
2065                chip->write_buf(mtd, oob, size);
2066
2067        return 0;
2068}
2069/**
2070 * nand_write_page_swecc - [REPLACEABLE] software ECC based page write function
2071 * @mtd: mtd info structure
2072 * @chip: nand chip info structure
2073 * @buf: data buffer
2074 * @oob_required: must write chip->oob_poi to OOB
2075 */
2076static int nand_write_page_swecc(struct mtd_info *mtd, struct nand_chip *chip,
2077                                  const uint8_t *buf, int oob_required)
2078{
2079        int i, eccsize = chip->ecc.size;
2080        int eccbytes = chip->ecc.bytes;
2081        int eccsteps = chip->ecc.steps;
2082        uint8_t *ecc_calc = chip->buffers->ecccalc;
2083        const uint8_t *p = buf;
2084        uint32_t *eccpos = chip->ecc.layout->eccpos;
2085
2086        /* Software ECC calculation */
2087        for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize)
2088                chip->ecc.calculate(mtd, p, &ecc_calc[i]);
2089
2090        for (i = 0; i < chip->ecc.total; i++)
2091                chip->oob_poi[eccpos[i]] = ecc_calc[i];
2092
2093        return chip->ecc.write_page_raw(mtd, chip, buf, 1);
2094}
2095
2096/**
2097 * nand_write_page_hwecc - [REPLACEABLE] hardware ECC based page write function
2098 * @mtd: mtd info structure
2099 * @chip: nand chip info structure
2100 * @buf: data buffer
2101 * @oob_required: must write chip->oob_poi to OOB
2102 */
2103static int nand_write_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip,
2104                                  const uint8_t *buf, int oob_required)
2105{
2106        int i, eccsize = chip->ecc.size;
2107        int eccbytes = chip->ecc.bytes;
2108        int eccsteps = chip->ecc.steps;
2109        uint8_t *ecc_calc = chip->buffers->ecccalc;
2110        const uint8_t *p = buf;
2111        uint32_t *eccpos = chip->ecc.layout->eccpos;
2112
2113        for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
2114                chip->ecc.hwctl(mtd, NAND_ECC_WRITE);
2115                chip->write_buf(mtd, p, eccsize);
2116                chip->ecc.calculate(mtd, p, &ecc_calc[i]);
2117        }
2118
2119        for (i = 0; i < chip->ecc.total; i++)
2120                chip->oob_poi[eccpos[i]] = ecc_calc[i];
2121
2122        chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
2123
2124        return 0;
2125}
2126
2127
2128/**
2129 * nand_write_subpage_hwecc - [REPLACABLE] hardware ECC based subpage write
2130 * @mtd:        mtd info structure
2131 * @chip:       nand chip info structure
2132 * @offset:     column address of subpage within the page
2133 * @data_len:   data length
2134 * @buf:        data buffer
2135 * @oob_required: must write chip->oob_poi to OOB
2136 */
2137static int nand_write_subpage_hwecc(struct mtd_info *mtd,
2138                                struct nand_chip *chip, uint32_t offset,
2139                                uint32_t data_len, const uint8_t *buf,
2140                                int oob_required)
2141{
2142        uint8_t *oob_buf  = chip->oob_poi;
2143        uint8_t *ecc_calc = chip->buffers->ecccalc;
2144        int ecc_size      = chip->ecc.size;
2145        int ecc_bytes     = chip->ecc.bytes;
2146        int ecc_steps     = chip->ecc.steps;
2147        uint32_t *eccpos  = chip->ecc.layout->eccpos;
2148        uint32_t start_step = offset / ecc_size;
2149        uint32_t end_step   = (offset + data_len - 1) / ecc_size;
2150        int oob_bytes       = mtd->oobsize / ecc_steps;
2151        int step, i;
2152
2153        for (step = 0; step < ecc_steps; step++) {
2154                /* configure controller for WRITE access */
2155                chip->ecc.hwctl(mtd, NAND_ECC_WRITE);
2156
2157                /* write data (untouched subpages already masked by 0xFF) */
2158                chip->write_buf(mtd, buf, ecc_size);
2159
2160                /* mask ECC of un-touched subpages by padding 0xFF */
2161                if ((step < start_step) || (step > end_step))
2162                        memset(ecc_calc, 0xff, ecc_bytes);
2163                else
2164                        chip->ecc.calculate(mtd, buf, ecc_calc);
2165
2166                /* mask OOB of un-touched subpages by padding 0xFF */
2167                /* if oob_required, preserve OOB metadata of written subpage */
2168                if (!oob_required || (step < start_step) || (step > end_step))
2169                        memset(oob_buf, 0xff, oob_bytes);
2170
2171                buf += ecc_size;
2172                ecc_calc += ecc_bytes;
2173                oob_buf  += oob_bytes;
2174        }
2175
2176        /* copy calculated ECC for whole page to chip->buffer->oob */
2177        /* this include masked-value(0xFF) for unwritten subpages */
2178        ecc_calc = chip->buffers->ecccalc;
2179        for (i = 0; i < chip->ecc.total; i++)
2180                chip->oob_poi[eccpos[i]] = ecc_calc[i];
2181
2182        /* write OOB buffer to NAND device */
2183        chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
2184
2185        return 0;
2186}
2187
2188
2189/**
2190 * nand_write_page_syndrome - [REPLACEABLE] hardware ECC syndrome based page write
2191 * @mtd: mtd info structure
2192 * @chip: nand chip info structure
2193 * @buf: data buffer
2194 * @oob_required: must write chip->oob_poi to OOB
2195 *
2196 * The hw generator calculates the error syndrome automatically. Therefore we
2197 * need a special oob layout and handling.
2198 */
2199static int nand_write_page_syndrome(struct mtd_info *mtd,
2200                                    struct nand_chip *chip,
2201                                    const uint8_t *buf, int oob_required)
2202{
2203        int i, eccsize = chip->ecc.size;
2204        int eccbytes = chip->ecc.bytes;
2205        int eccsteps = chip->ecc.steps;
2206        const uint8_t *p = buf;
2207        uint8_t *oob = chip->oob_poi;
2208
2209        for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
2210
2211                chip->ecc.hwctl(mtd, NAND_ECC_WRITE);
2212                chip->write_buf(mtd, p, eccsize);
2213
2214                if (chip->ecc.prepad) {
2215                        chip->write_buf(mtd, oob, chip->ecc.prepad);
2216                        oob += chip->ecc.prepad;
2217                }
2218
2219                chip->ecc.calculate(mtd, p, oob);
2220                chip->write_buf(mtd, oob, eccbytes);
2221                oob += eccbytes;
2222
2223                if (chip->ecc.postpad) {
2224                        chip->write_buf(mtd, oob, chip->ecc.postpad);
2225                        oob += chip->ecc.postpad;
2226                }
2227        }
2228
2229        /* Calculate remaining oob bytes */
2230        i = mtd->oobsize - (oob - chip->oob_poi);
2231        if (i)
2232                chip->write_buf(mtd, oob, i);
2233
2234        return 0;
2235}
2236
2237/**
2238 * nand_write_page - [REPLACEABLE] write one page
2239 * @mtd: MTD device structure
2240 * @chip: NAND chip descriptor
2241 * @offset: address offset within the page
2242 * @data_len: length of actual data to be written
2243 * @buf: the data to write
2244 * @oob_required: must write chip->oob_poi to OOB
2245 * @page: page number to write
2246 * @cached: cached programming
2247 * @raw: use _raw version of write_page
2248 */
2249static int nand_write_page(struct mtd_info *mtd, struct nand_chip *chip,
2250                uint32_t offset, int data_len, const uint8_t *buf,
2251                int oob_required, int page, int cached, int raw)
2252{
2253        int status, subpage;
2254
2255        if (!(chip->options & NAND_NO_SUBPAGE_WRITE) &&
2256                chip->ecc.write_subpage)
2257                subpage = offset || (data_len < mtd->writesize);
2258        else
2259                subpage = 0;
2260
2261        chip->cmdfunc(mtd, NAND_CMD_SEQIN, 0x00, page);
2262
2263        if (unlikely(raw))
2264                status = chip->ecc.write_page_raw(mtd, chip, buf,
2265                                                        oob_required);
2266        else if (subpage)
2267                status = chip->ecc.write_subpage(mtd, chip, offset, data_len,
2268                                                         buf, oob_required);
2269        else
2270                status = chip->ecc.write_page(mtd, chip, buf, oob_required);
2271
2272        if (status < 0)
2273                return status;
2274
2275        /*
2276         * Cached progamming disabled for now. Not sure if it's worth the
2277         * trouble. The speed gain is not very impressive. (2.3->2.6Mib/s).
2278         */
2279        cached = 0;
2280
2281        if (!cached || !NAND_HAS_CACHEPROG(chip)) {
2282
2283                chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
2284                status = chip->waitfunc(mtd, chip);
2285                /*
2286                 * See if operation failed and additional status checks are
2287                 * available.
2288                 */
2289                if ((status & NAND_STATUS_FAIL) && (chip->errstat))
2290                        status = chip->errstat(mtd, chip, FL_WRITING, status,
2291                                               page);
2292
2293                if (status & NAND_STATUS_FAIL)
2294                        return -EIO;
2295        } else {
2296                chip->cmdfunc(mtd, NAND_CMD_CACHEDPROG, -1, -1);
2297                status = chip->waitfunc(mtd, chip);
2298        }
2299
2300        return 0;
2301}
2302
2303/**
2304 * nand_fill_oob - [INTERN] Transfer client buffer to oob
2305 * @mtd: MTD device structure
2306 * @oob: oob data buffer
2307 * @len: oob data write length
2308 * @ops: oob ops structure
2309 */
2310static uint8_t *nand_fill_oob(struct mtd_info *mtd, uint8_t *oob, size_t len,
2311                              struct mtd_oob_ops *ops)
2312{
2313        struct nand_chip *chip = mtd->priv;
2314
2315        /*
2316         * Initialise to all 0xFF, to avoid the possibility of left over OOB
2317         * data from a previous OOB read.
2318         */
2319        memset(chip->oob_poi, 0xff, mtd->oobsize);
2320
2321        switch (ops->mode) {
2322
2323        case MTD_OPS_PLACE_OOB:
2324        case MTD_OPS_RAW:
2325                memcpy(chip->oob_poi + ops->ooboffs, oob, len);
2326                return oob + len;
2327
2328        case MTD_OPS_AUTO_OOB: {
2329                struct nand_oobfree *free = chip->ecc.layout->oobfree;
2330                uint32_t boffs = 0, woffs = ops->ooboffs;
2331                size_t bytes = 0;
2332
2333                for (; free->length && len; free++, len -= bytes) {
2334                        /* Write request not from offset 0? */
2335                        if (unlikely(woffs)) {
2336                                if (woffs >= free->length) {
2337                                        woffs -= free->length;
2338                                        continue;
2339                                }
2340                                boffs = free->offset + woffs;
2341                                bytes = min_t(size_t, len,
2342                                              (free->length - woffs));
2343                                woffs = 0;
2344                        } else {
2345                                bytes = min_t(size_t, len, free->length);
2346                                boffs = free->offset;
2347                        }
2348                        memcpy(chip->oob_poi + boffs, oob, bytes);
2349                        oob += bytes;
2350                }
2351                return oob;
2352        }
2353        default:
2354                BUG();
2355        }
2356        return NULL;
2357}
2358
2359#define NOTALIGNED(x)   ((x & (chip->subpagesize - 1)) != 0)
2360
2361/**
2362 * nand_do_write_ops - [INTERN] NAND write with ECC
2363 * @mtd: MTD device structure
2364 * @to: offset to write to
2365 * @ops: oob operations description structure
2366 *
2367 * NAND write with ECC.
2368 */
2369static int nand_do_write_ops(struct mtd_info *mtd, loff_t to,
2370                             struct mtd_oob_ops *ops)
2371{
2372        int chipnr, realpage, page, blockmask, column;
2373        struct nand_chip *chip = mtd->priv;
2374        uint32_t writelen = ops->len;
2375
2376        uint32_t oobwritelen = ops->ooblen;
2377        uint32_t oobmaxlen = ops->mode == MTD_OPS_AUTO_OOB ?
2378                                mtd->oobavail : mtd->oobsize;
2379
2380        uint8_t *oob = ops->oobbuf;
2381        uint8_t *buf = ops->datbuf;
2382        int ret;
2383        int oob_required = oob ? 1 : 0;
2384
2385        ops->retlen = 0;
2386        if (!writelen)
2387                return 0;
2388
2389        /* Reject writes, which are not page aligned */
2390        if (NOTALIGNED(to) || NOTALIGNED(ops->len)) {
2391                pr_notice("%s: attempt to write non page aligned data\n",
2392                           __func__);
2393                return -EINVAL;
2394        }
2395
2396        column = to & (mtd->writesize - 1);
2397
2398        chipnr = (int)(to >> chip->chip_shift);
2399        chip->select_chip(mtd, chipnr);
2400
2401        /* Check, if it is write protected */
2402        if (nand_check_wp(mtd)) {
2403                ret = -EIO;
2404                goto err_out;
2405        }
2406
2407        realpage = (int)(to >> chip->page_shift);
2408        page = realpage & chip->pagemask;
2409        blockmask = (1 << (chip->phys_erase_shift - chip->page_shift)) - 1;
2410
2411        /* Invalidate the page cache, when we write to the cached page */
2412        if (to <= ((loff_t)chip->pagebuf << chip->page_shift) &&
2413            ((loff_t)chip->pagebuf << chip->page_shift) < (to + ops->len))
2414                chip->pagebuf = -1;
2415
2416        /* Don't allow multipage oob writes with offset */
2417        if (oob && ops->ooboffs && (ops->ooboffs + ops->ooblen > oobmaxlen)) {
2418                ret = -EINVAL;
2419                goto err_out;
2420        }
2421
2422        while (1) {
2423                int bytes = mtd->writesize;
2424                int cached = writelen > bytes && page != blockmask;
2425                uint8_t *wbuf = buf;
2426                int use_bufpoi;
2427                int part_pagewr = (column || writelen < (mtd->writesize - 1));
2428
2429                if (part_pagewr)
2430                        use_bufpoi = 1;
2431                else if (chip->options & NAND_USE_BOUNCE_BUFFER)
2432                        use_bufpoi = !virt_addr_valid(buf);
2433                else
2434                        use_bufpoi = 0;
2435
2436                /* Partial page write?, or need to use bounce buffer */
2437                if (use_bufpoi) {
2438                        pr_debug("%s: using write bounce buffer for buf@%p\n",
2439                                         __func__, buf);
2440                        cached = 0;
2441                        if (part_pagewr)
2442                                bytes = min_t(int, bytes - column, writelen);
2443                        chip->pagebuf = -1;
2444                        memset(chip->buffers->databuf, 0xff, mtd->writesize);
2445                        memcpy(&chip->buffers->databuf[column], buf, bytes);
2446                        wbuf = chip->buffers->databuf;
2447                }
2448
2449                if (unlikely(oob)) {
2450                        size_t len = min(oobwritelen, oobmaxlen);
2451                        oob = nand_fill_oob(mtd, oob, len, ops);
2452                        oobwritelen -= len;
2453                } else {
2454                        /* We still need to erase leftover OOB data */
2455                        memset(chip->oob_poi, 0xff, mtd->oobsize);
2456                }
2457                ret = chip->write_page(mtd, chip, column, bytes, wbuf,
2458                                        oob_required, page, cached,
2459                                        (ops->mode == MTD_OPS_RAW));
2460                if (ret)
2461                        break;
2462
2463                writelen -= bytes;
2464                if (!writelen)
2465                        break;
2466
2467                column = 0;
2468                buf += bytes;
2469                realpage++;
2470
2471                page = realpage & chip->pagemask;
2472                /* Check, if we cross a chip boundary */
2473                if (!page) {
2474                        chipnr++;
2475                        chip->select_chip(mtd, -1);
2476                        chip->select_chip(mtd, chipnr);
2477                }
2478        }
2479
2480        ops->retlen = ops->len - writelen;
2481        if (unlikely(oob))
2482                ops->oobretlen = ops->ooblen;
2483
2484err_out:
2485        chip->select_chip(mtd, -1);
2486        return ret;
2487}
2488
2489/**
2490 * panic_nand_write - [MTD Interface] NAND write with ECC
2491 * @mtd: MTD device structure
2492 * @to: offset to write to
2493 * @len: number of bytes to write
2494 * @retlen: pointer to variable to store the number of written bytes
2495 * @buf: the data to write
2496 *
2497 * NAND write with ECC. Used when performing writes in interrupt context, this
2498 * may for example be called by mtdoops when writing an oops while in panic.
2499 */
2500static int panic_nand_write(struct mtd_info *mtd, loff_t to, size_t len,
2501                            size_t *retlen, const uint8_t *buf)
2502{
2503        struct nand_chip *chip = mtd->priv;
2504        struct mtd_oob_ops ops;
2505        int ret;
2506
2507        /* Wait for the device to get ready */
2508        panic_nand_wait(mtd, chip, 400);
2509
2510        /* Grab the device */
2511        panic_nand_get_device(chip, mtd, FL_WRITING);
2512
2513        ops.len = len;
2514        ops.datbuf = (uint8_t *)buf;
2515        ops.oobbuf = NULL;
2516        ops.mode = MTD_OPS_PLACE_OOB;
2517
2518        ret = nand_do_write_ops(mtd, to, &ops);
2519
2520        *retlen = ops.retlen;
2521        return ret;
2522}
2523
2524/**
2525 * nand_write - [MTD Interface] NAND write with ECC
2526 * @mtd: MTD device structure
2527 * @to: offset to write to
2528 * @len: number of bytes to write
2529 * @retlen: pointer to variable to store the number of written bytes
2530 * @buf: the data to write
2531 *
2532 * NAND write with ECC.
2533 */
2534static int nand_write(struct mtd_info *mtd, loff_t to, size_t len,
2535                          size_t *retlen, const uint8_t *buf)
2536{
2537        struct mtd_oob_ops ops;
2538        int ret;
2539
2540        nand_get_device(mtd, FL_WRITING);
2541        ops.len = len;
2542        ops.datbuf = (uint8_t *)buf;
2543        ops.oobbuf = NULL;
2544        ops.mode = MTD_OPS_PLACE_OOB;
2545        ret = nand_do_write_ops(mtd, to, &ops);
2546        *retlen = ops.retlen;
2547        nand_release_device(mtd);
2548        return ret;
2549}
2550
2551/**
2552 * nand_do_write_oob - [MTD Interface] NAND write out-of-band
2553 * @mtd: MTD device structure
2554 * @to: offset to write to
2555 * @ops: oob operation description structure
2556 *
2557 * NAND write out-of-band.
2558 */
2559static int nand_do_write_oob(struct mtd_info *mtd, loff_t to,
2560                             struct mtd_oob_ops *ops)
2561{
2562        int chipnr, page, status, len;
2563        struct nand_chip *chip = mtd->priv;
2564
2565        pr_debug("%s: to = 0x%08x, len = %i\n",
2566                         __func__, (unsigned int)to, (int)ops->ooblen);
2567
2568        if (ops->mode == MTD_OPS_AUTO_OOB)
2569                len = chip->ecc.layout->oobavail;
2570        else
2571                len = mtd->oobsize;
2572
2573        /* Do not allow write past end of page */
2574        if ((ops->ooboffs + ops->ooblen) > len) {
2575                pr_debug("%s: attempt to write past end of page\n",
2576                                __func__);
2577                return -EINVAL;
2578        }
2579
2580        if (unlikely(ops->ooboffs >= len)) {
2581                pr_debug("%s: attempt to start write outside oob\n",
2582                                __func__);
2583                return -EINVAL;
2584        }
2585
2586        /* Do not allow write past end of device */
2587        if (unlikely(to >= mtd->size ||
2588                     ops->ooboffs + ops->ooblen >
2589                        ((mtd->size >> chip->page_shift) -
2590                         (to >> chip->page_shift)) * len)) {
2591                pr_debug("%s: attempt to write beyond end of device\n",
2592                                __func__);
2593                return -EINVAL;
2594        }
2595
2596        chipnr = (int)(to >> chip->chip_shift);
2597        chip->select_chip(mtd, chipnr);
2598
2599        /* Shift to get page */
2600        page = (int)(to >> chip->page_shift);
2601
2602        /*
2603         * Reset the chip. Some chips (like the Toshiba TC5832DC found in one
2604         * of my DiskOnChip 2000 test units) will clear the whole data page too
2605         * if we don't do this. I have no clue why, but I seem to have 'fixed'
2606         * it in the doc2000 driver in August 1999.  dwmw2.
2607         */
2608        chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
2609
2610        /* Check, if it is write protected */
2611        if (nand_check_wp(mtd)) {
2612                chip->select_chip(mtd, -1);
2613                return -EROFS;
2614        }
2615
2616        /* Invalidate the page cache, if we write to the cached page */
2617        if (page == chip->pagebuf)
2618                chip->pagebuf = -1;
2619
2620        nand_fill_oob(mtd, ops->oobbuf, ops->ooblen, ops);
2621
2622        if (ops->mode == MTD_OPS_RAW)
2623                status = chip->ecc.write_oob_raw(mtd, chip, page & chip->pagemask);
2624        else
2625                status = chip->ecc.write_oob(mtd, chip, page & chip->pagemask);
2626
2627        chip->select_chip(mtd, -1);
2628
2629        if (status)
2630                return status;
2631
2632        ops->oobretlen = ops->ooblen;
2633
2634        return 0;
2635}
2636
2637/**
2638 * nand_write_oob - [MTD Interface] NAND write data and/or out-of-band
2639 * @mtd: MTD device structure
2640 * @to: offset to write to
2641 * @ops: oob operation description structure
2642 */
2643static int nand_write_oob(struct mtd_info *mtd, loff_t to,
2644                          struct mtd_oob_ops *ops)
2645{
2646        int ret = -ENOTSUPP;
2647
2648        ops->retlen = 0;
2649
2650        /* Do not allow writes past end of device */
2651        if (ops->datbuf && (to + ops->len) > mtd->size) {
2652                pr_debug("%s: attempt to write beyond end of device\n",
2653                                __func__);
2654                return -EINVAL;
2655        }
2656
2657        nand_get_device(mtd, FL_WRITING);
2658
2659        switch (ops->mode) {
2660        case MTD_OPS_PLACE_OOB:
2661        case MTD_OPS_AUTO_OOB:
2662        case MTD_OPS_RAW:
2663                break;
2664
2665        default:
2666                goto out;
2667        }
2668
2669        if (!ops->datbuf)
2670                ret = nand_do_write_oob(mtd, to, ops);
2671        else
2672                ret = nand_do_write_ops(mtd, to, ops);
2673
2674out:
2675        nand_release_device(mtd);
2676        return ret;
2677}
2678
2679/**
2680 * single_erase - [GENERIC] NAND standard block erase command function
2681 * @mtd: MTD device structure
2682 * @page: the page address of the block which will be erased
2683 *
2684 * Standard erase command for NAND chips. Returns NAND status.
2685 */
2686static int single_erase(struct mtd_info *mtd, int page)
2687{
2688        struct nand_chip *chip = mtd->priv;
2689        /* Send commands to erase a block */
2690        chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page);
2691        chip->cmdfunc(mtd, NAND_CMD_ERASE2, -1, -1);
2692
2693        return chip->waitfunc(mtd, chip);
2694}
2695
2696/**
2697 * nand_erase - [MTD Interface] erase block(s)
2698 * @mtd: MTD device structure
2699 * @instr: erase instruction
2700 *
2701 * Erase one ore more blocks.
2702 */
2703static int nand_erase(struct mtd_info *mtd, struct erase_info *instr)
2704{
2705        return nand_erase_nand(mtd, instr, 0);
2706}
2707
2708/**
2709 * nand_erase_nand - [INTERN] erase block(s)
2710 * @mtd: MTD device structure
2711 * @instr: erase instruction
2712 * @allowbbt: allow erasing the bbt area
2713 *
2714 * Erase one ore more blocks.
2715 */
2716int nand_erase_nand(struct mtd_info *mtd, struct erase_info *instr,
2717                    int allowbbt)
2718{
2719        int page, status, pages_per_block, ret, chipnr;
2720        struct nand_chip *chip = mtd->priv;
2721        loff_t len;
2722
2723        pr_debug("%s: start = 0x%012llx, len = %llu\n",
2724                        __func__, (unsigned long long)instr->addr,
2725                        (unsigned long long)instr->len);
2726
2727        if (check_offs_len(mtd, instr->addr, instr->len))
2728                return -EINVAL;
2729
2730        /* Grab the lock and see if the device is available */
2731        nand_get_device(mtd, FL_ERASING);
2732
2733        /* Shift to get first page */
2734        page = (int)(instr->addr >> chip->page_shift);
2735        chipnr = (int)(instr->addr >> chip->chip_shift);
2736
2737        /* Calculate pages in each block */
2738        pages_per_block = 1 << (chip->phys_erase_shift - chip->page_shift);
2739
2740        /* Select the NAND device */
2741        chip->select_chip(mtd, chipnr);
2742
2743        /* Check, if it is write protected */
2744        if (nand_check_wp(mtd)) {
2745                pr_debug("%s: device is write protected!\n",
2746                                __func__);
2747                instr->state = MTD_ERASE_FAILED;
2748                goto erase_exit;
2749        }
2750
2751        /* Loop through the pages */
2752        len = instr->len;
2753
2754        instr->state = MTD_ERASING;
2755
2756        while (len) {
2757                /* Check if we have a bad block, we do not erase bad blocks! */
2758                if (nand_block_checkbad(mtd, ((loff_t) page) <<
2759                                        chip->page_shift, 0, allowbbt)) {
2760                        pr_warn("%s: attempt to erase a bad block at page 0x%08x\n",
2761                                    __func__, page);
2762                        instr->state = MTD_ERASE_FAILED;
2763                        goto erase_exit;
2764                }
2765
2766                /*
2767                 * Invalidate the page cache, if we erase the block which
2768                 * contains the current cached page.
2769                 */
2770                if (page <= chip->pagebuf && chip->pagebuf <
2771                    (page + pages_per_block))
2772                        chip->pagebuf = -1;
2773
2774                status = chip->erase(mtd, page & chip->pagemask);
2775
2776                /*
2777                 * See if operation failed and additional status checks are
2778                 * available
2779                 */
2780                if ((status & NAND_STATUS_FAIL) && (chip->errstat))
2781                        status = chip->errstat(mtd, chip, FL_ERASING,
2782                                               status, page);
2783
2784                /* See if block erase succeeded */
2785                if (status & NAND_STATUS_FAIL) {
2786                        pr_debug("%s: failed erase, page 0x%08x\n",
2787                                        __func__, page);
2788                        instr->state = MTD_ERASE_FAILED;
2789                        instr->fail_addr =
2790                                ((loff_t)page << chip->page_shift);
2791                        goto erase_exit;
2792                }
2793
2794                /* Increment page address and decrement length */
2795                len -= (1ULL << chip->phys_erase_shift);
2796                page += pages_per_block;
2797
2798                /* Check, if we cross a chip boundary */
2799                if (len && !(page & chip->pagemask)) {
2800                        chipnr++;
2801                        chip->select_chip(mtd, -1);
2802                        chip->select_chip(mtd, chipnr);
2803                }
2804        }
2805        instr->state = MTD_ERASE_DONE;
2806
2807erase_exit:
2808
2809        ret = instr->state == MTD_ERASE_DONE ? 0 : -EIO;
2810
2811        /* Deselect and wake up anyone waiting on the device */
2812        chip->select_chip(mtd, -1);
2813        nand_release_device(mtd);
2814
2815        /* Do call back function */
2816        if (!ret)
2817                mtd_erase_callback(instr);
2818
2819        /* Return more or less happy */
2820        return ret;
2821}
2822
2823/**
2824 * nand_sync - [MTD Interface] sync
2825 * @mtd: MTD device structure
2826 *
2827 * Sync is actually a wait for chip ready function.
2828 */
2829static void nand_sync(struct mtd_info *mtd)
2830{
2831        pr_debug("%s: called\n", __func__);
2832
2833        /* Grab the lock and see if the device is available */
2834        nand_get_device(mtd, FL_SYNCING);
2835        /* Release it and go back */
2836        nand_release_device(mtd);
2837}
2838
2839/**
2840 * nand_block_isbad - [MTD Interface] Check if block at offset is bad
2841 * @mtd: MTD device structure
2842 * @offs: offset relative to mtd start
2843 */
2844static int nand_block_isbad(struct mtd_info *mtd, loff_t offs)
2845{
2846        return nand_block_checkbad(mtd, offs, 1, 0);
2847}
2848
2849/**
2850 * nand_block_markbad - [MTD Interface] Mark block at the given offset as bad
2851 * @mtd: MTD device structure
2852 * @ofs: offset relative to mtd start
2853 */
2854static int nand_block_markbad(struct mtd_info *mtd, loff_t ofs)
2855{
2856        int ret;
2857
2858        ret = nand_block_isbad(mtd, ofs);
2859        if (ret) {
2860                /* If it was bad already, return success and do nothing */
2861                if (ret > 0)
2862                        return 0;
2863                return ret;
2864        }
2865
2866        return nand_block_markbad_lowlevel(mtd, ofs);
2867}
2868
2869/**
2870 * nand_onfi_set_features- [REPLACEABLE] set features for ONFI nand
2871 * @mtd: MTD device structure
2872 * @chip: nand chip info structure
2873 * @addr: feature address.
2874 * @subfeature_param: the subfeature parameters, a four bytes array.
2875 */
2876static int nand_onfi_set_features(struct mtd_info *mtd, struct nand_chip *chip,
2877                        int addr, uint8_t *subfeature_param)
2878{
2879        int status;
2880        int i;
2881
2882        if (!chip->onfi_version ||
2883            !(le16_to_cpu(chip->onfi_params.opt_cmd)
2884              & ONFI_OPT_CMD_SET_GET_FEATURES))
2885                return -EINVAL;
2886
2887        chip->cmdfunc(mtd, NAND_CMD_SET_FEATURES, addr, -1);
2888        for (i = 0; i < ONFI_SUBFEATURE_PARAM_LEN; ++i)
2889                chip->write_byte(mtd, subfeature_param[i]);
2890
2891        status = chip->waitfunc(mtd, chip);
2892        if (status & NAND_STATUS_FAIL)
2893                return -EIO;
2894        return 0;
2895}
2896
2897/**
2898 * nand_onfi_get_features- [REPLACEABLE] get features for ONFI nand
2899 * @mtd: MTD device structure
2900 * @chip: nand chip info structure
2901 * @addr: feature address.
2902 * @subfeature_param: the subfeature parameters, a four bytes array.
2903 */
2904static int nand_onfi_get_features(struct mtd_info *mtd, struct nand_chip *chip,
2905                        int addr, uint8_t *subfeature_param)
2906{
2907        int i;
2908
2909        if (!chip->onfi_version ||
2910            !(le16_to_cpu(chip->onfi_params.opt_cmd)
2911              & ONFI_OPT_CMD_SET_GET_FEATURES))
2912                return -EINVAL;
2913
2914        /* clear the sub feature parameters */
2915        memset(subfeature_param, 0, ONFI_SUBFEATURE_PARAM_LEN);
2916
2917        chip->cmdfunc(mtd, NAND_CMD_GET_FEATURES, addr, -1);
2918        for (i = 0; i < ONFI_SUBFEATURE_PARAM_LEN; ++i)
2919                *subfeature_param++ = chip->read_byte(mtd);
2920        return 0;
2921}
2922
2923/**
2924 * nand_suspend - [MTD Interface] Suspend the NAND flash
2925 * @mtd: MTD device structure
2926 */
2927static int nand_suspend(struct mtd_info *mtd)
2928{
2929        return nand_get_device(mtd, FL_PM_SUSPENDED);
2930}
2931
2932/**
2933 * nand_resume - [MTD Interface] Resume the NAND flash
2934 * @mtd: MTD device structure
2935 */
2936static void nand_resume(struct mtd_info *mtd)
2937{
2938        struct nand_chip *chip = mtd->priv;
2939
2940        if (chip->state == FL_PM_SUSPENDED)
2941                nand_release_device(mtd);
2942        else
2943                pr_err("%s called for a chip which is not in suspended state\n",
2944                        __func__);
2945}
2946
2947/* Set default functions */
2948static void nand_set_defaults(struct nand_chip *chip, int busw)
2949{
2950        /* check for proper chip_delay setup, set 20us if not */
2951        if (!chip->chip_delay)
2952                chip->chip_delay = 20;
2953
2954        /* check, if a user supplied command function given */
2955        if (chip->cmdfunc == NULL)
2956                chip->cmdfunc = nand_command;
2957
2958        /* check, if a user supplied wait function given */
2959        if (chip->waitfunc == NULL)
2960                chip->waitfunc = nand_wait;
2961
2962        if (!chip->select_chip)
2963                chip->select_chip = nand_select_chip;
2964
2965        /* set for ONFI nand */
2966        if (!chip->onfi_set_features)
2967                chip->onfi_set_features = nand_onfi_set_features;
2968        if (!chip->onfi_get_features)
2969                chip->onfi_get_features = nand_onfi_get_features;
2970
2971        /* If called twice, pointers that depend on busw may need to be reset */
2972        if (!chip->read_byte || chip->read_byte == nand_read_byte)
2973                chip->read_byte = busw ? nand_read_byte16 : nand_read_byte;
2974        if (!chip->read_word)
2975                chip->read_word = nand_read_word;
2976        if (!chip->block_bad)
2977                chip->block_bad = nand_block_bad;
2978        if (!chip->block_markbad)
2979                chip->block_markbad = nand_default_block_markbad;
2980        if (!chip->write_buf || chip->write_buf == nand_write_buf)
2981                chip->write_buf = busw ? nand_write_buf16 : nand_write_buf;
2982        if (!chip->write_byte || chip->write_byte == nand_write_byte)
2983                chip->write_byte = busw ? nand_write_byte16 : nand_write_byte;
2984        if (!chip->read_buf || chip->read_buf == nand_read_buf)
2985                chip->read_buf = busw ? nand_read_buf16 : nand_read_buf;
2986        if (!chip->scan_bbt)
2987                chip->scan_bbt = nand_default_bbt;
2988
2989        if (!chip->controller) {
2990                chip->controller = &chip->hwcontrol;
2991                spin_lock_init(&chip->controller->lock);
2992                init_waitqueue_head(&chip->controller->wq);
2993        }
2994
2995}
2996
2997/* Sanitize ONFI strings so we can safely print them */
2998static void sanitize_string(uint8_t *s, size_t len)
2999{
3000        ssize_t i;
3001
3002        /* Null terminate */
3003        s[len - 1] = 0;
3004
3005        /* Remove non printable chars */
3006        for (i = 0; i < len - 1; i++) {
3007                if (s[i] < ' ' || s[i] > 127)
3008                        s[i] = '?';
3009        }
3010
3011        /* Remove trailing spaces */
3012        strim(s);
3013}
3014
3015static u16 onfi_crc16(u16 crc, u8 const *p, size_t len)
3016{
3017        int i;
3018        while (len--) {
3019                crc ^= *p++ << 8;
3020                for (i = 0; i < 8; i++)
3021                        crc = (crc << 1) ^ ((crc & 0x8000) ? 0x8005 : 0);
3022        }
3023
3024        return crc;
3025}
3026
3027/* Parse the Extended Parameter Page. */
3028static int nand_flash_detect_ext_param_page(struct mtd_info *mtd,
3029                struct nand_chip *chip, struct nand_onfi_params *p)
3030{
3031        struct onfi_ext_param_page *ep;
3032        struct onfi_ext_section *s;
3033        struct onfi_ext_ecc_info *ecc;
3034        uint8_t *cursor;
3035        int ret = -EINVAL;
3036        int len;
3037        int i;
3038
3039        len = le16_to_cpu(p->ext_param_page_length) * 16;
3040        ep = kmalloc(len, GFP_KERNEL);
3041        if (!ep)
3042                return -ENOMEM;
3043
3044        /* Send our own NAND_CMD_PARAM. */
3045        chip->cmdfunc(mtd, NAND_CMD_PARAM, 0, -1);
3046
3047        /* Use the Change Read Column command to skip the ONFI param pages. */
3048        chip->cmdfunc(mtd, NAND_CMD_RNDOUT,
3049                        sizeof(*p) * p->num_of_param_pages , -1);
3050
3051        /* Read out the Extended Parameter Page. */
3052        chip->read_buf(mtd, (uint8_t *)ep, len);
3053        if ((onfi_crc16(ONFI_CRC_BASE, ((uint8_t *)ep) + 2, len - 2)
3054                != le16_to_cpu(ep->crc))) {
3055                pr_debug("fail in the CRC.\n");
3056                goto ext_out;
3057        }
3058
3059        /*
3060         * Check the signature.
3061         * Do not strictly follow the ONFI spec, maybe changed in future.
3062         */
3063        if (strncmp(ep->sig, "EPPS", 4)) {
3064                pr_debug("The signature is invalid.\n");
3065                goto ext_out;
3066        }
3067
3068        /* find the ECC section. */
3069        cursor = (uint8_t *)(ep + 1);
3070        for (i = 0; i < ONFI_EXT_SECTION_MAX; i++) {
3071                s = ep->sections + i;
3072                if (s->type == ONFI_SECTION_TYPE_2)
3073                        break;
3074                cursor += s->length * 16;
3075        }
3076        if (i == ONFI_EXT_SECTION_MAX) {
3077                pr_debug("We can not find the ECC section.\n");
3078                goto ext_out;
3079        }
3080
3081        /* get the info we want. */
3082        ecc = (struct onfi_ext_ecc_info *)cursor;
3083
3084        if (!ecc->codeword_size) {
3085                pr_debug("Invalid codeword size\n");
3086                goto ext_out;
3087        }
3088
3089        chip->ecc_strength_ds = ecc->ecc_bits;
3090        chip->ecc_step_ds = 1 << ecc->codeword_size;
3091        ret = 0;
3092
3093ext_out:
3094        kfree(ep);
3095        return ret;
3096}
3097
3098static int nand_setup_read_retry_micron(struct mtd_info *mtd, int retry_mode)
3099{
3100        struct nand_chip *chip = mtd->priv;
3101        uint8_t feature[ONFI_SUBFEATURE_PARAM_LEN] = {retry_mode};
3102
3103        return chip->onfi_set_features(mtd, chip, ONFI_FEATURE_ADDR_READ_RETRY,
3104                        feature);
3105}
3106
3107/*
3108 * Configure chip properties from Micron vendor-specific ONFI table
3109 */
3110static void nand_onfi_detect_micron(struct nand_chip *chip,
3111                struct nand_onfi_params *p)
3112{
3113        struct nand_onfi_vendor_micron *micron = (void *)p->vendor;
3114
3115        if (le16_to_cpu(p->vendor_revision) < 1)
3116                return;
3117
3118        chip->read_retries = micron->read_retry_options;
3119        chip->setup_read_retry = nand_setup_read_retry_micron;
3120}
3121
3122/*
3123 * Check if the NAND chip is ONFI compliant, returns 1 if it is, 0 otherwise.
3124 */
3125static int nand_flash_detect_onfi(struct mtd_info *mtd, struct nand_chip *chip,
3126                                        int *busw)
3127{
3128        struct nand_onfi_params *p = &chip->onfi_params;
3129        int i, j;
3130        int val;
3131
3132        /* Try ONFI for unknown chip or LP */
3133        chip->cmdfunc(mtd, NAND_CMD_READID, 0x20, -1);
3134        if (chip->read_byte(mtd) != 'O' || chip->read_byte(mtd) != 'N' ||
3135                chip->read_byte(mtd) != 'F' || chip->read_byte(mtd) != 'I')
3136                return 0;
3137
3138        chip->cmdfunc(mtd, NAND_CMD_PARAM, 0, -1);
3139        for (i = 0; i < 3; i++) {
3140                for (j = 0; j < sizeof(*p); j++)
3141                        ((uint8_t *)p)[j] = chip->read_byte(mtd);
3142                if (onfi_crc16(ONFI_CRC_BASE, (uint8_t *)p, 254) ==
3143                                le16_to_cpu(p->crc)) {
3144                        break;
3145                }
3146        }
3147
3148        if (i == 3) {
3149                pr_err("Could not find valid ONFI parameter page; aborting\n");
3150                return 0;
3151        }
3152
3153        /* Check version */
3154        val = le16_to_cpu(p->revision);
3155        if (val & (1 << 5))
3156                chip->onfi_version = 23;
3157        else if (val & (1 << 4))
3158                chip->onfi_version = 22;
3159        else if (val & (1 << 3))
3160                chip->onfi_version = 21;
3161        else if (val & (1 << 2))
3162                chip->onfi_version = 20;
3163        else if (val & (1 << 1))
3164                chip->onfi_version = 10;
3165
3166        if (!chip->onfi_version) {
3167                pr_info("unsupported ONFI version: %d\n", val);
3168                return 0;
3169        }
3170
3171        sanitize_string(p->manufacturer, sizeof(p->manufacturer));
3172        sanitize_string(p->model, sizeof(p->model));
3173        if (!mtd->name)
3174                mtd->name = p->model;
3175
3176        mtd->writesize = le32_to_cpu(p->byte_per_page);
3177
3178        /*
3179         * pages_per_block and blocks_per_lun may not be a power-of-2 size
3180         * (don't ask me who thought of this...). MTD assumes that these
3181         * dimensions will be power-of-2, so just truncate the remaining area.
3182         */
3183        mtd->erasesize = 1 << (fls(le32_to_cpu(p->pages_per_block)) - 1);
3184        mtd->erasesize *= mtd->writesize;
3185
3186        mtd->oobsize = le16_to_cpu(p->spare_bytes_per_page);
3187
3188        /* See erasesize comment */
3189        chip->chipsize = 1 << (fls(le32_to_cpu(p->blocks_per_lun)) - 1);
3190        chip->chipsize *= (uint64_t)mtd->erasesize * p->lun_count;
3191        chip->bits_per_cell = p->bits_per_cell;
3192
3193        if (onfi_feature(chip) & ONFI_FEATURE_16_BIT_BUS)
3194                *busw = NAND_BUSWIDTH_16;
3195        else
3196                *busw = 0;
3197
3198        if (p->ecc_bits != 0xff) {
3199                chip->ecc_strength_ds = p->ecc_bits;
3200                chip->ecc_step_ds = 512;
3201        } else if (chip->onfi_version >= 21 &&
3202                (onfi_feature(chip) & ONFI_FEATURE_EXT_PARAM_PAGE)) {
3203
3204                /*
3205                 * The nand_flash_detect_ext_param_page() uses the
3206                 * Change Read Column command which maybe not supported
3207                 * by the chip->cmdfunc. So try to update the chip->cmdfunc
3208                 * now. We do not replace user supplied command function.
3209                 */
3210                if (mtd->writesize > 512 && chip->cmdfunc == nand_command)
3211                        chip->cmdfunc = nand_command_lp;
3212
3213                /* The Extended Parameter Page is supported since ONFI 2.1. */
3214                if (nand_flash_detect_ext_param_page(mtd, chip, p))
3215                        pr_warn("Failed to detect ONFI extended param page\n");
3216        } else {
3217                pr_warn("Could not retrieve ONFI ECC requirements\n");
3218        }
3219
3220        if (p->jedec_id == NAND_MFR_MICRON)
3221                nand_onfi_detect_micron(chip, p);
3222
3223        return 1;
3224}
3225
3226/*
3227 * Check if the NAND chip is JEDEC compliant, returns 1 if it is, 0 otherwise.
3228 */
3229static int nand_flash_detect_jedec(struct mtd_info *mtd, struct nand_chip *chip,
3230                                        int *busw)
3231{
3232        struct nand_jedec_params *p = &chip->jedec_params;
3233        struct jedec_ecc_info *ecc;
3234        int val;
3235        int i, j;
3236
3237        /* Try JEDEC for unknown chip or LP */
3238        chip->cmdfunc(mtd, NAND_CMD_READID, 0x40, -1);
3239        if (chip->read_byte(mtd) != 'J' || chip->read_byte(mtd) != 'E' ||
3240                chip->read_byte(mtd) != 'D' || chip->read_byte(mtd) != 'E' ||
3241                chip->read_byte(mtd) != 'C')
3242                return 0;
3243
3244        chip->cmdfunc(mtd, NAND_CMD_PARAM, 0x40, -1);
3245        for (i = 0; i < 3; i++) {
3246                for (j = 0; j < sizeof(*p); j++)
3247                        ((uint8_t *)p)[j] = chip->read_byte(mtd);
3248
3249                if (onfi_crc16(ONFI_CRC_BASE, (uint8_t *)p, 510) ==
3250                                le16_to_cpu(p->crc))
3251                        break;
3252        }
3253
3254        if (i == 3) {
3255                pr_err("Could not find valid JEDEC parameter page; aborting\n");
3256                return 0;
3257        }
3258
3259        /* Check version */
3260        val = le16_to_cpu(p->revision);
3261        if (val & (1 << 2))
3262                chip->jedec_version = 10;
3263        else if (val & (1 << 1))
3264                chip->jedec_version = 1; /* vendor specific version */
3265
3266        if (!chip->jedec_version) {
3267                pr_info("unsupported JEDEC version: %d\n", val);
3268                return 0;
3269        }
3270
3271        sanitize_string(p->manufacturer, sizeof(p->manufacturer));
3272        sanitize_string(p->model, sizeof(p->model));
3273        if (!mtd->name)
3274                mtd->name = p->model;
3275
3276        mtd->writesize = le32_to_cpu(p->byte_per_page);
3277
3278        /* Please reference to the comment for nand_flash_detect_onfi. */
3279        mtd->erasesize = 1 << (fls(le32_to_cpu(p->pages_per_block)) - 1);
3280        mtd->erasesize *= mtd->writesize;
3281
3282        mtd->oobsize = le16_to_cpu(p->spare_bytes_per_page);
3283
3284        /* Please reference to the comment for nand_flash_detect_onfi. */
3285        chip->chipsize = 1 << (fls(le32_to_cpu(p->blocks_per_lun)) - 1);
3286        chip->chipsize *= (uint64_t)mtd->erasesize * p->lun_count;
3287        chip->bits_per_cell = p->bits_per_cell;
3288
3289        if (jedec_feature(chip) & JEDEC_FEATURE_16_BIT_BUS)
3290                *busw = NAND_BUSWIDTH_16;
3291        else
3292                *busw = 0;
3293
3294        /* ECC info */
3295        ecc = &p->ecc_info[0];
3296
3297        if (ecc->codeword_size >= 9) {
3298                chip->ecc_strength_ds = ecc->ecc_bits;
3299                chip->ecc_step_ds = 1 << ecc->codeword_size;
3300        } else {
3301                pr_warn("Invalid codeword size\n");
3302        }
3303
3304        return 1;
3305}
3306
3307/*
3308 * nand_id_has_period - Check if an ID string has a given wraparound period
3309 * @id_data: the ID string
3310 * @arrlen: the length of the @id_data array
3311 * @period: the period of repitition
3312 *
3313 * Check if an ID string is repeated within a given sequence of bytes at
3314 * specific repetition interval period (e.g., {0x20,0x01,0x7F,0x20} has a
3315 * period of 3). This is a helper function for nand_id_len(). Returns non-zero
3316 * if the repetition has a period of @period; otherwise, returns zero.
3317 */
3318static int nand_id_has_period(u8 *id_data, int arrlen, int period)
3319{
3320        int i, j;
3321        for (i = 0; i < period; i++)
3322                for (j = i + period; j < arrlen; j += period)
3323                        if (id_data[i] != id_data[j])
3324                                return 0;
3325        return 1;
3326}
3327
3328/*
3329 * nand_id_len - Get the length of an ID string returned by CMD_READID
3330 * @id_data: the ID string
3331 * @arrlen: the length of the @id_data array
3332
3333 * Returns the length of the ID string, according to known wraparound/trailing
3334 * zero patterns. If no pattern exists, returns the length of the array.
3335 */
3336static int nand_id_len(u8 *id_data, int arrlen)
3337{
3338        int last_nonzero, period;
3339
3340        /* Find last non-zero byte */
3341        for (last_nonzero = arrlen - 1; last_nonzero >= 0; last_nonzero--)
3342                if (id_data[last_nonzero])
3343                        break;
3344
3345        /* All zeros */
3346        if (last_nonzero < 0)
3347                return 0;
3348
3349        /* Calculate wraparound period */
3350        for (period = 1; period < arrlen; period++)
3351                if (nand_id_has_period(id_data, arrlen, period))
3352                        break;
3353
3354        /* There's a repeated pattern */
3355        if (period < arrlen)
3356                return period;
3357
3358        /* There are trailing zeros */
3359        if (last_nonzero < arrlen - 1)
3360                return last_nonzero + 1;
3361
3362        /* No pattern detected */
3363        return arrlen;
3364}
3365
3366/* Extract the bits of per cell from the 3rd byte of the extended ID */
3367static int nand_get_bits_per_cell(u8 cellinfo)
3368{
3369        int bits;
3370
3371        bits = cellinfo & NAND_CI_CELLTYPE_MSK;
3372        bits >>= NAND_CI_CELLTYPE_SHIFT;
3373        return bits + 1;
3374}
3375
3376/*
3377 * Many new NAND share similar device ID codes, which represent the size of the
3378 * chip. The rest of the parameters must be decoded according to generic or
3379 * manufacturer-specific "extended ID" decoding patterns.
3380 */
3381static void nand_decode_ext_id(struct mtd_info *mtd, struct nand_chip *chip,
3382                                u8 id_data[8], int *busw)
3383{
3384        int extid, id_len;
3385        /* The 3rd id byte holds MLC / multichip data */
3386        chip->bits_per_cell = nand_get_bits_per_cell(id_data[2]);
3387        /* The 4th id byte is the important one */
3388        extid = id_data[3];
3389
3390        id_len = nand_id_len(id_data, 8);
3391
3392        /*
3393         * Field definitions are in the following datasheets:
3394         * Old style (4,5 byte ID): Samsung K9GAG08U0M (p.32)
3395         * New Samsung (6 byte ID): Samsung K9GAG08U0F (p.44)
3396         * Hynix MLC   (6 byte ID): Hynix H27UBG8T2B (p.22)
3397         *
3398         * Check for ID length, non-zero 6th byte, cell type, and Hynix/Samsung
3399         * ID to decide what to do.
3400         */
3401        if (id_len == 6 && id_data[0] == NAND_MFR_SAMSUNG &&
3402                        !nand_is_slc(chip) && id_data[5] != 0x00) {
3403                /* Calc pagesize */
3404                mtd->writesize = 2048 << (extid & 0x03);
3405                extid >>= 2;
3406                /* Calc oobsize */
3407                switch (((extid >> 2) & 0x04) | (extid & 0x03)) {
3408                case 1:
3409                        mtd->oobsize = 128;
3410                        break;
3411                case 2:
3412                        mtd->oobsize = 218;
3413                        break;
3414                case 3:
3415                        mtd->oobsize = 400;
3416                        break;
3417                case 4:
3418                        mtd->oobsize = 436;
3419                        break;
3420                case 5:
3421                        mtd->oobsize = 512;
3422                        break;
3423                case 6:
3424                        mtd->oobsize = 640;
3425                        break;
3426                case 7:
3427                default: /* Other cases are "reserved" (unknown) */
3428                        mtd->oobsize = 1024;
3429                        break;
3430                }
3431                extid >>= 2;
3432                /* Calc blocksize */
3433                mtd->erasesize = (128 * 1024) <<
3434                        (((extid >> 1) & 0x04) | (extid & 0x03));
3435                *busw = 0;
3436        } else if (id_len == 6 && id_data[0] == NAND_MFR_HYNIX &&
3437                        !nand_is_slc(chip)) {
3438                unsigned int tmp;
3439
3440                /* Calc pagesize */
3441                mtd->writesize = 2048 << (extid & 0x03);
3442                extid >>= 2;
3443                /* Calc oobsize */
3444                switch (((extid >> 2) & 0x04) | (extid & 0x03)) {
3445                case 0:
3446                        mtd->oobsize = 128;
3447                        break;
3448                case 1:
3449                        mtd->oobsize = 224;
3450                        break;
3451                case 2:
3452                        mtd->oobsize = 448;
3453                        break;
3454                case 3:
3455                        mtd->oobsize = 64;
3456                        break;
3457                case 4:
3458                        mtd->oobsize = 32;
3459                        break;
3460                case 5:
3461                        mtd->oobsize = 16;
3462                        break;
3463                default:
3464                        mtd->oobsize = 640;
3465                        break;
3466                }
3467                extid >>= 2;
3468                /* Calc blocksize */
3469                tmp = ((extid >> 1) & 0x04) | (extid & 0x03);
3470                if (tmp < 0x03)
3471                        mtd->erasesize = (128 * 1024) << tmp;
3472                else if (tmp == 0x03)
3473                        mtd->erasesize = 768 * 1024;
3474                else
3475                        mtd->erasesize = (64 * 1024) << tmp;
3476                *busw = 0;
3477        } else {
3478                /* Calc pagesize */
3479                mtd->writesize = 1024 << (extid & 0x03);
3480                extid >>= 2;
3481                /* Calc oobsize */
3482                mtd->oobsize = (8 << (extid & 0x01)) *
3483                        (mtd->writesize >> 9);
3484                extid >>= 2;
3485                /* Calc blocksize. Blocksize is multiples of 64KiB */
3486                mtd->erasesize = (64 * 1024) << (extid & 0x03);
3487                extid >>= 2;
3488                /* Get buswidth information */
3489                *busw = (extid & 0x01) ? NAND_BUSWIDTH_16 : 0;
3490
3491                /*
3492                 * Toshiba 24nm raw SLC (i.e., not BENAND) have 32B OOB per
3493                 * 512B page. For Toshiba SLC, we decode the 5th/6th byte as
3494                 * follows:
3495                 * - ID byte 6, bits[2:0]: 100b -> 43nm, 101b -> 32nm,
3496                 *                         110b -> 24nm
3497                 * - ID byte 5, bit[7]:    1 -> BENAND, 0 -> raw SLC
3498                 */
3499                if (id_len >= 6 && id_data[0] == NAND_MFR_TOSHIBA &&
3500                                nand_is_slc(chip) &&
3501                                (id_data[5] & 0x7) == 0x6 /* 24nm */ &&
3502                                !(id_data[4] & 0x80) /* !BENAND */) {
3503                        mtd->oobsize = 32 * mtd->writesize >> 9;
3504                }
3505
3506        }
3507}
3508
3509/*
3510 * Old devices have chip data hardcoded in the device ID table. nand_decode_id
3511 * decodes a matching ID table entry and assigns the MTD size parameters for
3512 * the chip.
3513 */
3514static void nand_decode_id(struct mtd_info *mtd, struct nand_chip *chip,
3515                                struct nand_flash_dev *type, u8 id_data[8],
3516                                int *busw)
3517{
3518        int maf_id = id_data[0];
3519
3520        mtd->erasesize = type->erasesize;
3521        mtd->writesize = type->pagesize;
3522        mtd->oobsize = mtd->writesize / 32;
3523        *busw = type->options & NAND_BUSWIDTH_16;
3524
3525        /* All legacy ID NAND are small-page, SLC */
3526        chip->bits_per_cell = 1;
3527
3528        /*
3529         * Check for Spansion/AMD ID + repeating 5th, 6th byte since
3530         * some Spansion chips have erasesize that conflicts with size
3531         * listed in nand_ids table.
3532         * Data sheet (5 byte ID): Spansion S30ML-P ORNAND (p.39)
3533         */
3534        if (maf_id == NAND_MFR_AMD && id_data[4] != 0x00 && id_data[5] == 0x00
3535                        && id_data[6] == 0x00 && id_data[7] == 0x00
3536                        && mtd->writesize == 512) {
3537                mtd->erasesize = 128 * 1024;
3538                mtd->erasesize <<= ((id_data[3] & 0x03) << 1);
3539        }
3540}
3541
3542/*
3543 * Set the bad block marker/indicator (BBM/BBI) patterns according to some
3544 * heuristic patterns using various detected parameters (e.g., manufacturer,
3545 * page size, cell-type information).
3546 */
3547static void nand_decode_bbm_options(struct mtd_info *mtd,
3548                                    struct nand_chip *chip, u8 id_data[8])
3549{
3550        int maf_id = id_data[0];
3551
3552        /* Set the bad block position */
3553        if (mtd->writesize > 512 || (chip->options & NAND_BUSWIDTH_16))
3554                chip->badblockpos = NAND_LARGE_BADBLOCK_POS;
3555        else
3556                chip->badblockpos = NAND_SMALL_BADBLOCK_POS;
3557
3558        /*
3559         * Bad block marker is stored in the last page of each block on Samsung
3560         * and Hynix MLC devices; stored in first two pages of each block on
3561         * Micron devices with 2KiB pages and on SLC Samsung, Hynix, Toshiba,
3562         * AMD/Spansion, and Macronix.  All others scan only the first page.
3563         */
3564        if (!nand_is_slc(chip) &&
3565                        (maf_id == NAND_MFR_SAMSUNG ||
3566                         maf_id == NAND_MFR_HYNIX))
3567                chip->bbt_options |= NAND_BBT_SCANLASTPAGE;
3568        else if ((nand_is_slc(chip) &&
3569                                (maf_id == NAND_MFR_SAMSUNG ||
3570                                 maf_id == NAND_MFR_HYNIX ||
3571                                 maf_id == NAND_MFR_TOSHIBA ||
3572                                 maf_id == NAND_MFR_AMD ||
3573                                 maf_id == NAND_MFR_MACRONIX)) ||
3574                        (mtd->writesize == 2048 &&
3575                         maf_id == NAND_MFR_MICRON))
3576                chip->bbt_options |= NAND_BBT_SCAN2NDPAGE;
3577}
3578
3579static inline bool is_full_id_nand(struct nand_flash_dev *type)
3580{
3581        return type->id_len;
3582}
3583
3584static bool find_full_id_nand(struct mtd_info *mtd, struct nand_chip *chip,
3585                   struct nand_flash_dev *type, u8 *id_data, int *busw)
3586{
3587        if (!strncmp(type->id, id_data, type->id_len)) {
3588                mtd->writesize = type->pagesize;
3589                mtd->erasesize = type->erasesize;
3590                mtd->oobsize = type->oobsize;
3591
3592                chip->bits_per_cell = nand_get_bits_per_cell(id_data[2]);
3593                chip->chipsize = (uint64_t)type->chipsize << 20;
3594                chip->options |= type->options;
3595                chip->ecc_strength_ds = NAND_ECC_STRENGTH(type);
3596                chip->ecc_step_ds = NAND_ECC_STEP(type);
3597                chip->onfi_timing_mode_default =
3598                                        type->onfi_timing_mode_default;
3599
3600                *busw = type->options & NAND_BUSWIDTH_16;
3601
3602                if (!mtd->name)
3603                        mtd->name = type->name;
3604
3605                return true;
3606        }
3607        return false;
3608}
3609
3610/*
3611 * Get the flash and manufacturer id and lookup if the type is supported.
3612 */
3613static struct nand_flash_dev *nand_get_flash_type(struct mtd_info *mtd,
3614                                                  struct nand_chip *chip,
3615                                                  int *maf_id, int *dev_id,
3616                                                  struct nand_flash_dev *type)
3617{
3618        int busw;
3619        int i, maf_idx;
3620        u8 id_data[8];
3621
3622        /* Select the device */
3623        chip->select_chip(mtd, 0);
3624
3625        /*
3626         * Reset the chip, required by some chips (e.g. Micron MT29FxGxxxxx)
3627         * after power-up.
3628         */
3629        chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
3630
3631        /* Send the command for reading device ID */
3632        chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1);
3633
3634        /* Read manufacturer and device IDs */
3635        *maf_id = chip->read_byte(mtd);
3636        *dev_id = chip->read_byte(mtd);
3637
3638        /*
3639         * Try again to make sure, as some systems the bus-hold or other
3640         * interface concerns can cause random data which looks like a
3641         * possibly credible NAND flash to appear. If the two results do
3642         * not match, ignore the device completely.
3643         */
3644
3645        chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1);
3646
3647        /* Read entire ID string */
3648        for (i = 0; i < 8; i++)
3649                id_data[i] = chip->read_byte(mtd);
3650
3651        if (id_data[0] != *maf_id || id_data[1] != *dev_id) {
3652                pr_info("second ID read did not match %02x,%02x against %02x,%02x\n",
3653                        *maf_id, *dev_id, id_data[0], id_data[1]);
3654                return ERR_PTR(-ENODEV);
3655        }
3656
3657        if (!type)
3658                type = nand_flash_ids;
3659
3660        for (; type->name != NULL; type++) {
3661                if (is_full_id_nand(type)) {
3662                        if (find_full_id_nand(mtd, chip, type, id_data, &busw))
3663                                goto ident_done;
3664                } else if (*dev_id == type->dev_id) {
3665                                break;
3666                }
3667        }
3668
3669        chip->onfi_version = 0;
3670        if (!type->name || !type->pagesize) {
3671                /* Check if the chip is ONFI compliant */
3672                if (nand_flash_detect_onfi(mtd, chip, &busw))
3673                        goto ident_done;
3674
3675                /* Check if the chip is JEDEC compliant */
3676                if (nand_flash_detect_jedec(mtd, chip, &busw))
3677                        goto ident_done;
3678        }
3679
3680        if (!type->name)
3681                return ERR_PTR(-ENODEV);
3682
3683        if (!mtd->name)
3684                mtd->name = type->name;
3685
3686        chip->chipsize = (uint64_t)type->chipsize << 20;
3687
3688        if (!type->pagesize && chip->init_size) {
3689                /* Set the pagesize, oobsize, erasesize by the driver */
3690                busw = chip->init_size(mtd, chip, id_data);
3691        } else if (!type->pagesize) {
3692                /* Decode parameters from extended ID */
3693                nand_decode_ext_id(mtd, chip, id_data, &busw);
3694        } else {
3695                nand_decode_id(mtd, chip, type, id_data, &busw);
3696        }
3697        /* Get chip options */
3698        chip->options |= type->options;
3699
3700        /*
3701         * Check if chip is not a Samsung device. Do not clear the
3702         * options for chips which do not have an extended id.
3703         */
3704        if (*maf_id != NAND_MFR_SAMSUNG && !type->pagesize)
3705                chip->options &= ~NAND_SAMSUNG_LP_OPTIONS;
3706ident_done:
3707
3708        /* Try to identify manufacturer */
3709        for (maf_idx = 0; nand_manuf_ids[maf_idx].id != 0x0; maf_idx++) {
3710                if (nand_manuf_ids[maf_idx].id == *maf_id)
3711                        break;
3712        }
3713
3714        if (chip->options & NAND_BUSWIDTH_AUTO) {
3715                WARN_ON(chip->options & NAND_BUSWIDTH_16);
3716                chip->options |= busw;
3717                nand_set_defaults(chip, busw);
3718        } else if (busw != (chip->options & NAND_BUSWIDTH_16)) {
3719                /*
3720                 * Check, if buswidth is correct. Hardware drivers should set
3721                 * chip correct!
3722                 */
3723                pr_info("device found, Manufacturer ID: 0x%02x, Chip ID: 0x%02x\n",
3724                        *maf_id, *dev_id);
3725                pr_info("%s %s\n", nand_manuf_ids[maf_idx].name, mtd->name);
3726                pr_warn("bus width %d instead %d bit\n",
3727                           (chip->options & NAND_BUSWIDTH_16) ? 16 : 8,
3728                           busw ? 16 : 8);
3729                return ERR_PTR(-EINVAL);
3730        }
3731
3732        nand_decode_bbm_options(mtd, chip, id_data);
3733
3734        /* Calculate the address shift from the page size */
3735        chip->page_shift = ffs(mtd->writesize) - 1;
3736        /* Convert chipsize to number of pages per chip -1 */
3737        chip->pagemask = (chip->chipsize >> chip->page_shift) - 1;
3738
3739        chip->bbt_erase_shift = chip->phys_erase_shift =
3740                ffs(mtd->erasesize) - 1;
3741        if (chip->chipsize & 0xffffffff)
3742                chip->chip_shift = ffs((unsigned)chip->chipsize) - 1;
3743        else {
3744                chip->chip_shift = ffs((unsigned)(chip->chipsize >> 32));
3745                chip->chip_shift += 32 - 1;
3746        }
3747
3748        chip->badblockbits = 8;
3749        chip->erase = single_erase;
3750
3751        /* Do not replace user supplied command function! */
3752        if (mtd->writesize > 512 && chip->cmdfunc == nand_command)
3753                chip->cmdfunc = nand_command_lp;
3754
3755        pr_info("device found, Manufacturer ID: 0x%02x, Chip ID: 0x%02x\n",
3756                *maf_id, *dev_id);
3757
3758        if (chip->onfi_version)
3759                pr_info("%s %s\n", nand_manuf_ids[maf_idx].name,
3760                                chip->onfi_params.model);
3761        else if (chip->jedec_version)
3762                pr_info("%s %s\n", nand_manuf_ids[maf_idx].name,
3763                                chip->jedec_params.model);
3764        else
3765                pr_info("%s %s\n", nand_manuf_ids[maf_idx].name,
3766                                type->name);
3767
3768        pr_info("%d MiB, %s, erase size: %d KiB, page size: %d, OOB size: %d\n",
3769                (int)(chip->chipsize >> 20), nand_is_slc(chip) ? "SLC" : "MLC",
3770                mtd->erasesize >> 10, mtd->writesize, mtd->oobsize);
3771        return type;
3772}
3773
3774/**
3775 * nand_scan_ident - [NAND Interface] Scan for the NAND device
3776 * @mtd: MTD device structure
3777 * @maxchips: number of chips to scan for
3778 * @table: alternative NAND ID table
3779 *
3780 * This is the first phase of the normal nand_scan() function. It reads the
3781 * flash ID and sets up MTD fields accordingly.
3782 *
3783 * The mtd->owner field must be set to the module of the caller.
3784 */
3785int nand_scan_ident(struct mtd_info *mtd, int maxchips,
3786                    struct nand_flash_dev *table)
3787{
3788        int i, nand_maf_id, nand_dev_id;
3789        struct nand_chip *chip = mtd->priv;
3790        struct nand_flash_dev *type;
3791
3792        /* Set the default functions */
3793        nand_set_defaults(chip, chip->options & NAND_BUSWIDTH_16);
3794
3795        /* Read the flash type */
3796        type = nand_get_flash_type(mtd, chip, &nand_maf_id,
3797                                   &nand_dev_id, table);
3798
3799        if (IS_ERR(type)) {
3800                if (!(chip->options & NAND_SCAN_SILENT_NODEV))
3801                        pr_warn("No NAND device found\n");
3802                chip->select_chip(mtd, -1);
3803                return PTR_ERR(type);
3804        }
3805
3806        chip->select_chip(mtd, -1);
3807
3808        /* Check for a chip array */
3809        for (i = 1; i < maxchips; i++) {
3810                chip->select_chip(mtd, i);
3811                /* See comment in nand_get_flash_type for reset */
3812                chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
3813                /* Send the command for reading device ID */
3814                chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1);
3815                /* Read manufacturer and device IDs */
3816                if (nand_maf_id != chip->read_byte(mtd) ||
3817                    nand_dev_id != chip->read_byte(mtd)) {
3818                        chip->select_chip(mtd, -1);
3819                        break;
3820                }
3821                chip->select_chip(mtd, -1);
3822        }
3823        if (i > 1)
3824                pr_info("%d chips detected\n", i);
3825
3826        /* Store the number of chips and calc total size for mtd */
3827        chip->numchips = i;
3828        mtd->size = i * chip->chipsize;
3829
3830        return 0;
3831}
3832EXPORT_SYMBOL(nand_scan_ident);
3833
3834/*
3835 * Check if the chip configuration meet the datasheet requirements.
3836
3837 * If our configuration corrects A bits per B bytes and the minimum
3838 * required correction level is X bits per Y bytes, then we must ensure
3839 * both of the following are true:
3840 *
3841 * (1) A / B >= X / Y
3842 * (2) A >= X
3843 *
3844 * Requirement (1) ensures we can correct for the required bitflip density.
3845 * Requirement (2) ensures we can correct even when all bitflips are clumped
3846 * in the same sector.
3847 */
3848static bool nand_ecc_strength_good(struct mtd_info *mtd)
3849{
3850        struct nand_chip *chip = mtd->priv;
3851        struct nand_ecc_ctrl *ecc = &chip->ecc;
3852        int corr, ds_corr;
3853
3854        if (ecc->size == 0 || chip->ecc_step_ds == 0)
3855                /* Not enough information */
3856                return true;
3857
3858        /*
3859         * We get the number of corrected bits per page to compare
3860         * the correction density.
3861         */
3862        corr = (mtd->writesize * ecc->strength) / ecc->size;
3863        ds_corr = (mtd->writesize * chip->ecc_strength_ds) / chip->ecc_step_ds;
3864
3865        return corr >= ds_corr && ecc->strength >= chip->ecc_strength_ds;
3866}
3867
3868/**
3869 * nand_scan_tail - [NAND Interface] Scan for the NAND device
3870 * @mtd: MTD device structure
3871 *
3872 * This is the second phase of the normal nand_scan() function. It fills out
3873 * all the uninitialized function pointers with the defaults and scans for a
3874 * bad block table if appropriate.
3875 */
3876int nand_scan_tail(struct mtd_info *mtd)
3877{
3878        int i;
3879        struct nand_chip *chip = mtd->priv;
3880        struct nand_ecc_ctrl *ecc = &chip->ecc;
3881        struct nand_buffers *nbuf;
3882
3883        /* New bad blocks should be marked in OOB, flash-based BBT, or both */
3884        BUG_ON((chip->bbt_options & NAND_BBT_NO_OOB_BBM) &&
3885                        !(chip->bbt_options & NAND_BBT_USE_FLASH));
3886
3887        if (!(chip->options & NAND_OWN_BUFFERS)) {
3888                nbuf = kzalloc(sizeof(*nbuf) + mtd->writesize
3889                                + mtd->oobsize * 3, GFP_KERNEL);
3890                if (!nbuf)
3891                        return -ENOMEM;
3892                nbuf->ecccalc = (uint8_t *)(nbuf + 1);
3893                nbuf->ecccode = nbuf->ecccalc + mtd->oobsize;
3894                nbuf->databuf = nbuf->ecccode + mtd->oobsize;
3895
3896                chip->buffers = nbuf;
3897        } else {
3898                if (!chip->buffers)
3899                        return -ENOMEM;
3900        }
3901
3902        /* Set the internal oob buffer location, just after the page data */
3903        chip->oob_poi = chip->buffers->databuf + mtd->writesize;
3904
3905        /*
3906         * If no default placement scheme is given, select an appropriate one.
3907         */
3908        if (!ecc->layout && (ecc->mode != NAND_ECC_SOFT_BCH)) {
3909                switch (mtd->oobsize) {
3910                case 8:
3911                        ecc->layout = &nand_oob_8;
3912                        break;
3913                case 16:
3914                        ecc->layout = &nand_oob_16;
3915                        break;
3916                case 64:
3917                        ecc->layout = &nand_oob_64;
3918                        break;
3919                case 128:
3920                        ecc->layout = &nand_oob_128;
3921                        break;
3922                default:
3923                        pr_warn("No oob scheme defined for oobsize %d\n",
3924                                   mtd->oobsize);
3925                        BUG();
3926                }
3927        }
3928
3929        if (!chip->write_page)
3930                chip->write_page = nand_write_page;
3931
3932        /*
3933         * Check ECC mode, default to software if 3byte/512byte hardware ECC is
3934         * selected and we have 256 byte pagesize fallback to software ECC
3935         */
3936
3937        switch (ecc->mode) {
3938        case NAND_ECC_HW_OOB_FIRST:
3939                /* Similar to NAND_ECC_HW, but a separate read_page handle */
3940                if (!ecc->calculate || !ecc->correct || !ecc->hwctl) {
3941                        pr_warn("No ECC functions supplied; hardware ECC not possible\n");
3942                        BUG();
3943                }
3944                if (!ecc->read_page)
3945                        ecc->read_page = nand_read_page_hwecc_oob_first;
3946
3947        case NAND_ECC_HW:
3948                /* Use standard hwecc read page function? */
3949                if (!ecc->read_page)
3950                        ecc->read_page = nand_read_page_hwecc;
3951                if (!ecc->write_page)
3952                        ecc->write_page = nand_write_page_hwecc;
3953                if (!ecc->read_page_raw)
3954                        ecc->read_page_raw = nand_read_page_raw;
3955                if (!ecc->write_page_raw)
3956                        ecc->write_page_raw = nand_write_page_raw;
3957                if (!ecc->read_oob)
3958                        ecc->read_oob = nand_read_oob_std;
3959                if (!ecc->write_oob)
3960                        ecc->write_oob = nand_write_oob_std;
3961                if (!ecc->read_subpage)
3962                        ecc->read_subpage = nand_read_subpage;
3963                if (!ecc->write_subpage)
3964                        ecc->write_subpage = nand_write_subpage_hwecc;
3965
3966        case NAND_ECC_HW_SYNDROME:
3967                if ((!ecc->calculate || !ecc->correct || !ecc->hwctl) &&
3968                    (!ecc->read_page ||
3969                     ecc->read_page == nand_read_page_hwecc ||
3970                     !ecc->write_page ||
3971                     ecc->write_page == nand_write_page_hwecc)) {
3972                        pr_warn("No ECC functions supplied; hardware ECC not possible\n");
3973                        BUG();
3974                }
3975                /* Use standard syndrome read/write page function? */
3976                if (!ecc->read_page)
3977                        ecc->read_page = nand_read_page_syndrome;
3978                if (!ecc->write_page)
3979                        ecc->write_page = nand_write_page_syndrome;
3980                if (!ecc->read_page_raw)
3981                        ecc->read_page_raw = nand_read_page_raw_syndrome;
3982                if (!ecc->write_page_raw)
3983                        ecc->write_page_raw = nand_write_page_raw_syndrome;
3984                if (!ecc->read_oob)
3985                        ecc->read_oob = nand_read_oob_syndrome;
3986                if (!ecc->write_oob)
3987                        ecc->write_oob = nand_write_oob_syndrome;
3988
3989                if (mtd->writesize >= ecc->size) {
3990                        if (!ecc->strength) {
3991                                pr_warn("Driver must set ecc.strength when using hardware ECC\n");
3992                                BUG();
3993                        }
3994                        break;
3995                }
3996                pr_warn("%d byte HW ECC not possible on %d byte page size, fallback to SW ECC\n",
3997                        ecc->size, mtd->writesize);
3998                ecc->mode = NAND_ECC_SOFT;
3999
4000        case NAND_ECC_SOFT:
4001                ecc->calculate = nand_calculate_ecc;
4002                ecc->correct = nand_correct_data;
4003                ecc->read_page = nand_read_page_swecc;
4004                ecc->read_subpage = nand_read_subpage;
4005                ecc->write_page = nand_write_page_swecc;
4006                ecc->read_page_raw = nand_read_page_raw;
4007                ecc->write_page_raw = nand_write_page_raw;
4008                ecc->read_oob = nand_read_oob_std;
4009                ecc->write_oob = nand_write_oob_std;
4010                if (!ecc->size)
4011                        ecc->size = 256;
4012                ecc->bytes = 3;
4013                ecc->strength = 1;
4014                break;
4015
4016        case NAND_ECC_SOFT_BCH:
4017                if (!mtd_nand_has_bch()) {
4018                        pr_warn("CONFIG_MTD_NAND_ECC_BCH not enabled\n");
4019                        BUG();
4020                }
4021                ecc->calculate = nand_bch_calculate_ecc;
4022                ecc->correct = nand_bch_correct_data;
4023                ecc->read_page = nand_read_page_swecc;
4024                ecc->read_subpage = nand_read_subpage;
4025                ecc->write_page = nand_write_page_swecc;
4026                ecc->read_page_raw = nand_read_page_raw;
4027                ecc->write_page_raw = nand_write_page_raw;
4028                ecc->read_oob = nand_read_oob_std;
4029                ecc->write_oob = nand_write_oob_std;
4030                /*
4031                 * Board driver should supply ecc.size and ecc.bytes values to
4032                 * select how many bits are correctable; see nand_bch_init()
4033                 * for details. Otherwise, default to 4 bits for large page
4034                 * devices.
4035                 */
4036                if (!ecc->size && (mtd->oobsize >= 64)) {
4037                        ecc->size = 512;
4038                        ecc->bytes = DIV_ROUND_UP(13 * ecc->strength, 8);
4039                }
4040                ecc->priv = nand_bch_init(mtd, ecc->size, ecc->bytes,
4041                                               &ecc->layout);
4042                if (!ecc->priv) {
4043                        pr_warn("BCH ECC initialization failed!\n");
4044                        BUG();
4045                }
4046                ecc->strength = ecc->bytes * 8 / fls(8 * ecc->size);
4047                break;
4048
4049        case NAND_ECC_NONE:
4050                pr_warn("NAND_ECC_NONE selected by board driver. This is not recommended!\n");
4051                ecc->read_page = nand_read_page_raw;
4052                ecc->write_page = nand_write_page_raw;
4053                ecc->read_oob = nand_read_oob_std;
4054                ecc->read_page_raw = nand_read_page_raw;
4055                ecc->write_page_raw = nand_write_page_raw;
4056                ecc->write_oob = nand_write_oob_std;
4057                ecc->size = mtd->writesize;
4058                ecc->bytes = 0;
4059                ecc->strength = 0;
4060                break;
4061
4062        default:
4063                pr_warn("Invalid NAND_ECC_MODE %d\n", ecc->mode);
4064                BUG();
4065        }
4066
4067        /* For many systems, the standard OOB write also works for raw */
4068        if (!ecc->read_oob_raw)
4069                ecc->read_oob_raw = ecc->read_oob;
4070        if (!ecc->write_oob_raw)
4071                ecc->write_oob_raw = ecc->write_oob;
4072
4073        /*
4074         * The number of bytes available for a client to place data into
4075         * the out of band area.
4076         */
4077        ecc->layout->oobavail = 0;
4078        for (i = 0; ecc->layout->oobfree[i].length
4079                        && i < ARRAY_SIZE(ecc->layout->oobfree); i++)
4080                ecc->layout->oobavail += ecc->layout->oobfree[i].length;
4081        mtd->oobavail = ecc->layout->oobavail;
4082
4083        /* ECC sanity check: warn if it's too weak */
4084        if (!nand_ecc_strength_good(mtd))
4085                pr_warn("WARNING: %s: the ECC used on your system is too weak compared to the one required by the NAND chip\n",
4086                        mtd->name);
4087
4088        /*
4089         * Set the number of read / write steps for one page depending on ECC
4090         * mode.
4091         */
4092        ecc->steps = mtd->writesize / ecc->size;
4093        if (ecc->steps * ecc->size != mtd->writesize) {
4094                pr_warn("Invalid ECC parameters\n");
4095                BUG();
4096        }
4097        ecc->total = ecc->steps * ecc->bytes;
4098
4099        /* Allow subpage writes up to ecc.steps. Not possible for MLC flash */
4100        if (!(chip->options & NAND_NO_SUBPAGE_WRITE) && nand_is_slc(chip)) {
4101                switch (ecc->steps) {
4102                case 2:
4103                        mtd->subpage_sft = 1;
4104                        break;
4105                case 4:
4106                case 8:
4107                case 16:
4108                        mtd->subpage_sft = 2;
4109                        break;
4110                }
4111        }
4112        chip->subpagesize = mtd->writesize >> mtd->subpage_sft;
4113
4114        /* Initialize state */
4115        chip->state = FL_READY;
4116
4117        /* Invalidate the pagebuffer reference */
4118        chip->pagebuf = -1;
4119
4120        /* Large page NAND with SOFT_ECC should support subpage reads */
4121        switch (ecc->mode) {
4122        case NAND_ECC_SOFT:
4123        case NAND_ECC_SOFT_BCH:
4124                if (chip->page_shift > 9)
4125                        chip->options |= NAND_SUBPAGE_READ;
4126                break;
4127
4128        default:
4129                break;
4130        }
4131
4132        /* Fill in remaining MTD driver data */
4133        mtd->type = nand_is_slc(chip) ? MTD_NANDFLASH : MTD_MLCNANDFLASH;
4134        mtd->flags = (chip->options & NAND_ROM) ? MTD_CAP_ROM :
4135                                                MTD_CAP_NANDFLASH;
4136        mtd->_erase = nand_erase;
4137        mtd->_point = NULL;
4138        mtd->_unpoint = NULL;
4139        mtd->_read = nand_read;
4140        mtd->_write = nand_write;
4141        mtd->_panic_write = panic_nand_write;
4142        mtd->_read_oob = nand_read_oob;
4143        mtd->_write_oob = nand_write_oob;
4144        mtd->_sync = nand_sync;
4145        mtd->_lock = NULL;
4146        mtd->_unlock = NULL;
4147        mtd->_suspend = nand_suspend;
4148        mtd->_resume = nand_resume;
4149        mtd->_block_isreserved = nand_block_isreserved;
4150        mtd->_block_isbad = nand_block_isbad;
4151        mtd->_block_markbad = nand_block_markbad;
4152        mtd->writebufsize = mtd->writesize;
4153
4154        /* propagate ecc info to mtd_info */
4155        mtd->ecclayout = ecc->layout;
4156        mtd->ecc_strength = ecc->strength;
4157        mtd->ecc_step_size = ecc->size;
4158        /*
4159         * Initialize bitflip_threshold to its default prior scan_bbt() call.
4160         * scan_bbt() might invoke mtd_read(), thus bitflip_threshold must be
4161         * properly set.
4162         */
4163        if (!mtd->bitflip_threshold)
4164                mtd->bitflip_threshold = mtd->ecc_strength;
4165
4166        /* Check, if we should skip the bad block table scan */
4167        if (chip->options & NAND_SKIP_BBTSCAN)
4168                return 0;
4169
4170        /* Build bad block table */
4171        return chip->scan_bbt(mtd);
4172}
4173EXPORT_SYMBOL(nand_scan_tail);
4174
4175/*
4176 * is_module_text_address() isn't exported, and it's mostly a pointless
4177 * test if this is a module _anyway_ -- they'd have to try _really_ hard
4178 * to call us from in-kernel code if the core NAND support is modular.
4179 */
4180#ifdef MODULE
4181#define caller_is_module() (1)
4182#else
4183#define caller_is_module() \
4184        is_module_text_address((unsigned long)__builtin_return_address(0))
4185#endif
4186
4187/**
4188 * nand_scan - [NAND Interface] Scan for the NAND device
4189 * @mtd: MTD device structure
4190 * @maxchips: number of chips to scan for
4191 *
4192 * This fills out all the uninitialized function pointers with the defaults.
4193 * The flash ID is read and the mtd/chip structures are filled with the
4194 * appropriate values. The mtd->owner field must be set to the module of the
4195 * caller.
4196 */
4197int nand_scan(struct mtd_info *mtd, int maxchips)
4198{
4199        int ret;
4200
4201        /* Many callers got this wrong, so check for it for a while... */
4202        if (!mtd->owner && caller_is_module()) {
4203                pr_crit("%s called with NULL mtd->owner!\n", __func__);
4204                BUG();
4205        }
4206
4207        ret = nand_scan_ident(mtd, maxchips, NULL);
4208        if (!ret)
4209                ret = nand_scan_tail(mtd);
4210        return ret;
4211}
4212EXPORT_SYMBOL(nand_scan);
4213
4214/**
4215 * nand_release - [NAND Interface] Free resources held by the NAND device
4216 * @mtd: MTD device structure
4217 */
4218void nand_release(struct mtd_info *mtd)
4219{
4220        struct nand_chip *chip = mtd->priv;
4221
4222        if (chip->ecc.mode == NAND_ECC_SOFT_BCH)
4223                nand_bch_free((struct nand_bch_control *)chip->ecc.priv);
4224
4225        mtd_device_unregister(mtd);
4226
4227        /* Free bad block table memory */
4228        kfree(chip->bbt);
4229        if (!(chip->options & NAND_OWN_BUFFERS))
4230                kfree(chip->buffers);
4231
4232        /* Free bad block descriptor memory */
4233        if (chip->badblock_pattern && chip->badblock_pattern->options
4234                        & NAND_BBT_DYNAMICSTRUCT)
4235                kfree(chip->badblock_pattern);
4236}
4237EXPORT_SYMBOL_GPL(nand_release);
4238
4239static int __init nand_base_init(void)
4240{
4241        led_trigger_register_simple("nand-disk", &nand_led_trigger);
4242        return 0;
4243}
4244
4245static void __exit nand_base_exit(void)
4246{
4247        led_trigger_unregister_simple(nand_led_trigger);
4248}
4249
4250module_init(nand_base_init);
4251module_exit(nand_base_exit);
4252
4253MODULE_LICENSE("GPL");
4254MODULE_AUTHOR("Steven J. Hill <sjhill@realitydiluted.com>");
4255MODULE_AUTHOR("Thomas Gleixner <tglx@linutronix.de>");
4256MODULE_DESCRIPTION("Generic NAND flash driver code");
4257