linux/drivers/net/wan/farsync.c
<<
>>
Prefs
   1/*
   2 *      FarSync WAN driver for Linux (2.6.x kernel version)
   3 *
   4 *      Actually sync driver for X.21, V.35 and V.24 on FarSync T-series cards
   5 *
   6 *      Copyright (C) 2001-2004 FarSite Communications Ltd.
   7 *      www.farsite.co.uk
   8 *
   9 *      This program is free software; you can redistribute it and/or
  10 *      modify it under the terms of the GNU General Public License
  11 *      as published by the Free Software Foundation; either version
  12 *      2 of the License, or (at your option) any later version.
  13 *
  14 *      Author:      R.J.Dunlop    <bob.dunlop@farsite.co.uk>
  15 *      Maintainer:  Kevin Curtis  <kevin.curtis@farsite.co.uk>
  16 */
  17
  18#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  19
  20#include <linux/module.h>
  21#include <linux/kernel.h>
  22#include <linux/version.h>
  23#include <linux/pci.h>
  24#include <linux/sched.h>
  25#include <linux/slab.h>
  26#include <linux/ioport.h>
  27#include <linux/init.h>
  28#include <linux/interrupt.h>
  29#include <linux/delay.h>
  30#include <linux/if.h>
  31#include <linux/hdlc.h>
  32#include <asm/io.h>
  33#include <asm/uaccess.h>
  34
  35#include "farsync.h"
  36
  37/*
  38 *      Module info
  39 */
  40MODULE_AUTHOR("R.J.Dunlop <bob.dunlop@farsite.co.uk>");
  41MODULE_DESCRIPTION("FarSync T-Series WAN driver. FarSite Communications Ltd.");
  42MODULE_LICENSE("GPL");
  43
  44/*      Driver configuration and global parameters
  45 *      ==========================================
  46 */
  47
  48/*      Number of ports (per card) and cards supported
  49 */
  50#define FST_MAX_PORTS           4
  51#define FST_MAX_CARDS           32
  52
  53/*      Default parameters for the link
  54 */
  55#define FST_TX_QUEUE_LEN        100     /* At 8Mbps a longer queue length is
  56                                         * useful */
  57#define FST_TXQ_DEPTH           16      /* This one is for the buffering
  58                                         * of frames on the way down to the card
  59                                         * so that we can keep the card busy
  60                                         * and maximise throughput
  61                                         */
  62#define FST_HIGH_WATER_MARK     12      /* Point at which we flow control
  63                                         * network layer */
  64#define FST_LOW_WATER_MARK      8       /* Point at which we remove flow
  65                                         * control from network layer */
  66#define FST_MAX_MTU             8000    /* Huge but possible */
  67#define FST_DEF_MTU             1500    /* Common sane value */
  68
  69#define FST_TX_TIMEOUT          (2*HZ)
  70
  71#ifdef ARPHRD_RAWHDLC
  72#define ARPHRD_MYTYPE   ARPHRD_RAWHDLC  /* Raw frames */
  73#else
  74#define ARPHRD_MYTYPE   ARPHRD_HDLC     /* Cisco-HDLC (keepalives etc) */
  75#endif
  76
  77/*
  78 * Modules parameters and associated variables
  79 */
  80static int fst_txq_low = FST_LOW_WATER_MARK;
  81static int fst_txq_high = FST_HIGH_WATER_MARK;
  82static int fst_max_reads = 7;
  83static int fst_excluded_cards = 0;
  84static int fst_excluded_list[FST_MAX_CARDS];
  85
  86module_param(fst_txq_low, int, 0);
  87module_param(fst_txq_high, int, 0);
  88module_param(fst_max_reads, int, 0);
  89module_param(fst_excluded_cards, int, 0);
  90module_param_array(fst_excluded_list, int, NULL, 0);
  91
  92/*      Card shared memory layout
  93 *      =========================
  94 */
  95#pragma pack(1)
  96
  97/*      This information is derived in part from the FarSite FarSync Smc.h
  98 *      file. Unfortunately various name clashes and the non-portability of the
  99 *      bit field declarations in that file have meant that I have chosen to
 100 *      recreate the information here.
 101 *
 102 *      The SMC (Shared Memory Configuration) has a version number that is
 103 *      incremented every time there is a significant change. This number can
 104 *      be used to check that we have not got out of step with the firmware
 105 *      contained in the .CDE files.
 106 */
 107#define SMC_VERSION 24
 108
 109#define FST_MEMSIZE 0x100000    /* Size of card memory (1Mb) */
 110
 111#define SMC_BASE 0x00002000L    /* Base offset of the shared memory window main
 112                                 * configuration structure */
 113#define BFM_BASE 0x00010000L    /* Base offset of the shared memory window DMA
 114                                 * buffers */
 115
 116#define LEN_TX_BUFFER 8192      /* Size of packet buffers */
 117#define LEN_RX_BUFFER 8192
 118
 119#define LEN_SMALL_TX_BUFFER 256 /* Size of obsolete buffs used for DOS diags */
 120#define LEN_SMALL_RX_BUFFER 256
 121
 122#define NUM_TX_BUFFER 2         /* Must be power of 2. Fixed by firmware */
 123#define NUM_RX_BUFFER 8
 124
 125/* Interrupt retry time in milliseconds */
 126#define INT_RETRY_TIME 2
 127
 128/*      The Am186CH/CC processors support a SmartDMA mode using circular pools
 129 *      of buffer descriptors. The structure is almost identical to that used
 130 *      in the LANCE Ethernet controllers. Details available as PDF from the
 131 *      AMD web site: http://www.amd.com/products/epd/processors/\
 132 *                    2.16bitcont/3.am186cxfa/a21914/21914.pdf
 133 */
 134struct txdesc {                 /* Transmit descriptor */
 135        volatile u16 ladr;      /* Low order address of packet. This is a
 136                                 * linear address in the Am186 memory space
 137                                 */
 138        volatile u8 hadr;       /* High order address. Low 4 bits only, high 4
 139                                 * bits must be zero
 140                                 */
 141        volatile u8 bits;       /* Status and config */
 142        volatile u16 bcnt;      /* 2s complement of packet size in low 15 bits.
 143                                 * Transmit terminal count interrupt enable in
 144                                 * top bit.
 145                                 */
 146        u16 unused;             /* Not used in Tx */
 147};
 148
 149struct rxdesc {                 /* Receive descriptor */
 150        volatile u16 ladr;      /* Low order address of packet */
 151        volatile u8 hadr;       /* High order address */
 152        volatile u8 bits;       /* Status and config */
 153        volatile u16 bcnt;      /* 2s complement of buffer size in low 15 bits.
 154                                 * Receive terminal count interrupt enable in
 155                                 * top bit.
 156                                 */
 157        volatile u16 mcnt;      /* Message byte count (15 bits) */
 158};
 159
 160/* Convert a length into the 15 bit 2's complement */
 161/* #define cnv_bcnt(len)   (( ~(len) + 1 ) & 0x7FFF ) */
 162/* Since we need to set the high bit to enable the completion interrupt this
 163 * can be made a lot simpler
 164 */
 165#define cnv_bcnt(len)   (-(len))
 166
 167/* Status and config bits for the above */
 168#define DMA_OWN         0x80    /* SmartDMA owns the descriptor */
 169#define TX_STP          0x02    /* Tx: start of packet */
 170#define TX_ENP          0x01    /* Tx: end of packet */
 171#define RX_ERR          0x40    /* Rx: error (OR of next 4 bits) */
 172#define RX_FRAM         0x20    /* Rx: framing error */
 173#define RX_OFLO         0x10    /* Rx: overflow error */
 174#define RX_CRC          0x08    /* Rx: CRC error */
 175#define RX_HBUF         0x04    /* Rx: buffer error */
 176#define RX_STP          0x02    /* Rx: start of packet */
 177#define RX_ENP          0x01    /* Rx: end of packet */
 178
 179/* Interrupts from the card are caused by various events which are presented
 180 * in a circular buffer as several events may be processed on one physical int
 181 */
 182#define MAX_CIRBUFF     32
 183
 184struct cirbuff {
 185        u8 rdindex;             /* read, then increment and wrap */
 186        u8 wrindex;             /* write, then increment and wrap */
 187        u8 evntbuff[MAX_CIRBUFF];
 188};
 189
 190/* Interrupt event codes.
 191 * Where appropriate the two low order bits indicate the port number
 192 */
 193#define CTLA_CHG        0x18    /* Control signal changed */
 194#define CTLB_CHG        0x19
 195#define CTLC_CHG        0x1A
 196#define CTLD_CHG        0x1B
 197
 198#define INIT_CPLT       0x20    /* Initialisation complete */
 199#define INIT_FAIL       0x21    /* Initialisation failed */
 200
 201#define ABTA_SENT       0x24    /* Abort sent */
 202#define ABTB_SENT       0x25
 203#define ABTC_SENT       0x26
 204#define ABTD_SENT       0x27
 205
 206#define TXA_UNDF        0x28    /* Transmission underflow */
 207#define TXB_UNDF        0x29
 208#define TXC_UNDF        0x2A
 209#define TXD_UNDF        0x2B
 210
 211#define F56_INT         0x2C
 212#define M32_INT         0x2D
 213
 214#define TE1_ALMA        0x30
 215
 216/* Port physical configuration. See farsync.h for field values */
 217struct port_cfg {
 218        u16 lineInterface;      /* Physical interface type */
 219        u8 x25op;               /* Unused at present */
 220        u8 internalClock;       /* 1 => internal clock, 0 => external */
 221        u8 transparentMode;     /* 1 => on, 0 => off */
 222        u8 invertClock;         /* 0 => normal, 1 => inverted */
 223        u8 padBytes[6];         /* Padding */
 224        u32 lineSpeed;          /* Speed in bps */
 225};
 226
 227/* TE1 port physical configuration */
 228struct su_config {
 229        u32 dataRate;
 230        u8 clocking;
 231        u8 framing;
 232        u8 structure;
 233        u8 interface;
 234        u8 coding;
 235        u8 lineBuildOut;
 236        u8 equalizer;
 237        u8 transparentMode;
 238        u8 loopMode;
 239        u8 range;
 240        u8 txBufferMode;
 241        u8 rxBufferMode;
 242        u8 startingSlot;
 243        u8 losThreshold;
 244        u8 enableIdleCode;
 245        u8 idleCode;
 246        u8 spare[44];
 247};
 248
 249/* TE1 Status */
 250struct su_status {
 251        u32 receiveBufferDelay;
 252        u32 framingErrorCount;
 253        u32 codeViolationCount;
 254        u32 crcErrorCount;
 255        u32 lineAttenuation;
 256        u8 portStarted;
 257        u8 lossOfSignal;
 258        u8 receiveRemoteAlarm;
 259        u8 alarmIndicationSignal;
 260        u8 spare[40];
 261};
 262
 263/* Finally sling all the above together into the shared memory structure.
 264 * Sorry it's a hodge podge of arrays, structures and unused bits, it's been
 265 * evolving under NT for some time so I guess we're stuck with it.
 266 * The structure starts at offset SMC_BASE.
 267 * See farsync.h for some field values.
 268 */
 269struct fst_shared {
 270        /* DMA descriptor rings */
 271        struct rxdesc rxDescrRing[FST_MAX_PORTS][NUM_RX_BUFFER];
 272        struct txdesc txDescrRing[FST_MAX_PORTS][NUM_TX_BUFFER];
 273
 274        /* Obsolete small buffers */
 275        u8 smallRxBuffer[FST_MAX_PORTS][NUM_RX_BUFFER][LEN_SMALL_RX_BUFFER];
 276        u8 smallTxBuffer[FST_MAX_PORTS][NUM_TX_BUFFER][LEN_SMALL_TX_BUFFER];
 277
 278        u8 taskStatus;          /* 0x00 => initialising, 0x01 => running,
 279                                 * 0xFF => halted
 280                                 */
 281
 282        u8 interruptHandshake;  /* Set to 0x01 by adapter to signal interrupt,
 283                                 * set to 0xEE by host to acknowledge interrupt
 284                                 */
 285
 286        u16 smcVersion;         /* Must match SMC_VERSION */
 287
 288        u32 smcFirmwareVersion; /* 0xIIVVRRBB where II = product ID, VV = major
 289                                 * version, RR = revision and BB = build
 290                                 */
 291
 292        u16 txa_done;           /* Obsolete completion flags */
 293        u16 rxa_done;
 294        u16 txb_done;
 295        u16 rxb_done;
 296        u16 txc_done;
 297        u16 rxc_done;
 298        u16 txd_done;
 299        u16 rxd_done;
 300
 301        u16 mailbox[4];         /* Diagnostics mailbox. Not used */
 302
 303        struct cirbuff interruptEvent;  /* interrupt causes */
 304
 305        u32 v24IpSts[FST_MAX_PORTS];    /* V.24 control input status */
 306        u32 v24OpSts[FST_MAX_PORTS];    /* V.24 control output status */
 307
 308        struct port_cfg portConfig[FST_MAX_PORTS];
 309
 310        u16 clockStatus[FST_MAX_PORTS]; /* lsb: 0=> present, 1=> absent */
 311
 312        u16 cableStatus;        /* lsb: 0=> present, 1=> absent */
 313
 314        u16 txDescrIndex[FST_MAX_PORTS];        /* transmit descriptor ring index */
 315        u16 rxDescrIndex[FST_MAX_PORTS];        /* receive descriptor ring index */
 316
 317        u16 portMailbox[FST_MAX_PORTS][2];      /* command, modifier */
 318        u16 cardMailbox[4];     /* Not used */
 319
 320        /* Number of times the card thinks the host has
 321         * missed an interrupt by not acknowledging
 322         * within 2mS (I guess NT has problems)
 323         */
 324        u32 interruptRetryCount;
 325
 326        /* Driver private data used as an ID. We'll not
 327         * use this as I'd rather keep such things
 328         * in main memory rather than on the PCI bus
 329         */
 330        u32 portHandle[FST_MAX_PORTS];
 331
 332        /* Count of Tx underflows for stats */
 333        u32 transmitBufferUnderflow[FST_MAX_PORTS];
 334
 335        /* Debounced V.24 control input status */
 336        u32 v24DebouncedSts[FST_MAX_PORTS];
 337
 338        /* Adapter debounce timers. Don't touch */
 339        u32 ctsTimer[FST_MAX_PORTS];
 340        u32 ctsTimerRun[FST_MAX_PORTS];
 341        u32 dcdTimer[FST_MAX_PORTS];
 342        u32 dcdTimerRun[FST_MAX_PORTS];
 343
 344        u32 numberOfPorts;      /* Number of ports detected at startup */
 345
 346        u16 _reserved[64];
 347
 348        u16 cardMode;           /* Bit-mask to enable features:
 349                                 * Bit 0: 1 enables LED identify mode
 350                                 */
 351
 352        u16 portScheduleOffset;
 353
 354        struct su_config suConfig;      /* TE1 Bits */
 355        struct su_status suStatus;
 356
 357        u32 endOfSmcSignature;  /* endOfSmcSignature MUST be the last member of
 358                                 * the structure and marks the end of shared
 359                                 * memory. Adapter code initializes it as
 360                                 * END_SIG.
 361                                 */
 362};
 363
 364/* endOfSmcSignature value */
 365#define END_SIG                 0x12345678
 366
 367/* Mailbox values. (portMailbox) */
 368#define NOP             0       /* No operation */
 369#define ACK             1       /* Positive acknowledgement to PC driver */
 370#define NAK             2       /* Negative acknowledgement to PC driver */
 371#define STARTPORT       3       /* Start an HDLC port */
 372#define STOPPORT        4       /* Stop an HDLC port */
 373#define ABORTTX         5       /* Abort the transmitter for a port */
 374#define SETV24O         6       /* Set V24 outputs */
 375
 376/* PLX Chip Register Offsets */
 377#define CNTRL_9052      0x50    /* Control Register */
 378#define CNTRL_9054      0x6c    /* Control Register */
 379
 380#define INTCSR_9052     0x4c    /* Interrupt control/status register */
 381#define INTCSR_9054     0x68    /* Interrupt control/status register */
 382
 383/* 9054 DMA Registers */
 384/*
 385 * Note that we will be using DMA Channel 0 for copying rx data
 386 * and Channel 1 for copying tx data
 387 */
 388#define DMAMODE0        0x80
 389#define DMAPADR0        0x84
 390#define DMALADR0        0x88
 391#define DMASIZ0         0x8c
 392#define DMADPR0         0x90
 393#define DMAMODE1        0x94
 394#define DMAPADR1        0x98
 395#define DMALADR1        0x9c
 396#define DMASIZ1         0xa0
 397#define DMADPR1         0xa4
 398#define DMACSR0         0xa8
 399#define DMACSR1         0xa9
 400#define DMAARB          0xac
 401#define DMATHR          0xb0
 402#define DMADAC0         0xb4
 403#define DMADAC1         0xb8
 404#define DMAMARBR        0xac
 405
 406#define FST_MIN_DMA_LEN 64
 407#define FST_RX_DMA_INT  0x01
 408#define FST_TX_DMA_INT  0x02
 409#define FST_CARD_INT    0x04
 410
 411/* Larger buffers are positioned in memory at offset BFM_BASE */
 412struct buf_window {
 413        u8 txBuffer[FST_MAX_PORTS][NUM_TX_BUFFER][LEN_TX_BUFFER];
 414        u8 rxBuffer[FST_MAX_PORTS][NUM_RX_BUFFER][LEN_RX_BUFFER];
 415};
 416
 417/* Calculate offset of a buffer object within the shared memory window */
 418#define BUF_OFFSET(X)   (BFM_BASE + offsetof(struct buf_window, X))
 419
 420#pragma pack()
 421
 422/*      Device driver private information
 423 *      =================================
 424 */
 425/*      Per port (line or channel) information
 426 */
 427struct fst_port_info {
 428        struct net_device *dev; /* Device struct - must be first */
 429        struct fst_card_info *card;     /* Card we're associated with */
 430        int index;              /* Port index on the card */
 431        int hwif;               /* Line hardware (lineInterface copy) */
 432        int run;                /* Port is running */
 433        int mode;               /* Normal or FarSync raw */
 434        int rxpos;              /* Next Rx buffer to use */
 435        int txpos;              /* Next Tx buffer to use */
 436        int txipos;             /* Next Tx buffer to check for free */
 437        int start;              /* Indication of start/stop to network */
 438        /*
 439         * A sixteen entry transmit queue
 440         */
 441        int txqs;               /* index to get next buffer to tx */
 442        int txqe;               /* index to queue next packet */
 443        struct sk_buff *txq[FST_TXQ_DEPTH];     /* The queue */
 444        int rxqdepth;
 445};
 446
 447/*      Per card information
 448 */
 449struct fst_card_info {
 450        char __iomem *mem;      /* Card memory mapped to kernel space */
 451        char __iomem *ctlmem;   /* Control memory for PCI cards */
 452        unsigned int phys_mem;  /* Physical memory window address */
 453        unsigned int phys_ctlmem;       /* Physical control memory address */
 454        unsigned int irq;       /* Interrupt request line number */
 455        unsigned int nports;    /* Number of serial ports */
 456        unsigned int type;      /* Type index of card */
 457        unsigned int state;     /* State of card */
 458        spinlock_t card_lock;   /* Lock for SMP access */
 459        unsigned short pci_conf;        /* PCI card config in I/O space */
 460        /* Per port info */
 461        struct fst_port_info ports[FST_MAX_PORTS];
 462        struct pci_dev *device; /* Information about the pci device */
 463        int card_no;            /* Inst of the card on the system */
 464        int family;             /* TxP or TxU */
 465        int dmarx_in_progress;
 466        int dmatx_in_progress;
 467        unsigned long int_count;
 468        unsigned long int_time_ave;
 469        void *rx_dma_handle_host;
 470        dma_addr_t rx_dma_handle_card;
 471        void *tx_dma_handle_host;
 472        dma_addr_t tx_dma_handle_card;
 473        struct sk_buff *dma_skb_rx;
 474        struct fst_port_info *dma_port_rx;
 475        struct fst_port_info *dma_port_tx;
 476        int dma_len_rx;
 477        int dma_len_tx;
 478        int dma_txpos;
 479        int dma_rxpos;
 480};
 481
 482/* Convert an HDLC device pointer into a port info pointer and similar */
 483#define dev_to_port(D)  (dev_to_hdlc(D)->priv)
 484#define port_to_dev(P)  ((P)->dev)
 485
 486
 487/*
 488 *      Shared memory window access macros
 489 *
 490 *      We have a nice memory based structure above, which could be directly
 491 *      mapped on i386 but might not work on other architectures unless we use
 492 *      the readb,w,l and writeb,w,l macros. Unfortunately these macros take
 493 *      physical offsets so we have to convert. The only saving grace is that
 494 *      this should all collapse back to a simple indirection eventually.
 495 */
 496#define WIN_OFFSET(X)   ((long)&(((struct fst_shared *)SMC_BASE)->X))
 497
 498#define FST_RDB(C,E)    readb ((C)->mem + WIN_OFFSET(E))
 499#define FST_RDW(C,E)    readw ((C)->mem + WIN_OFFSET(E))
 500#define FST_RDL(C,E)    readl ((C)->mem + WIN_OFFSET(E))
 501
 502#define FST_WRB(C,E,B)  writeb ((B), (C)->mem + WIN_OFFSET(E))
 503#define FST_WRW(C,E,W)  writew ((W), (C)->mem + WIN_OFFSET(E))
 504#define FST_WRL(C,E,L)  writel ((L), (C)->mem + WIN_OFFSET(E))
 505
 506/*
 507 *      Debug support
 508 */
 509#if FST_DEBUG
 510
 511static int fst_debug_mask = { FST_DEBUG };
 512
 513/* Most common debug activity is to print something if the corresponding bit
 514 * is set in the debug mask. Note: this uses a non-ANSI extension in GCC to
 515 * support variable numbers of macro parameters. The inverted if prevents us
 516 * eating someone else's else clause.
 517 */
 518#define dbg(F, fmt, args...)                                    \
 519do {                                                            \
 520        if (fst_debug_mask & (F))                               \
 521                printk(KERN_DEBUG pr_fmt(fmt), ##args);         \
 522} while (0)
 523#else
 524#define dbg(F, fmt, args...)                                    \
 525do {                                                            \
 526        if (0)                                                  \
 527                printk(KERN_DEBUG pr_fmt(fmt), ##args);         \
 528} while (0)
 529#endif
 530
 531/*
 532 *      PCI ID lookup table
 533 */
 534static const struct pci_device_id fst_pci_dev_id[] = {
 535        {PCI_VENDOR_ID_FARSITE, PCI_DEVICE_ID_FARSITE_T2P, PCI_ANY_ID, 
 536         PCI_ANY_ID, 0, 0, FST_TYPE_T2P},
 537
 538        {PCI_VENDOR_ID_FARSITE, PCI_DEVICE_ID_FARSITE_T4P, PCI_ANY_ID, 
 539         PCI_ANY_ID, 0, 0, FST_TYPE_T4P},
 540
 541        {PCI_VENDOR_ID_FARSITE, PCI_DEVICE_ID_FARSITE_T1U, PCI_ANY_ID, 
 542         PCI_ANY_ID, 0, 0, FST_TYPE_T1U},
 543
 544        {PCI_VENDOR_ID_FARSITE, PCI_DEVICE_ID_FARSITE_T2U, PCI_ANY_ID, 
 545         PCI_ANY_ID, 0, 0, FST_TYPE_T2U},
 546
 547        {PCI_VENDOR_ID_FARSITE, PCI_DEVICE_ID_FARSITE_T4U, PCI_ANY_ID, 
 548         PCI_ANY_ID, 0, 0, FST_TYPE_T4U},
 549
 550        {PCI_VENDOR_ID_FARSITE, PCI_DEVICE_ID_FARSITE_TE1, PCI_ANY_ID, 
 551         PCI_ANY_ID, 0, 0, FST_TYPE_TE1},
 552
 553        {PCI_VENDOR_ID_FARSITE, PCI_DEVICE_ID_FARSITE_TE1C, PCI_ANY_ID, 
 554         PCI_ANY_ID, 0, 0, FST_TYPE_TE1},
 555        {0,}                    /* End */
 556};
 557
 558MODULE_DEVICE_TABLE(pci, fst_pci_dev_id);
 559
 560/*
 561 *      Device Driver Work Queues
 562 *
 563 *      So that we don't spend too much time processing events in the 
 564 *      Interrupt Service routine, we will declare a work queue per Card 
 565 *      and make the ISR schedule a task in the queue for later execution.
 566 *      In the 2.4 Kernel we used to use the immediate queue for BH's
 567 *      Now that they are gone, tasklets seem to be much better than work 
 568 *      queues.
 569 */
 570
 571static void do_bottom_half_tx(struct fst_card_info *card);
 572static void do_bottom_half_rx(struct fst_card_info *card);
 573static void fst_process_tx_work_q(unsigned long work_q);
 574static void fst_process_int_work_q(unsigned long work_q);
 575
 576static DECLARE_TASKLET(fst_tx_task, fst_process_tx_work_q, 0);
 577static DECLARE_TASKLET(fst_int_task, fst_process_int_work_q, 0);
 578
 579static struct fst_card_info *fst_card_array[FST_MAX_CARDS];
 580static spinlock_t fst_work_q_lock;
 581static u64 fst_work_txq;
 582static u64 fst_work_intq;
 583
 584static void
 585fst_q_work_item(u64 * queue, int card_index)
 586{
 587        unsigned long flags;
 588        u64 mask;
 589
 590        /*
 591         * Grab the queue exclusively
 592         */
 593        spin_lock_irqsave(&fst_work_q_lock, flags);
 594
 595        /*
 596         * Making an entry in the queue is simply a matter of setting
 597         * a bit for the card indicating that there is work to do in the
 598         * bottom half for the card.  Note the limitation of 64 cards.
 599         * That ought to be enough
 600         */
 601        mask = (u64)1 << card_index;
 602        *queue |= mask;
 603        spin_unlock_irqrestore(&fst_work_q_lock, flags);
 604}
 605
 606static void
 607fst_process_tx_work_q(unsigned long /*void **/work_q)
 608{
 609        unsigned long flags;
 610        u64 work_txq;
 611        int i;
 612
 613        /*
 614         * Grab the queue exclusively
 615         */
 616        dbg(DBG_TX, "fst_process_tx_work_q\n");
 617        spin_lock_irqsave(&fst_work_q_lock, flags);
 618        work_txq = fst_work_txq;
 619        fst_work_txq = 0;
 620        spin_unlock_irqrestore(&fst_work_q_lock, flags);
 621
 622        /*
 623         * Call the bottom half for each card with work waiting
 624         */
 625        for (i = 0; i < FST_MAX_CARDS; i++) {
 626                if (work_txq & 0x01) {
 627                        if (fst_card_array[i] != NULL) {
 628                                dbg(DBG_TX, "Calling tx bh for card %d\n", i);
 629                                do_bottom_half_tx(fst_card_array[i]);
 630                        }
 631                }
 632                work_txq = work_txq >> 1;
 633        }
 634}
 635
 636static void
 637fst_process_int_work_q(unsigned long /*void **/work_q)
 638{
 639        unsigned long flags;
 640        u64 work_intq;
 641        int i;
 642
 643        /*
 644         * Grab the queue exclusively
 645         */
 646        dbg(DBG_INTR, "fst_process_int_work_q\n");
 647        spin_lock_irqsave(&fst_work_q_lock, flags);
 648        work_intq = fst_work_intq;
 649        fst_work_intq = 0;
 650        spin_unlock_irqrestore(&fst_work_q_lock, flags);
 651
 652        /*
 653         * Call the bottom half for each card with work waiting
 654         */
 655        for (i = 0; i < FST_MAX_CARDS; i++) {
 656                if (work_intq & 0x01) {
 657                        if (fst_card_array[i] != NULL) {
 658                                dbg(DBG_INTR,
 659                                    "Calling rx & tx bh for card %d\n", i);
 660                                do_bottom_half_rx(fst_card_array[i]);
 661                                do_bottom_half_tx(fst_card_array[i]);
 662                        }
 663                }
 664                work_intq = work_intq >> 1;
 665        }
 666}
 667
 668/*      Card control functions
 669 *      ======================
 670 */
 671/*      Place the processor in reset state
 672 *
 673 * Used to be a simple write to card control space but a glitch in the latest
 674 * AMD Am186CH processor means that we now have to do it by asserting and de-
 675 * asserting the PLX chip PCI Adapter Software Reset. Bit 30 in CNTRL register
 676 * at offset 9052_CNTRL.  Note the updates for the TXU.
 677 */
 678static inline void
 679fst_cpureset(struct fst_card_info *card)
 680{
 681        unsigned char interrupt_line_register;
 682        unsigned int regval;
 683
 684        if (card->family == FST_FAMILY_TXU) {
 685                if (pci_read_config_byte
 686                    (card->device, PCI_INTERRUPT_LINE, &interrupt_line_register)) {
 687                        dbg(DBG_ASS,
 688                            "Error in reading interrupt line register\n");
 689                }
 690                /*
 691                 * Assert PLX software reset and Am186 hardware reset
 692                 * and then deassert the PLX software reset but 186 still in reset
 693                 */
 694                outw(0x440f, card->pci_conf + CNTRL_9054 + 2);
 695                outw(0x040f, card->pci_conf + CNTRL_9054 + 2);
 696                /*
 697                 * We are delaying here to allow the 9054 to reset itself
 698                 */
 699                usleep_range(10, 20);
 700                outw(0x240f, card->pci_conf + CNTRL_9054 + 2);
 701                /*
 702                 * We are delaying here to allow the 9054 to reload its eeprom
 703                 */
 704                usleep_range(10, 20);
 705                outw(0x040f, card->pci_conf + CNTRL_9054 + 2);
 706
 707                if (pci_write_config_byte
 708                    (card->device, PCI_INTERRUPT_LINE, interrupt_line_register)) {
 709                        dbg(DBG_ASS,
 710                            "Error in writing interrupt line register\n");
 711                }
 712
 713        } else {
 714                regval = inl(card->pci_conf + CNTRL_9052);
 715
 716                outl(regval | 0x40000000, card->pci_conf + CNTRL_9052);
 717                outl(regval & ~0x40000000, card->pci_conf + CNTRL_9052);
 718        }
 719}
 720
 721/*      Release the processor from reset
 722 */
 723static inline void
 724fst_cpurelease(struct fst_card_info *card)
 725{
 726        if (card->family == FST_FAMILY_TXU) {
 727                /*
 728                 * Force posted writes to complete
 729                 */
 730                (void) readb(card->mem);
 731
 732                /*
 733                 * Release LRESET DO = 1
 734                 * Then release Local Hold, DO = 1
 735                 */
 736                outw(0x040e, card->pci_conf + CNTRL_9054 + 2);
 737                outw(0x040f, card->pci_conf + CNTRL_9054 + 2);
 738        } else {
 739                (void) readb(card->ctlmem);
 740        }
 741}
 742
 743/*      Clear the cards interrupt flag
 744 */
 745static inline void
 746fst_clear_intr(struct fst_card_info *card)
 747{
 748        if (card->family == FST_FAMILY_TXU) {
 749                (void) readb(card->ctlmem);
 750        } else {
 751                /* Poke the appropriate PLX chip register (same as enabling interrupts)
 752                 */
 753                outw(0x0543, card->pci_conf + INTCSR_9052);
 754        }
 755}
 756
 757/*      Enable card interrupts
 758 */
 759static inline void
 760fst_enable_intr(struct fst_card_info *card)
 761{
 762        if (card->family == FST_FAMILY_TXU) {
 763                outl(0x0f0c0900, card->pci_conf + INTCSR_9054);
 764        } else {
 765                outw(0x0543, card->pci_conf + INTCSR_9052);
 766        }
 767}
 768
 769/*      Disable card interrupts
 770 */
 771static inline void
 772fst_disable_intr(struct fst_card_info *card)
 773{
 774        if (card->family == FST_FAMILY_TXU) {
 775                outl(0x00000000, card->pci_conf + INTCSR_9054);
 776        } else {
 777                outw(0x0000, card->pci_conf + INTCSR_9052);
 778        }
 779}
 780
 781/*      Process the result of trying to pass a received frame up the stack
 782 */
 783static void
 784fst_process_rx_status(int rx_status, char *name)
 785{
 786        switch (rx_status) {
 787        case NET_RX_SUCCESS:
 788                {
 789                        /*
 790                         * Nothing to do here
 791                         */
 792                        break;
 793                }
 794        case NET_RX_DROP:
 795                {
 796                        dbg(DBG_ASS, "%s: Received packet dropped\n", name);
 797                        break;
 798                }
 799        }
 800}
 801
 802/*      Initilaise DMA for PLX 9054
 803 */
 804static inline void
 805fst_init_dma(struct fst_card_info *card)
 806{
 807        /*
 808         * This is only required for the PLX 9054
 809         */
 810        if (card->family == FST_FAMILY_TXU) {
 811                pci_set_master(card->device);
 812                outl(0x00020441, card->pci_conf + DMAMODE0);
 813                outl(0x00020441, card->pci_conf + DMAMODE1);
 814                outl(0x0, card->pci_conf + DMATHR);
 815        }
 816}
 817
 818/*      Tx dma complete interrupt
 819 */
 820static void
 821fst_tx_dma_complete(struct fst_card_info *card, struct fst_port_info *port,
 822                    int len, int txpos)
 823{
 824        struct net_device *dev = port_to_dev(port);
 825
 826        /*
 827         * Everything is now set, just tell the card to go
 828         */
 829        dbg(DBG_TX, "fst_tx_dma_complete\n");
 830        FST_WRB(card, txDescrRing[port->index][txpos].bits,
 831                DMA_OWN | TX_STP | TX_ENP);
 832        dev->stats.tx_packets++;
 833        dev->stats.tx_bytes += len;
 834        dev->trans_start = jiffies;
 835}
 836
 837/*
 838 * Mark it for our own raw sockets interface
 839 */
 840static __be16 farsync_type_trans(struct sk_buff *skb, struct net_device *dev)
 841{
 842        skb->dev = dev;
 843        skb_reset_mac_header(skb);
 844        skb->pkt_type = PACKET_HOST;
 845        return htons(ETH_P_CUST);
 846}
 847
 848/*      Rx dma complete interrupt
 849 */
 850static void
 851fst_rx_dma_complete(struct fst_card_info *card, struct fst_port_info *port,
 852                    int len, struct sk_buff *skb, int rxp)
 853{
 854        struct net_device *dev = port_to_dev(port);
 855        int pi;
 856        int rx_status;
 857
 858        dbg(DBG_TX, "fst_rx_dma_complete\n");
 859        pi = port->index;
 860        memcpy(skb_put(skb, len), card->rx_dma_handle_host, len);
 861
 862        /* Reset buffer descriptor */
 863        FST_WRB(card, rxDescrRing[pi][rxp].bits, DMA_OWN);
 864
 865        /* Update stats */
 866        dev->stats.rx_packets++;
 867        dev->stats.rx_bytes += len;
 868
 869        /* Push upstream */
 870        dbg(DBG_RX, "Pushing the frame up the stack\n");
 871        if (port->mode == FST_RAW)
 872                skb->protocol = farsync_type_trans(skb, dev);
 873        else
 874                skb->protocol = hdlc_type_trans(skb, dev);
 875        rx_status = netif_rx(skb);
 876        fst_process_rx_status(rx_status, port_to_dev(port)->name);
 877        if (rx_status == NET_RX_DROP)
 878                dev->stats.rx_dropped++;
 879}
 880
 881/*
 882 *      Receive a frame through the DMA
 883 */
 884static inline void
 885fst_rx_dma(struct fst_card_info *card, dma_addr_t dma, u32 mem, int len)
 886{
 887        /*
 888         * This routine will setup the DMA and start it
 889         */
 890
 891        dbg(DBG_RX, "In fst_rx_dma %x %x %d\n", (u32)dma, mem, len);
 892        if (card->dmarx_in_progress) {
 893                dbg(DBG_ASS, "In fst_rx_dma while dma in progress\n");
 894        }
 895
 896        outl(dma, card->pci_conf + DMAPADR0);   /* Copy to here */
 897        outl(mem, card->pci_conf + DMALADR0);   /* from here */
 898        outl(len, card->pci_conf + DMASIZ0);    /* for this length */
 899        outl(0x00000000c, card->pci_conf + DMADPR0);    /* In this direction */
 900
 901        /*
 902         * We use the dmarx_in_progress flag to flag the channel as busy
 903         */
 904        card->dmarx_in_progress = 1;
 905        outb(0x03, card->pci_conf + DMACSR0);   /* Start the transfer */
 906}
 907
 908/*
 909 *      Send a frame through the DMA
 910 */
 911static inline void
 912fst_tx_dma(struct fst_card_info *card, dma_addr_t dma, u32 mem, int len)
 913{
 914        /*
 915         * This routine will setup the DMA and start it.
 916         */
 917
 918        dbg(DBG_TX, "In fst_tx_dma %x %x %d\n", (u32)dma, mem, len);
 919        if (card->dmatx_in_progress) {
 920                dbg(DBG_ASS, "In fst_tx_dma while dma in progress\n");
 921        }
 922
 923        outl(dma, card->pci_conf + DMAPADR1);   /* Copy from here */
 924        outl(mem, card->pci_conf + DMALADR1);   /* to here */
 925        outl(len, card->pci_conf + DMASIZ1);    /* for this length */
 926        outl(0x000000004, card->pci_conf + DMADPR1);    /* In this direction */
 927
 928        /*
 929         * We use the dmatx_in_progress to flag the channel as busy
 930         */
 931        card->dmatx_in_progress = 1;
 932        outb(0x03, card->pci_conf + DMACSR1);   /* Start the transfer */
 933}
 934
 935/*      Issue a Mailbox command for a port.
 936 *      Note we issue them on a fire and forget basis, not expecting to see an
 937 *      error and not waiting for completion.
 938 */
 939static void
 940fst_issue_cmd(struct fst_port_info *port, unsigned short cmd)
 941{
 942        struct fst_card_info *card;
 943        unsigned short mbval;
 944        unsigned long flags;
 945        int safety;
 946
 947        card = port->card;
 948        spin_lock_irqsave(&card->card_lock, flags);
 949        mbval = FST_RDW(card, portMailbox[port->index][0]);
 950
 951        safety = 0;
 952        /* Wait for any previous command to complete */
 953        while (mbval > NAK) {
 954                spin_unlock_irqrestore(&card->card_lock, flags);
 955                schedule_timeout_uninterruptible(1);
 956                spin_lock_irqsave(&card->card_lock, flags);
 957
 958                if (++safety > 2000) {
 959                        pr_err("Mailbox safety timeout\n");
 960                        break;
 961                }
 962
 963                mbval = FST_RDW(card, portMailbox[port->index][0]);
 964        }
 965        if (safety > 0) {
 966                dbg(DBG_CMD, "Mailbox clear after %d jiffies\n", safety);
 967        }
 968        if (mbval == NAK) {
 969                dbg(DBG_CMD, "issue_cmd: previous command was NAK'd\n");
 970        }
 971
 972        FST_WRW(card, portMailbox[port->index][0], cmd);
 973
 974        if (cmd == ABORTTX || cmd == STARTPORT) {
 975                port->txpos = 0;
 976                port->txipos = 0;
 977                port->start = 0;
 978        }
 979
 980        spin_unlock_irqrestore(&card->card_lock, flags);
 981}
 982
 983/*      Port output signals control
 984 */
 985static inline void
 986fst_op_raise(struct fst_port_info *port, unsigned int outputs)
 987{
 988        outputs |= FST_RDL(port->card, v24OpSts[port->index]);
 989        FST_WRL(port->card, v24OpSts[port->index], outputs);
 990
 991        if (port->run)
 992                fst_issue_cmd(port, SETV24O);
 993}
 994
 995static inline void
 996fst_op_lower(struct fst_port_info *port, unsigned int outputs)
 997{
 998        outputs = ~outputs & FST_RDL(port->card, v24OpSts[port->index]);
 999        FST_WRL(port->card, v24OpSts[port->index], outputs);
1000
1001        if (port->run)
1002                fst_issue_cmd(port, SETV24O);
1003}
1004
1005/*
1006 *      Setup port Rx buffers
1007 */
1008static void
1009fst_rx_config(struct fst_port_info *port)
1010{
1011        int i;
1012        int pi;
1013        unsigned int offset;
1014        unsigned long flags;
1015        struct fst_card_info *card;
1016
1017        pi = port->index;
1018        card = port->card;
1019        spin_lock_irqsave(&card->card_lock, flags);
1020        for (i = 0; i < NUM_RX_BUFFER; i++) {
1021                offset = BUF_OFFSET(rxBuffer[pi][i][0]);
1022
1023                FST_WRW(card, rxDescrRing[pi][i].ladr, (u16) offset);
1024                FST_WRB(card, rxDescrRing[pi][i].hadr, (u8) (offset >> 16));
1025                FST_WRW(card, rxDescrRing[pi][i].bcnt, cnv_bcnt(LEN_RX_BUFFER));
1026                FST_WRW(card, rxDescrRing[pi][i].mcnt, LEN_RX_BUFFER);
1027                FST_WRB(card, rxDescrRing[pi][i].bits, DMA_OWN);
1028        }
1029        port->rxpos = 0;
1030        spin_unlock_irqrestore(&card->card_lock, flags);
1031}
1032
1033/*
1034 *      Setup port Tx buffers
1035 */
1036static void
1037fst_tx_config(struct fst_port_info *port)
1038{
1039        int i;
1040        int pi;
1041        unsigned int offset;
1042        unsigned long flags;
1043        struct fst_card_info *card;
1044
1045        pi = port->index;
1046        card = port->card;
1047        spin_lock_irqsave(&card->card_lock, flags);
1048        for (i = 0; i < NUM_TX_BUFFER; i++) {
1049                offset = BUF_OFFSET(txBuffer[pi][i][0]);
1050
1051                FST_WRW(card, txDescrRing[pi][i].ladr, (u16) offset);
1052                FST_WRB(card, txDescrRing[pi][i].hadr, (u8) (offset >> 16));
1053                FST_WRW(card, txDescrRing[pi][i].bcnt, 0);
1054                FST_WRB(card, txDescrRing[pi][i].bits, 0);
1055        }
1056        port->txpos = 0;
1057        port->txipos = 0;
1058        port->start = 0;
1059        spin_unlock_irqrestore(&card->card_lock, flags);
1060}
1061
1062/*      TE1 Alarm change interrupt event
1063 */
1064static void
1065fst_intr_te1_alarm(struct fst_card_info *card, struct fst_port_info *port)
1066{
1067        u8 los;
1068        u8 rra;
1069        u8 ais;
1070
1071        los = FST_RDB(card, suStatus.lossOfSignal);
1072        rra = FST_RDB(card, suStatus.receiveRemoteAlarm);
1073        ais = FST_RDB(card, suStatus.alarmIndicationSignal);
1074
1075        if (los) {
1076                /*
1077                 * Lost the link
1078                 */
1079                if (netif_carrier_ok(port_to_dev(port))) {
1080                        dbg(DBG_INTR, "Net carrier off\n");
1081                        netif_carrier_off(port_to_dev(port));
1082                }
1083        } else {
1084                /*
1085                 * Link available
1086                 */
1087                if (!netif_carrier_ok(port_to_dev(port))) {
1088                        dbg(DBG_INTR, "Net carrier on\n");
1089                        netif_carrier_on(port_to_dev(port));
1090                }
1091        }
1092
1093        if (los)
1094                dbg(DBG_INTR, "Assert LOS Alarm\n");
1095        else
1096                dbg(DBG_INTR, "De-assert LOS Alarm\n");
1097        if (rra)
1098                dbg(DBG_INTR, "Assert RRA Alarm\n");
1099        else
1100                dbg(DBG_INTR, "De-assert RRA Alarm\n");
1101
1102        if (ais)
1103                dbg(DBG_INTR, "Assert AIS Alarm\n");
1104        else
1105                dbg(DBG_INTR, "De-assert AIS Alarm\n");
1106}
1107
1108/*      Control signal change interrupt event
1109 */
1110static void
1111fst_intr_ctlchg(struct fst_card_info *card, struct fst_port_info *port)
1112{
1113        int signals;
1114
1115        signals = FST_RDL(card, v24DebouncedSts[port->index]);
1116
1117        if (signals & (((port->hwif == X21) || (port->hwif == X21D))
1118                       ? IPSTS_INDICATE : IPSTS_DCD)) {
1119                if (!netif_carrier_ok(port_to_dev(port))) {
1120                        dbg(DBG_INTR, "DCD active\n");
1121                        netif_carrier_on(port_to_dev(port));
1122                }
1123        } else {
1124                if (netif_carrier_ok(port_to_dev(port))) {
1125                        dbg(DBG_INTR, "DCD lost\n");
1126                        netif_carrier_off(port_to_dev(port));
1127                }
1128        }
1129}
1130
1131/*      Log Rx Errors
1132 */
1133static void
1134fst_log_rx_error(struct fst_card_info *card, struct fst_port_info *port,
1135                 unsigned char dmabits, int rxp, unsigned short len)
1136{
1137        struct net_device *dev = port_to_dev(port);
1138
1139        /*
1140         * Increment the appropriate error counter
1141         */
1142        dev->stats.rx_errors++;
1143        if (dmabits & RX_OFLO) {
1144                dev->stats.rx_fifo_errors++;
1145                dbg(DBG_ASS, "Rx fifo error on card %d port %d buffer %d\n",
1146                    card->card_no, port->index, rxp);
1147        }
1148        if (dmabits & RX_CRC) {
1149                dev->stats.rx_crc_errors++;
1150                dbg(DBG_ASS, "Rx crc error on card %d port %d\n",
1151                    card->card_no, port->index);
1152        }
1153        if (dmabits & RX_FRAM) {
1154                dev->stats.rx_frame_errors++;
1155                dbg(DBG_ASS, "Rx frame error on card %d port %d\n",
1156                    card->card_no, port->index);
1157        }
1158        if (dmabits == (RX_STP | RX_ENP)) {
1159                dev->stats.rx_length_errors++;
1160                dbg(DBG_ASS, "Rx length error (%d) on card %d port %d\n",
1161                    len, card->card_no, port->index);
1162        }
1163}
1164
1165/*      Rx Error Recovery
1166 */
1167static void
1168fst_recover_rx_error(struct fst_card_info *card, struct fst_port_info *port,
1169                     unsigned char dmabits, int rxp, unsigned short len)
1170{
1171        int i;
1172        int pi;
1173
1174        pi = port->index;
1175        /* 
1176         * Discard buffer descriptors until we see the start of the
1177         * next frame.  Note that for long frames this could be in
1178         * a subsequent interrupt. 
1179         */
1180        i = 0;
1181        while ((dmabits & (DMA_OWN | RX_STP)) == 0) {
1182                FST_WRB(card, rxDescrRing[pi][rxp].bits, DMA_OWN);
1183                rxp = (rxp+1) % NUM_RX_BUFFER;
1184                if (++i > NUM_RX_BUFFER) {
1185                        dbg(DBG_ASS, "intr_rx: Discarding more bufs"
1186                            " than we have\n");
1187                        break;
1188                }
1189                dmabits = FST_RDB(card, rxDescrRing[pi][rxp].bits);
1190                dbg(DBG_ASS, "DMA Bits of next buffer was %x\n", dmabits);
1191        }
1192        dbg(DBG_ASS, "There were %d subsequent buffers in error\n", i);
1193
1194        /* Discard the terminal buffer */
1195        if (!(dmabits & DMA_OWN)) {
1196                FST_WRB(card, rxDescrRing[pi][rxp].bits, DMA_OWN);
1197                rxp = (rxp+1) % NUM_RX_BUFFER;
1198        }
1199        port->rxpos = rxp;
1200        return;
1201
1202}
1203
1204/*      Rx complete interrupt
1205 */
1206static void
1207fst_intr_rx(struct fst_card_info *card, struct fst_port_info *port)
1208{
1209        unsigned char dmabits;
1210        int pi;
1211        int rxp;
1212        int rx_status;
1213        unsigned short len;
1214        struct sk_buff *skb;
1215        struct net_device *dev = port_to_dev(port);
1216
1217        /* Check we have a buffer to process */
1218        pi = port->index;
1219        rxp = port->rxpos;
1220        dmabits = FST_RDB(card, rxDescrRing[pi][rxp].bits);
1221        if (dmabits & DMA_OWN) {
1222                dbg(DBG_RX | DBG_INTR, "intr_rx: No buffer port %d pos %d\n",
1223                    pi, rxp);
1224                return;
1225        }
1226        if (card->dmarx_in_progress) {
1227                return;
1228        }
1229
1230        /* Get buffer length */
1231        len = FST_RDW(card, rxDescrRing[pi][rxp].mcnt);
1232        /* Discard the CRC */
1233        len -= 2;
1234        if (len == 0) {
1235                /*
1236                 * This seems to happen on the TE1 interface sometimes
1237                 * so throw the frame away and log the event.
1238                 */
1239                pr_err("Frame received with 0 length. Card %d Port %d\n",
1240                       card->card_no, port->index);
1241                /* Return descriptor to card */
1242                FST_WRB(card, rxDescrRing[pi][rxp].bits, DMA_OWN);
1243
1244                rxp = (rxp+1) % NUM_RX_BUFFER;
1245                port->rxpos = rxp;
1246                return;
1247        }
1248
1249        /* Check buffer length and for other errors. We insist on one packet
1250         * in one buffer. This simplifies things greatly and since we've
1251         * allocated 8K it shouldn't be a real world limitation
1252         */
1253        dbg(DBG_RX, "intr_rx: %d,%d: flags %x len %d\n", pi, rxp, dmabits, len);
1254        if (dmabits != (RX_STP | RX_ENP) || len > LEN_RX_BUFFER - 2) {
1255                fst_log_rx_error(card, port, dmabits, rxp, len);
1256                fst_recover_rx_error(card, port, dmabits, rxp, len);
1257                return;
1258        }
1259
1260        /* Allocate SKB */
1261        if ((skb = dev_alloc_skb(len)) == NULL) {
1262                dbg(DBG_RX, "intr_rx: can't allocate buffer\n");
1263
1264                dev->stats.rx_dropped++;
1265
1266                /* Return descriptor to card */
1267                FST_WRB(card, rxDescrRing[pi][rxp].bits, DMA_OWN);
1268
1269                rxp = (rxp+1) % NUM_RX_BUFFER;
1270                port->rxpos = rxp;
1271                return;
1272        }
1273
1274        /*
1275         * We know the length we need to receive, len.
1276         * It's not worth using the DMA for reads of less than
1277         * FST_MIN_DMA_LEN
1278         */
1279
1280        if ((len < FST_MIN_DMA_LEN) || (card->family == FST_FAMILY_TXP)) {
1281                memcpy_fromio(skb_put(skb, len),
1282                              card->mem + BUF_OFFSET(rxBuffer[pi][rxp][0]),
1283                              len);
1284
1285                /* Reset buffer descriptor */
1286                FST_WRB(card, rxDescrRing[pi][rxp].bits, DMA_OWN);
1287
1288                /* Update stats */
1289                dev->stats.rx_packets++;
1290                dev->stats.rx_bytes += len;
1291
1292                /* Push upstream */
1293                dbg(DBG_RX, "Pushing frame up the stack\n");
1294                if (port->mode == FST_RAW)
1295                        skb->protocol = farsync_type_trans(skb, dev);
1296                else
1297                        skb->protocol = hdlc_type_trans(skb, dev);
1298                rx_status = netif_rx(skb);
1299                fst_process_rx_status(rx_status, port_to_dev(port)->name);
1300                if (rx_status == NET_RX_DROP)
1301                        dev->stats.rx_dropped++;
1302        } else {
1303                card->dma_skb_rx = skb;
1304                card->dma_port_rx = port;
1305                card->dma_len_rx = len;
1306                card->dma_rxpos = rxp;
1307                fst_rx_dma(card, card->rx_dma_handle_card,
1308                           BUF_OFFSET(rxBuffer[pi][rxp][0]), len);
1309        }
1310        if (rxp != port->rxpos) {
1311                dbg(DBG_ASS, "About to increment rxpos by more than 1\n");
1312                dbg(DBG_ASS, "rxp = %d rxpos = %d\n", rxp, port->rxpos);
1313        }
1314        rxp = (rxp+1) % NUM_RX_BUFFER;
1315        port->rxpos = rxp;
1316}
1317
1318/*
1319 *      The bottom halfs to the ISR
1320 *
1321 */
1322
1323static void
1324do_bottom_half_tx(struct fst_card_info *card)
1325{
1326        struct fst_port_info *port;
1327        int pi;
1328        int txq_length;
1329        struct sk_buff *skb;
1330        unsigned long flags;
1331        struct net_device *dev;
1332
1333        /*
1334         *  Find a free buffer for the transmit
1335         *  Step through each port on this card
1336         */
1337
1338        dbg(DBG_TX, "do_bottom_half_tx\n");
1339        for (pi = 0, port = card->ports; pi < card->nports; pi++, port++) {
1340                if (!port->run)
1341                        continue;
1342
1343                dev = port_to_dev(port);
1344                while (!(FST_RDB(card, txDescrRing[pi][port->txpos].bits) &
1345                         DMA_OWN) &&
1346                       !(card->dmatx_in_progress)) {
1347                        /*
1348                         * There doesn't seem to be a txdone event per-se
1349                         * We seem to have to deduce it, by checking the DMA_OWN
1350                         * bit on the next buffer we think we can use
1351                         */
1352                        spin_lock_irqsave(&card->card_lock, flags);
1353                        if ((txq_length = port->txqe - port->txqs) < 0) {
1354                                /*
1355                                 * This is the case where one has wrapped and the
1356                                 * maths gives us a negative number
1357                                 */
1358                                txq_length = txq_length + FST_TXQ_DEPTH;
1359                        }
1360                        spin_unlock_irqrestore(&card->card_lock, flags);
1361                        if (txq_length > 0) {
1362                                /*
1363                                 * There is something to send
1364                                 */
1365                                spin_lock_irqsave(&card->card_lock, flags);
1366                                skb = port->txq[port->txqs];
1367                                port->txqs++;
1368                                if (port->txqs == FST_TXQ_DEPTH) {
1369                                        port->txqs = 0;
1370                                }
1371                                spin_unlock_irqrestore(&card->card_lock, flags);
1372                                /*
1373                                 * copy the data and set the required indicators on the
1374                                 * card.
1375                                 */
1376                                FST_WRW(card, txDescrRing[pi][port->txpos].bcnt,
1377                                        cnv_bcnt(skb->len));
1378                                if ((skb->len < FST_MIN_DMA_LEN) ||
1379                                    (card->family == FST_FAMILY_TXP)) {
1380                                        /* Enqueue the packet with normal io */
1381                                        memcpy_toio(card->mem +
1382                                                    BUF_OFFSET(txBuffer[pi]
1383                                                               [port->
1384                                                                txpos][0]),
1385                                                    skb->data, skb->len);
1386                                        FST_WRB(card,
1387                                                txDescrRing[pi][port->txpos].
1388                                                bits,
1389                                                DMA_OWN | TX_STP | TX_ENP);
1390                                        dev->stats.tx_packets++;
1391                                        dev->stats.tx_bytes += skb->len;
1392                                        dev->trans_start = jiffies;
1393                                } else {
1394                                        /* Or do it through dma */
1395                                        memcpy(card->tx_dma_handle_host,
1396                                               skb->data, skb->len);
1397                                        card->dma_port_tx = port;
1398                                        card->dma_len_tx = skb->len;
1399                                        card->dma_txpos = port->txpos;
1400                                        fst_tx_dma(card,
1401                                                   card->tx_dma_handle_card,
1402                                                   BUF_OFFSET(txBuffer[pi]
1403                                                              [port->txpos][0]),
1404                                                   skb->len);
1405                                }
1406                                if (++port->txpos >= NUM_TX_BUFFER)
1407                                        port->txpos = 0;
1408                                /*
1409                                 * If we have flow control on, can we now release it?
1410                                 */
1411                                if (port->start) {
1412                                        if (txq_length < fst_txq_low) {
1413                                                netif_wake_queue(port_to_dev
1414                                                                 (port));
1415                                                port->start = 0;
1416                                        }
1417                                }
1418                                dev_kfree_skb(skb);
1419                        } else {
1420                                /*
1421                                 * Nothing to send so break out of the while loop
1422                                 */
1423                                break;
1424                        }
1425                }
1426        }
1427}
1428
1429static void
1430do_bottom_half_rx(struct fst_card_info *card)
1431{
1432        struct fst_port_info *port;
1433        int pi;
1434        int rx_count = 0;
1435
1436        /* Check for rx completions on all ports on this card */
1437        dbg(DBG_RX, "do_bottom_half_rx\n");
1438        for (pi = 0, port = card->ports; pi < card->nports; pi++, port++) {
1439                if (!port->run)
1440                        continue;
1441
1442                while (!(FST_RDB(card, rxDescrRing[pi][port->rxpos].bits)
1443                         & DMA_OWN) && !(card->dmarx_in_progress)) {
1444                        if (rx_count > fst_max_reads) {
1445                                /*
1446                                 * Don't spend forever in receive processing
1447                                 * Schedule another event
1448                                 */
1449                                fst_q_work_item(&fst_work_intq, card->card_no);
1450                                tasklet_schedule(&fst_int_task);
1451                                break;  /* Leave the loop */
1452                        }
1453                        fst_intr_rx(card, port);
1454                        rx_count++;
1455                }
1456        }
1457}
1458
1459/*
1460 *      The interrupt service routine
1461 *      Dev_id is our fst_card_info pointer
1462 */
1463static irqreturn_t
1464fst_intr(int dummy, void *dev_id)
1465{
1466        struct fst_card_info *card = dev_id;
1467        struct fst_port_info *port;
1468        int rdidx;              /* Event buffer indices */
1469        int wridx;
1470        int event;              /* Actual event for processing */
1471        unsigned int dma_intcsr = 0;
1472        unsigned int do_card_interrupt;
1473        unsigned int int_retry_count;
1474
1475        /*
1476         * Check to see if the interrupt was for this card
1477         * return if not
1478         * Note that the call to clear the interrupt is important
1479         */
1480        dbg(DBG_INTR, "intr: %d %p\n", card->irq, card);
1481        if (card->state != FST_RUNNING) {
1482                pr_err("Interrupt received for card %d in a non running state (%d)\n",
1483                       card->card_no, card->state);
1484
1485                /* 
1486                 * It is possible to really be running, i.e. we have re-loaded
1487                 * a running card
1488                 * Clear and reprime the interrupt source 
1489                 */
1490                fst_clear_intr(card);
1491                return IRQ_HANDLED;
1492        }
1493
1494        /* Clear and reprime the interrupt source */
1495        fst_clear_intr(card);
1496
1497        /*
1498         * Is the interrupt for this card (handshake == 1)
1499         */
1500        do_card_interrupt = 0;
1501        if (FST_RDB(card, interruptHandshake) == 1) {
1502                do_card_interrupt += FST_CARD_INT;
1503                /* Set the software acknowledge */
1504                FST_WRB(card, interruptHandshake, 0xEE);
1505        }
1506        if (card->family == FST_FAMILY_TXU) {
1507                /*
1508                 * Is it a DMA Interrupt
1509                 */
1510                dma_intcsr = inl(card->pci_conf + INTCSR_9054);
1511                if (dma_intcsr & 0x00200000) {
1512                        /*
1513                         * DMA Channel 0 (Rx transfer complete)
1514                         */
1515                        dbg(DBG_RX, "DMA Rx xfer complete\n");
1516                        outb(0x8, card->pci_conf + DMACSR0);
1517                        fst_rx_dma_complete(card, card->dma_port_rx,
1518                                            card->dma_len_rx, card->dma_skb_rx,
1519                                            card->dma_rxpos);
1520                        card->dmarx_in_progress = 0;
1521                        do_card_interrupt += FST_RX_DMA_INT;
1522                }
1523                if (dma_intcsr & 0x00400000) {
1524                        /*
1525                         * DMA Channel 1 (Tx transfer complete)
1526                         */
1527                        dbg(DBG_TX, "DMA Tx xfer complete\n");
1528                        outb(0x8, card->pci_conf + DMACSR1);
1529                        fst_tx_dma_complete(card, card->dma_port_tx,
1530                                            card->dma_len_tx, card->dma_txpos);
1531                        card->dmatx_in_progress = 0;
1532                        do_card_interrupt += FST_TX_DMA_INT;
1533                }
1534        }
1535
1536        /*
1537         * Have we been missing Interrupts
1538         */
1539        int_retry_count = FST_RDL(card, interruptRetryCount);
1540        if (int_retry_count) {
1541                dbg(DBG_ASS, "Card %d int_retry_count is  %d\n",
1542                    card->card_no, int_retry_count);
1543                FST_WRL(card, interruptRetryCount, 0);
1544        }
1545
1546        if (!do_card_interrupt) {
1547                return IRQ_HANDLED;
1548        }
1549
1550        /* Scehdule the bottom half of the ISR */
1551        fst_q_work_item(&fst_work_intq, card->card_no);
1552        tasklet_schedule(&fst_int_task);
1553
1554        /* Drain the event queue */
1555        rdidx = FST_RDB(card, interruptEvent.rdindex) & 0x1f;
1556        wridx = FST_RDB(card, interruptEvent.wrindex) & 0x1f;
1557        while (rdidx != wridx) {
1558                event = FST_RDB(card, interruptEvent.evntbuff[rdidx]);
1559                port = &card->ports[event & 0x03];
1560
1561                dbg(DBG_INTR, "Processing Interrupt event: %x\n", event);
1562
1563                switch (event) {
1564                case TE1_ALMA:
1565                        dbg(DBG_INTR, "TE1 Alarm intr\n");
1566                        if (port->run)
1567                                fst_intr_te1_alarm(card, port);
1568                        break;
1569
1570                case CTLA_CHG:
1571                case CTLB_CHG:
1572                case CTLC_CHG:
1573                case CTLD_CHG:
1574                        if (port->run)
1575                                fst_intr_ctlchg(card, port);
1576                        break;
1577
1578                case ABTA_SENT:
1579                case ABTB_SENT:
1580                case ABTC_SENT:
1581                case ABTD_SENT:
1582                        dbg(DBG_TX, "Abort complete port %d\n", port->index);
1583                        break;
1584
1585                case TXA_UNDF:
1586                case TXB_UNDF:
1587                case TXC_UNDF:
1588                case TXD_UNDF:
1589                        /* Difficult to see how we'd get this given that we
1590                         * always load up the entire packet for DMA.
1591                         */
1592                        dbg(DBG_TX, "Tx underflow port %d\n", port->index);
1593                        port_to_dev(port)->stats.tx_errors++;
1594                        port_to_dev(port)->stats.tx_fifo_errors++;
1595                        dbg(DBG_ASS, "Tx underflow on card %d port %d\n",
1596                            card->card_no, port->index);
1597                        break;
1598
1599                case INIT_CPLT:
1600                        dbg(DBG_INIT, "Card init OK intr\n");
1601                        break;
1602
1603                case INIT_FAIL:
1604                        dbg(DBG_INIT, "Card init FAILED intr\n");
1605                        card->state = FST_IFAILED;
1606                        break;
1607
1608                default:
1609                        pr_err("intr: unknown card event %d. ignored\n", event);
1610                        break;
1611                }
1612
1613                /* Bump and wrap the index */
1614                if (++rdidx >= MAX_CIRBUFF)
1615                        rdidx = 0;
1616        }
1617        FST_WRB(card, interruptEvent.rdindex, rdidx);
1618        return IRQ_HANDLED;
1619}
1620
1621/*      Check that the shared memory configuration is one that we can handle
1622 *      and that some basic parameters are correct
1623 */
1624static void
1625check_started_ok(struct fst_card_info *card)
1626{
1627        int i;
1628
1629        /* Check structure version and end marker */
1630        if (FST_RDW(card, smcVersion) != SMC_VERSION) {
1631                pr_err("Bad shared memory version %d expected %d\n",
1632                       FST_RDW(card, smcVersion), SMC_VERSION);
1633                card->state = FST_BADVERSION;
1634                return;
1635        }
1636        if (FST_RDL(card, endOfSmcSignature) != END_SIG) {
1637                pr_err("Missing shared memory signature\n");
1638                card->state = FST_BADVERSION;
1639                return;
1640        }
1641        /* Firmware status flag, 0x00 = initialising, 0x01 = OK, 0xFF = fail */
1642        if ((i = FST_RDB(card, taskStatus)) == 0x01) {
1643                card->state = FST_RUNNING;
1644        } else if (i == 0xFF) {
1645                pr_err("Firmware initialisation failed. Card halted\n");
1646                card->state = FST_HALTED;
1647                return;
1648        } else if (i != 0x00) {
1649                pr_err("Unknown firmware status 0x%x\n", i);
1650                card->state = FST_HALTED;
1651                return;
1652        }
1653
1654        /* Finally check the number of ports reported by firmware against the
1655         * number we assumed at card detection. Should never happen with
1656         * existing firmware etc so we just report it for the moment.
1657         */
1658        if (FST_RDL(card, numberOfPorts) != card->nports) {
1659                pr_warn("Port count mismatch on card %d.  Firmware thinks %d we say %d\n",
1660                        card->card_no,
1661                        FST_RDL(card, numberOfPorts), card->nports);
1662        }
1663}
1664
1665static int
1666set_conf_from_info(struct fst_card_info *card, struct fst_port_info *port,
1667                   struct fstioc_info *info)
1668{
1669        int err;
1670        unsigned char my_framing;
1671
1672        /* Set things according to the user set valid flags 
1673         * Several of the old options have been invalidated/replaced by the 
1674         * generic hdlc package.
1675         */
1676        err = 0;
1677        if (info->valid & FSTVAL_PROTO) {
1678                if (info->proto == FST_RAW)
1679                        port->mode = FST_RAW;
1680                else
1681                        port->mode = FST_GEN_HDLC;
1682        }
1683
1684        if (info->valid & FSTVAL_CABLE)
1685                err = -EINVAL;
1686
1687        if (info->valid & FSTVAL_SPEED)
1688                err = -EINVAL;
1689
1690        if (info->valid & FSTVAL_PHASE)
1691                FST_WRB(card, portConfig[port->index].invertClock,
1692                        info->invertClock);
1693        if (info->valid & FSTVAL_MODE)
1694                FST_WRW(card, cardMode, info->cardMode);
1695        if (info->valid & FSTVAL_TE1) {
1696                FST_WRL(card, suConfig.dataRate, info->lineSpeed);
1697                FST_WRB(card, suConfig.clocking, info->clockSource);
1698                my_framing = FRAMING_E1;
1699                if (info->framing == E1)
1700                        my_framing = FRAMING_E1;
1701                if (info->framing == T1)
1702                        my_framing = FRAMING_T1;
1703                if (info->framing == J1)
1704                        my_framing = FRAMING_J1;
1705                FST_WRB(card, suConfig.framing, my_framing);
1706                FST_WRB(card, suConfig.structure, info->structure);
1707                FST_WRB(card, suConfig.interface, info->interface);
1708                FST_WRB(card, suConfig.coding, info->coding);
1709                FST_WRB(card, suConfig.lineBuildOut, info->lineBuildOut);
1710                FST_WRB(card, suConfig.equalizer, info->equalizer);
1711                FST_WRB(card, suConfig.transparentMode, info->transparentMode);
1712                FST_WRB(card, suConfig.loopMode, info->loopMode);
1713                FST_WRB(card, suConfig.range, info->range);
1714                FST_WRB(card, suConfig.txBufferMode, info->txBufferMode);
1715                FST_WRB(card, suConfig.rxBufferMode, info->rxBufferMode);
1716                FST_WRB(card, suConfig.startingSlot, info->startingSlot);
1717                FST_WRB(card, suConfig.losThreshold, info->losThreshold);
1718                if (info->idleCode)
1719                        FST_WRB(card, suConfig.enableIdleCode, 1);
1720                else
1721                        FST_WRB(card, suConfig.enableIdleCode, 0);
1722                FST_WRB(card, suConfig.idleCode, info->idleCode);
1723#if FST_DEBUG
1724                if (info->valid & FSTVAL_TE1) {
1725                        printk("Setting TE1 data\n");
1726                        printk("Line Speed = %d\n", info->lineSpeed);
1727                        printk("Start slot = %d\n", info->startingSlot);
1728                        printk("Clock source = %d\n", info->clockSource);
1729                        printk("Framing = %d\n", my_framing);
1730                        printk("Structure = %d\n", info->structure);
1731                        printk("interface = %d\n", info->interface);
1732                        printk("Coding = %d\n", info->coding);
1733                        printk("Line build out = %d\n", info->lineBuildOut);
1734                        printk("Equaliser = %d\n", info->equalizer);
1735                        printk("Transparent mode = %d\n",
1736                               info->transparentMode);
1737                        printk("Loop mode = %d\n", info->loopMode);
1738                        printk("Range = %d\n", info->range);
1739                        printk("Tx Buffer mode = %d\n", info->txBufferMode);
1740                        printk("Rx Buffer mode = %d\n", info->rxBufferMode);
1741                        printk("LOS Threshold = %d\n", info->losThreshold);
1742                        printk("Idle Code = %d\n", info->idleCode);
1743                }
1744#endif
1745        }
1746#if FST_DEBUG
1747        if (info->valid & FSTVAL_DEBUG) {
1748                fst_debug_mask = info->debug;
1749        }
1750#endif
1751
1752        return err;
1753}
1754
1755static void
1756gather_conf_info(struct fst_card_info *card, struct fst_port_info *port,
1757                 struct fstioc_info *info)
1758{
1759        int i;
1760
1761        memset(info, 0, sizeof (struct fstioc_info));
1762
1763        i = port->index;
1764        info->kernelVersion = LINUX_VERSION_CODE;
1765        info->nports = card->nports;
1766        info->type = card->type;
1767        info->state = card->state;
1768        info->proto = FST_GEN_HDLC;
1769        info->index = i;
1770#if FST_DEBUG
1771        info->debug = fst_debug_mask;
1772#endif
1773
1774        /* Only mark information as valid if card is running.
1775         * Copy the data anyway in case it is useful for diagnostics
1776         */
1777        info->valid = ((card->state == FST_RUNNING) ? FSTVAL_ALL : FSTVAL_CARD)
1778#if FST_DEBUG
1779            | FSTVAL_DEBUG
1780#endif
1781            ;
1782
1783        info->lineInterface = FST_RDW(card, portConfig[i].lineInterface);
1784        info->internalClock = FST_RDB(card, portConfig[i].internalClock);
1785        info->lineSpeed = FST_RDL(card, portConfig[i].lineSpeed);
1786        info->invertClock = FST_RDB(card, portConfig[i].invertClock);
1787        info->v24IpSts = FST_RDL(card, v24IpSts[i]);
1788        info->v24OpSts = FST_RDL(card, v24OpSts[i]);
1789        info->clockStatus = FST_RDW(card, clockStatus[i]);
1790        info->cableStatus = FST_RDW(card, cableStatus);
1791        info->cardMode = FST_RDW(card, cardMode);
1792        info->smcFirmwareVersion = FST_RDL(card, smcFirmwareVersion);
1793
1794        /*
1795         * The T2U can report cable presence for both A or B
1796         * in bits 0 and 1 of cableStatus.  See which port we are and 
1797         * do the mapping.
1798         */
1799        if (card->family == FST_FAMILY_TXU) {
1800                if (port->index == 0) {
1801                        /*
1802                         * Port A
1803                         */
1804                        info->cableStatus = info->cableStatus & 1;
1805                } else {
1806                        /*
1807                         * Port B
1808                         */
1809                        info->cableStatus = info->cableStatus >> 1;
1810                        info->cableStatus = info->cableStatus & 1;
1811                }
1812        }
1813        /*
1814         * Some additional bits if we are TE1
1815         */
1816        if (card->type == FST_TYPE_TE1) {
1817                info->lineSpeed = FST_RDL(card, suConfig.dataRate);
1818                info->clockSource = FST_RDB(card, suConfig.clocking);
1819                info->framing = FST_RDB(card, suConfig.framing);
1820                info->structure = FST_RDB(card, suConfig.structure);
1821                info->interface = FST_RDB(card, suConfig.interface);
1822                info->coding = FST_RDB(card, suConfig.coding);
1823                info->lineBuildOut = FST_RDB(card, suConfig.lineBuildOut);
1824                info->equalizer = FST_RDB(card, suConfig.equalizer);
1825                info->loopMode = FST_RDB(card, suConfig.loopMode);
1826                info->range = FST_RDB(card, suConfig.range);
1827                info->txBufferMode = FST_RDB(card, suConfig.txBufferMode);
1828                info->rxBufferMode = FST_RDB(card, suConfig.rxBufferMode);
1829                info->startingSlot = FST_RDB(card, suConfig.startingSlot);
1830                info->losThreshold = FST_RDB(card, suConfig.losThreshold);
1831                if (FST_RDB(card, suConfig.enableIdleCode))
1832                        info->idleCode = FST_RDB(card, suConfig.idleCode);
1833                else
1834                        info->idleCode = 0;
1835                info->receiveBufferDelay =
1836                    FST_RDL(card, suStatus.receiveBufferDelay);
1837                info->framingErrorCount =
1838                    FST_RDL(card, suStatus.framingErrorCount);
1839                info->codeViolationCount =
1840                    FST_RDL(card, suStatus.codeViolationCount);
1841                info->crcErrorCount = FST_RDL(card, suStatus.crcErrorCount);
1842                info->lineAttenuation = FST_RDL(card, suStatus.lineAttenuation);
1843                info->lossOfSignal = FST_RDB(card, suStatus.lossOfSignal);
1844                info->receiveRemoteAlarm =
1845                    FST_RDB(card, suStatus.receiveRemoteAlarm);
1846                info->alarmIndicationSignal =
1847                    FST_RDB(card, suStatus.alarmIndicationSignal);
1848        }
1849}
1850
1851static int
1852fst_set_iface(struct fst_card_info *card, struct fst_port_info *port,
1853              struct ifreq *ifr)
1854{
1855        sync_serial_settings sync;
1856        int i;
1857
1858        if (ifr->ifr_settings.size != sizeof (sync)) {
1859                return -ENOMEM;
1860        }
1861
1862        if (copy_from_user
1863            (&sync, ifr->ifr_settings.ifs_ifsu.sync, sizeof (sync))) {
1864                return -EFAULT;
1865        }
1866
1867        if (sync.loopback)
1868                return -EINVAL;
1869
1870        i = port->index;
1871
1872        switch (ifr->ifr_settings.type) {
1873        case IF_IFACE_V35:
1874                FST_WRW(card, portConfig[i].lineInterface, V35);
1875                port->hwif = V35;
1876                break;
1877
1878        case IF_IFACE_V24:
1879                FST_WRW(card, portConfig[i].lineInterface, V24);
1880                port->hwif = V24;
1881                break;
1882
1883        case IF_IFACE_X21:
1884                FST_WRW(card, portConfig[i].lineInterface, X21);
1885                port->hwif = X21;
1886                break;
1887
1888        case IF_IFACE_X21D:
1889                FST_WRW(card, portConfig[i].lineInterface, X21D);
1890                port->hwif = X21D;
1891                break;
1892
1893        case IF_IFACE_T1:
1894                FST_WRW(card, portConfig[i].lineInterface, T1);
1895                port->hwif = T1;
1896                break;
1897
1898        case IF_IFACE_E1:
1899                FST_WRW(card, portConfig[i].lineInterface, E1);
1900                port->hwif = E1;
1901                break;
1902
1903        case IF_IFACE_SYNC_SERIAL:
1904                break;
1905
1906        default:
1907                return -EINVAL;
1908        }
1909
1910        switch (sync.clock_type) {
1911        case CLOCK_EXT:
1912                FST_WRB(card, portConfig[i].internalClock, EXTCLK);
1913                break;
1914
1915        case CLOCK_INT:
1916                FST_WRB(card, portConfig[i].internalClock, INTCLK);
1917                break;
1918
1919        default:
1920                return -EINVAL;
1921        }
1922        FST_WRL(card, portConfig[i].lineSpeed, sync.clock_rate);
1923        return 0;
1924}
1925
1926static int
1927fst_get_iface(struct fst_card_info *card, struct fst_port_info *port,
1928              struct ifreq *ifr)
1929{
1930        sync_serial_settings sync;
1931        int i;
1932
1933        /* First check what line type is set, we'll default to reporting X.21
1934         * if nothing is set as IF_IFACE_SYNC_SERIAL implies it can't be
1935         * changed
1936         */
1937        switch (port->hwif) {
1938        case E1:
1939                ifr->ifr_settings.type = IF_IFACE_E1;
1940                break;
1941        case T1:
1942                ifr->ifr_settings.type = IF_IFACE_T1;
1943                break;
1944        case V35:
1945                ifr->ifr_settings.type = IF_IFACE_V35;
1946                break;
1947        case V24:
1948                ifr->ifr_settings.type = IF_IFACE_V24;
1949                break;
1950        case X21D:
1951                ifr->ifr_settings.type = IF_IFACE_X21D;
1952                break;
1953        case X21:
1954        default:
1955                ifr->ifr_settings.type = IF_IFACE_X21;
1956                break;
1957        }
1958        if (ifr->ifr_settings.size == 0) {
1959                return 0;       /* only type requested */
1960        }
1961        if (ifr->ifr_settings.size < sizeof (sync)) {
1962                return -ENOMEM;
1963        }
1964
1965        i = port->index;
1966        memset(&sync, 0, sizeof(sync));
1967        sync.clock_rate = FST_RDL(card, portConfig[i].lineSpeed);
1968        /* Lucky card and linux use same encoding here */
1969        sync.clock_type = FST_RDB(card, portConfig[i].internalClock) ==
1970            INTCLK ? CLOCK_INT : CLOCK_EXT;
1971        sync.loopback = 0;
1972
1973        if (copy_to_user(ifr->ifr_settings.ifs_ifsu.sync, &sync, sizeof (sync))) {
1974                return -EFAULT;
1975        }
1976
1977        ifr->ifr_settings.size = sizeof (sync);
1978        return 0;
1979}
1980
1981static int
1982fst_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
1983{
1984        struct fst_card_info *card;
1985        struct fst_port_info *port;
1986        struct fstioc_write wrthdr;
1987        struct fstioc_info info;
1988        unsigned long flags;
1989        void *buf;
1990
1991        dbg(DBG_IOCTL, "ioctl: %x, %p\n", cmd, ifr->ifr_data);
1992
1993        port = dev_to_port(dev);
1994        card = port->card;
1995
1996        if (!capable(CAP_NET_ADMIN))
1997                return -EPERM;
1998
1999        switch (cmd) {
2000        case FSTCPURESET:
2001                fst_cpureset(card);
2002                card->state = FST_RESET;
2003                return 0;
2004
2005        case FSTCPURELEASE:
2006                fst_cpurelease(card);
2007                card->state = FST_STARTING;
2008                return 0;
2009
2010        case FSTWRITE:          /* Code write (download) */
2011
2012                /* First copy in the header with the length and offset of data
2013                 * to write
2014                 */
2015                if (ifr->ifr_data == NULL) {
2016                        return -EINVAL;
2017                }
2018                if (copy_from_user(&wrthdr, ifr->ifr_data,
2019                                   sizeof (struct fstioc_write))) {
2020                        return -EFAULT;
2021                }
2022
2023                /* Sanity check the parameters. We don't support partial writes
2024                 * when going over the top
2025                 */
2026                if (wrthdr.size > FST_MEMSIZE || wrthdr.offset > FST_MEMSIZE ||
2027                    wrthdr.size + wrthdr.offset > FST_MEMSIZE) {
2028                        return -ENXIO;
2029                }
2030
2031                /* Now copy the data to the card. */
2032
2033                buf = memdup_user(ifr->ifr_data + sizeof(struct fstioc_write),
2034                                  wrthdr.size);
2035                if (IS_ERR(buf))
2036                        return PTR_ERR(buf);
2037
2038                memcpy_toio(card->mem + wrthdr.offset, buf, wrthdr.size);
2039                kfree(buf);
2040
2041                /* Writes to the memory of a card in the reset state constitute
2042                 * a download
2043                 */
2044                if (card->state == FST_RESET) {
2045                        card->state = FST_DOWNLOAD;
2046                }
2047                return 0;
2048
2049        case FSTGETCONF:
2050
2051                /* If card has just been started check the shared memory config
2052                 * version and marker
2053                 */
2054                if (card->state == FST_STARTING) {
2055                        check_started_ok(card);
2056
2057                        /* If everything checked out enable card interrupts */
2058                        if (card->state == FST_RUNNING) {
2059                                spin_lock_irqsave(&card->card_lock, flags);
2060                                fst_enable_intr(card);
2061                                FST_WRB(card, interruptHandshake, 0xEE);
2062                                spin_unlock_irqrestore(&card->card_lock, flags);
2063                        }
2064                }
2065
2066                if (ifr->ifr_data == NULL) {
2067                        return -EINVAL;
2068                }
2069
2070                gather_conf_info(card, port, &info);
2071
2072                if (copy_to_user(ifr->ifr_data, &info, sizeof (info))) {
2073                        return -EFAULT;
2074                }
2075                return 0;
2076
2077        case FSTSETCONF:
2078
2079                /*
2080                 * Most of the settings have been moved to the generic ioctls
2081                 * this just covers debug and board ident now
2082                 */
2083
2084                if (card->state != FST_RUNNING) {
2085                        pr_err("Attempt to configure card %d in non-running state (%d)\n",
2086                               card->card_no, card->state);
2087                        return -EIO;
2088                }
2089                if (copy_from_user(&info, ifr->ifr_data, sizeof (info))) {
2090                        return -EFAULT;
2091                }
2092
2093                return set_conf_from_info(card, port, &info);
2094
2095        case SIOCWANDEV:
2096                switch (ifr->ifr_settings.type) {
2097                case IF_GET_IFACE:
2098                        return fst_get_iface(card, port, ifr);
2099
2100                case IF_IFACE_SYNC_SERIAL:
2101                case IF_IFACE_V35:
2102                case IF_IFACE_V24:
2103                case IF_IFACE_X21:
2104                case IF_IFACE_X21D:
2105                case IF_IFACE_T1:
2106                case IF_IFACE_E1:
2107                        return fst_set_iface(card, port, ifr);
2108
2109                case IF_PROTO_RAW:
2110                        port->mode = FST_RAW;
2111                        return 0;
2112
2113                case IF_GET_PROTO:
2114                        if (port->mode == FST_RAW) {
2115                                ifr->ifr_settings.type = IF_PROTO_RAW;
2116                                return 0;
2117                        }
2118                        return hdlc_ioctl(dev, ifr, cmd);
2119
2120                default:
2121                        port->mode = FST_GEN_HDLC;
2122                        dbg(DBG_IOCTL, "Passing this type to hdlc %x\n",
2123                            ifr->ifr_settings.type);
2124                        return hdlc_ioctl(dev, ifr, cmd);
2125                }
2126
2127        default:
2128                /* Not one of ours. Pass through to HDLC package */
2129                return hdlc_ioctl(dev, ifr, cmd);
2130        }
2131}
2132
2133static void
2134fst_openport(struct fst_port_info *port)
2135{
2136        int signals;
2137        int txq_length;
2138
2139        /* Only init things if card is actually running. This allows open to
2140         * succeed for downloads etc.
2141         */
2142        if (port->card->state == FST_RUNNING) {
2143                if (port->run) {
2144                        dbg(DBG_OPEN, "open: found port already running\n");
2145
2146                        fst_issue_cmd(port, STOPPORT);
2147                        port->run = 0;
2148                }
2149
2150                fst_rx_config(port);
2151                fst_tx_config(port);
2152                fst_op_raise(port, OPSTS_RTS | OPSTS_DTR);
2153
2154                fst_issue_cmd(port, STARTPORT);
2155                port->run = 1;
2156
2157                signals = FST_RDL(port->card, v24DebouncedSts[port->index]);
2158                if (signals & (((port->hwif == X21) || (port->hwif == X21D))
2159                               ? IPSTS_INDICATE : IPSTS_DCD))
2160                        netif_carrier_on(port_to_dev(port));
2161                else
2162                        netif_carrier_off(port_to_dev(port));
2163
2164                txq_length = port->txqe - port->txqs;
2165                port->txqe = 0;
2166                port->txqs = 0;
2167        }
2168
2169}
2170
2171static void
2172fst_closeport(struct fst_port_info *port)
2173{
2174        if (port->card->state == FST_RUNNING) {
2175                if (port->run) {
2176                        port->run = 0;
2177                        fst_op_lower(port, OPSTS_RTS | OPSTS_DTR);
2178
2179                        fst_issue_cmd(port, STOPPORT);
2180                } else {
2181                        dbg(DBG_OPEN, "close: port not running\n");
2182                }
2183        }
2184}
2185
2186static int
2187fst_open(struct net_device *dev)
2188{
2189        int err;
2190        struct fst_port_info *port;
2191
2192        port = dev_to_port(dev);
2193        if (!try_module_get(THIS_MODULE))
2194          return -EBUSY;
2195
2196        if (port->mode != FST_RAW) {
2197                err = hdlc_open(dev);
2198                if (err) {
2199                        module_put(THIS_MODULE);
2200                        return err;
2201                }
2202        }
2203
2204        fst_openport(port);
2205        netif_wake_queue(dev);
2206        return 0;
2207}
2208
2209static int
2210fst_close(struct net_device *dev)
2211{
2212        struct fst_port_info *port;
2213        struct fst_card_info *card;
2214        unsigned char tx_dma_done;
2215        unsigned char rx_dma_done;
2216
2217        port = dev_to_port(dev);
2218        card = port->card;
2219
2220        tx_dma_done = inb(card->pci_conf + DMACSR1);
2221        rx_dma_done = inb(card->pci_conf + DMACSR0);
2222        dbg(DBG_OPEN,
2223            "Port Close: tx_dma_in_progress = %d (%x) rx_dma_in_progress = %d (%x)\n",
2224            card->dmatx_in_progress, tx_dma_done, card->dmarx_in_progress,
2225            rx_dma_done);
2226
2227        netif_stop_queue(dev);
2228        fst_closeport(dev_to_port(dev));
2229        if (port->mode != FST_RAW) {
2230                hdlc_close(dev);
2231        }
2232        module_put(THIS_MODULE);
2233        return 0;
2234}
2235
2236static int
2237fst_attach(struct net_device *dev, unsigned short encoding, unsigned short parity)
2238{
2239        /*
2240         * Setting currently fixed in FarSync card so we check and forget
2241         */
2242        if (encoding != ENCODING_NRZ || parity != PARITY_CRC16_PR1_CCITT)
2243                return -EINVAL;
2244        return 0;
2245}
2246
2247static void
2248fst_tx_timeout(struct net_device *dev)
2249{
2250        struct fst_port_info *port;
2251        struct fst_card_info *card;
2252
2253        port = dev_to_port(dev);
2254        card = port->card;
2255        dev->stats.tx_errors++;
2256        dev->stats.tx_aborted_errors++;
2257        dbg(DBG_ASS, "Tx timeout card %d port %d\n",
2258            card->card_no, port->index);
2259        fst_issue_cmd(port, ABORTTX);
2260
2261        dev->trans_start = jiffies;
2262        netif_wake_queue(dev);
2263        port->start = 0;
2264}
2265
2266static netdev_tx_t
2267fst_start_xmit(struct sk_buff *skb, struct net_device *dev)
2268{
2269        struct fst_card_info *card;
2270        struct fst_port_info *port;
2271        unsigned long flags;
2272        int txq_length;
2273
2274        port = dev_to_port(dev);
2275        card = port->card;
2276        dbg(DBG_TX, "fst_start_xmit: length = %d\n", skb->len);
2277
2278        /* Drop packet with error if we don't have carrier */
2279        if (!netif_carrier_ok(dev)) {
2280                dev_kfree_skb(skb);
2281                dev->stats.tx_errors++;
2282                dev->stats.tx_carrier_errors++;
2283                dbg(DBG_ASS,
2284                    "Tried to transmit but no carrier on card %d port %d\n",
2285                    card->card_no, port->index);
2286                return NETDEV_TX_OK;
2287        }
2288
2289        /* Drop it if it's too big! MTU failure ? */
2290        if (skb->len > LEN_TX_BUFFER) {
2291                dbg(DBG_ASS, "Packet too large %d vs %d\n", skb->len,
2292                    LEN_TX_BUFFER);
2293                dev_kfree_skb(skb);
2294                dev->stats.tx_errors++;
2295                return NETDEV_TX_OK;
2296        }
2297
2298        /*
2299         * We are always going to queue the packet
2300         * so that the bottom half is the only place we tx from
2301         * Check there is room in the port txq
2302         */
2303        spin_lock_irqsave(&card->card_lock, flags);
2304        if ((txq_length = port->txqe - port->txqs) < 0) {
2305                /*
2306                 * This is the case where the next free has wrapped but the
2307                 * last used hasn't
2308                 */
2309                txq_length = txq_length + FST_TXQ_DEPTH;
2310        }
2311        spin_unlock_irqrestore(&card->card_lock, flags);
2312        if (txq_length > fst_txq_high) {
2313                /*
2314                 * We have got enough buffers in the pipeline.  Ask the network
2315                 * layer to stop sending frames down
2316                 */
2317                netif_stop_queue(dev);
2318                port->start = 1;        /* I'm using this to signal stop sent up */
2319        }
2320
2321        if (txq_length == FST_TXQ_DEPTH - 1) {
2322                /*
2323                 * This shouldn't have happened but such is life
2324                 */
2325                dev_kfree_skb(skb);
2326                dev->stats.tx_errors++;
2327                dbg(DBG_ASS, "Tx queue overflow card %d port %d\n",
2328                    card->card_no, port->index);
2329                return NETDEV_TX_OK;
2330        }
2331
2332        /*
2333         * queue the buffer
2334         */
2335        spin_lock_irqsave(&card->card_lock, flags);
2336        port->txq[port->txqe] = skb;
2337        port->txqe++;
2338        if (port->txqe == FST_TXQ_DEPTH)
2339                port->txqe = 0;
2340        spin_unlock_irqrestore(&card->card_lock, flags);
2341
2342        /* Scehdule the bottom half which now does transmit processing */
2343        fst_q_work_item(&fst_work_txq, card->card_no);
2344        tasklet_schedule(&fst_tx_task);
2345
2346        return NETDEV_TX_OK;
2347}
2348
2349/*
2350 *      Card setup having checked hardware resources.
2351 *      Should be pretty bizarre if we get an error here (kernel memory
2352 *      exhaustion is one possibility). If we do see a problem we report it
2353 *      via a printk and leave the corresponding interface and all that follow
2354 *      disabled.
2355 */
2356static char *type_strings[] = {
2357        "no hardware",          /* Should never be seen */
2358        "FarSync T2P",
2359        "FarSync T4P",
2360        "FarSync T1U",
2361        "FarSync T2U",
2362        "FarSync T4U",
2363        "FarSync TE1"
2364};
2365
2366static int
2367fst_init_card(struct fst_card_info *card)
2368{
2369        int i;
2370        int err;
2371
2372        /* We're working on a number of ports based on the card ID. If the
2373         * firmware detects something different later (should never happen)
2374         * we'll have to revise it in some way then.
2375         */
2376        for (i = 0; i < card->nports; i++) {
2377                err = register_hdlc_device(card->ports[i].dev);
2378                if (err < 0) {
2379                        pr_err("Cannot register HDLC device for port %d (errno %d)\n",
2380                                i, -err);
2381                        while (i--)
2382                                unregister_hdlc_device(card->ports[i].dev);
2383                        return err;
2384                }
2385        }
2386
2387        pr_info("%s-%s: %s IRQ%d, %d ports\n",
2388                port_to_dev(&card->ports[0])->name,
2389                port_to_dev(&card->ports[card->nports - 1])->name,
2390                type_strings[card->type], card->irq, card->nports);
2391        return 0;
2392}
2393
2394static const struct net_device_ops fst_ops = {
2395        .ndo_open       = fst_open,
2396        .ndo_stop       = fst_close,
2397        .ndo_change_mtu = hdlc_change_mtu,
2398        .ndo_start_xmit = hdlc_start_xmit,
2399        .ndo_do_ioctl   = fst_ioctl,
2400        .ndo_tx_timeout = fst_tx_timeout,
2401};
2402
2403/*
2404 *      Initialise card when detected.
2405 *      Returns 0 to indicate success, or errno otherwise.
2406 */
2407static int
2408fst_add_one(struct pci_dev *pdev, const struct pci_device_id *ent)
2409{
2410        static int no_of_cards_added = 0;
2411        struct fst_card_info *card;
2412        int err = 0;
2413        int i;
2414
2415        printk_once(KERN_INFO
2416                    pr_fmt("FarSync WAN driver " FST_USER_VERSION
2417                           " (c) 2001-2004 FarSite Communications Ltd.\n"));
2418#if FST_DEBUG
2419        dbg(DBG_ASS, "The value of debug mask is %x\n", fst_debug_mask);
2420#endif
2421        /*
2422         * We are going to be clever and allow certain cards not to be
2423         * configured.  An exclude list can be provided in /etc/modules.conf
2424         */
2425        if (fst_excluded_cards != 0) {
2426                /*
2427                 * There are cards to exclude
2428                 *
2429                 */
2430                for (i = 0; i < fst_excluded_cards; i++) {
2431                        if ((pdev->devfn) >> 3 == fst_excluded_list[i]) {
2432                                pr_info("FarSync PCI device %d not assigned\n",
2433                                        (pdev->devfn) >> 3);
2434                                return -EBUSY;
2435                        }
2436                }
2437        }
2438
2439        /* Allocate driver private data */
2440        card = kzalloc(sizeof(struct fst_card_info), GFP_KERNEL);
2441        if (card == NULL)
2442                return -ENOMEM;
2443
2444        /* Try to enable the device */
2445        if ((err = pci_enable_device(pdev)) != 0) {
2446                pr_err("Failed to enable card. Err %d\n", -err);
2447                goto enable_fail;
2448        }
2449
2450        if ((err = pci_request_regions(pdev, "FarSync")) !=0) {
2451                pr_err("Failed to allocate regions. Err %d\n", -err);
2452                goto regions_fail;
2453        }
2454
2455        /* Get virtual addresses of memory regions */
2456        card->pci_conf = pci_resource_start(pdev, 1);
2457        card->phys_mem = pci_resource_start(pdev, 2);
2458        card->phys_ctlmem = pci_resource_start(pdev, 3);
2459        if ((card->mem = ioremap(card->phys_mem, FST_MEMSIZE)) == NULL) {
2460                pr_err("Physical memory remap failed\n");
2461                err = -ENODEV;
2462                goto ioremap_physmem_fail;
2463        }
2464        if ((card->ctlmem = ioremap(card->phys_ctlmem, 0x10)) == NULL) {
2465                pr_err("Control memory remap failed\n");
2466                err = -ENODEV;
2467                goto ioremap_ctlmem_fail;
2468        }
2469        dbg(DBG_PCI, "kernel mem %p, ctlmem %p\n", card->mem, card->ctlmem);
2470
2471        /* Register the interrupt handler */
2472        if (request_irq(pdev->irq, fst_intr, IRQF_SHARED, FST_DEV_NAME, card)) {
2473                pr_err("Unable to register interrupt %d\n", card->irq);
2474                err = -ENODEV;
2475                goto irq_fail;
2476        }
2477
2478        /* Record info we need */
2479        card->irq = pdev->irq;
2480        card->type = ent->driver_data;
2481        card->family = ((ent->driver_data == FST_TYPE_T2P) ||
2482                        (ent->driver_data == FST_TYPE_T4P))
2483            ? FST_FAMILY_TXP : FST_FAMILY_TXU;
2484        if ((ent->driver_data == FST_TYPE_T1U) ||
2485            (ent->driver_data == FST_TYPE_TE1))
2486                card->nports = 1;
2487        else
2488                card->nports = ((ent->driver_data == FST_TYPE_T2P) ||
2489                                (ent->driver_data == FST_TYPE_T2U)) ? 2 : 4;
2490
2491        card->state = FST_UNINIT;
2492        spin_lock_init ( &card->card_lock );
2493
2494        for ( i = 0 ; i < card->nports ; i++ ) {
2495                struct net_device *dev = alloc_hdlcdev(&card->ports[i]);
2496                hdlc_device *hdlc;
2497                if (!dev) {
2498                        while (i--)
2499                                free_netdev(card->ports[i].dev);
2500                        pr_err("FarSync: out of memory\n");
2501                        err = -ENOMEM;
2502                        goto hdlcdev_fail;
2503                }
2504                card->ports[i].dev    = dev;
2505                card->ports[i].card   = card;
2506                card->ports[i].index  = i;
2507                card->ports[i].run    = 0;
2508
2509                hdlc = dev_to_hdlc(dev);
2510
2511                /* Fill in the net device info */
2512                /* Since this is a PCI setup this is purely
2513                 * informational. Give them the buffer addresses
2514                 * and basic card I/O.
2515                 */
2516                dev->mem_start   = card->phys_mem
2517                                 + BUF_OFFSET ( txBuffer[i][0][0]);
2518                dev->mem_end     = card->phys_mem
2519                                 + BUF_OFFSET ( txBuffer[i][NUM_TX_BUFFER][0]);
2520                dev->base_addr   = card->pci_conf;
2521                dev->irq         = card->irq;
2522
2523                dev->netdev_ops = &fst_ops;
2524                dev->tx_queue_len = FST_TX_QUEUE_LEN;
2525                dev->watchdog_timeo = FST_TX_TIMEOUT;
2526                hdlc->attach = fst_attach;
2527                hdlc->xmit   = fst_start_xmit;
2528        }
2529
2530        card->device = pdev;
2531
2532        dbg(DBG_PCI, "type %d nports %d irq %d\n", card->type,
2533            card->nports, card->irq);
2534        dbg(DBG_PCI, "conf %04x mem %08x ctlmem %08x\n",
2535            card->pci_conf, card->phys_mem, card->phys_ctlmem);
2536
2537        /* Reset the card's processor */
2538        fst_cpureset(card);
2539        card->state = FST_RESET;
2540
2541        /* Initialise DMA (if required) */
2542        fst_init_dma(card);
2543
2544        /* Record driver data for later use */
2545        pci_set_drvdata(pdev, card);
2546
2547        /* Remainder of card setup */
2548        if (no_of_cards_added >= FST_MAX_CARDS) {
2549                pr_err("FarSync: too many cards\n");
2550                err = -ENOMEM;
2551                goto card_array_fail;
2552        }
2553        fst_card_array[no_of_cards_added] = card;
2554        card->card_no = no_of_cards_added++;    /* Record instance and bump it */
2555        err = fst_init_card(card);
2556        if (err)
2557                goto init_card_fail;
2558        if (card->family == FST_FAMILY_TXU) {
2559                /*
2560                 * Allocate a dma buffer for transmit and receives
2561                 */
2562                card->rx_dma_handle_host =
2563                    pci_alloc_consistent(card->device, FST_MAX_MTU,
2564                                         &card->rx_dma_handle_card);
2565                if (card->rx_dma_handle_host == NULL) {
2566                        pr_err("Could not allocate rx dma buffer\n");
2567                        err = -ENOMEM;
2568                        goto rx_dma_fail;
2569                }
2570                card->tx_dma_handle_host =
2571                    pci_alloc_consistent(card->device, FST_MAX_MTU,
2572                                         &card->tx_dma_handle_card);
2573                if (card->tx_dma_handle_host == NULL) {
2574                        pr_err("Could not allocate tx dma buffer\n");
2575                        err = -ENOMEM;
2576                        goto tx_dma_fail;
2577                }
2578        }
2579        return 0;               /* Success */
2580
2581tx_dma_fail:
2582        pci_free_consistent(card->device, FST_MAX_MTU,
2583                            card->rx_dma_handle_host,
2584                            card->rx_dma_handle_card);
2585rx_dma_fail:
2586        fst_disable_intr(card);
2587        for (i = 0 ; i < card->nports ; i++)
2588                unregister_hdlc_device(card->ports[i].dev);
2589init_card_fail:
2590        fst_card_array[card->card_no] = NULL;
2591card_array_fail:
2592        for (i = 0 ; i < card->nports ; i++)
2593                free_netdev(card->ports[i].dev);
2594hdlcdev_fail:
2595        free_irq(card->irq, card);
2596irq_fail:
2597        iounmap(card->ctlmem);
2598ioremap_ctlmem_fail:
2599        iounmap(card->mem);
2600ioremap_physmem_fail:
2601        pci_release_regions(pdev);
2602regions_fail:
2603        pci_disable_device(pdev);
2604enable_fail:
2605        kfree(card);
2606        return err;
2607}
2608
2609/*
2610 *      Cleanup and close down a card
2611 */
2612static void
2613fst_remove_one(struct pci_dev *pdev)
2614{
2615        struct fst_card_info *card;
2616        int i;
2617
2618        card = pci_get_drvdata(pdev);
2619
2620        for (i = 0; i < card->nports; i++) {
2621                struct net_device *dev = port_to_dev(&card->ports[i]);
2622                unregister_hdlc_device(dev);
2623        }
2624
2625        fst_disable_intr(card);
2626        free_irq(card->irq, card);
2627
2628        iounmap(card->ctlmem);
2629        iounmap(card->mem);
2630        pci_release_regions(pdev);
2631        if (card->family == FST_FAMILY_TXU) {
2632                /*
2633                 * Free dma buffers
2634                 */
2635                pci_free_consistent(card->device, FST_MAX_MTU,
2636                                    card->rx_dma_handle_host,
2637                                    card->rx_dma_handle_card);
2638                pci_free_consistent(card->device, FST_MAX_MTU,
2639                                    card->tx_dma_handle_host,
2640                                    card->tx_dma_handle_card);
2641        }
2642        fst_card_array[card->card_no] = NULL;
2643}
2644
2645static struct pci_driver fst_driver = {
2646        .name           = FST_NAME,
2647        .id_table       = fst_pci_dev_id,
2648        .probe          = fst_add_one,
2649        .remove = fst_remove_one,
2650        .suspend        = NULL,
2651        .resume = NULL,
2652};
2653
2654static int __init
2655fst_init(void)
2656{
2657        int i;
2658
2659        for (i = 0; i < FST_MAX_CARDS; i++)
2660                fst_card_array[i] = NULL;
2661        spin_lock_init(&fst_work_q_lock);
2662        return pci_register_driver(&fst_driver);
2663}
2664
2665static void __exit
2666fst_cleanup_module(void)
2667{
2668        pr_info("FarSync WAN driver unloading\n");
2669        pci_unregister_driver(&fst_driver);
2670}
2671
2672module_init(fst_init);
2673module_exit(fst_cleanup_module);
2674