linux/drivers/net/ethernet/intel/fm10k/fm10k_pf.c
<<
>>
Prefs
   1/* Intel Ethernet Switch Host Interface Driver
   2 * Copyright(c) 2013 - 2014 Intel Corporation.
   3 *
   4 * This program is free software; you can redistribute it and/or modify it
   5 * under the terms and conditions of the GNU General Public License,
   6 * version 2, as published by the Free Software Foundation.
   7 *
   8 * This program is distributed in the hope it will be useful, but WITHOUT
   9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  10 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  11 * more details.
  12 *
  13 * The full GNU General Public License is included in this distribution in
  14 * the file called "COPYING".
  15 *
  16 * Contact Information:
  17 * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
  18 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
  19 */
  20
  21#include "fm10k_pf.h"
  22#include "fm10k_vf.h"
  23
  24/**
  25 *  fm10k_reset_hw_pf - PF hardware reset
  26 *  @hw: pointer to hardware structure
  27 *
  28 *  This function should return the hardware to a state similar to the
  29 *  one it is in after being powered on.
  30 **/
  31static s32 fm10k_reset_hw_pf(struct fm10k_hw *hw)
  32{
  33        s32 err;
  34        u32 reg;
  35        u16 i;
  36
  37        /* Disable interrupts */
  38        fm10k_write_reg(hw, FM10K_EIMR, FM10K_EIMR_DISABLE(ALL));
  39
  40        /* Lock ITR2 reg 0 into itself and disable interrupt moderation */
  41        fm10k_write_reg(hw, FM10K_ITR2(0), 0);
  42        fm10k_write_reg(hw, FM10K_INT_CTRL, 0);
  43
  44        /* We assume here Tx and Rx queue 0 are owned by the PF */
  45
  46        /* Shut off VF access to their queues forcing them to queue 0 */
  47        for (i = 0; i < FM10K_TQMAP_TABLE_SIZE; i++) {
  48                fm10k_write_reg(hw, FM10K_TQMAP(i), 0);
  49                fm10k_write_reg(hw, FM10K_RQMAP(i), 0);
  50        }
  51
  52        /* shut down all rings */
  53        err = fm10k_disable_queues_generic(hw, FM10K_MAX_QUEUES);
  54        if (err)
  55                return err;
  56
  57        /* Verify that DMA is no longer active */
  58        reg = fm10k_read_reg(hw, FM10K_DMA_CTRL);
  59        if (reg & (FM10K_DMA_CTRL_TX_ACTIVE | FM10K_DMA_CTRL_RX_ACTIVE))
  60                return FM10K_ERR_DMA_PENDING;
  61
  62        /* Inititate data path reset */
  63        reg |= FM10K_DMA_CTRL_DATAPATH_RESET;
  64        fm10k_write_reg(hw, FM10K_DMA_CTRL, reg);
  65
  66        /* Flush write and allow 100us for reset to complete */
  67        fm10k_write_flush(hw);
  68        udelay(FM10K_RESET_TIMEOUT);
  69
  70        /* Verify we made it out of reset */
  71        reg = fm10k_read_reg(hw, FM10K_IP);
  72        if (!(reg & FM10K_IP_NOTINRESET))
  73                err = FM10K_ERR_RESET_FAILED;
  74
  75        return err;
  76}
  77
  78/**
  79 *  fm10k_is_ari_hierarchy_pf - Indicate ARI hierarchy support
  80 *  @hw: pointer to hardware structure
  81 *
  82 *  Looks at the ARI hierarchy bit to determine whether ARI is supported or not.
  83 **/
  84static bool fm10k_is_ari_hierarchy_pf(struct fm10k_hw *hw)
  85{
  86        u16 sriov_ctrl = fm10k_read_pci_cfg_word(hw, FM10K_PCIE_SRIOV_CTRL);
  87
  88        return !!(sriov_ctrl & FM10K_PCIE_SRIOV_CTRL_VFARI);
  89}
  90
  91/**
  92 *  fm10k_init_hw_pf - PF hardware initialization
  93 *  @hw: pointer to hardware structure
  94 *
  95 **/
  96static s32 fm10k_init_hw_pf(struct fm10k_hw *hw)
  97{
  98        u32 dma_ctrl, txqctl;
  99        u16 i;
 100
 101        /* Establish default VSI as valid */
 102        fm10k_write_reg(hw, FM10K_DGLORTDEC(fm10k_dglort_default), 0);
 103        fm10k_write_reg(hw, FM10K_DGLORTMAP(fm10k_dglort_default),
 104                        FM10K_DGLORTMAP_ANY);
 105
 106        /* Invalidate all other GLORT entries */
 107        for (i = 1; i < FM10K_DGLORT_COUNT; i++)
 108                fm10k_write_reg(hw, FM10K_DGLORTMAP(i), FM10K_DGLORTMAP_NONE);
 109
 110        /* reset ITR2(0) to point to itself */
 111        fm10k_write_reg(hw, FM10K_ITR2(0), 0);
 112
 113        /* reset VF ITR2(0) to point to 0 avoid PF registers */
 114        fm10k_write_reg(hw, FM10K_ITR2(FM10K_ITR_REG_COUNT_PF), 0);
 115
 116        /* loop through all PF ITR2 registers pointing them to the previous */
 117        for (i = 1; i < FM10K_ITR_REG_COUNT_PF; i++)
 118                fm10k_write_reg(hw, FM10K_ITR2(i), i - 1);
 119
 120        /* Enable interrupt moderator if not already enabled */
 121        fm10k_write_reg(hw, FM10K_INT_CTRL, FM10K_INT_CTRL_ENABLEMODERATOR);
 122
 123        /* compute the default txqctl configuration */
 124        txqctl = FM10K_TXQCTL_PF | FM10K_TXQCTL_UNLIMITED_BW |
 125                 (hw->mac.default_vid << FM10K_TXQCTL_VID_SHIFT);
 126
 127        for (i = 0; i < FM10K_MAX_QUEUES; i++) {
 128                /* configure rings for 256 Queue / 32 Descriptor cache mode */
 129                fm10k_write_reg(hw, FM10K_TQDLOC(i),
 130                                (i * FM10K_TQDLOC_BASE_32_DESC) |
 131                                FM10K_TQDLOC_SIZE_32_DESC);
 132                fm10k_write_reg(hw, FM10K_TXQCTL(i), txqctl);
 133
 134                /* configure rings to provide TPH processing hints */
 135                fm10k_write_reg(hw, FM10K_TPH_TXCTRL(i),
 136                                FM10K_TPH_TXCTRL_DESC_TPHEN |
 137                                FM10K_TPH_TXCTRL_DESC_RROEN |
 138                                FM10K_TPH_TXCTRL_DESC_WROEN |
 139                                FM10K_TPH_TXCTRL_DATA_RROEN);
 140                fm10k_write_reg(hw, FM10K_TPH_RXCTRL(i),
 141                                FM10K_TPH_RXCTRL_DESC_TPHEN |
 142                                FM10K_TPH_RXCTRL_DESC_RROEN |
 143                                FM10K_TPH_RXCTRL_DATA_WROEN |
 144                                FM10K_TPH_RXCTRL_HDR_WROEN);
 145        }
 146
 147        /* set max hold interval to align with 1.024 usec in all modes */
 148        switch (hw->bus.speed) {
 149        case fm10k_bus_speed_2500:
 150                dma_ctrl = FM10K_DMA_CTRL_MAX_HOLD_1US_GEN1;
 151                break;
 152        case fm10k_bus_speed_5000:
 153                dma_ctrl = FM10K_DMA_CTRL_MAX_HOLD_1US_GEN2;
 154                break;
 155        case fm10k_bus_speed_8000:
 156                dma_ctrl = FM10K_DMA_CTRL_MAX_HOLD_1US_GEN3;
 157                break;
 158        default:
 159                dma_ctrl = 0;
 160                break;
 161        }
 162
 163        /* Configure TSO flags */
 164        fm10k_write_reg(hw, FM10K_DTXTCPFLGL, FM10K_TSO_FLAGS_LOW);
 165        fm10k_write_reg(hw, FM10K_DTXTCPFLGH, FM10K_TSO_FLAGS_HI);
 166
 167        /* Enable DMA engine
 168         * Set Rx Descriptor size to 32
 169         * Set Minimum MSS to 64
 170         * Set Maximum number of Rx queues to 256 / 32 Descriptor
 171         */
 172        dma_ctrl |= FM10K_DMA_CTRL_TX_ENABLE | FM10K_DMA_CTRL_RX_ENABLE |
 173                    FM10K_DMA_CTRL_RX_DESC_SIZE | FM10K_DMA_CTRL_MINMSS_64 |
 174                    FM10K_DMA_CTRL_32_DESC;
 175
 176        fm10k_write_reg(hw, FM10K_DMA_CTRL, dma_ctrl);
 177
 178        /* record maximum queue count, we limit ourselves to 128 */
 179        hw->mac.max_queues = FM10K_MAX_QUEUES_PF;
 180
 181        /* We support either 64 VFs or 7 VFs depending on if we have ARI */
 182        hw->iov.total_vfs = fm10k_is_ari_hierarchy_pf(hw) ? 64 : 7;
 183
 184        return 0;
 185}
 186
 187/**
 188 *  fm10k_is_slot_appropriate_pf - Indicate appropriate slot for this SKU
 189 *  @hw: pointer to hardware structure
 190 *
 191 *  Looks at the PCIe bus info to confirm whether or not this slot can support
 192 *  the necessary bandwidth for this device.
 193 **/
 194static bool fm10k_is_slot_appropriate_pf(struct fm10k_hw *hw)
 195{
 196        return (hw->bus.speed == hw->bus_caps.speed) &&
 197               (hw->bus.width == hw->bus_caps.width);
 198}
 199
 200/**
 201 *  fm10k_update_vlan_pf - Update status of VLAN ID in VLAN filter table
 202 *  @hw: pointer to hardware structure
 203 *  @vid: VLAN ID to add to table
 204 *  @vsi: Index indicating VF ID or PF ID in table
 205 *  @set: Indicates if this is a set or clear operation
 206 *
 207 *  This function adds or removes the corresponding VLAN ID from the VLAN
 208 *  filter table for the corresponding function.  In addition to the
 209 *  standard set/clear that supports one bit a multi-bit write is
 210 *  supported to set 64 bits at a time.
 211 **/
 212static s32 fm10k_update_vlan_pf(struct fm10k_hw *hw, u32 vid, u8 vsi, bool set)
 213{
 214        u32 vlan_table, reg, mask, bit, len;
 215
 216        /* verify the VSI index is valid */
 217        if (vsi > FM10K_VLAN_TABLE_VSI_MAX)
 218                return FM10K_ERR_PARAM;
 219
 220        /* VLAN multi-bit write:
 221         * The multi-bit write has several parts to it.
 222         *    3                   2                   1                   0
 223         *  1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0
 224         * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 225         * | RSVD0 |         Length        |C|RSVD0|        VLAN ID        |
 226         * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 227         *
 228         * VLAN ID: Vlan Starting value
 229         * RSVD0: Reserved section, must be 0
 230         * C: Flag field, 0 is set, 1 is clear (Used in VF VLAN message)
 231         * Length: Number of times to repeat the bit being set
 232         */
 233        len = vid >> 16;
 234        vid = (vid << 17) >> 17;
 235
 236        /* verify the reserved 0 fields are 0 */
 237        if (len >= FM10K_VLAN_TABLE_VID_MAX ||
 238            vid >= FM10K_VLAN_TABLE_VID_MAX)
 239                return FM10K_ERR_PARAM;
 240
 241        /* Loop through the table updating all required VLANs */
 242        for (reg = FM10K_VLAN_TABLE(vsi, vid / 32), bit = vid % 32;
 243             len < FM10K_VLAN_TABLE_VID_MAX;
 244             len -= 32 - bit, reg++, bit = 0) {
 245                /* record the initial state of the register */
 246                vlan_table = fm10k_read_reg(hw, reg);
 247
 248                /* truncate mask if we are at the start or end of the run */
 249                mask = (~(u32)0 >> ((len < 31) ? 31 - len : 0)) << bit;
 250
 251                /* make necessary modifications to the register */
 252                mask &= set ? ~vlan_table : vlan_table;
 253                if (mask)
 254                        fm10k_write_reg(hw, reg, vlan_table ^ mask);
 255        }
 256
 257        return 0;
 258}
 259
 260/**
 261 *  fm10k_read_mac_addr_pf - Read device MAC address
 262 *  @hw: pointer to the HW structure
 263 *
 264 *  Reads the device MAC address from the SM_AREA and stores the value.
 265 **/
 266static s32 fm10k_read_mac_addr_pf(struct fm10k_hw *hw)
 267{
 268        u8 perm_addr[ETH_ALEN];
 269        u32 serial_num;
 270        int i;
 271
 272        serial_num = fm10k_read_reg(hw, FM10K_SM_AREA(1));
 273
 274        /* last byte should be all 1's */
 275        if ((~serial_num) << 24)
 276                return  FM10K_ERR_INVALID_MAC_ADDR;
 277
 278        perm_addr[0] = (u8)(serial_num >> 24);
 279        perm_addr[1] = (u8)(serial_num >> 16);
 280        perm_addr[2] = (u8)(serial_num >> 8);
 281
 282        serial_num = fm10k_read_reg(hw, FM10K_SM_AREA(0));
 283
 284        /* first byte should be all 1's */
 285        if ((~serial_num) >> 24)
 286                return  FM10K_ERR_INVALID_MAC_ADDR;
 287
 288        perm_addr[3] = (u8)(serial_num >> 16);
 289        perm_addr[4] = (u8)(serial_num >> 8);
 290        perm_addr[5] = (u8)(serial_num);
 291
 292        for (i = 0; i < ETH_ALEN; i++) {
 293                hw->mac.perm_addr[i] = perm_addr[i];
 294                hw->mac.addr[i] = perm_addr[i];
 295        }
 296
 297        return 0;
 298}
 299
 300/**
 301 *  fm10k_glort_valid_pf - Validate that the provided glort is valid
 302 *  @hw: pointer to the HW structure
 303 *  @glort: base glort to be validated
 304 *
 305 *  This function will return an error if the provided glort is invalid
 306 **/
 307bool fm10k_glort_valid_pf(struct fm10k_hw *hw, u16 glort)
 308{
 309        glort &= hw->mac.dglort_map >> FM10K_DGLORTMAP_MASK_SHIFT;
 310
 311        return glort == (hw->mac.dglort_map & FM10K_DGLORTMAP_NONE);
 312}
 313
 314/**
 315 *  fm10k_update_uc_addr_pf - Update device unicast addresss
 316 *  @hw: pointer to the HW structure
 317 *  @glort: base resource tag for this request
 318 *  @mac: MAC address to add/remove from table
 319 *  @vid: VLAN ID to add/remove from table
 320 *  @add: Indicates if this is an add or remove operation
 321 *  @flags: flags field to indicate add and secure
 322 *
 323 *  This function generates a message to the Switch API requesting
 324 *  that the given logical port add/remove the given L2 MAC/VLAN address.
 325 **/
 326static s32 fm10k_update_xc_addr_pf(struct fm10k_hw *hw, u16 glort,
 327                                   const u8 *mac, u16 vid, bool add, u8 flags)
 328{
 329        struct fm10k_mbx_info *mbx = &hw->mbx;
 330        struct fm10k_mac_update mac_update;
 331        u32 msg[5];
 332
 333        /* if glort is not valid return error */
 334        if (!fm10k_glort_valid_pf(hw, glort))
 335                return FM10K_ERR_PARAM;
 336
 337        /* drop upper 4 bits of VLAN ID */
 338        vid = (vid << 4) >> 4;
 339
 340        /* record fields */
 341        mac_update.mac_lower = cpu_to_le32(((u32)mac[2] << 24) |
 342                                                 ((u32)mac[3] << 16) |
 343                                                 ((u32)mac[4] << 8) |
 344                                                 ((u32)mac[5]));
 345        mac_update.mac_upper = cpu_to_le16(((u32)mac[0] << 8) |
 346                                                 ((u32)mac[1]));
 347        mac_update.vlan = cpu_to_le16(vid);
 348        mac_update.glort = cpu_to_le16(glort);
 349        mac_update.action = add ? 0 : 1;
 350        mac_update.flags = flags;
 351
 352        /* populate mac_update fields */
 353        fm10k_tlv_msg_init(msg, FM10K_PF_MSG_ID_UPDATE_MAC_FWD_RULE);
 354        fm10k_tlv_attr_put_le_struct(msg, FM10K_PF_ATTR_ID_MAC_UPDATE,
 355                                     &mac_update, sizeof(mac_update));
 356
 357        /* load onto outgoing mailbox */
 358        return mbx->ops.enqueue_tx(hw, mbx, msg);
 359}
 360
 361/**
 362 *  fm10k_update_uc_addr_pf - Update device unicast addresss
 363 *  @hw: pointer to the HW structure
 364 *  @glort: base resource tag for this request
 365 *  @mac: MAC address to add/remove from table
 366 *  @vid: VLAN ID to add/remove from table
 367 *  @add: Indicates if this is an add or remove operation
 368 *  @flags: flags field to indicate add and secure
 369 *
 370 *  This function is used to add or remove unicast addresses for
 371 *  the PF.
 372 **/
 373static s32 fm10k_update_uc_addr_pf(struct fm10k_hw *hw, u16 glort,
 374                                   const u8 *mac, u16 vid, bool add, u8 flags)
 375{
 376        /* verify MAC address is valid */
 377        if (!is_valid_ether_addr(mac))
 378                return FM10K_ERR_PARAM;
 379
 380        return fm10k_update_xc_addr_pf(hw, glort, mac, vid, add, flags);
 381}
 382
 383/**
 384 *  fm10k_update_mc_addr_pf - Update device multicast addresses
 385 *  @hw: pointer to the HW structure
 386 *  @glort: base resource tag for this request
 387 *  @mac: MAC address to add/remove from table
 388 *  @vid: VLAN ID to add/remove from table
 389 *  @add: Indicates if this is an add or remove operation
 390 *
 391 *  This function is used to add or remove multicast MAC addresses for
 392 *  the PF.
 393 **/
 394static s32 fm10k_update_mc_addr_pf(struct fm10k_hw *hw, u16 glort,
 395                                   const u8 *mac, u16 vid, bool add)
 396{
 397        /* verify multicast address is valid */
 398        if (!is_multicast_ether_addr(mac))
 399                return FM10K_ERR_PARAM;
 400
 401        return fm10k_update_xc_addr_pf(hw, glort, mac, vid, add, 0);
 402}
 403
 404/**
 405 *  fm10k_update_xcast_mode_pf - Request update of multicast mode
 406 *  @hw: pointer to hardware structure
 407 *  @glort: base resource tag for this request
 408 *  @mode: integer value indicating mode being requested
 409 *
 410 *  This function will attempt to request a higher mode for the port
 411 *  so that it can enable either multicast, multicast promiscuous, or
 412 *  promiscuous mode of operation.
 413 **/
 414static s32 fm10k_update_xcast_mode_pf(struct fm10k_hw *hw, u16 glort, u8 mode)
 415{
 416        struct fm10k_mbx_info *mbx = &hw->mbx;
 417        u32 msg[3], xcast_mode;
 418
 419        if (mode > FM10K_XCAST_MODE_NONE)
 420                return FM10K_ERR_PARAM;
 421        /* if glort is not valid return error */
 422        if (!fm10k_glort_valid_pf(hw, glort))
 423                return FM10K_ERR_PARAM;
 424
 425        /* write xcast mode as a single u32 value,
 426         * lower 16 bits: glort
 427         * upper 16 bits: mode
 428         */
 429        xcast_mode = ((u32)mode << 16) | glort;
 430
 431        /* generate message requesting to change xcast mode */
 432        fm10k_tlv_msg_init(msg, FM10K_PF_MSG_ID_XCAST_MODES);
 433        fm10k_tlv_attr_put_u32(msg, FM10K_PF_ATTR_ID_XCAST_MODE, xcast_mode);
 434
 435        /* load onto outgoing mailbox */
 436        return mbx->ops.enqueue_tx(hw, mbx, msg);
 437}
 438
 439/**
 440 *  fm10k_update_int_moderator_pf - Update interrupt moderator linked list
 441 *  @hw: pointer to hardware structure
 442 *
 443 *  This function walks through the MSI-X vector table to determine the
 444 *  number of active interrupts and based on that information updates the
 445 *  interrupt moderator linked list.
 446 **/
 447static void fm10k_update_int_moderator_pf(struct fm10k_hw *hw)
 448{
 449        u32 i;
 450
 451        /* Disable interrupt moderator */
 452        fm10k_write_reg(hw, FM10K_INT_CTRL, 0);
 453
 454        /* loop through PF from last to first looking enabled vectors */
 455        for (i = FM10K_ITR_REG_COUNT_PF - 1; i; i--) {
 456                if (!fm10k_read_reg(hw, FM10K_MSIX_VECTOR_MASK(i)))
 457                        break;
 458        }
 459
 460        /* always reset VFITR2[0] to point to last enabled PF vector*/
 461        fm10k_write_reg(hw, FM10K_ITR2(FM10K_ITR_REG_COUNT_PF), i);
 462
 463        /* reset ITR2[0] to point to last enabled PF vector */
 464        if (!hw->iov.num_vfs)
 465                fm10k_write_reg(hw, FM10K_ITR2(0), i);
 466
 467        /* Enable interrupt moderator */
 468        fm10k_write_reg(hw, FM10K_INT_CTRL, FM10K_INT_CTRL_ENABLEMODERATOR);
 469}
 470
 471/**
 472 *  fm10k_update_lport_state_pf - Notify the switch of a change in port state
 473 *  @hw: pointer to the HW structure
 474 *  @glort: base resource tag for this request
 475 *  @count: number of logical ports being updated
 476 *  @enable: boolean value indicating enable or disable
 477 *
 478 *  This function is used to add/remove a logical port from the switch.
 479 **/
 480static s32 fm10k_update_lport_state_pf(struct fm10k_hw *hw, u16 glort,
 481                                       u16 count, bool enable)
 482{
 483        struct fm10k_mbx_info *mbx = &hw->mbx;
 484        u32 msg[3], lport_msg;
 485
 486        /* do nothing if we are being asked to create or destroy 0 ports */
 487        if (!count)
 488                return 0;
 489
 490        /* if glort is not valid return error */
 491        if (!fm10k_glort_valid_pf(hw, glort))
 492                return FM10K_ERR_PARAM;
 493
 494        /* construct the lport message from the 2 pieces of data we have */
 495        lport_msg = ((u32)count << 16) | glort;
 496
 497        /* generate lport create/delete message */
 498        fm10k_tlv_msg_init(msg, enable ? FM10K_PF_MSG_ID_LPORT_CREATE :
 499                                         FM10K_PF_MSG_ID_LPORT_DELETE);
 500        fm10k_tlv_attr_put_u32(msg, FM10K_PF_ATTR_ID_PORT, lport_msg);
 501
 502        /* load onto outgoing mailbox */
 503        return mbx->ops.enqueue_tx(hw, mbx, msg);
 504}
 505
 506/**
 507 *  fm10k_configure_dglort_map_pf - Configures GLORT entry and queues
 508 *  @hw: pointer to hardware structure
 509 *  @dglort: pointer to dglort configuration structure
 510 *
 511 *  Reads the configuration structure contained in dglort_cfg and uses
 512 *  that information to then populate a DGLORTMAP/DEC entry and the queues
 513 *  to which it has been assigned.
 514 **/
 515static s32 fm10k_configure_dglort_map_pf(struct fm10k_hw *hw,
 516                                         struct fm10k_dglort_cfg *dglort)
 517{
 518        u16 glort, queue_count, vsi_count, pc_count;
 519        u16 vsi, queue, pc, q_idx;
 520        u32 txqctl, dglortdec, dglortmap;
 521
 522        /* verify the dglort pointer */
 523        if (!dglort)
 524                return FM10K_ERR_PARAM;
 525
 526        /* verify the dglort values */
 527        if ((dglort->idx > 7) || (dglort->rss_l > 7) || (dglort->pc_l > 3) ||
 528            (dglort->vsi_l > 6) || (dglort->vsi_b > 64) ||
 529            (dglort->queue_l > 8) || (dglort->queue_b >= 256))
 530                return FM10K_ERR_PARAM;
 531
 532        /* determine count of VSIs and queues */
 533        queue_count = 1 << (dglort->rss_l + dglort->pc_l);
 534        vsi_count = 1 << (dglort->vsi_l + dglort->queue_l);
 535        glort = dglort->glort;
 536        q_idx = dglort->queue_b;
 537
 538        /* configure SGLORT for queues */
 539        for (vsi = 0; vsi < vsi_count; vsi++, glort++) {
 540                for (queue = 0; queue < queue_count; queue++, q_idx++) {
 541                        if (q_idx >= FM10K_MAX_QUEUES)
 542                                break;
 543
 544                        fm10k_write_reg(hw, FM10K_TX_SGLORT(q_idx), glort);
 545                        fm10k_write_reg(hw, FM10K_RX_SGLORT(q_idx), glort);
 546                }
 547        }
 548
 549        /* determine count of PCs and queues */
 550        queue_count = 1 << (dglort->queue_l + dglort->rss_l + dglort->vsi_l);
 551        pc_count = 1 << dglort->pc_l;
 552
 553        /* configure PC for Tx queues */
 554        for (pc = 0; pc < pc_count; pc++) {
 555                q_idx = pc + dglort->queue_b;
 556                for (queue = 0; queue < queue_count; queue++) {
 557                        if (q_idx >= FM10K_MAX_QUEUES)
 558                                break;
 559
 560                        txqctl = fm10k_read_reg(hw, FM10K_TXQCTL(q_idx));
 561                        txqctl &= ~FM10K_TXQCTL_PC_MASK;
 562                        txqctl |= pc << FM10K_TXQCTL_PC_SHIFT;
 563                        fm10k_write_reg(hw, FM10K_TXQCTL(q_idx), txqctl);
 564
 565                        q_idx += pc_count;
 566                }
 567        }
 568
 569        /* configure DGLORTDEC */
 570        dglortdec = ((u32)(dglort->rss_l) << FM10K_DGLORTDEC_RSSLENGTH_SHIFT) |
 571                    ((u32)(dglort->queue_b) << FM10K_DGLORTDEC_QBASE_SHIFT) |
 572                    ((u32)(dglort->pc_l) << FM10K_DGLORTDEC_PCLENGTH_SHIFT) |
 573                    ((u32)(dglort->vsi_b) << FM10K_DGLORTDEC_VSIBASE_SHIFT) |
 574                    ((u32)(dglort->vsi_l) << FM10K_DGLORTDEC_VSILENGTH_SHIFT) |
 575                    ((u32)(dglort->queue_l));
 576        if (dglort->inner_rss)
 577                dglortdec |=  FM10K_DGLORTDEC_INNERRSS_ENABLE;
 578
 579        /* configure DGLORTMAP */
 580        dglortmap = (dglort->idx == fm10k_dglort_default) ?
 581                        FM10K_DGLORTMAP_ANY : FM10K_DGLORTMAP_ZERO;
 582        dglortmap <<= dglort->vsi_l + dglort->queue_l + dglort->shared_l;
 583        dglortmap |= dglort->glort;
 584
 585        /* write values to hardware */
 586        fm10k_write_reg(hw, FM10K_DGLORTDEC(dglort->idx), dglortdec);
 587        fm10k_write_reg(hw, FM10K_DGLORTMAP(dglort->idx), dglortmap);
 588
 589        return 0;
 590}
 591
 592u16 fm10k_queues_per_pool(struct fm10k_hw *hw)
 593{
 594        u16 num_pools = hw->iov.num_pools;
 595
 596        return (num_pools > 32) ? 2 : (num_pools > 16) ? 4 : (num_pools > 8) ?
 597               8 : FM10K_MAX_QUEUES_POOL;
 598}
 599
 600u16 fm10k_vf_queue_index(struct fm10k_hw *hw, u16 vf_idx)
 601{
 602        u16 num_vfs = hw->iov.num_vfs;
 603        u16 vf_q_idx = FM10K_MAX_QUEUES;
 604
 605        vf_q_idx -= fm10k_queues_per_pool(hw) * (num_vfs - vf_idx);
 606
 607        return vf_q_idx;
 608}
 609
 610static u16 fm10k_vectors_per_pool(struct fm10k_hw *hw)
 611{
 612        u16 num_pools = hw->iov.num_pools;
 613
 614        return (num_pools > 32) ? 8 : (num_pools > 16) ? 16 :
 615               FM10K_MAX_VECTORS_POOL;
 616}
 617
 618static u16 fm10k_vf_vector_index(struct fm10k_hw *hw, u16 vf_idx)
 619{
 620        u16 vf_v_idx = FM10K_MAX_VECTORS_PF;
 621
 622        vf_v_idx += fm10k_vectors_per_pool(hw) * vf_idx;
 623
 624        return vf_v_idx;
 625}
 626
 627/**
 628 *  fm10k_iov_assign_resources_pf - Assign pool resources for virtualization
 629 *  @hw: pointer to the HW structure
 630 *  @num_vfs: number of VFs to be allocated
 631 *  @num_pools: number of virtualization pools to be allocated
 632 *
 633 *  Allocates queues and traffic classes to virtualization entities to prepare
 634 *  the PF for SR-IOV and VMDq
 635 **/
 636static s32 fm10k_iov_assign_resources_pf(struct fm10k_hw *hw, u16 num_vfs,
 637                                         u16 num_pools)
 638{
 639        u16 qmap_stride, qpp, vpp, vf_q_idx, vf_q_idx0, qmap_idx;
 640        u32 vid = hw->mac.default_vid << FM10K_TXQCTL_VID_SHIFT;
 641        int i, j;
 642
 643        /* hardware only supports up to 64 pools */
 644        if (num_pools > 64)
 645                return FM10K_ERR_PARAM;
 646
 647        /* the number of VFs cannot exceed the number of pools */
 648        if ((num_vfs > num_pools) || (num_vfs > hw->iov.total_vfs))
 649                return FM10K_ERR_PARAM;
 650
 651        /* record number of virtualization entities */
 652        hw->iov.num_vfs = num_vfs;
 653        hw->iov.num_pools = num_pools;
 654
 655        /* determine qmap offsets and counts */
 656        qmap_stride = (num_vfs > 8) ? 32 : 256;
 657        qpp = fm10k_queues_per_pool(hw);
 658        vpp = fm10k_vectors_per_pool(hw);
 659
 660        /* calculate starting index for queues */
 661        vf_q_idx = fm10k_vf_queue_index(hw, 0);
 662        qmap_idx = 0;
 663
 664        /* establish TCs with -1 credits and no quanta to prevent transmit */
 665        for (i = 0; i < num_vfs; i++) {
 666                fm10k_write_reg(hw, FM10K_TC_MAXCREDIT(i), 0);
 667                fm10k_write_reg(hw, FM10K_TC_RATE(i), 0);
 668                fm10k_write_reg(hw, FM10K_TC_CREDIT(i),
 669                                FM10K_TC_CREDIT_CREDIT_MASK);
 670        }
 671
 672        /* zero out all mbmem registers */
 673        for (i = FM10K_VFMBMEM_LEN * num_vfs; i--;)
 674                fm10k_write_reg(hw, FM10K_MBMEM(i), 0);
 675
 676        /* clear event notification of VF FLR */
 677        fm10k_write_reg(hw, FM10K_PFVFLREC(0), ~0);
 678        fm10k_write_reg(hw, FM10K_PFVFLREC(1), ~0);
 679
 680        /* loop through unallocated rings assigning them back to PF */
 681        for (i = FM10K_MAX_QUEUES_PF; i < vf_q_idx; i++) {
 682                fm10k_write_reg(hw, FM10K_TXDCTL(i), 0);
 683                fm10k_write_reg(hw, FM10K_TXQCTL(i), FM10K_TXQCTL_PF | vid);
 684                fm10k_write_reg(hw, FM10K_RXQCTL(i), FM10K_RXQCTL_PF);
 685        }
 686
 687        /* PF should have already updated VFITR2[0] */
 688
 689        /* update all ITR registers to flow to VFITR2[0] */
 690        for (i = FM10K_ITR_REG_COUNT_PF + 1; i < FM10K_ITR_REG_COUNT; i++) {
 691                if (!(i & (vpp - 1)))
 692                        fm10k_write_reg(hw, FM10K_ITR2(i), i - vpp);
 693                else
 694                        fm10k_write_reg(hw, FM10K_ITR2(i), i - 1);
 695        }
 696
 697        /* update PF ITR2[0] to reference the last vector */
 698        fm10k_write_reg(hw, FM10K_ITR2(0),
 699                        fm10k_vf_vector_index(hw, num_vfs - 1));
 700
 701        /* loop through rings populating rings and TCs */
 702        for (i = 0; i < num_vfs; i++) {
 703                /* record index for VF queue 0 for use in end of loop */
 704                vf_q_idx0 = vf_q_idx;
 705
 706                for (j = 0; j < qpp; j++, qmap_idx++, vf_q_idx++) {
 707                        /* assign VF and locked TC to queues */
 708                        fm10k_write_reg(hw, FM10K_TXDCTL(vf_q_idx), 0);
 709                        fm10k_write_reg(hw, FM10K_TXQCTL(vf_q_idx),
 710                                        (i << FM10K_TXQCTL_TC_SHIFT) | i |
 711                                        FM10K_TXQCTL_VF | vid);
 712                        fm10k_write_reg(hw, FM10K_RXDCTL(vf_q_idx),
 713                                        FM10K_RXDCTL_WRITE_BACK_MIN_DELAY |
 714                                        FM10K_RXDCTL_DROP_ON_EMPTY);
 715                        fm10k_write_reg(hw, FM10K_RXQCTL(vf_q_idx),
 716                                        FM10K_RXQCTL_VF |
 717                                        (i << FM10K_RXQCTL_VF_SHIFT));
 718
 719                        /* map queue pair to VF */
 720                        fm10k_write_reg(hw, FM10K_TQMAP(qmap_idx), vf_q_idx);
 721                        fm10k_write_reg(hw, FM10K_RQMAP(qmap_idx), vf_q_idx);
 722                }
 723
 724                /* repeat the first ring for all of the remaining VF rings */
 725                for (; j < qmap_stride; j++, qmap_idx++) {
 726                        fm10k_write_reg(hw, FM10K_TQMAP(qmap_idx), vf_q_idx0);
 727                        fm10k_write_reg(hw, FM10K_RQMAP(qmap_idx), vf_q_idx0);
 728                }
 729        }
 730
 731        /* loop through remaining indexes assigning all to queue 0 */
 732        while (qmap_idx < FM10K_TQMAP_TABLE_SIZE) {
 733                fm10k_write_reg(hw, FM10K_TQMAP(qmap_idx), 0);
 734                fm10k_write_reg(hw, FM10K_RQMAP(qmap_idx), 0);
 735                qmap_idx++;
 736        }
 737
 738        return 0;
 739}
 740
 741/**
 742 *  fm10k_iov_configure_tc_pf - Configure the shaping group for VF
 743 *  @hw: pointer to the HW structure
 744 *  @vf_idx: index of VF receiving GLORT
 745 *  @rate: Rate indicated in Mb/s
 746 *
 747 *  Configured the TC for a given VF to allow only up to a given number
 748 *  of Mb/s of outgoing Tx throughput.
 749 **/
 750static s32 fm10k_iov_configure_tc_pf(struct fm10k_hw *hw, u16 vf_idx, int rate)
 751{
 752        /* configure defaults */
 753        u32 interval = FM10K_TC_RATE_INTERVAL_4US_GEN3;
 754        u32 tc_rate = FM10K_TC_RATE_QUANTA_MASK;
 755
 756        /* verify vf is in range */
 757        if (vf_idx >= hw->iov.num_vfs)
 758                return FM10K_ERR_PARAM;
 759
 760        /* set interval to align with 4.096 usec in all modes */
 761        switch (hw->bus.speed) {
 762        case fm10k_bus_speed_2500:
 763                interval = FM10K_TC_RATE_INTERVAL_4US_GEN1;
 764                break;
 765        case fm10k_bus_speed_5000:
 766                interval = FM10K_TC_RATE_INTERVAL_4US_GEN2;
 767                break;
 768        default:
 769                break;
 770        }
 771
 772        if (rate) {
 773                if (rate > FM10K_VF_TC_MAX || rate < FM10K_VF_TC_MIN)
 774                        return FM10K_ERR_PARAM;
 775
 776                /* The quanta is measured in Bytes per 4.096 or 8.192 usec
 777                 * The rate is provided in Mbits per second
 778                 * To tralslate from rate to quanta we need to multiply the
 779                 * rate by 8.192 usec and divide by 8 bits/byte.  To avoid
 780                 * dealing with floating point we can round the values up
 781                 * to the nearest whole number ratio which gives us 128 / 125.
 782                 */
 783                tc_rate = (rate * 128) / 125;
 784
 785                /* try to keep the rate limiting accurate by increasing
 786                 * the number of credits and interval for rates less than 4Gb/s
 787                 */
 788                if (rate < 4000)
 789                        interval <<= 1;
 790                else
 791                        tc_rate >>= 1;
 792        }
 793
 794        /* update rate limiter with new values */
 795        fm10k_write_reg(hw, FM10K_TC_RATE(vf_idx), tc_rate | interval);
 796        fm10k_write_reg(hw, FM10K_TC_MAXCREDIT(vf_idx), FM10K_TC_MAXCREDIT_64K);
 797        fm10k_write_reg(hw, FM10K_TC_CREDIT(vf_idx), FM10K_TC_MAXCREDIT_64K);
 798
 799        return 0;
 800}
 801
 802/**
 803 *  fm10k_iov_assign_int_moderator_pf - Add VF interrupts to moderator list
 804 *  @hw: pointer to the HW structure
 805 *  @vf_idx: index of VF receiving GLORT
 806 *
 807 *  Update the interrupt moderator linked list to include any MSI-X
 808 *  interrupts which the VF has enabled in the MSI-X vector table.
 809 **/
 810static s32 fm10k_iov_assign_int_moderator_pf(struct fm10k_hw *hw, u16 vf_idx)
 811{
 812        u16 vf_v_idx, vf_v_limit, i;
 813
 814        /* verify vf is in range */
 815        if (vf_idx >= hw->iov.num_vfs)
 816                return FM10K_ERR_PARAM;
 817
 818        /* determine vector offset and count*/
 819        vf_v_idx = fm10k_vf_vector_index(hw, vf_idx);
 820        vf_v_limit = vf_v_idx + fm10k_vectors_per_pool(hw);
 821
 822        /* search for first vector that is not masked */
 823        for (i = vf_v_limit - 1; i > vf_v_idx; i--) {
 824                if (!fm10k_read_reg(hw, FM10K_MSIX_VECTOR_MASK(i)))
 825                        break;
 826        }
 827
 828        /* reset linked list so it now includes our active vectors */
 829        if (vf_idx == (hw->iov.num_vfs - 1))
 830                fm10k_write_reg(hw, FM10K_ITR2(0), i);
 831        else
 832                fm10k_write_reg(hw, FM10K_ITR2(vf_v_limit), i);
 833
 834        return 0;
 835}
 836
 837/**
 838 *  fm10k_iov_assign_default_mac_vlan_pf - Assign a MAC and VLAN to VF
 839 *  @hw: pointer to the HW structure
 840 *  @vf_info: pointer to VF information structure
 841 *
 842 *  Assign a MAC address and default VLAN to a VF and notify it of the update
 843 **/
 844static s32 fm10k_iov_assign_default_mac_vlan_pf(struct fm10k_hw *hw,
 845                                                struct fm10k_vf_info *vf_info)
 846{
 847        u16 qmap_stride, queues_per_pool, vf_q_idx, timeout, qmap_idx, i;
 848        u32 msg[4], txdctl, txqctl, tdbal = 0, tdbah = 0;
 849        s32 err = 0;
 850        u16 vf_idx, vf_vid;
 851
 852        /* verify vf is in range */
 853        if (!vf_info || vf_info->vf_idx >= hw->iov.num_vfs)
 854                return FM10K_ERR_PARAM;
 855
 856        /* determine qmap offsets and counts */
 857        qmap_stride = (hw->iov.num_vfs > 8) ? 32 : 256;
 858        queues_per_pool = fm10k_queues_per_pool(hw);
 859
 860        /* calculate starting index for queues */
 861        vf_idx = vf_info->vf_idx;
 862        vf_q_idx = fm10k_vf_queue_index(hw, vf_idx);
 863        qmap_idx = qmap_stride * vf_idx;
 864
 865        /* MAP Tx queue back to 0 temporarily, and disable it */
 866        fm10k_write_reg(hw, FM10K_TQMAP(qmap_idx), 0);
 867        fm10k_write_reg(hw, FM10K_TXDCTL(vf_q_idx), 0);
 868
 869        /* determine correct default VLAN ID */
 870        if (vf_info->pf_vid)
 871                vf_vid = vf_info->pf_vid | FM10K_VLAN_CLEAR;
 872        else
 873                vf_vid = vf_info->sw_vid;
 874
 875        /* generate MAC_ADDR request */
 876        fm10k_tlv_msg_init(msg, FM10K_VF_MSG_ID_MAC_VLAN);
 877        fm10k_tlv_attr_put_mac_vlan(msg, FM10K_MAC_VLAN_MSG_DEFAULT_MAC,
 878                                    vf_info->mac, vf_vid);
 879
 880        /* load onto outgoing mailbox, ignore any errors on enqueue */
 881        if (vf_info->mbx.ops.enqueue_tx)
 882                vf_info->mbx.ops.enqueue_tx(hw, &vf_info->mbx, msg);
 883
 884        /* verify ring has disabled before modifying base address registers */
 885        txdctl = fm10k_read_reg(hw, FM10K_TXDCTL(vf_q_idx));
 886        for (timeout = 0; txdctl & FM10K_TXDCTL_ENABLE; timeout++) {
 887                /* limit ourselves to a 1ms timeout */
 888                if (timeout == 10) {
 889                        err = FM10K_ERR_DMA_PENDING;
 890                        goto err_out;
 891                }
 892
 893                usleep_range(100, 200);
 894                txdctl = fm10k_read_reg(hw, FM10K_TXDCTL(vf_q_idx));
 895        }
 896
 897        /* Update base address registers to contain MAC address */
 898        if (is_valid_ether_addr(vf_info->mac)) {
 899                tdbal = (((u32)vf_info->mac[3]) << 24) |
 900                        (((u32)vf_info->mac[4]) << 16) |
 901                        (((u32)vf_info->mac[5]) << 8);
 902
 903                tdbah = (((u32)0xFF)            << 24) |
 904                        (((u32)vf_info->mac[0]) << 16) |
 905                        (((u32)vf_info->mac[1]) << 8) |
 906                        ((u32)vf_info->mac[2]);
 907        }
 908
 909        /* Record the base address into queue 0 */
 910        fm10k_write_reg(hw, FM10K_TDBAL(vf_q_idx), tdbal);
 911        fm10k_write_reg(hw, FM10K_TDBAH(vf_q_idx), tdbah);
 912
 913err_out:
 914        /* configure Queue control register */
 915        txqctl = ((u32)vf_vid << FM10K_TXQCTL_VID_SHIFT) &
 916                 FM10K_TXQCTL_VID_MASK;
 917        txqctl |= (vf_idx << FM10K_TXQCTL_TC_SHIFT) |
 918                  FM10K_TXQCTL_VF | vf_idx;
 919
 920        /* assign VID */
 921        for (i = 0; i < queues_per_pool; i++)
 922                fm10k_write_reg(hw, FM10K_TXQCTL(vf_q_idx + i), txqctl);
 923
 924        /* restore the queue back to VF ownership */
 925        fm10k_write_reg(hw, FM10K_TQMAP(qmap_idx), vf_q_idx);
 926        return err;
 927}
 928
 929/**
 930 *  fm10k_iov_reset_resources_pf - Reassign queues and interrupts to a VF
 931 *  @hw: pointer to the HW structure
 932 *  @vf_info: pointer to VF information structure
 933 *
 934 *  Reassign the interrupts and queues to a VF following an FLR
 935 **/
 936static s32 fm10k_iov_reset_resources_pf(struct fm10k_hw *hw,
 937                                        struct fm10k_vf_info *vf_info)
 938{
 939        u16 qmap_stride, queues_per_pool, vf_q_idx, qmap_idx;
 940        u32 tdbal = 0, tdbah = 0, txqctl, rxqctl;
 941        u16 vf_v_idx, vf_v_limit, vf_vid;
 942        u8 vf_idx = vf_info->vf_idx;
 943        int i;
 944
 945        /* verify vf is in range */
 946        if (vf_idx >= hw->iov.num_vfs)
 947                return FM10K_ERR_PARAM;
 948
 949        /* clear event notification of VF FLR */
 950        fm10k_write_reg(hw, FM10K_PFVFLREC(vf_idx / 32), 1 << (vf_idx % 32));
 951
 952        /* force timeout and then disconnect the mailbox */
 953        vf_info->mbx.timeout = 0;
 954        if (vf_info->mbx.ops.disconnect)
 955                vf_info->mbx.ops.disconnect(hw, &vf_info->mbx);
 956
 957        /* determine vector offset and count*/
 958        vf_v_idx = fm10k_vf_vector_index(hw, vf_idx);
 959        vf_v_limit = vf_v_idx + fm10k_vectors_per_pool(hw);
 960
 961        /* determine qmap offsets and counts */
 962        qmap_stride = (hw->iov.num_vfs > 8) ? 32 : 256;
 963        queues_per_pool = fm10k_queues_per_pool(hw);
 964        qmap_idx = qmap_stride * vf_idx;
 965
 966        /* make all the queues inaccessible to the VF */
 967        for (i = qmap_idx; i < (qmap_idx + qmap_stride); i++) {
 968                fm10k_write_reg(hw, FM10K_TQMAP(i), 0);
 969                fm10k_write_reg(hw, FM10K_RQMAP(i), 0);
 970        }
 971
 972        /* calculate starting index for queues */
 973        vf_q_idx = fm10k_vf_queue_index(hw, vf_idx);
 974
 975        /* determine correct default VLAN ID */
 976        if (vf_info->pf_vid)
 977                vf_vid = vf_info->pf_vid;
 978        else
 979                vf_vid = vf_info->sw_vid;
 980
 981        /* configure Queue control register */
 982        txqctl = ((u32)vf_vid << FM10K_TXQCTL_VID_SHIFT) |
 983                 (vf_idx << FM10K_TXQCTL_TC_SHIFT) |
 984                 FM10K_TXQCTL_VF | vf_idx;
 985        rxqctl = FM10K_RXQCTL_VF | (vf_idx << FM10K_RXQCTL_VF_SHIFT);
 986
 987        /* stop further DMA and reset queue ownership back to VF */
 988        for (i = vf_q_idx; i < (queues_per_pool + vf_q_idx); i++) {
 989                fm10k_write_reg(hw, FM10K_TXDCTL(i), 0);
 990                fm10k_write_reg(hw, FM10K_TXQCTL(i), txqctl);
 991                fm10k_write_reg(hw, FM10K_RXDCTL(i),
 992                                FM10K_RXDCTL_WRITE_BACK_MIN_DELAY |
 993                                FM10K_RXDCTL_DROP_ON_EMPTY);
 994                fm10k_write_reg(hw, FM10K_RXQCTL(i), rxqctl);
 995        }
 996
 997        /* reset TC with -1 credits and no quanta to prevent transmit */
 998        fm10k_write_reg(hw, FM10K_TC_MAXCREDIT(vf_idx), 0);
 999        fm10k_write_reg(hw, FM10K_TC_RATE(vf_idx), 0);
1000        fm10k_write_reg(hw, FM10K_TC_CREDIT(vf_idx),
1001                        FM10K_TC_CREDIT_CREDIT_MASK);
1002
1003        /* update our first entry in the table based on previous VF */
1004        if (!vf_idx)
1005                hw->mac.ops.update_int_moderator(hw);
1006        else
1007                hw->iov.ops.assign_int_moderator(hw, vf_idx - 1);
1008
1009        /* reset linked list so it now includes our active vectors */
1010        if (vf_idx == (hw->iov.num_vfs - 1))
1011                fm10k_write_reg(hw, FM10K_ITR2(0), vf_v_idx);
1012        else
1013                fm10k_write_reg(hw, FM10K_ITR2(vf_v_limit), vf_v_idx);
1014
1015        /* link remaining vectors so that next points to previous */
1016        for (vf_v_idx++; vf_v_idx < vf_v_limit; vf_v_idx++)
1017                fm10k_write_reg(hw, FM10K_ITR2(vf_v_idx), vf_v_idx - 1);
1018
1019        /* zero out MBMEM, VLAN_TABLE, RETA, RSSRK, and MRQC registers */
1020        for (i = FM10K_VFMBMEM_LEN; i--;)
1021                fm10k_write_reg(hw, FM10K_MBMEM_VF(vf_idx, i), 0);
1022        for (i = FM10K_VLAN_TABLE_SIZE; i--;)
1023                fm10k_write_reg(hw, FM10K_VLAN_TABLE(vf_info->vsi, i), 0);
1024        for (i = FM10K_RETA_SIZE; i--;)
1025                fm10k_write_reg(hw, FM10K_RETA(vf_info->vsi, i), 0);
1026        for (i = FM10K_RSSRK_SIZE; i--;)
1027                fm10k_write_reg(hw, FM10K_RSSRK(vf_info->vsi, i), 0);
1028        fm10k_write_reg(hw, FM10K_MRQC(vf_info->vsi), 0);
1029
1030        /* Update base address registers to contain MAC address */
1031        if (is_valid_ether_addr(vf_info->mac)) {
1032                tdbal = (((u32)vf_info->mac[3]) << 24) |
1033                        (((u32)vf_info->mac[4]) << 16) |
1034                        (((u32)vf_info->mac[5]) << 8);
1035                tdbah = (((u32)0xFF)       << 24) |
1036                        (((u32)vf_info->mac[0]) << 16) |
1037                        (((u32)vf_info->mac[1]) << 8) |
1038                        ((u32)vf_info->mac[2]);
1039        }
1040
1041        /* map queue pairs back to VF from last to first*/
1042        for (i = queues_per_pool; i--;) {
1043                fm10k_write_reg(hw, FM10K_TDBAL(vf_q_idx + i), tdbal);
1044                fm10k_write_reg(hw, FM10K_TDBAH(vf_q_idx + i), tdbah);
1045                fm10k_write_reg(hw, FM10K_TQMAP(qmap_idx + i), vf_q_idx + i);
1046                fm10k_write_reg(hw, FM10K_RQMAP(qmap_idx + i), vf_q_idx + i);
1047        }
1048
1049        return 0;
1050}
1051
1052/**
1053 *  fm10k_iov_set_lport_pf - Assign and enable a logical port for a given VF
1054 *  @hw: pointer to hardware structure
1055 *  @vf_info: pointer to VF information structure
1056 *  @lport_idx: Logical port offset from the hardware glort
1057 *  @flags: Set of capability flags to extend port beyond basic functionality
1058 *
1059 *  This function allows enabling a VF port by assigning it a GLORT and
1060 *  setting the flags so that it can enable an Rx mode.
1061 **/
1062static s32 fm10k_iov_set_lport_pf(struct fm10k_hw *hw,
1063                                  struct fm10k_vf_info *vf_info,
1064                                  u16 lport_idx, u8 flags)
1065{
1066        u16 glort = (hw->mac.dglort_map + lport_idx) & FM10K_DGLORTMAP_NONE;
1067
1068        /* if glort is not valid return error */
1069        if (!fm10k_glort_valid_pf(hw, glort))
1070                return FM10K_ERR_PARAM;
1071
1072        vf_info->vf_flags = flags | FM10K_VF_FLAG_NONE_CAPABLE;
1073        vf_info->glort = glort;
1074
1075        return 0;
1076}
1077
1078/**
1079 *  fm10k_iov_reset_lport_pf - Disable a logical port for a given VF
1080 *  @hw: pointer to hardware structure
1081 *  @vf_info: pointer to VF information structure
1082 *
1083 *  This function disables a VF port by stripping it of a GLORT and
1084 *  setting the flags so that it cannot enable any Rx mode.
1085 **/
1086static void fm10k_iov_reset_lport_pf(struct fm10k_hw *hw,
1087                                     struct fm10k_vf_info *vf_info)
1088{
1089        u32 msg[1];
1090
1091        /* need to disable the port if it is already enabled */
1092        if (FM10K_VF_FLAG_ENABLED(vf_info)) {
1093                /* notify switch that this port has been disabled */
1094                fm10k_update_lport_state_pf(hw, vf_info->glort, 1, false);
1095
1096                /* generate port state response to notify VF it is not ready */
1097                fm10k_tlv_msg_init(msg, FM10K_VF_MSG_ID_LPORT_STATE);
1098                vf_info->mbx.ops.enqueue_tx(hw, &vf_info->mbx, msg);
1099        }
1100
1101        /* clear flags and glort if it exists */
1102        vf_info->vf_flags = 0;
1103        vf_info->glort = 0;
1104}
1105
1106/**
1107 *  fm10k_iov_update_stats_pf - Updates hardware related statistics for VFs
1108 *  @hw: pointer to hardware structure
1109 *  @q: stats for all queues of a VF
1110 *  @vf_idx: index of VF
1111 *
1112 *  This function collects queue stats for VFs.
1113 **/
1114static void fm10k_iov_update_stats_pf(struct fm10k_hw *hw,
1115                                      struct fm10k_hw_stats_q *q,
1116                                      u16 vf_idx)
1117{
1118        u32 idx, qpp;
1119
1120        /* get stats for all of the queues */
1121        qpp = fm10k_queues_per_pool(hw);
1122        idx = fm10k_vf_queue_index(hw, vf_idx);
1123        fm10k_update_hw_stats_q(hw, q, idx, qpp);
1124}
1125
1126static s32 fm10k_iov_report_timestamp_pf(struct fm10k_hw *hw,
1127                                         struct fm10k_vf_info *vf_info,
1128                                         u64 timestamp)
1129{
1130        u32 msg[4];
1131
1132        /* generate port state response to notify VF it is not ready */
1133        fm10k_tlv_msg_init(msg, FM10K_VF_MSG_ID_1588);
1134        fm10k_tlv_attr_put_u64(msg, FM10K_1588_MSG_TIMESTAMP, timestamp);
1135
1136        return vf_info->mbx.ops.enqueue_tx(hw, &vf_info->mbx, msg);
1137}
1138
1139/**
1140 *  fm10k_iov_msg_msix_pf - Message handler for MSI-X request from VF
1141 *  @hw: Pointer to hardware structure
1142 *  @results: Pointer array to message, results[0] is pointer to message
1143 *  @mbx: Pointer to mailbox information structure
1144 *
1145 *  This function is a default handler for MSI-X requests from the VF.  The
1146 *  assumption is that in this case it is acceptable to just directly
1147 *  hand off the message form the VF to the underlying shared code.
1148 **/
1149s32 fm10k_iov_msg_msix_pf(struct fm10k_hw *hw, u32 **results,
1150                          struct fm10k_mbx_info *mbx)
1151{
1152        struct fm10k_vf_info *vf_info = (struct fm10k_vf_info *)mbx;
1153        u8 vf_idx = vf_info->vf_idx;
1154
1155        return hw->iov.ops.assign_int_moderator(hw, vf_idx);
1156}
1157
1158/**
1159 *  fm10k_iov_msg_mac_vlan_pf - Message handler for MAC/VLAN request from VF
1160 *  @hw: Pointer to hardware structure
1161 *  @results: Pointer array to message, results[0] is pointer to message
1162 *  @mbx: Pointer to mailbox information structure
1163 *
1164 *  This function is a default handler for MAC/VLAN requests from the VF.
1165 *  The assumption is that in this case it is acceptable to just directly
1166 *  hand off the message form the VF to the underlying shared code.
1167 **/
1168s32 fm10k_iov_msg_mac_vlan_pf(struct fm10k_hw *hw, u32 **results,
1169                              struct fm10k_mbx_info *mbx)
1170{
1171        struct fm10k_vf_info *vf_info = (struct fm10k_vf_info *)mbx;
1172        int err = 0;
1173        u8 mac[ETH_ALEN];
1174        u32 *result;
1175        u16 vlan;
1176        u32 vid;
1177
1178        /* we shouldn't be updating rules on a disabled interface */
1179        if (!FM10K_VF_FLAG_ENABLED(vf_info))
1180                err = FM10K_ERR_PARAM;
1181
1182        if (!err && !!results[FM10K_MAC_VLAN_MSG_VLAN]) {
1183                result = results[FM10K_MAC_VLAN_MSG_VLAN];
1184
1185                /* record VLAN id requested */
1186                err = fm10k_tlv_attr_get_u32(result, &vid);
1187                if (err)
1188                        return err;
1189
1190                /* if VLAN ID is 0, set the default VLAN ID instead of 0 */
1191                if (!vid || (vid == FM10K_VLAN_CLEAR)) {
1192                        if (vf_info->pf_vid)
1193                                vid |= vf_info->pf_vid;
1194                        else
1195                                vid |= vf_info->sw_vid;
1196                } else if (vid != vf_info->pf_vid) {
1197                        return FM10K_ERR_PARAM;
1198                }
1199
1200                /* update VSI info for VF in regards to VLAN table */
1201                err = hw->mac.ops.update_vlan(hw, vid, vf_info->vsi,
1202                                              !(vid & FM10K_VLAN_CLEAR));
1203        }
1204
1205        if (!err && !!results[FM10K_MAC_VLAN_MSG_MAC]) {
1206                result = results[FM10K_MAC_VLAN_MSG_MAC];
1207
1208                /* record unicast MAC address requested */
1209                err = fm10k_tlv_attr_get_mac_vlan(result, mac, &vlan);
1210                if (err)
1211                        return err;
1212
1213                /* block attempts to set MAC for a locked device */
1214                if (is_valid_ether_addr(vf_info->mac) &&
1215                    memcmp(mac, vf_info->mac, ETH_ALEN))
1216                        return FM10K_ERR_PARAM;
1217
1218                /* if VLAN ID is 0, set the default VLAN ID instead of 0 */
1219                if (!vlan || (vlan == FM10K_VLAN_CLEAR)) {
1220                        if (vf_info->pf_vid)
1221                                vlan |= vf_info->pf_vid;
1222                        else
1223                                vlan |= vf_info->sw_vid;
1224                } else if (vf_info->pf_vid) {
1225                        return FM10K_ERR_PARAM;
1226                }
1227
1228                /* notify switch of request for new unicast address */
1229                err = hw->mac.ops.update_uc_addr(hw, vf_info->glort, mac, vlan,
1230                                                 !(vlan & FM10K_VLAN_CLEAR), 0);
1231        }
1232
1233        if (!err && !!results[FM10K_MAC_VLAN_MSG_MULTICAST]) {
1234                result = results[FM10K_MAC_VLAN_MSG_MULTICAST];
1235
1236                /* record multicast MAC address requested */
1237                err = fm10k_tlv_attr_get_mac_vlan(result, mac, &vlan);
1238                if (err)
1239                        return err;
1240
1241                /* verify that the VF is allowed to request multicast */
1242                if (!(vf_info->vf_flags & FM10K_VF_FLAG_MULTI_ENABLED))
1243                        return FM10K_ERR_PARAM;
1244
1245                /* if VLAN ID is 0, set the default VLAN ID instead of 0 */
1246                if (!vlan || (vlan == FM10K_VLAN_CLEAR)) {
1247                        if (vf_info->pf_vid)
1248                                vlan |= vf_info->pf_vid;
1249                        else
1250                                vlan |= vf_info->sw_vid;
1251                } else if (vf_info->pf_vid) {
1252                        return FM10K_ERR_PARAM;
1253                }
1254
1255                /* notify switch of request for new multicast address */
1256                err = hw->mac.ops.update_mc_addr(hw, vf_info->glort, mac,
1257                                                 !(vlan & FM10K_VLAN_CLEAR), 0);
1258        }
1259
1260        return err;
1261}
1262
1263/**
1264 *  fm10k_iov_supported_xcast_mode_pf - Determine best match for xcast mode
1265 *  @vf_info: VF info structure containing capability flags
1266 *  @mode: Requested xcast mode
1267 *
1268 *  This function outputs the mode that most closely matches the requested
1269 *  mode.  If not modes match it will request we disable the port
1270 **/
1271static u8 fm10k_iov_supported_xcast_mode_pf(struct fm10k_vf_info *vf_info,
1272                                            u8 mode)
1273{
1274        u8 vf_flags = vf_info->vf_flags;
1275
1276        /* match up mode to capabilities as best as possible */
1277        switch (mode) {
1278        case FM10K_XCAST_MODE_PROMISC:
1279                if (vf_flags & FM10K_VF_FLAG_PROMISC_CAPABLE)
1280                        return FM10K_XCAST_MODE_PROMISC;
1281                /* fallthough */
1282        case FM10K_XCAST_MODE_ALLMULTI:
1283                if (vf_flags & FM10K_VF_FLAG_ALLMULTI_CAPABLE)
1284                        return FM10K_XCAST_MODE_ALLMULTI;
1285                /* fallthough */
1286        case FM10K_XCAST_MODE_MULTI:
1287                if (vf_flags & FM10K_VF_FLAG_MULTI_CAPABLE)
1288                        return FM10K_XCAST_MODE_MULTI;
1289                /* fallthough */
1290        case FM10K_XCAST_MODE_NONE:
1291                if (vf_flags & FM10K_VF_FLAG_NONE_CAPABLE)
1292                        return FM10K_XCAST_MODE_NONE;
1293                /* fallthough */
1294        default:
1295                break;
1296        }
1297
1298        /* disable interface as it should not be able to request any */
1299        return FM10K_XCAST_MODE_DISABLE;
1300}
1301
1302/**
1303 *  fm10k_iov_msg_lport_state_pf - Message handler for port state requests
1304 *  @hw: Pointer to hardware structure
1305 *  @results: Pointer array to message, results[0] is pointer to message
1306 *  @mbx: Pointer to mailbox information structure
1307 *
1308 *  This function is a default handler for port state requests.  The port
1309 *  state requests for now are basic and consist of enabling or disabling
1310 *  the port.
1311 **/
1312s32 fm10k_iov_msg_lport_state_pf(struct fm10k_hw *hw, u32 **results,
1313                                 struct fm10k_mbx_info *mbx)
1314{
1315        struct fm10k_vf_info *vf_info = (struct fm10k_vf_info *)mbx;
1316        u32 *result;
1317        s32 err = 0;
1318        u32 msg[2];
1319        u8 mode = 0;
1320
1321        /* verify VF is allowed to enable even minimal mode */
1322        if (!(vf_info->vf_flags & FM10K_VF_FLAG_NONE_CAPABLE))
1323                return FM10K_ERR_PARAM;
1324
1325        if (!!results[FM10K_LPORT_STATE_MSG_XCAST_MODE]) {
1326                result = results[FM10K_LPORT_STATE_MSG_XCAST_MODE];
1327
1328                /* XCAST mode update requested */
1329                err = fm10k_tlv_attr_get_u8(result, &mode);
1330                if (err)
1331                        return FM10K_ERR_PARAM;
1332
1333                /* prep for possible demotion depending on capabilities */
1334                mode = fm10k_iov_supported_xcast_mode_pf(vf_info, mode);
1335
1336                /* if mode is not currently enabled, enable it */
1337                if (!(FM10K_VF_FLAG_ENABLED(vf_info) & (1 << mode)))
1338                        fm10k_update_xcast_mode_pf(hw, vf_info->glort, mode);
1339
1340                /* swap mode back to a bit flag */
1341                mode = FM10K_VF_FLAG_SET_MODE(mode);
1342        } else if (!results[FM10K_LPORT_STATE_MSG_DISABLE]) {
1343                /* need to disable the port if it is already enabled */
1344                if (FM10K_VF_FLAG_ENABLED(vf_info))
1345                        err = fm10k_update_lport_state_pf(hw, vf_info->glort,
1346                                                          1, false);
1347
1348                /* when enabling the port we should reset the rate limiters */
1349                hw->iov.ops.configure_tc(hw, vf_info->vf_idx, vf_info->rate);
1350
1351                /* set mode for minimal functionality */
1352                mode = FM10K_VF_FLAG_SET_MODE_NONE;
1353
1354                /* generate port state response to notify VF it is ready */
1355                fm10k_tlv_msg_init(msg, FM10K_VF_MSG_ID_LPORT_STATE);
1356                fm10k_tlv_attr_put_bool(msg, FM10K_LPORT_STATE_MSG_READY);
1357                mbx->ops.enqueue_tx(hw, mbx, msg);
1358        }
1359
1360        /* if enable state toggled note the update */
1361        if (!err && (!FM10K_VF_FLAG_ENABLED(vf_info) != !mode))
1362                err = fm10k_update_lport_state_pf(hw, vf_info->glort, 1,
1363                                                  !!mode);
1364
1365        /* if state change succeeded, then update our stored state */
1366        mode |= FM10K_VF_FLAG_CAPABLE(vf_info);
1367        if (!err)
1368                vf_info->vf_flags = mode;
1369
1370        return err;
1371}
1372
1373const struct fm10k_msg_data fm10k_iov_msg_data_pf[] = {
1374        FM10K_TLV_MSG_TEST_HANDLER(fm10k_tlv_msg_test),
1375        FM10K_VF_MSG_MSIX_HANDLER(fm10k_iov_msg_msix_pf),
1376        FM10K_VF_MSG_MAC_VLAN_HANDLER(fm10k_iov_msg_mac_vlan_pf),
1377        FM10K_VF_MSG_LPORT_STATE_HANDLER(fm10k_iov_msg_lport_state_pf),
1378        FM10K_TLV_MSG_ERROR_HANDLER(fm10k_tlv_msg_error),
1379};
1380
1381/**
1382 *  fm10k_update_stats_hw_pf - Updates hardware related statistics of PF
1383 *  @hw: pointer to hardware structure
1384 *  @stats: pointer to the stats structure to update
1385 *
1386 *  This function collects and aggregates global and per queue hardware
1387 *  statistics.
1388 **/
1389static void fm10k_update_hw_stats_pf(struct fm10k_hw *hw,
1390                                     struct fm10k_hw_stats *stats)
1391{
1392        u32 timeout, ur, ca, um, xec, vlan_drop, loopback_drop, nodesc_drop;
1393        u32 id, id_prev;
1394
1395        /* Use Tx queue 0 as a canary to detect a reset */
1396        id = fm10k_read_reg(hw, FM10K_TXQCTL(0));
1397
1398        /* Read Global Statistics */
1399        do {
1400                timeout = fm10k_read_hw_stats_32b(hw, FM10K_STATS_TIMEOUT,
1401                                                  &stats->timeout);
1402                ur = fm10k_read_hw_stats_32b(hw, FM10K_STATS_UR, &stats->ur);
1403                ca = fm10k_read_hw_stats_32b(hw, FM10K_STATS_CA, &stats->ca);
1404                um = fm10k_read_hw_stats_32b(hw, FM10K_STATS_UM, &stats->um);
1405                xec = fm10k_read_hw_stats_32b(hw, FM10K_STATS_XEC, &stats->xec);
1406                vlan_drop = fm10k_read_hw_stats_32b(hw, FM10K_STATS_VLAN_DROP,
1407                                                    &stats->vlan_drop);
1408                loopback_drop = fm10k_read_hw_stats_32b(hw,
1409                                                        FM10K_STATS_LOOPBACK_DROP,
1410                                                     &stats->loopback_drop);
1411                nodesc_drop = fm10k_read_hw_stats_32b(hw,
1412                                                      FM10K_STATS_NODESC_DROP,
1413                                                      &stats->nodesc_drop);
1414
1415                /* if value has not changed then we have consistent data */
1416                id_prev = id;
1417                id = fm10k_read_reg(hw, FM10K_TXQCTL(0));
1418        } while ((id ^ id_prev) & FM10K_TXQCTL_ID_MASK);
1419
1420        /* drop non-ID bits and set VALID ID bit */
1421        id &= FM10K_TXQCTL_ID_MASK;
1422        id |= FM10K_STAT_VALID;
1423
1424        /* Update Global Statistics */
1425        if (stats->stats_idx == id) {
1426                stats->timeout.count += timeout;
1427                stats->ur.count += ur;
1428                stats->ca.count += ca;
1429                stats->um.count += um;
1430                stats->xec.count += xec;
1431                stats->vlan_drop.count += vlan_drop;
1432                stats->loopback_drop.count += loopback_drop;
1433                stats->nodesc_drop.count += nodesc_drop;
1434        }
1435
1436        /* Update bases and record current PF id */
1437        fm10k_update_hw_base_32b(&stats->timeout, timeout);
1438        fm10k_update_hw_base_32b(&stats->ur, ur);
1439        fm10k_update_hw_base_32b(&stats->ca, ca);
1440        fm10k_update_hw_base_32b(&stats->um, um);
1441        fm10k_update_hw_base_32b(&stats->xec, xec);
1442        fm10k_update_hw_base_32b(&stats->vlan_drop, vlan_drop);
1443        fm10k_update_hw_base_32b(&stats->loopback_drop, loopback_drop);
1444        fm10k_update_hw_base_32b(&stats->nodesc_drop, nodesc_drop);
1445        stats->stats_idx = id;
1446
1447        /* Update Queue Statistics */
1448        fm10k_update_hw_stats_q(hw, stats->q, 0, hw->mac.max_queues);
1449}
1450
1451/**
1452 *  fm10k_rebind_hw_stats_pf - Resets base for hardware statistics of PF
1453 *  @hw: pointer to hardware structure
1454 *  @stats: pointer to the stats structure to update
1455 *
1456 *  This function resets the base for global and per queue hardware
1457 *  statistics.
1458 **/
1459static void fm10k_rebind_hw_stats_pf(struct fm10k_hw *hw,
1460                                     struct fm10k_hw_stats *stats)
1461{
1462        /* Unbind Global Statistics */
1463        fm10k_unbind_hw_stats_32b(&stats->timeout);
1464        fm10k_unbind_hw_stats_32b(&stats->ur);
1465        fm10k_unbind_hw_stats_32b(&stats->ca);
1466        fm10k_unbind_hw_stats_32b(&stats->um);
1467        fm10k_unbind_hw_stats_32b(&stats->xec);
1468        fm10k_unbind_hw_stats_32b(&stats->vlan_drop);
1469        fm10k_unbind_hw_stats_32b(&stats->loopback_drop);
1470        fm10k_unbind_hw_stats_32b(&stats->nodesc_drop);
1471
1472        /* Unbind Queue Statistics */
1473        fm10k_unbind_hw_stats_q(stats->q, 0, hw->mac.max_queues);
1474
1475        /* Reinitialize bases for all stats */
1476        fm10k_update_hw_stats_pf(hw, stats);
1477}
1478
1479/**
1480 *  fm10k_set_dma_mask_pf - Configures PhyAddrSpace to limit DMA to system
1481 *  @hw: pointer to hardware structure
1482 *  @dma_mask: 64 bit DMA mask required for platform
1483 *
1484 *  This function sets the PHYADDR.PhyAddrSpace bits for the endpoint in order
1485 *  to limit the access to memory beyond what is physically in the system.
1486 **/
1487static void fm10k_set_dma_mask_pf(struct fm10k_hw *hw, u64 dma_mask)
1488{
1489        /* we need to write the upper 32 bits of DMA mask to PhyAddrSpace */
1490        u32 phyaddr = (u32)(dma_mask >> 32);
1491
1492        fm10k_write_reg(hw, FM10K_PHYADDR, phyaddr);
1493}
1494
1495/**
1496 *  fm10k_get_fault_pf - Record a fault in one of the interface units
1497 *  @hw: pointer to hardware structure
1498 *  @type: pointer to fault type register offset
1499 *  @fault: pointer to memory location to record the fault
1500 *
1501 *  Record the fault register contents to the fault data structure and
1502 *  clear the entry from the register.
1503 *
1504 *  Returns ERR_PARAM if invalid register is specified or no error is present.
1505 **/
1506static s32 fm10k_get_fault_pf(struct fm10k_hw *hw, int type,
1507                              struct fm10k_fault *fault)
1508{
1509        u32 func;
1510
1511        /* verify the fault register is in range and is aligned */
1512        switch (type) {
1513        case FM10K_PCA_FAULT:
1514        case FM10K_THI_FAULT:
1515        case FM10K_FUM_FAULT:
1516                break;
1517        default:
1518                return FM10K_ERR_PARAM;
1519        }
1520
1521        /* only service faults that are valid */
1522        func = fm10k_read_reg(hw, type + FM10K_FAULT_FUNC);
1523        if (!(func & FM10K_FAULT_FUNC_VALID))
1524                return FM10K_ERR_PARAM;
1525
1526        /* read remaining fields */
1527        fault->address = fm10k_read_reg(hw, type + FM10K_FAULT_ADDR_HI);
1528        fault->address <<= 32;
1529        fault->address = fm10k_read_reg(hw, type + FM10K_FAULT_ADDR_LO);
1530        fault->specinfo = fm10k_read_reg(hw, type + FM10K_FAULT_SPECINFO);
1531
1532        /* clear valid bit to allow for next error */
1533        fm10k_write_reg(hw, type + FM10K_FAULT_FUNC, FM10K_FAULT_FUNC_VALID);
1534
1535        /* Record which function triggered the error */
1536        if (func & FM10K_FAULT_FUNC_PF)
1537                fault->func = 0;
1538        else
1539                fault->func = 1 + ((func & FM10K_FAULT_FUNC_VF_MASK) >>
1540                                   FM10K_FAULT_FUNC_VF_SHIFT);
1541
1542        /* record fault type */
1543        fault->type = func & FM10K_FAULT_FUNC_TYPE_MASK;
1544
1545        return 0;
1546}
1547
1548/**
1549 *  fm10k_request_lport_map_pf - Request LPORT map from the switch API
1550 *  @hw: pointer to hardware structure
1551 *
1552 **/
1553static s32 fm10k_request_lport_map_pf(struct fm10k_hw *hw)
1554{
1555        struct fm10k_mbx_info *mbx = &hw->mbx;
1556        u32 msg[1];
1557
1558        /* issue request asking for LPORT map */
1559        fm10k_tlv_msg_init(msg, FM10K_PF_MSG_ID_LPORT_MAP);
1560
1561        /* load onto outgoing mailbox */
1562        return mbx->ops.enqueue_tx(hw, mbx, msg);
1563}
1564
1565/**
1566 *  fm10k_get_host_state_pf - Returns the state of the switch and mailbox
1567 *  @hw: pointer to hardware structure
1568 *  @switch_ready: pointer to boolean value that will record switch state
1569 *
1570 *  This funciton will check the DMA_CTRL2 register and mailbox in order
1571 *  to determine if the switch is ready for the PF to begin requesting
1572 *  addresses and mapping traffic to the local interface.
1573 **/
1574static s32 fm10k_get_host_state_pf(struct fm10k_hw *hw, bool *switch_ready)
1575{
1576        s32 ret_val = 0;
1577        u32 dma_ctrl2;
1578
1579        /* verify the switch is ready for interraction */
1580        dma_ctrl2 = fm10k_read_reg(hw, FM10K_DMA_CTRL2);
1581        if (!(dma_ctrl2 & FM10K_DMA_CTRL2_SWITCH_READY))
1582                goto out;
1583
1584        /* retrieve generic host state info */
1585        ret_val = fm10k_get_host_state_generic(hw, switch_ready);
1586        if (ret_val)
1587                goto out;
1588
1589        /* interface cannot receive traffic without logical ports */
1590        if (hw->mac.dglort_map == FM10K_DGLORTMAP_NONE)
1591                ret_val = fm10k_request_lport_map_pf(hw);
1592
1593out:
1594        return ret_val;
1595}
1596
1597/* This structure defines the attibutes to be parsed below */
1598const struct fm10k_tlv_attr fm10k_lport_map_msg_attr[] = {
1599        FM10K_TLV_ATTR_U32(FM10K_PF_ATTR_ID_LPORT_MAP),
1600        FM10K_TLV_ATTR_LAST
1601};
1602
1603/**
1604 *  fm10k_msg_lport_map_pf - Message handler for lport_map message from SM
1605 *  @hw: Pointer to hardware structure
1606 *  @results: pointer array containing parsed data
1607 *  @mbx: Pointer to mailbox information structure
1608 *
1609 *  This handler configures the lport mapping based on the reply from the
1610 *  switch API.
1611 **/
1612s32 fm10k_msg_lport_map_pf(struct fm10k_hw *hw, u32 **results,
1613                           struct fm10k_mbx_info *mbx)
1614{
1615        u16 glort, mask;
1616        u32 dglort_map;
1617        s32 err;
1618
1619        err = fm10k_tlv_attr_get_u32(results[FM10K_PF_ATTR_ID_LPORT_MAP],
1620                                     &dglort_map);
1621        if (err)
1622                return err;
1623
1624        /* extract values out of the header */
1625        glort = FM10K_MSG_HDR_FIELD_GET(dglort_map, LPORT_MAP_GLORT);
1626        mask = FM10K_MSG_HDR_FIELD_GET(dglort_map, LPORT_MAP_MASK);
1627
1628        /* verify mask is set and none of the masked bits in glort are set */
1629        if (!mask || (glort & ~mask))
1630                return FM10K_ERR_PARAM;
1631
1632        /* verify the mask is contiguous, and that it is 1's followed by 0's */
1633        if (((~(mask - 1) & mask) + mask) & FM10K_DGLORTMAP_NONE)
1634                return FM10K_ERR_PARAM;
1635
1636        /* record the glort, mask, and port count */
1637        hw->mac.dglort_map = dglort_map;
1638
1639        return 0;
1640}
1641
1642const struct fm10k_tlv_attr fm10k_update_pvid_msg_attr[] = {
1643        FM10K_TLV_ATTR_U32(FM10K_PF_ATTR_ID_UPDATE_PVID),
1644        FM10K_TLV_ATTR_LAST
1645};
1646
1647/**
1648 *  fm10k_msg_update_pvid_pf - Message handler for port VLAN message from SM
1649 *  @hw: Pointer to hardware structure
1650 *  @results: pointer array containing parsed data
1651 *  @mbx: Pointer to mailbox information structure
1652 *
1653 *  This handler configures the default VLAN for the PF
1654 **/
1655s32 fm10k_msg_update_pvid_pf(struct fm10k_hw *hw, u32 **results,
1656                             struct fm10k_mbx_info *mbx)
1657{
1658        u16 glort, pvid;
1659        u32 pvid_update;
1660        s32 err;
1661
1662        err = fm10k_tlv_attr_get_u32(results[FM10K_PF_ATTR_ID_UPDATE_PVID],
1663                                     &pvid_update);
1664        if (err)
1665                return err;
1666
1667        /* extract values from the pvid update */
1668        glort = FM10K_MSG_HDR_FIELD_GET(pvid_update, UPDATE_PVID_GLORT);
1669        pvid = FM10K_MSG_HDR_FIELD_GET(pvid_update, UPDATE_PVID_PVID);
1670
1671        /* if glort is not valid return error */
1672        if (!fm10k_glort_valid_pf(hw, glort))
1673                return FM10K_ERR_PARAM;
1674
1675        /* verify VID is valid */
1676        if (pvid >= FM10K_VLAN_TABLE_VID_MAX)
1677                return FM10K_ERR_PARAM;
1678
1679        /* record the port VLAN ID value */
1680        hw->mac.default_vid = pvid;
1681
1682        return 0;
1683}
1684
1685/**
1686 *  fm10k_record_global_table_data - Move global table data to swapi table info
1687 *  @from: pointer to source table data structure
1688 *  @to: pointer to destination table info structure
1689 *
1690 *  This function is will copy table_data to the table_info contained in
1691 *  the hw struct.
1692 **/
1693static void fm10k_record_global_table_data(struct fm10k_global_table_data *from,
1694                                           struct fm10k_swapi_table_info *to)
1695{
1696        /* convert from le32 struct to CPU byte ordered values */
1697        to->used = le32_to_cpu(from->used);
1698        to->avail = le32_to_cpu(from->avail);
1699}
1700
1701const struct fm10k_tlv_attr fm10k_err_msg_attr[] = {
1702        FM10K_TLV_ATTR_LE_STRUCT(FM10K_PF_ATTR_ID_ERR,
1703                                 sizeof(struct fm10k_swapi_error)),
1704        FM10K_TLV_ATTR_LAST
1705};
1706
1707/**
1708 *  fm10k_msg_err_pf - Message handler for error reply
1709 *  @hw: Pointer to hardware structure
1710 *  @results: pointer array containing parsed data
1711 *  @mbx: Pointer to mailbox information structure
1712 *
1713 *  This handler will capture the data for any error replies to previous
1714 *  messages that the PF has sent.
1715 **/
1716s32 fm10k_msg_err_pf(struct fm10k_hw *hw, u32 **results,
1717                     struct fm10k_mbx_info *mbx)
1718{
1719        struct fm10k_swapi_error err_msg;
1720        s32 err;
1721
1722        /* extract structure from message */
1723        err = fm10k_tlv_attr_get_le_struct(results[FM10K_PF_ATTR_ID_ERR],
1724                                           &err_msg, sizeof(err_msg));
1725        if (err)
1726                return err;
1727
1728        /* record table status */
1729        fm10k_record_global_table_data(&err_msg.mac, &hw->swapi.mac);
1730        fm10k_record_global_table_data(&err_msg.nexthop, &hw->swapi.nexthop);
1731        fm10k_record_global_table_data(&err_msg.ffu, &hw->swapi.ffu);
1732
1733        /* record SW API status value */
1734        hw->swapi.status = le32_to_cpu(err_msg.status);
1735
1736        return 0;
1737}
1738
1739const struct fm10k_tlv_attr fm10k_1588_timestamp_msg_attr[] = {
1740        FM10K_TLV_ATTR_LE_STRUCT(FM10K_PF_ATTR_ID_1588_TIMESTAMP,
1741                                 sizeof(struct fm10k_swapi_1588_timestamp)),
1742        FM10K_TLV_ATTR_LAST
1743};
1744
1745/* currently there is no shared 1588 timestamp handler */
1746
1747/**
1748 *  fm10k_adjust_systime_pf - Adjust systime frequency
1749 *  @hw: pointer to hardware structure
1750 *  @ppb: adjustment rate in parts per billion
1751 *
1752 *  This function will adjust the SYSTIME_CFG register contained in BAR 4
1753 *  if this function is supported for BAR 4 access.  The adjustment amount
1754 *  is based on the parts per billion value provided and adjusted to a
1755 *  value based on parts per 2^48 clock cycles.
1756 *
1757 *  If adjustment is not supported or the requested value is too large
1758 *  we will return an error.
1759 **/
1760static s32 fm10k_adjust_systime_pf(struct fm10k_hw *hw, s32 ppb)
1761{
1762        u64 systime_adjust;
1763
1764        /* if sw_addr is not set we don't have switch register access */
1765        if (!hw->sw_addr)
1766                return ppb ? FM10K_ERR_PARAM : 0;
1767
1768        /* we must convert the value from parts per billion to parts per
1769         * 2^48 cycles.  In addition I have opted to only use the 30 most
1770         * significant bits of the adjustment value as the 8 least
1771         * significant bits are located in another register and represent
1772         * a value significantly less than a part per billion, the result
1773         * of dropping the 8 least significant bits is that the adjustment
1774         * value is effectively multiplied by 2^8 when we write it.
1775         *
1776         * As a result of all this the math for this breaks down as follows:
1777         *      ppb / 10^9 == adjust * 2^8 / 2^48
1778         * If we solve this for adjust, and simplify it comes out as:
1779         *      ppb * 2^31 / 5^9 == adjust
1780         */
1781        systime_adjust = (ppb < 0) ? -ppb : ppb;
1782        systime_adjust <<= 31;
1783        do_div(systime_adjust, 1953125);
1784
1785        /* verify the requested adjustment value is in range */
1786        if (systime_adjust > FM10K_SW_SYSTIME_ADJUST_MASK)
1787                return FM10K_ERR_PARAM;
1788
1789        if (ppb < 0)
1790                systime_adjust |= FM10K_SW_SYSTIME_ADJUST_DIR_NEGATIVE;
1791
1792        fm10k_write_sw_reg(hw, FM10K_SW_SYSTIME_ADJUST, (u32)systime_adjust);
1793
1794        return 0;
1795}
1796
1797/**
1798 *  fm10k_read_systime_pf - Reads value of systime registers
1799 *  @hw: pointer to the hardware structure
1800 *
1801 *  Function reads the content of 2 registers, combined to represent a 64 bit
1802 *  value measured in nanosecods.  In order to guarantee the value is accurate
1803 *  we check the 32 most significant bits both before and after reading the
1804 *  32 least significant bits to verify they didn't change as we were reading
1805 *  the registers.
1806 **/
1807static u64 fm10k_read_systime_pf(struct fm10k_hw *hw)
1808{
1809        u32 systime_l, systime_h, systime_tmp;
1810
1811        systime_h = fm10k_read_reg(hw, FM10K_SYSTIME + 1);
1812
1813        do {
1814                systime_tmp = systime_h;
1815                systime_l = fm10k_read_reg(hw, FM10K_SYSTIME);
1816                systime_h = fm10k_read_reg(hw, FM10K_SYSTIME + 1);
1817        } while (systime_tmp != systime_h);
1818
1819        return ((u64)systime_h << 32) | systime_l;
1820}
1821
1822static const struct fm10k_msg_data fm10k_msg_data_pf[] = {
1823        FM10K_PF_MSG_ERR_HANDLER(XCAST_MODES, fm10k_msg_err_pf),
1824        FM10K_PF_MSG_ERR_HANDLER(UPDATE_MAC_FWD_RULE, fm10k_msg_err_pf),
1825        FM10K_PF_MSG_LPORT_MAP_HANDLER(fm10k_msg_lport_map_pf),
1826        FM10K_PF_MSG_ERR_HANDLER(LPORT_CREATE, fm10k_msg_err_pf),
1827        FM10K_PF_MSG_ERR_HANDLER(LPORT_DELETE, fm10k_msg_err_pf),
1828        FM10K_PF_MSG_UPDATE_PVID_HANDLER(fm10k_msg_update_pvid_pf),
1829        FM10K_TLV_MSG_ERROR_HANDLER(fm10k_tlv_msg_error),
1830};
1831
1832static struct fm10k_mac_ops mac_ops_pf = {
1833        .get_bus_info           = &fm10k_get_bus_info_generic,
1834        .reset_hw               = &fm10k_reset_hw_pf,
1835        .init_hw                = &fm10k_init_hw_pf,
1836        .start_hw               = &fm10k_start_hw_generic,
1837        .stop_hw                = &fm10k_stop_hw_generic,
1838        .is_slot_appropriate    = &fm10k_is_slot_appropriate_pf,
1839        .update_vlan            = &fm10k_update_vlan_pf,
1840        .read_mac_addr          = &fm10k_read_mac_addr_pf,
1841        .update_uc_addr         = &fm10k_update_uc_addr_pf,
1842        .update_mc_addr         = &fm10k_update_mc_addr_pf,
1843        .update_xcast_mode      = &fm10k_update_xcast_mode_pf,
1844        .update_int_moderator   = &fm10k_update_int_moderator_pf,
1845        .update_lport_state     = &fm10k_update_lport_state_pf,
1846        .update_hw_stats        = &fm10k_update_hw_stats_pf,
1847        .rebind_hw_stats        = &fm10k_rebind_hw_stats_pf,
1848        .configure_dglort_map   = &fm10k_configure_dglort_map_pf,
1849        .set_dma_mask           = &fm10k_set_dma_mask_pf,
1850        .get_fault              = &fm10k_get_fault_pf,
1851        .get_host_state         = &fm10k_get_host_state_pf,
1852        .adjust_systime         = &fm10k_adjust_systime_pf,
1853        .read_systime           = &fm10k_read_systime_pf,
1854};
1855
1856static struct fm10k_iov_ops iov_ops_pf = {
1857        .assign_resources               = &fm10k_iov_assign_resources_pf,
1858        .configure_tc                   = &fm10k_iov_configure_tc_pf,
1859        .assign_int_moderator           = &fm10k_iov_assign_int_moderator_pf,
1860        .assign_default_mac_vlan        = fm10k_iov_assign_default_mac_vlan_pf,
1861        .reset_resources                = &fm10k_iov_reset_resources_pf,
1862        .set_lport                      = &fm10k_iov_set_lport_pf,
1863        .reset_lport                    = &fm10k_iov_reset_lport_pf,
1864        .update_stats                   = &fm10k_iov_update_stats_pf,
1865        .report_timestamp               = &fm10k_iov_report_timestamp_pf,
1866};
1867
1868static s32 fm10k_get_invariants_pf(struct fm10k_hw *hw)
1869{
1870        fm10k_get_invariants_generic(hw);
1871
1872        return fm10k_sm_mbx_init(hw, &hw->mbx, fm10k_msg_data_pf);
1873}
1874
1875struct fm10k_info fm10k_pf_info = {
1876        .mac            = fm10k_mac_pf,
1877        .get_invariants = &fm10k_get_invariants_pf,
1878        .mac_ops        = &mac_ops_pf,
1879        .iov_ops        = &iov_ops_pf,
1880};
1881