linux/drivers/usb/wusbcore/crypto.c
<<
>>
Prefs
   1/*
   2 * Ultra Wide Band
   3 * AES-128 CCM Encryption
   4 *
   5 * Copyright (C) 2007 Intel Corporation
   6 * Inaky Perez-Gonzalez <inaky.perez-gonzalez@intel.com>
   7 *
   8 * This program is free software; you can redistribute it and/or
   9 * modify it under the terms of the GNU General Public License version
  10 * 2 as published by the Free Software Foundation.
  11 *
  12 * This program is distributed in the hope that it will be useful,
  13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  15 * GNU General Public License for more details.
  16 *
  17 * You should have received a copy of the GNU General Public License
  18 * along with this program; if not, write to the Free Software
  19 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
  20 * 02110-1301, USA.
  21 *
  22 *
  23 * We don't do any encryption here; we use the Linux Kernel's AES-128
  24 * crypto modules to construct keys and payload blocks in a way
  25 * defined by WUSB1.0[6]. Check the erratas, as typos are are patched
  26 * there.
  27 *
  28 * Thanks a zillion to John Keys for his help and clarifications over
  29 * the designed-by-a-committee text.
  30 *
  31 * So the idea is that there is this basic Pseudo-Random-Function
  32 * defined in WUSB1.0[6.5] which is the core of everything. It works
  33 * by tweaking some blocks, AES crypting them and then xoring
  34 * something else with them (this seems to be called CBC(AES) -- can
  35 * you tell I know jack about crypto?). So we just funnel it into the
  36 * Linux Crypto API.
  37 *
  38 * We leave a crypto test module so we can verify that vectors match,
  39 * every now and then.
  40 *
  41 * Block size: 16 bytes -- AES seems to do things in 'block sizes'. I
  42 *             am learning a lot...
  43 *
  44 *             Conveniently, some data structures that need to be
  45 *             funneled through AES are...16 bytes in size!
  46 */
  47
  48#include <linux/crypto.h>
  49#include <linux/module.h>
  50#include <linux/err.h>
  51#include <linux/uwb.h>
  52#include <linux/slab.h>
  53#include <linux/usb/wusb.h>
  54#include <linux/scatterlist.h>
  55
  56static int debug_crypto_verify = 0;
  57
  58module_param(debug_crypto_verify, int, 0);
  59MODULE_PARM_DESC(debug_crypto_verify, "verify the key generation algorithms");
  60
  61static void wusb_key_dump(const void *buf, size_t len)
  62{
  63        print_hex_dump(KERN_ERR, "  ", DUMP_PREFIX_OFFSET, 16, 1,
  64                       buf, len, 0);
  65}
  66
  67/*
  68 * Block of data, as understood by AES-CCM
  69 *
  70 * The code assumes this structure is nothing but a 16 byte array
  71 * (packed in a struct to avoid common mess ups that I usually do with
  72 * arrays and enforcing type checking).
  73 */
  74struct aes_ccm_block {
  75        u8 data[16];
  76} __attribute__((packed));
  77
  78/*
  79 * Counter-mode Blocks (WUSB1.0[6.4])
  80 *
  81 * According to CCM (or so it seems), for the purpose of calculating
  82 * the MIC, the message is broken in N counter-mode blocks, B0, B1,
  83 * ... BN.
  84 *
  85 * B0 contains flags, the CCM nonce and l(m).
  86 *
  87 * B1 contains l(a), the MAC header, the encryption offset and padding.
  88 *
  89 * If EO is nonzero, additional blocks are built from payload bytes
  90 * until EO is exhausted (FIXME: padding to 16 bytes, I guess). The
  91 * padding is not xmitted.
  92 */
  93
  94/* WUSB1.0[T6.4] */
  95struct aes_ccm_b0 {
  96        u8 flags;       /* 0x59, per CCM spec */
  97        struct aes_ccm_nonce ccm_nonce;
  98        __be16 lm;
  99} __attribute__((packed));
 100
 101/* WUSB1.0[T6.5] */
 102struct aes_ccm_b1 {
 103        __be16 la;
 104        u8 mac_header[10];
 105        __le16 eo;
 106        u8 security_reserved;   /* This is always zero */
 107        u8 padding;             /* 0 */
 108} __attribute__((packed));
 109
 110/*
 111 * Encryption Blocks (WUSB1.0[6.4.4])
 112 *
 113 * CCM uses Ax blocks to generate a keystream with which the MIC and
 114 * the message's payload are encoded. A0 always encrypts/decrypts the
 115 * MIC. Ax (x>0) are used for the successive payload blocks.
 116 *
 117 * The x is the counter, and is increased for each block.
 118 */
 119struct aes_ccm_a {
 120        u8 flags;       /* 0x01, per CCM spec */
 121        struct aes_ccm_nonce ccm_nonce;
 122        __be16 counter; /* Value of x */
 123} __attribute__((packed));
 124
 125static void bytewise_xor(void *_bo, const void *_bi1, const void *_bi2,
 126                         size_t size)
 127{
 128        u8 *bo = _bo;
 129        const u8 *bi1 = _bi1, *bi2 = _bi2;
 130        size_t itr;
 131        for (itr = 0; itr < size; itr++)
 132                bo[itr] = bi1[itr] ^ bi2[itr];
 133}
 134
 135/*
 136 * CC-MAC function WUSB1.0[6.5]
 137 *
 138 * Take a data string and produce the encrypted CBC Counter-mode MIC
 139 *
 140 * Note the names for most function arguments are made to (more or
 141 * less) match those used in the pseudo-function definition given in
 142 * WUSB1.0[6.5].
 143 *
 144 * @tfm_cbc: CBC(AES) blkcipher handle (initialized)
 145 *
 146 * @tfm_aes: AES cipher handle (initialized)
 147 *
 148 * @mic: buffer for placing the computed MIC (Message Integrity
 149 *       Code). This is exactly 8 bytes, and we expect the buffer to
 150 *       be at least eight bytes in length.
 151 *
 152 * @key: 128 bit symmetric key
 153 *
 154 * @n: CCM nonce
 155 *
 156 * @a: ASCII string, 14 bytes long (I guess zero padded if needed;
 157 *     we use exactly 14 bytes).
 158 *
 159 * @b: data stream to be processed; cannot be a global or const local
 160 *     (will confuse the scatterlists)
 161 *
 162 * @blen: size of b...
 163 *
 164 * Still not very clear how this is done, but looks like this: we
 165 * create block B0 (as WUSB1.0[6.5] says), then we AES-crypt it with
 166 * @key. We bytewise xor B0 with B1 (1) and AES-crypt that. Then we
 167 * take the payload and divide it in blocks (16 bytes), xor them with
 168 * the previous crypto result (16 bytes) and crypt it, repeat the next
 169 * block with the output of the previous one, rinse wash (I guess this
 170 * is what AES CBC mode means...but I truly have no idea). So we use
 171 * the CBC(AES) blkcipher, that does precisely that. The IV (Initial
 172 * Vector) is 16 bytes and is set to zero, so
 173 *
 174 * See rfc3610. Linux crypto has a CBC implementation, but the
 175 * documentation is scarce, to say the least, and the example code is
 176 * so intricated that is difficult to understand how things work. Most
 177 * of this is guess work -- bite me.
 178 *
 179 * (1) Created as 6.5 says, again, using as l(a) 'Blen + 14', and
 180 *     using the 14 bytes of @a to fill up
 181 *     b1.{mac_header,e0,security_reserved,padding}.
 182 *
 183 * NOTE: The definition of l(a) in WUSB1.0[6.5] vs the definition of
 184 *       l(m) is orthogonal, they bear no relationship, so it is not
 185 *       in conflict with the parameter's relation that
 186 *       WUSB1.0[6.4.2]) defines.
 187 *
 188 * NOTE: WUSB1.0[A.1]: Host Nonce is missing a nibble? (1e); fixed in
 189 *       first errata released on 2005/07.
 190 *
 191 * NOTE: we need to clean IV to zero at each invocation to make sure
 192 *       we start with a fresh empty Initial Vector, so that the CBC
 193 *       works ok.
 194 *
 195 * NOTE: blen is not aligned to a block size, we'll pad zeros, that's
 196 *       what sg[4] is for. Maybe there is a smarter way to do this.
 197 */
 198static int wusb_ccm_mac(struct crypto_blkcipher *tfm_cbc,
 199                        struct crypto_cipher *tfm_aes, void *mic,
 200                        const struct aes_ccm_nonce *n,
 201                        const struct aes_ccm_label *a, const void *b,
 202                        size_t blen)
 203{
 204        int result = 0;
 205        struct blkcipher_desc desc;
 206        struct aes_ccm_b0 b0;
 207        struct aes_ccm_b1 b1;
 208        struct aes_ccm_a ax;
 209        struct scatterlist sg[4], sg_dst;
 210        void *iv, *dst_buf;
 211        size_t ivsize, dst_size;
 212        const u8 bzero[16] = { 0 };
 213        size_t zero_padding;
 214
 215        /*
 216         * These checks should be compile time optimized out
 217         * ensure @a fills b1's mac_header and following fields
 218         */
 219        WARN_ON(sizeof(*a) != sizeof(b1) - sizeof(b1.la));
 220        WARN_ON(sizeof(b0) != sizeof(struct aes_ccm_block));
 221        WARN_ON(sizeof(b1) != sizeof(struct aes_ccm_block));
 222        WARN_ON(sizeof(ax) != sizeof(struct aes_ccm_block));
 223
 224        result = -ENOMEM;
 225        zero_padding = blen % sizeof(struct aes_ccm_block);
 226        if (zero_padding)
 227                zero_padding = sizeof(struct aes_ccm_block) - zero_padding;
 228        dst_size = blen + sizeof(b0) + sizeof(b1) + zero_padding;
 229        dst_buf = kzalloc(dst_size, GFP_KERNEL);
 230        if (dst_buf == NULL) {
 231                printk(KERN_ERR "E: can't alloc destination buffer\n");
 232                goto error_dst_buf;
 233        }
 234
 235        iv = crypto_blkcipher_crt(tfm_cbc)->iv;
 236        ivsize = crypto_blkcipher_ivsize(tfm_cbc);
 237        memset(iv, 0, ivsize);
 238
 239        /* Setup B0 */
 240        b0.flags = 0x59;        /* Format B0 */
 241        b0.ccm_nonce = *n;
 242        b0.lm = cpu_to_be16(0); /* WUSB1.0[6.5] sez l(m) is 0 */
 243
 244        /* Setup B1
 245         *
 246         * The WUSB spec is anything but clear! WUSB1.0[6.5]
 247         * says that to initialize B1 from A with 'l(a) = blen +
 248         * 14'--after clarification, it means to use A's contents
 249         * for MAC Header, EO, sec reserved and padding.
 250         */
 251        b1.la = cpu_to_be16(blen + 14);
 252        memcpy(&b1.mac_header, a, sizeof(*a));
 253
 254        sg_init_table(sg, ARRAY_SIZE(sg));
 255        sg_set_buf(&sg[0], &b0, sizeof(b0));
 256        sg_set_buf(&sg[1], &b1, sizeof(b1));
 257        sg_set_buf(&sg[2], b, blen);
 258        /* 0 if well behaved :) */
 259        sg_set_buf(&sg[3], bzero, zero_padding);
 260        sg_init_one(&sg_dst, dst_buf, dst_size);
 261
 262        desc.tfm = tfm_cbc;
 263        desc.flags = 0;
 264        result = crypto_blkcipher_encrypt(&desc, &sg_dst, sg, dst_size);
 265        if (result < 0) {
 266                printk(KERN_ERR "E: can't compute CBC-MAC tag (MIC): %d\n",
 267                       result);
 268                goto error_cbc_crypt;
 269        }
 270
 271        /* Now we crypt the MIC Tag (*iv) with Ax -- values per WUSB1.0[6.5]
 272         * The procedure is to AES crypt the A0 block and XOR the MIC
 273         * Tag against it; we only do the first 8 bytes and place it
 274         * directly in the destination buffer.
 275         *
 276         * POS Crypto API: size is assumed to be AES's block size.
 277         * Thanks for documenting it -- tip taken from airo.c
 278         */
 279        ax.flags = 0x01;                /* as per WUSB 1.0 spec */
 280        ax.ccm_nonce = *n;
 281        ax.counter = 0;
 282        crypto_cipher_encrypt_one(tfm_aes, (void *)&ax, (void *)&ax);
 283        bytewise_xor(mic, &ax, iv, 8);
 284        result = 8;
 285error_cbc_crypt:
 286        kfree(dst_buf);
 287error_dst_buf:
 288        return result;
 289}
 290
 291/*
 292 * WUSB Pseudo Random Function (WUSB1.0[6.5])
 293 *
 294 * @b: buffer to the source data; cannot be a global or const local
 295 *     (will confuse the scatterlists)
 296 */
 297ssize_t wusb_prf(void *out, size_t out_size,
 298                 const u8 key[16], const struct aes_ccm_nonce *_n,
 299                 const struct aes_ccm_label *a,
 300                 const void *b, size_t blen, size_t len)
 301{
 302        ssize_t result, bytes = 0, bitr;
 303        struct aes_ccm_nonce n = *_n;
 304        struct crypto_blkcipher *tfm_cbc;
 305        struct crypto_cipher *tfm_aes;
 306        u64 sfn = 0;
 307        __le64 sfn_le;
 308
 309        tfm_cbc = crypto_alloc_blkcipher("cbc(aes)", 0, CRYPTO_ALG_ASYNC);
 310        if (IS_ERR(tfm_cbc)) {
 311                result = PTR_ERR(tfm_cbc);
 312                printk(KERN_ERR "E: can't load CBC(AES): %d\n", (int)result);
 313                goto error_alloc_cbc;
 314        }
 315        result = crypto_blkcipher_setkey(tfm_cbc, key, 16);
 316        if (result < 0) {
 317                printk(KERN_ERR "E: can't set CBC key: %d\n", (int)result);
 318                goto error_setkey_cbc;
 319        }
 320
 321        tfm_aes = crypto_alloc_cipher("aes", 0, CRYPTO_ALG_ASYNC);
 322        if (IS_ERR(tfm_aes)) {
 323                result = PTR_ERR(tfm_aes);
 324                printk(KERN_ERR "E: can't load AES: %d\n", (int)result);
 325                goto error_alloc_aes;
 326        }
 327        result = crypto_cipher_setkey(tfm_aes, key, 16);
 328        if (result < 0) {
 329                printk(KERN_ERR "E: can't set AES key: %d\n", (int)result);
 330                goto error_setkey_aes;
 331        }
 332
 333        for (bitr = 0; bitr < (len + 63) / 64; bitr++) {
 334                sfn_le = cpu_to_le64(sfn++);
 335                memcpy(&n.sfn, &sfn_le, sizeof(n.sfn)); /* n.sfn++... */
 336                result = wusb_ccm_mac(tfm_cbc, tfm_aes, out + bytes,
 337                                      &n, a, b, blen);
 338                if (result < 0)
 339                        goto error_ccm_mac;
 340                bytes += result;
 341        }
 342        result = bytes;
 343error_ccm_mac:
 344error_setkey_aes:
 345        crypto_free_cipher(tfm_aes);
 346error_alloc_aes:
 347error_setkey_cbc:
 348        crypto_free_blkcipher(tfm_cbc);
 349error_alloc_cbc:
 350        return result;
 351}
 352
 353/* WUSB1.0[A.2] test vectors */
 354static const u8 stv_hsmic_key[16] = {
 355        0x4b, 0x79, 0xa3, 0xcf, 0xe5, 0x53, 0x23, 0x9d,
 356        0xd7, 0xc1, 0x6d, 0x1c, 0x2d, 0xab, 0x6d, 0x3f
 357};
 358
 359static const struct aes_ccm_nonce stv_hsmic_n = {
 360        .sfn = { 0 },
 361        .tkid = { 0x76, 0x98, 0x01,  },
 362        .dest_addr = { .data = { 0xbe, 0x00 } },
 363                .src_addr = { .data = { 0x76, 0x98 } },
 364};
 365
 366/*
 367 * Out-of-band MIC Generation verification code
 368 *
 369 */
 370static int wusb_oob_mic_verify(void)
 371{
 372        int result;
 373        u8 mic[8];
 374        /* WUSB1.0[A.2] test vectors
 375         *
 376         * Need to keep it in the local stack as GCC 4.1.3something
 377         * messes up and generates noise.
 378         */
 379        struct usb_handshake stv_hsmic_hs = {
 380                .bMessageNumber = 2,
 381                .bStatus        = 00,
 382                .tTKID          = { 0x76, 0x98, 0x01 },
 383                .bReserved      = 00,
 384                .CDID           = { 0x30, 0x31, 0x32, 0x33, 0x34, 0x35,
 385                                    0x36, 0x37, 0x38, 0x39, 0x3a, 0x3b,
 386                                    0x3c, 0x3d, 0x3e, 0x3f },
 387                .nonce          = { 0x20, 0x21, 0x22, 0x23, 0x24, 0x25,
 388                                    0x26, 0x27, 0x28, 0x29, 0x2a, 0x2b,
 389                                    0x2c, 0x2d, 0x2e, 0x2f },
 390                .MIC            = { 0x75, 0x6a, 0x97, 0x51, 0x0c, 0x8c,
 391                                    0x14, 0x7b } ,
 392        };
 393        size_t hs_size;
 394
 395        result = wusb_oob_mic(mic, stv_hsmic_key, &stv_hsmic_n, &stv_hsmic_hs);
 396        if (result < 0)
 397                printk(KERN_ERR "E: WUSB OOB MIC test: failed: %d\n", result);
 398        else if (memcmp(stv_hsmic_hs.MIC, mic, sizeof(mic))) {
 399                printk(KERN_ERR "E: OOB MIC test: "
 400                       "mismatch between MIC result and WUSB1.0[A2]\n");
 401                hs_size = sizeof(stv_hsmic_hs) - sizeof(stv_hsmic_hs.MIC);
 402                printk(KERN_ERR "E: Handshake2 in: (%zu bytes)\n", hs_size);
 403                wusb_key_dump(&stv_hsmic_hs, hs_size);
 404                printk(KERN_ERR "E: CCM Nonce in: (%zu bytes)\n",
 405                       sizeof(stv_hsmic_n));
 406                wusb_key_dump(&stv_hsmic_n, sizeof(stv_hsmic_n));
 407                printk(KERN_ERR "E: MIC out:\n");
 408                wusb_key_dump(mic, sizeof(mic));
 409                printk(KERN_ERR "E: MIC out (from WUSB1.0[A.2]):\n");
 410                wusb_key_dump(stv_hsmic_hs.MIC, sizeof(stv_hsmic_hs.MIC));
 411                result = -EINVAL;
 412        } else
 413                result = 0;
 414        return result;
 415}
 416
 417/*
 418 * Test vectors for Key derivation
 419 *
 420 * These come from WUSB1.0[6.5.1], the vectors in WUSB1.0[A.1]
 421 * (errata corrected in 2005/07).
 422 */
 423static const u8 stv_key_a1[16] __attribute__ ((__aligned__(4))) = {
 424        0xf0, 0xe1, 0xd2, 0xc3, 0xb4, 0xa5, 0x96, 0x87,
 425        0x78, 0x69, 0x5a, 0x4b, 0x3c, 0x2d, 0x1e, 0x0f
 426};
 427
 428static const struct aes_ccm_nonce stv_keydvt_n_a1 = {
 429        .sfn = { 0 },
 430        .tkid = { 0x76, 0x98, 0x01,  },
 431        .dest_addr = { .data = { 0xbe, 0x00 } },
 432        .src_addr = { .data = { 0x76, 0x98 } },
 433};
 434
 435static const struct wusb_keydvt_out stv_keydvt_out_a1 = {
 436        .kck = {
 437                0x4b, 0x79, 0xa3, 0xcf, 0xe5, 0x53, 0x23, 0x9d,
 438                0xd7, 0xc1, 0x6d, 0x1c, 0x2d, 0xab, 0x6d, 0x3f
 439        },
 440        .ptk = {
 441                0xc8, 0x70, 0x62, 0x82, 0xb6, 0x7c, 0xe9, 0x06,
 442                0x7b, 0xc5, 0x25, 0x69, 0xf2, 0x36, 0x61, 0x2d
 443        }
 444};
 445
 446/*
 447 * Performa a test to make sure we match the vectors defined in
 448 * WUSB1.0[A.1](Errata2006/12)
 449 */
 450static int wusb_key_derive_verify(void)
 451{
 452        int result = 0;
 453        struct wusb_keydvt_out keydvt_out;
 454        /* These come from WUSB1.0[A.1] + 2006/12 errata
 455         * NOTE: can't make this const or global -- somehow it seems
 456         *       the scatterlists for crypto get confused and we get
 457         *       bad data. There is no doc on this... */
 458        struct wusb_keydvt_in stv_keydvt_in_a1 = {
 459                .hnonce = {
 460                        0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17,
 461                        0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f
 462                },
 463                .dnonce = {
 464                        0x20, 0x21, 0x22, 0x23, 0x24, 0x25, 0x26, 0x27,
 465                        0x28, 0x29, 0x2a, 0x2b, 0x2c, 0x2d, 0x2e, 0x2f
 466                }
 467        };
 468
 469        result = wusb_key_derive(&keydvt_out, stv_key_a1, &stv_keydvt_n_a1,
 470                                 &stv_keydvt_in_a1);
 471        if (result < 0)
 472                printk(KERN_ERR "E: WUSB key derivation test: "
 473                       "derivation failed: %d\n", result);
 474        if (memcmp(&stv_keydvt_out_a1, &keydvt_out, sizeof(keydvt_out))) {
 475                printk(KERN_ERR "E: WUSB key derivation test: "
 476                       "mismatch between key derivation result "
 477                       "and WUSB1.0[A1] Errata 2006/12\n");
 478                printk(KERN_ERR "E: keydvt in: key\n");
 479                wusb_key_dump(stv_key_a1, sizeof(stv_key_a1));
 480                printk(KERN_ERR "E: keydvt in: nonce\n");
 481                wusb_key_dump( &stv_keydvt_n_a1, sizeof(stv_keydvt_n_a1));
 482                printk(KERN_ERR "E: keydvt in: hnonce & dnonce\n");
 483                wusb_key_dump(&stv_keydvt_in_a1, sizeof(stv_keydvt_in_a1));
 484                printk(KERN_ERR "E: keydvt out: KCK\n");
 485                wusb_key_dump(&keydvt_out.kck, sizeof(keydvt_out.kck));
 486                printk(KERN_ERR "E: keydvt out: PTK\n");
 487                wusb_key_dump(&keydvt_out.ptk, sizeof(keydvt_out.ptk));
 488                result = -EINVAL;
 489        } else
 490                result = 0;
 491        return result;
 492}
 493
 494/*
 495 * Initialize crypto system
 496 *
 497 * FIXME: we do nothing now, other than verifying. Later on we'll
 498 * cache the encryption stuff, so that's why we have a separate init.
 499 */
 500int wusb_crypto_init(void)
 501{
 502        int result;
 503
 504        if (debug_crypto_verify) {
 505                result = wusb_key_derive_verify();
 506                if (result < 0)
 507                        return result;
 508                return wusb_oob_mic_verify();
 509        }
 510        return 0;
 511}
 512
 513void wusb_crypto_exit(void)
 514{
 515        /* FIXME: free cached crypto transforms */
 516}
 517