linux/drivers/net/ethernet/intel/igb/e1000_mac.c
<<
>>
Prefs
   1/* Intel(R) Gigabit Ethernet Linux driver
   2 * Copyright(c) 2007-2014 Intel Corporation.
   3 *
   4 * This program is free software; you can redistribute it and/or modify it
   5 * under the terms and conditions of the GNU General Public License,
   6 * version 2, as published by the Free Software Foundation.
   7 *
   8 * This program is distributed in the hope it will be useful, but WITHOUT
   9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  10 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  11 * more details.
  12 *
  13 * You should have received a copy of the GNU General Public License along with
  14 * this program; if not, see <http://www.gnu.org/licenses/>.
  15 *
  16 * The full GNU General Public License is included in this distribution in
  17 * the file called "COPYING".
  18 *
  19 * Contact Information:
  20 * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
  21 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
  22 */
  23
  24#include <linux/if_ether.h>
  25#include <linux/delay.h>
  26#include <linux/pci.h>
  27#include <linux/netdevice.h>
  28#include <linux/etherdevice.h>
  29
  30#include "e1000_mac.h"
  31
  32#include "igb.h"
  33
  34static s32 igb_set_default_fc(struct e1000_hw *hw);
  35static s32 igb_set_fc_watermarks(struct e1000_hw *hw);
  36
  37/**
  38 *  igb_get_bus_info_pcie - Get PCIe bus information
  39 *  @hw: pointer to the HW structure
  40 *
  41 *  Determines and stores the system bus information for a particular
  42 *  network interface.  The following bus information is determined and stored:
  43 *  bus speed, bus width, type (PCIe), and PCIe function.
  44 **/
  45s32 igb_get_bus_info_pcie(struct e1000_hw *hw)
  46{
  47        struct e1000_bus_info *bus = &hw->bus;
  48        s32 ret_val;
  49        u32 reg;
  50        u16 pcie_link_status;
  51
  52        bus->type = e1000_bus_type_pci_express;
  53
  54        ret_val = igb_read_pcie_cap_reg(hw,
  55                                        PCI_EXP_LNKSTA,
  56                                        &pcie_link_status);
  57        if (ret_val) {
  58                bus->width = e1000_bus_width_unknown;
  59                bus->speed = e1000_bus_speed_unknown;
  60        } else {
  61                switch (pcie_link_status & PCI_EXP_LNKSTA_CLS) {
  62                case PCI_EXP_LNKSTA_CLS_2_5GB:
  63                        bus->speed = e1000_bus_speed_2500;
  64                        break;
  65                case PCI_EXP_LNKSTA_CLS_5_0GB:
  66                        bus->speed = e1000_bus_speed_5000;
  67                        break;
  68                default:
  69                        bus->speed = e1000_bus_speed_unknown;
  70                        break;
  71                }
  72
  73                bus->width = (enum e1000_bus_width)((pcie_link_status &
  74                                                     PCI_EXP_LNKSTA_NLW) >>
  75                                                     PCI_EXP_LNKSTA_NLW_SHIFT);
  76        }
  77
  78        reg = rd32(E1000_STATUS);
  79        bus->func = (reg & E1000_STATUS_FUNC_MASK) >> E1000_STATUS_FUNC_SHIFT;
  80
  81        return 0;
  82}
  83
  84/**
  85 *  igb_clear_vfta - Clear VLAN filter table
  86 *  @hw: pointer to the HW structure
  87 *
  88 *  Clears the register array which contains the VLAN filter table by
  89 *  setting all the values to 0.
  90 **/
  91void igb_clear_vfta(struct e1000_hw *hw)
  92{
  93        u32 offset;
  94
  95        for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) {
  96                array_wr32(E1000_VFTA, offset, 0);
  97                wrfl();
  98        }
  99}
 100
 101/**
 102 *  igb_write_vfta - Write value to VLAN filter table
 103 *  @hw: pointer to the HW structure
 104 *  @offset: register offset in VLAN filter table
 105 *  @value: register value written to VLAN filter table
 106 *
 107 *  Writes value at the given offset in the register array which stores
 108 *  the VLAN filter table.
 109 **/
 110static void igb_write_vfta(struct e1000_hw *hw, u32 offset, u32 value)
 111{
 112        array_wr32(E1000_VFTA, offset, value);
 113        wrfl();
 114}
 115
 116/* Due to a hw errata, if the host tries to  configure the VFTA register
 117 * while performing queries from the BMC or DMA, then the VFTA in some
 118 * cases won't be written.
 119 */
 120
 121/**
 122 *  igb_clear_vfta_i350 - Clear VLAN filter table
 123 *  @hw: pointer to the HW structure
 124 *
 125 *  Clears the register array which contains the VLAN filter table by
 126 *  setting all the values to 0.
 127 **/
 128void igb_clear_vfta_i350(struct e1000_hw *hw)
 129{
 130        u32 offset;
 131        int i;
 132
 133        for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) {
 134                for (i = 0; i < 10; i++)
 135                        array_wr32(E1000_VFTA, offset, 0);
 136
 137                wrfl();
 138        }
 139}
 140
 141/**
 142 *  igb_write_vfta_i350 - Write value to VLAN filter table
 143 *  @hw: pointer to the HW structure
 144 *  @offset: register offset in VLAN filter table
 145 *  @value: register value written to VLAN filter table
 146 *
 147 *  Writes value at the given offset in the register array which stores
 148 *  the VLAN filter table.
 149 **/
 150static void igb_write_vfta_i350(struct e1000_hw *hw, u32 offset, u32 value)
 151{
 152        int i;
 153
 154        for (i = 0; i < 10; i++)
 155                array_wr32(E1000_VFTA, offset, value);
 156
 157        wrfl();
 158}
 159
 160/**
 161 *  igb_init_rx_addrs - Initialize receive address's
 162 *  @hw: pointer to the HW structure
 163 *  @rar_count: receive address registers
 164 *
 165 *  Setups the receive address registers by setting the base receive address
 166 *  register to the devices MAC address and clearing all the other receive
 167 *  address registers to 0.
 168 **/
 169void igb_init_rx_addrs(struct e1000_hw *hw, u16 rar_count)
 170{
 171        u32 i;
 172        u8 mac_addr[ETH_ALEN] = {0};
 173
 174        /* Setup the receive address */
 175        hw_dbg("Programming MAC Address into RAR[0]\n");
 176
 177        hw->mac.ops.rar_set(hw, hw->mac.addr, 0);
 178
 179        /* Zero out the other (rar_entry_count - 1) receive addresses */
 180        hw_dbg("Clearing RAR[1-%u]\n", rar_count-1);
 181        for (i = 1; i < rar_count; i++)
 182                hw->mac.ops.rar_set(hw, mac_addr, i);
 183}
 184
 185/**
 186 *  igb_vfta_set - enable or disable vlan in VLAN filter table
 187 *  @hw: pointer to the HW structure
 188 *  @vid: VLAN id to add or remove
 189 *  @add: if true add filter, if false remove
 190 *
 191 *  Sets or clears a bit in the VLAN filter table array based on VLAN id
 192 *  and if we are adding or removing the filter
 193 **/
 194s32 igb_vfta_set(struct e1000_hw *hw, u32 vid, bool add)
 195{
 196        u32 index = (vid >> E1000_VFTA_ENTRY_SHIFT) & E1000_VFTA_ENTRY_MASK;
 197        u32 mask = 1 << (vid & E1000_VFTA_ENTRY_BIT_SHIFT_MASK);
 198        u32 vfta;
 199        struct igb_adapter *adapter = hw->back;
 200        s32 ret_val = 0;
 201
 202        vfta = adapter->shadow_vfta[index];
 203
 204        /* bit was set/cleared before we started */
 205        if ((!!(vfta & mask)) == add) {
 206                ret_val = -E1000_ERR_CONFIG;
 207        } else {
 208                if (add)
 209                        vfta |= mask;
 210                else
 211                        vfta &= ~mask;
 212        }
 213        if ((hw->mac.type == e1000_i350) || (hw->mac.type == e1000_i354))
 214                igb_write_vfta_i350(hw, index, vfta);
 215        else
 216                igb_write_vfta(hw, index, vfta);
 217        adapter->shadow_vfta[index] = vfta;
 218
 219        return ret_val;
 220}
 221
 222/**
 223 *  igb_check_alt_mac_addr - Check for alternate MAC addr
 224 *  @hw: pointer to the HW structure
 225 *
 226 *  Checks the nvm for an alternate MAC address.  An alternate MAC address
 227 *  can be setup by pre-boot software and must be treated like a permanent
 228 *  address and must override the actual permanent MAC address.  If an
 229 *  alternate MAC address is found it is saved in the hw struct and
 230 *  programmed into RAR0 and the function returns success, otherwise the
 231 *  function returns an error.
 232 **/
 233s32 igb_check_alt_mac_addr(struct e1000_hw *hw)
 234{
 235        u32 i;
 236        s32 ret_val = 0;
 237        u16 offset, nvm_alt_mac_addr_offset, nvm_data;
 238        u8 alt_mac_addr[ETH_ALEN];
 239
 240        /* Alternate MAC address is handled by the option ROM for 82580
 241         * and newer. SW support not required.
 242         */
 243        if (hw->mac.type >= e1000_82580)
 244                goto out;
 245
 246        ret_val = hw->nvm.ops.read(hw, NVM_ALT_MAC_ADDR_PTR, 1,
 247                                 &nvm_alt_mac_addr_offset);
 248        if (ret_val) {
 249                hw_dbg("NVM Read Error\n");
 250                goto out;
 251        }
 252
 253        if ((nvm_alt_mac_addr_offset == 0xFFFF) ||
 254            (nvm_alt_mac_addr_offset == 0x0000))
 255                /* There is no Alternate MAC Address */
 256                goto out;
 257
 258        if (hw->bus.func == E1000_FUNC_1)
 259                nvm_alt_mac_addr_offset += E1000_ALT_MAC_ADDRESS_OFFSET_LAN1;
 260        if (hw->bus.func == E1000_FUNC_2)
 261                nvm_alt_mac_addr_offset += E1000_ALT_MAC_ADDRESS_OFFSET_LAN2;
 262
 263        if (hw->bus.func == E1000_FUNC_3)
 264                nvm_alt_mac_addr_offset += E1000_ALT_MAC_ADDRESS_OFFSET_LAN3;
 265        for (i = 0; i < ETH_ALEN; i += 2) {
 266                offset = nvm_alt_mac_addr_offset + (i >> 1);
 267                ret_val = hw->nvm.ops.read(hw, offset, 1, &nvm_data);
 268                if (ret_val) {
 269                        hw_dbg("NVM Read Error\n");
 270                        goto out;
 271                }
 272
 273                alt_mac_addr[i] = (u8)(nvm_data & 0xFF);
 274                alt_mac_addr[i + 1] = (u8)(nvm_data >> 8);
 275        }
 276
 277        /* if multicast bit is set, the alternate address will not be used */
 278        if (is_multicast_ether_addr(alt_mac_addr)) {
 279                hw_dbg("Ignoring Alternate Mac Address with MC bit set\n");
 280                goto out;
 281        }
 282
 283        /* We have a valid alternate MAC address, and we want to treat it the
 284         * same as the normal permanent MAC address stored by the HW into the
 285         * RAR. Do this by mapping this address into RAR0.
 286         */
 287        hw->mac.ops.rar_set(hw, alt_mac_addr, 0);
 288
 289out:
 290        return ret_val;
 291}
 292
 293/**
 294 *  igb_rar_set - Set receive address register
 295 *  @hw: pointer to the HW structure
 296 *  @addr: pointer to the receive address
 297 *  @index: receive address array register
 298 *
 299 *  Sets the receive address array register at index to the address passed
 300 *  in by addr.
 301 **/
 302void igb_rar_set(struct e1000_hw *hw, u8 *addr, u32 index)
 303{
 304        u32 rar_low, rar_high;
 305
 306        /* HW expects these in little endian so we reverse the byte order
 307         * from network order (big endian) to little endian
 308         */
 309        rar_low = ((u32) addr[0] |
 310                   ((u32) addr[1] << 8) |
 311                    ((u32) addr[2] << 16) | ((u32) addr[3] << 24));
 312
 313        rar_high = ((u32) addr[4] | ((u32) addr[5] << 8));
 314
 315        /* If MAC address zero, no need to set the AV bit */
 316        if (rar_low || rar_high)
 317                rar_high |= E1000_RAH_AV;
 318
 319        /* Some bridges will combine consecutive 32-bit writes into
 320         * a single burst write, which will malfunction on some parts.
 321         * The flushes avoid this.
 322         */
 323        wr32(E1000_RAL(index), rar_low);
 324        wrfl();
 325        wr32(E1000_RAH(index), rar_high);
 326        wrfl();
 327}
 328
 329/**
 330 *  igb_mta_set - Set multicast filter table address
 331 *  @hw: pointer to the HW structure
 332 *  @hash_value: determines the MTA register and bit to set
 333 *
 334 *  The multicast table address is a register array of 32-bit registers.
 335 *  The hash_value is used to determine what register the bit is in, the
 336 *  current value is read, the new bit is OR'd in and the new value is
 337 *  written back into the register.
 338 **/
 339void igb_mta_set(struct e1000_hw *hw, u32 hash_value)
 340{
 341        u32 hash_bit, hash_reg, mta;
 342
 343        /* The MTA is a register array of 32-bit registers. It is
 344         * treated like an array of (32*mta_reg_count) bits.  We want to
 345         * set bit BitArray[hash_value]. So we figure out what register
 346         * the bit is in, read it, OR in the new bit, then write
 347         * back the new value.  The (hw->mac.mta_reg_count - 1) serves as a
 348         * mask to bits 31:5 of the hash value which gives us the
 349         * register we're modifying.  The hash bit within that register
 350         * is determined by the lower 5 bits of the hash value.
 351         */
 352        hash_reg = (hash_value >> 5) & (hw->mac.mta_reg_count - 1);
 353        hash_bit = hash_value & 0x1F;
 354
 355        mta = array_rd32(E1000_MTA, hash_reg);
 356
 357        mta |= (1 << hash_bit);
 358
 359        array_wr32(E1000_MTA, hash_reg, mta);
 360        wrfl();
 361}
 362
 363/**
 364 *  igb_hash_mc_addr - Generate a multicast hash value
 365 *  @hw: pointer to the HW structure
 366 *  @mc_addr: pointer to a multicast address
 367 *
 368 *  Generates a multicast address hash value which is used to determine
 369 *  the multicast filter table array address and new table value.  See
 370 *  igb_mta_set()
 371 **/
 372static u32 igb_hash_mc_addr(struct e1000_hw *hw, u8 *mc_addr)
 373{
 374        u32 hash_value, hash_mask;
 375        u8 bit_shift = 0;
 376
 377        /* Register count multiplied by bits per register */
 378        hash_mask = (hw->mac.mta_reg_count * 32) - 1;
 379
 380        /* For a mc_filter_type of 0, bit_shift is the number of left-shifts
 381         * where 0xFF would still fall within the hash mask.
 382         */
 383        while (hash_mask >> bit_shift != 0xFF)
 384                bit_shift++;
 385
 386        /* The portion of the address that is used for the hash table
 387         * is determined by the mc_filter_type setting.
 388         * The algorithm is such that there is a total of 8 bits of shifting.
 389         * The bit_shift for a mc_filter_type of 0 represents the number of
 390         * left-shifts where the MSB of mc_addr[5] would still fall within
 391         * the hash_mask.  Case 0 does this exactly.  Since there are a total
 392         * of 8 bits of shifting, then mc_addr[4] will shift right the
 393         * remaining number of bits. Thus 8 - bit_shift.  The rest of the
 394         * cases are a variation of this algorithm...essentially raising the
 395         * number of bits to shift mc_addr[5] left, while still keeping the
 396         * 8-bit shifting total.
 397         *
 398         * For example, given the following Destination MAC Address and an
 399         * mta register count of 128 (thus a 4096-bit vector and 0xFFF mask),
 400         * we can see that the bit_shift for case 0 is 4.  These are the hash
 401         * values resulting from each mc_filter_type...
 402         * [0] [1] [2] [3] [4] [5]
 403         * 01  AA  00  12  34  56
 404         * LSB                 MSB
 405         *
 406         * case 0: hash_value = ((0x34 >> 4) | (0x56 << 4)) & 0xFFF = 0x563
 407         * case 1: hash_value = ((0x34 >> 3) | (0x56 << 5)) & 0xFFF = 0xAC6
 408         * case 2: hash_value = ((0x34 >> 2) | (0x56 << 6)) & 0xFFF = 0x163
 409         * case 3: hash_value = ((0x34 >> 0) | (0x56 << 8)) & 0xFFF = 0x634
 410         */
 411        switch (hw->mac.mc_filter_type) {
 412        default:
 413        case 0:
 414                break;
 415        case 1:
 416                bit_shift += 1;
 417                break;
 418        case 2:
 419                bit_shift += 2;
 420                break;
 421        case 3:
 422                bit_shift += 4;
 423                break;
 424        }
 425
 426        hash_value = hash_mask & (((mc_addr[4] >> (8 - bit_shift)) |
 427                                  (((u16) mc_addr[5]) << bit_shift)));
 428
 429        return hash_value;
 430}
 431
 432/**
 433 *  igb_update_mc_addr_list - Update Multicast addresses
 434 *  @hw: pointer to the HW structure
 435 *  @mc_addr_list: array of multicast addresses to program
 436 *  @mc_addr_count: number of multicast addresses to program
 437 *
 438 *  Updates entire Multicast Table Array.
 439 *  The caller must have a packed mc_addr_list of multicast addresses.
 440 **/
 441void igb_update_mc_addr_list(struct e1000_hw *hw,
 442                             u8 *mc_addr_list, u32 mc_addr_count)
 443{
 444        u32 hash_value, hash_bit, hash_reg;
 445        int i;
 446
 447        /* clear mta_shadow */
 448        memset(&hw->mac.mta_shadow, 0, sizeof(hw->mac.mta_shadow));
 449
 450        /* update mta_shadow from mc_addr_list */
 451        for (i = 0; (u32) i < mc_addr_count; i++) {
 452                hash_value = igb_hash_mc_addr(hw, mc_addr_list);
 453
 454                hash_reg = (hash_value >> 5) & (hw->mac.mta_reg_count - 1);
 455                hash_bit = hash_value & 0x1F;
 456
 457                hw->mac.mta_shadow[hash_reg] |= (1 << hash_bit);
 458                mc_addr_list += (ETH_ALEN);
 459        }
 460
 461        /* replace the entire MTA table */
 462        for (i = hw->mac.mta_reg_count - 1; i >= 0; i--)
 463                array_wr32(E1000_MTA, i, hw->mac.mta_shadow[i]);
 464        wrfl();
 465}
 466
 467/**
 468 *  igb_clear_hw_cntrs_base - Clear base hardware counters
 469 *  @hw: pointer to the HW structure
 470 *
 471 *  Clears the base hardware counters by reading the counter registers.
 472 **/
 473void igb_clear_hw_cntrs_base(struct e1000_hw *hw)
 474{
 475        rd32(E1000_CRCERRS);
 476        rd32(E1000_SYMERRS);
 477        rd32(E1000_MPC);
 478        rd32(E1000_SCC);
 479        rd32(E1000_ECOL);
 480        rd32(E1000_MCC);
 481        rd32(E1000_LATECOL);
 482        rd32(E1000_COLC);
 483        rd32(E1000_DC);
 484        rd32(E1000_SEC);
 485        rd32(E1000_RLEC);
 486        rd32(E1000_XONRXC);
 487        rd32(E1000_XONTXC);
 488        rd32(E1000_XOFFRXC);
 489        rd32(E1000_XOFFTXC);
 490        rd32(E1000_FCRUC);
 491        rd32(E1000_GPRC);
 492        rd32(E1000_BPRC);
 493        rd32(E1000_MPRC);
 494        rd32(E1000_GPTC);
 495        rd32(E1000_GORCL);
 496        rd32(E1000_GORCH);
 497        rd32(E1000_GOTCL);
 498        rd32(E1000_GOTCH);
 499        rd32(E1000_RNBC);
 500        rd32(E1000_RUC);
 501        rd32(E1000_RFC);
 502        rd32(E1000_ROC);
 503        rd32(E1000_RJC);
 504        rd32(E1000_TORL);
 505        rd32(E1000_TORH);
 506        rd32(E1000_TOTL);
 507        rd32(E1000_TOTH);
 508        rd32(E1000_TPR);
 509        rd32(E1000_TPT);
 510        rd32(E1000_MPTC);
 511        rd32(E1000_BPTC);
 512}
 513
 514/**
 515 *  igb_check_for_copper_link - Check for link (Copper)
 516 *  @hw: pointer to the HW structure
 517 *
 518 *  Checks to see of the link status of the hardware has changed.  If a
 519 *  change in link status has been detected, then we read the PHY registers
 520 *  to get the current speed/duplex if link exists.
 521 **/
 522s32 igb_check_for_copper_link(struct e1000_hw *hw)
 523{
 524        struct e1000_mac_info *mac = &hw->mac;
 525        s32 ret_val;
 526        bool link;
 527
 528        /* We only want to go out to the PHY registers to see if Auto-Neg
 529         * has completed and/or if our link status has changed.  The
 530         * get_link_status flag is set upon receiving a Link Status
 531         * Change or Rx Sequence Error interrupt.
 532         */
 533        if (!mac->get_link_status) {
 534                ret_val = 0;
 535                goto out;
 536        }
 537
 538        /* First we want to see if the MII Status Register reports
 539         * link.  If so, then we want to get the current speed/duplex
 540         * of the PHY.
 541         */
 542        ret_val = igb_phy_has_link(hw, 1, 0, &link);
 543        if (ret_val)
 544                goto out;
 545
 546        if (!link)
 547                goto out; /* No link detected */
 548
 549        mac->get_link_status = false;
 550
 551        /* Check if there was DownShift, must be checked
 552         * immediately after link-up
 553         */
 554        igb_check_downshift(hw);
 555
 556        /* If we are forcing speed/duplex, then we simply return since
 557         * we have already determined whether we have link or not.
 558         */
 559        if (!mac->autoneg) {
 560                ret_val = -E1000_ERR_CONFIG;
 561                goto out;
 562        }
 563
 564        /* Auto-Neg is enabled.  Auto Speed Detection takes care
 565         * of MAC speed/duplex configuration.  So we only need to
 566         * configure Collision Distance in the MAC.
 567         */
 568        igb_config_collision_dist(hw);
 569
 570        /* Configure Flow Control now that Auto-Neg has completed.
 571         * First, we need to restore the desired flow control
 572         * settings because we may have had to re-autoneg with a
 573         * different link partner.
 574         */
 575        ret_val = igb_config_fc_after_link_up(hw);
 576        if (ret_val)
 577                hw_dbg("Error configuring flow control\n");
 578
 579out:
 580        return ret_val;
 581}
 582
 583/**
 584 *  igb_setup_link - Setup flow control and link settings
 585 *  @hw: pointer to the HW structure
 586 *
 587 *  Determines which flow control settings to use, then configures flow
 588 *  control.  Calls the appropriate media-specific link configuration
 589 *  function.  Assuming the adapter has a valid link partner, a valid link
 590 *  should be established.  Assumes the hardware has previously been reset
 591 *  and the transmitter and receiver are not enabled.
 592 **/
 593s32 igb_setup_link(struct e1000_hw *hw)
 594{
 595        s32 ret_val = 0;
 596
 597        /* In the case of the phy reset being blocked, we already have a link.
 598         * We do not need to set it up again.
 599         */
 600        if (igb_check_reset_block(hw))
 601                goto out;
 602
 603        /* If requested flow control is set to default, set flow control
 604         * based on the EEPROM flow control settings.
 605         */
 606        if (hw->fc.requested_mode == e1000_fc_default) {
 607                ret_val = igb_set_default_fc(hw);
 608                if (ret_val)
 609                        goto out;
 610        }
 611
 612        /* We want to save off the original Flow Control configuration just
 613         * in case we get disconnected and then reconnected into a different
 614         * hub or switch with different Flow Control capabilities.
 615         */
 616        hw->fc.current_mode = hw->fc.requested_mode;
 617
 618        hw_dbg("After fix-ups FlowControl is now = %x\n", hw->fc.current_mode);
 619
 620        /* Call the necessary media_type subroutine to configure the link. */
 621        ret_val = hw->mac.ops.setup_physical_interface(hw);
 622        if (ret_val)
 623                goto out;
 624
 625        /* Initialize the flow control address, type, and PAUSE timer
 626         * registers to their default values.  This is done even if flow
 627         * control is disabled, because it does not hurt anything to
 628         * initialize these registers.
 629         */
 630        hw_dbg("Initializing the Flow Control address, type and timer regs\n");
 631        wr32(E1000_FCT, FLOW_CONTROL_TYPE);
 632        wr32(E1000_FCAH, FLOW_CONTROL_ADDRESS_HIGH);
 633        wr32(E1000_FCAL, FLOW_CONTROL_ADDRESS_LOW);
 634
 635        wr32(E1000_FCTTV, hw->fc.pause_time);
 636
 637        ret_val = igb_set_fc_watermarks(hw);
 638
 639out:
 640
 641        return ret_val;
 642}
 643
 644/**
 645 *  igb_config_collision_dist - Configure collision distance
 646 *  @hw: pointer to the HW structure
 647 *
 648 *  Configures the collision distance to the default value and is used
 649 *  during link setup. Currently no func pointer exists and all
 650 *  implementations are handled in the generic version of this function.
 651 **/
 652void igb_config_collision_dist(struct e1000_hw *hw)
 653{
 654        u32 tctl;
 655
 656        tctl = rd32(E1000_TCTL);
 657
 658        tctl &= ~E1000_TCTL_COLD;
 659        tctl |= E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT;
 660
 661        wr32(E1000_TCTL, tctl);
 662        wrfl();
 663}
 664
 665/**
 666 *  igb_set_fc_watermarks - Set flow control high/low watermarks
 667 *  @hw: pointer to the HW structure
 668 *
 669 *  Sets the flow control high/low threshold (watermark) registers.  If
 670 *  flow control XON frame transmission is enabled, then set XON frame
 671 *  tansmission as well.
 672 **/
 673static s32 igb_set_fc_watermarks(struct e1000_hw *hw)
 674{
 675        s32 ret_val = 0;
 676        u32 fcrtl = 0, fcrth = 0;
 677
 678        /* Set the flow control receive threshold registers.  Normally,
 679         * these registers will be set to a default threshold that may be
 680         * adjusted later by the driver's runtime code.  However, if the
 681         * ability to transmit pause frames is not enabled, then these
 682         * registers will be set to 0.
 683         */
 684        if (hw->fc.current_mode & e1000_fc_tx_pause) {
 685                /* We need to set up the Receive Threshold high and low water
 686                 * marks as well as (optionally) enabling the transmission of
 687                 * XON frames.
 688                 */
 689                fcrtl = hw->fc.low_water;
 690                if (hw->fc.send_xon)
 691                        fcrtl |= E1000_FCRTL_XONE;
 692
 693                fcrth = hw->fc.high_water;
 694        }
 695        wr32(E1000_FCRTL, fcrtl);
 696        wr32(E1000_FCRTH, fcrth);
 697
 698        return ret_val;
 699}
 700
 701/**
 702 *  igb_set_default_fc - Set flow control default values
 703 *  @hw: pointer to the HW structure
 704 *
 705 *  Read the EEPROM for the default values for flow control and store the
 706 *  values.
 707 **/
 708static s32 igb_set_default_fc(struct e1000_hw *hw)
 709{
 710        s32 ret_val = 0;
 711        u16 lan_offset;
 712        u16 nvm_data;
 713
 714        /* Read and store word 0x0F of the EEPROM. This word contains bits
 715         * that determine the hardware's default PAUSE (flow control) mode,
 716         * a bit that determines whether the HW defaults to enabling or
 717         * disabling auto-negotiation, and the direction of the
 718         * SW defined pins. If there is no SW over-ride of the flow
 719         * control setting, then the variable hw->fc will
 720         * be initialized based on a value in the EEPROM.
 721         */
 722        if (hw->mac.type == e1000_i350) {
 723                lan_offset = NVM_82580_LAN_FUNC_OFFSET(hw->bus.func);
 724                ret_val = hw->nvm.ops.read(hw, NVM_INIT_CONTROL2_REG
 725                                           + lan_offset, 1, &nvm_data);
 726         } else {
 727                ret_val = hw->nvm.ops.read(hw, NVM_INIT_CONTROL2_REG,
 728                                           1, &nvm_data);
 729         }
 730
 731        if (ret_val) {
 732                hw_dbg("NVM Read Error\n");
 733                goto out;
 734        }
 735
 736        if ((nvm_data & NVM_WORD0F_PAUSE_MASK) == 0)
 737                hw->fc.requested_mode = e1000_fc_none;
 738        else if ((nvm_data & NVM_WORD0F_PAUSE_MASK) ==
 739                 NVM_WORD0F_ASM_DIR)
 740                hw->fc.requested_mode = e1000_fc_tx_pause;
 741        else
 742                hw->fc.requested_mode = e1000_fc_full;
 743
 744out:
 745        return ret_val;
 746}
 747
 748/**
 749 *  igb_force_mac_fc - Force the MAC's flow control settings
 750 *  @hw: pointer to the HW structure
 751 *
 752 *  Force the MAC's flow control settings.  Sets the TFCE and RFCE bits in the
 753 *  device control register to reflect the adapter settings.  TFCE and RFCE
 754 *  need to be explicitly set by software when a copper PHY is used because
 755 *  autonegotiation is managed by the PHY rather than the MAC.  Software must
 756 *  also configure these bits when link is forced on a fiber connection.
 757 **/
 758s32 igb_force_mac_fc(struct e1000_hw *hw)
 759{
 760        u32 ctrl;
 761        s32 ret_val = 0;
 762
 763        ctrl = rd32(E1000_CTRL);
 764
 765        /* Because we didn't get link via the internal auto-negotiation
 766         * mechanism (we either forced link or we got link via PHY
 767         * auto-neg), we have to manually enable/disable transmit an
 768         * receive flow control.
 769         *
 770         * The "Case" statement below enables/disable flow control
 771         * according to the "hw->fc.current_mode" parameter.
 772         *
 773         * The possible values of the "fc" parameter are:
 774         *      0:  Flow control is completely disabled
 775         *      1:  Rx flow control is enabled (we can receive pause
 776         *          frames but not send pause frames).
 777         *      2:  Tx flow control is enabled (we can send pause frames
 778         *          frames but we do not receive pause frames).
 779         *      3:  Both Rx and TX flow control (symmetric) is enabled.
 780         *  other:  No other values should be possible at this point.
 781         */
 782        hw_dbg("hw->fc.current_mode = %u\n", hw->fc.current_mode);
 783
 784        switch (hw->fc.current_mode) {
 785        case e1000_fc_none:
 786                ctrl &= (~(E1000_CTRL_TFCE | E1000_CTRL_RFCE));
 787                break;
 788        case e1000_fc_rx_pause:
 789                ctrl &= (~E1000_CTRL_TFCE);
 790                ctrl |= E1000_CTRL_RFCE;
 791                break;
 792        case e1000_fc_tx_pause:
 793                ctrl &= (~E1000_CTRL_RFCE);
 794                ctrl |= E1000_CTRL_TFCE;
 795                break;
 796        case e1000_fc_full:
 797                ctrl |= (E1000_CTRL_TFCE | E1000_CTRL_RFCE);
 798                break;
 799        default:
 800                hw_dbg("Flow control param set incorrectly\n");
 801                ret_val = -E1000_ERR_CONFIG;
 802                goto out;
 803        }
 804
 805        wr32(E1000_CTRL, ctrl);
 806
 807out:
 808        return ret_val;
 809}
 810
 811/**
 812 *  igb_config_fc_after_link_up - Configures flow control after link
 813 *  @hw: pointer to the HW structure
 814 *
 815 *  Checks the status of auto-negotiation after link up to ensure that the
 816 *  speed and duplex were not forced.  If the link needed to be forced, then
 817 *  flow control needs to be forced also.  If auto-negotiation is enabled
 818 *  and did not fail, then we configure flow control based on our link
 819 *  partner.
 820 **/
 821s32 igb_config_fc_after_link_up(struct e1000_hw *hw)
 822{
 823        struct e1000_mac_info *mac = &hw->mac;
 824        s32 ret_val = 0;
 825        u32 pcs_status_reg, pcs_adv_reg, pcs_lp_ability_reg, pcs_ctrl_reg;
 826        u16 mii_status_reg, mii_nway_adv_reg, mii_nway_lp_ability_reg;
 827        u16 speed, duplex;
 828
 829        /* Check for the case where we have fiber media and auto-neg failed
 830         * so we had to force link.  In this case, we need to force the
 831         * configuration of the MAC to match the "fc" parameter.
 832         */
 833        if (mac->autoneg_failed) {
 834                if (hw->phy.media_type == e1000_media_type_internal_serdes)
 835                        ret_val = igb_force_mac_fc(hw);
 836        } else {
 837                if (hw->phy.media_type == e1000_media_type_copper)
 838                        ret_val = igb_force_mac_fc(hw);
 839        }
 840
 841        if (ret_val) {
 842                hw_dbg("Error forcing flow control settings\n");
 843                goto out;
 844        }
 845
 846        /* Check for the case where we have copper media and auto-neg is
 847         * enabled.  In this case, we need to check and see if Auto-Neg
 848         * has completed, and if so, how the PHY and link partner has
 849         * flow control configured.
 850         */
 851        if ((hw->phy.media_type == e1000_media_type_copper) && mac->autoneg) {
 852                /* Read the MII Status Register and check to see if AutoNeg
 853                 * has completed.  We read this twice because this reg has
 854                 * some "sticky" (latched) bits.
 855                 */
 856                ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS,
 857                                                   &mii_status_reg);
 858                if (ret_val)
 859                        goto out;
 860                ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS,
 861                                                   &mii_status_reg);
 862                if (ret_val)
 863                        goto out;
 864
 865                if (!(mii_status_reg & MII_SR_AUTONEG_COMPLETE)) {
 866                        hw_dbg("Copper PHY and Auto Neg has not completed.\n");
 867                        goto out;
 868                }
 869
 870                /* The AutoNeg process has completed, so we now need to
 871                 * read both the Auto Negotiation Advertisement
 872                 * Register (Address 4) and the Auto_Negotiation Base
 873                 * Page Ability Register (Address 5) to determine how
 874                 * flow control was negotiated.
 875                 */
 876                ret_val = hw->phy.ops.read_reg(hw, PHY_AUTONEG_ADV,
 877                                            &mii_nway_adv_reg);
 878                if (ret_val)
 879                        goto out;
 880                ret_val = hw->phy.ops.read_reg(hw, PHY_LP_ABILITY,
 881                                            &mii_nway_lp_ability_reg);
 882                if (ret_val)
 883                        goto out;
 884
 885                /* Two bits in the Auto Negotiation Advertisement Register
 886                 * (Address 4) and two bits in the Auto Negotiation Base
 887                 * Page Ability Register (Address 5) determine flow control
 888                 * for both the PHY and the link partner.  The following
 889                 * table, taken out of the IEEE 802.3ab/D6.0 dated March 25,
 890                 * 1999, describes these PAUSE resolution bits and how flow
 891                 * control is determined based upon these settings.
 892                 * NOTE:  DC = Don't Care
 893                 *
 894                 *   LOCAL DEVICE  |   LINK PARTNER
 895                 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution
 896                 *-------|---------|-------|---------|--------------------
 897                 *   0   |    0    |  DC   |   DC    | e1000_fc_none
 898                 *   0   |    1    |   0   |   DC    | e1000_fc_none
 899                 *   0   |    1    |   1   |    0    | e1000_fc_none
 900                 *   0   |    1    |   1   |    1    | e1000_fc_tx_pause
 901                 *   1   |    0    |   0   |   DC    | e1000_fc_none
 902                 *   1   |   DC    |   1   |   DC    | e1000_fc_full
 903                 *   1   |    1    |   0   |    0    | e1000_fc_none
 904                 *   1   |    1    |   0   |    1    | e1000_fc_rx_pause
 905                 *
 906                 * Are both PAUSE bits set to 1?  If so, this implies
 907                 * Symmetric Flow Control is enabled at both ends.  The
 908                 * ASM_DIR bits are irrelevant per the spec.
 909                 *
 910                 * For Symmetric Flow Control:
 911                 *
 912                 *   LOCAL DEVICE  |   LINK PARTNER
 913                 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
 914                 *-------|---------|-------|---------|--------------------
 915                 *   1   |   DC    |   1   |   DC    | E1000_fc_full
 916                 *
 917                 */
 918                if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
 919                    (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE)) {
 920                        /* Now we need to check if the user selected RX ONLY
 921                         * of pause frames.  In this case, we had to advertise
 922                         * FULL flow control because we could not advertise RX
 923                         * ONLY. Hence, we must now check to see if we need to
 924                         * turn OFF  the TRANSMISSION of PAUSE frames.
 925                         */
 926                        if (hw->fc.requested_mode == e1000_fc_full) {
 927                                hw->fc.current_mode = e1000_fc_full;
 928                                hw_dbg("Flow Control = FULL.\n");
 929                        } else {
 930                                hw->fc.current_mode = e1000_fc_rx_pause;
 931                                hw_dbg("Flow Control = RX PAUSE frames only.\n");
 932                        }
 933                }
 934                /* For receiving PAUSE frames ONLY.
 935                 *
 936                 *   LOCAL DEVICE  |   LINK PARTNER
 937                 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
 938                 *-------|---------|-------|---------|--------------------
 939                 *   0   |    1    |   1   |    1    | e1000_fc_tx_pause
 940                 */
 941                else if (!(mii_nway_adv_reg & NWAY_AR_PAUSE) &&
 942                          (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
 943                          (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
 944                          (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) {
 945                        hw->fc.current_mode = e1000_fc_tx_pause;
 946                        hw_dbg("Flow Control = TX PAUSE frames only.\n");
 947                }
 948                /* For transmitting PAUSE frames ONLY.
 949                 *
 950                 *   LOCAL DEVICE  |   LINK PARTNER
 951                 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
 952                 *-------|---------|-------|---------|--------------------
 953                 *   1   |    1    |   0   |    1    | e1000_fc_rx_pause
 954                 */
 955                else if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
 956                         (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
 957                         !(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
 958                         (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) {
 959                        hw->fc.current_mode = e1000_fc_rx_pause;
 960                        hw_dbg("Flow Control = RX PAUSE frames only.\n");
 961                }
 962                /* Per the IEEE spec, at this point flow control should be
 963                 * disabled.  However, we want to consider that we could
 964                 * be connected to a legacy switch that doesn't advertise
 965                 * desired flow control, but can be forced on the link
 966                 * partner.  So if we advertised no flow control, that is
 967                 * what we will resolve to.  If we advertised some kind of
 968                 * receive capability (Rx Pause Only or Full Flow Control)
 969                 * and the link partner advertised none, we will configure
 970                 * ourselves to enable Rx Flow Control only.  We can do
 971                 * this safely for two reasons:  If the link partner really
 972                 * didn't want flow control enabled, and we enable Rx, no
 973                 * harm done since we won't be receiving any PAUSE frames
 974                 * anyway.  If the intent on the link partner was to have
 975                 * flow control enabled, then by us enabling RX only, we
 976                 * can at least receive pause frames and process them.
 977                 * This is a good idea because in most cases, since we are
 978                 * predominantly a server NIC, more times than not we will
 979                 * be asked to delay transmission of packets than asking
 980                 * our link partner to pause transmission of frames.
 981                 */
 982                else if ((hw->fc.requested_mode == e1000_fc_none) ||
 983                         (hw->fc.requested_mode == e1000_fc_tx_pause) ||
 984                         (hw->fc.strict_ieee)) {
 985                        hw->fc.current_mode = e1000_fc_none;
 986                        hw_dbg("Flow Control = NONE.\n");
 987                } else {
 988                        hw->fc.current_mode = e1000_fc_rx_pause;
 989                        hw_dbg("Flow Control = RX PAUSE frames only.\n");
 990                }
 991
 992                /* Now we need to do one last check...  If we auto-
 993                 * negotiated to HALF DUPLEX, flow control should not be
 994                 * enabled per IEEE 802.3 spec.
 995                 */
 996                ret_val = hw->mac.ops.get_speed_and_duplex(hw, &speed, &duplex);
 997                if (ret_val) {
 998                        hw_dbg("Error getting link speed and duplex\n");
 999                        goto out;
1000                }
1001
1002                if (duplex == HALF_DUPLEX)
1003                        hw->fc.current_mode = e1000_fc_none;
1004
1005                /* Now we call a subroutine to actually force the MAC
1006                 * controller to use the correct flow control settings.
1007                 */
1008                ret_val = igb_force_mac_fc(hw);
1009                if (ret_val) {
1010                        hw_dbg("Error forcing flow control settings\n");
1011                        goto out;
1012                }
1013        }
1014        /* Check for the case where we have SerDes media and auto-neg is
1015         * enabled.  In this case, we need to check and see if Auto-Neg
1016         * has completed, and if so, how the PHY and link partner has
1017         * flow control configured.
1018         */
1019        if ((hw->phy.media_type == e1000_media_type_internal_serdes)
1020                && mac->autoneg) {
1021                /* Read the PCS_LSTS and check to see if AutoNeg
1022                 * has completed.
1023                 */
1024                pcs_status_reg = rd32(E1000_PCS_LSTAT);
1025
1026                if (!(pcs_status_reg & E1000_PCS_LSTS_AN_COMPLETE)) {
1027                        hw_dbg("PCS Auto Neg has not completed.\n");
1028                        return ret_val;
1029                }
1030
1031                /* The AutoNeg process has completed, so we now need to
1032                 * read both the Auto Negotiation Advertisement
1033                 * Register (PCS_ANADV) and the Auto_Negotiation Base
1034                 * Page Ability Register (PCS_LPAB) to determine how
1035                 * flow control was negotiated.
1036                 */
1037                pcs_adv_reg = rd32(E1000_PCS_ANADV);
1038                pcs_lp_ability_reg = rd32(E1000_PCS_LPAB);
1039
1040                /* Two bits in the Auto Negotiation Advertisement Register
1041                 * (PCS_ANADV) and two bits in the Auto Negotiation Base
1042                 * Page Ability Register (PCS_LPAB) determine flow control
1043                 * for both the PHY and the link partner.  The following
1044                 * table, taken out of the IEEE 802.3ab/D6.0 dated March 25,
1045                 * 1999, describes these PAUSE resolution bits and how flow
1046                 * control is determined based upon these settings.
1047                 * NOTE:  DC = Don't Care
1048                 *
1049                 *   LOCAL DEVICE  |   LINK PARTNER
1050                 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution
1051                 *-------|---------|-------|---------|--------------------
1052                 *   0   |    0    |  DC   |   DC    | e1000_fc_none
1053                 *   0   |    1    |   0   |   DC    | e1000_fc_none
1054                 *   0   |    1    |   1   |    0    | e1000_fc_none
1055                 *   0   |    1    |   1   |    1    | e1000_fc_tx_pause
1056                 *   1   |    0    |   0   |   DC    | e1000_fc_none
1057                 *   1   |   DC    |   1   |   DC    | e1000_fc_full
1058                 *   1   |    1    |   0   |    0    | e1000_fc_none
1059                 *   1   |    1    |   0   |    1    | e1000_fc_rx_pause
1060                 *
1061                 * Are both PAUSE bits set to 1?  If so, this implies
1062                 * Symmetric Flow Control is enabled at both ends.  The
1063                 * ASM_DIR bits are irrelevant per the spec.
1064                 *
1065                 * For Symmetric Flow Control:
1066                 *
1067                 *   LOCAL DEVICE  |   LINK PARTNER
1068                 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
1069                 *-------|---------|-------|---------|--------------------
1070                 *   1   |   DC    |   1   |   DC    | e1000_fc_full
1071                 *
1072                 */
1073                if ((pcs_adv_reg & E1000_TXCW_PAUSE) &&
1074                    (pcs_lp_ability_reg & E1000_TXCW_PAUSE)) {
1075                        /* Now we need to check if the user selected Rx ONLY
1076                         * of pause frames.  In this case, we had to advertise
1077                         * FULL flow control because we could not advertise Rx
1078                         * ONLY. Hence, we must now check to see if we need to
1079                         * turn OFF the TRANSMISSION of PAUSE frames.
1080                         */
1081                        if (hw->fc.requested_mode == e1000_fc_full) {
1082                                hw->fc.current_mode = e1000_fc_full;
1083                                hw_dbg("Flow Control = FULL.\n");
1084                        } else {
1085                                hw->fc.current_mode = e1000_fc_rx_pause;
1086                                hw_dbg("Flow Control = Rx PAUSE frames only.\n");
1087                        }
1088                }
1089                /* For receiving PAUSE frames ONLY.
1090                 *
1091                 *   LOCAL DEVICE  |   LINK PARTNER
1092                 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
1093                 *-------|---------|-------|---------|--------------------
1094                 *   0   |    1    |   1   |    1    | e1000_fc_tx_pause
1095                 */
1096                else if (!(pcs_adv_reg & E1000_TXCW_PAUSE) &&
1097                          (pcs_adv_reg & E1000_TXCW_ASM_DIR) &&
1098                          (pcs_lp_ability_reg & E1000_TXCW_PAUSE) &&
1099                          (pcs_lp_ability_reg & E1000_TXCW_ASM_DIR)) {
1100                        hw->fc.current_mode = e1000_fc_tx_pause;
1101                        hw_dbg("Flow Control = Tx PAUSE frames only.\n");
1102                }
1103                /* For transmitting PAUSE frames ONLY.
1104                 *
1105                 *   LOCAL DEVICE  |   LINK PARTNER
1106                 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
1107                 *-------|---------|-------|---------|--------------------
1108                 *   1   |    1    |   0   |    1    | e1000_fc_rx_pause
1109                 */
1110                else if ((pcs_adv_reg & E1000_TXCW_PAUSE) &&
1111                         (pcs_adv_reg & E1000_TXCW_ASM_DIR) &&
1112                         !(pcs_lp_ability_reg & E1000_TXCW_PAUSE) &&
1113                         (pcs_lp_ability_reg & E1000_TXCW_ASM_DIR)) {
1114                        hw->fc.current_mode = e1000_fc_rx_pause;
1115                        hw_dbg("Flow Control = Rx PAUSE frames only.\n");
1116                } else {
1117                        /* Per the IEEE spec, at this point flow control
1118                         * should be disabled.
1119                         */
1120                        hw->fc.current_mode = e1000_fc_none;
1121                        hw_dbg("Flow Control = NONE.\n");
1122                }
1123
1124                /* Now we call a subroutine to actually force the MAC
1125                 * controller to use the correct flow control settings.
1126                 */
1127                pcs_ctrl_reg = rd32(E1000_PCS_LCTL);
1128                pcs_ctrl_reg |= E1000_PCS_LCTL_FORCE_FCTRL;
1129                wr32(E1000_PCS_LCTL, pcs_ctrl_reg);
1130
1131                ret_val = igb_force_mac_fc(hw);
1132                if (ret_val) {
1133                        hw_dbg("Error forcing flow control settings\n");
1134                        return ret_val;
1135                }
1136        }
1137
1138out:
1139        return ret_val;
1140}
1141
1142/**
1143 *  igb_get_speed_and_duplex_copper - Retrieve current speed/duplex
1144 *  @hw: pointer to the HW structure
1145 *  @speed: stores the current speed
1146 *  @duplex: stores the current duplex
1147 *
1148 *  Read the status register for the current speed/duplex and store the current
1149 *  speed and duplex for copper connections.
1150 **/
1151s32 igb_get_speed_and_duplex_copper(struct e1000_hw *hw, u16 *speed,
1152                                      u16 *duplex)
1153{
1154        u32 status;
1155
1156        status = rd32(E1000_STATUS);
1157        if (status & E1000_STATUS_SPEED_1000) {
1158                *speed = SPEED_1000;
1159                hw_dbg("1000 Mbs, ");
1160        } else if (status & E1000_STATUS_SPEED_100) {
1161                *speed = SPEED_100;
1162                hw_dbg("100 Mbs, ");
1163        } else {
1164                *speed = SPEED_10;
1165                hw_dbg("10 Mbs, ");
1166        }
1167
1168        if (status & E1000_STATUS_FD) {
1169                *duplex = FULL_DUPLEX;
1170                hw_dbg("Full Duplex\n");
1171        } else {
1172                *duplex = HALF_DUPLEX;
1173                hw_dbg("Half Duplex\n");
1174        }
1175
1176        return 0;
1177}
1178
1179/**
1180 *  igb_get_hw_semaphore - Acquire hardware semaphore
1181 *  @hw: pointer to the HW structure
1182 *
1183 *  Acquire the HW semaphore to access the PHY or NVM
1184 **/
1185s32 igb_get_hw_semaphore(struct e1000_hw *hw)
1186{
1187        u32 swsm;
1188        s32 ret_val = 0;
1189        s32 timeout = hw->nvm.word_size + 1;
1190        s32 i = 0;
1191
1192        /* Get the SW semaphore */
1193        while (i < timeout) {
1194                swsm = rd32(E1000_SWSM);
1195                if (!(swsm & E1000_SWSM_SMBI))
1196                        break;
1197
1198                udelay(50);
1199                i++;
1200        }
1201
1202        if (i == timeout) {
1203                hw_dbg("Driver can't access device - SMBI bit is set.\n");
1204                ret_val = -E1000_ERR_NVM;
1205                goto out;
1206        }
1207
1208        /* Get the FW semaphore. */
1209        for (i = 0; i < timeout; i++) {
1210                swsm = rd32(E1000_SWSM);
1211                wr32(E1000_SWSM, swsm | E1000_SWSM_SWESMBI);
1212
1213                /* Semaphore acquired if bit latched */
1214                if (rd32(E1000_SWSM) & E1000_SWSM_SWESMBI)
1215                        break;
1216
1217                udelay(50);
1218        }
1219
1220        if (i == timeout) {
1221                /* Release semaphores */
1222                igb_put_hw_semaphore(hw);
1223                hw_dbg("Driver can't access the NVM\n");
1224                ret_val = -E1000_ERR_NVM;
1225                goto out;
1226        }
1227
1228out:
1229        return ret_val;
1230}
1231
1232/**
1233 *  igb_put_hw_semaphore - Release hardware semaphore
1234 *  @hw: pointer to the HW structure
1235 *
1236 *  Release hardware semaphore used to access the PHY or NVM
1237 **/
1238void igb_put_hw_semaphore(struct e1000_hw *hw)
1239{
1240        u32 swsm;
1241
1242        swsm = rd32(E1000_SWSM);
1243
1244        swsm &= ~(E1000_SWSM_SMBI | E1000_SWSM_SWESMBI);
1245
1246        wr32(E1000_SWSM, swsm);
1247}
1248
1249/**
1250 *  igb_get_auto_rd_done - Check for auto read completion
1251 *  @hw: pointer to the HW structure
1252 *
1253 *  Check EEPROM for Auto Read done bit.
1254 **/
1255s32 igb_get_auto_rd_done(struct e1000_hw *hw)
1256{
1257        s32 i = 0;
1258        s32 ret_val = 0;
1259
1260
1261        while (i < AUTO_READ_DONE_TIMEOUT) {
1262                if (rd32(E1000_EECD) & E1000_EECD_AUTO_RD)
1263                        break;
1264                usleep_range(1000, 2000);
1265                i++;
1266        }
1267
1268        if (i == AUTO_READ_DONE_TIMEOUT) {
1269                hw_dbg("Auto read by HW from NVM has not completed.\n");
1270                ret_val = -E1000_ERR_RESET;
1271                goto out;
1272        }
1273
1274out:
1275        return ret_val;
1276}
1277
1278/**
1279 *  igb_valid_led_default - Verify a valid default LED config
1280 *  @hw: pointer to the HW structure
1281 *  @data: pointer to the NVM (EEPROM)
1282 *
1283 *  Read the EEPROM for the current default LED configuration.  If the
1284 *  LED configuration is not valid, set to a valid LED configuration.
1285 **/
1286static s32 igb_valid_led_default(struct e1000_hw *hw, u16 *data)
1287{
1288        s32 ret_val;
1289
1290        ret_val = hw->nvm.ops.read(hw, NVM_ID_LED_SETTINGS, 1, data);
1291        if (ret_val) {
1292                hw_dbg("NVM Read Error\n");
1293                goto out;
1294        }
1295
1296        if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF) {
1297                switch (hw->phy.media_type) {
1298                case e1000_media_type_internal_serdes:
1299                        *data = ID_LED_DEFAULT_82575_SERDES;
1300                        break;
1301                case e1000_media_type_copper:
1302                default:
1303                        *data = ID_LED_DEFAULT;
1304                        break;
1305                }
1306        }
1307out:
1308        return ret_val;
1309}
1310
1311/**
1312 *  igb_id_led_init -
1313 *  @hw: pointer to the HW structure
1314 *
1315 **/
1316s32 igb_id_led_init(struct e1000_hw *hw)
1317{
1318        struct e1000_mac_info *mac = &hw->mac;
1319        s32 ret_val;
1320        const u32 ledctl_mask = 0x000000FF;
1321        const u32 ledctl_on = E1000_LEDCTL_MODE_LED_ON;
1322        const u32 ledctl_off = E1000_LEDCTL_MODE_LED_OFF;
1323        u16 data, i, temp;
1324        const u16 led_mask = 0x0F;
1325
1326        /* i210 and i211 devices have different LED mechanism */
1327        if ((hw->mac.type == e1000_i210) ||
1328            (hw->mac.type == e1000_i211))
1329                ret_val = igb_valid_led_default_i210(hw, &data);
1330        else
1331                ret_val = igb_valid_led_default(hw, &data);
1332
1333        if (ret_val)
1334                goto out;
1335
1336        mac->ledctl_default = rd32(E1000_LEDCTL);
1337        mac->ledctl_mode1 = mac->ledctl_default;
1338        mac->ledctl_mode2 = mac->ledctl_default;
1339
1340        for (i = 0; i < 4; i++) {
1341                temp = (data >> (i << 2)) & led_mask;
1342                switch (temp) {
1343                case ID_LED_ON1_DEF2:
1344                case ID_LED_ON1_ON2:
1345                case ID_LED_ON1_OFF2:
1346                        mac->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
1347                        mac->ledctl_mode1 |= ledctl_on << (i << 3);
1348                        break;
1349                case ID_LED_OFF1_DEF2:
1350                case ID_LED_OFF1_ON2:
1351                case ID_LED_OFF1_OFF2:
1352                        mac->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
1353                        mac->ledctl_mode1 |= ledctl_off << (i << 3);
1354                        break;
1355                default:
1356                        /* Do nothing */
1357                        break;
1358                }
1359                switch (temp) {
1360                case ID_LED_DEF1_ON2:
1361                case ID_LED_ON1_ON2:
1362                case ID_LED_OFF1_ON2:
1363                        mac->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
1364                        mac->ledctl_mode2 |= ledctl_on << (i << 3);
1365                        break;
1366                case ID_LED_DEF1_OFF2:
1367                case ID_LED_ON1_OFF2:
1368                case ID_LED_OFF1_OFF2:
1369                        mac->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
1370                        mac->ledctl_mode2 |= ledctl_off << (i << 3);
1371                        break;
1372                default:
1373                        /* Do nothing */
1374                        break;
1375                }
1376        }
1377
1378out:
1379        return ret_val;
1380}
1381
1382/**
1383 *  igb_cleanup_led - Set LED config to default operation
1384 *  @hw: pointer to the HW structure
1385 *
1386 *  Remove the current LED configuration and set the LED configuration
1387 *  to the default value, saved from the EEPROM.
1388 **/
1389s32 igb_cleanup_led(struct e1000_hw *hw)
1390{
1391        wr32(E1000_LEDCTL, hw->mac.ledctl_default);
1392        return 0;
1393}
1394
1395/**
1396 *  igb_blink_led - Blink LED
1397 *  @hw: pointer to the HW structure
1398 *
1399 *  Blink the led's which are set to be on.
1400 **/
1401s32 igb_blink_led(struct e1000_hw *hw)
1402{
1403        u32 ledctl_blink = 0;
1404        u32 i;
1405
1406        if (hw->phy.media_type == e1000_media_type_fiber) {
1407                /* always blink LED0 for PCI-E fiber */
1408                ledctl_blink = E1000_LEDCTL_LED0_BLINK |
1409                     (E1000_LEDCTL_MODE_LED_ON << E1000_LEDCTL_LED0_MODE_SHIFT);
1410        } else {
1411                /* Set the blink bit for each LED that's "on" (0x0E)
1412                 * (or "off" if inverted) in ledctl_mode2.  The blink
1413                 * logic in hardware only works when mode is set to "on"
1414                 * so it must be changed accordingly when the mode is
1415                 * "off" and inverted.
1416                 */
1417                ledctl_blink = hw->mac.ledctl_mode2;
1418                for (i = 0; i < 32; i += 8) {
1419                        u32 mode = (hw->mac.ledctl_mode2 >> i) &
1420                            E1000_LEDCTL_LED0_MODE_MASK;
1421                        u32 led_default = hw->mac.ledctl_default >> i;
1422
1423                        if ((!(led_default & E1000_LEDCTL_LED0_IVRT) &&
1424                             (mode == E1000_LEDCTL_MODE_LED_ON)) ||
1425                            ((led_default & E1000_LEDCTL_LED0_IVRT) &&
1426                             (mode == E1000_LEDCTL_MODE_LED_OFF))) {
1427                                ledctl_blink &=
1428                                    ~(E1000_LEDCTL_LED0_MODE_MASK << i);
1429                                ledctl_blink |= (E1000_LEDCTL_LED0_BLINK |
1430                                                 E1000_LEDCTL_MODE_LED_ON) << i;
1431                        }
1432                }
1433        }
1434
1435        wr32(E1000_LEDCTL, ledctl_blink);
1436
1437        return 0;
1438}
1439
1440/**
1441 *  igb_led_off - Turn LED off
1442 *  @hw: pointer to the HW structure
1443 *
1444 *  Turn LED off.
1445 **/
1446s32 igb_led_off(struct e1000_hw *hw)
1447{
1448        switch (hw->phy.media_type) {
1449        case e1000_media_type_copper:
1450                wr32(E1000_LEDCTL, hw->mac.ledctl_mode1);
1451                break;
1452        default:
1453                break;
1454        }
1455
1456        return 0;
1457}
1458
1459/**
1460 *  igb_disable_pcie_master - Disables PCI-express master access
1461 *  @hw: pointer to the HW structure
1462 *
1463 *  Returns 0 (0) if successful, else returns -10
1464 *  (-E1000_ERR_MASTER_REQUESTS_PENDING) if master disable bit has not caused
1465 *  the master requests to be disabled.
1466 *
1467 *  Disables PCI-Express master access and verifies there are no pending
1468 *  requests.
1469 **/
1470s32 igb_disable_pcie_master(struct e1000_hw *hw)
1471{
1472        u32 ctrl;
1473        s32 timeout = MASTER_DISABLE_TIMEOUT;
1474        s32 ret_val = 0;
1475
1476        if (hw->bus.type != e1000_bus_type_pci_express)
1477                goto out;
1478
1479        ctrl = rd32(E1000_CTRL);
1480        ctrl |= E1000_CTRL_GIO_MASTER_DISABLE;
1481        wr32(E1000_CTRL, ctrl);
1482
1483        while (timeout) {
1484                if (!(rd32(E1000_STATUS) &
1485                      E1000_STATUS_GIO_MASTER_ENABLE))
1486                        break;
1487                udelay(100);
1488                timeout--;
1489        }
1490
1491        if (!timeout) {
1492                hw_dbg("Master requests are pending.\n");
1493                ret_val = -E1000_ERR_MASTER_REQUESTS_PENDING;
1494                goto out;
1495        }
1496
1497out:
1498        return ret_val;
1499}
1500
1501/**
1502 *  igb_validate_mdi_setting - Verify MDI/MDIx settings
1503 *  @hw: pointer to the HW structure
1504 *
1505 *  Verify that when not using auto-negotitation that MDI/MDIx is correctly
1506 *  set, which is forced to MDI mode only.
1507 **/
1508s32 igb_validate_mdi_setting(struct e1000_hw *hw)
1509{
1510        s32 ret_val = 0;
1511
1512        /* All MDI settings are supported on 82580 and newer. */
1513        if (hw->mac.type >= e1000_82580)
1514                goto out;
1515
1516        if (!hw->mac.autoneg && (hw->phy.mdix == 0 || hw->phy.mdix == 3)) {
1517                hw_dbg("Invalid MDI setting detected\n");
1518                hw->phy.mdix = 1;
1519                ret_val = -E1000_ERR_CONFIG;
1520                goto out;
1521        }
1522
1523out:
1524        return ret_val;
1525}
1526
1527/**
1528 *  igb_write_8bit_ctrl_reg - Write a 8bit CTRL register
1529 *  @hw: pointer to the HW structure
1530 *  @reg: 32bit register offset such as E1000_SCTL
1531 *  @offset: register offset to write to
1532 *  @data: data to write at register offset
1533 *
1534 *  Writes an address/data control type register.  There are several of these
1535 *  and they all have the format address << 8 | data and bit 31 is polled for
1536 *  completion.
1537 **/
1538s32 igb_write_8bit_ctrl_reg(struct e1000_hw *hw, u32 reg,
1539                              u32 offset, u8 data)
1540{
1541        u32 i, regvalue = 0;
1542        s32 ret_val = 0;
1543
1544        /* Set up the address and data */
1545        regvalue = ((u32)data) | (offset << E1000_GEN_CTL_ADDRESS_SHIFT);
1546        wr32(reg, regvalue);
1547
1548        /* Poll the ready bit to see if the MDI read completed */
1549        for (i = 0; i < E1000_GEN_POLL_TIMEOUT; i++) {
1550                udelay(5);
1551                regvalue = rd32(reg);
1552                if (regvalue & E1000_GEN_CTL_READY)
1553                        break;
1554        }
1555        if (!(regvalue & E1000_GEN_CTL_READY)) {
1556                hw_dbg("Reg %08x did not indicate ready\n", reg);
1557                ret_val = -E1000_ERR_PHY;
1558                goto out;
1559        }
1560
1561out:
1562        return ret_val;
1563}
1564
1565/**
1566 *  igb_enable_mng_pass_thru - Enable processing of ARP's
1567 *  @hw: pointer to the HW structure
1568 *
1569 *  Verifies the hardware needs to leave interface enabled so that frames can
1570 *  be directed to and from the management interface.
1571 **/
1572bool igb_enable_mng_pass_thru(struct e1000_hw *hw)
1573{
1574        u32 manc;
1575        u32 fwsm, factps;
1576        bool ret_val = false;
1577
1578        if (!hw->mac.asf_firmware_present)
1579                goto out;
1580
1581        manc = rd32(E1000_MANC);
1582
1583        if (!(manc & E1000_MANC_RCV_TCO_EN))
1584                goto out;
1585
1586        if (hw->mac.arc_subsystem_valid) {
1587                fwsm = rd32(E1000_FWSM);
1588                factps = rd32(E1000_FACTPS);
1589
1590                if (!(factps & E1000_FACTPS_MNGCG) &&
1591                    ((fwsm & E1000_FWSM_MODE_MASK) ==
1592                     (e1000_mng_mode_pt << E1000_FWSM_MODE_SHIFT))) {
1593                        ret_val = true;
1594                        goto out;
1595                }
1596        } else {
1597                if ((manc & E1000_MANC_SMBUS_EN) &&
1598                    !(manc & E1000_MANC_ASF_EN)) {
1599                        ret_val = true;
1600                        goto out;
1601                }
1602        }
1603
1604out:
1605        return ret_val;
1606}
1607