linux/fs/aio.c
<<
>>
Prefs
   1/*
   2 *      An async IO implementation for Linux
   3 *      Written by Benjamin LaHaise <bcrl@kvack.org>
   4 *
   5 *      Implements an efficient asynchronous io interface.
   6 *
   7 *      Copyright 2000, 2001, 2002 Red Hat, Inc.  All Rights Reserved.
   8 *
   9 *      See ../COPYING for licensing terms.
  10 */
  11#define pr_fmt(fmt) "%s: " fmt, __func__
  12
  13#include <linux/kernel.h>
  14#include <linux/init.h>
  15#include <linux/errno.h>
  16#include <linux/time.h>
  17#include <linux/aio_abi.h>
  18#include <linux/export.h>
  19#include <linux/syscalls.h>
  20#include <linux/backing-dev.h>
  21#include <linux/uio.h>
  22
  23#include <linux/sched.h>
  24#include <linux/fs.h>
  25#include <linux/file.h>
  26#include <linux/mm.h>
  27#include <linux/mman.h>
  28#include <linux/mmu_context.h>
  29#include <linux/percpu.h>
  30#include <linux/slab.h>
  31#include <linux/timer.h>
  32#include <linux/aio.h>
  33#include <linux/highmem.h>
  34#include <linux/workqueue.h>
  35#include <linux/security.h>
  36#include <linux/eventfd.h>
  37#include <linux/blkdev.h>
  38#include <linux/compat.h>
  39#include <linux/migrate.h>
  40#include <linux/ramfs.h>
  41#include <linux/percpu-refcount.h>
  42#include <linux/mount.h>
  43
  44#include <asm/kmap_types.h>
  45#include <asm/uaccess.h>
  46
  47#include "internal.h"
  48
  49#define AIO_RING_MAGIC                  0xa10a10a1
  50#define AIO_RING_COMPAT_FEATURES        1
  51#define AIO_RING_INCOMPAT_FEATURES      0
  52struct aio_ring {
  53        unsigned        id;     /* kernel internal index number */
  54        unsigned        nr;     /* number of io_events */
  55        unsigned        head;   /* Written to by userland or under ring_lock
  56                                 * mutex by aio_read_events_ring(). */
  57        unsigned        tail;
  58
  59        unsigned        magic;
  60        unsigned        compat_features;
  61        unsigned        incompat_features;
  62        unsigned        header_length;  /* size of aio_ring */
  63
  64
  65        struct io_event         io_events[0];
  66}; /* 128 bytes + ring size */
  67
  68#define AIO_RING_PAGES  8
  69
  70struct kioctx_table {
  71        struct rcu_head rcu;
  72        unsigned        nr;
  73        struct kioctx   *table[];
  74};
  75
  76struct kioctx_cpu {
  77        unsigned                reqs_available;
  78};
  79
  80struct kioctx {
  81        struct percpu_ref       users;
  82        atomic_t                dead;
  83
  84        struct percpu_ref       reqs;
  85
  86        unsigned long           user_id;
  87
  88        struct __percpu kioctx_cpu *cpu;
  89
  90        /*
  91         * For percpu reqs_available, number of slots we move to/from global
  92         * counter at a time:
  93         */
  94        unsigned                req_batch;
  95        /*
  96         * This is what userspace passed to io_setup(), it's not used for
  97         * anything but counting against the global max_reqs quota.
  98         *
  99         * The real limit is nr_events - 1, which will be larger (see
 100         * aio_setup_ring())
 101         */
 102        unsigned                max_reqs;
 103
 104        /* Size of ringbuffer, in units of struct io_event */
 105        unsigned                nr_events;
 106
 107        unsigned long           mmap_base;
 108        unsigned long           mmap_size;
 109
 110        struct page             **ring_pages;
 111        long                    nr_pages;
 112
 113        struct work_struct      free_work;
 114
 115        /*
 116         * signals when all in-flight requests are done
 117         */
 118        struct completion *requests_done;
 119
 120        struct {
 121                /*
 122                 * This counts the number of available slots in the ringbuffer,
 123                 * so we avoid overflowing it: it's decremented (if positive)
 124                 * when allocating a kiocb and incremented when the resulting
 125                 * io_event is pulled off the ringbuffer.
 126                 *
 127                 * We batch accesses to it with a percpu version.
 128                 */
 129                atomic_t        reqs_available;
 130        } ____cacheline_aligned_in_smp;
 131
 132        struct {
 133                spinlock_t      ctx_lock;
 134                struct list_head active_reqs;   /* used for cancellation */
 135        } ____cacheline_aligned_in_smp;
 136
 137        struct {
 138                struct mutex    ring_lock;
 139                wait_queue_head_t wait;
 140        } ____cacheline_aligned_in_smp;
 141
 142        struct {
 143                unsigned        tail;
 144                unsigned        completed_events;
 145                spinlock_t      completion_lock;
 146        } ____cacheline_aligned_in_smp;
 147
 148        struct page             *internal_pages[AIO_RING_PAGES];
 149        struct file             *aio_ring_file;
 150
 151        unsigned                id;
 152};
 153
 154/*------ sysctl variables----*/
 155static DEFINE_SPINLOCK(aio_nr_lock);
 156unsigned long aio_nr;           /* current system wide number of aio requests */
 157unsigned long aio_max_nr = 0x10000; /* system wide maximum number of aio requests */
 158/*----end sysctl variables---*/
 159
 160static struct kmem_cache        *kiocb_cachep;
 161static struct kmem_cache        *kioctx_cachep;
 162
 163static struct vfsmount *aio_mnt;
 164
 165static const struct file_operations aio_ring_fops;
 166static const struct address_space_operations aio_ctx_aops;
 167
 168/* Backing dev info for aio fs.
 169 * -no dirty page accounting or writeback happens
 170 */
 171static struct backing_dev_info aio_fs_backing_dev_info = {
 172        .name           = "aiofs",
 173        .state          = 0,
 174        .capabilities   = BDI_CAP_NO_ACCT_AND_WRITEBACK | BDI_CAP_MAP_COPY,
 175};
 176
 177static struct file *aio_private_file(struct kioctx *ctx, loff_t nr_pages)
 178{
 179        struct qstr this = QSTR_INIT("[aio]", 5);
 180        struct file *file;
 181        struct path path;
 182        struct inode *inode = alloc_anon_inode(aio_mnt->mnt_sb);
 183        if (IS_ERR(inode))
 184                return ERR_CAST(inode);
 185
 186        inode->i_mapping->a_ops = &aio_ctx_aops;
 187        inode->i_mapping->private_data = ctx;
 188        inode->i_mapping->backing_dev_info = &aio_fs_backing_dev_info;
 189        inode->i_size = PAGE_SIZE * nr_pages;
 190
 191        path.dentry = d_alloc_pseudo(aio_mnt->mnt_sb, &this);
 192        if (!path.dentry) {
 193                iput(inode);
 194                return ERR_PTR(-ENOMEM);
 195        }
 196        path.mnt = mntget(aio_mnt);
 197
 198        d_instantiate(path.dentry, inode);
 199        file = alloc_file(&path, FMODE_READ | FMODE_WRITE, &aio_ring_fops);
 200        if (IS_ERR(file)) {
 201                path_put(&path);
 202                return file;
 203        }
 204
 205        file->f_flags = O_RDWR;
 206        return file;
 207}
 208
 209static struct dentry *aio_mount(struct file_system_type *fs_type,
 210                                int flags, const char *dev_name, void *data)
 211{
 212        static const struct dentry_operations ops = {
 213                .d_dname        = simple_dname,
 214        };
 215        return mount_pseudo(fs_type, "aio:", NULL, &ops, AIO_RING_MAGIC);
 216}
 217
 218/* aio_setup
 219 *      Creates the slab caches used by the aio routines, panic on
 220 *      failure as this is done early during the boot sequence.
 221 */
 222static int __init aio_setup(void)
 223{
 224        static struct file_system_type aio_fs = {
 225                .name           = "aio",
 226                .mount          = aio_mount,
 227                .kill_sb        = kill_anon_super,
 228        };
 229        aio_mnt = kern_mount(&aio_fs);
 230        if (IS_ERR(aio_mnt))
 231                panic("Failed to create aio fs mount.");
 232
 233        if (bdi_init(&aio_fs_backing_dev_info))
 234                panic("Failed to init aio fs backing dev info.");
 235
 236        kiocb_cachep = KMEM_CACHE(kiocb, SLAB_HWCACHE_ALIGN|SLAB_PANIC);
 237        kioctx_cachep = KMEM_CACHE(kioctx,SLAB_HWCACHE_ALIGN|SLAB_PANIC);
 238
 239        pr_debug("sizeof(struct page) = %zu\n", sizeof(struct page));
 240
 241        return 0;
 242}
 243__initcall(aio_setup);
 244
 245static void put_aio_ring_file(struct kioctx *ctx)
 246{
 247        struct file *aio_ring_file = ctx->aio_ring_file;
 248        if (aio_ring_file) {
 249                truncate_setsize(aio_ring_file->f_inode, 0);
 250
 251                /* Prevent further access to the kioctx from migratepages */
 252                spin_lock(&aio_ring_file->f_inode->i_mapping->private_lock);
 253                aio_ring_file->f_inode->i_mapping->private_data = NULL;
 254                ctx->aio_ring_file = NULL;
 255                spin_unlock(&aio_ring_file->f_inode->i_mapping->private_lock);
 256
 257                fput(aio_ring_file);
 258        }
 259}
 260
 261static void aio_free_ring(struct kioctx *ctx)
 262{
 263        int i;
 264
 265        /* Disconnect the kiotx from the ring file.  This prevents future
 266         * accesses to the kioctx from page migration.
 267         */
 268        put_aio_ring_file(ctx);
 269
 270        for (i = 0; i < ctx->nr_pages; i++) {
 271                struct page *page;
 272                pr_debug("pid(%d) [%d] page->count=%d\n", current->pid, i,
 273                                page_count(ctx->ring_pages[i]));
 274                page = ctx->ring_pages[i];
 275                if (!page)
 276                        continue;
 277                ctx->ring_pages[i] = NULL;
 278                put_page(page);
 279        }
 280
 281        if (ctx->ring_pages && ctx->ring_pages != ctx->internal_pages) {
 282                kfree(ctx->ring_pages);
 283                ctx->ring_pages = NULL;
 284        }
 285}
 286
 287static int aio_ring_mmap(struct file *file, struct vm_area_struct *vma)
 288{
 289        vma->vm_flags |= VM_DONTEXPAND;
 290        vma->vm_ops = &generic_file_vm_ops;
 291        return 0;
 292}
 293
 294static void aio_ring_remap(struct file *file, struct vm_area_struct *vma)
 295{
 296        struct mm_struct *mm = vma->vm_mm;
 297        struct kioctx_table *table;
 298        int i;
 299
 300        spin_lock(&mm->ioctx_lock);
 301        rcu_read_lock();
 302        table = rcu_dereference(mm->ioctx_table);
 303        for (i = 0; i < table->nr; i++) {
 304                struct kioctx *ctx;
 305
 306                ctx = table->table[i];
 307                if (ctx && ctx->aio_ring_file == file) {
 308                        ctx->user_id = ctx->mmap_base = vma->vm_start;
 309                        break;
 310                }
 311        }
 312
 313        rcu_read_unlock();
 314        spin_unlock(&mm->ioctx_lock);
 315}
 316
 317static const struct file_operations aio_ring_fops = {
 318        .mmap = aio_ring_mmap,
 319        .mremap = aio_ring_remap,
 320};
 321
 322#if IS_ENABLED(CONFIG_MIGRATION)
 323static int aio_migratepage(struct address_space *mapping, struct page *new,
 324                        struct page *old, enum migrate_mode mode)
 325{
 326        struct kioctx *ctx;
 327        unsigned long flags;
 328        pgoff_t idx;
 329        int rc;
 330
 331        rc = 0;
 332
 333        /* mapping->private_lock here protects against the kioctx teardown.  */
 334        spin_lock(&mapping->private_lock);
 335        ctx = mapping->private_data;
 336        if (!ctx) {
 337                rc = -EINVAL;
 338                goto out;
 339        }
 340
 341        /* The ring_lock mutex.  The prevents aio_read_events() from writing
 342         * to the ring's head, and prevents page migration from mucking in
 343         * a partially initialized kiotx.
 344         */
 345        if (!mutex_trylock(&ctx->ring_lock)) {
 346                rc = -EAGAIN;
 347                goto out;
 348        }
 349
 350        idx = old->index;
 351        if (idx < (pgoff_t)ctx->nr_pages) {
 352                /* Make sure the old page hasn't already been changed */
 353                if (ctx->ring_pages[idx] != old)
 354                        rc = -EAGAIN;
 355        } else
 356                rc = -EINVAL;
 357
 358        if (rc != 0)
 359                goto out_unlock;
 360
 361        /* Writeback must be complete */
 362        BUG_ON(PageWriteback(old));
 363        get_page(new);
 364
 365        rc = migrate_page_move_mapping(mapping, new, old, NULL, mode, 1);
 366        if (rc != MIGRATEPAGE_SUCCESS) {
 367                put_page(new);
 368                goto out_unlock;
 369        }
 370
 371        /* Take completion_lock to prevent other writes to the ring buffer
 372         * while the old page is copied to the new.  This prevents new
 373         * events from being lost.
 374         */
 375        spin_lock_irqsave(&ctx->completion_lock, flags);
 376        migrate_page_copy(new, old);
 377        BUG_ON(ctx->ring_pages[idx] != old);
 378        ctx->ring_pages[idx] = new;
 379        spin_unlock_irqrestore(&ctx->completion_lock, flags);
 380
 381        /* The old page is no longer accessible. */
 382        put_page(old);
 383
 384out_unlock:
 385        mutex_unlock(&ctx->ring_lock);
 386out:
 387        spin_unlock(&mapping->private_lock);
 388        return rc;
 389}
 390#endif
 391
 392static const struct address_space_operations aio_ctx_aops = {
 393        .set_page_dirty = __set_page_dirty_no_writeback,
 394#if IS_ENABLED(CONFIG_MIGRATION)
 395        .migratepage    = aio_migratepage,
 396#endif
 397};
 398
 399static int aio_setup_ring(struct kioctx *ctx)
 400{
 401        struct aio_ring *ring;
 402        unsigned nr_events = ctx->max_reqs;
 403        struct mm_struct *mm = current->mm;
 404        unsigned long size, unused;
 405        int nr_pages;
 406        int i;
 407        struct file *file;
 408
 409        /* Compensate for the ring buffer's head/tail overlap entry */
 410        nr_events += 2; /* 1 is required, 2 for good luck */
 411
 412        size = sizeof(struct aio_ring);
 413        size += sizeof(struct io_event) * nr_events;
 414
 415        nr_pages = PFN_UP(size);
 416        if (nr_pages < 0)
 417                return -EINVAL;
 418
 419        file = aio_private_file(ctx, nr_pages);
 420        if (IS_ERR(file)) {
 421                ctx->aio_ring_file = NULL;
 422                return -ENOMEM;
 423        }
 424
 425        ctx->aio_ring_file = file;
 426        nr_events = (PAGE_SIZE * nr_pages - sizeof(struct aio_ring))
 427                        / sizeof(struct io_event);
 428
 429        ctx->ring_pages = ctx->internal_pages;
 430        if (nr_pages > AIO_RING_PAGES) {
 431                ctx->ring_pages = kcalloc(nr_pages, sizeof(struct page *),
 432                                          GFP_KERNEL);
 433                if (!ctx->ring_pages) {
 434                        put_aio_ring_file(ctx);
 435                        return -ENOMEM;
 436                }
 437        }
 438
 439        for (i = 0; i < nr_pages; i++) {
 440                struct page *page;
 441                page = find_or_create_page(file->f_inode->i_mapping,
 442                                           i, GFP_HIGHUSER | __GFP_ZERO);
 443                if (!page)
 444                        break;
 445                pr_debug("pid(%d) page[%d]->count=%d\n",
 446                         current->pid, i, page_count(page));
 447                SetPageUptodate(page);
 448                unlock_page(page);
 449
 450                ctx->ring_pages[i] = page;
 451        }
 452        ctx->nr_pages = i;
 453
 454        if (unlikely(i != nr_pages)) {
 455                aio_free_ring(ctx);
 456                return -ENOMEM;
 457        }
 458
 459        ctx->mmap_size = nr_pages * PAGE_SIZE;
 460        pr_debug("attempting mmap of %lu bytes\n", ctx->mmap_size);
 461
 462        down_write(&mm->mmap_sem);
 463        ctx->mmap_base = do_mmap_pgoff(ctx->aio_ring_file, 0, ctx->mmap_size,
 464                                       PROT_READ | PROT_WRITE,
 465                                       MAP_SHARED, 0, &unused);
 466        up_write(&mm->mmap_sem);
 467        if (IS_ERR((void *)ctx->mmap_base)) {
 468                ctx->mmap_size = 0;
 469                aio_free_ring(ctx);
 470                return -ENOMEM;
 471        }
 472
 473        pr_debug("mmap address: 0x%08lx\n", ctx->mmap_base);
 474
 475        ctx->user_id = ctx->mmap_base;
 476        ctx->nr_events = nr_events; /* trusted copy */
 477
 478        ring = kmap_atomic(ctx->ring_pages[0]);
 479        ring->nr = nr_events;   /* user copy */
 480        ring->id = ~0U;
 481        ring->head = ring->tail = 0;
 482        ring->magic = AIO_RING_MAGIC;
 483        ring->compat_features = AIO_RING_COMPAT_FEATURES;
 484        ring->incompat_features = AIO_RING_INCOMPAT_FEATURES;
 485        ring->header_length = sizeof(struct aio_ring);
 486        kunmap_atomic(ring);
 487        flush_dcache_page(ctx->ring_pages[0]);
 488
 489        return 0;
 490}
 491
 492#define AIO_EVENTS_PER_PAGE     (PAGE_SIZE / sizeof(struct io_event))
 493#define AIO_EVENTS_FIRST_PAGE   ((PAGE_SIZE - sizeof(struct aio_ring)) / sizeof(struct io_event))
 494#define AIO_EVENTS_OFFSET       (AIO_EVENTS_PER_PAGE - AIO_EVENTS_FIRST_PAGE)
 495
 496void kiocb_set_cancel_fn(struct kiocb *req, kiocb_cancel_fn *cancel)
 497{
 498        struct kioctx *ctx = req->ki_ctx;
 499        unsigned long flags;
 500
 501        spin_lock_irqsave(&ctx->ctx_lock, flags);
 502
 503        if (!req->ki_list.next)
 504                list_add(&req->ki_list, &ctx->active_reqs);
 505
 506        req->ki_cancel = cancel;
 507
 508        spin_unlock_irqrestore(&ctx->ctx_lock, flags);
 509}
 510EXPORT_SYMBOL(kiocb_set_cancel_fn);
 511
 512static int kiocb_cancel(struct kiocb *kiocb)
 513{
 514        kiocb_cancel_fn *old, *cancel;
 515
 516        /*
 517         * Don't want to set kiocb->ki_cancel = KIOCB_CANCELLED unless it
 518         * actually has a cancel function, hence the cmpxchg()
 519         */
 520
 521        cancel = ACCESS_ONCE(kiocb->ki_cancel);
 522        do {
 523                if (!cancel || cancel == KIOCB_CANCELLED)
 524                        return -EINVAL;
 525
 526                old = cancel;
 527                cancel = cmpxchg(&kiocb->ki_cancel, old, KIOCB_CANCELLED);
 528        } while (cancel != old);
 529
 530        return cancel(kiocb);
 531}
 532
 533static void free_ioctx(struct work_struct *work)
 534{
 535        struct kioctx *ctx = container_of(work, struct kioctx, free_work);
 536
 537        pr_debug("freeing %p\n", ctx);
 538
 539        aio_free_ring(ctx);
 540        free_percpu(ctx->cpu);
 541        percpu_ref_exit(&ctx->reqs);
 542        percpu_ref_exit(&ctx->users);
 543        kmem_cache_free(kioctx_cachep, ctx);
 544}
 545
 546static void free_ioctx_reqs(struct percpu_ref *ref)
 547{
 548        struct kioctx *ctx = container_of(ref, struct kioctx, reqs);
 549
 550        /* At this point we know that there are no any in-flight requests */
 551        if (ctx->requests_done)
 552                complete(ctx->requests_done);
 553
 554        INIT_WORK(&ctx->free_work, free_ioctx);
 555        schedule_work(&ctx->free_work);
 556}
 557
 558/*
 559 * When this function runs, the kioctx has been removed from the "hash table"
 560 * and ctx->users has dropped to 0, so we know no more kiocbs can be submitted -
 561 * now it's safe to cancel any that need to be.
 562 */
 563static void free_ioctx_users(struct percpu_ref *ref)
 564{
 565        struct kioctx *ctx = container_of(ref, struct kioctx, users);
 566        struct kiocb *req;
 567
 568        spin_lock_irq(&ctx->ctx_lock);
 569
 570        while (!list_empty(&ctx->active_reqs)) {
 571                req = list_first_entry(&ctx->active_reqs,
 572                                       struct kiocb, ki_list);
 573
 574                list_del_init(&req->ki_list);
 575                kiocb_cancel(req);
 576        }
 577
 578        spin_unlock_irq(&ctx->ctx_lock);
 579
 580        percpu_ref_kill(&ctx->reqs);
 581        percpu_ref_put(&ctx->reqs);
 582}
 583
 584static int ioctx_add_table(struct kioctx *ctx, struct mm_struct *mm)
 585{
 586        unsigned i, new_nr;
 587        struct kioctx_table *table, *old;
 588        struct aio_ring *ring;
 589
 590        spin_lock(&mm->ioctx_lock);
 591        table = rcu_dereference_raw(mm->ioctx_table);
 592
 593        while (1) {
 594                if (table)
 595                        for (i = 0; i < table->nr; i++)
 596                                if (!table->table[i]) {
 597                                        ctx->id = i;
 598                                        table->table[i] = ctx;
 599                                        spin_unlock(&mm->ioctx_lock);
 600
 601                                        /* While kioctx setup is in progress,
 602                                         * we are protected from page migration
 603                                         * changes ring_pages by ->ring_lock.
 604                                         */
 605                                        ring = kmap_atomic(ctx->ring_pages[0]);
 606                                        ring->id = ctx->id;
 607                                        kunmap_atomic(ring);
 608                                        return 0;
 609                                }
 610
 611                new_nr = (table ? table->nr : 1) * 4;
 612                spin_unlock(&mm->ioctx_lock);
 613
 614                table = kzalloc(sizeof(*table) + sizeof(struct kioctx *) *
 615                                new_nr, GFP_KERNEL);
 616                if (!table)
 617                        return -ENOMEM;
 618
 619                table->nr = new_nr;
 620
 621                spin_lock(&mm->ioctx_lock);
 622                old = rcu_dereference_raw(mm->ioctx_table);
 623
 624                if (!old) {
 625                        rcu_assign_pointer(mm->ioctx_table, table);
 626                } else if (table->nr > old->nr) {
 627                        memcpy(table->table, old->table,
 628                               old->nr * sizeof(struct kioctx *));
 629
 630                        rcu_assign_pointer(mm->ioctx_table, table);
 631                        kfree_rcu(old, rcu);
 632                } else {
 633                        kfree(table);
 634                        table = old;
 635                }
 636        }
 637}
 638
 639static void aio_nr_sub(unsigned nr)
 640{
 641        spin_lock(&aio_nr_lock);
 642        if (WARN_ON(aio_nr - nr > aio_nr))
 643                aio_nr = 0;
 644        else
 645                aio_nr -= nr;
 646        spin_unlock(&aio_nr_lock);
 647}
 648
 649/* ioctx_alloc
 650 *      Allocates and initializes an ioctx.  Returns an ERR_PTR if it failed.
 651 */
 652static struct kioctx *ioctx_alloc(unsigned nr_events)
 653{
 654        struct mm_struct *mm = current->mm;
 655        struct kioctx *ctx;
 656        int err = -ENOMEM;
 657
 658        /*
 659         * We keep track of the number of available ringbuffer slots, to prevent
 660         * overflow (reqs_available), and we also use percpu counters for this.
 661         *
 662         * So since up to half the slots might be on other cpu's percpu counters
 663         * and unavailable, double nr_events so userspace sees what they
 664         * expected: additionally, we move req_batch slots to/from percpu
 665         * counters at a time, so make sure that isn't 0:
 666         */
 667        nr_events = max(nr_events, num_possible_cpus() * 4);
 668        nr_events *= 2;
 669
 670        /* Prevent overflows */
 671        if ((nr_events > (0x10000000U / sizeof(struct io_event))) ||
 672            (nr_events > (0x10000000U / sizeof(struct kiocb)))) {
 673                pr_debug("ENOMEM: nr_events too high\n");
 674                return ERR_PTR(-EINVAL);
 675        }
 676
 677        if (!nr_events || (unsigned long)nr_events > (aio_max_nr * 2UL))
 678                return ERR_PTR(-EAGAIN);
 679
 680        ctx = kmem_cache_zalloc(kioctx_cachep, GFP_KERNEL);
 681        if (!ctx)
 682                return ERR_PTR(-ENOMEM);
 683
 684        ctx->max_reqs = nr_events;
 685
 686        spin_lock_init(&ctx->ctx_lock);
 687        spin_lock_init(&ctx->completion_lock);
 688        mutex_init(&ctx->ring_lock);
 689        /* Protect against page migration throughout kiotx setup by keeping
 690         * the ring_lock mutex held until setup is complete. */
 691        mutex_lock(&ctx->ring_lock);
 692        init_waitqueue_head(&ctx->wait);
 693
 694        INIT_LIST_HEAD(&ctx->active_reqs);
 695
 696        if (percpu_ref_init(&ctx->users, free_ioctx_users, 0, GFP_KERNEL))
 697                goto err;
 698
 699        if (percpu_ref_init(&ctx->reqs, free_ioctx_reqs, 0, GFP_KERNEL))
 700                goto err;
 701
 702        ctx->cpu = alloc_percpu(struct kioctx_cpu);
 703        if (!ctx->cpu)
 704                goto err;
 705
 706        err = aio_setup_ring(ctx);
 707        if (err < 0)
 708                goto err;
 709
 710        atomic_set(&ctx->reqs_available, ctx->nr_events - 1);
 711        ctx->req_batch = (ctx->nr_events - 1) / (num_possible_cpus() * 4);
 712        if (ctx->req_batch < 1)
 713                ctx->req_batch = 1;
 714
 715        /* limit the number of system wide aios */
 716        spin_lock(&aio_nr_lock);
 717        if (aio_nr + nr_events > (aio_max_nr * 2UL) ||
 718            aio_nr + nr_events < aio_nr) {
 719                spin_unlock(&aio_nr_lock);
 720                err = -EAGAIN;
 721                goto err_ctx;
 722        }
 723        aio_nr += ctx->max_reqs;
 724        spin_unlock(&aio_nr_lock);
 725
 726        percpu_ref_get(&ctx->users);    /* io_setup() will drop this ref */
 727        percpu_ref_get(&ctx->reqs);     /* free_ioctx_users() will drop this */
 728
 729        err = ioctx_add_table(ctx, mm);
 730        if (err)
 731                goto err_cleanup;
 732
 733        /* Release the ring_lock mutex now that all setup is complete. */
 734        mutex_unlock(&ctx->ring_lock);
 735
 736        pr_debug("allocated ioctx %p[%ld]: mm=%p mask=0x%x\n",
 737                 ctx, ctx->user_id, mm, ctx->nr_events);
 738        return ctx;
 739
 740err_cleanup:
 741        aio_nr_sub(ctx->max_reqs);
 742err_ctx:
 743        aio_free_ring(ctx);
 744err:
 745        mutex_unlock(&ctx->ring_lock);
 746        free_percpu(ctx->cpu);
 747        percpu_ref_exit(&ctx->reqs);
 748        percpu_ref_exit(&ctx->users);
 749        kmem_cache_free(kioctx_cachep, ctx);
 750        pr_debug("error allocating ioctx %d\n", err);
 751        return ERR_PTR(err);
 752}
 753
 754/* kill_ioctx
 755 *      Cancels all outstanding aio requests on an aio context.  Used
 756 *      when the processes owning a context have all exited to encourage
 757 *      the rapid destruction of the kioctx.
 758 */
 759static int kill_ioctx(struct mm_struct *mm, struct kioctx *ctx,
 760                struct completion *requests_done)
 761{
 762        struct kioctx_table *table;
 763
 764        if (atomic_xchg(&ctx->dead, 1))
 765                return -EINVAL;
 766
 767
 768        spin_lock(&mm->ioctx_lock);
 769        table = rcu_dereference_raw(mm->ioctx_table);
 770        WARN_ON(ctx != table->table[ctx->id]);
 771        table->table[ctx->id] = NULL;
 772        spin_unlock(&mm->ioctx_lock);
 773
 774        /* percpu_ref_kill() will do the necessary call_rcu() */
 775        wake_up_all(&ctx->wait);
 776
 777        /*
 778         * It'd be more correct to do this in free_ioctx(), after all
 779         * the outstanding kiocbs have finished - but by then io_destroy
 780         * has already returned, so io_setup() could potentially return
 781         * -EAGAIN with no ioctxs actually in use (as far as userspace
 782         *  could tell).
 783         */
 784        aio_nr_sub(ctx->max_reqs);
 785
 786        if (ctx->mmap_size)
 787                vm_munmap(ctx->mmap_base, ctx->mmap_size);
 788
 789        ctx->requests_done = requests_done;
 790        percpu_ref_kill(&ctx->users);
 791        return 0;
 792}
 793
 794/* wait_on_sync_kiocb:
 795 *      Waits on the given sync kiocb to complete.
 796 */
 797ssize_t wait_on_sync_kiocb(struct kiocb *req)
 798{
 799        while (!req->ki_ctx) {
 800                set_current_state(TASK_UNINTERRUPTIBLE);
 801                if (req->ki_ctx)
 802                        break;
 803                io_schedule();
 804        }
 805        __set_current_state(TASK_RUNNING);
 806        return req->ki_user_data;
 807}
 808EXPORT_SYMBOL(wait_on_sync_kiocb);
 809
 810/*
 811 * exit_aio: called when the last user of mm goes away.  At this point, there is
 812 * no way for any new requests to be submited or any of the io_* syscalls to be
 813 * called on the context.
 814 *
 815 * There may be outstanding kiocbs, but free_ioctx() will explicitly wait on
 816 * them.
 817 */
 818void exit_aio(struct mm_struct *mm)
 819{
 820        struct kioctx_table *table = rcu_dereference_raw(mm->ioctx_table);
 821        int i;
 822
 823        if (!table)
 824                return;
 825
 826        for (i = 0; i < table->nr; ++i) {
 827                struct kioctx *ctx = table->table[i];
 828                struct completion requests_done =
 829                        COMPLETION_INITIALIZER_ONSTACK(requests_done);
 830
 831                if (!ctx)
 832                        continue;
 833                /*
 834                 * We don't need to bother with munmap() here - exit_mmap(mm)
 835                 * is coming and it'll unmap everything. And we simply can't,
 836                 * this is not necessarily our ->mm.
 837                 * Since kill_ioctx() uses non-zero ->mmap_size as indicator
 838                 * that it needs to unmap the area, just set it to 0.
 839                 */
 840                ctx->mmap_size = 0;
 841                kill_ioctx(mm, ctx, &requests_done);
 842
 843                /* Wait until all IO for the context are done. */
 844                wait_for_completion(&requests_done);
 845        }
 846
 847        RCU_INIT_POINTER(mm->ioctx_table, NULL);
 848        kfree(table);
 849}
 850
 851static void put_reqs_available(struct kioctx *ctx, unsigned nr)
 852{
 853        struct kioctx_cpu *kcpu;
 854        unsigned long flags;
 855
 856        local_irq_save(flags);
 857        kcpu = this_cpu_ptr(ctx->cpu);
 858        kcpu->reqs_available += nr;
 859
 860        while (kcpu->reqs_available >= ctx->req_batch * 2) {
 861                kcpu->reqs_available -= ctx->req_batch;
 862                atomic_add(ctx->req_batch, &ctx->reqs_available);
 863        }
 864
 865        local_irq_restore(flags);
 866}
 867
 868static bool get_reqs_available(struct kioctx *ctx)
 869{
 870        struct kioctx_cpu *kcpu;
 871        bool ret = false;
 872        unsigned long flags;
 873
 874        local_irq_save(flags);
 875        kcpu = this_cpu_ptr(ctx->cpu);
 876        if (!kcpu->reqs_available) {
 877                int old, avail = atomic_read(&ctx->reqs_available);
 878
 879                do {
 880                        if (avail < ctx->req_batch)
 881                                goto out;
 882
 883                        old = avail;
 884                        avail = atomic_cmpxchg(&ctx->reqs_available,
 885                                               avail, avail - ctx->req_batch);
 886                } while (avail != old);
 887
 888                kcpu->reqs_available += ctx->req_batch;
 889        }
 890
 891        ret = true;
 892        kcpu->reqs_available--;
 893out:
 894        local_irq_restore(flags);
 895        return ret;
 896}
 897
 898/* refill_reqs_available
 899 *      Updates the reqs_available reference counts used for tracking the
 900 *      number of free slots in the completion ring.  This can be called
 901 *      from aio_complete() (to optimistically update reqs_available) or
 902 *      from aio_get_req() (the we're out of events case).  It must be
 903 *      called holding ctx->completion_lock.
 904 */
 905static void refill_reqs_available(struct kioctx *ctx, unsigned head,
 906                                  unsigned tail)
 907{
 908        unsigned events_in_ring, completed;
 909
 910        /* Clamp head since userland can write to it. */
 911        head %= ctx->nr_events;
 912        if (head <= tail)
 913                events_in_ring = tail - head;
 914        else
 915                events_in_ring = ctx->nr_events - (head - tail);
 916
 917        completed = ctx->completed_events;
 918        if (events_in_ring < completed)
 919                completed -= events_in_ring;
 920        else
 921                completed = 0;
 922
 923        if (!completed)
 924                return;
 925
 926        ctx->completed_events -= completed;
 927        put_reqs_available(ctx, completed);
 928}
 929
 930/* user_refill_reqs_available
 931 *      Called to refill reqs_available when aio_get_req() encounters an
 932 *      out of space in the completion ring.
 933 */
 934static void user_refill_reqs_available(struct kioctx *ctx)
 935{
 936        spin_lock_irq(&ctx->completion_lock);
 937        if (ctx->completed_events) {
 938                struct aio_ring *ring;
 939                unsigned head;
 940
 941                /* Access of ring->head may race with aio_read_events_ring()
 942                 * here, but that's okay since whether we read the old version
 943                 * or the new version, and either will be valid.  The important
 944                 * part is that head cannot pass tail since we prevent
 945                 * aio_complete() from updating tail by holding
 946                 * ctx->completion_lock.  Even if head is invalid, the check
 947                 * against ctx->completed_events below will make sure we do the
 948                 * safe/right thing.
 949                 */
 950                ring = kmap_atomic(ctx->ring_pages[0]);
 951                head = ring->head;
 952                kunmap_atomic(ring);
 953
 954                refill_reqs_available(ctx, head, ctx->tail);
 955        }
 956
 957        spin_unlock_irq(&ctx->completion_lock);
 958}
 959
 960/* aio_get_req
 961 *      Allocate a slot for an aio request.
 962 * Returns NULL if no requests are free.
 963 */
 964static inline struct kiocb *aio_get_req(struct kioctx *ctx)
 965{
 966        struct kiocb *req;
 967
 968        if (!get_reqs_available(ctx)) {
 969                user_refill_reqs_available(ctx);
 970                if (!get_reqs_available(ctx))
 971                        return NULL;
 972        }
 973
 974        req = kmem_cache_alloc(kiocb_cachep, GFP_KERNEL|__GFP_ZERO);
 975        if (unlikely(!req))
 976                goto out_put;
 977
 978        percpu_ref_get(&ctx->reqs);
 979
 980        req->ki_ctx = ctx;
 981        return req;
 982out_put:
 983        put_reqs_available(ctx, 1);
 984        return NULL;
 985}
 986
 987static void kiocb_free(struct kiocb *req)
 988{
 989        if (req->ki_filp)
 990                fput(req->ki_filp);
 991        if (req->ki_eventfd != NULL)
 992                eventfd_ctx_put(req->ki_eventfd);
 993        kmem_cache_free(kiocb_cachep, req);
 994}
 995
 996static struct kioctx *lookup_ioctx(unsigned long ctx_id)
 997{
 998        struct aio_ring __user *ring  = (void __user *)ctx_id;
 999        struct mm_struct *mm = current->mm;
1000        struct kioctx *ctx, *ret = NULL;
1001        struct kioctx_table *table;
1002        unsigned id;
1003
1004        if (get_user(id, &ring->id))
1005                return NULL;
1006
1007        rcu_read_lock();
1008        table = rcu_dereference(mm->ioctx_table);
1009
1010        if (!table || id >= table->nr)
1011                goto out;
1012
1013        ctx = table->table[id];
1014        if (ctx && ctx->user_id == ctx_id) {
1015                percpu_ref_get(&ctx->users);
1016                ret = ctx;
1017        }
1018out:
1019        rcu_read_unlock();
1020        return ret;
1021}
1022
1023/* aio_complete
1024 *      Called when the io request on the given iocb is complete.
1025 */
1026void aio_complete(struct kiocb *iocb, long res, long res2)
1027{
1028        struct kioctx   *ctx = iocb->ki_ctx;
1029        struct aio_ring *ring;
1030        struct io_event *ev_page, *event;
1031        unsigned tail, pos, head;
1032        unsigned long   flags;
1033
1034        /*
1035         * Special case handling for sync iocbs:
1036         *  - events go directly into the iocb for fast handling
1037         *  - the sync task with the iocb in its stack holds the single iocb
1038         *    ref, no other paths have a way to get another ref
1039         *  - the sync task helpfully left a reference to itself in the iocb
1040         */
1041        if (is_sync_kiocb(iocb)) {
1042                iocb->ki_user_data = res;
1043                smp_wmb();
1044                iocb->ki_ctx = ERR_PTR(-EXDEV);
1045                wake_up_process(iocb->ki_obj.tsk);
1046                return;
1047        }
1048
1049        if (iocb->ki_list.next) {
1050                unsigned long flags;
1051
1052                spin_lock_irqsave(&ctx->ctx_lock, flags);
1053                list_del(&iocb->ki_list);
1054                spin_unlock_irqrestore(&ctx->ctx_lock, flags);
1055        }
1056
1057        /*
1058         * Add a completion event to the ring buffer. Must be done holding
1059         * ctx->completion_lock to prevent other code from messing with the tail
1060         * pointer since we might be called from irq context.
1061         */
1062        spin_lock_irqsave(&ctx->completion_lock, flags);
1063
1064        tail = ctx->tail;
1065        pos = tail + AIO_EVENTS_OFFSET;
1066
1067        if (++tail >= ctx->nr_events)
1068                tail = 0;
1069
1070        ev_page = kmap_atomic(ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]);
1071        event = ev_page + pos % AIO_EVENTS_PER_PAGE;
1072
1073        event->obj = (u64)(unsigned long)iocb->ki_obj.user;
1074        event->data = iocb->ki_user_data;
1075        event->res = res;
1076        event->res2 = res2;
1077
1078        kunmap_atomic(ev_page);
1079        flush_dcache_page(ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]);
1080
1081        pr_debug("%p[%u]: %p: %p %Lx %lx %lx\n",
1082                 ctx, tail, iocb, iocb->ki_obj.user, iocb->ki_user_data,
1083                 res, res2);
1084
1085        /* after flagging the request as done, we
1086         * must never even look at it again
1087         */
1088        smp_wmb();      /* make event visible before updating tail */
1089
1090        ctx->tail = tail;
1091
1092        ring = kmap_atomic(ctx->ring_pages[0]);
1093        head = ring->head;
1094        ring->tail = tail;
1095        kunmap_atomic(ring);
1096        flush_dcache_page(ctx->ring_pages[0]);
1097
1098        ctx->completed_events++;
1099        if (ctx->completed_events > 1)
1100                refill_reqs_available(ctx, head, tail);
1101        spin_unlock_irqrestore(&ctx->completion_lock, flags);
1102
1103        pr_debug("added to ring %p at [%u]\n", iocb, tail);
1104
1105        /*
1106         * Check if the user asked us to deliver the result through an
1107         * eventfd. The eventfd_signal() function is safe to be called
1108         * from IRQ context.
1109         */
1110        if (iocb->ki_eventfd != NULL)
1111                eventfd_signal(iocb->ki_eventfd, 1);
1112
1113        /* everything turned out well, dispose of the aiocb. */
1114        kiocb_free(iocb);
1115
1116        /*
1117         * We have to order our ring_info tail store above and test
1118         * of the wait list below outside the wait lock.  This is
1119         * like in wake_up_bit() where clearing a bit has to be
1120         * ordered with the unlocked test.
1121         */
1122        smp_mb();
1123
1124        if (waitqueue_active(&ctx->wait))
1125                wake_up(&ctx->wait);
1126
1127        percpu_ref_put(&ctx->reqs);
1128}
1129EXPORT_SYMBOL(aio_complete);
1130
1131/* aio_read_events_ring
1132 *      Pull an event off of the ioctx's event ring.  Returns the number of
1133 *      events fetched
1134 */
1135static long aio_read_events_ring(struct kioctx *ctx,
1136                                 struct io_event __user *event, long nr)
1137{
1138        struct aio_ring *ring;
1139        unsigned head, tail, pos;
1140        long ret = 0;
1141        int copy_ret;
1142
1143        /*
1144         * The mutex can block and wake us up and that will cause
1145         * wait_event_interruptible_hrtimeout() to schedule without sleeping
1146         * and repeat. This should be rare enough that it doesn't cause
1147         * peformance issues. See the comment in read_events() for more detail.
1148         */
1149        sched_annotate_sleep();
1150        mutex_lock(&ctx->ring_lock);
1151
1152        /* Access to ->ring_pages here is protected by ctx->ring_lock. */
1153        ring = kmap_atomic(ctx->ring_pages[0]);
1154        head = ring->head;
1155        tail = ring->tail;
1156        kunmap_atomic(ring);
1157
1158        /*
1159         * Ensure that once we've read the current tail pointer, that
1160         * we also see the events that were stored up to the tail.
1161         */
1162        smp_rmb();
1163
1164        pr_debug("h%u t%u m%u\n", head, tail, ctx->nr_events);
1165
1166        if (head == tail)
1167                goto out;
1168
1169        head %= ctx->nr_events;
1170        tail %= ctx->nr_events;
1171
1172        while (ret < nr) {
1173                long avail;
1174                struct io_event *ev;
1175                struct page *page;
1176
1177                avail = (head <= tail ?  tail : ctx->nr_events) - head;
1178                if (head == tail)
1179                        break;
1180
1181                avail = min(avail, nr - ret);
1182                avail = min_t(long, avail, AIO_EVENTS_PER_PAGE -
1183                            ((head + AIO_EVENTS_OFFSET) % AIO_EVENTS_PER_PAGE));
1184
1185                pos = head + AIO_EVENTS_OFFSET;
1186                page = ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE];
1187                pos %= AIO_EVENTS_PER_PAGE;
1188
1189                ev = kmap(page);
1190                copy_ret = copy_to_user(event + ret, ev + pos,
1191                                        sizeof(*ev) * avail);
1192                kunmap(page);
1193
1194                if (unlikely(copy_ret)) {
1195                        ret = -EFAULT;
1196                        goto out;
1197                }
1198
1199                ret += avail;
1200                head += avail;
1201                head %= ctx->nr_events;
1202        }
1203
1204        ring = kmap_atomic(ctx->ring_pages[0]);
1205        ring->head = head;
1206        kunmap_atomic(ring);
1207        flush_dcache_page(ctx->ring_pages[0]);
1208
1209        pr_debug("%li  h%u t%u\n", ret, head, tail);
1210out:
1211        mutex_unlock(&ctx->ring_lock);
1212
1213        return ret;
1214}
1215
1216static bool aio_read_events(struct kioctx *ctx, long min_nr, long nr,
1217                            struct io_event __user *event, long *i)
1218{
1219        long ret = aio_read_events_ring(ctx, event + *i, nr - *i);
1220
1221        if (ret > 0)
1222                *i += ret;
1223
1224        if (unlikely(atomic_read(&ctx->dead)))
1225                ret = -EINVAL;
1226
1227        if (!*i)
1228                *i = ret;
1229
1230        return ret < 0 || *i >= min_nr;
1231}
1232
1233static long read_events(struct kioctx *ctx, long min_nr, long nr,
1234                        struct io_event __user *event,
1235                        struct timespec __user *timeout)
1236{
1237        ktime_t until = { .tv64 = KTIME_MAX };
1238        long ret = 0;
1239
1240        if (timeout) {
1241                struct timespec ts;
1242
1243                if (unlikely(copy_from_user(&ts, timeout, sizeof(ts))))
1244                        return -EFAULT;
1245
1246                until = timespec_to_ktime(ts);
1247        }
1248
1249        /*
1250         * Note that aio_read_events() is being called as the conditional - i.e.
1251         * we're calling it after prepare_to_wait() has set task state to
1252         * TASK_INTERRUPTIBLE.
1253         *
1254         * But aio_read_events() can block, and if it blocks it's going to flip
1255         * the task state back to TASK_RUNNING.
1256         *
1257         * This should be ok, provided it doesn't flip the state back to
1258         * TASK_RUNNING and return 0 too much - that causes us to spin. That
1259         * will only happen if the mutex_lock() call blocks, and we then find
1260         * the ringbuffer empty. So in practice we should be ok, but it's
1261         * something to be aware of when touching this code.
1262         */
1263        if (until.tv64 == 0)
1264                aio_read_events(ctx, min_nr, nr, event, &ret);
1265        else
1266                wait_event_interruptible_hrtimeout(ctx->wait,
1267                                aio_read_events(ctx, min_nr, nr, event, &ret),
1268                                until);
1269
1270        if (!ret && signal_pending(current))
1271                ret = -EINTR;
1272
1273        return ret;
1274}
1275
1276/* sys_io_setup:
1277 *      Create an aio_context capable of receiving at least nr_events.
1278 *      ctxp must not point to an aio_context that already exists, and
1279 *      must be initialized to 0 prior to the call.  On successful
1280 *      creation of the aio_context, *ctxp is filled in with the resulting 
1281 *      handle.  May fail with -EINVAL if *ctxp is not initialized,
1282 *      if the specified nr_events exceeds internal limits.  May fail 
1283 *      with -EAGAIN if the specified nr_events exceeds the user's limit 
1284 *      of available events.  May fail with -ENOMEM if insufficient kernel
1285 *      resources are available.  May fail with -EFAULT if an invalid
1286 *      pointer is passed for ctxp.  Will fail with -ENOSYS if not
1287 *      implemented.
1288 */
1289SYSCALL_DEFINE2(io_setup, unsigned, nr_events, aio_context_t __user *, ctxp)
1290{
1291        struct kioctx *ioctx = NULL;
1292        unsigned long ctx;
1293        long ret;
1294
1295        ret = get_user(ctx, ctxp);
1296        if (unlikely(ret))
1297                goto out;
1298
1299        ret = -EINVAL;
1300        if (unlikely(ctx || nr_events == 0)) {
1301                pr_debug("EINVAL: io_setup: ctx %lu nr_events %u\n",
1302                         ctx, nr_events);
1303                goto out;
1304        }
1305
1306        ioctx = ioctx_alloc(nr_events);
1307        ret = PTR_ERR(ioctx);
1308        if (!IS_ERR(ioctx)) {
1309                ret = put_user(ioctx->user_id, ctxp);
1310                if (ret)
1311                        kill_ioctx(current->mm, ioctx, NULL);
1312                percpu_ref_put(&ioctx->users);
1313        }
1314
1315out:
1316        return ret;
1317}
1318
1319/* sys_io_destroy:
1320 *      Destroy the aio_context specified.  May cancel any outstanding 
1321 *      AIOs and block on completion.  Will fail with -ENOSYS if not
1322 *      implemented.  May fail with -EINVAL if the context pointed to
1323 *      is invalid.
1324 */
1325SYSCALL_DEFINE1(io_destroy, aio_context_t, ctx)
1326{
1327        struct kioctx *ioctx = lookup_ioctx(ctx);
1328        if (likely(NULL != ioctx)) {
1329                struct completion requests_done =
1330                        COMPLETION_INITIALIZER_ONSTACK(requests_done);
1331                int ret;
1332
1333                /* Pass requests_done to kill_ioctx() where it can be set
1334                 * in a thread-safe way. If we try to set it here then we have
1335                 * a race condition if two io_destroy() called simultaneously.
1336                 */
1337                ret = kill_ioctx(current->mm, ioctx, &requests_done);
1338                percpu_ref_put(&ioctx->users);
1339
1340                /* Wait until all IO for the context are done. Otherwise kernel
1341                 * keep using user-space buffers even if user thinks the context
1342                 * is destroyed.
1343                 */
1344                if (!ret)
1345                        wait_for_completion(&requests_done);
1346
1347                return ret;
1348        }
1349        pr_debug("EINVAL: io_destroy: invalid context id\n");
1350        return -EINVAL;
1351}
1352
1353typedef ssize_t (aio_rw_op)(struct kiocb *, const struct iovec *,
1354                            unsigned long, loff_t);
1355typedef ssize_t (rw_iter_op)(struct kiocb *, struct iov_iter *);
1356
1357static ssize_t aio_setup_vectored_rw(struct kiocb *kiocb,
1358                                     int rw, char __user *buf,
1359                                     unsigned long *nr_segs,
1360                                     struct iovec **iovec,
1361                                     bool compat)
1362{
1363        ssize_t ret;
1364
1365        *nr_segs = kiocb->ki_nbytes;
1366
1367#ifdef CONFIG_COMPAT
1368        if (compat)
1369                ret = compat_rw_copy_check_uvector(rw,
1370                                (struct compat_iovec __user *)buf,
1371                                *nr_segs, UIO_FASTIOV, *iovec, iovec);
1372        else
1373#endif
1374                ret = rw_copy_check_uvector(rw,
1375                                (struct iovec __user *)buf,
1376                                *nr_segs, UIO_FASTIOV, *iovec, iovec);
1377        if (ret < 0)
1378                return ret;
1379
1380        /* ki_nbytes now reflect bytes instead of segs */
1381        kiocb->ki_nbytes = ret;
1382        return 0;
1383}
1384
1385static ssize_t aio_setup_single_vector(struct kiocb *kiocb,
1386                                       int rw, char __user *buf,
1387                                       unsigned long *nr_segs,
1388                                       struct iovec *iovec)
1389{
1390        if (unlikely(!access_ok(!rw, buf, kiocb->ki_nbytes)))
1391                return -EFAULT;
1392
1393        iovec->iov_base = buf;
1394        iovec->iov_len = kiocb->ki_nbytes;
1395        *nr_segs = 1;
1396        return 0;
1397}
1398
1399/*
1400 * aio_run_iocb:
1401 *      Performs the initial checks and io submission.
1402 */
1403static ssize_t aio_run_iocb(struct kiocb *req, unsigned opcode,
1404                            char __user *buf, bool compat)
1405{
1406        struct file *file = req->ki_filp;
1407        ssize_t ret;
1408        unsigned long nr_segs;
1409        int rw;
1410        fmode_t mode;
1411        aio_rw_op *rw_op;
1412        rw_iter_op *iter_op;
1413        struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs;
1414        struct iov_iter iter;
1415
1416        switch (opcode) {
1417        case IOCB_CMD_PREAD:
1418        case IOCB_CMD_PREADV:
1419                mode    = FMODE_READ;
1420                rw      = READ;
1421                rw_op   = file->f_op->aio_read;
1422                iter_op = file->f_op->read_iter;
1423                goto rw_common;
1424
1425        case IOCB_CMD_PWRITE:
1426        case IOCB_CMD_PWRITEV:
1427                mode    = FMODE_WRITE;
1428                rw      = WRITE;
1429                rw_op   = file->f_op->aio_write;
1430                iter_op = file->f_op->write_iter;
1431                goto rw_common;
1432rw_common:
1433                if (unlikely(!(file->f_mode & mode)))
1434                        return -EBADF;
1435
1436                if (!rw_op && !iter_op)
1437                        return -EINVAL;
1438
1439                ret = (opcode == IOCB_CMD_PREADV ||
1440                       opcode == IOCB_CMD_PWRITEV)
1441                        ? aio_setup_vectored_rw(req, rw, buf, &nr_segs,
1442                                                &iovec, compat)
1443                        : aio_setup_single_vector(req, rw, buf, &nr_segs,
1444                                                  iovec);
1445                if (!ret)
1446                        ret = rw_verify_area(rw, file, &req->ki_pos, req->ki_nbytes);
1447                if (ret < 0) {
1448                        if (iovec != inline_vecs)
1449                                kfree(iovec);
1450                        return ret;
1451                }
1452
1453                req->ki_nbytes = ret;
1454
1455                /* XXX: move/kill - rw_verify_area()? */
1456                /* This matches the pread()/pwrite() logic */
1457                if (req->ki_pos < 0) {
1458                        ret = -EINVAL;
1459                        break;
1460                }
1461
1462                if (rw == WRITE)
1463                        file_start_write(file);
1464
1465                if (iter_op) {
1466                        iov_iter_init(&iter, rw, iovec, nr_segs, req->ki_nbytes);
1467                        ret = iter_op(req, &iter);
1468                } else {
1469                        ret = rw_op(req, iovec, nr_segs, req->ki_pos);
1470                }
1471
1472                if (rw == WRITE)
1473                        file_end_write(file);
1474                break;
1475
1476        case IOCB_CMD_FDSYNC:
1477                if (!file->f_op->aio_fsync)
1478                        return -EINVAL;
1479
1480                ret = file->f_op->aio_fsync(req, 1);
1481                break;
1482
1483        case IOCB_CMD_FSYNC:
1484                if (!file->f_op->aio_fsync)
1485                        return -EINVAL;
1486
1487                ret = file->f_op->aio_fsync(req, 0);
1488                break;
1489
1490        default:
1491                pr_debug("EINVAL: no operation provided\n");
1492                return -EINVAL;
1493        }
1494
1495        if (iovec != inline_vecs)
1496                kfree(iovec);
1497
1498        if (ret != -EIOCBQUEUED) {
1499                /*
1500                 * There's no easy way to restart the syscall since other AIO's
1501                 * may be already running. Just fail this IO with EINTR.
1502                 */
1503                if (unlikely(ret == -ERESTARTSYS || ret == -ERESTARTNOINTR ||
1504                             ret == -ERESTARTNOHAND ||
1505                             ret == -ERESTART_RESTARTBLOCK))
1506                        ret = -EINTR;
1507                aio_complete(req, ret, 0);
1508        }
1509
1510        return 0;
1511}
1512
1513static int io_submit_one(struct kioctx *ctx, struct iocb __user *user_iocb,
1514                         struct iocb *iocb, bool compat)
1515{
1516        struct kiocb *req;
1517        ssize_t ret;
1518
1519        /* enforce forwards compatibility on users */
1520        if (unlikely(iocb->aio_reserved1 || iocb->aio_reserved2)) {
1521                pr_debug("EINVAL: reserve field set\n");
1522                return -EINVAL;
1523        }
1524
1525        /* prevent overflows */
1526        if (unlikely(
1527            (iocb->aio_buf != (unsigned long)iocb->aio_buf) ||
1528            (iocb->aio_nbytes != (size_t)iocb->aio_nbytes) ||
1529            ((ssize_t)iocb->aio_nbytes < 0)
1530           )) {
1531                pr_debug("EINVAL: io_submit: overflow check\n");
1532                return -EINVAL;
1533        }
1534
1535        req = aio_get_req(ctx);
1536        if (unlikely(!req))
1537                return -EAGAIN;
1538
1539        req->ki_filp = fget(iocb->aio_fildes);
1540        if (unlikely(!req->ki_filp)) {
1541                ret = -EBADF;
1542                goto out_put_req;
1543        }
1544
1545        if (iocb->aio_flags & IOCB_FLAG_RESFD) {
1546                /*
1547                 * If the IOCB_FLAG_RESFD flag of aio_flags is set, get an
1548                 * instance of the file* now. The file descriptor must be
1549                 * an eventfd() fd, and will be signaled for each completed
1550                 * event using the eventfd_signal() function.
1551                 */
1552                req->ki_eventfd = eventfd_ctx_fdget((int) iocb->aio_resfd);
1553                if (IS_ERR(req->ki_eventfd)) {
1554                        ret = PTR_ERR(req->ki_eventfd);
1555                        req->ki_eventfd = NULL;
1556                        goto out_put_req;
1557                }
1558        }
1559
1560        ret = put_user(KIOCB_KEY, &user_iocb->aio_key);
1561        if (unlikely(ret)) {
1562                pr_debug("EFAULT: aio_key\n");
1563                goto out_put_req;
1564        }
1565
1566        req->ki_obj.user = user_iocb;
1567        req->ki_user_data = iocb->aio_data;
1568        req->ki_pos = iocb->aio_offset;
1569        req->ki_nbytes = iocb->aio_nbytes;
1570
1571        ret = aio_run_iocb(req, iocb->aio_lio_opcode,
1572                           (char __user *)(unsigned long)iocb->aio_buf,
1573                           compat);
1574        if (ret)
1575                goto out_put_req;
1576
1577        return 0;
1578out_put_req:
1579        put_reqs_available(ctx, 1);
1580        percpu_ref_put(&ctx->reqs);
1581        kiocb_free(req);
1582        return ret;
1583}
1584
1585long do_io_submit(aio_context_t ctx_id, long nr,
1586                  struct iocb __user *__user *iocbpp, bool compat)
1587{
1588        struct kioctx *ctx;
1589        long ret = 0;
1590        int i = 0;
1591        struct blk_plug plug;
1592
1593        if (unlikely(nr < 0))
1594                return -EINVAL;
1595
1596        if (unlikely(nr > LONG_MAX/sizeof(*iocbpp)))
1597                nr = LONG_MAX/sizeof(*iocbpp);
1598
1599        if (unlikely(!access_ok(VERIFY_READ, iocbpp, (nr*sizeof(*iocbpp)))))
1600                return -EFAULT;
1601
1602        ctx = lookup_ioctx(ctx_id);
1603        if (unlikely(!ctx)) {
1604                pr_debug("EINVAL: invalid context id\n");
1605                return -EINVAL;
1606        }
1607
1608        blk_start_plug(&plug);
1609
1610        /*
1611         * AKPM: should this return a partial result if some of the IOs were
1612         * successfully submitted?
1613         */
1614        for (i=0; i<nr; i++) {
1615                struct iocb __user *user_iocb;
1616                struct iocb tmp;
1617
1618                if (unlikely(__get_user(user_iocb, iocbpp + i))) {
1619                        ret = -EFAULT;
1620                        break;
1621                }
1622
1623                if (unlikely(copy_from_user(&tmp, user_iocb, sizeof(tmp)))) {
1624                        ret = -EFAULT;
1625                        break;
1626                }
1627
1628                ret = io_submit_one(ctx, user_iocb, &tmp, compat);
1629                if (ret)
1630                        break;
1631        }
1632        blk_finish_plug(&plug);
1633
1634        percpu_ref_put(&ctx->users);
1635        return i ? i : ret;
1636}
1637
1638/* sys_io_submit:
1639 *      Queue the nr iocbs pointed to by iocbpp for processing.  Returns
1640 *      the number of iocbs queued.  May return -EINVAL if the aio_context
1641 *      specified by ctx_id is invalid, if nr is < 0, if the iocb at
1642 *      *iocbpp[0] is not properly initialized, if the operation specified
1643 *      is invalid for the file descriptor in the iocb.  May fail with
1644 *      -EFAULT if any of the data structures point to invalid data.  May
1645 *      fail with -EBADF if the file descriptor specified in the first
1646 *      iocb is invalid.  May fail with -EAGAIN if insufficient resources
1647 *      are available to queue any iocbs.  Will return 0 if nr is 0.  Will
1648 *      fail with -ENOSYS if not implemented.
1649 */
1650SYSCALL_DEFINE3(io_submit, aio_context_t, ctx_id, long, nr,
1651                struct iocb __user * __user *, iocbpp)
1652{
1653        return do_io_submit(ctx_id, nr, iocbpp, 0);
1654}
1655
1656/* lookup_kiocb
1657 *      Finds a given iocb for cancellation.
1658 */
1659static struct kiocb *lookup_kiocb(struct kioctx *ctx, struct iocb __user *iocb,
1660                                  u32 key)
1661{
1662        struct list_head *pos;
1663
1664        assert_spin_locked(&ctx->ctx_lock);
1665
1666        if (key != KIOCB_KEY)
1667                return NULL;
1668
1669        /* TODO: use a hash or array, this sucks. */
1670        list_for_each(pos, &ctx->active_reqs) {
1671                struct kiocb *kiocb = list_kiocb(pos);
1672                if (kiocb->ki_obj.user == iocb)
1673                        return kiocb;
1674        }
1675        return NULL;
1676}
1677
1678/* sys_io_cancel:
1679 *      Attempts to cancel an iocb previously passed to io_submit.  If
1680 *      the operation is successfully cancelled, the resulting event is
1681 *      copied into the memory pointed to by result without being placed
1682 *      into the completion queue and 0 is returned.  May fail with
1683 *      -EFAULT if any of the data structures pointed to are invalid.
1684 *      May fail with -EINVAL if aio_context specified by ctx_id is
1685 *      invalid.  May fail with -EAGAIN if the iocb specified was not
1686 *      cancelled.  Will fail with -ENOSYS if not implemented.
1687 */
1688SYSCALL_DEFINE3(io_cancel, aio_context_t, ctx_id, struct iocb __user *, iocb,
1689                struct io_event __user *, result)
1690{
1691        struct kioctx *ctx;
1692        struct kiocb *kiocb;
1693        u32 key;
1694        int ret;
1695
1696        ret = get_user(key, &iocb->aio_key);
1697        if (unlikely(ret))
1698                return -EFAULT;
1699
1700        ctx = lookup_ioctx(ctx_id);
1701        if (unlikely(!ctx))
1702                return -EINVAL;
1703
1704        spin_lock_irq(&ctx->ctx_lock);
1705
1706        kiocb = lookup_kiocb(ctx, iocb, key);
1707        if (kiocb)
1708                ret = kiocb_cancel(kiocb);
1709        else
1710                ret = -EINVAL;
1711
1712        spin_unlock_irq(&ctx->ctx_lock);
1713
1714        if (!ret) {
1715                /*
1716                 * The result argument is no longer used - the io_event is
1717                 * always delivered via the ring buffer. -EINPROGRESS indicates
1718                 * cancellation is progress:
1719                 */
1720                ret = -EINPROGRESS;
1721        }
1722
1723        percpu_ref_put(&ctx->users);
1724
1725        return ret;
1726}
1727
1728/* io_getevents:
1729 *      Attempts to read at least min_nr events and up to nr events from
1730 *      the completion queue for the aio_context specified by ctx_id. If
1731 *      it succeeds, the number of read events is returned. May fail with
1732 *      -EINVAL if ctx_id is invalid, if min_nr is out of range, if nr is
1733 *      out of range, if timeout is out of range.  May fail with -EFAULT
1734 *      if any of the memory specified is invalid.  May return 0 or
1735 *      < min_nr if the timeout specified by timeout has elapsed
1736 *      before sufficient events are available, where timeout == NULL
1737 *      specifies an infinite timeout. Note that the timeout pointed to by
1738 *      timeout is relative.  Will fail with -ENOSYS if not implemented.
1739 */
1740SYSCALL_DEFINE5(io_getevents, aio_context_t, ctx_id,
1741                long, min_nr,
1742                long, nr,
1743                struct io_event __user *, events,
1744                struct timespec __user *, timeout)
1745{
1746        struct kioctx *ioctx = lookup_ioctx(ctx_id);
1747        long ret = -EINVAL;
1748
1749        if (likely(ioctx)) {
1750                if (likely(min_nr <= nr && min_nr >= 0))
1751                        ret = read_events(ioctx, min_nr, nr, events, timeout);
1752                percpu_ref_put(&ioctx->users);
1753        }
1754        return ret;
1755}
1756